女川原子力発電所第2	号機 工事計画審查資料
資料番号	02-工-B-19-0335_改 1
提出年月日	2021年10月8日

Ⅵ-2-5-7-2-3 高圧炉心スプレイ補機冷却海水ポンプの 耐震性についての計算書

2021年10月

東北電力株式会社

1. 概要 ···································
2. 一般事項
2.1 構造計画
3. 固有値解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1 固有値解析及び構造強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.2 許容応力 ······
3.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.3 解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.4 固有周期
3.5 設計用地震力 ······
3.6 サポート部の計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.6.1 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.6.2 応力の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.7 計算条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.8 応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.8.1 ボルトの応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 機能維持評価 ······
4.1 基本方針
4.2 ポンプの動的機能維持評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2.1 評価対象部位
4.2.2 評価基準值
4.2.3 評価方法
4.3 原動機の動的機能維持評価
4.3.1 評価対象部位
4.3.2 評価基準值
4.3.3 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3.4 評価方法 ······

5.2 重大事故等対処設備としての評価結果

1

1

1

3

3

3

3 3

3

9

9

11

13

13

13

13

14

14

15

15

16

16

16

16

17

17

17

18

19

<mark>23</mark>

23

23

目次

5. 評価結果

5.1 設計基準対象施設としての評価結果

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき、高圧炉心スプレイ補機冷却海水ポンプが設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

高圧炉心スプレイ補機冷却海水ポンプは,設計基準対象施設においては S クラス施設 に,重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)に分類される。 以下,設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維 持評価を示す。

なお、高圧炉心スプレイ補機冷却海水ポンプは、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載のたて軸ポンプであるため、添付書類「VI-2-1-13-5 たて 軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また,高圧炉心スプレイ補機冷却海水ポンプは,添付書類「VI-2-1-9 機能維持の基本 方針」に記載の立形斜流ポンプであり,高圧炉心スプレイ補機冷却海水ポンプの原動機は, 添付書類「VI-2-1-9 機能維持の基本方針」に記載の立形ころがり軸受電動機である。共 に機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから, 原子力発電所耐震設計技術指針(JEAG4601-1991追補版)(以下「JEAG46 01」という。)に定められた評価部位の健全性を詳細評価することで動的機能維持の確 認を行う。

2. 一般事項

2.1 構造計画

高圧炉心スプレイ補機冷却海水ポンプの構造計画を表 2-1 に示す。

O 2 (5) VI-2-5-7-2-3 R 2

表 2-1 構造計画

四末群20世			原動機取付ポルト		ポンプ酸りなけました 一番 回動就の		۲		第一中間サポート数はポルト		/ /		取付ポルト		第二中国サポート被服ガルト		枠囲みの内容は商業機密の観点から公開できません。
)概要	主体構造	ターボ形	(ターボ形たて軸ポ	ンプ (海水ポンプ))													
計画の概要	基礎・支持構造	ポンプはポンプベー	スに固定され、ポン	プベースは基礎ボル	トで基礎に据え付け	る。中間サポートベ	ースは,中間サポー	ト基礎ボルトで中間	基礎に据え付ける。	中間サポートは、中	間サポート取付ボル	トで中間サポートベ	ースに据え付ける。				

- 3. 固有値解析及び構造強度評価
- 3.1 固有値解析及び構造強度評価方法

高圧炉心スプレイ補機冷却海水ポンプの構造強度評価は、添付書類「VI-2-1-13-5 たて軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基 づき行う。

- 3.2 荷重の組合せ及び許容応力
 - 3.2.1 荷重の組合せ及び許容応力状態

高圧炉心スプレイ補機冷却海水ポンプの荷重の組合せ及び許容応力状態のうち 設計基準対象施設の評価に用いるものを表 3-1 に,重大事故等対処設備の評価に 用いるものを表 3-2 に示す。

3.2.2 許容応力

高圧炉心スプレイ補機冷却海水ポンプの許容応力は,添付書類「VI-2-1-9 機能維持の基本方針」に基づき表 3-3 及び表 3-4 のとおりとする。

3.2.3 使用材料の許容応力評価条件

高圧炉心スプレイ補機冷却海水ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3-5 に,重大事故等対処設備の評価に用いるものを表 3-6 に示す。

\mathbb{R} 2
VI-2-5-7-2-3
0 2 @

施設	設区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	原子炉補機	- 単一 一 二 、 、 、 、 、 、 、 、 、 、 、 、 、	c		$\mathrm{D} + \mathrm{P}_{\mathrm{D}} + \mathrm{M}_{\mathrm{D}} + \mathrm{S}\mathrm{d}^{*}$	Ш _A S
系統施設	冷却設備	補機冷却海水ポンプ	n	. uon	$D + P_D + M_D + S_S$	IV_AS
注記*:クラ	・ス3ポンプの	注記*:クラス3ポンプの荷重の組合せ及び許容	応力状態を適用す	-る。また、クラス3オ	クラス 3 ポンプの支持構造物を含む。	

表 3-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

〔重
影
5
ले ∕≜
等对处
☆
ŧ
K
\IIII)
$\overline{}$
影
¥
む
欲
び許
Š
也及了
Þ
⟨□
盥
6
重
荷
3 - 2
表

原子炉冷却 原子炉補機 高圧炉心スプレイ 常設/防止 重大事 系統施設 冷却設備 補機冷却海水ポンプ (DB 拡張) クラス27	機器等の区分	荷重の組合せ	許容応力状態
原子炉補機 高圧炉心スプレイ 常設/防止 冷却設備 補機冷却海水ポンプ (DB 拡張)		$D + P_D + M_D + S_s *^{3}$	IV_AS
	重大事故等 クラス2ポンプ* ²	$\mathrm{D}+\mathrm{P}_{\mathrm{S,AD}}+\mathrm{M}_{\mathrm{S,AD}}+\mathrm{S,s}$	V _A S (V _A S として IV _A S の許容限界 を用いる。)

注記 *1:「常設/防止 (DB 拡張)」は常設重大事故防止設備 (設計基準拡張) を示す。

*2:重大事故等クラス2ポンプの支持構造物を含む。

*3:「D+P_{SAD}+M_{SAD}+Ss」の評価に包絡されるため,評価結果の記載を省略する。

O 2 (5) VI-2-5-7-2-3 R 2

弾性設計用地震動 S d 又は基準地震動 S s のみによる 疲労解析を行い,疲労累積係数が1.0以下であること。 ただし、地震動のみによる一次+二次応力の変動値が 基準地震動Ssのみによる疲労解析を行い, 疲労累積 ただし、地震動のみによる一次+二次応力の変動値が - 次 + 二次 + ピーク応力 2・S,以下であれば疲労解析は不要。 2・S ,以下であれば疲労解析は不要。 係数が1.0以下であること。 一次+二次応力 容限界* 左欄の1.5倍の値 左欄の1.5倍の値 1 - 次曲げ応力 - 次膜応力+ ンレス鋼及び高ニッケル合金 IJ ただし、オーステナイト系ステ については上記値と 1.2・S Syと 0.6・Suの小さい方。 - 次-般膜応力 0.6 • S u の大きい方。 (V_AS としてIV_AS の許容 限界を用いる。) 許容応力状態 $V_A S$ ШAS $\rm IV_AS$

