| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－4－3－1－3 管の耐震性についての計算書
 （燃料プール冷却浄化系）

2021年10月
東北電力株式会社

設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 9
3.1 計算方法 9
3.2 荷重の組合せ及び許容応力状態 10
3.3 設計条件 11
3．4 材料及び許容応力評価条件 20
3.5 設計用地震力 21
4．解析結果及び評価 24
4.1 固有周期及び設計震度 24
4． 2 評価結果 42
4．2．1 管の応力評価結果 42
4．2．2 支持構造物評価結果 45
4．2．3 弁の動的機能維持評価結果 46
4．2．4 代表モデルの選定結果及び全モデルの評価結果 47

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，燃料プール泠却浄化系の管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 6 モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

燃料プール泠却浄化系概略系統図（その1）

燃料プール冷却浄化系概略系統図（その2）

鳥瞰図記号凡例

記		内 容
		工事計画記載範囲の管のうち，本計算書記載範囲の管
		工事計画記載範囲外の管
		工事計画記載範囲の管のうち，他系統の管であって解析モデル として本系統に記載する管
－		質点
		アンカ
		レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
		スナッバ
		ハンガ
 ガイド		
		拘束点の地震による相対変位量（mm） （＊は評価点番号，矢印は拘束方向を示す。また， \square内 に変位量を記載する。）

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」及び「 S A P－V 」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	$\begin{gathered} \text { 施設 } \\ \text { 分類*1 } \end{gathered}$	設備分類	機器等 の区分	耐震重要度分類	荷重の組合せ＊2，＊3	許容応 力状態
核燃料物質の取扱施設及び貯蔵施設	使用済燃料貯蔵槽冷却浄化設備	燃料プール泠却浄化系	DB	－	クラス 3 管	S	$\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$	IIIA ${ }_{\text {S }} \mathrm{S}$
							$\Pi_{L}+\mathrm{S} \mathrm{d}$	
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	

注記 $~$ 1：DB は設計基準対象施設，SA は重大事故等対処設備を示す。
＊2：運転状態の添字L は荷重を示す。
＊3：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	S	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－002

管名称					対	応	す	る	評	価	点			
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		10		13		16	
5		8		11		14			
6		9		12		15			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
4	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
并1	3			

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－002

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
FPC－003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	S	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－003

管名称					対	応	す	る	評	価	点				
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		10		13		16	
5		8		11		14			
6		9		12		15			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
3	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	3			

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－003

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 KF P C－ 142

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 （ ${ }^{\prime}$ 要度分類	
1	3.73	66	216.3	8.2	STS 410	S	200360

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
K F P C－ 142

管名称					対	応	す	る	評	価	点				
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	901	902				

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		13		19		901	
2		8		14		20		902	
3		9		15		21			
4		10		16		22			
5		11		17		23			
6		12		18		24			

支持点及び貫通部ばね定数
鳥 瞰 図 KFPC－142
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
7						
13						
19						
24						
901						
902						

3.4 材料及び許容応力評価条件

使用する材料の最高使用温度での許容応力評価条件を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	Sm (MPa)	S y (MPa)	S u (MPa)	S h (MPa)
SUS304TP	66	-	188	479	-
STS410	66	-	231	407	-

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。
本計算書の疲労評価は，等価繰返し回数340回（S s ）で実施する。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。
本計算書の疲労評価は，等価繰返し回数 340 回（S s）で実施する。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C－0 0 3	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
K F P C -142	原子炉建屋		

4．解析結果及び評価
4．1 固有周期及び設計震度
鳥 瞰 図 FPC－002

注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 以下であることを示す。
＊3：S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2C V より定めた震度を示す。

各モードに対応する刺激係数
鳥 瞰 図 FPC－002

モード	固 $\underset{(\mathrm{s})}{\text { 有 }}$ 周 期		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

固有周期及び設計震度
鳥 瞰 図 FPC－003

注記 $*_{1}$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 以下であることを示す
＊3：S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2C V_{V} より定めた震度を示す。

各モードに対応する刺激係数
鳥 瞰 図 FPC－003

モード	固 $\underset{(\mathrm{s})}{\text { 有 }}$ 周 ${ }^{\text {期 }}$		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

