女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－19－0197＿改 3
提出年月日	2021 年 10 月 14 日

VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書

目次（全体構成）

1．概要 1－1
2．胴板の耐震性についての計算 2－1
3．下部鏡板の耐震性についての計算 3－1
4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算 4－1
5．再循環水出口ノズル（N1）の耐震性についての計算 5－1
6．再循環水入口ノズル（N2）の耐震性についての計算 6－1
7．主蒸気出口ノズル（N3）の耐震性についての計算 7－1
8．給水ノズル（N4）の耐震性についての計算 8－1
9．低圧炉心スプレイノズル（N5）の耐震性についての計算 9－1
10．低圧注水ノズル（N6）の耐震性についての計算 10－1
11．上蓋スプレイノズル（N7）の耐震性についての計算• 11－1
12．ベントノズル（N8）の耐震性についての計算 12－1
13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算 13－1
14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算 14－1
15．計装ノズル（N12，N13，N14）の耐震性についての計算 15－1
16．ドレンノズル（N15）の耐震性についての計算 16－1
17．高圧炉心スプレイノズル（N16）の耐震性についての計算 17－1
18．ブラケット類の耐震性についての計算 18－1
19．原子炉圧力容器支持スカートの耐震性についての計算 19－1
20．原子炉圧力容器基礎ボルトの耐震性についての計算 20－1

目次

（胴板）
2．胴板の耐震性についての計算 2－1
2.1 一般事項 2－1
2．1．1 記号の説明 2－1
2．1．2 形状－寸法 •材料 2－1
2．1．3 解析範囲 2－1
2．1．4 計算結果の概要 2－1
2.2 計算条件 2－5
2．2．1 設計条件 2－5
2．2．2 運転条件 2－5
2．2．3 材料 2－5
2．2．4 荷重の組合せ及び許容応力状態 2－5
2．2．5 荷重の組合せ及び応力評価 2－5
2．2．6 許容応力 2－5
2.3 応力計算 2－5
2．3．1 応力評価点 2－5
2．3．2 内圧による応力 2－5
2．3．3 外荷重による応力 2－6
2．3．4 応力の評価 2－6
2．4 応力強さの評価 2－6
2．4．1 一次一般膜応力強さの評価 2－6
2．4．2 一次膜 + 一次曲げ応力強さの評価 2－6
2．4．3 一次 + 二次応力強さの評価 2－6
2.5 繰返し荷重の評価 2－7
2．5．1 設計•建設規格 PVB－3140（6）についての検討 2－7
2． 6 特別な応力の評価 2－8
2．6．1 支圧応力の評価 2－8

図表目次

（胴板）

図2－1 形状•寸法•材料•応力評価点 2－2
表2－1 計算結果の概要 2－4
表2－2 一次一般膜応力強さの評価のまとめ・ 2－9
表2－3 一次膜＋一次曲げ応力強さの評価のまとめ 2－10
表2－4 一次 + 二次応力強さの評価のまとめ 2－11
表2－5 支圧応力の評価に用いる荷重 2－12
表2－6 支圧応力の評価 2－12

目次

（下部鏡板）
3．下部鏡板の耐震性についての計算 3－1
3.1 一般事項 3－1
3．1．1 形状•寸法•材料 3－1
3．1．2 解析範囲 3－1
3．1．3 計算結果の概要 3－1
3.2 計算条件 3－4
3．2．1 設計条件 3－4
3．2．2 運転条件 3－4
3．2．3 材料 3－4
3．2．4 荷重の組合せ及び許容応力状態 3－4
3．2．5 荷重の組合せ及び応力評価 3－4
3．2．6 許容応力 3－4
3.3 応力計算 3－4
3．3．1 応力評価点 3－4
3．3．2 内圧による応力 3－4
3．3．3 外荷重による応力 3－5
3．3．4 応力の評価 3－5
3．4 応力強さの評価 3－5
3．4．1 一次一般膜応力強さの評価 3－5
3．4．2 一次膜 + 一次曲げ応力強さの評価 3－5
3．4．3 一次 + 二次応力強さの評価 3－5
3.5 繰返し荷重の評価 3－6
3．5．1 疲労解析 3－6

図表目次

（下部鏡板）
図3－1 形状•寸法•材料•応力評価点 3－2
表3－1 計算結果の概要 3－3
表3－2 一次一般膜応力強さの評価のまとめ・ 3－7
表3－3 一次膜＋一次曲げ応力強さの評価のまとめ 3－8
表3－4 一次＋二次応力強さの評価のまとめ 3－9
表3－5 疲労累積係数 3－10
表3－6 疲労累積係数の評価のまとめ 3－11

> 目次
> (制御棒駆動機構ハウジング貫通孔)
4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算 4－1
4． 1 一般事項 4－1
4．1．1 記号の説明 4－1
4．1．2 形状 • 寸法 •材料 4－1
4．1．3 解析範囲 4－1
4．1．4 計算結果の概要 4－1
4．2 計算条件 4－4
4．2．1 設計条件 4－4
4．2．2 運転条件 4－4
4．2．3 材料 4－4
4．2．4 荷重の組合せ及び許容応力状態 4－4
4．2．5 荷重の組合せ及び応力評価 4－4
4．2．6 許容応力 4－4
4．3 応力計算 4－4
4．3．1 応力評価点 4－4
4．3．2 内圧による応力 4－4
4．3．3 外荷重による応力 4－5
4．3．4 応力の評価 4－5
4． 4 応力強さの評価 4－5
4．4．1 一次一般膜応力強さの評価 4－5
4．4．2 一次膜 + 一次曲げ応力強さの評価 4－5
4．4．3 一次 + 二次応力強さの評価 4－5
4.5 繰返し荷重の評価 4－6
4．5．1 疲労解析 4－6
4． 6 特別な応力の評価 4－6
4．6．1 座屈に対する評価 4－6

図表目次

（制御棒駆動機構ハウジング貫通孔）
図 4－1 形状•寸法•材料•応力評価点 4－2
表4－1 計算結果の概要 4－3
表4－2 一次一般膜応力強さの評価のまとめ・ 4－8
表4－3 一次膜＋一次曲げ応力強さの評価のまとめ 4－9
表4－4 一次 + 二次応力強さの評価のまとめ 4－10
表4－5 疲労累積係数 4－11
表4－6 疲労累積係数の評価のまとめ 4－14
表4－7 座屈に対する評価に用いる荷重 4－15
表4－8 座屈に対する評価 4－15

目次

（再循環水出口ノズル（N1））
5．再循環水出ロノズル（N1）の耐震性についての計算 5－1
5.1 一般事項 5－1
5．1．1 形状•寸法•材料 5－1
5．1．2 解析範囲 5－1
5．1．3 計算結果の概要 5－1
5.2 計算条件 5－4
5．2．1 設計条件 5－4
5．2．2 運転条件 5－4
5．2．3 材料 5－4
5．2．4 荷重の組合せ及び許容応力状態 5－4
5．2．5 荷重の組合せ及び応力評価 5－4
5．2．6 許容応力 5－4
5.3 応力計算 5－4
5．3．1 応力評価点 5－4
5．3．2 内圧による応力 5－4
5．3．3 外荷重による応力 5－5
5．3．4 応力の評価 5－5
5．4 応力強さの評価 5－5
5．4．1 一次一般膜応力強さの評価 5－5
5．4．2 一次膜 + 一次曲げ応力強さの評価 5－5
5．4．3 一次 + 二次応力強さの評価 5－5
5.5 繰返し荷重の評価 5－6
5．5．1 疲労解析 5－6

図表目次

（再循環水出口ノズル（ N 1 ））
図 5－1 形状•寸法•材料•応力評価点 5－2
表5－1 計算結果の概要 5－3
表5－2 一次一般膜応力強さの評価のまとめ・ 5－7
表5－3 一次膜＋一次曲げ応力強さの評価のまとめ 5－8
表5－4 一次＋二次応力強さの評価のまとめ 5－9
表5－5 疲労累積係数。 5－10
表5－6 疲労累積係数の評価のまとめ 5－13

目次

（再循環水入口ノズル（N2））
6．再循環水入口ノズル（N2）の耐震性についての計算 6－1
6． 1 一般事項 6－1
6．1．1 形状•寸法•材料 6－1
6．1．2 解析範囲 6－1
6．1．3 計算結果の概要 6－1
6.2 計算条件 6－4
6．2．1 設計条件 6－4
6．2．2 運転条件 6－4
6．2．3 材料 6－4
6．2．4 荷重の組合せ及び許容応力状態 6－4
6．2．5 荷重の組合せ及び応力評価 6－4
6．2．6 許容応力 6－4
6．3 応力計算 6－4
6．3．1 応力評価点 6－4
6．3．2 内圧及び差圧による応力 6－4
6．3．3 外荷重による応力 6－5
6．3．4 応力の評価 6－5
6． 4 応力強さの評価 6－5
6．4．1 一次一般膜応力強さの評価 6－5
6．4．2 一次膜 + 一次曲げ応力強さの評価 6－5
6．4．3 一次 + 二次応力強さの評価 6－5
6.5 繰返し荷重の評価 6－6
6．5．1 疲労解析 6－6

図表目次

（再循環水入口ノズル（N2））
図6－1 形状•寸法•材料•応力評価点 6－2
表6－1 計算結果の概要 6－3
表6－2 一次一般膜応力強さの評価のまとめ． 6－7
表6－3 一次膜＋一次曲げ応力強さの評価のまとめ 6－8
表6－4 一次＋二次応力強さの評価のまとめ 6－9
表6－5 疲労累積係数 6－10
表6－6 疲労累積係数の評価のまとめ 6－13

目次
 （主蒸気出口ノズル（N3））

7．主蒸気出口ノズル（N3）の耐震性についての計算 7－1
7.1 一般事項 7－1
7．1．1 形状•寸法•材料 7－1
7．1．2 解析範囲 7－1
7．1．3 計算結果の概要 7－1
7.2 計算条件 7－4
7．2．1 設計条件 7－4
7．2．2 運転条件 7－4
7．2．3 材料 7－4
7．2．4 荷重の組合せ及び許容応力状態 7－4
7．2．5 荷重の組合せ及び応力評価 7－4
7．2．6 許容応力 7－4
7．3 応力計算 7－4
7．3．1 応力評価点 7－4
7．3．2 内圧による応力 7－4
7．3．3 外荷重による応力 7－5
7．3．4 応力の評価 7－5
7．4 応力強さの評価 7－5
7．4．1 一次一般膜応力強さの評価 7－5
7．4．2 一次膜 + 一次曲げ応力強さの評価 7－5
7．4．3 一次 + 二次応力強さの評価 7－5
7.5 繰返し荷重の評価 7－6
7．5．1 疲労解析 7－6

図表目次

（主蒸気出口ノズル（N3））
図 7－1 形状•寸法•材料•応力評価点 7－2
表7－1 計算結果の概要 7－3
表7－2 一次一般膜応力強さの評価のまとめ・ 7－7
表7－3 一次膜＋一次曲げ応力強さの評価のまとめ 7－8
表7－4 一次 + 二次応力強さの評価のまとめ 7－9
表7－5 疲労累積係数 7－10
表 7－6 疲労累積係数の評価のまとめ 7－13

目次

（給水ノズル（N4））
8．給水ノズル（N4）の耐震性についての計算 8－1
8． 1 一般事項 8－1
8．1．1 形状•寸法•材料 8－1
8．1．2 解析範囲 8－1
8．1．3 計算結果の概要 8－1
8．2 計算条件 8－4
8．2．1 設計条件 8－4
8．2．2 運転条件 8－4
8．2．3 材料 8－4
8．2．4 荷重の組合せ及び許容応力状態 8－4
8．2．5 荷重の組合せ及び応力評価 8－4
8．2．6 許容応力 8－4
8．3 応力計算 8－4
8．3．1 応力評価点 8－4
8．3．2 内圧及び差圧による応力 8－4
8．3．3 外荷重による応力 8－5
8．3．4 応力の評価 8－5
8． 4 応力強さの評価 8－5
8．4．1 一次一般膜応力強さの評価 8－5
8．4．2 一次膜 + 一次曲げ応力強さの評価 8－5
8．4．3 一次 + 二次応力強さの評価 8－5
8.5 繰返し荷重の評価 8－6
8．5．1 疲労解析 8－6

図表目次

（給水ノズル（N4））
図8－1 形状•寸法•材料•応力評価点 8－2
表8－1 計算結果の概要 8－3
表8－2 一次一般膜応力強さの評価のまとめ・ 8－7
表8－3 一次膜＋一次曲げ応力強さの評価のまとめ 8－8
表8－4 一次＋二次応力強さの評価のまとめ 8－9
表8－5 疲労累積係数 8－10
表8－6 疲労累積係数の評価のまとめ 8－13
9．低圧炉心スプレイノズル（N5）の耐震性についての計算 9－1
9.1 一般事項 9－1
9．1．1 形状•寸法•材料 9－1
9．1．2 解析範囲 9－1
9．1．3 計算結果の概要 9－1
9．2 計算条件 9－4
9．2．1 設計条件 9－4
9．2．2 運転条件 9－4
9．2．3 材料 9－4
9．2．4 荷重の組合せ及び許容応力状態 9－4
9．2．5 荷重の組合せ及び応力評価 9－4
9．2．6 許容応力 9－4
9．3 応力計算 9－4
9．3．1 応力評価点 9－4
9．3．2 内圧及び差圧による応力 9－4
9．3．3 外荷重による応力 9－5
9．3．4 応力の評価 9－5
9.4 応力強さの評価 9－5
9．4．1 一次一般膜応力強さの評価 9－5
9．4．2 一次膜 + 一次曲げ応力強さの評価 9－5
9．4．3 一次 + 二次応力強さの評価 9－5
9.5 繰返し荷重の評価 9－6
9．5．1 疲労解析 9－6

図表目次

（低圧炉心スプレイノズル（N5））

図9－1 形状•寸法•材料•応力評価点 9－2
表9－1 計算結果の概要 9－3
表9－2 一次一般膜応力強さの評価のまとめ・ 9－7
表9－3 一次膜＋一次曲げ応力強さの評価のまとめ 9－8
表9－4 一次 + 二次応力強さの評価のまとめ 9－9
表9－5 疲労累積係数 9－10
表9－6 疲労累積係数の評価のまとめ 9－13

