```
本資料のうち, 枠囲みの内容 は商業機密の観点から公開で
きません。
```

| 女川原子力発電所第2号機 |  |
| :---: | :---: | 工事計画審査資料

VI－2－10－1－4－38 250V 直流主母線盤の耐震性についての計算書
1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 4
3.1 固有周期の算出方法 ..... 4
4．構造強度評価 ..... 5
4． 1 構造強度評価方法 ..... 5
4．2 荷重の組合せ及び許容応力 ..... 5
5．機能維持評価 ..... 9
5.1 電気的機能維持評価方法 ..... 9
6．評価結果 ..... 10
6.1 重大事故等対処設備としての評価結果 ..... 10

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，250V直流主母線盤が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

250V直流主母線盤は，重大事故等対処設備においては常設耐震重要重大事故防止設備 に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

250V 直流主母線盤は，以下の表 1－1 に示す盤から構成される。本計算書においては， その各々の盤に対して耐震計算を行う。

なお，250V 直流主母線盤は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の盤であるため，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に基づき評価を実施する。

表1－1 250V直流主母線盤の構成

| 系統 | 盤名称 | 個数 |
| :---: | :--- | :---: |
| 250 V 直流主母線盤 | 250 V 直流主母線盤（P／C 部） | 1 |
| 250 V 直流主母線盤 | 250 V 直流主母線盤（MCC 部）第 3 盤～第 4 盤 | 1 |
| 250 V 直流主母線盤 | 250 V 直流主母線盤（MCC 部）第 5 盤～第 10 盤 | 1 |

2．一般事項
本計算書は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」 に基づき評価を行う。

## 2.1 構造計画

250V 直流主母線盤（P／C 部）の構造計画を表2－1 に，250V 直流主母線盤（MCC 部）第 3盤～第4盤及び 250 V 直流主母線盤（MCC 部）第 5 盤～第 10 盤の構造計画を表2－2にそ れぞれ示す。

○ 2
（3） $\mathrm{VI}-2-10-1-4-38$
R 0

表 2－1 構造計画


表 2－2 構造計画

| 計画の概要 |  | 概略構造図 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 基礎•支持構造 | 主体構造 |  |  |  |
| 250V 直流主母線盤の うち 250 V 直流主母線盤（MCC 部）第 3 盤～第 4 盤および $250 V$ 直流主母線盤（MCC 部）第 5 盤～第 10 盤は，基礎に埋め込まれた チャンネルベースに取付ボルトで設置す る。 | 直立形 <br> （鋼材及び鋼板を組 み合わせた自立閉鎖型の盤） | 【 250 V 直流主母線盤（MCC 部）第3盤～第4盤及び第5盤～第10盤】 |  |  |

朹囲みの内容は商業機密の観点から公開できません。

## 3．固有周期

3.1 固有周期の算出方法

250 V 直流主母線盤の固有周期は，構造が同様な盤に対する打振試験の測定結果から，固有周期は 0.05 秒以下であり，剛であることを確認した。

固有周期を表3－1 に示す。

表 3－1 固有周期（s）

| 名称 | 方向 | 固有周期 |
| :---: | :---: | :---: |
| 250 V 直流主母線盤（P／C 部） | 水平 | 0.05 以下 |
|  | 鉛直 | 0.05 以下 |
| 250 V 直流主母線盤（MCC 部） | 水平 | 0.05 以下 |
| 第 3 盤～第 4 盤 | 鉛直 | 0.05 以下 |
| 250 V 直流主母線盤（MCC 部） |  |  |
| 第 5 盤 $~$ 第 10 盤 | 水平 | 0.05 以下 |
|  | 鉛直 | 0.05 以下 |

## 4．構造強度評価

4． 1 構造強度評価方法
250 V 直流主母線盤の構造は直立形であるため，構造強度評価は，添付書類「VI－2－ 1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づ き評価する。
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
250 V 直流主母線盤の荷重の組合せ及び許容応力状態のうち重大事故等対処設備 としての評価に用いるものを表4－1に示す。

