Ŋ

本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0107_改 4
提出年月日	2021年10月14日

VI-2-3-3-2-4 炉心シュラウド支持ロッドの耐震性についての計算 書

2021年10月 東北電力株式会社

目次

1.	<u> </u>	般事項	1
1.	1	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.	2 =	形状・寸法・材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]
1.	3 1	解析範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.	4	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	計	算条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ç
2.	1	設計条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ć
2.	2	運転条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Ć
2.	3 7	材料	ç
2.	4	荷重の組合せ及び許容応力状態・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ç
2.	5	荷重の組合せ及び応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ç
2.	6	許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ç
2.	7	応力の記号と方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ç
3.	外	荷重の条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]	C
3.	1	計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]	[(
3.	2 1	解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]	[(
3.	3	計算結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]	[(
3	3. 3.	1 固有周期	(
3	3. 3. 2	2 設計用地震力	1
3	. 3. 3	3 地震荷重	1
4.		力計算	2
4.	1)	応力評価点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]	2
4.	2 .	上部サポートの外荷重による応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4	. 2.	1 荷重条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	. 2. 2	******	
4.	3 .	上部タイロッド(P05~P08)の外荷重による応力・・・・・・・・・・・・・・・・・・・	
4	. 3. 7		
4	. 3. 2	2 計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1	3
4.		上部タイロッド(P13~P16),下部タイロッド及びトグルクレビスの外荷重による	
	Л	芯力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	. 4.		
		2 計算方法	
4.		応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5.		力強さの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
5.	1 -	一次一般膜応力強さの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ĮĘ

5.2 —	次一般膜+一次曲げ応力強さの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
6. 特別	な応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
6.1 せ	ん断応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
6.1.1	せん断面積・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
6.1.2	純せん断荷重・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
6. 1. 3	平均せん断応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
6.1.4	せん断応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16

図表目次

図 1-1	形状・寸法・材料・応力評価点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 2
図 3-1	地震荷重の設定の考え方・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
図 3-2	炉心シュラウド支持ロッドの解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
図 3-3	振動モード図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
図 3-4	時刻歷加速度波形 · · · · · · · · · · · · · · · · · · ·	21
表 1-1	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 7
表 3-1	解析モデルのデータ諸元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
表 3-2	解析モデルの物性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
表 3-3	ばね定数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
表 3-4	固有周期 · · · · · · · · · · · · · · · · · · ·	30
表 3-5	各検討ケースに用いる入力地震動(水平方向)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
表 3-6	静的震度及び時刻歴加速度波形の最大値(水平方向)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
表 3-7	地震応答解析結果(せん断力)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
表 3-8	地震応答解析結果(モーメント)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
表 4-1	断面性状 · · · · · · · · · · · · · · · · · · ·	34
表 5-1	一次一般膜応力強さの評価のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
表 5-2	一次一般膜+一次曲げ応力強さの評価のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
表 6-1	せん断応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37

1. 一般事項

本計算書は、炉心シュラウド支持ロッドの応力計算について示すものである。

炉心シュラウド支持ロッドは、炉心支持構造物であるため、添付書類「VI-2-3-3-2-1 炉心支持構造物の応力解析の方針」(以下「応力解析の方針」という。)に基づき評価する。

炉心シュラウド支持ロッドは,設計基準対象施設においては S クラス施設に,重大事故等対処設備においては常設耐震重要重大事故防止設備,常設重大事故緩和設備及び常設重大事故防止設備(設計基準拡張)に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

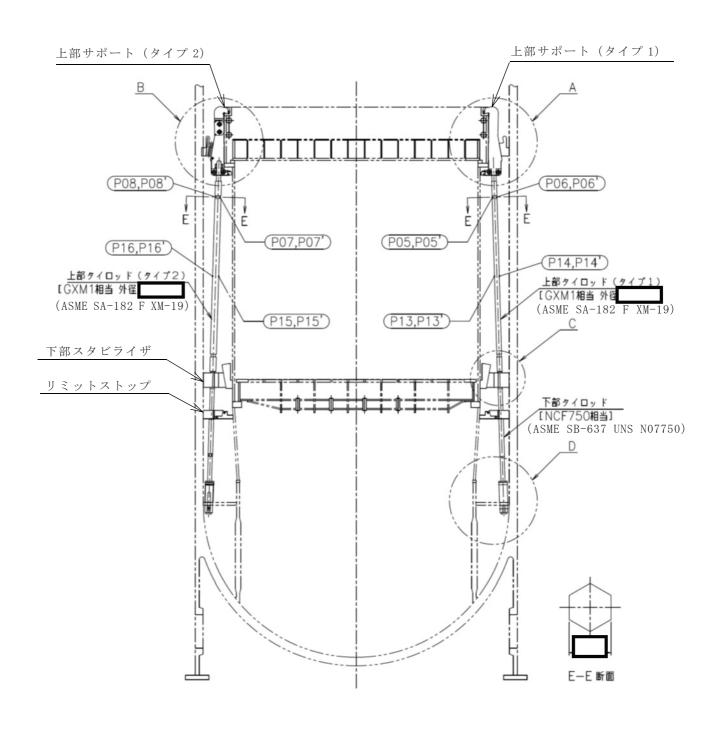
1.1 記号の説明

記号の説明を「応力解析の方針」(1) 耐震評価編の 2.4 節に示す。 さらに、本計算書において、以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^2
D o	外径	mm
I	断面二次モーメント	mm^4
L	荷重作用点と応力評価断面との距離	mm
t	板厚	mm
b	六角断面の対面距離	mm
τ	平均せん断応力	MPa