目次

（低圧注水ノズル（N6））
10．低圧注水ノズル（N6）の耐震性についての計算 10－1
10． 1 一般事項 10－1
10．1．1 形状 • 寸法 •材料 10－1
10．1．2 解析範囲 10－1
10．1．3 計算結果の概要 10－1
10．2 計算条件 10－4
10．2．1 設計条件 10－4
10．2．2 運転条件 10－4
10．2．3 材料 10－4
10．2．4 荷重の組合せ及び許容応力状態 10－4
10．2．5 荷重の組合せ及び応力評価 10－4
10．2．6 許容応力 10－4
10．3 応力計算 10－4
10．3．1 応力評価点 10－4
10．3．2 内圧及び差圧による応力 10－4
10．3．3 外荷重による応力 10－5
10．3．4 応力の評価 10－5
10．4 応力強さの評価 10－5
10．4．1 一次一般膜応力強さの評価 10－5
10．4．2 一次膜 + 一次曲げ応力強さの評価 10－5
10．4．3 一次 + 二次応力強さの評価 10－5
10.5 繰返し荷重の評価 10－6
10．5．1 疲労解析 10－6

図表目次

（低圧注水ノズル（N6））

図10－1 形状•寸法•材料•応力評価点 10－2
表10－1 計算結果の概要 10－3
表10－2 一次一般膜応力強さの評価のまとめ 10－7
表10－3 一次膜＋一次曲げ応力強さの評価のまとめ 10－8
表10－4 一次＋二次応力強さの評価のまとめ 10－9
表10－5 疲労累積係数． 10－10
表10－6 疲労累積係数の評価のまとめ 10－13

目次

（上蓋スプレイノズル（N7））
11．上蓋スプレイノズル（N7）の耐震性についての計算 11－1
11.1 一般事項 11－1
11．1．1 形状•寸法•材料 11－1
11．1．2 解析範囲 11－1
11．1．3 計算結果の概要 11－1
11.2 計算条件 11－4
11．2．1 設計条件 11－4
11．2．2 運転条件 11－4
11．2．3 材料 11－4
11．2．4 荷重の組合せ及び許容応力状態 11－4
11．2．5 荷重の組合せ及び応力評価 11－4
11．2．6 許容応力 11－4
11．3 応力計算 11－4
11．3．1 応力評価点 11－4
11．3．2 内圧による応力 11－4
11．3．3 外荷重による応力 $11-5$
11．3．4 ボルト荷重による応力 11－5
11．3．5 応力の評価 11－5
11．4 応力強さの評価 11－5
11．4．1 一次一般膜応力強さの評価 $11-5$
11．4．2 一次膜 + 一次曲げ応力強さの評価 $11-5$
11．4．3 一次 + 二次応力強さの評価 11－6
11.5 繰返し荷重の評価 11－6
11．5．1 疲労解析 11－6

図表目次

> (上蓋スプレイノズル (N7))
図11－1 形状•寸法•材料•応力評価点 11－2
表11－1 計算結果の概要 11－3
表11－2 一次一般膜応力強さの評価のまとめ 11－7
表11－3 一次膜＋一次曲げ応力強さの評価のまとめ 11－8
表11－4 一次＋二次応力強さの評価のまとめ 11－9
表11－5 疲労累積係数 11－10
表11－6 疲労累積係数の評価のまとめ 11－12

> 目次
> $($ ベントノズル $(\mathrm{N} 8))$
12．ベントノズル（N8）の耐震性についての計算 12－1
12.1 一般事項 12－1
12．1．1 形状•寸法•材料 12－1
12．1．2 解析範囲 12－1
12．1．3 計算結果の概要 12－1
12．2 計算条件 12－4
12．2．1 設計条件 12－4
12．2．2 運転条件 12－4
12．2．3 材料 12－4
12．2．4 荷重の組合せ及び許容応力状態 12－4
12．2．5 荷重の組合せ及び応力評価 12－4
12．2．6 許容応力 12－4
12.3 応力計算 12－4
12．3．1 応力評価点 12－4
12．3．2 内圧による応力 12－4
12．3．3 外荷重による応力 12－5
12．3．4 ボルト荷重による応力 12－5
12．3．5 応力の評価 12－5
12．4 応力強さの評価 12－5
12．4．1 一次一般膜応力強さの評価 12－5
12．4．2 一次膜 + 一次曲げ応力強さの評価 12－5
12．4．3 一次 + 二次応力強さの評価 12－6
12.5 繰返し荷重の評価 12－6
12．5．1 疲労解析 12－6

図表目次

(ベントノズル (N8))
図12－1 形状•寸法•材料•応力評価点 12－2
表12－1 計算結果の概要 12－3
表12－2 一次一般膜応力強さの評価のまとめ 12－7
表12－3 一次膜＋一次曲げ応力強さの評価のまとめ 12－8
表12－4 一次＋二次応力強さの評価のまとめ 12－9
表12－5 疲労累積係数． 12－10
表12－6 疲労累積係数の評価のまとめ 12－12

目次

（ジェットポンプ計測管貫通部ノズル（N9））

13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算 13－1
13.1 一般事項 13－1
13．1．1 形状•寸法•材料 13－1
13．1．2 解析範囲 13－1
13．1．3 計算結果の概要 13－1
13.2 計算条件 13－4
13．2．1 設計条件 13－4
13．2．2 運転条件 13－4
13．2．3 材料 13－4
13．2．4 荷重の組合せ及び許容応力状態 13－4
13．2．5 荷重の組合せ及び応力評価 13－4
13．2．6 許容応力 13－4
13．3 応力計算 13－4
13．3．1 応力評価点 13－4
13．3．2 内圧による応力 13－4
13．3．3 外荷重による応力 13－5
13．3．4 応力の評価 13－5
13．4 応力強さの評価 13－5
13．4．1 一次一般膜応力強さの評価 13－5
13．4．2 一次膜 + 一次曲げ応力強さの評価 13－5
13．4．3 一次 + 二次応力強さの評価 13－5
13.5 繰返し荷重の評価 13－6
13．5．1 疲労解析 13－6
図表目次
（ジェットポンプ計測管貫通部ノズル（N9））
図 13－1 形状•寸法•材料•応力評価点 13－2
表13－1 計算結果の概要 13－3
表13－2 一次一般膜応力強さの評価のまとめ 13－7
表13－3 一次膜＋一次曲げ応力強さの評価のまとめ 13－8
表13－4 一次＋二次応力強さの評価のまとめ 13－9
表13－5 疲労累積係数． 13－10
表13－6 疲労累積係数の評価のまとめ 13－13

目次
（差圧検出・ほう酸水注入ノズル（N11））

14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算 14－1
14.1 一般事項 14－1
14．1．1 形状•寸法•材料 14－1
14．1．2 解析範囲 14－1
14．1．3 計算結果の概要 14－1
14．2 計算条件 14－4
14．2．1 設計条件 14－4
14．2．2 運転条件 14－4
14．2．3 材料 14－4
14．2．4 荷重の組合せ及び許容応力状態 14－4
14．2．5 荷重の組合せ及び応力評価 14－4
14．2．6 許容応力 14－4
14．3 応力計算 14－4
14．3．1 応力評価点 14－4
14．3．2 内圧による応力 14－4
14．3．3 外荷重による応力 14－5
14．3．4 応力の評価 14－5
14．4 応力強さの評価 14－5
14．4．1 一次一般膜応力強さの評価 14－5
14．4．2 一次膜 + 一次曲げ応力強さの評価 14－5
14．4．3 一次 + 二次応力強さの評価 14－5
14.5 繰返し荷重の評価 14－6
14．5．1 疲労解析 14－6

図表目次

（差圧検出・ほう酸水注入ノズル（N11））

図14－1 形状•寸法•材料•応力評価点• 14－2
表14－1 計算結果の概要 14－3
表14－2 一次一般膜応力強さの評価のまとめ 14－7
表14－3 一次膜＋一次曲げ応力強さの評価のまとめ 14－8
表14－4 一次＋二次応力強さの評価のまとめ 14－9
表14－5 疲労累積係数． 14－10
表14－6 疲労累積係数の評価のまとめ 14－12
15．計装ノズル（N12，N13，N14）の耐震性についての計算 15－1
15.1 一般事項 15－1
15．1．1 形状•寸法•材料 15－1
15．1．2 解析範囲 15－1
15．1．3 計算結果の概要 15－1
15．2 計算条件 15－7
15．2．1 設計条件 15－7
15．2．2 運転条件 15－7
15．2．3 材料 15－7
15．2．4 荷重の組合せ及び許容応力状態 15－7
15．2．5 荷重の組合せ及び応力評価 15－7
15．2．6 許容応力 15－7
15．3 応力計算 15－7
15．3．1 応力評価点 15－7
15．3．2 内圧による応力 15－7
15．3．3 外荷重による応力 15－8
15．3．4 応力の評価 15－8
15．4 応力強さの評価 15－8
15．4．1 一次一般膜応力強さの評価 15－8
15．4．2 一次膜＋一次曲げ応力強さの評価 15－8
15．4．3 一次＋二次応力強さの評価 15－8
15.5 繰返し荷重の評価 15－9
15．5．1 疲労解析 15－9

図表目次

（計装ノズル（N12，N13，N14））
図15－1 形状•寸法•材料•応力評価点 15－2
表15－1 計装ノズルの計算結果の概要 15－4
表15－2 計装ノズルの一次一般膜応力強さの評価のまとめ 15－10
表15－3 計装ノズルの一次膜＋一次曲げ応力強さの評価のまとめ 15－13
表15－4 計装ノズルの一次 + 二次応力強さの評価のまとめ 15－16
表15－5 計装ノズルの疲労累積係数 15－19
表15－6 計装ノズルの疲労累積係数の評価のまとめ 15－28

目次
 （ドレンノズル（N15））

16．ドレンノズル（N15）の耐震性についての計算 16－1
16.1 一般事項 16－1
16．1．1 形状•寸法•材料 16－1
16．1．2 解析範囲 16－1
16．1．3 計算結果の概要 16－1
16．2 計算条件 16－4
16．2．1 設計条件 16－4
16．2．2 運転条件 16－4
16．2．3 材料 16－4
16．2．4 荷重の組合せ及び許容応力状態 16－4
16．2．5 荷重の組合せ及び応力評価 16－4
16．2．6 許容応力 16－4
16．3 応力計算 16－4
16．3．1 応力評価点 16－4
16．3．2 内圧による応力 16－4
16．3．3 外荷重による応力 16－5
16．3．4 応力の評価 16－5
16．4 応力強さの評価 16－5
16．4．1 一次一般膜応力強さの評価 16－5
16．4．2 一次膜＋一次曲げ応力強さの評価 16－5
16．4．3 一次 + 二次応力強さの評価 16－5
16.5 繰返し荷重の評価 16－6
16．5．1 疲労解析 16－6

図表目次

（ドレンノズル（N15））
図16－1 形状•寸法•材料•応力評価点 16－2
表16－1 計算結果の概要 16－3
表16－2 一次一般膜応力強さの評価のまとめ 16－7
表16－3 一次膜＋一次曲げ応力強さの評価のまとめ 16－8
表16－4 一次＋二次応力強さの評価のまとめ 16－9
表16－5 疲労累積係数 16－10
表16－6 疲労累積係数の評価のまとめ 16－12

> 目次
> (高圧炉心スプレイノズル $(\mathrm{N} 16)$)
17．高圧炉心スプレイノズル（N16）の耐震性についての計算 17－1
17.1 一般事項 17－1
17．1．1 形状•寸法•材料 17－1
17．1．2 解析範囲 17－1
17．1．3 計算結果の概要 17－1
17．2 計算条件 17－4
17．2．1 設計条件 17－4
17．2．2 運転条件 17－4
17．2．3 材料 17－4
17．2．4 荷重の組合せ及び許容応力状態 17－4
17．2．5 荷重の組合せ及び応力評価 17－4
17．2．6 許容応力 17－4
17．3 応力計算 17－4
17．3．1 応力評価点 17－4
17．3．2 内圧及び差圧による応力 17－4
17．3．3 外荷重による応力 17－5
17．3．4 応力の評価 17－5
17．4 応力強さの評価 17－5
17．4．1 一次一般膜応力強さの評価 17－5
17．4．2 一次膜 + 一次曲げ応力強さの評価 17－5
17．4．3 一次 + 二次応力強さの評価 17－5
17.5 繰返し荷重の評価 17－6
17．5．1 疲労解析 17－6

図表目次

> (高圧炉心スプレイノズル (N16))
図 17－1 形状•寸法•材料•応力評価点 17－2
表17－1 計算結果の概要 17－3
表17－2 一次一般膜応力強さの評価のまとめ 17－7
表17－3 一次膜＋一次曲げ応力強さの評価のまとめ 17－8
表17－4 一次＋二次応力強さの評価のまとめ 17－9
表17－5 疲労累積係数• 17－10
表17－6 疲労累積係数の評価のまとめ 17－13

目次

18．ブラケット類の耐震性についての計算 18－1
18.1 一般事項 18－1
18．1．1 記号の説明 18－1
18．1．2 形状－寸法 •材料 18－1
18．1．3 解析範囲 18－1
18．1．4 計算結果の概要 18－1
18．2 計算条件 18－6
18．2．1 設計条件 18－6
18．2．2 材料 18－6
18．2．3 荷重の組合せ及び許容応力状態 18－6
18．2．4 荷重の組合せ及び応力評価 18－6
18．2．5 許容応力 18－6
18．2．6 応力の記号と方向 18－6
18．3 応力計算 18－7
18．3．1 応力評価点 18－7
18．3．2 外荷重による応力 18－7
18．3．3 応力の評価 18－7
18．4 応力強さの評価 18－8
18．4．1 ブラケット付根の応力強さの評価 18－8
18．4．2 ロッド穴周辺の応力強さの評価 18－8

図表目次

（ブラケット類）
図18－1 形状•寸法•材料 18－2
表18－1 計算結果の概要 18－5
表18－2 ブラケット付根の一次一般膜応力強さの評価•• 18－9
表18－3 ブラケット付根の一次膜＋一次曲げ応力強さの評価． 18－10
表18－4 ロッド穴周辺の純せん断応力の評価． 18－11
表18－5 ロッド穴周辺の一次膜＋一次曲げ応力強さの評価。 18－11

目次

（原子炉圧力容器支持スカート）
19．原子炉圧力容器支持スカートの耐震性についての計算 19－1
19.1 一般事項 19－1
19．1．1 記号の説明 19－1
19．1．2 形状•寸法•材料 19－1
19．1．3 解析範囲 19－1
19．1．4 計算結果の概要 19－1
19．2 計算条件 19－4
19．2．1 設計条件 19－4
19．2．2 運転条件 19－4
19．2．3 材料 19－4
19．2．4 荷重の組合せ及び許容応力状態 19－4
19．2．5 荷重の組合せ及び応力評価 19－4
19．2．6 許容応力 19－4
19．3 応力計算 19－5
19．3．1 応力評価点 19－5
19．3．2 内圧による応力 19－5
19．3．3 外荷重による応力 19－5
19．3．4 応力の評価 19－6
19．4 応力強さの評価 19－6
19．4．1 一次一般膜応力強さの評価 19－6
19．4．2 一次膜 + 一次曲げ応力強さの評価 19－6
19．4．3 一次 + 二次応力強さの評価 19－6
19.5 繰返し荷重の評価 19－6
19．5．1 疲労解析 19－6
19．6 特別な応力の評価 19－7
19．6．1 座屈に対する評価 19－7