固有周期及び設計震度
鳥 瞰 図 KFPC－142

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 以下であることを示す。
＊4•3 6C 及 C 地震動に基定めた震度を示す

各モードに対応する刺激係数
鳥 瞰 図 KFPC－142

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

4． 2 評価結果
4．2．1 管の応力評価結果
下記に示すとおり最大応力及び疲労累積係数はそれぞれ許容値以下である。
クラス 2 以下の管

				一次応力評	覀（MPa）	一次＋二次応	平価（ MPa ）	疲労評価
	許容応力	最大応力		計算応力	許容応力	計算応力	許容応力	疲労累積係数
	状態	評価点	区分	S prme $\mathrm{Sd}_{\text {d }}$	S y ${ }^{1}$	Sn（S d）	$2 \cdot \mathrm{~S}$ y	U S d
				Sprm（S s ）	0． $9 \cdot \mathrm{Su}$	Sn（S s ）	$2 \cdot \mathrm{Sy}$	US s
	III ${ }_{\text {A }} \mathrm{S}$	12	Sprm（S d）	127	188	－	－	－
	III ${ }_{\text {A }} \mathrm{S}$	12	S n（S d）	－	－	239	376	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	12	Sprm（S s ）	224	431	－	－	－
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	12	S n（S s ）	－	－	436 ＊	376	0.0034

＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。 ＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S y と 1 。 2 • S h のうち大きい方とする。

管の応力評価結果
下記に示すとおり最大応力及び疲労累積係数はそれぞれ許容値以下である。
クラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大 応力 区分	一次応力評価（MPa）		一次＋二次応力評価（MPa）		疲労評価 疲労累積係数 US d US s
				$\begin{gathered} \hline \text { 計算応力 } \\ S \operatorname{srm}(S \mathrm{~d}) \\ \mathrm{S} \operatorname{prm}(\mathrm{~S} \text { s }) \end{gathered}$	許容応力	計算応力	許容応力	
					S y＊1	Sn（S d）	$2 \cdot \mathrm{Sy}$	
					0． $9 \cdot \mathrm{Su}$	Sn（S s ）	$2 \cdot \mathrm{Sy}$	
F P C－0 03	III ${ }_{\text {A }} \mathrm{S}$	12	$\begin{gathered} S \mathrm{prm}(\mathrm{Sd}) \\ \mathrm{Sn}(\mathrm{Sd}) \\ \mathrm{Sprm}(\mathrm{~S} \text { s }) \\ \mathrm{Sn}(\mathrm{~S} \text { s }) \end{gathered}$	127	188	－	－	－
	III ${ }_{\text {A }} \mathrm{S}$	12		－	－	239	376	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	12		224	431	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	12		－	－	436 ＊	376	0.0034

＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。 ＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S y と 1 。 2 • S h のうち大きい方とする。

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S y と 1 。 2 • S h のうち大きい方とする

4．2．2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果（荷重評価）

					評価結果 支持構造物 番号	

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力 分類	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	許容応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
FPC－001－001A	アンカ	架構	STKR400	40	20	6	14	5	30	2	組合せ	139	280
KFPC－142－007R	レストレイント	架構	STKR400	40	37	16	11	－	－	－	組合せ	101	280

4．2．3 弁の動的機能維持評価結果

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
			水平	鉛直	水平	鈖直
－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	疲労 累積 係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	FPC－001	901	39	231	5.92	－	901	48	366	7． 62	－	19	176	376	2.13	－	－	－	－
2	FPC－002	12	127	188	1． 48	\bigcirc	12	224	431	1.92	－	12	436	376	0.86	\bigcirc	12	0． 0034	\bigcirc
3	FPC－003	12	127	188	1． 48	\bigcirc	12	224	431	1.92	－	12	436	376	0.86	\bigcirc	12	0． 0034	\bigcirc
4	KFPC－004	1	12	188	15.66	－	5	12	431	35.91	－	5	4	376	94.00	－	－	－	－
5	KFPC－005	1	12	188	15． 66	－	5	12	431	35.91	－	5	4	376	94.00	－	－	－	－
6	KFPC－142	7	115	231	2.00	－	7	196	366	1.86	\bigcirc	7	347	462	1.33	－	－	－	－