表 3-3 許容応力(クラス 5, 3 ポンプ及び重大事故等クラス 2 ポンプ)

注記*:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

	みっょ 日在心力 (/ / / / c, o 人口中也勿及り 玉八ず以せ/ / / c 人口 中位の/	、 4 入17 (計21 初)
	許容限界*1,*2	₹×1, *2
	(ボルト等)	ト等)
許容応力状態	一次応力	応力
	引張 り	せん断
Ш _A S	1.5 • f _t	1.5 • f _s
N_AS		
V _A S (V _A S としてIV _A S の許容限界を用いる。)	1.5 · f [*]	1.5 • f _s *
「	- 組合社応力に対しても評価を行う	

表 3-4 許容応力(クラス 5, 3 支持構造物及び重大事故等クラス 2 支持構造物)

5 VI-2-5-7-2-3 R 2

02

注記 *1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

O 2 ⑤ VI-2-5-7-2-3 R 2

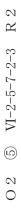
 $S_{\rm y}~(R~T)$ (MPa) (MPa) s s (MPa) S v (MPa) S 5050505020 $\overline{50}$ 5020温度条件 () () 最高使用温度 周囲環境温度 周囲環境温度 周囲環境温度 最高使用温度 周囲環境温度 周囲環境温度 周囲環境温度 材料 ポンプ取付ボルト 第一中間サポート ~ 第二中間サポート 第二中間サポート 原動機取付ボルト 第一中間サポー コラムパイプ 基礎ボルト 取付ボルト 基礎ボルト 基礎ボルト 取付ボルト 評価部材

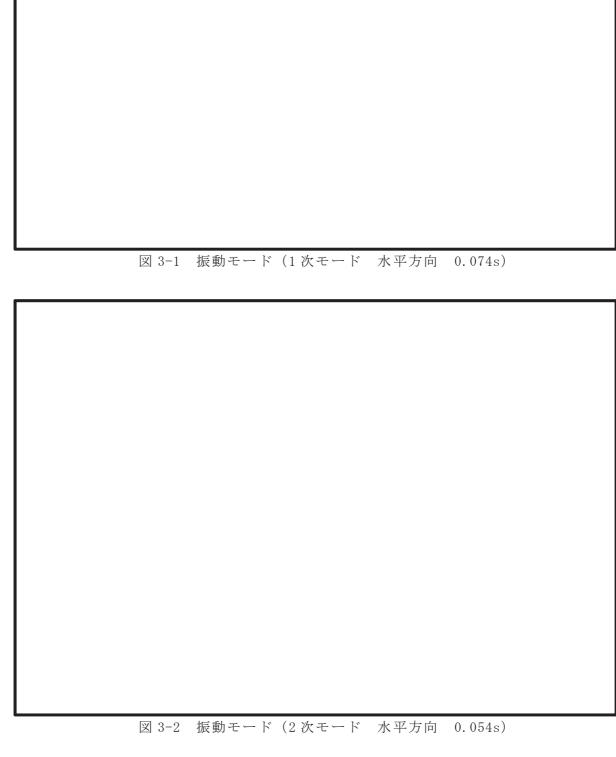
表 3-5 使用材料の許容応力評価条件(設計基準対象施設)

O 2 (5) VI-2-5-7-2-3 R 2

	表 3-6 使	表 3-6 使用材料の許答応力評恤条件	評価条件		(重大事故等对処設備)	(順)	
キキ ルや 圧り 辺垣	l.泙 ++	温度条件		S	S v	S u	S _y (RT)
百千 71111 〒12 723	44 FA	()C		(MPa)	(MPa)	(MPa)	(MPa)
コラムペイプ		最高使用温度	50				
基礎ボルト		周囲環境温度	50				
ポンプ取付ボルト		最高使用温度	50				
原動機取付ボルト		周囲環境温度	50				
第一中間サポート 基礎ボルト		周囲環境温度	50				
第一中間サポート 取付ボルト		周囲環境温度	50				
第二中間サポート 基礎ボルト		周囲環境温度	50				
第二中間サポート 取付ボルト		周囲環境温度	50				

表 3-6 使用材料の許容応力評価条件(重大事故等対処設備)


- 3.3 解析モデル及び諸元
 - (1) 固有値解析に用いる解析モデルは,水平方向の応答を考慮した 1 次元応答解析モデルとする。
 - (2) モデル化に際しては、シャフト及びコラムパイプに対して付加質量及び排除水体 積質量を考慮する。
 - (3) 固有値解析及び構造強度評価に用いる解析モデル及び諸元は、本計算書の【高圧 炉心スプレイ補機冷却海水ポンプの耐震性についての計算結果】の機器要目及び その他の機器要目に示す。
 - (4) 解析コードは、「MSC NASTRAN」を使用し、解析コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。
- 3.4 固有周期


固有値解析の結果を表 3-7, 振動モード図を図 3-1 及び図 3-2 に示す。固有周期は, 0.05 秒を超えており,柔構造であることを確認した。

T. 18	古地十百	固有周期	水平方向,	刺激係数*	鉛直方向
モード	卓越方向	(s)	NS 方向	EW 方向	刺激係数*
1次	水平	0.074	0.594	0.594	—
2 次	水平	0.054	-0.623	-0.623	—
3 次	水平	0.029	_	_	_

表 3-7 固有值解析結果

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリクスの積から算 出した値を示す。

「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。また、減衰定数 は添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の減衰定数を用いる。 評価に用いる設計用地震力を表 3-8 及び表 3-9 に示す。

据付場所 床面高		海	水ポンプ室	(補機ポン	プエリア)	0.P. 3.	0*1								
固有周	期(s)		水平:	0.074^{*2}	鉛直:0.0	05 以下									
減衰定義	数(%)		7	水平:1.0	鉛直:-	_									
地震力			設計用地震動 なは静的震力		基準地震動 S s										
モード	固有周期	応答水	平震度	応答鉛直	応答水平震度*3 応答鉛										
t-r	(s)	NS 方向	EW方向	震度	NS 方向	EW方向	震度* <mark>3</mark>								
1 次	0.074	* <mark>6</mark>	* <mark>6</mark>	_	<mark>8. 51</mark>	<mark>8.51</mark>	—								
2 次	0.054	* <mark>6</mark>	* <mark>6</mark>	_	7.32 7.32 -		—								
3 次	0.029	* <mark>6</mark>	* <mark>6</mark>	_		—	—								
動的地震	。 宴力* <mark>4</mark>	* <mark>6</mark>	* <mark>6</mark>	* <mark>6</mark>	<mark>1. 83</mark>	<mark>1. 83</mark>	1.94								
静的地震	虞力 ^{∗ 5}	<mark>0. 58</mark>	<mark>0. 58</mark>	<mark>0. 29</mark>	_	—	—								