図表目次

（原子炉圧力容器支持スカート）
図19－1 形状•寸法•材料•応力評価点 19－2
図19－2 内圧及び外荷重（軸対称荷重）による応力計算のモデル 19－9
図19－3 外荷重（非軸対称荷重）による応力計算のモデル 19－10
表19－1 計算結果の概要 19－3
表19－2 応力集中係数． 19－11
表19－3 一次一般膜応力強さの評価のまとめ・ 19－12
表19－4 一次膜＋一次曲げ応力強さの評価のまとめ 19－13
表19－5 一次＋二次応力強さの評価のまとめ． 19－14
表19－6 疲労累積係数 19－15
表19－7 疲労累積係数の評価のまとめ 19－16表19－8 座屈に対する評価に用いる荷重19－17
表19－9 座屈に対する評価 19－17

> 目次
> (原子炉圧力容器基礎ボルト)
20．原子炉圧力容器基礎ボルトの耐震性についての計算 20－1
20.1 一般事項 20－1
20．1．1 形状 • 寸法 •材料 20－1
20．1．2 解析範囲 20－1
20．1．3 計算結果の概要 20－1
20．2 計算条件 20－4
20．2．1 設計条件 20－4
20．2．2 材料 20－4
20．2．3 荷重の組合せ及び許容応力状態 20－4
20．2．4 荷重の組合せ及び応力評価• 20－4
20．2．5 許容応力 20－4
20．2．6 許容応力評価条件 20－4
20．3 応力計算 20－4
20．3．1 外荷重による応力 20－4
20．4 応力の評価 20－5

図表目次

（原子炉圧力容器基礎ボルト）
図20－1 形状•寸法•材料 20－2
表20－1 計算結果の概要 $20-3$
表20－2 許容応力評価条件• 20－6
表20－3 計算結果• 20－6

1．概要

本計算書は，原子炉圧力容器（原子炉圧力容器支持スカート及び原子炉圧力容器基礎 ボルトを含む。）の耐震計算結果を示すものである。

本計算書の各機器は，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」 （以下「応力解析の方針」という。）に基づき評価する。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（1））及び平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（2）） は以下「既工認」という。

2．胴板の耐震性についての計算
2.1 一般事項

本章は，胴板の耐震性についての計算である。
胴板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．1．1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
N^{\prime}	荷重変動回数	回
$\Delta \sigma$	機械的荷重により生じる応力の全振幅	MPa
Sa	任意の点の繰返しピーク応力強さ	MPa
A_{c}	支圧面積	mm^{2}
W	炉心シュラウド支持ロッドから作用する荷重	N
$\mathrm{a} \sim \mathrm{d}$	支圧面積の計算に用いる寸法	mm
σ_{c}	平均支圧応力	MPa

2．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図2－1に示す。

2．1．3 解析範囲

解析範囲を図2－1に示す。

2．1．4 計算結果の概要

計算結果の概要を表2－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図2－1（1）形状•寸法•材料•応力評価点（単位：mm）
（胴板）

図2－1（2）形状•寸法•材料•応力評価点（単位：mm）
（胴板の上部ウェッジ及び下部スタビライザとの接触部）

$$
\text { O } 2 \text { (3) VI }-2-3-4-1-2 \quad \mathrm{R} 4
$$

表 2－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ			一次＋二次応力強さ		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力 強さ	許容 応力	応力評価面	応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点
	$\mathrm{III}_{\text {A }} \mathrm{S}$	173	303	P01－P02	173	394	P01－P02	－	－	－
胢板 SOV2A	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	173	320	P01－P02	173	416	P01－P02	－	－	－
SQV2A SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	56	552	P01
SFVQ1A	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	76	552	P01

表2－1（2）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	支圧応力の評価	
		平均支圧応力	許容応力
上部ウェッジ支持面 SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	236	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	408	481
下部スタビライザ支持面 SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	34	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	62	481

2.2 計算条件

2．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

2．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

2．2．3 材料
各部の材料を図2－1に示す。

2．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

2．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

2．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

2.3 応力計算

2．3．1 応力評価点
応力評価点の位置を図2－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。

2．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

2．3．3 外荷重による応力

（1）荷重条件（L12，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。

2．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

2.4 応力強さの評価

2．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表2－2に示す。
表2－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

2．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表2－3に示す。
表2－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

2．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表2－4に示す。
表2－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

2.5 繰返し荷重の評価

2．5．1 設計•建設規格 PVB－3140（6）についての検討
添付書類「VI－2－1－9 機能維持の基本方針」に基づき，設計•建設規格 PVB－3140（6）の検討を行い，疲労解析が不要であることを示す。

著しい機械的荷重は， $\mathrm{S}=86 \mathrm{MPa}$ を超えるような応力変動を生じる荷重である。
N’は，「応力解析の方針」（1）耐震評価編の4．2節に示すように地震荷重の繰返し回数 が多い地震荷重S d＊の回数を用いる。

$$
N^{\prime}=590 \text { 回 }
$$

N’に対するS は，設計•建設規格 添付4－2 3．1よりS a＝684MPaである。
S d 又は S s 地震動による $\Delta \sigma$ は，「応力解析の方針」（1）耐震評価編の4．2節に示 すように地震荷重の大きいS s 地震動による応力の全振幅を用いる。
$\Delta \sigma=32 \times 2=64 \mathrm{MPa}$
したがって， S a $>\Delta \sigma$ であり，条件を満足する。

2.6 特別な応力の評価

2．6．1 支圧応力の評価
胴板には，炉心シュラウド支持ロッドから作用する荷重により，上部ウェッジ及び下部 スタビライザとの接触面に支圧応力が生じる。したがって，これらの荷重により発生する支圧応力の評価を行う。
（1）計算データ
上部ウェッジの幅
上部ウェッジの高さ

上部ウェッジの支圧面積

下部スタビライザの幅
下部スタビライザの高さ
下部スタビライザの隅の処理寸法
下部スタビライザの隅の処理寸法

下部スタビライザの支圧面積

$$
A_{c}=(\mathrm{a}-2 \cdot \mathrm{c}) \cdot(\mathrm{b}-2 \cdot \mathrm{~d})
$$

（2）荷重
各許容応力状態における炉心シュラウド支持ロッドから胴板に作用する水平力を表2－5に示す。
（3）平均支圧応力
平均支圧応力 $\sigma \mathrm{c}$ は，次のようにして求める。

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{W}}{\mathrm{~A}_{\mathrm{c}}}
$$

（4）支圧応力の評価
各許容応力状態における評価を表2－6に示す。
表2－6より，各許容応力状態の平均支圧応力は，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

表 2－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	173	303	173	320
P01 P02	172	303	173	320

表 2－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	173	394	173	416
P01 P02	172	394	173	416

表 2－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#_{1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	56	76	552
P01＇	56	76	552
P02	56	76	552
P02	56	76	552

注記＊ 1 ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表2－5 支圧応力の評価に用いる荷重
（単位：kN）

許容応力状態	評価部位	水平力＊ H
	上部ウェッジ支持面	
	下部スタビライザ支持面	
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	上部ウェッジ支持面	
	下部スタビライザ支持面	

注記＊：炉心シュラウド支持ロッド1体分の上部ウェッジ及び
下部スタビライザに作用する荷重である。

表2－6 支圧応力の評価

評価部位	許容応力状態	平均支圧応力	許容応力
上部ウェッジ支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	236	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	408	481
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	34	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	62	481

3．下部鏡板の耐震性についての計算
3.1 一般事項

本章は，下部鏡板の耐震性についての計算である。
下部鏡板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

```
3．1．1 形状•寸法•材料本章で解析する箇所の形状•寸法•材料を図3－1に示す。
```


3．1．2 解析範囲
 解析範囲を図3－1に示す。

3．1．3 計算結果の概要
計算結果の概要を表3－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図3－1 形状•寸法•材料•応力評価点（単位：mm）

$$
\text { O } 2 \text { (3) VI-2-3-4-1-2 R } 4
$$

表 3－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			$\begin{gathered} \text { 一次膜 }+ \text { 一次曲げ応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			疲労解析		
		応力 強さ	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
下部鏡板 SFVQ1A	$\mathrm{III}_{A} \mathrm{~S}$	104	303	P01＇－P02＇	101	388	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	103	320	P01＇－P02＇	122	410	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	168	552	P05	0.043	1． 000	P05
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	232	552	P05			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

3.2 計算条件

3．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

3．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

3．2．3 材料
各部の材料を図3－1に示す。

3．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

3．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

3．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

3.3 応力計算

3．3．1 応力評価点
応力評価点の位置を図3－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。

3．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

3．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。

3．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

3.4 応力強さの評価

3．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表3－2に示す。
表3－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

3．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表3－3に示す。
表3－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

3．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表3－4に示す。
表3－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{+1}$ 及び $\mathrm{S}_{\mathrm{n}} \#^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

3.5 繰返し荷重の評価

3．5．1 疲労解析
下部鏡板の応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
最も厳しい応力評価点における疲労累積係数の計算結果を表3－5に示す。また，各応力評価点における疲労累積係数を表3－6に示す。

表3－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 3－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	96	303	98	320
P01 P02	104	303	103	320

表 3－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	94	394	96	416
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	99	394	97	416
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \\ & \hline \end{aligned}$	38	394	38	416
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	62	394	71	416
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	52	388	75	410
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	101	388	122	410

表 3－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{*} *_{2}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	36	50	552
P01	36	50	552
P02	36	48	552
P02	36	48	552
P03	50	70	552
P03＇	50	70	552
P04	56	76	552
P04	56	76	552
P05	168	232	552
P05＇	168	232	552
P06	82	112	552
P06	82	112	552

注記 $* 1: S_{n}{ }^{\# 1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 3－5 疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 }
\end{aligned} \text { - } \begin{aligned}
& \text { P05 } \\
& \text { 材 } \\
& \text { 料 }
\end{aligned} \text { - SFVQ1A }
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 3－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	U_{s}	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.002	0.000	0.000	0.002	1.000
P01	0.002	0.000	0.000	0.002	1.000
P02	0.001	0.000	0.000	0.001	1.000
P02	0.001	0.000	0.000	0.001	1.000
P03	0.014	0.000	0.000	0.014	1.000
P03	0.014	0.000	0.000	0.014	1.000
P04	0.006	0.000	0.000	0.006	1.000
P04	0.006	0.000	0.000	0.006	1.000
P05	0.021	0.014	0.022	0.043	1.000
P05	0.021	0.014	0.022	0.043	1.000
P06	0.008	0.000	0.000	0.008	1.000
P06	0.008	0.000	0.000	0.008	1.000

注記 $~$ ：疲労累積係数 U_{f} は，運転状態 I 及びIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算

4.1 一般事項

本章は，制御棒駆動機構八ウジング貫通孔の耐震性についての計算である。
制御棒駆動機構ハウジング貫通孔は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注：以下，制御棒駆動機構ハウジングを「ハウジング」，制御棒駆動機構ハウジング貫通孔ス タブチューブを「スタブチューブ」という。

4．1．1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
R_{i}	スタブチューブの内半径	mm
t	スタブチューブの最小厚さ	mm
A	スタブチューブの断面積	mm^{2}
Z^{2}	スタブチューブの断面係数	mm^{3}
σ_{ca}	許容応力	MPa

4．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図4－1に示す。

4．1．3 解析範囲
解析範囲を図4－1に示す。

4．1．4 計算結果の概要
計算結果の概要を表4－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図4－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 4－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			一次膜＋一次曲げ応力強さ （MPa）			一次十二次応力強さ （MPa）			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点	疲労累積係数＊	許容値	応力評価点
ハウジング SUSF316	$\mathrm{III}_{\text {A }} \mathrm{S}$	48	143	P03－P04	48	197	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	49	280	P03－P04	102	386	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	80	360	P02	0． 002	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	188	360	P02			
$\begin{aligned} & \text { スタブ } \\ & \text { チューブ } \\ & \text { NCF600-B } \end{aligned}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	8	196	P05＇－P06＇	187	287	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	9	334	P05＇－P06＇	207	487	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	52	492	P06	0.006	1． 000	P05
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	128	492	P06			
下部鏡板 リガメント SFVQ1A	$\mathrm{III}_{\text {S }} \mathrm{S}$	144	303	P09－P10	149	454	P09－P10	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	143	320	P09－P10	148	481	P09－P10	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－P10	0	552	P09	0． 003	1． 000	P10
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	2	552	P09			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。
表4-1 (2) 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	座屈に対する評価	
		圧縮応力	許容応力
スタブチューブ NCF600－ B	$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	36	101
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	74	126

4．2 計算条件

4．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

4．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

4．2．3 材料
各部の材料を図4－1に示す。

4．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

4．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

4．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

4．3 応力計算

4．3．1 応力評価点
応力評価点の位置を図4－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。

4．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

4．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L19，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
L14及びL16の荷重のらち，軸対称荷重（鉛直力 V_{1} 及び V_{2} ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「STAX」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5計算機プログラム（解析コード）の概要」に示す。

その他の外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。

4．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

4． 4 応力強さの評価

4．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表4－2に示す。
表4－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

4．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表4－3に示す。
表4－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

4．4．3 一次＋二次応力強さの評価
地震荷重のみにおける評価を表4－4に示す。
表4－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

4.5 繰返し荷重の評価

4．5．1 疲労解析
ハウジング，スタブチューブ及び下部鏡板リガメントの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表4－5に示す。 また，各応力評価点における疲労累積係数を表4－6に示す。

表4－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

4． 6 特別な応力の評価

4．6．1 座屈に対する評価
スタブチューブには，制御棒駆動機構ハウジング貫通孔に作用する鉛直力及びモーメン
トにより，圧縮応力が生じる。したがって，これらの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スタブチューブの内半径
スタブチューブの最小厚さ

スタブチューブの断面積

$$
\mathrm{A}=\pi \cdot\left\{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right\}=\pi \times \square=\square \mathrm{mm}^{2}
$$

スタブチューブの断面係数

$$
\begin{aligned}
\mathrm{Z} & =\frac{\pi}{4} \cdot \frac{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{4}-\mathrm{R}_{\mathrm{i}}{ }^{4}}{\mathrm{R}_{\mathrm{i}}+\mathrm{t}}=\frac{\pi}{4} \times \\
& =\square \mathrm{mm}^{3}
\end{aligned}
$$