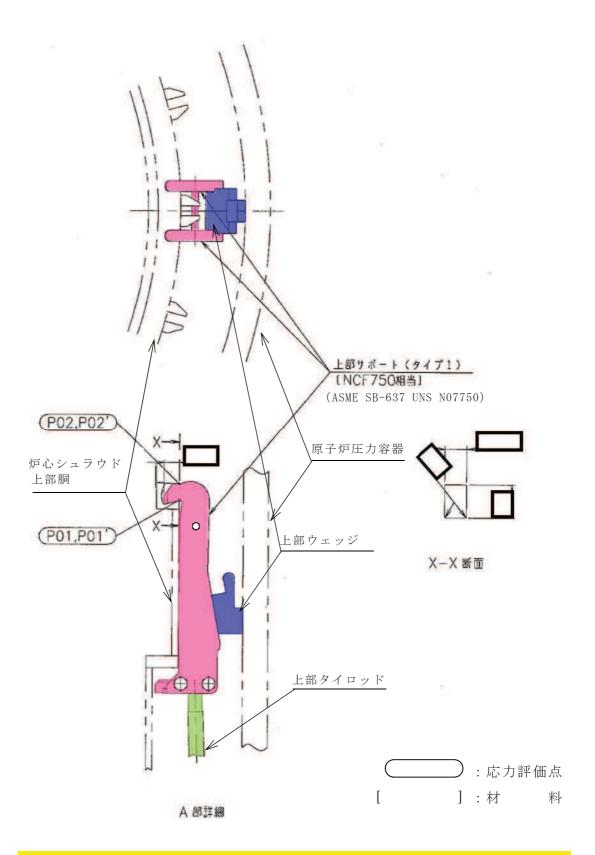
1.2 形状・寸法・材料

本計算書で解析する箇所の形状・寸法・材料を図 1-1 に示す。


1.3 解析範囲

解析範囲を図 1-1 に示す。

1.4 計算結果の概要


計算結果の概要を表 1-1 に示す。

なお,応力評価点の選定に当たっては,形状不連続部,溶接部及び厳しい荷重作用 点に着目し,応力評価上厳しくなる代表的な評価点を記載する。

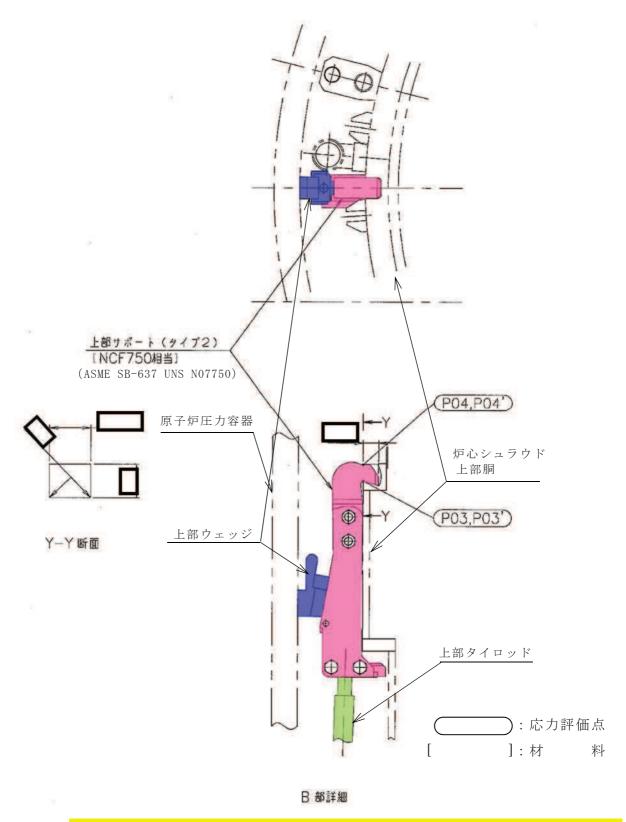

: 応力評価点 []:材 料

図1-1(1) 形状・寸法・材料・応力評価点(単位:mm)

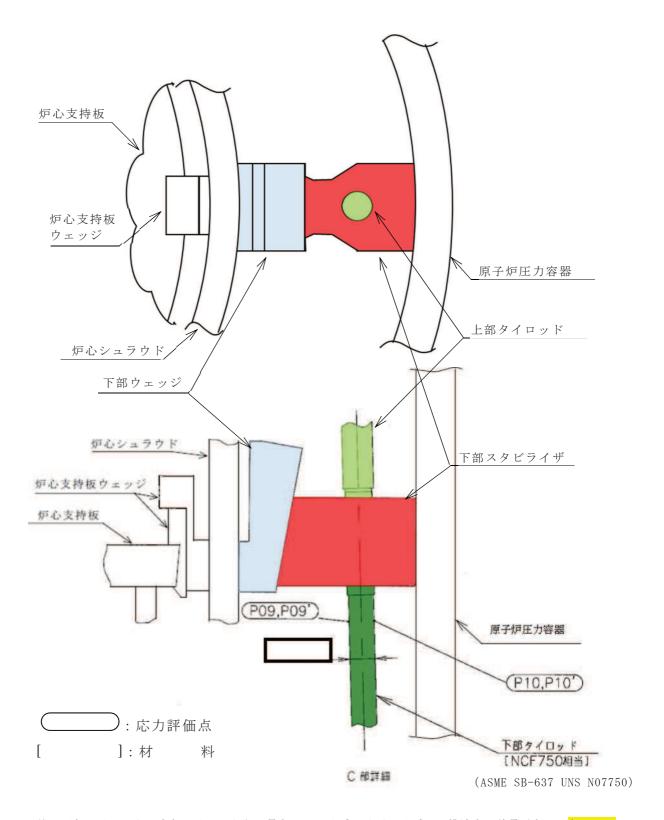

注:上部ウェッジは原子炉圧力容器に面接触し、上部サポート (タイプ 1) と機械的に接合している。 上部サポート (タイプ 1) は炉心シュラウド上端に嵌合するとともに上部胴側面に面接触している。

図 1-1(2) 形状・寸法・材料・応力評価点(単位: mm)

