本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－6－5－9－1 原子炉建屋内水素濃度の耐震性についての計算書

目次

1．原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}, ~ B\right) ~$ 1
1．1 概要 1
1． 2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 4
1．2．4 記号の説明 5
1．2．5 計算精度と数値の丸め方． 6
1.3 評価部位 7
1．4 固有周期 7
1．4．1 固有値解析方法 7
1．4．2 解析モデル及び諸元 7
1．4．3 固有値解析結果 9
1.5 構造強度評価 11
1．5．1 構造強度評価方法 11
1．5．2 荷重の組合せ及び許容応力 11
1．5．3 設計用地震力 14
1．5．4 計算方法 15
1．5．5 計算条件 18
1．5．6 応力の評価 18
1． 6 機能維持評価 19
1．6．1 電気的機能維持評価方法． 19
1．7 評価結果 20
1．7．1 重大事故等対処設備としての評価結果 20
2．原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right)$ 25
2.1 概要 25
2.2 一般事項 25
2．2．1 構造計画 25
2．2．2 評価方針 27
2．2．3 適用規格•基準等 28
2．2．4 記号の説明 29
2．2．5 計算精度と数値の丸め方 30
2.3 評価部位 31
2． 4 固有周期 31
2．4．1 固有値解析方法 31
2．4．2 解析モデル及び諸元 31
2．4．3 固有値解析結果 33
2.5 構造強度評価 35
2．5．1 構造強度評価方法 35
2．5．2 荷重の組合せ及び許容応力 35
2．5．3 設計用地震力 38
2．5．4 計算方法 39
2．5．5 計算条件 42
2．5．6 応力の評価 42
2.6 機能維持評価 43
2．6．1 電気的機能維持評価方法 43
2.7 評価結果 44
2．7．1 重大事故等対処設備としての評価結果 44
3．原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 201, ~ \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 204$ ） 49
3.1 概要 49
3.2 一般事項 49
3．2．1 構造計画 49
3．2．2 評価方針 51
3．2．3 適用規格•基準等 52
3．2．4 記号の説明 53
3．2．5 計算精度と数値の丸め方 54
3．3 評価部位 55
3．4 固有周期 55
3．4．1 固有値解析方法 55
3．4．2 解析モデル及び諸元 55
3．4．3 固有値解析結果 57
3.5 構造強度評価 59
3．5．1 構造強度評価方法 59
3．5．2 荷重の組合せ及び許容応力 59
3．5．3 設計用地震力 62
3．5．4 計算方法 63
3．5．5 計算条件 65
3．5．6 応力の評価 65
3． 6 機能維持評価 66
3．6．1 電気的機能維持評価方法． 66
3．7 評価結果 67
3．7．1 重大事故等対処設備としての評価結果 67

1．原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}, ~ \mathrm{~B}\right)$

1．1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ，B）が設計用地震力に対し て十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ，B）は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表して評価する。また，電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで，同構造の場合は同じ加速度となることから，構造強度評価 の代表として選定した検出器を代表として評価する。評価対象を表1－1 に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$（代表） T71－ H_{2} E101B	1.5 構造強度評価	表 1－2 構造計画

1.2 一般事項

1．2．1 構造計画

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の構造計画を表 1－2 に示す。

表 1－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，取付ボルト により計器取付金具に固定される。 計器取付金具は，原子炉建屋構造物に溶接で固定する。	触媒式水素検出器 （検出器は，原子炉建屋構造物に設置された計器取付金具に取付ボ ルトにより固定される構造）	【原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ 】 上面 正面 側面

1．2．2 評価方針

原子炉建屋内水素濃度（T71－H2E101A）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「1．2．1 構造計画」にて示す原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の部位を踏まえ「 1.3 評価部位」にて設定する箇所において，「1．4 固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「1．5 構造強度評価」にて示す方法にて確認する ことで実施する。また，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「1．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1．7 評価結果」に示す。

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の耐震評価フローを図 $1-1$ に示す。

図 1－1 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の耐震評価フロー

1．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補一 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