（2）荷重
スタブチューブに作用する鉛直力及びモーメントを「応力解析の方針」（1）耐震評価編の 4．2節に示す。
（3）圧縮応力
計算データ（断面性能）を基に，表4－7に示す各許容応力状態の荷重によってスタブチュ ーブに発生する圧縮応力を表4－8に示す。
（4）許容応力
各許容応力状態における許容応力の計算は，設計•建設規格 PVB－3117を準用して計算す る。
a．許容応力状態 III $_{A} S$
許容応力状態 $I I I I_{A} S$ における許容応力 $\sigma \mathrm{ca}$ は，次のように得られる。

$$
\sigma_{\mathrm{ca}}=1.2 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
$$

ここで，
$\mathrm{S}_{\mathrm{m}}=164 \mathrm{MPa}$
$\mathrm{B}=84 \mathrm{MPa}$

（ ${ }^{\circ} \mathrm{C}$ における値）

このうち B 値は，設計•建設規格 PVB－3117より，次のようにして求める。
設計•建設規格 付録材料図表 Part7 図1より

を用いて，設計•建設規格 付録材料図表 Part7 図7より

$$
\mathrm{B}=84 \mathrm{MPa}
$$

よって，許容応力 $\sigma \mathrm{ca}$ は，

$$
\sigma_{\mathrm{ca}}=1.2 \cdot \mathrm{~B}=1.2 \times 84=101 \mathrm{MPa}
$$

b．許容応力状態IV ${ }_{A} S$
許容応力状態 $\mathrm{IV}_{\mathrm{A}} S$ における許容応力 $\sigma \mathrm{ca}$ は，次のように得られる。

$$
\sigma_{\mathrm{ca}}=1.5 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
$$

よって，許容応力 $\sigma \mathrm{ca}$ は，
$\sigma_{\mathrm{ca}}=1.5 \cdot \mathrm{~B}=1.5 \times 84=126 \mathrm{MPa}$
（5）座屈に対する評価
各許容応力状態における座屈に対する評価を表4－8に示す。
表4－8より，各許容応力状態における圧縮応力は，許容応力を満足するため，座屈は発生 しない。

表 4－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	10	143	12	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	10	143	11	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \\ & \hline \end{aligned}$	48	143	49	280
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	48	143	49	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	6	196	6	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	8	196	9	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	2	196	3	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	4	196	6	334
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	144	303	143	320

表 4－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	48	197	102	386
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	38	197	91	386
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	35	197	50	386
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	9	197	14	386
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	34	273	71	464
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	28	273	64	464
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	162	287	147	487
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	187	287	207	487
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	149	454	148	481

表 4－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#^{2} * 1$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	62	152	360
P01	62	152	360
P02	80	188	360
P02	80	188	360
P03	20	46	360
P03	20	46	360
P04	26	56	360
P04	26	56	360
P05	48	110	492
P05	48	110	492
P06	52	128	492
P06	52	128	492
P07	24	56	492
P07	24	56	492
P08	34	80	492
P08	34	80	492
P09	0	2	552
P10	0	0	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 4－5（1）疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P04 } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \quad \mathrm{E}=\square \mathrm{MPa}$

表 4－5（2）疲労累積係数

$$
\begin{array}{llll}
\text { 応力評価点 } & - & \text { P05 } \\
\text { 材 } & \text { 料 } & - & \text { NCF600-B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 4－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P10 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 4－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.000	0.000	0.000	0.000	1．000
P01＇	0.000	0.000	0.000	0.000	1．000
P02	0.000	0.000	0.001	0.001	1.000
P02＇	0.000	0.000	0.001	0.001	1． 000
P03	0.000	0.000	0.000	0.000	1． 000
P03＇	0.000	0.000	0.000	0.000	1． 000
P04	0.001	0.000	0.001	0.002	1． 000
P04＇	0.001	0.000	0.001	0.002	1． 000
P05	0.003	0.001	0.003	0.006	1． 000
P05，	0.003	0.001	0.003	0.006	1． 000
P06	0.000	0.000	0.000	0.000	1． 000
P06＇	0.000	0.000	0.000	0.000	1． 000
P07	0.001	0.000	0.000	0.001	1． 000
P07	0.001	0.000	0.000	0.001	1． 000
P08	0.003	0.000	0.000	0.003	1． 000
P08＇	0.003	0.000	0.000	0.003	1． 000
P09	0.003	0.000	0.000	0.003	1． 000
P10	0.003	0.000	0.000	0.003	1．000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

表4－7 座屈に対する評価に用いる荷重

許容応力状態	鉛直力＊1 $\mathrm{V}(\mathrm{kN})$	モーメント＊2 $\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})$	
$\mathrm{II}_{A} \mathrm{~S}$			
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			

注記＊ 1 ：「応力解析の方針」（1）耐震評価編の4．2節に示す $\mathrm{V}_{1}+\mathrm{V}_{2}$ の値 ＊2 ：「応力解析の方針」（1）耐震評価編の4．2節に示す $\mathrm{M}_{1}+\mathrm{M}_{2}$ の値

表4－8 座屈に対する評価

5．再循環水出口ノズル（N1）の耐震性についての計算
5.1 一般事項

本章は，再循環水出口ノズル（N1）の耐震性についての計算である。
再循環水出口ノズル（N1）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

```
5．1．1 形状•寸法•材料本章で解析する箇所の形状•寸法•材料を図5－1に示す。
```


5．1．2 解析範囲

解析範囲を図5－1に示す。

5．1．3 計算結果の概要
計算結果の概要を表5－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図5－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 5－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ \text { (MPa) } \end{gathered}$			一次＋二次応力強さ （MPa）			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	応力強さ	許容応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	76	143	P01－P02	172	194	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	280	P01－P02	195	380	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	320	360	P02	0.004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$378 * 2$	360	P02			
溶接部 ステンレス鋼	$\mathrm{IIH}_{\text {S }} \mathrm{S}$	62	143	P03－P04	145	197	P03－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	65	280	P03－P04	163	386	P03－P04	－	－	－	－	－	－
	$\mathrm{III}_{A} \mathrm{~S}$	－	－	－	－	－	－	270	360	P04	0． 002	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	320	360	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	75	303	P05－P06	180	409	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	80	320	P05－P06	204	432	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	344	552	P06	0． 071	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	410	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

5.2 計算条件

5．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

5．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

5．2．3 材料
各部の材料を図5－1に示す。

5．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

5．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

5．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

5.3 応力計算

5．3．1 応力評価点
応力評価点の位置を図5－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。

5．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

5．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。

5．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

5.4 応力強さの評価

5．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表5－2に示す。
表5－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

5．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表5－3に示す。
表5－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

5．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表5－4に示す。
表5－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P02及びP02

一次＋二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P02及びP02’）にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

5.5 繰返し荷重の評価

5．5．1 疲労解析
ノズルセーフエンド，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表5－5に示す。 また，各応力評価点における疲労累積係数を表5－6に示す。

表5－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 5－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	76	143	81	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	73	143	77	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	62	143	65	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	59	143	62	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	75	303	80	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	73	303	77	320

表 5－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	168	194	190	380
P01 P02	172	194	195	380
P03 P04	145	197	163	386
P03 P04	145	197	163	386
P05 P06	180	409	204	432
P05 P06	162	409	186	432

च y \quad－I－モ－- －-IA （8）\quad O

表 5－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \# 1 * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	280	332	360
P01＇	280	332	360
P02	320	$378 * 3$	360
P02＇	320	378＊3	360
P03	228	272	360
P03＇	228	272	360
P04	270	320	360
P04＇	270	320	360
P05	302	360	552
P05＇	302	360	552
P06	344	410	552
P06＇	344	410	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。 ＊ $2: \mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 5－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	378	1． 142	446	255	282	97905	340	0.004
疲労累積係数 $U_{n}=0.000$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\text {s }}=0.004$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析）
に示す。
注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K ${ }_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{Se}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* * 2} \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	320	－	320	160	177	1343599	340	0.001
疲労累積係数 $\mathrm{U}_{\mathrm{n}}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\text {s }}=0.002$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析）
に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析）
に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	U_{s}	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.001	0.001	0.001	0.002	1.000
P01	0.000	0.001	0.001	0.001	1.000
P02	0.000	0.001	0.004	0.004	1.000
P02	0.000	0.001	0.004	0.004	1.000
P03	0.001	0.001	0.001	0.002	1.000
P03	0.000	0.001	0.001	0.001	1.000
P04	0.001	0.001	0.001	0.002	1.000
P04	0.001	0.001	0.001	0.002	1.000
P05	0.000	0.017	0.017	0.017	1.000
P05	0.000	0.017	0.017	0.017	1.000
P06	0.000	0.071	0.067	0.071	1.000
P06	0.000	0.071	0.067	0.071	1.000

注記 $~$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

6．再循環水入口ノズル（N2）の耐震性についての計算
6.1 一般事項

本章は，再循環水入口ノズル（N2）の耐震性についての計算である。
再循環水入口ノズル（N2）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

6．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図6－1に示す。

6．1．2 解析範囲
解析範囲を図6－1に示す。

6．1．3 計算結果の概要
計算結果の概要を表6－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図6－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 6－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	許容応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフェンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	97	143	P01－P02	171	193	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	108	280	P01－P02	328	378	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	228	360	P02	0.625	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	730＊2	360	P02			
サーマル スリーブ SUSF316	$\mathrm{III}_{\text {A }} \mathrm{S}$	27	143	P05－P06	61	193	P05－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	28	280	P05－P06	78	378	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	96	360	P06	0． 017	1． 000	P06’
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	164	360	P06			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	65	303	P07－P08	86	409	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	72	320	P07－P08	185	432	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	170	552	P08	0． 100	1． 000	P08
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	488	552	P08			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又 は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

6．2 計算条件

6．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

6．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

6．2．3 材料
各部の材料を図6－1に示す。

6．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

6．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

6．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

6．3 応力計算

6．3．1 応力評価点
応力評価点の位置を図6－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。

6．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

6．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。

6．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

6.4 応力強さの評価

6．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表6－2に示す。
表6－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

6．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表6－3に示す。
表6－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

6．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表6－4に示す。
表6－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次＋二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。
6.5 繰返し荷重の評価

6．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表6－5に示す。 また，各応力評価点における疲労累積係数を表6－6に示す。

表6－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 6－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	97	143	108	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	94	143	103	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	48	143	53	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	47	143	51	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	27	143	28	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	27	143	28	280
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	65	303	72	320
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08' } \end{aligned}$	65	303	70	320

表 6－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}{ }_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	115	193＊1	264	378＊1
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	171	193＊1	328	$378 * 1$
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	55	198＊2	120	389＊2
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	72	198＊2	139	389＊2
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	33	193＊1	46	378＊1
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \\ & \hline \end{aligned}$	61	193＊1	78	378＊1
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \\ & \hline \end{aligned}$	85	409＊1	183	432＊${ }^{1}$
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \\ & \hline \end{aligned}$	86	409＊1	185	432＊${ }^{1}$

表 6－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{*} *_{2}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	202	$648^{* 3}$	360
P01	202	$648^{\prime 3}$	360
P02	228	$730^{* 3}$	360
P02	228	$730^{* 3}$	360
P03	102	284	360
P03	102	284	360
P04	120	342	360
P04	120	342	360
P05	86	144	360
P05	86	144	360
P06	96	164	360
P06	96	164	360
P07	148	426	552
P07	148	426	552
P08	170	488	552
P08	170	488	552

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態IV S による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 6－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	730	2． 064	868	896	993	545	340	0.624
					疲労累積係数 U S s $=$			0.624
				疲労累積係数 $U_{n}=$				0.001
				疲労累積係数		$\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\mathrm{s}}=$		0.625

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 6－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06’ } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{e} に（ $\mathrm{E}_{0} / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 6－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{e} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 6－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.001	0.001	0.193	0.194	1． 000
P01＇	0.001	0.001	0.193	0.194	1.000
P02	0.001	0.001	0.624	0.625	1.000
P02＇	0.001	0.001	0.624	0.625	1.000
P03	0.001	0.001	0.078	0.079	1.000
P03＇	0.001	0.001	0.078	0.079	1.000
P04	0.001	0.000	0.001	0． 002	1． 000
P04＇	0.001	0.000	0.001	0.002	1.000
P05	0.001	0.000	0.000	0.001	1． 000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.000	0.002	0.016	0.016	1． 000
P06＇	0.001	0.002	0.016	0.017	1.000
P07	0.001	0.001	0.030	0.031	1.000
P07	0.001	0.001	0.030	0.031	1． 000
P08	0.001	0.005	0.099	0.100	1.000
P08＇	0.001	0.005	0.099	0.100	1.000

注記 $⿻ 丷 木 斤$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重S s のいずれか大きい方を加えた値である。

7．主蒸気出ロノズル（N3）の耐震性についての計算

7.1 一般事項

本章は，主蒸気出ロノズル（N3）の耐震性についての計算である。
主蒸気出口ノズル（N3）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

7．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図7－1に示す。

7．1．2 解析範囲

解析範囲を図7－1に示す。

7．1．3 計算結果の概要
計算結果の概要を表7－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図7－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 7－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	許容応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	111	188	P01－P02	188	249	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	110	292	P01－P02	181	385	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	382	383	P02	0． 036	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	380	383	P02			
溶接部炭素鋼	$\mathrm{III}_{A} \mathrm{~S}$	81	188	P03－P04	153	253	P03＇－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	292	P03－P04	147	391	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	310	383	P04	0． 016	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	310	383	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	81	303	P05－P06	159	406	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	320	P05－P06	153	429	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	336	552	P06	0． 061	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	336	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重 S s のいずれか大きい方を加えた値である。

7．2 計算条件

7．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

7．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

7．2．3 材料
各部の材料を図7－1に示す。

7．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

7．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

7．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

7．3 応力計算

7．3．1 応力評価点
応力評価点の位置を図7－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1） j ．に定めるとおりである。

7．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）j．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）j．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

7．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）j．に定めるとおりである。

7．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

7．4 応力強さの評価

7．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表7－2に示す。
表7－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

7．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表7－3に示す。
表7－3より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

7．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表7－4に示す。
表7－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

7.5 繰返し荷重の評価

7．5．1 疲労解析
ノズルセーフエンド，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表7－5に示す。 また，各応力評価点における疲労累積係数を表7－6に示す。

表7－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 7－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	111	188	110	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	107	188	107	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	81	188	81	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	78	188	78	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	81	303	81	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \\ & \hline \end{aligned}$	78	303	78	320

表 7－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{A} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	181	249	174	385
P01 P02	188	249	181	385
P03 P04	149	253	144	391
P03 P04	153	253	147	391
P05 P06	159	406	153	429
P05 P06，	145	406	139	429

[^0]表 7－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	354	354	383
P01＇	354	354	383
P02	382	380	383
P02	382	380	383
P03	280	278	383
P03＇	280	278	383
P04	310	310	383
P04	310	310	383
P05	302	302	552
P05＇	302	302	552
P06	336	336	552
P06＇	336	336	552