表 3-8 設計用地震力(設計基準対象施設)

注記*1:基準床レベルを示す。

*2:1次固有周期について記載。

*3: 各モードの固有周期に対し、設計用床応答曲線(Ss)より得られる震度を示す。

*4: S s 又はS d に基づく設計用最大応答加速度(1.2・ZPA)より定めた震度を示す。

*<mark>5</mark>:静的震度(3.6・Ci及び1.2・Cv)を示す。

*<mark>6</mark>:Ⅲ_AS については,基準地震動Ss で評価する。

据付場列 床面高		海フ	水ポンプ室	(補機ポン	プエリア)	0.P. 3.	0*1	
固有周	期(s)		水平:	0.074^{*2}	鉛直:0.0)5 以下		
減衰定数	数(%)		7.	水平:1.0	鉛直:-	-		
地震	地震力		と計用地震動 なは静的震度		基準地震動 S s			
モード	固有周期	応答水平震度 応		応答鉛直	応答水平震度*3 応答銷			
	(s)	NS 方向	EW 方向	震度	NS 方向	EW 方向	震度*3	
1次	0.074	—	—	—	<mark>8.51</mark>	<mark>8.51</mark>	—	
2次	0.054	_	_	_	7.32 7.32 -		—	
3次	0.029	—	—	—	—	—	_	
動的地震	 麦力 ^{*4}			_	<mark>1. 83</mark>	<mark>1.83</mark>	1.94	
静的地	震力	_	_	_	_	_	_	

表 3-9 設計用地震力 (重大事故等対処施設)

注記*1:基準床レベルを示す。

*2:1次固有周期について記載。

*3:各モードの固有周期に対し,設計用床応答曲線(Ss)より得られる震度を示す。 *4:Ss又はSdに基づく設計用最大応答加速度(1.2・ZPA)より定めた震度を示す。 3.6 サポート部の計算方法

3.6.1 記号の説明

高圧炉心スプレイ補機冷却海水ポンプのサポート部の応力評価に使用する記号 を表 3-10 に示す。

表	3-	10	記	묽	\mathcal{O}	説	眀
1	0	10	нц	· J	~ _	HV L	·/ 4

記号	記号の説明	単位
W j	サポート <mark>取付</mark> ボルトに作用する荷重	Ν
A s b j	サポート取付ボルトの軸断面積	mm^2
n _{s j}	サポート取付ボルトの本数	—
$ au_{ m sbj}$	サポート取付ボルトに生じるせん断応力	MPa

3.6.2 応力の計算方法

TT7

多質点モデルを用いて応答計算を行い,得られた荷重W_jにより,サポート取付 ボルトに生じるせん断応力は次式で求める。

$$\tau_{sbj} = \frac{W_{j}}{A_{sbj} \cdot n_{sj}} \cdots (3.6.2.1)$$

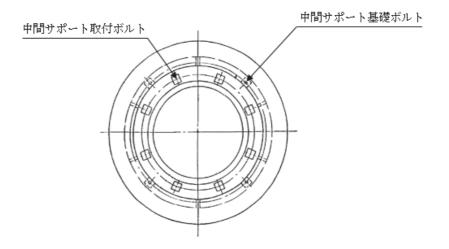


図 3-3 サポート部の応力計算モデル

3.7 計算条件

応力計算に用いる計算条件は,本計算書の【高圧炉心スプレイ補機冷却海水ポンプの 耐震性についての計算結果】の設計条件及び機器要目に示す。 3.8 応力の評価

3.8.1 ボルトの応力評価

3.6.2 項で求めたボルトのせん断応力 τ_{sbj} はせん断力のみを受けるボルトの許容応力 f_{ssbj} 以下であること。

ただし, f_{ssbj}は下表による。

	弾性設計用地震動Sd 又は静的震度による 荷重との組合せの場合	基準地震動Ssによる 荷重との組合せの場合
許容せん断応力 <i>f</i> ssbj	$\frac{\mathrm{F}_{j}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}_{j}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4. 機能維持評価

4.1 基本方針

高圧炉心スプレイ補機冷却海水ポンプ及び同原動機は,添付書類「VI-2-1-9 機能維持の基本方針」に記載の立形斜流ポンプ及び立形ころがり軸受電動機であり,機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから,JEAG 4601に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき,基準地震動Ssにより定まる設計用最大応答加速度(1.0ZPA)を設定する。

- 4.2 ポンプの動的機能維持評価
- 4.2.1 評価対象部位

JEAG4601に記載の立形斜流ポンプの動的機能維持評価に従い,以下の部 位について評価を実施する。

a. 基礎ボルト,ポンプ取付ボルト,原動機取付ボルト

- b. コラムパイプ
- c. ストッパ
- d. 軸受

「a. 基礎ボルト,ポンプ取付ボルト,原動機取付ボルト」「b. コラムパイプ」 については、「3. 固有値解析及び構造強度評価」に従い評価を行った「5. 評価結 果」にて設計用地震力に対して十分な構造強度を有していることを確認している。 「c. ストッパ」については、最も荷重が作用する中間サポート基礎ボルト及び中 間サポート取付ボルトについて、「3.6 サポート部の計算方法」に従い評価を行っ た「5. 評価結果」にて設計用地震力に対して十分な構造強度を有していることを 確認している。

以上より、本計算書においては、軸受を評価対象部位とする。

4.2.2 評価基準値

軸受については、メーカ規定の許容値を評価基準値として設定する。

4.2.3 評価方法

軸受については、多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果を用い、得られた軸受の発生荷重に係数4.3を乗じ評価する。

- 4.3 原動機の動的機能維持評価
 - 4.3.1 評価対象部位

JEAG4601の電動機の動的機能維持評価に従い,以下の部位について評価 を実施する。

- a. 取付ボルト
- b. 固定子
- c. 軸 (回転子)
- d. 端子箱
- e. 軸受
- f. 固定子と回転子のクリアランス
- g. モータフレーム
- h. 軸継手

このうち「a. 取付ボルト」については,「3. 固有値解析及び構造強度評価」 に従い評価を行った「5. 評価結果」にて設計用地震力に対して十分な構造強度を 有していることを確認している。