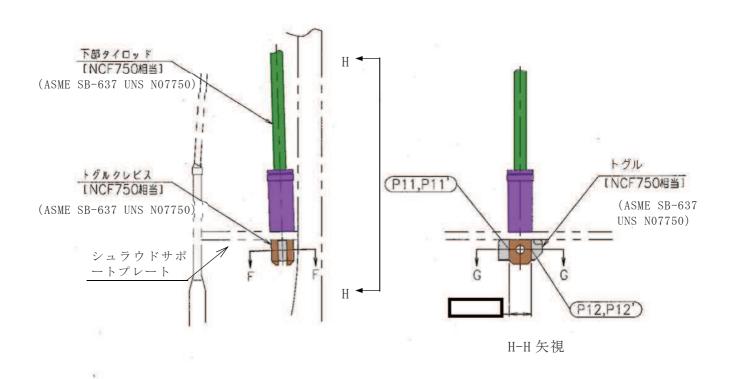

注:上部ウェッジは原子炉圧力容器に面接触し、上部サポート(タイプ 2)と機械的に接合している。上部サポート(タイプ 2)は炉心シュラウド上端に嵌合するとともに上部胴側面に面接触している。


図 1-1(3) 形状・寸法・材料・応力評価点(単位: mm)

注:下部タイロッドは上部タイロッドとは異なり、タイプ 1 及びタイプ 2 で構造上の差異がない。 なお、下部スタビライザは原子炉圧力容器に面接触し、下部ウェッジと機械的に接合している。また、下部ウェッジは炉心シュラウドに面接触している。上部タイロッド及び下部タイロッドは下部スタビライザに機械的に接合されている。炉心支持板ウェッジは炉心シュラウドと炉心支持板に面接触している。

図 1-1(4) 形状・寸法・材料・応力評価点(単位:mm)

注: 斜線部はトグルクレビス及びトグルピンの評価対象部を示す。なお、下部タイロッドはトグルクレビスと機械的に接合されている。トグルはトグルピンによりトグルクレビスにピン結合されている。トグルはシュラウドサポートプレート下面に面接触している。

: 応力評価点 []: 材 料

図 1-1(5) 形状・寸法・材料・応力評価点(単位: mm)

表1-1(1) 計算結果の概要

(単位:MPa)

+ 17 \ 1 7 \ 2 \ 8 + 1 + 1 \ 	李安克士小伙	_	一次一般膜応力強さ		一次一般膜+一次曲げ応力強さ		げ応力強さ
部分及び材料	許容応力状態	応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
上部サポート(タイプ 1) NCF750 相当	III _A S	140	483	P01-P02	246	724	P01-P02
(ASME SB-637 UNS N07750)	IV AS	237	585	P01-P02	415	878	P01-P02
上部サポート(タイプ 2) NCF750 相当	III _A S	151	483	P03-P04	262	724	P03-P04
(ASME SB-637 UNS N07750)	IV AS	254	585	P03-P04	443	878	P03-P04
上部タイロッド(タイプ 1) GXM1 相当	III _A S	169	303	P05-P06	242	454	P05-P06
(ASME SA-182 F XM-19)	IV AS	285	368	P05-P06	390	553	P05-P06
上部タイロッド(タイプ 2) GXM1 相当	III _A S	169	303	P07-P08	242	454	P07-P08
(ASME SA-182 F XM-19)	IV _A S	285	368	P07-P08	390	553	P07-P08
下部タイロッド NCF750 相当	III _A S	198	483	P09-P10	284	724	P09-P10
(ASME SB-637 UNS N07750)	IV _A S	335	585	P09-P10	417	878	P09-P10
トグルクレビス NCF750 相当	III _A S	304	483	P11-P12	304	724	P11-P12
(ASME SB-637 UNS N07750)	IV _A S	515	585	P11-P12	515	878	P11-P12
上部タイロッド(タイプ 1) GXM1 相当	III _A S	137	303	P13-P14	190	454	P13-P14
(ASME SA-182 F XM-19)	IV _A S	231	368	P13-P14	405	553	P13-P14
上部タイロッド(タイプ 2) GXM1 相当	III _A S	86	303	P15-P16	113	454	P15-P16
(ASME SA-182 F XM-19)	IV AS	146	368	P15-P16	234	553	P15-P16

~

表 1-1(2) 計算結果の概要

部分及び材料	許容応力状態	せん断応力		
部分及0个科科	百分心刀扒恕 	平均せん断応力	許容応力	
トグルピン NCF750 相当	III _A S	190	289	
(ASME SB-637 UNS N07750)	IV _A S	322	386	

2. 計算条件

2.1 設計条件

設計条件を「応力解析の方針」(1)耐震評価編の4.1節に示す。

2.2 運転条件

考慮した運転条件を「応力解析の方針」(1) 耐震評価編の 4.2 節に示す。

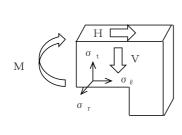
2.3 材料

各部の材料を図 1-1 に示す。

2.4 荷重の組合せ及び許容応力状態

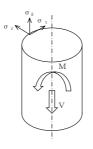
荷重の組合せ及び許容応力状態を「応力解析の方針」(1) 耐震評価編の 3.3 節に示す。