1．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A ${ }_{\text {b }}$	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131 に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b} 1}$	鉛直方向地震及び壁掛の取付面に対し左右方向の水平方向地震により ボルトに作用する引張力（1 本当たり）	N
$\mathrm{F}_{\mathrm{b} 2}$	鉛直方向地震及び壁掛の取付面に対し前後方向の水平方向地震により ボルトに作用する引張力（1本当たり）	N
$f_{\mathrm{s} \text { b }}$	せん断力のみを受けるボルトの許容せん断応力（ f s を 1.5 倍した値又 はfs＊ 1.5 倍した値）	MPa
$f_{\text {t }}$ 。	引張力のみを受けるボルトの許容引張応力（ f_{t} を 1.5 倍した値又は f t＊を 1.5 倍した値）	MPa
f_{t}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心と下側ボルト間の距離	mm
ℓ_{2}	上側ボルトと下側ボルト間の距離	mm
ℓ_{3}	評価上の支点と引張力を受けるとして期待するボルト間の距離	mm
ℓ_{4}	重心と重心から最も遠い位置のボルト間の距離	mm
m	検出器の質量	kg
n	ボルトの本数	－
n f V	評価上引張力を受けるとして期待するボルトの本数（鉛直方向）	－
n_{fH}	評価上引張力を受けるとして期待するボルトの本数（水平方向）	－
Q b	ボルトに作用するせん断力	N
$Q_{b h}$	水平方向転倒モデルにおける取付ボルトに作用するせん断力	N
$Q_{b h 1}$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震により取付ボルトに作用するせん断力	N
$Q_{b \mathrm{~b} 2}$	水平方向転倒モデルにおける鉛直方向地震により取付ボルトに作用す るせん断力	N
$Q_{\text {bh } 3}$	水平方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用 するせん断力	N

記 号	記 号 の 説 明	単 位
$Q_{b V}$	鉛直方向転倒モデルにおける取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bv} 1}$	鉛直方向転倒モデルにおける鉛直方向地震により取付ボルトに作用する力	N
$\mathrm{Q}_{\mathrm{b} V 2}$	鉛直方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用す るせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(R T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
π	円周率	－
$\sigma_{\text {b }}$	ボルトに生じる引張応力	MPa
τ_{b}	ボルトに生じるせん断応力	MPa

1．2．5 計算精度と数値の丸め方
計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 1－3 に示すとおりである。

表 1－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 3$

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。 ＊2：絶対値が 1000 以上のときは，心゙き数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

1．3 評価部位

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の耐震評価は，「1．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の取付ボルトについ て実施する。原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の耐震評価部位については，表1－2 の概略構造図に示す。

1． 4 固有周期

1．4．1 固有値解析方法
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の固有値解析方法を以下に示す。
（1）原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）は，「1．4．2 解析モデル及び諸元」に示す三次元 はりモデルを用いる。

1．4．2 解析モデル及び諸元

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の解析モデルを図 1－2 に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の耐震性についての計算結果】のその他の機器要目に示す。
（1）原子炉建屋水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）において，計器取付金具は原子炉建屋構造物に固定さ れることから，（1）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部） 1点で固定される。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析 コード）の概要」に示す。

（単位：mm）

図 1－2 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ 解析モデル

1．4．3 固有値解析結果

固有値解析結果を表 1－4，振動モード図を図 1－3 及び図 1－4 にに示す。固有周期は 0.05秒以下であり，剛であることを確認した。

表 1－4 原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E}$ 101A）固有値解析結果

モード	卓越方向	固有周期 （s）	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次	水平方向		－	－	－
8 次	鉛直方向		－	－	－

\square
図 1－3 原子炬建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）
\square
図 1－4 原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）
振動モード図（8 次モード 鉛直方向 \square S）

1.5 構造強度評価

1．5．1 構造強度評価方法

1．4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）表 1－2 に示す原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）は，原子炉建屋構造物に溶接された計器取付金具に取付ボルトで固定する。

1．5．2 荷重の組合せ及び許容応力
1．5．2．1 荷重の組合せ及び許容応力状態
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表1－5に示す。

1．5．2．2 許容応力
原子炉建屋内水素濃度（T71－H2E101A）の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表1－6に示す。

1．5．2．3 使用材料の許容応力評価条件

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表1－7に示す。

表 1－5 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	原子炉建屋内水素濃度	常設／緩和		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \\ \text { の許容限界を用 } \\ \text { いる。) } \end{gathered}$

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 1－6 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{f}{ }_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$\stackrel{\rightharpoonup}{\omega}$

表 $1-7$						
使用材料の許容応力評価条件（重大事故等対処設備）						
評部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	
取付ボルト		周囲環境温度	66	188	479	205