以上より、本計算書においては、固定子、軸(回転子)、端子箱、軸受、固定子と 回転子のクリアランス及びモータフレームを評価対象部位とする。なお、軸継手は ポンプ軸とモータ軸をリジットに接続するタイプであり、相対変位が発生しないこ と、および地震荷重については軸受で負担するため軸継手部には有意な応力が発生 しないことから、計算書の評価対象外とする。

4.3.2 評価基準値

軸(回転子)及びモータフレームの許容応力は、クラス2ポンプの許容応力状態 Ⅲ_AS に準拠し設定する。固定子の許容応力は、クラス2支持構造物の許容応力状態 Ⅲ_AS に準拠し設定する。端子箱の許容応力は、クラス2支持構造物の許容応力状態 Ⅳ_AS に準拠し設定する。また、軸受については、メーカ規定の軸受の定格荷重を、固 定子と回転子間のクリアランスは、変位可能寸法を評価基準値として設定する。 4.3.3 記号の説明

高圧炉心スプレイ補機冷却海水ポンプ用原動機の動的機能維持評価に使用する 記号を表 4-1 に示す。

記号 記号の説明 単位 A _b : 端子箱取付ボルトの防面積 mm^2 A _f : モータフレームの防面積 mm^2 A _p : ぜンの防面積 mm^2 A _s : 軸の防面積 mm^2 C _P : ボンブ振動による震度 - C _H : 水平方向設計震度 - C _{HT} : 端子箱部の最大応答加速度による水平方向震度 - C _{HT} : 端子箱部の最大応答加速度による水平方向震度 - D 固定子の外径 mm d _a : 軸の径 mm F 端子箱取付ボルトに作用する引振力 N F b _t : 端子箱取付面に対した右方向の水平方向地震により作用する引 F b _t : 端子箱取付面に対した右方向の水平方向地震により作用する引 F k _t : 電量及び地震力により固定子に生じる荷重 N F k _t : 電動機の回転による荷重 N F k _t : 電動機の回転による荷重 N G 血力加速度(=9.80665) m/s ² mm L ₃ : 左側ボルト間のかにた作用する曲げモーメント N・mm M M ₄ : モータフレーレームに作用する曲げモーメント N・mm N M ₄ : 範に作		表4-1 記号の説明	<u>کر ایک</u>
Ar モータフレームの断面積 mm^2 Ap ビンの断面積 mm^2 As 軸の断面積 mm^2 Cp ボンブ振動による震度 $-$ CH 水平方向設計震度 $-$ CH 水平方向設計震度 $-$ D 固定子の外径 mm d、 軸の径 mm F 協定子に生じる組合せ荷重 N F 端子箱取付面に対した右方向の水平方向地震により作用する引 N 成力 第4第取付面に対した右方向の水平方向地震により作用する引 N 成力 第 第 成力 第 第 第 F h・ 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 成力 第 第 第 N 成力 第 第 第 N g 重力加速度(=9.80665) m/s ² mm L 1 重心と下側ボルト間の治直方向距離 mm L 1 重心と下側ボルト間の公本平方向距離 mm M 報告知能のに作用する曲げモーメント N・mm M M 転動機の回転速度 min ⁻¹			
A _p ビンの断面積 mm^2 A _s 軸の断面積 mm^2 C _P ボンブ振動による震度 - C _{HT} 水平方向設計震度 - C _{HT} 端子箱部の最大応答加速度による水平方向震度 - C _{HT} 端子箱部の最大応答加速度による水平方向震度 - C _W 鈴直方向設計震度 - D 固定子の外径 mm d _s 軸の径 mm F 端子箱取付ボルトに作用する引張力 N F _{bt} 端子箱取付面に対した右方向の水平方向地震により作用する引 N デ _{bt} 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 振力 N N 振力和速度(=9.80665) m/s ² N 成 単子箱取付面から端子箱重心までの高さ mm エー N mm エー N mm mm <			
A. 軸の断面積 mm ² C.P ボンブ振動による震度 - C.H 水平方向設計震度 - C.HT 端子箱部の最大応答加速度による水平方向震度 - C.HT 端子箱部の最大応答加速度による水平方向震度 - D 固定子の外径 mm d. 軸の径 mm F. 固定子に生じる組合せ荷重 N F.b: 端子箱取付面に対した右方向の水平方向地震により作用する引 N 展力 振子箱取付面に対し前後方向の水平方向地震により作用する引 N F.b: 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 展力 N F.b. 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 成力 振力 N 成力 「まっ 電子箱取付面た対し前後方向の水平方向地震により作用する引 N g 重力加速度(=9.80665) mm N f. 山 二人間ボルト間の鉛直方向距離 mm N J.i 重心と下側ボルト間の鉛直方向距離 mm M L.i 重心と下側ボルトと右側ボルト間のがレ大市の地下方向距離 mm M M. 軸に作用する曲げモーメント N・m mm M 軸に作用する曲げモーメント	A f		
C $_P$ ポンプ振動による震度 - C $_{\rm HT}$ ホ平方向設計震度 - C $_{\rm HT}$ 端子箱部の最大応答加速度による水平方向震度 - C $_{\rm HT}$ 端子箱部の最大応答加速度による水平方向震度 - D 固定子の外径 mm d、 軸の径 mm F bt 端子箱取付ボルトに作用する引張力 N F bt 端子箱取付面に対し左右方向の水平方向地震により作用する引 N 張力 振力 N F bt 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 成力 振力 N 「方 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 成力 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 「方 ホ<	A _p		
C _H 水平方向設計震度 - C _{HT} 端子箱部の最大応答加速度による水平方向震度 - C _{HT} 端子箱部の最大応答加速度による水平方向震度 - D 固定子の外径 mm d _* 軸の径 mm f 協定子に生じる組合せ荷重 N F _{bt} 端子箱取付ボルトに作用する引張力 N F _{bt} 端子箱取付面に対し左右方向の水平方向地震により作用する引 N F _{bt} 端子箱取付面に対し左右方向の水平方向地震により作用する引 N F _{bt} 端子箱取付面に対した右方向の水平方向地震により作用する引 N g カ加速度(=9.80665) m/s ² h _t 電子箱取付面から端子箱重心までの高さ mm L ₁ 重心と下側ボルト間の鉛直方向距離 mm L ₂ 上側ボルトと下側ボルト間の公平方向距離 mm M _f モータフレームに作用する曲げモーメント N・mm M _f モータフレームに作用する曲げモーメント N・mm M 軸に作用する曲げモーメント N・mm M 軸に作用する曲げモーメント N・mm M 軸に作用する曲げモーメント N・m N 電動機の回転速度 - n 端子箱取付ボルトの本数 - n 端子箱取付ボルトに生じるせん断力	A _s		mm^2
C_{HT} 端子箱部の最大応答加速度による水平方向震度 - C_{V} 鉛直方向設計震度 - D 固定子の外径 mm d_s 軸の径 mm F_k 固定子に生じる組合せ荷重 N $F_{b.t}$ 端子箱取付面に対した右方向の水平方向地震により作用する引 N $F_{b.t.s}$ 端子箱取付面に対し左右方向の水平方向地震により作用する引 N $$	СР	ポンプ振動による震度	—