2.5 荷重の組合せ及び応力評価


荷重の組合せ及び応力評価を「応力解析の方針」(1) 耐震評価編の 4.4 節に示す。

2.6 許容応力

許容応力を「応力解析の方針」(1) 耐震評価編の 3.4 節に示す。


2.7 応力の記号と方向

応力の記号とその方向は,以下のとおりとする。

上部サポート

σ_t :周方向応力

σ ε : 軸方向応力

σ_г : 半径方向応力

τ tl: せん断応力

H :水平力

M :モーメント

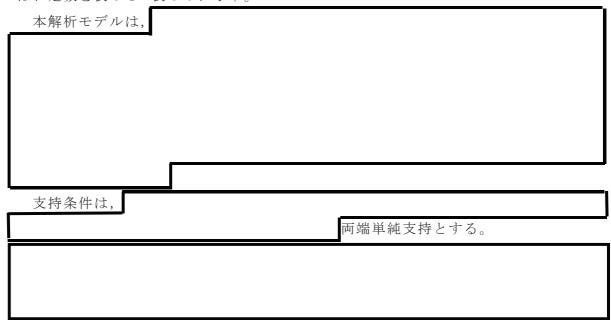
V :鉛直力

上部サポート以外

3. 外荷重の条件

3.1 計算方法

炉心シュラウド支持ロッドに適用する地震荷重の設定の考え方を図 3-1 に示す。


炉心シュラウド支持ロッドに加わる鉛直方向地震荷重は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において、炉心シュラウド支持ロッドがばね要素としてモデル化されているため、鉛直方向及び水平方向の地震によるばね反力として求めた軸力の和(以下「鉛直方向地震荷重(軸力)」という。)を用いる。

固有周期,水平方向地震荷重(せん断力及びモーメント)は「3.2 解析モデル」に示す解析モデルを用いて時刻歴応答解析法により求める。

解析コードは,「TDAPⅢ」を使用し,解析コードの検証及び妥当性確認等の概要については,添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

3.2 解析モデル

解析モデルを図 3-2 に示す。また、各質点、部材のデータ諸元、部材の物性値及び ばね定数を表 3-1~表 3-3 に示す。

3.3 計算結果

3.3.1 固有周期

固有周期を表 3-4 に、振動モード図を図 3-3 に示す。固有周期は、0.05 秒を超えていたため、動的解析を実施した。

3.3.2 設計用地震力

動的解析は、添付書類「VI-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」で得られるタイロッドと取り合う炉心シュラウドの質点 0.P. の水平方向の時刻歴加速度を上部サポートの取り合い点、シュラウドサポートの取り合い点及び下部スタビライザの拘束点への入力とし、考慮した設計用地震力の一覧表を表 3-5 に示す。静的震度を表 3-6 に示す。また、入力とする時刻歴加速度のうち基準地震動 S s に対する代表波の波形図を図 3-4 に示す。

3.3.3 地震荷重

解析により求めた各質点の水平方向地震荷重(せん断力及びモーメント)を表 3-7 及び表 3-8 に示す。

炉心シュラウド支持ロッドに適用する地震荷重として,添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた鉛直方向地震荷重(軸力)及び解析により求めた水平方向地震荷重(せん断力及びモーメント)を「応力解析の方針」(1)耐震評価編の表 4-1(3)に示す。

4. 応力計算

4.1 応力評価点

応力評価点の位置を図 1-1 に示す。

なお、各応力評価点の断面性状は、表 4-1 に示すとおりである。

- 4.2 上部サポートの外荷重による応力
 - 4.2.1 荷重条件 (L02, L04, L14 及び L16)

炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」(1)耐震評価編の表 4-1(3)に示す。

4.2.2 計算方法

(1) 一次一般膜応力 外荷重による一次一般膜応力は,次式で求める。

$$\tau_{t} = \frac{V}{A}$$

(2) 一次一般膜+一次曲げ応力 外荷重による一次一般膜+一次曲げ応力は,次式で求める。

$$\sigma_{\ell} = \frac{\mathbf{V} \cdot \mathbf{L}}{2 \cdot \mathbf{I}} \cdot \frac{\mathbf{t}}{2}$$

$$\tau_{t} = \frac{V}{A}$$

- 4.3 上部タイロッド (P05~P08) の外荷重による応力
- 4.3.1 荷重条件 (LO2, LO4, L14 及び L16)

炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」(1)耐震評価編の表 4-1(3)に示す。

- 4.3.2 計算方法
 - (1) 一次一般膜応力 外荷重による一次一般膜応力は,次式で求める。

$$\sigma_{\ell} = \frac{V}{A}$$

$$\tau_{t} = \frac{H}{A}$$

(2) 一次一般膜+一次曲げ応力 外荷重による一次一般膜+一次曲げ応力は,次式で求める。

$$\sigma_{\ell} = \frac{V}{A} + \frac{M}{I} \cdot \frac{b}{2 \cdot \cos \square}$$

$$\tau_{t} = \frac{H}{A}$$

- 4.4 上部タイロッド(P13~P16),下部タイロッド及びトグルクレビスの外荷重による応力
 - 4.4.1 荷重条件 (LO2, LO4, L14 及び L16)

炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」(1)耐震評価編の表 4-1(3)に示す。

4.4.2 計算方法

(1) 一次一般膜応力

外荷重による一次一般膜応力は,次式で求める。

$$\sigma_{\ell} = \frac{V}{A}$$

$$\tau_{t} = \frac{H}{A}$$

(2) 一次一般膜+一次曲げ応力

外荷重による一次一般膜+一次曲げ応力は、次式で求める。なおトグルクレビスについては、外荷重による一次一般膜+一次曲げ応力は、一次一般膜応力と同じである。

$$\sigma_{\ell} = \frac{V}{A} + \frac{M}{I} \cdot \frac{D \circ}{2}$$

$$\tau_{t} = \frac{H}{A}$$

4.5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さを算出する。

応力強さの算出方法は、「応力解析の方針」(1) 耐震評価編の 5.3.2 項に定めるとおりである。

Ŋ

5. 応力強さの評価

5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表 5-1 に示す。

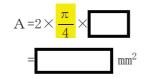
表 5-1 より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」(1)耐震 評価編の 3.4 節に示す許容応力を満足する。

5.2 一次一般膜+一次曲げ応力強さの評価

各許容応力状態における評価を表 5-2 に示す。

表 5-2 より,各許容応力状態の一次一般膜+一次曲げ応力強さは,「応力解析の方針」(1)耐震評価編の3.4節に示す許容応力を満足する。

6. 特別な応力の評価


炉心シュラウド支持ロッドの軸力により、トグルピンにはせん断応力が生じる。これについて、せん断応力の評価を行う。

6.1 せん断応力の評価

6.1.1 せん断面積

(1) トグルピン (図 1-1(5)参照)