注記 $* 1: S_{n}{ }^{\# 1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 7－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 7－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \mathrm{P} 04 \\
\text { 材 } & \text { 料 } & - \\
\text { 炭素鋼 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{\prime *} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	310	－	310	155	173	38887	590	0.016
					疲労	積係数	U S d	0.016
				疲労累積係数			U n	0.000
				疲労累積係数		$\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {d }}=$		0.016

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 7－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 7－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U S s	U_{f}＊	許容値
P01	0.001	0.035	0.020	0.036	1.000
P01＇	0.001	0.035	0.020	0.036	1． 000
P02	0.000	0.029	0.017	0.029	1.000
P02＇	0.000	0.029	0.017	0.029	1． 000
P03	0.001	0.011	0.006	0.012	1.000
P03＇	0.000	0.011	0.006	0.011	1． 000
P04	0.000	0.016	0.009	0.016	1.000
P04＇	0.000	0.016	0.009	0.016	1． 000
P05	0.001	0.017	0.010	0.018	1． 000
P05＇	0.001	0.017	0.010	0.018	1.000
P06	0.001	0.060	0.034	0.061	1． 000
P06＇	0.000	0.060	0.034	0.060	1． 000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

8．給水ノズル（N4）の耐震性についての計算
8.1 一般事項

本章は，給水ノズル（N4）の耐震性についての計算である。
給水ノズル（N4）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備に おいては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

8．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図8－1に示す。

8．1．2 解析範囲
解析範囲を図8－1に示す。

8．1．3 計算結果の概要
計算結果の概要を表8－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図8－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 8－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			一次 + 二次応力強さ(MPa)			疲労解析		
		応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	102	188	P01－P02	204	253	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	107	292	P01－P02	228	391	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	378	383	P02	0．324	1． 000	P03＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$466^{* 2}$	383	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{IIH}_{\text {S }} \mathrm{S}$	61	303	P05－P06	128	415	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	63	320	P05－P06	147	439	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	252	552	P06	0． 034	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	322	552	P06			
サーマル スリーブ SFVC2B	$\mathrm{III}_{A} \mathrm{~S}$	12	188	P07－P08	44	262	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	14	292	P09－P10	53	394	P09＇－P10＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	94	383	P10	0． 324	1． 000	P07＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	162	383	P10			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2：許容応力3•S m_{m} を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

8.2 計算条件

8．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

8．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

8．2．3 材料
各部の材料を図8－1に示す。

8．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

8．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

8．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

8.3 応力計算

8．3．1 応力評価点
応力評価点の位置を図8－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。

8．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

8．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。

8．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

8． 4 応力強さの評価

8．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表8－2に示す。
表8－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

8．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表8－3に示す。
表8－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

8．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表8－4に示す。
表8－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01 ，P02及びP02

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

8.5 繰返し荷重の評価

8．5．1 疲労解析
ノズルセーフエンド，ノズルエンド及びサーマルスリーブの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表8－5に示す。 また，各応力評価点における疲労累積係数を表8－6に示す。

表8－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 8－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	102	188	107	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	98	188	102	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	61	188	63	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	58	188	61	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	61	303	63	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	58	303	61	320
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	12	188	12	292
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	10	188	10	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	12	188	14	292
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	11	188	12	292

表 8－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	204	253	228	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	199	253	224	391
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	107	258	126	400
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	107	258	126	400
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	128	415	147	439
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	109	415	128	439
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	24	262	24	405
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	44	262	54	405
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	31	255	48	394
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	36	255	53	394

表 8－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	340	418＊3	383
P01＇	340	418＊3	383
P02	378	466 ＊3	383
P02＇	378	$466{ }^{* 3}$	383
P03	198	256	383
P03＇	198	256	383
P04	232	300	383
P04＇	232	300	383
P05	214	272	552
P05＇	214	272	552
P06	252	322	552
P06＇	252	322	552
P07	50	82	383
P07＇	50	82	383
P08	58	98	383
P08＇	58	98	383
P09	82	142	383
P09＇	82	142	383
P10	94	162	383
P10＇	94	162	383

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 8－5（1）疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P03 } \\
\text { 材 } & \text { 料 } & - & \text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 8－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 8－5（3）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 - P07, } \\
& \text { 材 料 - SFVC2B }
\end{aligned}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 8－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.004	0.021	0.039	0.043	1.000
P01＇	0.004	0.021	0.039	0.043	1． 000
P02	0.008	0.060	0.173	0.181	1.000
P02＇	0.003	0.060	0.173	0． 176	1． 000
P03	0.089	0． 181	0.225	0.314	1． 000
P03＇	0.099	0.181	0.225	0.324	1． 000
P04	0.006	0.005	0.008	0.014	1． 000
P04＇	0.006	0.005	0.008	0.014	1.000
P05	0.001	0.005	0.007	0.008	1.000
P05＇	0.001	0.005	0.007	0.008	1.000
P06	0.001	0.025	0.033	0.034	1.000
P06＇	0.001	0.025	0.033	0.034	1． 000
P07	0.234	0.000	0.000	0． 234	1． 000
P07	0.324	0.000	0.000	0.324	1． 000
P08	0.094	0.005	0.020	0.114	1． 000
P08＇	0.093	0.005	0.020	0.113	1.000
P09	0.015	0.000	0.000	0.015	1． 000
P09＇	0.016	0.000	0.000	0.016	1.000
P10	0.006	0.000	0.004	0.010	1.000
P10＇	0.006	0.000	0.004	0.010	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重S s のいずれか大きい方を加えた値である。

9．低圧炉心スプレイノズル（N5）の耐震性についての計算
9.1 一般事項

本章は，低圧炉心スプレイノズル（N5）の耐震性についての計算である。
低圧炉心スプレイノズル（N5）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

9．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図9－1に示す。

9．1．2 解析範囲
解析範囲を図9－1に示す。

9．1．3 計算結果の概要
計算結果の概要を表9－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図9－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 9－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価面	応力 強さ	許容応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	89	188	P01－P02	214	253	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	92	292	P01－P02	276	391	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	374	383	P02	0． 290	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$522^{* 2}$	383	P02			
サーマル スリーブ SFVC2B	$\mathrm{III}_{\text {S }} \mathrm{S}$	17	188	P09－P10	39	247	P07－P08	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	18	292	P09－P10	58	382	P07－P08	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－P10	－	－	－	102	383	P08	0． 009	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	178	383	P08			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	64	303	P11－P12	123	409	P11－P12	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	65	320	P11－P12	159	432	P11－P12	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	222	552	P12	0． 025	1． 000	P12
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	310	552	P12			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2：許容応力3•S m_{m} を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

9．2 計算条件

9．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

9．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

9．2．3 材料
各部の材料を図9－1に示す。

9．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

9．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

9．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

9．3 応力計算

9．3．1 応力評価点
応力評価点の位置を図9－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）と．に定めるとおりである。

9．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）l．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）l．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

9．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1） ．に定めるとおりである。

9．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

9．4 応力強さの評価

9．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表9－2に示す。
表9－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

9．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表9－3に示す。
表9－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

9．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表9－4に示す。
表9－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01 ，P02及びP02

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

9.5 繰返し荷重の評価

9．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表9－5に示す。 また，各応力評価点における疲労累積係数を表9－6に示す。

表9－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 9－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}{ }_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	89	188	92	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	88	188	90	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	64	188	65	292
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	63	188	64	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	14	188	15	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	17	188	18	292
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	17	188	17	292
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	64	303	65	320
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	63	303	64	320

表 9－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {S }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	211	253	272	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	214	253	276	391
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	112	255	145	394
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	97	255	130	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	32	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	32	255	40	394
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	28	249	39	385
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	18	249	29	385
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	123	409	159	432
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	100	409	136	432

表 9－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{*} *^{2}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	336	$466^{* 3}$	383
P01＇	336	$466^{* 3}$	383
P02	374	$522^{* 3}$	383
P02	374	$522^{* 3}$	383
P03	174	246	383
P03＇	174	246	383
P04	200	282	383
P04＇	200	282	383
P05	42	70	383
P05＇	42	70	383
P06	46	82	383
P06＇	46	82	383
P07	98	166	383
P07＇	98	166	383
P08	102	178	383
P08＇	102	178	383
P09	62	102	383
P09＇	62	102	383
P10	66	110	383
P10＇	66	110	383
P11	192	270	552
P11＇	192	270	552
P12	222	310	552
P12＇	222	310	552

注記 $* 1: S_{n}{ }^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot S_{m}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 9－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 9－5（2）疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - & \text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{e} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 9－5（3）疲労累積係数

$$
\begin{array}{llll}
\text { 応力評価点 } & - & \text { P12 } \\
\text { 材 } & \text { 料 } & - & \text { SFVQ1A }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{\prime *} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	Nc	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	310	－	402	201	236	14165	340	0.024
				疲労累積係数 $U_{n}=$				0.001
				疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\text {s }}=$				0.025

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 9－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U S s	U_{f}＊	許容値
P01	0.001	0.020	0.087	0.088	1.000
P01＇	0.001	0.020	0.087	0.088	1.000
P02	0.001	0.050	0.289	0． 290	1.000
P02＇	0.000	0.050	0.289	0.289	1.000
P03	0.003	0.127	0.216	0.219	1.000
P03＇	0.003	0.127	0.216	0.219	1.000
P04	0.000	0.003	0.007	0.007	1． 000
P04＇	0.000	0.003	0.007	0.007	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.000	0.002	0.009	0.009	1． 000
P06＇	0.000	0.002	0.009	0.009	1.000
P07	0.001	0.000	0.001	0.002	1.000
P07	0.001	0.000	0.001	0.002	1． 000
P08	0.001	0.000	0.005	0.006	1． 000
P08＇	0.001	0.000	0.005	0.006	1.000
P09	0.000	0.000	0.000	0.000	1.000
P09＇	0.001	0.000	0.000	0.001	1． 000
P10	0.001	0.000	0.000	0.001	1.000
P10＇	0.001	0.000	0.000	0.001	1． 000
P11	0.001	0.003	0.007	0.008	1． 000
P11＇	0.001	0.003	0.007	0.008	1． 000
P12	0.001	0.015	0.024	0.025	1． 000
P12＇	0.001	0.015	0.024	0.025	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

10．低圧注水ノズル（N6）の耐震性についての計算
10.1 一般事項

本章は，低圧注水ノズル（N6）の耐震性についての計算である。
低圧注水ノズル（N6）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

10．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図10－1に示す。

10．1．2 解析範囲

解析範囲を図10－1に示す。

10．1．3 計算結果の概要

計算結果の概要を表10－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図10－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 3

表 10－1 計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

10．2 計算条件

10．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

10．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

10．2．3 材料
各部の材料を図10－1に示す。

10．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

10．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

10．2．6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

10.3 応力計算

10．3．1 応力評価点
応力評価点の位置を図10－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）m．に定めるとおりである。

10．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）m．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）m．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

10．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編 の参照図書（1）m．に定めるとおりである。

10．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

10.4 応力強さの評価

10．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表10－2に示す。
表10－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

10．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表10－3に示す。
表10－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

10．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表10－4に示す。
表10－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01＇，P02及びP02

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。
10.5 繰返し荷重の評価

10．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表10－5に示 す。また，各応力評価点における疲労累積係数を表10－6に示す。

表10－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表10－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	115	188	157	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	109	188	155	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	74	188	86	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	72	188	83	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	18	188	21	292
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	18	188	21	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	74	303	86	320
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	72	303	83	320

表 10－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	221	253	336	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	227	253	349	391
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	111	255	164	394
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	100	255	155	394
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	28	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	29	255	29	394
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	25	249	29	385
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	24	249	25	385
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	122	409	178	432
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	102	409	161	432

表 10－4 一次 + 二次応力強さの評価のまとめ

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}}^{\#} \#^{* 2}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	362	$600^{* 3}$	383
P01	362	$600^{* 3}$	383
P02	$402^{* 3}$	$662^{* 3}$	383
P02	$402^{* 3}$	$662^{* 3}$	383
P03	172	276	383
P03	172	276	383
P04	194	314	383
P04	194	314	383
P05	26	42	383
P05	26	42	383
P06	34	42	383
P06	34	42	383
P07	42	68	383
P07	42	68	383
P08	50	76	383
P08	50	76	383
P09	190	300	552
P09	190	300	552
P10	214	342	552
P10	214	342	552

注記 $* 1: ~ S_{n}{ }^{1}$ 1は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 10－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \mathrm{P} 02 \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 10－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 10－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P10 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 10－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U ${ }_{\text {＊}}$	許容値
P01	0.001	0.025	0.368	0.369	1.000
P01＇	0.001	0.025	0.368	0.369	1． 000
P02	0.001	0.078	0.870	0.871	1． 000
P02＇	0.000	0.078	0.870	0.870	1． 000
P03	0.006	0.080	0.207	0.213	1.000
P03＇	0.003	0.080	0． 207	0.210	1． 000
P04	0.000	0.003	0.010	0.010	1． 000
P04＇	0.000	0.003	0.010	0.010	1． 000
P05	0.001	0.000	0.000	0.001	1.000
P05＇	0.001	0.000	0.000	0.001	1． 000
P06	0.000	0.000	0.000	0.000	1． 000
P06＇	0.000	0.000	0.000	0.000	1． 000
P07	0.001	0.000	0.000	0.001	1． 000
P07＇	0.001	0.000	0.000	0.001	1． 000
P08	0.001	0.000	0.000	0.001	1． 000
P08＇	0.000	0.000	0.000	0.000	1.000
P09	0.001	0.003	0.010	0.011	1.000
P09＇	0.001	0.003	0.010	0.011	1.000
P10	0.001	0.012	0.030	0.031	1.000
P10＇	0.001	0.012	0.030	0.031	1． 000

注記 $~$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重S s のいずれか大きい方を加えた値である。

11．上蓋スプレイノズル（N7）の耐震性についての計算
11.1 一般事項

本章は，上蓋スプレイノズル（N7）の耐震性についての計算である。
上蓋スプレイノズル（N7）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

11．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図11－1に示す。

11．1．2 解析範囲

解析範囲を図11－1に示す。

11．1．3 計算結果の概要

計算結果の概要を表11－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図11－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 11－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜 }+ \text { 一次曲げ応力強さ } \\ \text { (MPa) } \end{gathered}$			$\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力強さ }} \\ (\mathrm{MP} \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価面	応力強さ	許容 応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点	疲労累積係数＊1	許容値	応力評価点
フランジ部 SFVQ1A	$\mathrm{III}_{4} \mathrm{~S}$	45	303	P01＇－P02＇	76	454	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	45	320	P01＇－P02＇	80	481	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	82	552	P02	0． 004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	90	552	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	138	303	P03－P04	331	406	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	137	320	P03－P04	355	429	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	526	552	P06	0． 292	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$572 * 2$	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊1 ：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