Cv 鉛直方向設計震度 - D 固定子の外径 mm d。 軸の径 mm F k 固定子に生じる組合せ荷重 N F bt 端子箱取付ボルトに作用する引張力 N F bt 端子箱取付面に対し左右方向の水平方向地震により作用する引 N 成力 振力 N F bt 端子箱取付面に対し左右方向の水平方向地震により作用する引 N 成力 振力 N F bt 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 成力 振力 N F kt 電動機の回転による荷重 N g 重力加速度(=9.80665) m/s ² ht 端子箱取付面から端子箱重心までの高さ mm L 1: 重心と下側ボルト間の鉛直方向距離 mm L 2: 上側ボルトと下側ボルト間の鉛直方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm M 電動機の回転速度 - nt 端子箱取付ボルトの本数 - nt 端子箱取付ボルトの本数 - nt 小子箱取付ボルトの	Сн	水平方向設計震度	—
D 固定子の外径 mm d_s 軸の径 mm F_k 固定子に生じる組合せ荷重 N F_bt 端子箱取付ボルトに作用する引張力 N F_bt 端子箱取付面に対し左右方向の水平方向地震により作用する引 N デbt 端子箱取付面に対し左右方向の水平方向地震により作用する引 N デbt 端子箱取付面に対し前後方向の水平方向地震により作用する引 N デbt 端子箱取付面に対し前後方向の水平方向地震により作用する引 N デbt 端子箱取付面に対し前後方向の水平方向地震により作用する引 N デbt 端子箱取付面に対し前後方向の水平方向地震により作用する引 N g 自力加速度(=9.80665) m ht 端子箱取付面から端子箱重心までの高さ mm L1i 重心を下側ボルト間の鉛直方向距離 mm L2i 上側ボルトと下側ボルト間の鉛直方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm M 電動機の回転速度 - nt 端子箱取付ボルトの本数 - nti,z 引張力がはたらく端子箱取付ボルト本数(z方向) - P 電動機計 KW Qbt 端子箱取付ボルトに生じるせ	С _{нт}	端子箱部の最大応答加速度による水平方向震度	—
d s 軸の径 mm F k 固定子に生じる組合せ荷重 N F b t 端子箱取付ボルトに作用する引張力 N F b t, a 端子箱取付面に対し左右方向の水平方向地震により作用する引 N 成力 第 第 F b t, b 端子箱取付面に対し左右方向の水平方向地震により作用する引 N 成力 第 第 F b t, b 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 成力 第 第 F k t 電動機の回転による荷重 N g 重力加速度(=9.80665) m/s ² h t 端子箱取付面から端子箱重心までの高さ mm L 1 i 重心と下側ボルト間の鉛直方向距離 mm L 2 i 上側ボルトと下側ボルト間の公平方向距離 mm L 3 i 左側ボルトと右側ボルト間の水平方向距離 mm M f モータフレームに作用する曲げモーメント N・mm M s 軸に作用する曲げモーメント N・mm M s 軸に作用する曲げモーメント N・m n t 端子箱取付ボルトの本数 - n t 端子箱取付ボルトの本数 - n t 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機コがはたらく端子箱取付ボルト本数(y方向) <td< td=""><td>C_v</td><td>鉛直方向設計震度</td><td>—</td></td<>	C _v	鉛直方向設計震度	—
F _k 固定子に生じる組合せ荷重 N F _{bt} 端子箱取付ボルトに作用する引張力 N F _{bt} 端子箱取付面に対し左右方向の水平方向地震により作用する引 N ボナ箱取付面に対し前後方向の水平方向地震により作用する引 N ボカ 端子箱取付面に対し前後方向の水平方向地震により作用する引 N ボカ 端子箱取付面に対し前後方向の水平方向地震により作用する引 N ボカ 電力 N ボカ 電力の N g 重力加速度(=9.80665) m/s ² ht 端子箱取付面から端子箱重心までの高さ mm L1: 重心と下側ボルト間の鉛直方向距離 mm L2: 上側ボルトと石側ボルト間の鉛直方向距離 mm L3: 左側ボルトと右側ボルト間の公正方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm M 電動機の回転速度 - nt 端子箱取付ボルトの本数 - nt. 当振力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	D	固定子の外径	mm
Fbt 端子箱取付ボルトに作用する引張力 N Fbt.a 端子箱取付面に対し左右方向の水平方向地震により作用する引 N 張力 第 第 Fbt.b 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 展力 第 N Fbt.b 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 展力 第 N Fkt 電動機の回転による荷重 N g 重力加速度(=9.80665) m/s ² ht 端子箱取付面から端子箱重心までの高さ mm L1i 重心と下側ボルト間の鉛直方向距離 mm L2i 上側ボルトと石側ボルト間の鉛直方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ nt 端子箱取付ボルトの本数 - ntl,y 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	d s	軸の径	mm
Fbt.a 端子箱取付面に対し左右方向の水平方向地震により作用する引 N 張力 ボ子箱取付面に対し前後方向の水平方向地震により作用する引 N Fbt.b 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 張力 Fkt 自重及び地震力により固定子に生じる荷重 N Fkt 電動機の回転による荷重 N g 重力加速度(=9.80665) m/s ² ht 端子箱取付面から端子箱重心までの高さ mm L1i 重心と下側ボルト間の鉛直方向距離 mm L2i 上側ボルトと下側ボルト間の鉛直方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 ー nt 端子箱取付ボルトの本数 - nt.g 引張力がはたらく端子箱取付ボルト本数(y方向) ー P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	F _k	固定子に生じる組合せ荷重	Ν
張力Fbt.b端子箱取付面に対し前後方向の水平方向地震により作用する引 張力Fkt自重及び地震力により固定子に生じる荷重Fkt電動機の回転による荷重g重力加速度(=9.80665)ht端子箱取付面から端子箱重心までの高さL1i重心と下側ボルト間の鉛直方向距離L2i上側ボルトと下側ボルト間の鉛直方向距離mmL3i左側ボルトとて側ボルト間の公正方向距離Mfモータフレームに作用する曲げモーメントN電動機の回転速度nt端子箱取付ボルトの本数nt一加t1.y引張力がはたらく端子箱取付ボルト本数(y方向)nt1.y引張力がはたらく端子箱取付ボルト本数(z方向)P電動機出力Qbt端子箱取付ボルトに生じるせん断力	F _{bt}	端子箱取付ボルトに作用する引張力	Ν
Fbt.b 端子箱取付面に対し前後方向の水平方向地震により作用する引 N 張力 N Fkg 自重及び地震力により固定子に生じる荷重 N N Fkt 電動機の回転による荷重 N N g 重力加速度(=9.80665) m/s ² ht 端子箱取付面から端子箱重心までの高さ mm L1i 重心と下側ボルト間の鉛直方向距離 mm L2i 上側ボルトと下側ボルト間の鉛直方向距離 mm L3i 左側ボルトと下側ボルト間の水平方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm M 電動機の回転速度 min ⁻¹ nt 端子箱取付ボルトの本数 - nt1, y 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	F _{bt, a}	端子箱取付面に対し左右方向の水平方向地震により作用する引	Ν