トグルピンが鉛直荷重を受けるせん断面積は次のようになる。

6.1.2 純せん断荷重

各許容応力状態におけるトグルピンに作用する鉛直力を「応力解析の方針」(1) 耐震評価編の表 4-1(3)に示す。

6.1.3 平均せん断応力

平均せん断応力τは,次式によって求める。

$$\tau = \frac{H}{A}$$

6.1.4 せん断応力の評価

各許容応力状態における評価を表 6-1 に示す。

表 6-1 より,各許容応力状態の平均せん断応力は,「応力解析の方針」(1)耐震評価編の 3.4 節に示す許容応力を満足する。

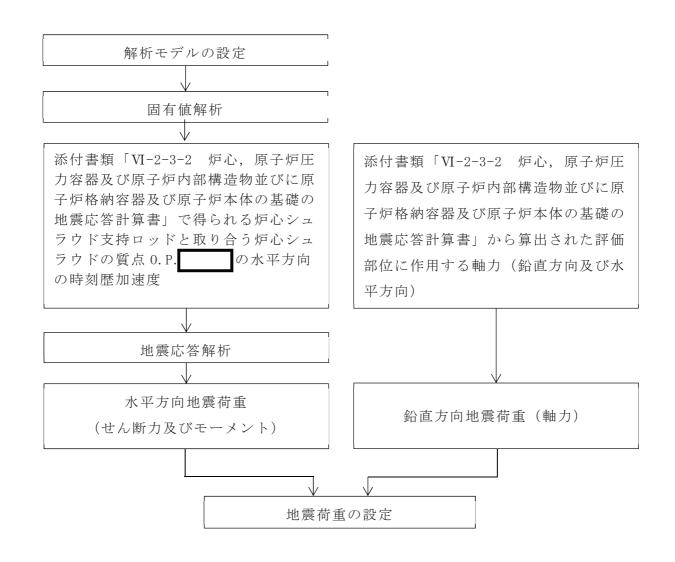
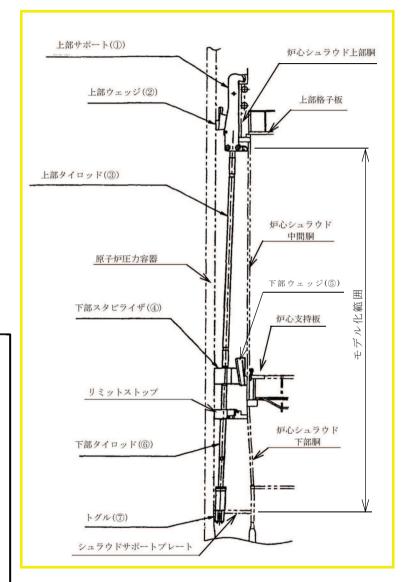



図3-1 地震荷重の設定の考え方

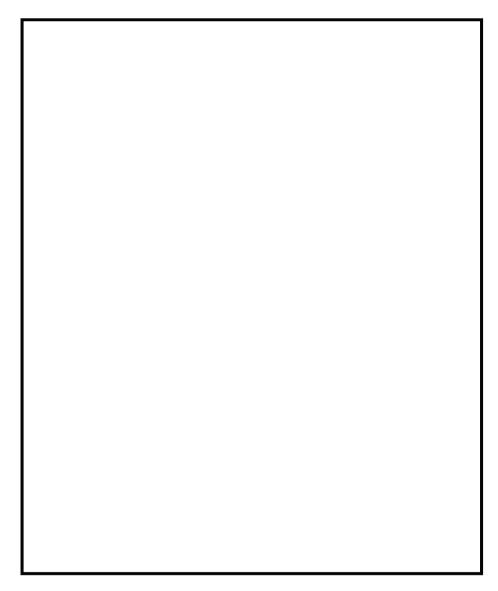


図 3-2 炉心シュラウド支持ロッドの解析モデル

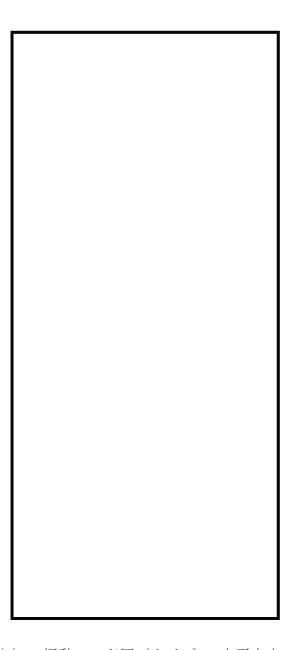


図3-3(1) 振動モード図 (タイプ1, 水平方向, 1次)

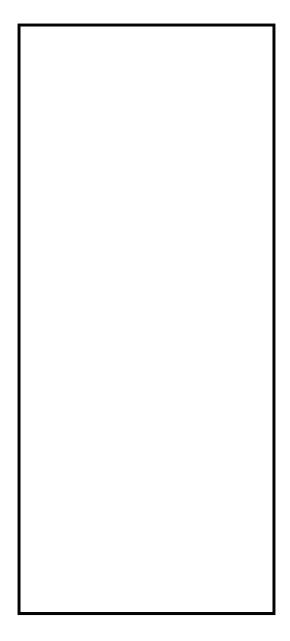
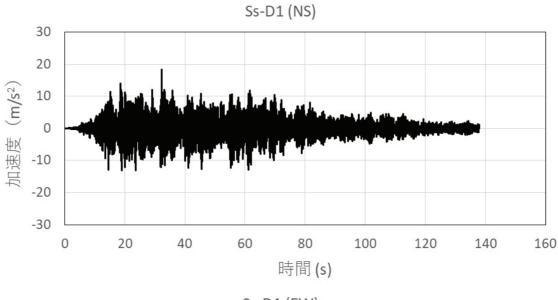