11.2 計算条件

11．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

11．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

11．2．3 材料

各部の材料を図11－1に示す。

11．2．4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

11．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

11．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

11.3 応力計算

11．3．1 応力評価点
応力評価点の位置を図11－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

11．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

11．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

11．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n． に定めるとおりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

11．3．5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

11．4 応力強さの評価

11．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表11－2に示す。
表11－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

11．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表11－3に示す。
表11－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

11．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表11－4に示す。
表11－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。 P06及びP06’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P06及びP06’）にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

11.5 繰返し荷重の評価

11．5．1 疲労解析
フランジ部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表11－5に示 す。また，各応力評価点における疲労累積係数を表11－6に示す。

表11－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 11－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	44	303	44	320
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	45	303	45	320
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	138	303	137	320
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	133	303	131	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	135	303	135	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	128	303	126	320

O 2 （3） $\mathrm{VI}-2-3-4-1-2 \quad \mathrm{R} 4$

表 11－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	62	454	66	481
P01 P02	76	454	80	481
P03 P04	302	406	330	429
P03 P04	215	406	240	429
P05 P06	331	406	355	429
P05 P06，	171	406	194	429

表 11－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	54	60	552
P01	54	60	552
P02	82	90	552
P02	82	90	552
P03	428	472	552
P03	428	472	552
P04	480	528	552
P04	480	528	552
P05	468	508	552
P05	468	508	552
P06	526	$572^{* 3}$	552
P06	526	$572^{* 3}$	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊ 2 ： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 11－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=$

E）を乗じた値である。
＊ 2 ： S_{ℓ} に
（E0／

表 11－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 11－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	U_{s}	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.000	0.000	0.000	0.000	1.000
P01	0.000	0.000	0.000	0.000	1.000
P02	0.001	0.003	0.003	0.004	1.000
P02	0.000	0.003	0.003	0.003	1.000
P03	0.001	0.052	0.041	0.053	1.000
P03	0.001	0.052	0.041	0.053	1.000
P04	0.007	0.231	0.184	0.238	1.000
P04	0.001	0.231	0.184	0.232	1.000
P05	0.002	0.069	0.051	0.071	1.000
P05	0.001	0.069	0.051	0.070	1.000
P06	0.004	0.204	0.288	0.292	1.000
P06	0.001	0.204	0.288	0.289	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

12．ベントノズル（N8）の耐震性についての計算
12.1 一般事項

本章は，ベントノズル（N8）の耐震性についての計算である。
ベントノズル（N8）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

12．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図12－1に示す。

12．1．2 解析範囲

解析範囲を図12－1に示す。

12．1．3 計算結果の概要
計算結果の概要を表12－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図12－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 12－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \end{gathered}$			疲労解析		
		応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
フランジ部 SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	42	303	P01－P02	59	454	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	42	320	P01－P02	58	481	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	102	552	P02	0． 004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	102	552	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	101	303	P03－P04	251	418	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	98	320	P03－P04	235	442	P05－P06	－	－	－	－	－	－
	IIIA ${ }_{\text {S }}$ S	－	－	－	－	－	－	552	552	P06	0.578	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	542	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

12.2 計算条件

12．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

12．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

12．2．3 材料

各部の材料を図12－1に示す。

12．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

12．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

12．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

12.3 応力計算

12．3．1 応力評価点
応力評価点の位置を図12－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

12．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

12．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

12．3．4 ボルト荷重による応力

（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o． に定めるとおりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

12．3．5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

12． 4 応力強さの評価
12．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表12－2に示す。
表12－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

12．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表12－3に示す。
表12－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

12．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表12－4に示す。
表12－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
12.5 繰返し荷重の評価

12．5．1 疲労解析
フランジ部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表12－5に示 す。また，各応力評価点における疲労累積係数を表12－6に示す。

表12－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 12－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	42	303	42	320
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	42	303	42	320
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	101	303	98	320
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	98	303	94	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	98	303	96	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	95	303	91	320

O 2 （3） $\mathrm{VI}-2-3-4-1-2 \quad \mathrm{R} 4$

表 12－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	59	454	58	481
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	52	454	51	481
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	227	418	215	442
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	130	418	118	442
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	251	418	235	442
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	128	418	111	442

表 12－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	64	64	552
P01＇	64	64	552
P02	102	102	552
P02	102	102	552
P03	400	392	552
P03	400	392	552
P04	478	472	552
P04＇	478	472	552
P05	460	452	552
P05	460	452	552
P06	552	542	552
P06	552	542	552

注記 $* 1: ~ S_{n}{ }^{1}$ 1は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊ $2: \mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 12－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 12－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 12－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	U_{s}	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P01	0.000	0.000	0.000	0.000	1.000
P01	0.000	0.000	0.000	0.000	1.000
P02	0.000	0.004	0.002	0.004	1.000
P02	0.000	0.004	0.002	0.004	1.000
P03	0.000	0.041	0.022	0.041	1.000
P03	0.000	0.041	0.022	0.041	1.000
P04	0.002	0.189	0.105	0.191	1.000
P04	0.000	0.189	0.105	0.189	1.000
P05	0.001	0.065	0.036	0.066	1.000
P05	0.000	0.065	0.036	0.065	1.000
P06	0.001	0.577	0.166	0.578	1.000
P06	0.000	0.577	0.166	0.577	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算
13.1 一般事項

本章は，ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算である。 ジェットポンプ計測管貫通部ノズル（N9）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

13．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図13－1に示す。

13．1．2 解析範囲

解析範囲を図13－1に示す。

13．1．3 計算結果の概要
計算結果の概要を表13－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図13－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 13－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜 }+ \text { 一次曲げ応力強さ } \\ \text { (MPa) } \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \mathrm{Cl} \end{gathered}$			疲労解析		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ジェットポンプ } \\ \text { 計測管貫通部 } \\ \text { シール } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	72	143	P01＇－P02＇	157	209	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	68	280	P01＇－P02＇	159	408	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	358	360	P02	0． 001	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	360	360	P02			
溶接部 ステンレス鋼	$\mathrm{III}_{4} \mathrm{~S}$	72	143	P03＇－P04＇	118	207	P03＇－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	69	280	P03＇－P04＇	119	406	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	256	360	P04	0． 001	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	256	360	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	107	303	P05＇－P06＇	210	418	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	101	320	P05－P06＇	210	442	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	456	552	P06	0.116	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	458	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

13.2 計算条件

13．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

13．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

13．2．3 材料
各部の材料を図13－1に示す。

13．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

13．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

13．2．6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

13.3 応力計算

13．3．1 応力評価点
応力評価点の位置を図13－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。

13．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

13．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。

13．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。
13.4 応力強さの評価

13．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表13－2に示す。
表13－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

13．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表13－3に示す。
表13－3より，各許容応力状態の一次膜十一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

13．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表13－4に示す。
表13－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
13.5 繰返し荷重の評価

13．5．1 疲労解析
ジェットポンプ計測管貫通部シール，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表13－5に示 す。また，各応力評価点における疲労累積係数を表13－6に示す。

表13－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 13－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	71	143	67	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	72	143	68	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	71	143	67	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	72	143	69	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	105	303	99	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	107	303	101	320

O 2 （3） $\mathrm{VI}-2-3-4-1-2 \quad \mathrm{R} 4$

表 13－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	157	209	159	408
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	155	209	156	408
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	114	207	116	406
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	118	207	119	406
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	209	418	210	442
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	210	418	210	442

表 13－4 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \# 1 * 1$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	260	264	360
P01＇	260	264	360
P02	358	360	360
P02	358	360	360
P03	198	192	360
P03＇	198	192	360
P04	256	256	360
P04	256	256	360
P05	386	386	552
P05＇	386	386	552
P06	456	458	552
P06	456	458	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。
＊ $2: \mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 13－5（1）疲労累積係数

$$
\begin{array}{rrll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	260	－	366	183	203	732091	590	0.001
疲労累積係数 $\mathrm{US} \mathrm{d}^{\text {a }}$ 渡学 0.001								
疲労累積係数 $U_{n}=0.000$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\text {S d }}=0.001$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 13－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & \text { - } & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K ${ }_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{Se}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{e^{\prime} * 2} \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	256	－	256	128	142	3103670	590	0.001
疲労累積係数 $\mathrm{U}_{\mathrm{n}}=0.000$								
疲労累積係数						$\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{Sd}}=$		0.001

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 13－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 13－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	U_{s}	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.000	0.001	0.001	0.001	1.000
P01	0.000	0.001	0.001	0.001	1.000
P02	0.000	0.001	0.001	0.001	1.000
P02	0.000	0.001	0.001	0.001	1.000
P03	0.000	0.001	0.001	0.001	1.000
P03	0.000	0.001	0.001	0.001	1.000
P04	0.000	0.001	0.001	0.001	1.000
P04	0.000	0.001	0.001	0.001	1.000
P05	0.000	0.037	0.021	0.037	1.000
P05	0.000	0.037	0.021	0.037	1.000
P06	0.001	0.115	0.071	0.116	1.000
P06	0.000	0.115	0.071	0.115	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算
14.1 一般事項

本章は，差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算である。
差圧検出・ほう酸水注入ノズル（N11）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
$\begin{aligned} & \text { 14．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 14-1 \text { に示す。 }\end{aligned}$

14．1．2 解析範囲
解析範囲を図14－1に示す。

14．1．3 計算結果の概要
計算結果の概要を表14－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図14－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 14－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ \text { (MPa) } \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面	応力 強さ	許容応力	応力評価面	応力強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
肉盛部高ニッケル合金	$\mathrm{III}_{A} \mathrm{~S}$	6	196	P01－P02	93	295	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	10	334	P01－P02	95	501	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	32	492	P02	0． 001	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	58	492	P02			
$\begin{gathered} \text { ノズル } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	32	143	P07－P08	32	207	P07－P08	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	37	280	P07－P08	47	406	P07－P08	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	68	360	P06	0． 004	1． 000	P08＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	142	360	P08			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。

14．2 計算条件

14．2．1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

14．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

14．2．3 材料
各部の材料を図14－1に示す。

14．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

14．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

14．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

14.3 応力計算

14．3．1 応力評価点
応力評価点の位置を図14－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。

14．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

14．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。

14．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

14.4 応力強さの評価

14．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表14－2に示す。
表14－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

14．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表14－3に示す。
表14－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

14．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表14－4に示す。
表14－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
14.5 繰返し荷重の評価

14．5．1 疲労解析
肉盛部及びノズルの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表14－5に示 す。また，各応力評価点における疲労累積係数を表14－6に示す。

表14－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 14－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	6	196	10	334
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	6	196	10	334
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	2	196	4	334
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	2	196	4	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	143	20	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	143	20	280
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	32	143	37	280
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	32	143	37	280

表 14－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 14－4 一次＋二次応力強さの評価のまとめ

応力評価点	$\mathrm{S}_{\mathrm{n}} \#^{2} * 1$	$\mathrm{~S}_{\mathrm{n}} \#^{2} *_{2}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	20	40	492
P01 ${ }^{\prime}$	20	40	492
P02	32	58	492
P02	32	58	492
P03	12	16	492
P03	12	16	492
P04	16	30	492
P04	16	30	492
P05	48	80	360
P05	48	80	360
P06	68	114	360
P06	68	114	360
P07	54	106	360
P07	54	106	360
P08	68	142	360
P08	68	142	360

注記 $* 1: ~ S_{n}{ }^{\# 1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 14－5（1）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned} \text { P01 }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 14－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	142	－	496	248	275	113240	340	0.003
				疲労累積係数 $U_{n}=$				0.001
				疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\mathrm{s}}=$				0.004

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 14－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U s d	U s s	U_{f}＊	許容値
P01	0.001	0.000	0.000	0.001	1.000
P01＇	0.001	0.000	0.000	0.001	1.000
P02	0.000	0.000	0.000	0.000	1.000
P02＇	0.001	0.000	0.000	0.001	1.000
P03	0.001	0.000	0.000	0.001	1． 000
P03＇	0.001	0.000	0.000	0.001	1.000
P04	0.000	0.000	0.000	0.000	1． 000
P04＇	0.000	0.000	0.000	0.000	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05＇	0.001	0.000	0.000	0.001	1.000
P06	0.001	0.001	0.001	0.002	1.000
P06＇	0.000	0.001	0.001	0.001	1.000
P07	0.000	0.000	0.000	0.000	1.000
P07	0.000	0.000	0.000	0.000	1.000
P08	0.000	0.001	0.003	0.003	1.000
P08＇	0.001	0.001	0.003	0.004	1.000

注記 $⿻ 丷 木 斤$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

15．計装ノズル（N12，N13，N14）の耐震性についての計算
15.1 一般事項

本章は，計装ノズル（N12，N13及びN14）の耐震性についての計算である。
計装ノズル（N12，N13及びN14）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

15．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図15－1に示す。

15．1．2 解析範囲

解析範囲を図15－1に示す。

15．1．3 計算結果の概要

計算結果の概要を表15－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図 15－1（1）形状•寸法•材料•応力評価点（単位：mm） （計装ノズル（N12 及び N13））

図 15－1（2）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N14））

表 15－1（1）計装ノズル（N12）の計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			一次十二次応力強さ （MPa）			疲労解析		
		応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	47	143	P01－P02	121	214	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	45	280	P01－P02	114	420	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	226	360	P02	0． 002	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	224	360	P02			
溶接部近傍 ステンレス鋼側	$\mathrm{IIH}_{A} \mathrm{~S}$	45	143	P03－P04	139	214	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	45	280	P03－P04	130	420	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	258	360	P04	0． 002	1． 000	P04＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	258	360	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { NCF600-B } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	35	196	P05－P06	255	295	P05－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	33	334	P05－P06	246	501	P05－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	266	492	P06	0.247	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	264	492	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－1（2）計装ノズル（N13）の計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－1（3）計装ノズル（N14）の計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

15.2 計算条件

15．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

15．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

15．2．3 材料
各部の材料を図15－1に示す。

15．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

15．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

15．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

15.3 応力計算

15．3．1 応力評価点
応力評価点の位置を図15－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．亿定めるとおりである。

15．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．に定めるとおりである。
なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

15．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．に定めるとおりである。

15．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

15．4 応力強さの評価

15．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表15－2に示す。
表15－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

15．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表15－3に示す。
表15－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

15．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表15－4に示す。
表15－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

15.5 繰返し荷重の評価

15．5．1 疲労解析
ノズルセーフエンド，溶接部近傍及びノズルエンドの応力評価点について，詳細な繰返 し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表15－5に示す。また，各応力評価点における疲労累積係数を表15－6に示す。