4．2．2 許容応力
$250 V$ 直流主母線盤の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
250 V 直流主母線盤の使用材料の許容応力のうち重大事故等対処設備としての評価に用いるものを表 4－3 に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

| 施設区分 |  | 機器名称 | 設備分類＊${ }^{\text {P }}$ | 機器等の区分 | 荷重の組合せ | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| その他発電用原子炉の附属施設 | 非常用電源設備 | 250V直流主母線盤 |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}} * 3$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  | 常設耐震／防止 | —＊2 | $\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\text {SAD }}+\mathrm{S}_{\mathrm{s}}$ | $V_{A} S$ <br> （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として <br> $I V_{\mathrm{A}} \mathrm{S}$ の許容限 <br> 界を用いる。） |

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。
O 2
（3） $\mathrm{VI}-2-10-1-4-38$
R 0


注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
O 2
（3） $\mathrm{VI}-2-10-1-4-38$
R 0

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

| 評価部材 | 材料 | 温度条件 <br> $\left({ }^{\circ} \mathrm{C}\right)$ |  | $\mathrm{S}_{\mathrm{y} \mathrm{i}}$ <br> $(\mathrm{MPa})$ | $\mathrm{S}_{\mathrm{ui}}$ <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 取付ボルト |  |  |  |  |  |
| $(\mathrm{i}=2)$ | SS 400 |  |  |  |  |
| $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$ | 周囲環境温度 | 40 | 235 | 400 |  |
| $(\mathrm{MPa})$ |  |  |  |  |  |

## 5．機能維持評価

5.1 電気的機能維持評価方法

250V直流主母線盤の電気的機能維持評価について，以下に示す。
電気的機能維持評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に記載の評価方法に基づき評価する。

250V直流主母線盤のうち，250V直流主母線盤（P／C 部）及び 250 V 直流主母線盤（MCC部）第 5 盤～第 10 盤の電気的機能維持を確認した機能確認済加速度と設置場所の最大応答加速度を比較し，設置場所の最大応答加速度が機能確認済加速度以下であるこ とを確認することで実施する。

250 V 直流主母線盤（MCC 部）第 3 盤～第 4 盤の電気的機能維持評価について，以下 に示す。

250 V 直流主母線盤（MCC 部）第 3 盤～第 4 盤の機能確認済加速度には，同形式の器具の正弦波加振試験において，電気的機能の健全性を確認した器具の加速度を適用す る。

機能確認済加速度を表5－1に示す。


## 6．評価結果

6.1 重大事故等対処設備としての評価結果

250 V 直流主母線盤の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-10-1-4-38$
R 1

【250V直流主母線盤（P／C 部）の而震性についての評価結果】
1．重大事故等対処設備
1.1 設計条件

| 機器名称 | 設備分類 | 据付場所及び床面高さ （m） | 固有周期（s） |  | 弾性設計用地震動S d又は静的震度 |  | 基漼地震動S s |  | 周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平方向 | 鉛直方向 |  | $\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \end{aligned}$ | $\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$ | 鉛直方向 <br> 設計震度 |  |
| ${ }^{250 \mathrm{~V}} \underset{(\mathrm{t}}{\text { 直流主母部）}}$ 線盤 | 常設耐震／防止 | $\begin{aligned} & \text { 制御建屋 } \\ & \text { 0. P. 1.50* } \end{aligned}$ | 0.05 以下 | 0.05 以下 | － | － | $\mathrm{C}_{\mathrm{H}}=1.35$ | $\mathrm{C}_{\mathrm{V}}=0.79$ | 40 |

注記＊：基淮床レベルを示す。
1.2 機器要目



注記＊1：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
＊2：水平，鉛直方向のうち，評価の厳しい方向を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

| 部 材 | $\mathrm{F}_{\mathrm{b} i}$ |  | $\mathrm{Q}_{\mathrm{b} i}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 弾性設計用地震動 Sd又は静的震度 | $\underset{\mathrm{S} \text { s }}{\text { 基漼地震動 }}$ | 弾性設計用地震動 Sd又は静的震度 | 基準地震動 S s |
| $\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$ | － | 1． $696 \times 10^{4}$ | － | 2． $065 \times 10^{4}$ |