図3-3(2) 振動モード図 (タイプ2, 水平方向, 1次)

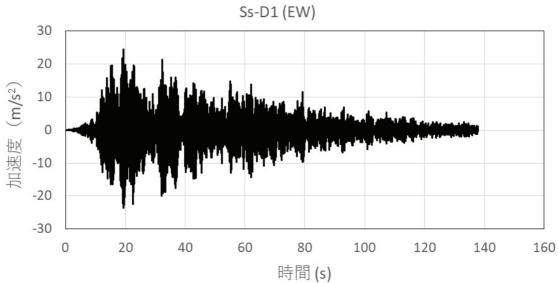


図3-4(1) 時刻歴加速度波形 (ケース1 (基本ケース), Ss-D1)

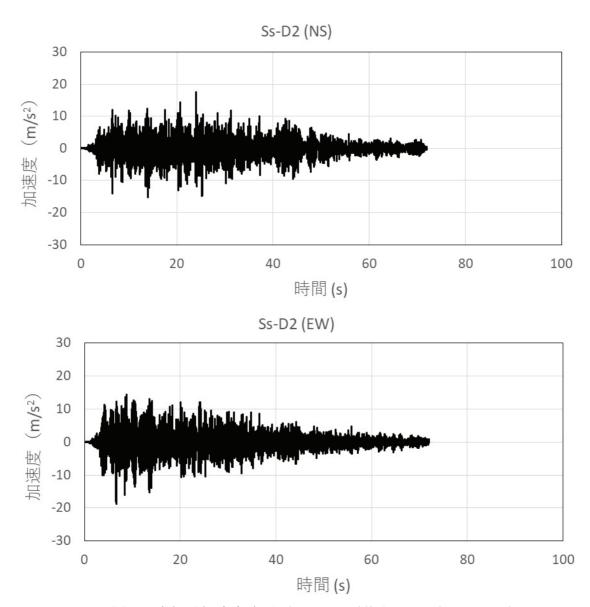


図3-4(2) 時刻歴加速度波形 (ケース1 (基本ケース), Ss-D2)

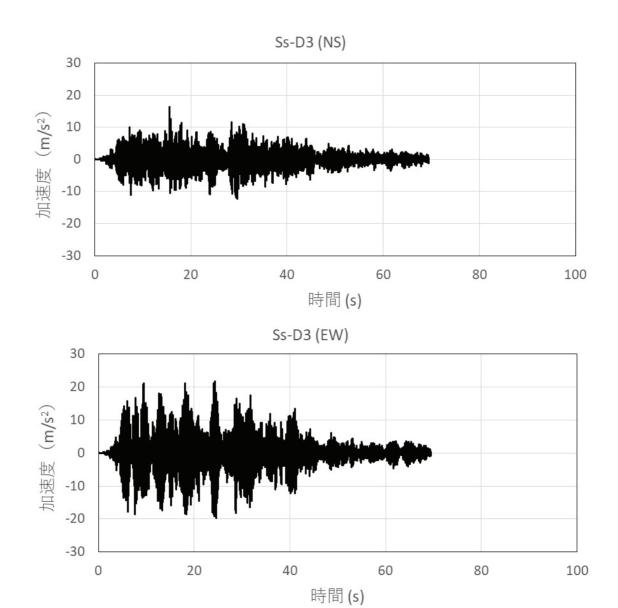


図3-4(3) 時刻歴加速度波形 (ケース1 (基本ケース), Ss-D3)

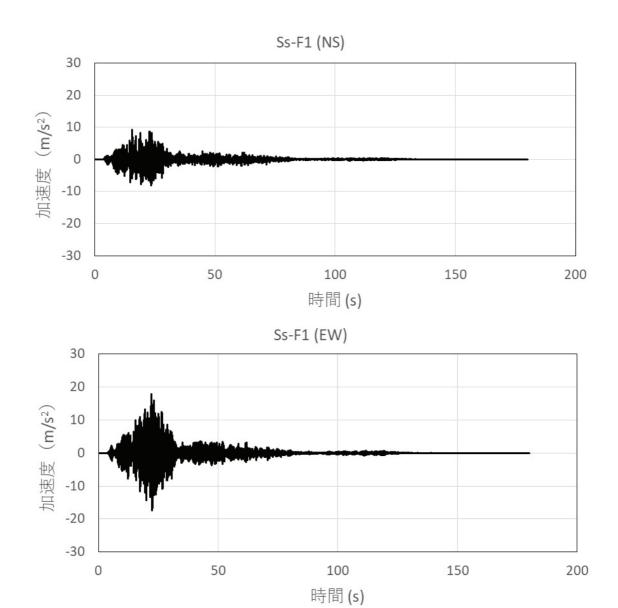


図3-4(4) 時刻歴加速度波形 (ケース1 (基本ケース), Ss-F1)

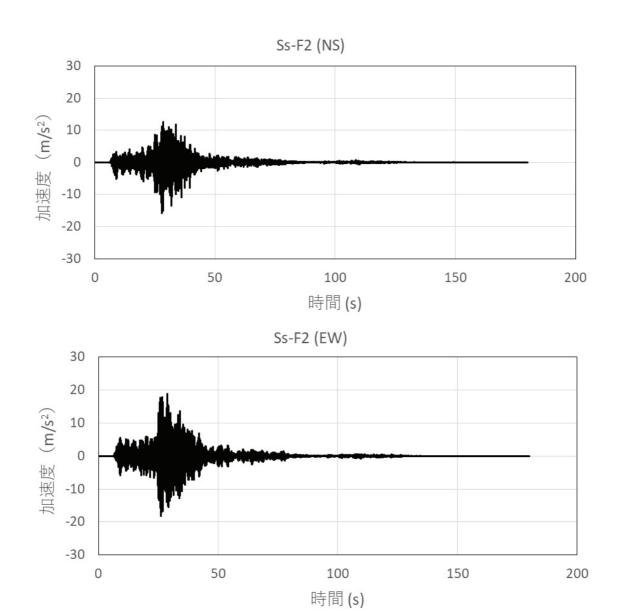


図3-4(5) 時刻歴加速度波形 (ケース1 (基本ケース), Ss-F2)