枠囲みの内容は商業機密の観点から公開できません。

1．5．3 設計用地震力

耐震評価に用いる設計用地震力を表1－8に示す。
「基準地震動S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 1－8 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鋁直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } 33.20 \\ \left(0 . \text { P. } 50.50^{* 1}\right) \\ \hline \end{gathered}$			－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 7.28 \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{V}}= \\ & 2.09 \end{aligned}$

注記 $* 1$ ：基準床レベルを示す。

1．5．4 計算方法

1．5．4．1 応力の計算方法
1．5．4．1．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 1－5（1）計算モデル（水平方向転倒の場合）

図 1－5（2）計算モデル（鉛直方向転倒の場合）
（1）引張応力
取付ボルトに対する引張力は，最も厳しい条件として，図 1－5（1）及び図 1－5（2）で最外列の取付ボルトを支点とする転倒を考え，これを片側の最外列の取付ボルトで受けるもの として計算する。

引張力

計算モデル図 1－5（1）の場合の引張力

計算モデル図 1－5（2）の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}+\mathrm{C}_{\mathrm{H}} \cdot \ell_{1}}{\mathrm{n}_{\mathrm{fV},} \cdot \ell_{2}}\right) \\
& \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \quad \mathrm{~F}_{\mathrm{b} 2}\right) \quad \ldots \ldots \ldots \ldots . \tag{1.5.4.1.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{1.5.4.1.1.4}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。

$$
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}
$$

（2）せん断応力
取付ボルトに対するせん断力は，重心位置の偏心を考慮して取付ボルト全本数で受ける ものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{bh} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdots \cdots \cdots \cdots \cdots \tag{1.5.4.1.1.6}\\
& \mathrm{Q}_{\mathrm{bh} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \quad \cdots \ldots \ldots \tag{1.5.4.1.1.7}\\
& \mathrm{Q}_{\mathrm{bh} 3}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \tag{1.5.4.1.1.8}
\end{align*}
$$

$$
\begin{aligned}
& Q_{b h}=\sqrt{\left(Q_{b h 1}\right)^{2}+\left(Q_{b h 2}+Q_{b h 3}\right)^{2}} \\
& \mathrm{Q}_{\mathrm{bv} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \\
& \mathrm{Q}_{\mathrm{b} V 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \\
& Q_{b V}=Q_{b V 1}+Q_{b V 2} \\
& \mathrm{Q}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{Q}_{\mathrm{bh}}, \mathrm{Q}_{\mathrm{bV}}\right)
\end{aligned}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{1.5.4.1.1.14}
\end{equation*}
$$

注記＊：本計算式のみ取付ボルト 1 本に作業するせん断力であり，全本数 n 本文に換算す るため n 倍とする。

1．5．5 計算条件

1．5．5．1 取付ボルトの応力計算条件
取付ボルトの応力計算に用いる計算条件は，本計算書の【原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の耐震性についての計算結果】の設計条件および機器要目に示す。

1．5．6 応力の評価

1．5．6．1 取付ボルトの応力評価
1．5．4．1．1項で求めた取付ボルトの引張応力 σ bは次式より求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} 。は下表による。

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{1.5.6,1.1}
\end{equation*}
$$

せん断応力 τ bはせん断力のみを受ける取付ボルト及び基礎ボルトの許容せん断応力 f_{sb} 以下であること。ただし，$f_{\mathrm{s} \text { b }}$ は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{to}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

1.6 機能維持評価

1．6．1 電気的機能維持評価方法
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉建屋内水素濃度（T71－H2E101A）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した器具の最大加速度を適用する。

機能確認済加速度を表 1－9に示す。

表 1－9 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉建屋内水素濃度 （ $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）	水平方向	
	鉛直方向	

1.7 評価結果

1．7．1 重大事故等対処設備としての評価結果
原子炉建屋内水素濃度（ $\left.771-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉建屋内水素濃度（T71－H2E101A）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\underset{\text { 原子炉建屋内水素濃度 }}{\left(\mathrm{T} 11-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)}$	常設／緩和	$\begin{aligned} & \text { 原子炬建屋 } \\ & \text { (. P. } 33.20 \\ & \text { (0.P. } 50.50^{* 1} \text {) } \\ & \hline \end{aligned}$			－	－	$\mathrm{C}_{\mathrm{H}}=7.28$	$\mathrm{C}_{\mathrm{V}}=2.09$	66

注記＊1：基準床レベルを示す。

1．2 機器要目
1．2．1 原子炬建屋内水素湿度

						転倒方向＊2	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{PPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$		$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
取付ボルト	188	479	205	－	205	－	水平方向