張力 Fkg 自重及び地震力により固定子に生じる荷重 N Fkt 電動機の回転による荷重 N g 重力加速度(=9.80665) m/s ² ht 端子箱取付面から端子箱重心までの高さ mm L1i 重心と下側ボルト間の鉛直方向距離 mm L2i 上側ボルトと下側ボルト間の鉛直方向距離 mm L3i 左側ボルトと下側ボルト間の水平方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ np 固定子取付ピンの本数 - nt 端子箱取付ボルトの本数 - ntl, y 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N		張力	
F _{kg} 自重及び地震力により固定子に生じる荷重 N F _{kt} 電動機の回転による荷重 N g 重力加速度(=9.80665) m/s ² h _t 端子箱取付面から端子箱重心までの高さ mn L _{1i} 重心と下側ボルト間の鉛直方向距離 mn L _{2i} 上側ボルトと下側ボルト間の鉛直方向距離 mn L _{3i} 左側ボルトと右側ボルト間の公平方向距離 mn M _f モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ n _p 固定子取付ピンの本数 - n _t 端子箱取付ボルトの本数 - n _t 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N	Fьt, b	端子箱取付面に対し前後方向の水平方向地震により作用する引	Ν
F _{kt} 電動機の回転による荷重 N g 重力加速度(=9.80665) m/s ² h _t 端子箱取付面から端子箱重心までの高さ mm L _{1i} 重心と下側ボルト間の鉛直方向距離 mm L _{2i} 上側ボルトと下側ボルト間の鉛直方向距離 mm L _{3i} 左側ボルトと下側ボルト間の公平方向距離 mm M _f モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ n _t 端子箱取付ボルトの本数 - n _t 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N		張力	
g重力加速度(=9.80665)m/s²ht端子箱取付面から端子箱重心までの高さmmL1i重心と下側ボルト間の鉛直方向距離mmL2i上側ボルトと下側ボルト間の鉛直方向距離mmL3i左側ボルトと右側ボルト間の分平方向距離mmMfモータフレームに作用する曲げモーメントN・mmMs軸に作用する曲げモーメントN・mmN電動機の回転速度min ⁻¹ np固定子取付ピンの本数-nt端子箱取付ボルトの本数-nt, z引張力がはたらく端子箱取付ボルト本数(y方向)-P電動機出力kWQbt端子箱取付ボルトに生じるせん断力N	F _{kg}	自重及び地震力により固定子に生じる荷重	Ν
ht 端子箱取付面から端子箱重心までの高さ mm L1i 重心と下側ボルト間の鉛直方向距離 mm L2i 上側ボルトと下側ボルト間の鉛直方向距離 mm L3i 左側ボルトと右側ボルト間の公平方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ np 固定子取付ピンの本数 - nt 端子箱取付ボルトの本数 - ntl, y 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	F _{k t}	電動機の回転による荷重	Ν
L1i 重心と下側ボルト間の鉛直方向距離 mm L2i 上側ボルトと下側ボルト間の鉛直方向距離 mm L3i 左側ボルトと右側ボルト間の水平方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ np 固定子取付ピンの本数 - nt 端子箱取付ボルトの本数 - nt, 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	g	重力加速度(=9.80665)	m/s^2
L2i 上側ボルトと下側ボルト間の鉛直方向距離 mm L3i 左側ボルトと右側ボルト間の水平方向距離 mm Mf モータフレームに作用する曲げモーメント N・mm Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ np 固定子取付ピンの本数 - nt 端子箱取付ボルトの本数 - nt, y 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	h t	端子箱取付面から端子箱重心までの高さ	mm
L _{3i} 左側ボルトと右側ボルト間の水平方向距離 mm M _f モータフレームに作用する曲げモーメント N・mm M _s 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ n _p 固定子取付ピンの本数 - n _t 端子箱取付ボルトの本数 - n _{t1, y} 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N	L _{1 i}	重心と下側ボルト間の鉛直方向距離	mm
M _f モータフレームに作用する曲げモーメント N・mm M _s 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ n _p 固定子取付ピンの本数 - n _t 端子箱取付ボルトの本数 - n _t 引張力がはたらく端子箱取付ボルト本数(y方向) - P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N	L _{2 i}	上側ボルトと下側ボルト間の鉛直方向距離	mm
Ms 軸に作用する曲げモーメント N・mm N 電動機の回転速度 min ⁻¹ np 固定子取付ピンの本数 - nt 端子箱取付ボルトの本数 - nt,y 引張力がはたらく端子箱取付ボルト本数(y方向) - nt,z 引張力がはたらく端子箱取付ボルト本数(z方向) - P 電動機出力 kW Qbt 端子箱取付ボルトに生じるせん断力 N	L _{3 i}	左側ボルトと右側ボルト間の水平方向距離	mm
N 電動機の回転速度 min ⁻¹ n _p 固定子取付ピンの本数 - n _t 端子箱取付ボルトの本数 - n _{t1,y} 引張力がはたらく端子箱取付ボルト本数(y方向) - n _{t1,z} 引張力がはたらく端子箱取付ボルト本数(z方向) - P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N	M f	モータフレームに作用する曲げモーメント	N•mm
n _p 固定子取付ピンの本数 - n _t 端子箱取付ボルトの本数 - n _t , y 引張力がはたらく端子箱取付ボルト本数(y方向) - n _{t1, z} 引張力がはたらく端子箱取付ボルト本数(z方向) - P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N	M s	軸に作用する曲げモーメント	N•mm
n t 端子箱取付ボルトの本数 - n t l, y 引張力がはたらく端子箱取付ボルト本数 (y 方向) - n t l, z 引張力がはたらく端子箱取付ボルト本数 (z 方向) - P 電動機出力 kW Q b t 端子箱取付ボルトに生じるせん断力 N	Ν	電動機の回転速度	\min^{-1}
n _{t1,y} 引張力がはたらく端子箱取付ボルト本数(y方向) - n _{t1,z} 引張力がはたらく端子箱取付ボルト本数(z方向) - P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N	n _p	固定子取付ピンの本数	—
n t 1, z 引張力がはたらく端子箱取付ボルト本数(z 方向) - P 電動機出力 kW Q b t 端子箱取付ボルトに生じるせん断力 N	n t	端子箱取付ボルトの本数	—
P 電動機出力 kW Q _{bt} 端子箱取付ボルトに生じるせん断力 N	n _{t 1, y}	引張力がはたらく端子箱取付ボルト本数(y 方向)	—
Q _{bt} 端子箱取付ボルトに生じるせん断力 N	n _{t 1} , _z	引張力がはたらく端子箱取付ボルト本数(z 方向)	—
	Р	電動機出力	k₩
	Q _{bt}	端子箱取付ボルトに生じるせん断力	Ν
Q _{bt,a} 水平方向地震によりボルトに作用するせん断力 N		水平方向地震によりボルトに作用するせん断力	Ν
Q _{bt,b} 鉛直方向地震によりボルトに作用するせん断力 N			Ν
T _m 電動機の回転による発生トルク N·m	-		

