女川原子力発電所第2号機 工事計画審査資料	
資料番号	02 －補－E－19－0600－40－52＿改 0
提出年月日	2021 年 10 月 14 日

補足－600－40－52 原子炉圧力容器及び原子炉格納容器の構造強度評価におけ る形状係数の設定について

1．概要

原子炉圧力容器及び原子炉格納容器の耐震計算における構造強度評価のうち，一次膜応力 + 一次曲げ応力に対する許容応力を算出する際，設計•建設規格 PVB－3111に基づ き，純曲げによる全断面降伏荷重と初期降伏荷重の比または 1.5 のいずれか小さい方の値（ α ）（以下「形状係数」という。）を用いて評価する部位がある。

本書は，原子炉圧力容器及び原子炉格納容器の耐震計算の構造強度評価において，形状係数を適用する部位と部位ごとの形状係数の設定についてまとめたものである。

2．設計•建設規格 解説 PVB－3111に基づく形状係数について
設計•建設規格 解説 PVB－3111より，管状断面形状の場合，形状係数は下式で求め られる。ただし，管状断面形状において下式の計算結果が 1.5 を上回る場合は，形状係数として 1.5 を用いる。

$$
\alpha=\frac{32\left(1-Y^{3}\right)}{6 \pi\left(1-Y^{4}\right)}
$$

ただし，$Y=d_{i} / d_{o}$
$d_{i}:$ 管の内径
d_{o} ：管の外径
なお，この形状係数はノズルと配管の接続部のような部材断面全体が外部荷重による曲げモーメントを受ける箇所に適用すべき係数であり，中空円形断面であっても軸力，水平力等，断面積で応力が決定されるような箇所には適用する必要がなく，この場合は 1.5 を用いてよい。

上記は管状断面形状の場合であり，中実円形及び三角形断面では，1．5を超えるが， この場合は形状係数として 1.5 を用いる。

中実矩形断面の場合，形状係数は 1.5 である。

3．適用する部位と形状係数の設定
（1）原子炉圧力容器
添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」の構造強度評価において，形状係数を適用する部位及び部位ごとの形状係数を表3－1に示す。ま た，各部位の概要図及び形状係数を設定するための諸元を図 3－1 から図 3－18に示す。

原子炉圧力容器の評価部位は，基本的に中空円筒断面であるため， 2 項に示す管状断面形状として形状係数を設定し，全断面降伏荷重と初期降伏荷重の比が 1.5 を上回 る部位については 1.5 を用いる。ただし，制御棒駆動機構ハウジング貫通孔の応力評価面 ，計装ノズル（N12，N13 及びN14）の応力評価面 及 及びブラケッ ト類は，応力評価上の断面が中実矩形断面であるため，中実矩形断面の形状係数であ る 1.5 を用いる。

表 3－1 原子炉圧力容器の耐震計算における形状係数適用部位（1／2）

適用部位	応力評価面	形状係数	備考
胴板	P01－P02		
下部鏡板	P01－P02，P03－P04		
	P05－P06		
制御棒駆動機構ハウジング貫通孔	P01－P02，P03－P04		
	P05－P06		
	P07－P08		
	P09－P10		
再循環水出口ノズル（N1）	P01－P02		
	P03－P04		
	P05－P06		
再循環水入口ノズル（N2）	P01－P02，P05－P06，P07－P08		
	P03－P04		
主蒸気出口ノズル（N3）	P01－P02		
	P03－P04，P05－P06		
給水ノズル（N4）	P01－P02		
	P03－P04，P05－P06		
	P07－P08		
	P09－P10		
低圧灲心スプレイノズル （N5）及び高圧炉心スプレイ ノズル (N16)	P01－P02		
	P03－P04，P05－P06，P11－P12		
	P07－P08		
	P09－P10		
低圧注水ノズル（N6）	P01－P02		
	P03－P04，P05－P06，P09－P10		
	P07－P08		
上蓋スプレイノズル（N7）	P01－P02		
	P03－P04，P05－P06		
ベントノズル（N8）	P01－P02		
	P03－P04，P05－P06		

注記 $* 1$ ：中実矩形断面の 1.5 を用いる。
＊2：全断面降伏荷重と初期降伏荷重の比が 1.5 を上回るため 1.5 を用いる。

表 3－1 原子炉圧力容器の耐震計算における形状係数適用部位（2／2）

適用部位	応力評価面	形状係数	備考
ジェットポンプ計測管貫通部 ノズル（ N 9 ）	P01－P02		
	P03－P04		
	P05－P06		
差圧検出・ほう酸水注入ノズ ル（N11）	P01－P02，P03－P04		
	P05－P06，P07－P08		
計装ノズル（N12 及び N13）	P01－P02，P03－P04，P05－P06		
	P07－P08		
計装ノズル（N14）	P01－P02		
	P03－P04，P05－P06		
	P07－P08		
ドレンノズル（N15）	P01－P02		
	P03－P04		
ブラケット類 （原子炉圧力容器スタビライ ザブラケット，蒸気乾燥器支持ブラケット，給水スパージ ヤブラケット，炉心スプレイ ブラケット）			
原子炉圧力容器支持スカート	P01－P02		