注記＊ $1:$ 機器要目における上段は鉛直方向転倒に対する評価時の要目を示し，下段は水平方向転倒に対する評価時の要目を示す。 ＊ 2 ：鉛直，水平方向のうち，評価の厳しい方向を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト	-		-	

1．4 結論

部 材	1．4．1 ボルトの応力	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動S s	
	材 料					
			算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}}=96$	$f_{\mathrm{ts}}=138^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=48$	$f_{\text {s b }}=118$

注記 $*: f_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t} \text { o }}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出。
すべて許容応力以下である。

1.4 .2 電気的機能維持の評価結果			
		機能維持 評価用加速度＊	機能確認済加速度
原子炉建屋内水素濃度 $\left(\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$	水平方向	6.07	
	鉛直方向	1.74	

注記＊：基準地震動 S s により定まる応答力速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 （3）VI－2－6－5－9－1 R 2
1.5 その他の機器要目
（1）機器諸元（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$

項目	記号	単位	入力値
材質	-	-	SS 400
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

N	（2）部材の機	$\left(\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$
	材料	SS400
	対象要素	（1）
	$\begin{array}{ll} \hline \text { A }\left(\mathrm{mm}^{2}\right) \\ \hline \mathrm{I}_{\mathrm{y}} & \left(\mathrm{~mm}^{4}\right) \\ \hline \mathrm{I}_{\mathrm{z}} & \left(\mathrm{~mm}^{4}\right) \\ \mathrm{I}_{\mathrm{p}} & \left(\mathrm{~mm}^{4}\right) \\ \hline \end{array}$	
	断面形状（mm）	

枠囲みの内容は商業機密の観点から公開できません。

側面

2．原子炉建屋内水素濃度（ $\left.\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 205\right)$
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価 を示す。

2.2 一般事項

2．2．1 構造計画
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，取付ボルト により計器取付金具に固定される。 計器取付金具は，原子炉建屋構造物に溶接で固定する。	触媒式水素検出器 （検出器は，原子炉建屋構造物に設置された計器取付金具に取付ボ ルトにより固定される構造）	【原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right)$ 】 原子炬建屋構造物 上面 正面 側面

2．2．2 評価方針

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2．1 構造計画」にて示す原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~ の$ 部位を踏まえ「2．3 評価部位」にて設定する箇所において，「2．4 固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「2．5 構造強度評価」にて示す方法にて確認する ことで実施する。また，原子炉建屋内水素濃度（T71－H2E205）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「2．6 機能維持評価」にて示 す方法にて確認することで実施する。確認結果を「2．7 評価結果」に示す。原子炉建屋内水素濃度（T71－H2E205）の耐震評価フローを図 2－1 に示す。

図 2－1 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の耐震評価フロー

2．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補一 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

2．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131 に定める値	MPa
F^{*}	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1 本当たり）	N
$\mathrm{F}_{\mathrm{b}} 1$	鋁直方向地震及び壁掛の取付面に対し左右方向の水平方向地震によりボ ルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b} 2}$	鉛直方向地震及び壁掛の取付面に対し前後方向の水平方向地震によりボ ルトに作用する引張力（1 本当たり）	N
$f_{\text {s b }}$	せん断力のみを受けるボルトの許容せん断応力（ f s を 1.5 倍した値又は f s＊を 1.5 倍した値）	MPa
f_{t} 。	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又は $\mathrm{f}_{\mathrm{t}}{ }^{*}$ を 1.5 倍した値）	MPa
$f_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心と下側ボルト間の距離	mm
ℓ_{2}	上側ボルトと下側ボルト間の距離	mm
ℓ_{3}	評価上の支点と引張力を受けるとして期待するボルト間の距離	mm
ℓ_{4}	重心と重心から最も遠い位置のボルト間の距離	mm
m	検出器の質量	kg
n	ボルトの本数	－
$\mathrm{n}_{\mathrm{f} \mathrm{V}}$	評価上引張力を受けるとして期待するボルトの本数（鉛直方向）	－
n_{ff}	評価上引張力を受けるとして期待するボルトの本数（水平方向）	－
Q_{b}	ボルトに作用するせん断力	N
Q_{bh}	水平方向転倒モデルにおける取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bh} 1}$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震により取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bh} 2}$	水平方向転倒モデルにおける鉛直方向地震により取付ボルトに作用する せん断力	N
$Q_{\text {bh } 3}$	水平方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用す るせん断力	N