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力裕度最小を代表とする。

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 12
3.1 計算方法 12
3.2 荷重の組合せ及び許容応力状態 13
3.3 設計条件 14
3.4 材料及び許容応力評価条件 24
3.5 設計用地震力 25
4．解析結果及び評価 28
4.1 固有周期及び設計震度 28
4． 2 評価結果 46
4．2．1 管の応力評価結果 46
4．2．2 支持構造物評価結果 49
4．2．3 弁の動的機能維持評価結果 50
4．2．4 代表モデルの選定結果及び全モデルの評価結果 51

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，燃料プール泠却浄化系の管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全8モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

鳥瞰図記号凡例

記		内 容
		工事計画記載範囲の管のうち，本計算書記載範囲の管
		工事計画記載範囲外の管
		工事計画記載範囲の管のうち，他系統の管であって解析モデル として本系統に記載する管
－		質点
		アンカ
		レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
		スナッバ
		ハンガ
 ガイド		
		拘束点の地震による相対変位量（mm） （＊は評価点番号，矢印は拘束方向を示す。また， \square内 に変位量を記載する。）

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」及び「 S A P－V 」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設分類＊${ }^{*}$	設備分類＊2	機器等 の区分	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
核燃料物質 の取扱施設及び貯蔵施設	使用済燃料貯蔵槽冷却浄化設備	燃料プール泠却浄化系	SA	常設耐震／防止	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記＊1：DB は設計基準対象施設，SA は重大事故等対処設備を示す。
＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊3：運転状態の添字Lは荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 （MPa	
1	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－002

管名称					対	応	す	る	評	価	点				
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16

配管の質量（付加質量含む）
評価点の質量を下表に示す。

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
4	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
并1	3			

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－002

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
FPC－003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－003

管名称					対	応	す	る	評	価	点				
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		10		13		16	
5		8		11		14			
6		9		12		15			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
4	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	3			

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－003

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 KF PC－122

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	1.37	66	114.3	6.0	STS410	200360	
2	1.37	66	165.2	7.1	STS410	-	200360
3	1.37	66	216.3	8.2	STS410	-	200360
4	1.37	66	216.3	8.2	SUS304TP	-	191720
5	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 KF PC－122

配管の質量（付加質量含む）
鳥 瞰 図
K F P C－ 122

評価点の質量を下表に示す。

評価点	質量（kg）								
1		30		98		152		310	
2		31		99		153		401	
3		32		100		154		402	
4		36		101		155		403	
5		37		102		156		404	
6		38		103		157		405	
7		43		105		158		406	
9		44		108		168		410	
13		45		121		169		411	
14		46		128		170		800	
15		47		135		180		801	
16		48		136		181		802	
17		49		137		182		803	
18		85		138		183		804	
19		90		139		210		805	
20		91		140		217		901	
21		92		141		301		903	
25		93		142		302		905	
26		94		143		303		906	
27		95		144		304		907	
28		96		145		305		908	
29		97		146		309			

弁部の質量を下表に示す。
弁1 弁2
弁3
弁 4
弁 5
${ }^{\circ}$

弁6 弁7 弁8

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
147		306		407	
148		307		408	
149		308		409	
150		311		412	
151		312		413	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	11			
弁2	23			
弁3	34			
弁4	40			
弁5	106			
弁6	148			
弁7	307			
弁8	408			

支持点及び貫通部ばね定数
鳥 瞰 図
K F P C－ 122
支持点部のばね定数を下表に示す。

\square

3.4 材料及び許容応力評価条件

使用する材料の最高使用温度での許容応力評価条件を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	Sm (MPa)	S y (MPa)	S u (MPa)	S h (MPa)
SUS304TP	66	-	188	479	-
STS410	66	-	231	407	-

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。
本計算書の疲労評価は，等価繰返し回数340回（S s）で実施する。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
	F P C－O 0 原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

本計算書の疲労評価は，等価繰返し回数340回（S s ）で実施する。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