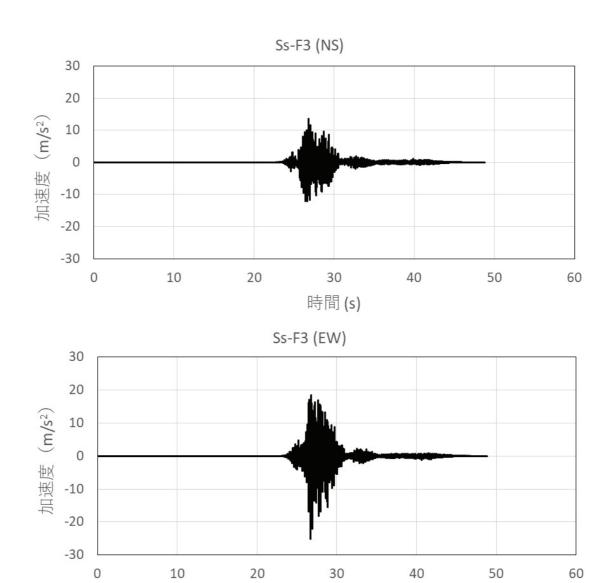
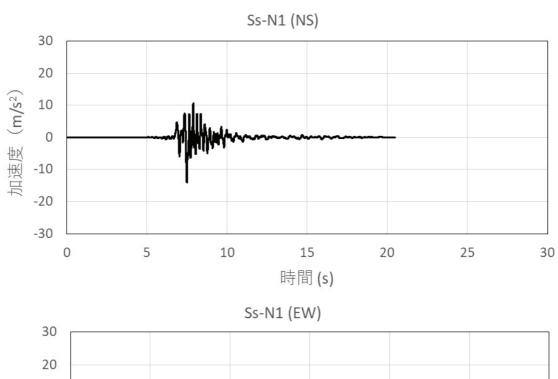



図3-4(6) 時刻歴加速度波形 (ケース1 (基本ケース), Ss-F3)

時間 (s)

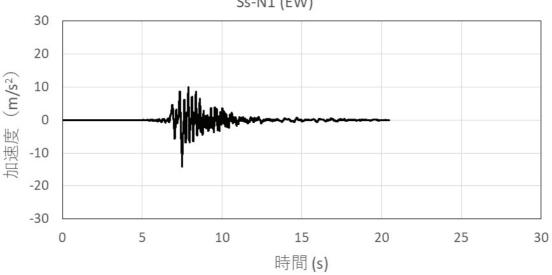


図3-4(7) 時刻歴加速度波形 (ケース1 (基本ケース), Ss-N1)

表3-1(1) 解析モデルのデータ諸元 (タイプ1)

質点 番号	標高 0.P.(m)	質量 ×10³(kg)	部材長 (m)	断面二次 モーメント(m ⁴)	有効せん断 断面積(m²)
T1					
T2					
Т3					
T4					
T5					
Т6					
Т7					
Т8					
Т9					
T10					
T11					
T12					
T13					
T14					
T15					
T16					
T17					
T18					
T19					
T20					
T21					
T22					

表3-1(2) 解析モデルのデータ諸元 (タイプ2)

質点 番号	標高 0.P.(m)	質量 ×10 ³ (kg)	部材長 (m)	断面二次 モーメント(m ⁴)	有効せん断 断面積(m²)
T1					
Т2					
Т3					
T4					
Т5					
Т6					
Т7					
Т8					
Т9					
T10					
T11					
T12					
T13					
T14					
T15					
T16					
T17					
T18 T19					
T20					
T21					
T22					
144					

表 3-2 解析モデルの物性値

名称	部材端の 質点番号	縦弾性係数 E (MPa)	ポアソン比	減衰定数 (%)
上部タイロッド				1.0
下部タイロッド				1.0

注:~は連続した質点を示す。

表3-3 ばね定数

No.	名称	ばね定数 (kN/m)	減衰定数 (%)
K	下部スタビライザ 水平ばね		1.0

表3-4(1) 固有周期(タイプ1,水平方向)

モード	固有周期(s)	刺激係数*
1 次	0.080	0.733
2 次	0.034	-1.94

注記*:刺激係数は、固有ベクトルを正規化 し、質量マトリックスとの積から算出 した値を示す。

表3-4(2) 固有周期(タイプ2,水平方向)

モード	固有周期(s)	刺激係数*
1 次	0.070	0.780
2 次	0.032	-2. 27

注記*:刺激係数は、固有ベクトルを正規化 し、質量マトリックスとの積から算出 した値を示す。

	* '					,	
		弾性	設計用地震	動Sd及び	基準地震動	S s	
検討ケース	Ss-D1 Sd-D1	Ss-D2 Sd-D2	Ss-D3 Sd-D3	Ss-F1 Sd-F1	Ss-F2 Sd-F2	Ss-F3 Sd-F3	Ss-N1 Sd-N1
ケース 1*2 (基本ケース)	0	0	0	0	0	0	0
ケース 2*2	0	0	0			0	0
ケース 3*2	0	0	0			0	0
ケース 4*2	O*1	O*1	O*1			O*1	O*1
ケース 5*2	O*1	O*1	O*1			O*1	O*1
ケース 6*2	O*1	O*1	O*1			O*1	O*1
ケース 7*2	0	0	0			0	

表 3-5 各検討ケースに用いる入力地震動(水平方向)