記 号	記 号 の 説 明	単 位
$Q_{b V}$	鉛直方向転倒モデルにおける取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bv} 1}$	鉛直方向転倒モデルにおける鉛直方向地震により取付ボルトに作用する力	N
$\mathrm{Q}_{\mathrm{b} V 2}$	鉛直方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用す るせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(R T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
π	円周率	－
$\sigma_{\text {b }}$	ボルトに生じる引張応力	MPa
τ_{b}	ボルトに生じるせん断応力	MPa

2．2．5 計算精度と数値の丸め方
計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	C	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊${ }^{*}$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 3$

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。 ＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

2.3 評価部位

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の耐震評価は，「2．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の取付ボルトについ て実施する。原子炉建屋内水素濃度（T71－H2E205）の耐震評価部位については，表2－1 の概略構造図に示す。

2． 4 固有周期

2．4．1 固有値解析方法
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の固有値解析方法を以下に示す。
（1）原子炉建屋内水素濃度は，「2．4．2 解析モデル及び諸元」に示す三次元はりモデルを用 いる。

2．4．2 解析モデル及び諸元

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の解析モデルを図 2－2 に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の耐震性 についての計算結果】のその他の機器要目に示す。
 れることから，（1）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部） 2 点で固定される。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析 コード）の概要」に示す。

（単位：mm）

図 2－2 原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）解析モデル

2．4．3 固有値解析結果

固有値解析結果を表 2－3 に，振動モード図を図 2－3 及び図 2－4に示す。固有周期は 0.05秒以下であり，剛であることを確認した。

表 2－3 原子灯建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ 固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
	X方向	Z 方向	刺激係数		

図 2－4 原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）
（6 次モード 鉛直方向

2.5 構造強度評価

2．5．1 構造強度評価方法

2．4．2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~ に$ 対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）表 2－1 に示す原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）は，原子炉建屋構造物に溶接された計器取付金具に取付ボルトで固定する。

2．5．2 荷重の組合せ及び許容応力
2．5．2．1 荷重の組合せ及び許容応力状態
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表2－4に示す。

2．5．2．2 許容応力
原子炉建屋内水素濃度（T71－H2E205）の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表2－5に示す。

2．5．2． 3 使用材料の許容応力評価条件
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 2－6に示す。

表 2－4 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	原子炉建屋内水素濃度	常設／緩和		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \\ \text { の許容限界を用 } \\ \text { いる。) } \end{gathered}$

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－5 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ （ $V_{A} S$ として $V_{A} S$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表2－6		使用材料の許容応力評価条件（重大事故等対処設備）				
評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	
取付ボルト		周囲環境温度	130	161	429	205

枠囲みの内容は商業機密の観点から公開できません。

2．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 2－7 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 2－7 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. }-0.80 \\ \left(0 . \text { P. } 6.00^{* 1}\right) \end{gathered}$			－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 1.57 \end{gathered}$	$\begin{gathered} C_{V}= \\ 1.09 \end{gathered}$

注記 $⿻ コ 一^{1}$ ：基準床レベルを示す。

2．5．4 計算方法

2．5．4．1 応力の計算方法
2．5．4．1．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 2－5（1）計算モデル（水平方向転倒の場合）

$\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{g}$

図 2－5（2）計算モデル（鉛直方向転倒の場合）
（1）引張応力
取付ボルトに対する引張力は，最も厳しい条件として，図 2－5（1）及び図 2－5（2）で最外列の取付ボルトを支点とする転倒を考え，これを片側の最外列の取付ボルトで受けるもの として計算する。

引張力

計算モデル図 2－5（1）の場合の引張力

$$
\begin{equation*}
F_{b 1}=m \cdot g \cdot\left(\frac{\left(1+C_{v}\right) \cdot h_{f_{V}} \cdot l_{2}}{n_{f H} \cdot l_{3}}+\frac{C_{H} \cdot h}{n_{i}}\right) \tag{2.5.4.1.1.1}
\end{equation*}
$$

計算モデル図 2－5（2）の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}+\mathrm{C}_{\mathrm{H}} \cdot \ell_{1}}{\mathrm{n}_{\mathrm{fVV}} \cdot \ell_{2}}\right) \\
& \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \mathrm{~F}_{\mathrm{b} 2}\right) \ldots \ldots \ldots \ldots \tag{2,5,4.1.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{2,5,4,1,1,4}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{2.5.4.1.1.5}
\end{equation*}
$$