注記 $* 1$ ：中実矩形断面の 1.5 を用いる。
＊2：全断面降伏荷重と初期降伏荷重の比が 1.5 を上回るため 1.5 を用いる。
（2）原子炉格納容器
原子炉格納容器の耐震計算の構造強度評価において，形状係数を適用する部位及び部位ごと の形状係数を表 3－2 に示す。
原子炉格納容器は， 2 項に示す管状断面形状としての形状係数の影響を考慮し，中空円筒に モーメントが作用して生じる応力を膜応力として分類し評価している。これは， 2 項に示す中空円形断面であっても軸力，水平力等，断面積で応力が決定されるような箇所に相当し，この場合の形状係数は 1.5 を用いてよいとされている。このため，応力評価上の断面を板厚部分の中実矩形断面とし，中実矩形断面の形状係数である 1.5 を用いる。

表 3－2 原子炉格納容器の耐震計算における形状係数適用部位
$\stackrel{\rightharpoonup}{-}$

図書番号	図書名称	適用する評価部位	応力評価点番号	形状係数
VI－2－9－2－1－1	ドライウェルの耐震性についての計算書	ドライウェル	P1～P11	1.5
VI－2－9－2－1－2	サプレッションチェンバの耐震性についての計算書	サプレッションチェンバ	P1～P10	1.5
VI－2－9－2－1－3	原子炉格納容器シヤラグの耐震性についての計算書	原子炉格納容器シヤラグ取付部	P11	1.5
VI－2－9－2－1－4	ドライウェルベント開口部の耐震性についての計算書	ベントノズル	P1	1.5
		補強板	P2	1.5
VI－2－9－2－2－1	機器搬出入用ハッチの耐震性についての計算書	補強板	P3～P5	1.5
VI－2－9－2－2－2	逃がし安全弁搬出入口の耐震性についての計算書	補強板	P9～P11	1.5
VI－2－9－2－2－3	制御棒駆動機構搬出入口の耐震性についての計算書	補強板	P3～P5	1.5
VI－2－9－2－2－4	サプレッションチェンバ出入口の耐震性についての計算書	円筒胴	P4	1.5
		補強板	P5	1.5
VI－2－9－2－3－1	所員用エアロックの耐震性についての計算書	補強板	P6～P8	1.5
VI－2－9－2－4－1	原子炉格納容器配管貫通部の耐震性についての計算書	貫通部管台	P3，P4	1.5
		補強板	P1，P2	1.5
VI－2－9－2－4－2	原子炉格納容器電気配線貫通部の耐震性についての計算書	$\begin{aligned} & \text { ヘッダ, アダプタ及びスリ } \\ & \text { ーブ } \end{aligned}$	P1～P3	1.5
		原子炉格納容器（ドライウ エル）	P4	1.5
VI－2－9－4－2	ベント管の耐震性についての計算書	ベント管	P1～P3	1.5

4．結論

以上のとおり，原子炉圧力容器及び原子炉格納容器の耐震計算の構造強度評価において，形状係数を適用する部位と部位ごとに設計•建設規格 解説 PVB－3111に基づき設定した形状係数に ついてまとめた。原子炉圧力容器は，基本的には管状断面形状として形状係数を設定し，制御棒駆動機構ハウジング貫通孔の応力評価面 \quad 計装ノズル（N12，N13 及びN14）の応力評価面 及 びブラケット類については，中実矩形断面の形状係数を設定している。原子炉格納容器は，応力評価上の断面を板厚部分の中実矩形断面とし，中実矩形断面の形状係数を設定して いる。

胴板

応力評価面	形状係数＊	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\circ}(\mathrm{mm})$	備考
$\mathrm{P} 01-\mathrm{P} 02$				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。

図 3－1 胴板の概要図及び諸元

応力評価面	形状係数＊	内径 d_{i}（mm）	外径 $\mathrm{d}_{\text {。 }}$（mm）	備考
P01－P02				
P03－P04				
P05－P06				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－2 下部鏡板の概要図及び諸元

制御棒駆動機構ハウジング貫通孔

応力評価面	形状係数＊1	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\text {。 }}$（mm）	備考
P01－P02				
P03－P04				
P05－P06				
P07－P08				
P09－P10				

注記 $* 1$ ：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。 ＊2：中実矩形断面の 1.5 を用いる。

