本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0334_改 1
提出年月日	2021年10月8日

VI-2-5-7-2-2 高圧炉心スプレイ補機冷却水ポンプの 耐震性についての計算書

2021年10月

東北電力株式会社

目 次

	概要 · · · · · · · · · · · · · · · · · · ·		
2.	一般事項 · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	1
2.	.1 構造計画 · · · · · · · · · · · · · · · · · · ·		1
3.	構造強度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;	3
3.	.1 構造強度評価方法 · · · · · · · · · · · · · · · · · · ·	;	3
3.	.2 荷重の組合せ及び許容応力	;	3
	3.2.1 荷重の組合せ及び許容応力状態・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;	3
;	3.2.2 許容応力 · · · · · · · · · · · · · · · · · · ·	;	3
;	3.2.3 使用材料の許容応力評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;	3
3.	.3 計算条件 · · · · · · · · · · · · · · · · · · ·	;	3
4.	機能維持評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	′	7
4.	1 動的機能維持評価方法 · · · · · · · · · · · · · · · · · · ·		7
5.	評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	;	8
5.	.1 設計基準対象施設としての評価結果	;	8
5.	.2 重大事故等対処設備としての評価結果		8

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、高圧炉心スプレイ補機冷却水ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

高圧炉心スプレイ補機冷却水ポンプは、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)に分類される。以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお、高圧炉心スプレイ補機冷却水ポンプは、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載の<mark>横軸</mark>ポンプと類似の構造であるため、添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

高圧炉心スプレイ補機冷却水ポンプの構造計画を表 2-1 に示す。

表 2-1 構造計画

基礎・支持構造 主体構造 ポンプはポンプベースに固 うず巻形 (うず巻形横軸ポンプ) 礎ボルトで基礎に据え付ける。 1000 ボンプ取付ボルト ボンプ、一ス ボンプベース 原動機取付ボルト	
定され、ポンプベースは基 磁ボルトで基礎に据え付け る。 1000 「原動機取付ボルト」 「原動機取付 「ルト」)「「ルト」」 「アルト」 「アルト」 「アルト」 「アルト」 「アルト]	
礎ボルトで基礎に据え付ける。 1000 ポンプ 原動機取付ボルト ポンプ取付ボルト 原動機	
る。	
る。	
基礎ポルト	<u>ト</u>

3. 構造強度評価

3.1 構造強度評価方法

高圧炉心スプレイ補機冷却水ポンプの構造強度評価は,添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。なお,水平地震動による応力と鉛直地震動による応力の組合せには絶対値和を適用する。

3.2 荷重の組合せ及び許容応力

3.2.1 荷重の組合せ及び許容応力状態

高圧炉心スプレイ補機冷却水ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 3-1 に, 重大事故等対処設備の評価に用いるものを表 3-2 に示す。

3.2.2 許容応力

高圧炉心スプレイ補機冷却水ポンプの許容応力は、添付書類「VI-2-1-9 機能維持の基本 方針」に基づき、表 3-3 のとおりとする。

3.2.3 使用材料の許容応力評価条件

高圧炉心スプレイ補機冷却水ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3-4 に,重大事故等対処設備の評価に用いるものを表 3-5 に示す。

3.3 計算条件

応力計算に用いる計算条件は、本計算書の【高圧炉心スプレイ補機冷却水ポンプの耐震性についての計算結果】の設計条件及び機器要目に示す。

施記	党区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	原子炉補機	高圧炉心スプレイ		AT . W	$D+P_D+M_D+S d *$	III _A S
系統施設	冷却設備	補機冷却水ポンプ	S	Non*	$D+P_D+M_D+S_S$	IV _A S

表 3-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

注記*:クラス3ポンプの荷重の組合せ及び許容応力状態を適用する。また、クラス3ポンプの支持構造物を含む。

表 3-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施記		機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
					$D + P_D + M_D + S s^{*3}$	${ m IV}_{ m A}{ m S}$
原子炉冷却 系統施設	原子炉補機冷却設備	高圧炉心スプレイ 補機冷却水ポンプ	常設/防止 (DB 拡張)	重大事故等 クラス 2 ポンプ* ²	$D+P_{SAD}+M_{SAD}+S_{S}$	V _A S (V _A S として IV _A S の許容限界 を用いる。)

注記*1:「常設/防止 (DB拡張)」は常設重大事故防止設備 (設計基準拡張) を示す。

*2: 重大事故等クラス2ポンプの支持構造物を含む。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

4

表 3-3 許容応力 (クラス 2, 3 支持構造物及び重大事故等クラス 2 支持構造物)

	許容限界* ^{1,*2} (ボルト等)				
許容応力状態	一次応力				
	引張り	せん断			
${ m III}_{ m A} { m S}$	1.5 · f t	1.5 · f s			
${ m IV}_{ m A}{ m S}$					
V _A S (V _A S としてIV _A S の許容限界を用いる。)	1.5 · f _t *	1.5 · f _s *			