（2）せん断応力
取付ボルトに対するせん断力は，重心位置の偏心を考慮して取付ボルト全本数で受ける ものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{bh} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdots \cdots \cdots \cdots \cdots \tag{2.5.4.1.1.6}\\
& \mathrm{Q}_{\mathrm{bh} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \quad \cdots \ldots \ldots \tag{2.5.4.1.1.7}\\
& \mathrm{Q}_{\mathrm{bh} 3}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \tag{2.5.4.1.1.8}
\end{align*}
$$

$$
\begin{align*}
& Q_{b h}=\sqrt{\left(Q_{b h 1}\right)^{2}+\left(Q_{b h 2}+Q_{b h 3}\right)^{2}} \tag{2.5.4.1.1.9}\\
& \mathrm{Q}_{\mathrm{bv} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \\
& \mathrm{Q}_{\mathrm{b} V 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \tag{2.5.4.1.1.11}\\
& Q_{b V}=Q_{b V 1}+Q_{b V 2} \tag{2.5.4.1.1.12}\\
& \mathrm{Q}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{Q}_{\mathrm{bh}}, \mathrm{Q}_{\mathrm{bv}}\right) \\
& \text { (2.5.4.1.1.10) } \\
& \text { (2.5.4.1.1.13) }
\end{align*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{2.5.4.1.1.14}
\end{equation*}
$$

注記＊：本計算式のみ取付ボルト 1 本に作業するせん断力であり，全本数 n 本文に換算す るため n 倍とする。

2．5．5 計算条件
2．5．5．1 取付ボルトの応力計算条件
取付ボルトの応力計算に用いる計算条件は，本計算書の【原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の耐震性についての計算結果】の設計条件および機器要目に示す。

2．5．6 応力の評価

2．5．6．1 取付ボルトの応力評価
2．5．4．1．1項で求めた取付ボルトの引張応力 σ bは次式より求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} 。は下表による。

$$
\begin{equation*}
f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{2.5.6.1.1}
\end{equation*}
$$

せん断応力 τ bはせん断力のみを受ける取付ボルト及び基礎ボルトの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下であること。ただし，$f_{\mathrm{s} \text { b }}$ は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力	
f_{to}	

2.6 機能維持評価

2．6．1 電気的機能維持評価方法
原子炉建屋内水素濃度（T71－H2E205）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した器具の最大加速度を適用する。

機能確認済加速度を表 2－8に示す。

表 2－8 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉建屋内水素濃度 （ $771-\mathrm{H}_{2} \mathrm{E} 205$ ）	水平方向	
	鉛直方向	

2.7 評価結果

2．7．1 重大事故等対処設備としての評価結果
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

O 2 （3）VI－2－6－5－9－1 R 2

【原子炉建屋内水素濃度（T71－H2E205）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）	常設／緩和	原子炉建屋 0．P．-0.80 $\left(0\right.$. P． $\left.6.00^{* 1}\right)$			－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	130

注記＊1：基準床レベルを示す。

1．2 機器要目
1．2．1 原子炉建屋内水素濃度

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1} * 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2} * 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} * 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{4} * 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n	$\mathrm{n}_{\mathrm{fH}} * 1$	$\mathrm{n}_{\mathrm{f} \mathrm{V}} * 1$
取付ボルト		285							4	2	2
										2	2

					$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向＊2	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$		弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト	161	429	205	－	205	－	水平方向

注記 $* 1:$ 機器要目における上段は鉛直方向転倒に対する評価時の要目を示し，下段は水平方向転倒に対する評価時の要目を示す。 ＊2：鉛直，水平方向のうち，評価の厳しい方向を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト	-		-	

1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}}=34$	$f_{\mathrm{ts}}=153^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=33$	$f_{\text {s b }}=118$

注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t} \text { o }}-1.6 \cdot \tau{ }_{\mathrm{b}}, f_{\mathrm{t} \text { o }}\right]$ より算出。
すべて許容応力以下である。
ゃ
1．4．2 電気的機能維持の評価結果

4．2 電気的機能維持の評価結		機能維持評価用加速度＊	機能確認済加速度
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）	水平方向	1.31	
	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答力速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2 （3）VI－2－6－5－9－1 R 2
1.5 その他の機器要目
（1）機器諸元（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right)$

項目	記号	単位	入力値
材質	-	-	SS 400
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	130
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

（2）部材の機器要目（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right)$

正面

側面

3．原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 201, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 204\right)$