表15－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容値を満足する。

表 15－2（1）計装ノズル（N12）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	47	143	45	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	47	143	45	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	45	143	45	280
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	45	143	45	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	33	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	33	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	19	196	19	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	19	196	19	334

表 15－2（2）計装ノズル（N13）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}{ }_{\mathrm{A}} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	47	143	45	280
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	47	143	45	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	45	143	45	280
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	45	143	45	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	33	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	33	334
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	19	196	19	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	19	196	19	334

表 15－2（3）計装ノズル（N14）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	44	143	44	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	44	143	44	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	28	143	28	280
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	28	143	28	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	25	196	25	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	24	196	24	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	25	196	25	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	25	196	25	334

表 15－3（1）計装ノズル（N12）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 15－3（2）計装ノズル（N13）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 15－3（3）計装ノズル（N14）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 15－4（1）計装ノズル（N12）の一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$S_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	120	120	360
P01	120	120	360
P02	226	224	360
P02	226	224	360
P03	122	124	360
P03＇	122	124	360
P04	258	258	360
P04	258	258	360
P05	118	118	492
P05	118	118	492
P06	266	264	492
P06＇	266	264	492
P07	24	22	492
P07	24	22	492
P08	42	42	492
P08	42	42	492

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 15－4（2）計装ノズル（N13）の一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$S_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	120	120	360
P01	120	120	360
P02	226	224	360
P02	226	224	360
P03	122	124	360
P03＇	122	124	360
P04	258	258	360
P04	258	258	360
P05	118	118	492
P05	118	118	492
P06	266	264	492
P06＇	266	264	492
P07	24	22	492
P07	24	22	492
P08	42	42	492
P08	42	42	492

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 15－4（3）計装ノズル（N14）の一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$S_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	92	92	360
P01	92	92	360
P02	114	116	360
P02	114	116	360
P03	64	64	360
P03＇	64	64	360
P04	98	100	360
P04	98	100	360
P05	62	62	492
P05	62	62	492
P06	106	106	492
P06＇	106	106	492
P07	16	18	492
P07	16	18	492
P08	26	26	492
P08	26	26	492

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 15－5（1）計装ノズル（N12）の疲労累積係数

$$
\begin{array}{rrll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（2）計装ノズル（N12）の疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned} \text { P04’ }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（3）計装ノズル（N12）の疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - & \text { NCF600-B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（4）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rrl}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（5）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & \text { - } & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（6）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { NCF600-B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（7）計装ノズル（N14）の疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P01' } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（8）計装ノズル（N14）の疲労累積係数

$$
\begin{aligned}
\text { 応力評価点 } & \text { - } 03 \\
\text { 材 } & \text { 料 }
\end{aligned}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（9）計装ノズル（N14）の疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - & \text { NCF600-B }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	106	－	510	255	251	186529	590	0.004
疲労累積係数 $U_{n}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {d }}=0.005$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－6（1）計装ノズル（N12）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	$\mathrm{U}_{\text {S s }}$	U_{f}＊	許容値
P01	0.001	0.001	0.001	0.002	1.000
P01＇	0.000	0.001	0.001	0.001	1.000
P02	0.001	0.001	0.001	0.002	1.000
P02＇	0.001	0.001	0.001	0.002	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1． 000
P04	0.000	0.001	0.001	0.001	1.000
P04＇	0.001	0.001	0.001	0.002	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.000	0.000	0.000	0.000	1.000
P06	0.005	0.242	0.140	0.247	1.000
P06＇	0.005	0．242	0.140	0.247	1.000
P07	0.001	0.000	0.000	0.001	1.000
P07，	0.001	0.000	0.000	0.001	1． 000
P08	0.001	0.000	0.000	0.001	1.000
P08＇	0.001	0.000	0.000	0.001	1.000

注記 $⿻ 丷 木 斤$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－6（2）計装ノズル（N13）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	$\mathrm{U}_{\text {S s }}$	U_{f}＊	許容値
P01	0.001	0.001	0.001	0.002	1.000
P01＇	0.001	0.001	0.001	0.002	1.000
P02	0.000	0.001	0.001	0.001	1.000
P02＇	0.001	0.001	0.001	0.002	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1． 000
P04	0.001	0.001	0.001	0.002	1.000
P04＇	0.001	0.001	0.001	0.002	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.003	0.242	0.140	0.245	1.000
P06＇	0.001	0．242	0.140	0.243	1.000
P07	0.000	0.000	0.000	0.000	1.000
P07，	0.000	0.000	0.000	0.000	1． 000
P08	0.005	0.000	0.000	0.005	1.000
P08＇	0.005	0.000	0.000	0.005	1.000

注記 $⿻ 丷 木 斤$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－6（3）計装ノズル（N14）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	$\mathrm{U} \mathrm{S} \mathrm{s}^{\text {a }}$	U_{f}＊	許容値
P01	0.000	0.001	0.001	0.001	1.000
P01＇	0.001	0.001	0.001	0.002	1.000
P02	0.001	0.000	0.000	0.001	1． 000
P02＇	0.001	0.000	0.000	0.001	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1． 000
P04	0.000	0.000	0.000	0.000	1.000
P04＇	0.000	0.000	0.000	0.000	1． 000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.001	0.004	0.002	0.005	1.000
P06＇	0.001	0.004	0.002	0.005	1． 000
P07	0.000	0.000	0.000	0.000	1.000
P07	0.000	0.000	0.000	0.000	1． 000
P08	0.002	0.000	0.000	0.002	1.000
P08＇	0.002	0.000	0.000	0.002	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

16．ドレンノズル（N15）の耐震性についての計算
16． 1 一般事項
本章は，ドレンノズル（N15）の耐震性についての計算である。
ドレンノズル（N15）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
$\begin{aligned} & \text { 16．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図16－1に示す。 }\end{aligned}$

16．1．2 解析範囲
解析範囲を図16－1に示す。

16．1．3 計算結果の概要
計算結果の概要を表16－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図16－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 16－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			$\begin{gathered} \text { 一次膜 }+ \text { 一次曲げ応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	70	188	P01－P02	187	262	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	70	292	P01－P02	182	405	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	376	383	P02	0． 047	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	378	383	P02			
肉盛部炭素鋼	$\mathrm{IIH}_{A} \mathrm{~S}$	36	188	P03－P04	217	279	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	35	292	P03－P04	214	432	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	234	383	P04	0． 027	1． 000	P04＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	234	383	P04			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

16．2 計算条件

16．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

16．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

16．2．3 材料
各部の材料を図16－1に示す。

16．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

16．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

16．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

16．3 応力計算

16．3．1 応力評価点
応力評価点の位置を図16－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）s．に定めるとおりである。

16．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）S．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）s．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

16．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）S．に定めるとおりである。

16．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

16． 4 応力強さの評価
16．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表16－2に示す。
表16－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

16．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表16－3に示す。
表16－3より，各許容応力状態の一次膜十一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

16．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表16－4に示す。
表16－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
16.5 繰返し荷重の評価

16．5．1 疲労解析
ノズルエンド及び肉盛部の応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表16－5に示 す。また，各応力評価点における疲労累積係数を表16－6に示す。

表16－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 16－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	70	188	70	292
P01 P02	69	188	69	292
P03 P04	36	188	35	292
P03＇ P04	34	188	33	292

[^1]表 16－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	182	262	177	405
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	187	262	182	405
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	69	279	67	432
$\begin{aligned} & \text { P03' } \\ & \text { P04' } \end{aligned}$	217	279	214	432

表 16－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{\#} 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	312	312	383
P01	312	312	383
P02	376	378	383
P02	376	378	383
P03	160	158	383
P03	160	158	383
P04	234	234	383
P04	234	234	383

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I I_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 16－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 16－5（2）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 } \quad \text { P04' } \\
& \text { 料 }
\end{aligned}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{e} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 16－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.001	0.020	0.012	0.021	1.000
P01＇	0.001	0.020	0.012	0.021	1． 000
P02	0.001	0.046	0.026	0.047	1.000
P02＇	0.001	0.046	0.026	0.047	1． 000
P03	0.002	0.001	0.001	0.003	1.000
P03＇	0.002	0.001	0.001	0.003	1．000
P04	0.001	0.025	0.014	0.026	1． 000
P04 ${ }^{\prime}$	0.002	0.025	0.014	0.027	1． 000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

17．高圧炉心スプレイノズル（N16）の耐震性についての計算
17.1 一般事項

本章は，高圧炉心スプレイノズル（N16）の耐震性についての計算である。
高圧炉心スプレイノズル（N16）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

17．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図17－1に示す。

17．1．2 解析範囲

解析範囲を図17－1に示す。

17．1．3 計算結果の概要

計算結果の概要を表17－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図17－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 17－1 計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値3• S_{m} を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

17．2 計算条件

17．2．1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

17．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

17．2．3 材料

各部の材料を図17－1に示す。

17．2．4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

17．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

17．2．6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

17.3 応力計算

17．3．1 応力評価点
応力評価点の位置を図17－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。

17．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

17．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。

17．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

17．4 応力強さの評価

17．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表17－2に示す。
表17－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

17．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表17－3に示す。
表17－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

17．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表17－4に示す。
表17－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

17.5 繰返し荷重の評価

17．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表17－5に示 す。また，各応力評価点における疲労累積係数を表17－6に示す。

表17－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 17－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {S }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	89	188	92	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	88	188	90	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	64	188	65	292
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	63	188	64	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	14	188	15	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	17	188	18	292
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	17	188	17	292
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	64	303	65	320
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	63	303	64	320

表 17－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	211	253	272	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	214	253	276	391
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	112	255	145	394
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	97	255	130	394
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	32	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	32	255	40	394
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	28	249	39	385
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	18	249	29	385
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	123	409	159	432
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	100	409	136	432

表 17－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{*} *^{2}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	336	$466^{* 3}$	383
P01＇	336	$466^{* 3}$	383
P02	374	$522^{* 3}$	383
P02	374	$522^{* 3}$	383
P03	174	246	383
P03＇	174	246	383
P04	200	282	383
P04＇	200	282	383
P05	42	70	383
P05＇	42	70	383
P06	46	82	383
P06＇	46	82	383
P07	98	166	383
P07＇	98	166	383
P08	102	178	383
P08＇	102	178	383
P09	62	102	383
P09＇	62	102	383
P10	66	110	383
P10＇	66	110	383
P11	192	270	552
P11＇	192	270	552
P12	222	310	552
P12＇	222	310	552

注記＊ 1 ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 17－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02' } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 17－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 17－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P12 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 17－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.002	0.020	0.087	0.089	1.000
P01＇	0.001	0.020	0.087	0.088	1． 000
P02	0.000	0.050	0.289	0.289	1.000
P02＇	0.001	0.050	0.289	0． 290	1． 000
P03	0.023	0.127	0.216	0.239	1.000
P03＇	0.019	0.127	0.216	0． 235	1． 000
P04	0.000	0.003	0.007	0.007	1． 000
P04＇	0.000	0.003	0.007	0.007	1． 000
P05	0.006	0.000	0.000	0.006	1． 000
P05＇	0.007	0.000	0.000	0.007	1.000
P06	0.002	0.002	0.009	0.011	1． 000
P06＇	0.002	0.002	0.009	0.011	1． 000
P07	0.002	0.000	0.001	0.003	1． 000
P07	0.002	0.000	0.001	0.003	1． 000
P08	0.003	0.000	0.005	0.008	1.000
P08＇	0.002	0.000	0.005	0.007	1.000
P09	0.000	0.000	0.000	0.000	1． 000
P09＇	0.001	0.000	0.000	0.001	1.000
P10	0.001	0.000	0.000	0.001	1.000
P10＇	0.001	0.000	0.000	0.001	1.000
P11	0.000	0.003	0.007	0.007	1． 000
P11	0.000	0.003	0.007	0.007	1.000
P12	0.000	0.015	0.024	0.024	1． 000
P12＇	0.000	0.015	0.024	0.024	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

18．ブラケット類の耐震性についての計算
18.1 一般事項

本章は，ブラケット類の耐震性についての計算である。
ブラケット類は，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。

18．1．1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号		記号の説明
σz_{2}	曲げ応力	単位
$\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{y}}, \quad \mathrm{F}_{\mathrm{z}}$	荷重	MPa
ℓ, ℓ_{y}	荷重点の距離	N
$\mathrm{Z}_{\mathrm{x}}, \mathrm{Z}_{\mathrm{y}}$	断面係数	mm

18．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図18－1に示す。

18．1．3 解析範囲
解析範囲を図18－1に示す。

18．1．4 計算結果の概要

計算結果の概要を表18－1に示す。
なお，応力評価点の選定に当たっては，モーメントが大きくなるブラケット付根部及び穴により断面の小さくなるロッド穴周辺部に着目し，応力評価上厳しくなる評価点を記載 する。

図18－1（1）形状•寸法•材料（単位：mm）
（原子炉圧力容器スタビライザブラケット）

図18－1（2）形状•寸法•材料（単位：mm）
（給水スパージャブラケット，蒸気乾燥器支持ブラケット）

図18－1（3）形状•寸法•材料（単位：mm） （炉心スプレイブラケット）

表 18－1 計算結果の概要
（単位：MPa）

ブラケット	許容応力状態	一次一般膜応力強さ		一次膜＋一次曲げ応力強さ		純せん断応力	
		応力 強さ	許容 応力	応力 強さ	許容＊応力	応力	許容 応力
$\begin{aligned} & \text { 原子炉圧力容器 } \\ & \text { スタビライザ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	52	303	110	454	－	－
	IV ${ }_{\text {A }} \mathrm{S}$	70	326	149	490	－	－
蒸気乾燥器支持 ブラケット	III ${ }_{\text {A }} \mathrm{S}$	35	143	121	214	－	－
	$I V_{A} \mathrm{~S}$	47	280	166	420	－	－
給水スパージャブラケット	III ${ }_{\text {A }} \mathrm{S}$	2	143	17	214	1	71
	$I V_{A} \mathrm{~S}$	2	280	17	420	1	168
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	6	143	41	214	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	6	280	45	420	－	－

注記＊：中実矩形断面の形状係数 $\alpha=\square$ を用いた。
18.2 計算条件

18．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

18．2．2 材料
各部の材料を図18－1に示す。

18．2．3 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

18．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。
なお，一次＋二次応力強さは許容応力を満足しており，疲労解析は設計•建設規格 PVB－3140を満足しているため，これらの評価を省略する。

18．2．5 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

18．2．6 応力の記号と方向
応力の記号とその方向は，以下のとおりとする。
$\sigma \mathrm{x}$ ：周方向応力
σ y：軸方向応力
σ z ：半径方向応力
$\tau \mathrm{xy}$ ：せん断応力
$\tau \mathrm{yz}$ ：せん断応力
τ_{zx} ：せん断応力