1．4 結論
1．4．1 ボルトの応力
（単位： MPa ）

| 部 材 | 材 料 | 応力 | 弾性設計用地震動S d 又は静的震度 |  | 基淮地震動S s |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 算出応力 | 許容応力 | 算出応力 | 許容応力 |
| $\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$ | SS400 | 引張り | － | － | $\sigma_{\mathrm{b} 2}=54$ | $f_{\mathrm{ts} 2}=210^{*}$ |
|  |  | せん断 | － | － | $\tau_{\mathrm{b} 2}=7$ | $f_{\mathrm{sb} 2}=161$ |

注記＊：$f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
っ
すべて許容応力以下である。

| 1．4．2 電気的機能維持の評価結果 |  |  | $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |
| :---: | :---: | :---: | :---: |
|  |  | 機能維持評価用加速度＊ | 機能確認済加速度 |
| $250 \mathrm{~V} \underset{(\mathrm{P} / \mathrm{C} / \mathrm{t} \text { 部）})}{\substack{\text { 線盤 }}}$ | 水平方向 | 1． 13 |  |
|  | 鉛直方向 | 0． 66 |  |

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
O 2
（3） $\mathrm{VI}-2-10-1-4-38$
R 1

$\mathrm{A} \sim \mathrm{A}$ 矢視図

## 【250V 直流主母線盤（MCC 部）第3盤～第4盤の耐震性についての評価結果】

1．重大事故等対処設備
1.1 設計条件

| 機器名称 | 設備分類 | 据付場所及び床面高さ （m） | 固有周期（s） |  | 弾性設計用地震動S d又は静的震度 |  | 基淮地震動S s |  | 周囲環境温度$(\mathrm{C})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平方向 | 鈖直方向 | $\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 鉛直方向而䍚 } \end{aligned}$ | $\begin{aligned} & \text { 水平方向 } \\ & \text { 設卟震度 } \\ & \hline \end{aligned}$ |  |  |
| $\begin{aligned} & \text { 250V 直流主母線盤 } \\ & \text { (MCCC 部) 第 } 3 \text { 盤~第 } 4 \text { 盤) } \end{aligned}$ | 常設而震／防止 | $\begin{aligned} & \text { 制御建屋 } \\ & \text { O. P. } 1.50^{*} \end{aligned}$ | 0.05 以下 | 0．05以下 | － | － | $\mathrm{C}_{\mathrm{H}}=1.35$ | $\mathrm{C}_{\mathrm{v}}=0.79$ | 40 |

注記 $*$ ：基淮床レベルを示す。
1.2 機器要目



注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
＊2：水平，鉛直方向のうち，評価の厳しい方向を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

| 部 材 | $\mathrm{F}_{\mathrm{b} i}$ |  | $\mathrm{Q}_{\mathrm{b} i}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 弾性設計用地震動 Sd又は静的震度 | $\underset{\mathrm{S} \text { s }}{\text { 基漼地震動 }}$ | 弾性設計用地震動 Sd又は静的震度 | 基準地震動 S s |
| $\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$ | － | 1． $343 \times 10^{4}$ | － | 2． $383 \times 10^{4}$ |

1.4 結論

1．4．1 ボルトの応力
（単位： MPa ）

| 部 材 | 材 料 | 応力 | 弾性設計用地震動S d 又は静的震度 |  | 基淮地震動S s |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 算出応力 | 許容応力 | 算出応力 | 許容応力 |
| $\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$ | SS400 | 引張り | － | － | $\sigma_{\mathrm{b} 2}=43$ | $f_{\mathrm{ts} 2}=210^{*}$ |
|  |  | せん断 | － | － | $\tau_{\mathrm{b} 2}=4$ | $f_{\mathrm{sb} 2}=161$ |

注記 $*: f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
水


注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
○ 2
(3) $\mathrm{VI}-2-10-1-4-38$