3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 201, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203, \mathrm{~T} 71-$
 ものである。

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 201, ~ \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202$ ，T71－ $\mathrm{H}_{2} \mathrm{E} 203, ~ T 71-\mathrm{H}_{2} \mathrm{E} 204$ ）は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については基礎ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表して評価する。また，電気的機能維持評価については，機能維持評価用加速度が最大となる設置床高さの検出器について代表として評価する。評価対象を表 3－ 1 に示す。

表 3－1 概略構造識別

評価部位	評価方法	構造計画	
$\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 201$			
$\mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202$	3.5	構造強度評価	表 $3-2$
$\mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203$	構造計画		
$\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 204$（代表）			

3.2 一般事項

3．2．1 構造計画
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の構造計画を表 3－2 に示す。

O 2 （3）VI－2－6－5－9－1 R 2

表 3－2 構造計画

3．2．2 評価方針

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．2．1 構造計画」にて示す原子炉建屋内水素濃度（T71－H2E204）の部位を踏まえ「3．3 評価部位」にて設定する箇所において，「3．4 固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「3．5 構造強度評価」にて示す方法にて確認する ことで実施する。また，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「3．6 機能維持評価」にて示 す方法にて確認することで実施する。確認結果を「3．7 評価結果」に示す。原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の耐震評価フローを図 3－1 に示す。

図 3－1 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の耐震評価フロー

3．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補一 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

3．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A ${ }_{\text {b }}$	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$f_{\text {s b }}$	せん断力のみを受けるボルトの許容せん断応力（f s を 1.5 倍した値又 はf＊＊を 1.5 倍した値）	MPa
$f_{\text {t }}$ 。	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又は f t＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	評価上の支点と引張力を受けるとして期待する基礎ボルト間の距離	mm
ℓ_{2}	評価上の支点と重心の距離	mm
m	検出器及び計器取付金具の質量	kg
n	ボルトの本数	－
n f	評価上引張力を受けるとして期待するボルトの本数	－
Q ${ }_{\text {b }}$	ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
Sy	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
S_{y}（R T）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ におけ る値	MPa
π	円周率	－
$\sigma_{\text {b }}$	ボルトに生じる引張応力	MPa
$\tau_{\text {b }}$	ボルトに生じるせん断応力	MPa

3．2．5 計算精度と数値の丸め方
計算精度は，有效数字 6 桁以上を確保する。
表示する数値の丸め方は，表 3－3に示すとおりである。

表 3－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有效数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊3

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3.3 評価部位

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の耐震評価は，「3．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の基礎ボルトについ て実施する。原子炉建屋内水素濃度（T71－H2E204）の耐震評価部位については表3－2 の概略構造図に示す。

3.4 固有周期

3．4．1 固有値解析方法原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~ の$ 固有値解析方法を以下に示す。
（1）原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~ は, ~ 「 3.4 .2 ~$ 解析モデル及び諸元」に示す三次元 はりモデルを用いる。

3．4．2 解析モデル及び諸元

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の解析モデルを図 3－2 に，解析モデルの概要を以下 に示す。また，機器諸元を本計算書【原子炉建屋内水素濃度（T71－H2E204）の耐震性について の計算結果】のその他の機器要目に示す。
（1）原子炉建屋水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）において，計器取付金具は（1）及び（2）の鋼材で L 字に組 まれて原子炉建屋の天井に固定されることから，（1）及び（2）の部材で組まれた支持構造物と みなし，支持点（計器取付金具基礎部）1 点で固定される。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析 コード）の概要」に示す。

[^0]
3．4．3 固有値解析結果

固有値解析結果を表 3－4 に，振動モード図を図 3－3 及び図 3－4に示す。固有周期は 0.05秒以下であり，剛であることを確認した。

表 3－4 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ 固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
		X方向	Z方向	刺激係数	

\square
図 3－3 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$振動モード図（1次モード 水平方向 \square s）
\square
図 3－4 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right)$
振動モード図（2 次モード 鉛直方向 \square s）

3.5 構造強度評価

3．5．1 構造強度評価方法
3．4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉建屋内水素濃度（T71－H2E204）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）表 3－2 に示す原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~ は, ~$ 基礎ボルトにより天井面に固定す る。

3．5．2 荷重の組合せ及び許容応力
3．5．2．1 荷重の組合せ及び許容応力状態
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 $3-5$ に示す。