4．解析結果及び評価
4.1 固有周期及び設計震度

鳥 瞰 図 FPC－002

適用する地震動等		Sa 及び静的震度			S s		
モード	$\underset{(\mathrm{s})}{\text { 固有周期 }}$	応 答 水 平 震 度＊1		応答鉛直震度＊1	応 答 水 平 震 度＊1		応答鉛直震度＊1
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次							
2 次							
3 次							
4 次							
5 次＊2							
	度＊3						
	度＊4						

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 以下であることを示す
＊3：Sd又はS s 地震動に基らく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2C V_{V} より定めた震度を示す。

各モードに対応する刺激係数
鳥 瞰 図 FPC－002

モード	固 $\underset{(\mathrm{s})}{\text { 有 }}$ 周 ${ }^{\text {期 }}$		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

固有周期及び設計震度
鳥 㒈 図 FPC－003

注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 以下であることを示す。
＊3：S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2C V より定めた震度を示す。

各モードに対応する刺激係数
鳥 瞰 図 FPC－003

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

固有周期及び設計震度
鳥 瞰 図 KFPC－122

注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊2：固有周期が 0.050 s 以下であることを示す。
＊3：S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3． $6 \mathrm{C}_{\mathrm{I}}$ 及び1．2 C_{V} より定めた震度を示す。

各モードに対応する刺激係数
鳥 瞰 図 KFPC－122

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

4． 2 評価結果

4．2．1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価(MPa)		一次＋二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(Ss) } \end{gathered}$	許容応力 0． $9 \cdot \mathrm{Su}$	計算応力 Sn (S s)	許容応力 $2 \cdot \mathrm{~S}$ y	疲労累積係数 US s
F P C－0 02	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \text { Sprm(Ss) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 223 \\ & - \end{aligned}$	431	$436 *$	376	$\overline{0.0034}$

＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が1以下であり許容値を満足している。

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次＋二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(Ss) } \end{gathered}$	許容応力 0． $9 \cdot \mathrm{Su}$	計算応力 Sn (S s)	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 U S s
F P C－ 003	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \text { Sprm(Ss) } \\ \text { Sn (S s) } \end{gathered}$	223	431	$436 *$	376	$\overline{-} 0.0034$

＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が1以下であり許容値を満足している。

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次＋二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(Ss) } \end{gathered}$	許容応力 0． $9 \cdot \mathrm{Su}$	計算応力 Sn (S s)	許容応力 $2 \cdot \mathrm{~S}$ y	疲労累積係数 US s
K F P C－122	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{gathered} \text { Sprm(Ss) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 241 \\ & \hline \end{aligned}$	366	460	462	－

4．2．2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果（荷重評価）

| 支持構造物
 番号 | 種類 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント $(\mathrm{kN} \cdot \mathrm{m})$			応力 分類	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
KFPC－102－901R	レストレイント	Uプレート	SS400	66	0	71	73	－	－	－	せん断	108	135
FPC－001－013A	アンカ	架構	STKR400	66	35	17	25	14	13	8	曲げ	115	433

4．2．3 弁の動的機能維持評価結果

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
			水平	鉛直	水平	鉛直
－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	許容応力状態 V A S												
		一次応力					一次＋二次応力					疲労評価		
		評 価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労 累積係数	代
1	FPC－001	19	39	431	11.05	－	19	176	376	2.13	－	－	－	－
2	FPC－002	12	223	431	1.93	－	12	436	376	0.86	\bigcirc	12	0． 0034	\bigcirc
3	FPC－003	12	223	431	1.93	－	12	436	376	0.86	\bigcirc	12	0． 0034	\bigcirc
4	KFPC－004	5	11	431	39． 18	－	5	4	376	94	－	－	－	－
5	KFPC－005	5	11	431	39.18	－	5	4	376	94	－	－	－	－
6	KFPC－101	12	31	431	13.90	－	37	164	376	2． 29	－	－	－	－
7	KFPC－102	40	221	366	1.65	－	40	448	462	1.03	－	－	－	－
8	KFPC－122	32	241	366	1.51	\bigcirc	32	460	462	1.00	－	－	－	－