表4-<mark>1</mark> 記号の説明

記号	記号の説明	単位
T _{m a}	電動機最大トルク	%
T _s	ポンプ運転による発生トルク	N•mm
W c	固定子コイル及びコア質量	kg
W f	モータフレーム質量	kg
W s	軸の質量	kg
W _t	端子箱質量	kg
Zf	モータフレームの断面係数	mm^3
Z s	軸の断面係数	mm^3
σm	モータフレームに生じる組合せ応力	MPa
σ	軸に生じる組合せ応力	MPa
σ _{bt}	端子箱取付ボルトに生じる引張応力	MPa
σ _{fm}	モータフレームに生じる曲げ応力	MPa
σ _{fw}	自重及び鉛直方向地震力によりモータフレームに生じる応力	MPa
σ _{sm}	軸に生じる曲げ応力	MPa
σ _{sw}	自重及び鉛直方向地震力により軸に生じる応力	MPa
$ au_{ m k}$	固定子に生じるせん断応力	MPa
au s	ポンプ運転によるねじり応力	MPa
τ _{bt}	端子箱取付ボルトに生じるせん断応力	MPa

4.3.4 評価方法

(1) 固定子

電動機の最大荷重(トルク)は次式で求める。

$$T_{m} = \frac{974 \cdot P \cdot g}{N} \cdot \frac{T_{ma}}{100} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot (4.3.4.1)$$

電動機の回転による荷重は次式で求める。

$$F_{k t} = \frac{T_{m}}{1/2 \cdot D} \qquad (4.3.4.2)$$

自重及び鉛直方向地震力により発生する荷重は次式で求める。

 $F_{kg} = W_{c} \cdot g \cdot (C_{V} + C_{P} + 1) \cdots (4.3.4.3)$

せん断応力は次式で求める。

- (2) 軸 (回転子)
 - a. 曲げ応力

多質点はりモデルを用いて応答計算を行い,得られたモーメントにより,曲 げ応力は以下のようになる。

$$\sigma_{sm} = \frac{M_s}{Z_s} \qquad (4.3.4.6)$$

b. 自重及び鉛直方向地震力による応力

$$T_{s} = \frac{P}{2\pi \swarrow 60 \cdot N} \cdot 10^{6} \qquad \cdots \qquad (4.3.4.8)$$

d. 組合せ応力

$$\sigma_{s} = \frac{1}{2} \cdot \left(\sigma_{sm} + \sigma_{sw}\right) + \frac{1}{2} \cdot \sqrt{\left(\sigma_{sm} + \sigma_{sw}\right)^{2} + 4\tau_{s}^{2}}$$

$$\cdot \cdot \cdot \cdot (4.3.4.10)$$

- (3) 端子箱
 - a. 取付ボルトに作用する引張力

$$F_{b t, a} = \frac{W_{t} \cdot (1 + C_{v} + C_{P}) \cdot h_{t} \cdot g}{n_{t 1, z} \cdot L_{2 i}} + \frac{W_{t} \cdot (C_{HT} + C_{P}) \cdot h_{t} \cdot g}{n_{t 1, y} \cdot L_{3 i}}$$

$$F_{b t, b} = \frac{W_{t} \cdot (1 + C_{v} + C_{p}) \cdot h_{t} \cdot g + W_{t} \cdot (C_{HT} + C_{p}) \cdot L_{1 i} \cdot g}{n_{t 1, z} \cdot L_{2 i}}$$

$$F_{b t} = M a x [F_{b t, a}, F_{b t, b}] \cdots \cdots \cdots \cdots \cdots (4.3.4.13)$$

b. 取付ボルトの引張応力

$$\sigma_{b t} = \frac{F_{b t}}{A_{b t}} \qquad (4.3.4.14)$$

$$Q_{b t} = \sqrt{Q_{b t, a}^{2} + Q_{b t, b}^{2}} \cdots (4.3.4.17)$$

d. 取付ボルト1本あたりにはたらくせん断応力

(4) 軸受

多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果 を用い,軸受の発生荷重を評価する。

- (5) 固定子と回転子のクリアランス 多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果 を用い,固定子一軸(回転子)の相対変位が固定子一軸(回転子)間空隙寸法を 下回ることを確認する。
- (6) モータフレーム
 - a. 曲げ応力

多質点はりモデルを用いて応答計算を行い,得られたモーメントにより,曲 げ応力は以下のようになる。

b. 自重及び鉛直方向地震力による応力

$$\sigma_{\rm fw} = \frac{\left(1 + C_{\rm V} + C_{\rm P}\right) \cdot W_{\rm f} \cdot g}{A_{\rm f}} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (4.3.4.20)$$

c. 組合せ応力

5. 評価結果

5.1 設計基準対象施設としての評価結果

高圧炉心スプレイ補機冷却海水ポンプの設計基準対象施設としての耐震評価結果を 以下に示す。発生値は許容限界を満足しており,設計用地震力に対して十分な構造強度 及び動的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお,弾性設計用地震動Sd及び静的 震度は基準地震動Ssを下回っており,基準地震動Ssによる発生値が,弾性設計用 地震動Sd又は静的震度に対する評価における許容限界を満足するため,弾性設計用 地震動Sd又は静的震度による発生値の算出を省略した。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

5.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ補機冷却海水ポンプの重大事故等時の状態を考慮した場合の耐震 評価結果を以下に示す。発生値は許容限界を満足しており,設計用地震力に対して十分 な構造強度及び動的機能を有していることを確認した。