18.3 応力計算

18．3．1 応力評価点
応力評価点は，図18－1（1）～図18－1（3）に示すそれぞれのブラケット付根及び図18－1（2） に示す給水スパージャブラケットのロッド穴周辺とする。

18．3．2 外荷重による応力
（1）荷重条件
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
ブラケットの荷重作用点を図18－1に示す。
（2）計算方法
a．ブラケット付根の応力
蒸気乾燥器支持ブラケットのブラケット付根の応力の計算は，「応力解析の方針」（1）耐震評価編の参照図書（1）u．における荷重点の距離もは95mmとし，曲げ応力 σz_{2} は次式で求め る。

$$
\sigma_{Z_{2}}=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{y}} \cdot \ell}{\mathrm{Z}_{\mathrm{x}}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{z}} \cdot \ell_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{x}}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{x}} \cdot \ell}{\mathrm{Z}_{\mathrm{y}}}\right)^{2}}
$$

蒸気乾燥器支持ブラケット以外のブラケット付根の応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）u．に定めるとおりである。
b．ロッド穴周辺の応力
給水スパージャブラケットのロッド穴周辺の応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）u．に定めるとおりである。

18．3．3 応力の評価

計算された応力から，応力強さを算出する。
応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

18． 4 応力強さの評価
18．4．1 ブラケット付根の応力強さの評価
（1）一次一般膜応力強さの評価
各許容応力状態における評価を表18－2に示す。
表18－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
（2）一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表18－3に示す。
表18－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

18．4．2 ロッド穴周辺の応力強さの評価
（1）純せん断応力の評価
各許容応力状態における評価を表18－4に示す。
表18－4より，各許容応力状態の純せん断応力は，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
（2）一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表18－5に示す。
表18－5より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

表18－2 ブラケット付根の一次一般膜応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力		主応力			応力強さ	許容応力
		$\sigma_{\text {z }}$	τ	σ_{1}	σ_{2}	σ_{3}		
原子炉圧力容器$\begin{aligned} & \text { スタビライザ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {S }} \mathrm{S}$	0	26	0	26	－26	52	303
	$I V_{A} \mathrm{~S}$	0	35	0	35	－35	70	326
蒸気乾燥器支持ブラケット	III ${ }_{\text {A }} \mathrm{S}$	13	16	0	23	－11	35	143
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	17	22	0	32	－15	47	280
給水スパージャブラケット	III ${ }_{A} \mathrm{~S}$	1	0	0	1	0	2	143
	IV ${ }_{\text {A }} \mathrm{S}$	1	0	0	1	0	2	280
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	4	2	0	4	－1	6	143
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	4	2	0	5	－1	6	280

表18－3 ブラケット付根の一次膜 + 一次曲げ応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力		主応力			応力強さ	許容応力＊
		σ_{z}	τ	σ_{1}	σ_{2}	σ_{3}		
原子炉圧力容器$\begin{aligned} & \text { スタビライザ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	96	26	0	103	－6	110	454
	$I V_{A} \mathrm{~S}$	131	35	0	140	－9	149	490
蒸気乾燥器支持ブラケット	III ${ }_{A} \mathrm{~S}$	117	16	0	119	－2	121	214
	$I V_{A} \mathrm{~S}$	160	22	0	163	－3	166	420
給水スパージャブラケット	III ${ }_{\text {A }} \mathrm{S}$	6	0	0	6	0	6	214
	IV ${ }_{\text {A }} \mathrm{S}$	6	0	0	6	0	6	420
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	40	2	0	40	0	41	214
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	44	2	0	44	0	45	420

注記＊：中実矩形断面の形状係数 $\alpha=\square$ を用いた。

表18－4 ロッド穴周辺の純せん断応力の評価
（単位：MPa）

ブラケット	許容応力状態	純せん断応力	許容応力
給水スパージャ ブラケット	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	1	71
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	1	168

表18－5 ロッド穴周辺の一次膜 + 一次曲げ応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力強さ	許容応力＊
給水スパージャ ブラケット	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	17	214
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	17	420

注記＊：中実矩形断面の形状係数 $\alpha=\square$ を用いた。

19．原子炉圧力容器支持スカートの耐震性についての計算
19.1 一般事項

本章は，原子炉圧力容器支持スカート（以下「スカート」という。）の耐震性についての計算である。

スカートは，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。
なお，スカートは，設計•建設規格 SSB－3010（1）の規定により，設計•建設規格 PVB－3110 からPVB－3117，PVB－3130，PVB－3140及びPVB－3310の規定を適用し，「応力解析の方針」（1）耐震評価編に従い解析する。

19．1．1 記号の説明

記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
R_{m}	スカートの平均半径	mm
t	スカートの板厚	mm
A	スカートの断面積	mm^{2}
Z	スカートの断面係数	mm^{3}
ℓ	座屈長さ	mm
f_{c}	鉛直方向荷重に対する許容圧縮応力	MPa
f_{b}	曲げモーメントに対する許容曲げ応力	MPa
α	安全率	-
F	設計•建設規格	$\mathrm{SSB}-3121.1(1)$ に定める値

19．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図19－1に示す。

19．1．3 解析範囲
解析範囲を図19－1に示す。

19．1．4 計算結果の概要

計算結果の概要を表19－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点 に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図19－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 4

表 19－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \hline \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ \text { (MPa) } \end{gathered}$			疲労解析		
		応力強さ	許容 応力	応力評価面	応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力 強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { スカート } \\ \text { SGV480 } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	85	199	P01＇－P02＇	78	255	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	106	280	P01＇－P02＇	99	358	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	230	403	P02	0． 082	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	312	403	P02			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

表19－1（2）計算結果の概要

部分及び材料	許容応力状態	座屈に対する評価	
		計算結果	許容値
スカート SGV480	$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	0.33	1.00
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	0.44	1.00

19．2 計算条件
19．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

19．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

19．2．3 材料
各部の材料を図19－1に示す。

19．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

19．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

19．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。
19.3 応力計算

19．3．1 応力評価点
応力評価点の位置を図19－1に示す。 なお，応力集中を生じる箇所の応力集中係数を表19－2に示す。

19．3．2 内圧による応力

（1）荷重条件（L01）
最高使用圧力 ：8．62MPa
各運転条件における内圧：「応力解析の方針」（1）耐震評価編の参照図書（1）a．参照
（2）計算方法
内圧による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「 A －S A F I A」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－2に示す。

19．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
L12，L13及びL18の荷重のうち，軸対称荷重（鉛直力 V_{1} 及び V_{2} ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「A－S A F I A」により行う。 L14及びL16の荷重のうち，軸対称荷重（鉛直力 V_{1} 及び V_{2} ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「S T A X」により行う。なお，評価に用 いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－2に示す。
L14及びL16の荷重のうち，非軸対称荷重（水平力H及びモーメントM）による応力の計算 は，二次元軸対称の有限要素でモデル化し，計算機コード「ASHSD」により行う。 なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－3に示す。

19．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強 さを算出する。
応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおり である。

19.4 応力強さの評価

19．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表19－3に示す。
表19－3より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

19．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表19－4に示す。
表19－4より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

19．4．3 一次＋二次応力強さの評価
地震荷重のみにおける評価を表19－5に示す。
表19－5より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
19.5 繰返し荷重の評価

19．5．1 疲労解析
スカートの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
最も厳しい応力評価点における疲労累積係数の計算結果を表19－6に示す。また，各応力評価点における疲労累積係数を表19－7に示す。

表19－7より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の 3.5 節に示す許容値を満足する。

19．6．1 座屈に対する評価
スカートには，鉛直力及びモーメントにより，圧縮応力が生じる。したがって，これ らの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スカートの平均半径

スカートの板厚 $\mathrm{t}=\square \mathrm{mm}$（くされ代を除いた値）
スカートの断面積

スカートの断面係数

$$
\mathrm{Z}=\frac{\pi}{4} \cdot \frac{\left(\mathrm{R}_{\mathrm{m}}+\mathrm{t} / 2\right)^{4}-\left(\mathrm{R}_{\mathrm{m}}-\mathrm{t} / 2\right)^{4}}{\mathrm{R}_{\mathrm{m}}+\mathrm{t} / 2}
$$

（2）荷重
スカートに作用する鉛直力及びモーメントを「応力解析の方針」（1）耐震評価編の4．2節に示す。
（3）評価方法
各許容応力状態においてスカートに圧縮応力を生じさせる荷重は表19－8に示す鉛直力及 びモーメントである。

これらの荷重の組合せにより発生する圧縮応力の評価を以下により行う。
$\left(\ell / \mathrm{R}_{\mathrm{m}}=\square\right)$
$\frac{\alpha \cdot\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) / \mathrm{A}}{\mathrm{c}}+\frac{\alpha \cdot(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}} \leqq 1.0$
ここに，
座屈長さ

鉛直方向荷重に対する許容圧縮応力 $\mathrm{f}_{\mathrm{c}}=\mathrm{F}=199 \mathrm{MPa}$
曲げモーメントに対する許容曲げ応力 $f_{b}=F=199 \mathrm{MPa}$
安全率 $\quad \alpha=\square$
設計•建設規格 SSB－3121．1（1）に定める値 $\mathrm{F}=199 \mathrm{MPa}$
（4）座屈に対する評価
各許容応力状態における座屈に対する評価を表19－9に示す。
表19－9より，各許容応力状態における座屈に対する評価は，許容値を満足するため，座屈 は発生しない。

図 19－2 内圧及び外荷重（軸対称荷重）による応力計算のモデル
\square
図 19－3 外荷重（非軸対称荷重）による応力計算のモデル

表 19－2 応力集中係数

応力評価点	データ				K_{n} （引張り）	$\begin{gathered} \mathrm{K}_{\mathrm{b}} \\ (\text { 曲げ) } \end{gathered}$
	T A（mm）	T B（mm）	R（mm）	$\mathrm{D}\left({ }^{\circ}\right)$		
P01，P01 ${ }^{\prime}$					2.0	1.6
P02，P02＇					2.0	1.6

注 ：計算方法は，「応力解析の方針」（1）耐震評価編の参照図書（1）a．に定めるとおりである。

表 19－3 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態III ${ }_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	35	199	56	280
P01 P02	85	199	106	280

[^2]表 19－4 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	42	255	63	358
P01＇ P02	78	255	99	358

表 19－5 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#_{1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	92	130	403
P01＇	92	130	403
P02	230	312	403
P02	230	312	403

注記 $* 1: ~ S_{n}{ }^{1}$ は許容応力状態 $\mathrm{II}_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 19－6 疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SGV480 }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \quad \mathrm{E}=\square \mathrm{MPa}$

表 19－7 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.016	0.001	0.003	0.019	1.000
P01＇	0.016	0.001	0.003	0.019	1.000
P02	0.007	0.051	0.075	0.082	1.000
P02＇	0.007	0.051	0.075	0.082	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

表19－8 座屈に対する評価に用いる荷重

許容応力状態	鉛直力＊1		モーメント＊2
	$\mathrm{V}_{1}(\mathrm{kN})$	$\mathrm{V}_{2}(\mathrm{kN})$	
$\mathrm{III}_{\mathrm{A}} \mathrm{S}$			
$\mathrm{IV} \mathrm{V}_{\mathrm{A}} \mathrm{S}$			

注記＊1 ：「応力解析の方針」（1）耐震評価編の 4.2 節に示す V_{1} 及び V_{2} の値 ＊2：「応力解析の方針」（1）耐震評価編の4．2節に示すMの値

表19－9 座屈に対する評価

許容応力状態	計算結果	許容値
$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	0.33	1.00
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	0.44	1.00

20．原子炉圧力容器基礎ボルトの耐震性についての計算
20.1 一般事項

本章は，原子炉圧力容器基礎ボルト（以下「基礎ボルト」という。）の耐震性についての計算である。

基礎ボルトは，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。
$\begin{aligned} & \text { 20．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図20－1に示す。 }\end{aligned}$

20．1．2 解析範囲
解析範囲を図20－1に示す。

20．1．3 計算結果の概要
計算結果の概要を表20－1に示す。

図20－1 形状•寸法•材料（単位：mm）

表20－1 計算結果の概要
（単位：MPa）

許容応力状態	地震荷重	応力の種類	計算結果	許容応力
III ${ }_{\text {A }} \mathrm{S}$	$S d^{*}$	引張り	131	499＊
		せん断	18	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S s	引張り	194	499＊
		せん断	27	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S d＊	引張り	107	458＊
		せん断	18	353

注記 $*: f_{\mathrm{t} \mathrm{s}}=\operatorname{Min} .\left(1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right)$

20.2 計算条件

20．2．1 設計条件
設計条件は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（2） に定めるとおりである。

20．2．2 材料
各部の材料を図20－1に示す。

20．2．3 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（2）に定めるとおりである。

20．2．4 荷重の組合せ及び応力評価
応力評価は，20．2．3項に示す荷重の組合せにより発生する引張応力及びせん断応力に ついて行う。

20．2．5 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

20．2．6 許容応力評価条件
（1）許容応力状態 $I_{A} \mathrm{I}_{\mathrm{A}}$ 及び許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の応力の評価には，運転状態 I 及びII の荷重と組 み合わせる場合には $\square{ }^{\circ} \mathrm{C}$ ，泠却材喪失事故後の荷重と組み合わせる場合には $\square{ }^{\circ} \mathrm{C}$ に対 する許容応力を用いる。
（2）基礎ボルトの許容応力評価条件を表20－2に示す。

20.3 応力計算

20．3．1 外荷重による応力
（1）荷重条件
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（2）に定めるとおりである。

20．4 応力の評価
各許容応力状態における評価を表20－3に示す。
表20－3より，各許容応力状態において基礎ボルトに発生する応力は，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

表 20－2 許容応力評価条件

評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
基礎 ボルト	SNCM439	運転状態I 及びIIの温度	－			－
		運転状態IVの温度＊	－			－

注記＊：冷却材喪失事故後の温度を表す。

表20－3 計算結果

許容応力状態	地震荷重	温度 $\left({ }^{\circ} \mathrm{C}\right)$	応力の種類	計算結果 （MPa）	許容応力 （MPa）
III ${ }_{\text {A }} \mathrm{S}$	S d＊		引張り	131	499＊
			せん断	18	384
IV ${ }_{\text {A }} \mathrm{S}$	S s		引張り	194	499＊
			せん断	27	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S d＊		引張り	107	458＊
			せん断	18	353

注記 $*: f_{\mathrm{ts}}=$ Min．$\left(1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right)$

[^0]: $\stackrel{4}{2}$
 VI－2－3－4－1－2
 （a）
 ${ }^{\sim}$

[^1]: R 4
 $\mathrm{VI}-2-3-4-1-2$
 （a）
 $\stackrel{\sim}{\sim}$

[^2]: R 4
 $\mathrm{VI}-2-3-4-1-2$
 （a）
 $\stackrel{\sim}{\sim}$