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

υı

評価部材	材料	温度条件 (℃)		S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
基礎ボルト		周囲環境温度	50			_
ポンプ取付ボルト		最高使用温度	70			_
原動機取付ボルト		周囲環境温度	50			_

表 3-5 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条 (℃)	<u>'</u> 4	S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
基礎ボルト		周囲環境温度	60			_
ポンプ取付ボルト		最高使用温度	70			_
原動機取付ボルト		周囲環境温度	60			_

4. 機能維持評価

4.1 動的機能維持評価方法

高圧炉心スプレイ補機冷却水ポンプの動的機能維持評価は,添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

高圧炉心スプレイ補機冷却水ポンプは地震時動的機能維持が確認された機種と類似の構造 及び振動特性であるため、添付書類「VI-2-1-9 機能維持の基本方針」に記載の機能確認済加 速度を適用する。機能確認済加速度を表 4-1 に示す。

表 4-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

		THE PERSON CONTRACTOR				
評価部位	形式	方向	機能確認	済加速度		
ポンプ		水平方向	軸直角方向	3. 2		
	横形単段遠心式ポンプ	八半万円	軸方向	1. 4		
		鉛直方向	1.	0		
百割州	横形ころがり 軸受電動機	水平方向	4. 7			
原動機		鉛直方向	1.0			

5. 評価結果

5.1 設計基準対象施設としての評価結果

高圧炉心スプレイ補機冷却水ポンプの設計基準対象施設としての耐震評価結果を以下に示す。 発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び動的機能を有し ていることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお、弾性設計用地震動Sdによる動的震度及び静的震度は基準地震動Ssを下回っており、基準地震動Ssによる発生値が、弾性設計用地震動Sd又は静的震度に対する評価における許容限界を満足するため、弾性設計用地震動Sd又は静的震度による発生値の算出を省略した。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

5.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ補機冷却水ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を 以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び動 的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

【高圧炉心スプレイ補機冷却水ポンプの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

松思夕新	副電電車由外和	据付場所及び 床面高さ	固有周	期 (s)	弾性設計用 又は静		基準地質	震動Ss	ポンプ振動	最高使用温度	周囲環境温度
機器名称	耐震重要度分類	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	による震度	(℃)	(℃)
高圧炉心スプレイ補機 冷却水ポンプ	S	原子炉建屋 0.P8.10*1	_*2	_*2	*3	_* 3	$C_{H} = 0.99$	$C_{V} = 0.69$		70	50

注記 *1:基準床レベルを示す。

*2:固有周期は十分に小さく、計算は省略する。

*3: ⅢAS については、基準地震動Ssで評価する。

1.2 機器要目

部材	m _i (kg)	h i (mm)	0 1 i *1 (mm)	0 2 i *1 (mm)	d _i (mm)	$A_{b\ i}$ (mm 2)	n i	n _{f i} *1
基礎ボルト							12	6
(i = 1)							12	2
ポンプ取付ボルト							1	2
(i = 2)							4	2
原動機取付ボルト							1	2
(i = 3)							4	2

	9 9		E E *	転倒方向	転倒方向		
部材	S _{y i} (MPa)	S _{ui} (MPa)			弾性設計用地震動 S d 又は静的震度	基準地震動 S s	M _p (N•mm)
基礎ボルト (i=1)					_	軸直角	_
ポンプ取付ボルト (i =2)					_	軸	_
原動機取付ボルト (i=3)	1				_	軸直角	2.546×10^{5}

注記*1:各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し、下段は軸方向転倒に対する評価時の要目を示す。 *2:最高使用温度で算出

*3:周囲環境温度で算出

10

1.3 計算数值

1.3.1 ボルトに作用する力

(単位:N)

	F _{bi}		$Q_{\mathrm{\ b\ i}}$			
部材	弾性設計用地震動 S d 又は静的震度	基準地震動 Ss	弾性設計用地震動 S d 又は静的震度	基準地震動 S s		
基礎ボルト (i=1)						
ポンプ取付ボルト (i =2)						
原動機取付ボルト (i=3)						

*:Ⅲ_ASについては、基準地震動Ssで評価する。

1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

	部材材料		++ wi	7	弹性設計用地震動	Sd又は静的震度	基準地震動 S s		
			M H	応 力	算出応力	許容応力	算出応力	許容応力	
	基礎ボルト	Г		引張り	$\sigma_{b1} = 7^{*2}$	$f_{\rm t\ s\ 1} = 173^{*1}$	$\sigma_{b1} = 7$	$f_{\rm t\ s\ 1} = 207^{*1}$	
	(i = 1)	Ш	L	せん断	$\tau_{b1} = 4^{*2}$	$f_{\rm s\ b\ 1} = 133$	$\tau_{b1} = 4$	$f_{\rm s\ b\ 1} = 159$	
	ポンプ取付ボルト			引張り	$\sigma_{b2} = 5^{*2}$	$f_{\rm t\ s\ 2} = 153^{*1}$	$\sigma_{b2} = 5$	$f_{\rm t\ s\ 2} = 184^{*1}$	
	(i = 2)	Ш	L	せん断	$\tau_{b2} = 2^{*2}$	$f_{\rm s\ b\ 2} = 118$	$\tau_{b2}=2$	$f_{\rm s\ b\ 2} = 141$	
	原動機取付ボルト			引張り	$\sigma_{b3} = 8^{*2}$	$f_{\rm t\ s\ 3} = 173^{*1}$	$\sigma_{b3} = 8$	$f_{\rm t\ s\ 3} = 207^{*1}$	
	(i = 3)			せん断	$\tau_{b3} = 6^{*2}$	$f_{\rm s\ b\ 3} = 133$	$\tau_{b3} = 6$	$f_{\rm s\ b\ 3} = 159$	