R 1

16

O 2
（3） $\mathrm{VI}-2-10-1-4-38$
R 1

【250V 直流主母線盤（MCC 部）第5盤～第10盤の耐震性についての評価結果】
1．重大事故等対処設備
1.1 設計条件

| 機器名称 | 設備分類 | 据付場所及び床面高さ （m） | 固有周期（s） |  | 弾性設計用地震動S d又は静的震度 |  | 基漼地震動S s |  | 周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平方向 | 鉛直方向 | $\begin{aligned} & \text { 水平方向向誢計震 } \end{aligned}$ | $\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$ | 水平方向 設計震度 | $\begin{aligned} & \text { 鈖直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$ |  |
| $\begin{gathered} \text { 250V 直流主母瀪盤 } \\ \text { (MCC 部) 第5 } 5 \text { 盤~篮 } \\ \hline \end{gathered}$ | 常設耐震／防止 | $\begin{aligned} & \text { 制御建屋 } \\ & \text { 0. P. 1. } 50^{*} \end{aligned}$ | 0.05 以下 | 0．05以下 | － | － | $\mathrm{C}_{\mathrm{H}}=1.35$ | $\mathrm{C}_{\mathrm{v}}=0.79$ | 40 |

注記 $*$ ：基漼床レベルを示す。
1.2 機器要目

| 部 材 | $\begin{gathered} \mathrm{m}_{\mathrm{i}} \\ (\mathrm{~kg}) \end{gathered}$ | $\begin{gathered} \mathrm{h}_{i} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \ell_{1 \text { i }}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \ell_{2_{i}{ }^{* 1}}^{(\mathrm{mm})} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{aligned} & \left.\mathrm{A}_{\mathrm{b}} \mathrm{~mm}^{\prime}\right) \end{aligned}$ | $\mathrm{n}_{\mathrm{i}}$ | $\mathrm{n}_{\mathrm{fi}}{ }^{\text {＊}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { 取付ボルトト } \\ (\mathrm{i}=2) \end{gathered}$ |  |  |  |  | $\begin{gathered} 20 \\ (\mathrm{M} 20) \end{gathered}$ | 314.2 | 60 | 18 |
|  |  |  |  |  |  |  |  | 2 |



注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
＊2：水平，鉛直方向のうち，評価の厳しい方向を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

| 部 材 | $\mathrm{F}_{\mathrm{b} i}$ |  | $\mathrm{Q}_{\mathrm{b} i}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 弾性設計用地震動 Sd又は静的震度 | $\underset{\mathrm{S} \text { s }}{\text { 基漼地震動 }}$ | 弾性設計用地震動 Sd又は静的震度 | 基準地震動 S s |
| $\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$ | － | 1． $276 \times 10^{4}$ | － | 4． $369 \times 10^{4}$ |

1.4 結論

1．4．1 ボルトの応力
（単位： MPa ）

| 部 材 | 材 料 | 応力 | 弾性設計用地震動S d 又は静的震度 |  | 基淮地震動S s |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 算出応力 | 許容応力 | 算出応力 | 許容応力 |
| 取付ボルト$(\mathrm{i}=2)$ | SS400 | 引張り | － | － | $\sigma_{\mathrm{b} 2}=41$ | $f_{\mathrm{ts} 2}=210^{*}$ |
|  |  | せん断 | － | － | $\tau_{\mathrm{b} 2}=3$ | $f_{\mathrm{s} \mathrm{b} 2}=161$ |

注記 $*: f_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算出
$\stackrel{\rightharpoonup}{\infty}$
すべて許容応力以下である。

| 1．4．2 電気的機能維持の評価結果 |  |  | $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |
| :---: | :---: | :---: | :---: |
|  |  | 機能維持評価用加速度＊ | 機能確認済加速度 |
| 250 V 直流主母線盤 （MCC 部）第5盤～第10盤 | 水平方向 | 1． 13 |  |
|  | 鉛直方向 | 0． 66 |  |

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-10-1-4-38 R } 0 \text { E }
$$