3．5．2．2 許容応力
原子炉建屋内水素濃度（T71－H2E204）の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表3－6に示す。

3．5．2． 3 使用材料の許容応力評価条件
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表3－7に示す。

表 3－5 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－6 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$＊
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－7 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	80	201	379	-

3．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 3－8 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 3－8 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. 15.00 } \\ \left(0 . \text { P. } 33.20^{* 1}\right) \end{gathered}$			－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 2.65 \end{gathered}$	$\begin{gathered} C_{V}= \\ 1.77 \end{gathered}$

3．5．4 計算方法

3．5．4．1 応力の計算方法
3．5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

転倒方向

図 3－5（1）計算モデル（短辺方向転倒の場合）

図 3－5（2）計算モデル（長辺方向転倒の場合）
（1）引張応力
基礎ボルトに対する引張力は，最も厳しい条件として，図3－5（1）で最外列の基礎ボルト を支点とする転倒を考え，これを片側の最外列の基礎ボルトで受けるものとして計算する。 また，図 3－5（2）では検出器の端部を支点とする転倒を考え，これを基礎ボルト全数で受け るものとして計算する。

引張力
計算モデル図3－5（1）及び図 3－5（2）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}+\left(\mathrm{C}_{\mathrm{v}}+1\right) \cdot \ell_{2}}{\mathrm{n}_{\mathrm{f}} \cdot \ell_{1}}\right) \tag{3.5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{3.5.4.1.1.2}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{3.5.4.1.1.3}
\end{equation*}
$$

（2）せん断応力
基礎ボルトに対するせん断力は，基礎ボルト全本数で受けるものとして計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \tag{3.5.4.1.1.4}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{3.5.4.1.1.5}
\end{equation*}
$$

3．5．5 計算条件

3．5．5．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【原子炉建屋内水素濃度 （T71－ $\left.\mathrm{H}_{2} E 204\right) ~ の$ 耐震性についての計算結果】の設計条件および機器要目に示す。

3．5．6 応力の評価

3．5．6．1 基礎ボルトの応力評価
3．5．4．1．1項で求めた基礎ボルトの引張応力 σ bは次式より求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} 。は下表による。

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{3.5.6.1.1}
\end{equation*}
$$

せん断応力 τ ьはせん断力のみを受ける基礎ボルトの許容せん断応力 $f_{\mathrm{s} \text { b }}$ 以下である こと。ただし，$f_{\mathrm{s} \text { b }}$ は下表による。

	基準地震動 S s による荷 重との組合せの場合
許容引張応力 f_{to}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

3.6 機能維持評価

3．6．1 電気的機能維持評価方法
原子炉建屋内水素濃度（T71－ H_{2} E204）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した器具の最大加速度を適用する。

機能確認済加速度を表 3－9に示す。

表 3－9 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉建屋内水素濃度	水平方向	
（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right)$	鉛直方向	

3.7 評価結果

3．7．1 重大事故等対処設備としての評価結果
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉建屋内水素濃度（T71－H2E204）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）	常設／緩和	原子炉建屋 0．P．15．00 （0．P．33．20＊1）			－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	80

注記＊1：基準床レベルを示す。
1.2 機器要目
∞

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline \ell_{1} * 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2} * 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n	$\mathrm{n}_{\mathrm{f}}{ }^{\text {＊}}$
基礎ボルト		250					2	1
								2

					$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向＊2	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$		$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$		弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	201	379	－	－	241	－	短辺方向

注記 $* 1$ ：機器要目における上段は長辺方向転倒に対する評価時の要目を示し，下段は短辺方向転倒に対する評価時の要目を示す。

[^1]1．3 計算数値
1．3．1 ボルトに作用する

部 材	$F_{\text {b }}$		Q_{b}	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=7$	$f_{\mathrm{ts}}=144^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$f_{\mathrm{s} \mathrm{b}}=111$

注記＊：$f_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動S s により定まる応答力速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
1.5 その他の機器要目

（1）機器諸元（T1－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right)$			
項目	記号	単位	入力値
材質	-	-	
質量	m_{b}	kg	SS 400
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	80
縦弾性係数	E	MPa	
ポアソン比	v	-	
ホ⿱⿱一⿻口⿰丨丨女刂⿰㇒⿻二丨冂刂灬素数	-	個	
節点数	-	個	

側面

[^0]: 図 3－2 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ 解析モデル

[^1]: ＊ 2 ：短辺，長辺方向のらち，評価の厳しい方向を示す