すべて許容応力以下である。

注記 $*1: f_{tsi} = Min[1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi}]$ より算出

*2:基準地震動Ssによる算出値

1.4.2 動的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度	
ポンプ	水平方向	0.82	3.2(軸直角) 1.4(軸)	
7,7	鉛直方向	0. 57	1.0	
原動機	水平方向	0.82	4. 7	
原動機	鉛直方向	0.57	1.0	

注記 *:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)は、すべて機能確認済加速度以下である。

2.1 設計条件

松 甲 万 孙		据付場所及び	固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		ポンプ振動	最高使用温度	周囲環境温度
機器名称 設備分類	汉 加万独	床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	による震度	(℃)	(℃)
高圧炉心スプレイ補機 冷却水ポンプ	常設/防止 (DB 拡張)	原子炉建屋 0.P8.10*1	_*2	_*2	_	_	$C_{H} = 0.99$	$C_{V} = 0.69$		70	60

注記 *1:基準床レベルを示す。

*2:固有周期は十分に小さく、計算は省略する。

2.2 機器要目

部材	m _i (kg)	h i (mm)	0 1 i *1 (mm)	0 2 i *1 (mm)	d _i (mm)	$A_{\mathrm{b}\ \mathrm{i}}$ (mm 2)	n i	n _{f i} *1
基礎ボルト							12	6
(i = 1)							12	2
ポンプ取付ボルト							1	2
(i = 2)							4	2
原動機取付ボルト							1	2
(i = 3)							4	2

部材	S _{y i} (MPa)	S _{ui} (MPa)	F _i (MPa)	F _i * (MPa)	転倒方向 弾性設計用地震動 S d 又は静的震度	基準地震動 S s	M _p (N•mm)
基礎ボルト (i=1)					_	軸直角	_
ポンプ取付ボルト (i=2)					_	軸	_
原動機取付ボルト (i=3)					_	軸直角	2.546×10^{5}

注記*1:各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の 要目を示し、下段は軸方向転倒に対する評価時の要目を示す。 *2:最高使用温度で算出 *3:周囲環境温度で算出

2.3 計算数值

2.3.1 ボルトに作用する力

(単位:N)

	1 / 14 / 32 / 4			(
	F _{bi}		$\mathrm{Q}_{\mathrm{\;b\;\;i}}$			
部材	弾性設計用地震動 S d 又は静的震度	基準地震動 Ss	弾性設計用地震動S d 又は静的震度	基準地震動 S s		
基礎ボルト (i=1)						
ポンプ取付ボルト (i =2)						
原動機取付ボルト (i=3)						

2.4 結論

2.4.1 ボルトの応力

(単位:MPa)

部材		材料	広 力	弾性設計用地震動Sd又は静的震度		基準地震動 S s	
司) 1/7	材		応 力	算出応力	許容応力	算出応力	許容応力
基礎ボルト			引張り	_	_	$\sigma_{b1} = 7$	$f_{\rm t\ s\ 1} = 204^*$
(i = 1)		l L	せん断	_	_	$\tau_{b1} = 4$	$f_{\rm s\ b\ 1} = 157$
ポンプ取付ボルト		ı	引張り	_	_	$\sigma_{b2}=5$	$f_{\rm t\ s\ 2} = 184^*$
(i = 2)		l L	せん断	_	_	$\tau_{b2}=2$	$f_{\rm s\ b\ 2} = 141$
原動機取付ボルト		ı	引張り	_	_	$\sigma_{b3}=8$	$f_{\rm t\ s\ 3} = 204^*$
(i = 3)			せん断	_	_	$\tau_{b3}=6$	$f_{\rm s\ b\ 3} = 157$

すべて許容応力以下である。

注記 *: $f_{tsi} = Min[1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi}]$ より算出

2.4.2 動的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$

The state of the s							
		機能維持評価用加速度*	機能確認済加速度				
ポンプ	水平方向	0.82	3.2(軸直角) 1.4(軸)				
	鉛直方向	0. 57	1.0				
原動機	水平方向	0.82	4. 7				
/	鉛直方向	0. 57	1.0				

注記 *:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)は、すべて機能確認済加速度以下である。