注記 * 1: ケース 4~ケース 6 は基準地震動 S s 固有のケースのため、弾性設計用地震動 S d については実施しない。

*2: 添付書類「VI-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子 炉格納容器及び原子炉本体の基礎の地震応答計算書」の建屋-機器連成地震応 答解析において材料物性の不確かさを考慮する解析ケースである。

表3-6 静的震度(水平方向)

設置場所 及び 床面高 (m)	静的震度 (3.6・C i)
原子炉圧力容器内部 0.P. 10.324~ 17.533	0.92*1 0.80*2

注記 *1:解析モデルにおける質点番号 の静的震度を示す。

*2:解析モデルにおける質点番号 の静的震度を示す。

表 3-7 地震応答解析結果(せん断力)

(単位:N)

質点番号	標高 O.P.(m)	静的地震力	弾性設計用地震動 Sd により定まる地震力	基準地震動 Ss により定まる地震力
T1		1140	3190	10300
T2		1120	3180	10200
T3		1090	3160	10200
T4		976	3060	9820
T5		890	2930	9430
T6		652	2530	8200
T7		204	1240	4040
T8		187	450	1110
T9		576	1900	6090
T10		966	3090	9920
T11		1180	3430	11000
T12		1270	3560	11400
T13		1350	3630	11600
T14		1380	3650	11700
T15		885	1900	2930
T16		800	1750	2710
T17		542	1180	1790
T18		223	588	1490
T19		93. 4	577	1900
T20		9. 50	646	2190
T21 T22		230	981	2930

表 3-8 地震応答解析結果 (モーメント)

(単位:N·m)

T1 0 0 0 T2 90.8 256 818 T3 106 297 950 T4 257 739 2370 T5 442 1320 4240 T6 499 1510 4840 T7 878 2980 9600 T8 996 3700 12000 T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780 T14 442 1100 1840		質点番号	静的地震力	弾性設計用地震動 Sd により定まる地震力	基準地震動 Ss により定まる地震力
T3 106 297 950 T4 257 739 2370 T5 442 1320 4240 T6 499 1510 4840 T7 878 2980 9600 T8 996 3700 12000 T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	Γ1	T1	0	0	0
T4 257 739 2370 T5 442 1320 4240 T6 499 1510 4840 T7 878 2980 9600 T8 996 3700 12000 T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	Γ2	Т2	90.8	256	818
T5 442 1320 4240 T6 499 1510 4840 T7 878 2980 9600 T8 996 3700 12000 T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	[3	Т3	106	297	950
T6 499 1510 4840 T7 878 2980 9600 T8 996 3700 12000 T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	Γ4	T4	257	739	2370
T7 878 2980 9600 T8 996 3700 12000 T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	<u> </u>	Т5	442	1320	4240
T8 996 3700 12000 T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	6	Т6	499	1510	4840
T9 887 3500 11400 T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	7	Т7	878	2980	9600
T10 553 2400 7780 T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	8	Т8	996	3700	12000
T11 179 603 2080 T12 230 522 1490 T13 431 1070 1780	9	Т9	887	3500	11400
T12 230 522 1490 T13 431 1070 1780	10	T10	553	2400	7780
T13 431 1070 1780	11	T11	179	603	2080
	12	T12	230	522	1490
T14 442 1100 1840	13	T13	431	1070	1780
	14	T14	442	1100	1840
T15 588 1460 3190	15	T15	588	1460	3190
T16 442 1220 3180	16	T16	442	1220	3180
T17 137 973 3210	17	T17	137	973	3210
T18 56.3 940 3140	18	T18	56. 3	940	3140
T19 89.3 720 2400	19	T19	89. 3	720	2400
T20 95.3 690 2270	20	T20	95. 3	690	2270
T21 96.6 412 1230	21	T21	96.6	412	1230
T22 0 0 0	22	T22	0	0	0

表4-1 断面性状

応力評価点	D o (mm)	L (mm)	t (mm)	b (mm)	A (mm²)	I (mm ⁴)
P01, P02						
P03, P04						
P05, P06						
P07, P08						
P09, P10						
P11, P12						
P13, P14						
P15, P16						

表 5-1 一次一般膜応力強さの評価のまとめ

大力 並 <i>伍</i> 云	許容応力	状態ⅢAS	許容応力状態IV _A S		
応力評価面	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	140	483	237	585	
P01' P02'	124	483	221	585	
P03 P04	151	483	254	585	
P03' P04'	131	483	234	585	
P05 P06	169	303	285	368	
P05' P06'	149	303	265	368	
P07 P08	169	303	285	368	
P07' P08'	149	303	265	368	
P09 P10	198	483	335	585	
P09' P10'	176	483	313	585	
P11 P12	304	483	515	585	
P11' P12'	268	483	479	585	
P13 P14	137	303	231	368	
P13' P14'	120	303	215	368	
P15 P16	86	303	146	368	
P15' P16'	76	303	136	368	

表5-2 一次一般膜+一次曲げ応力強さの評価のまとめ

大力 並 <i>伍</i> 云	許容応力	状態ⅢAS	許容応力状態Ⅳ _A S		
応力評価面	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	246	724	415	878	
P01' P02'	217	724	386	878	
P03 P04	262	724	443	878	
P03' P04'	229	724	410	878	
P05 P06	242	454	390	553	
P05' P06'	222	454	370	553	
P07 P08	242	454	390	553	
P07' P08'	222	454	370	553	
P09 P10	284	724	417	878	
P09' P10'	262	724	395	878	
P11 P12	304	724	515	878	
P11' P12'	268	724	479	878	
P13 P14	190	454	405	553	
P13' P14'	174	454	389	553	
P15 P16	113	454	234	553	
P15' P16'	103	454	223	553	

表6-1 せん断応力の評価

応力評価面	許容応力状態	平均せん断応力	許容応力
トグルピン	III _A S	190	289
	IV AS	322	386