図 3－3 制御棒駆動機構ハウジング貫通孔の概要図及び諸元

応力評価面	形状係数＊	内径 d_{i}（mm）	外径 $\mathrm{d}_{\text {。 }}$（mm）	備考
P01－P02				
P03－P04				
P05－P06				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。

図 3－4 再循環水出ロノズル（N1）の概要図及び諸元

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－5 再循環水入口ノズル（N2）の概要図及び諸元

応力評価面	形状係数＊	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\circ}(\mathrm{mm})$	備考
$\mathrm{P} 01-\mathrm{P} 02$				
$\mathrm{P} 03-\mathrm{P} 04$				
$\mathrm{P} 05-\mathrm{P} 06$				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。

図 3－6 主蒸気出ロノズル（N3）の概要図及び諸元

周方向断面
朝方后迦面

応力評価面	形状係数＊	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\text {。 }}$（mm）	備考
P01－P02				
P03－P04				
P05－P06				
P07－P08				
P09－P10				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－7 給水ノズル（N4）の概要図及び諸元

応力評価面	形状係数＊	内径 d_{i}（mm）	外径 $\mathrm{d}_{\text {。 }}$（mm）	備考
P01－P02				
P03－P04				
P05－P06				
P07－P08				
P09－P10				
P11－P12				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－8 低圧炉心スプレイノズル（N5）の概要図及び諸元

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－9 低圧注水ノズル（N6）の概要図及び諸元

注記＊1：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。 ＊2：全断面降伏荷重と初期降伏荷重の比が 1.5 を上回るため 1.5 を用いる。図 3－10 上蓋スプレイノズル（N7）の概要図及び諸元

応力評価面	形状係数＊1	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\circ}(\mathrm{mm})$	備考
P01－P02				
$\mathrm{P} 03-\mathrm{P} 04$				
$\mathrm{P} 05-\mathrm{P} 06$				

注記 $* 1$ ：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。
＊2：全断面降伏荷重と初期降伏荷重の比が 1.5 を上回るため 1.5 を用いる。
図 3－11 ベントノズル（N8）の概要図及び諸元

応力評価面	形状係数＊	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\circ}(\mathrm{mm})$	備考
$\mathrm{P} 01-\mathrm{P} 02$				
$\mathrm{P} 03-\mathrm{P} 04$				
$\mathrm{P} 05-\mathrm{P} 06$				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－12 ジェットポンプ計測管貫通部ノズル（N9）の概要図及び諸元

注記 $* 1$ ：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。 ＊2：全断面降伏荷重と初期降伏荷重の比が 1.5 を上回るため 1.5 を用いる。図 3－13 差圧検出・ほう酸水注入ノズル（N11）の概要図及び諸元

応力評価面	形状係数＊${ }^{1}$	内径 d_{i}（mm）	外径 d_{\circ}（mm）	備考
P01－P02				
P03－P04				
P05－P06				
P07－P08				

注記 $* 1$ ：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。 ＊2：全断面降伏荷重と初期降伏荷重の比が 1.5 を上回るため 1.5 を用いる。 ＊ 3 ：中実矩形断面の 1.5 を用いる。

図 3－14 計装ノズル（N12 及びN13）の概要図及び諸元

応力評価面	形状係数＊${ }^{1}$	内径 d_{i}（mm）	外径 $\mathrm{d}^{\text {o }}$（mm）	備考
P01－P02				
P03－P04				
P05－P06				
P07－P08				

注記 $* 1$ ：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。
＊2：全断面降伏荷重と初期降伏荷重の比が 1.5 を上回るため 1.5 を用いる。
＊ 3 ：中実矩形断面の 1.5 を用いる。
図 3－15 計装ノズル（N14）の概要図及び諸元

応力評価面	形状係数＊	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\circ}(\mathrm{mm})$	備考
$\mathrm{P} 01-\mathrm{P} 02$				
$\mathrm{P} 03-\mathrm{P} 04$				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－16 ドレンノズル（N15）の概要図及び諸元

応力評価面	形状係数＊	内径 d_{i}（mm）	外径 $\mathrm{d}^{\text {。 }}$（mm）	備考
P01－P02				
P03－P04				
P05－P06				
P07－P08				
P09－P10				
P11－P12				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－17 高圧炉心スプレイノズル（N16）の概要図及び諸元

原子炉圧力容器支持スカート

応力評価面	形状係数＊	内径 $\mathrm{d}_{\mathrm{i}}(\mathrm{mm})$	外径 $\mathrm{d}_{\circ}(\mathrm{mm})$	備考
$\mathrm{P} 01-\mathrm{P} 02$				

注記＊：形状係数は小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値とする。図 3－18 原子炉圧力容器支持スカートの概要図及び諸元