- (1)構造強度評価結果
 構造強度評価の結果を次頁以降の表に示す。
- (2)機能維持評価結果動的機能維持評価の結果を次頁以降の表に示す。

【高圧炉心スプレイ補機冷却確水ポンプの耐震性についての計算結果】

1. 設計基準対象施設

1.1 構造強度評価

1.1.1 設計条件

			田七田	±+++ / − / +++	弹性設計用地	b 医 動 S d	聖如中秋日	い世		田光宁百		
オチムロコンサ	短之/世/甲/中/聖/甲	据付場所及び床面高さ	回有/可势(S/	A(s)	又は静的震度	切震度	<u> 在</u> 中心辰	辰美J S	ポンプ振動	取同使用	同世界児	最高使用圧力
代发命下白小小	言是安良力规	(m)	무구보수	<u> </u>	水平方向	鉛直方向	水平方向	鉛直方向	による震度	受回	必可	(MPa)
					設計震度	設計震度	設計震度	設計震度		\tilde{c}	$\hat{\boldsymbol{D}}$	
高圧炉心スプレイ		海水ポンプ室										
補機冷却每水	S	(補機ポンプエリア)	0.074	0.00	-*2	*2		$C_V = 1.94$		50	50	0. 78
ポンプ		$0. P. 3. 0^{*1}$		- - -			X1240	8				
十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	+11+1											

注記*1:基準末レベルを示す。 *2:皿らについては、基準地震動Ssで評価する。

*3:基準地震動Ssに基づく設計用床応答曲線より得られる値

1.1.2 機器要目

(1) ボルト	mi	D	d _i	A_{bi}			Mp	S _{y i}	S _{ui}	Б.	* L	(2) コテムパイプ	S	01
部私	(kg)	(mm)	(mm)	(mn^2)	'n	n _{f i}	(N· mm)	(MPa)	(MPa)	(MPa) (MPa)	(MPa)	部和	(MPa) (M	S
基礎ボルト					c.	с U								
(i = 1)					٥	٥								
ポンプ取付ボルト					ع ۲	<i>3</i> F	9 000 V 105					注記*:最高使用温度で算出	温度で算出	
(i = 2)					01	10	10 3.82U×1U							
原動機取付ボルト					c	c								
(i = 3)					0	o	o. o∠u∧ IU							
注記*1:最高使用温度で算出	く算出													

(mm) ÷

(MPa) S

(MPa) S v

 D_{C} (mm)

*2:周囲環境温度で算出

(3) サポート取付ボルト

++ <i>1</i> 44	$A_{\rm sbj}$:	S_{yj}	S_{uj}	$S_{yj}(RT)$	Ъ.	 بل
CL CL	(mm^2)	n _{s j}	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
第一中間サポート							
基礎ボルト		4					
(j = 1)							
第一中間サポート							
取付ボルト		8					
(j = 2)							
第二中間サポート							
基礎ボルト		4					
(j = 3)							
第二中間サポート							
取付ボルト		8					
(j = 4)							
注記*1:周囲環境温度で算出							

Z	(rpm)	
^d H	(μm)	

R 2 VI-2-5-7-2-3 02

1.1.3 計算数値 (1) ボルトに作

ボルトに作用する力

(mm·N: 如前)

(2) コラム/ イプに作用する力

基準地震動

弹性設計用地震動S d

 $\overline{\Sigma}$

 Σ

S s

又は静的震度

注記*:ⅢSについては、基準地震動Ssで評価する。 コラムパプ 部 弹性設計用地震動Sd 基準地震動 | 弹性設計用地震動Sd | 基準地震動 | 弹性設計用地震動Sd | 基準地震動 S s $Q_{b i}$ (N) 又は静的震度 S s $F_{b i}$ (N) 又は静的震度 Sss $\mathbf{M}_{i}~(\mathbf{N}\boldsymbol{\cdot}\mathbf{mn})$ 又は静的震度 ポンプ取付ボルト 原動機取付ボルト 基礎ボルト (i = 1)(i = 2)(i = 3) $\overline{\Sigma}$ 部

注記*: IIS については、基準地震動Ssで評価する。

(3) サポート取付ボルトに作用する力

(N: 4)頁)

W	弹性設計用地震動 S d 又は静的震度	状ルト	ポルト	ボルト	ボルト	注記*:IIISについては、基準批震動Ssで評価する。
++ 104	۲۲ di	第一中間サポート基礎ボルト (i=1)	第一中間サポート取付ボルト (j=2)	第二中間サポート基礎ボルト (j=3)	第二中間サポート取付ボルト (j=4)	注記米:Ⅲ、S については、 基

1141 固有周期 1.1.4 結論

(s: 四)	固有周期	$T_{H1} = 0.074$	T_{V1} =0.05 以下	
1.1.4.1 固有周期	친-귀	水平 1次	鉛直 1次	

O 2 ⑤ VI-2-5-7-2-3 R 2

1.1.4.2 ボルトの応力

	<u>。</u> 」より算出	τ_{L} , f_{\star}	注記*1:チ. ゙ = Min [1. 4・チ. ´ 1. 6・	$: f_{\pm 0} := Min$	注記*1		ある。	すべて許容応力以下である。
	$f_{\rm s b}{}_{\rm 3}{=}389$	$\tau \frac{b_3}{b_3} = 9$	$f_{\rm sb}{}_{\rm sb}{=}389$	$\tau \frac{1}{b3} = 9^{*2}$	せん断			(i = 3)
	$f_{\rm t \ s} = 505^{*1}$	$\sigma_{b3} = 19$	$f_{\rm t \ s} = 505^{*1}$	$\sigma \frac{10^{*2}}{5}$	引張り			原動機取付ボルト
	$f_{\rm s \ b \ 2} = 389$	τ _{b2} =4	$f_{\rm sb2}$ =389	$\tau_{\rm b2}{=}{4}^{*2}$	せん断			(i = 2)
fo	$f_{\rm t\ s\ 2}{=}505^{*1}$	σ_{b2} =21	$f_{t s 2} = 505^{*1}$	$\sigma_{b2}{=}21^{*2}$	引張り			ポンプ取付ボルト
	$f_{\rm sb1}{=}118$	$\tau_{\rm b1}{=}{13}$	$f_{\rm sb1}{=}118$	$\tau_{\rm b1} = \frac{13^{*2}}{13}$	せん断			(i = 1)
11	$f_{\rm t \ s \ 1} = 153^{*1}$	$\sigma_{b1} = 34$	$f_{\rm t \ s \ 1} = 153^{*1}$	$\sigma_{b1} = \frac{34}{34}^{*2}$	引張り			基礎ボルト
	許容応力	算出応力	許容応力	算出応力				
	<u> 本</u> 年 地 戻 則 ゝ s	基準理	又は静的震度	又は	応力	挙	技	部本
		17 赤 4	弹性設計用地震動Sd	弹性設計				

		<u>次</u>	-次一般瑣芯力	
다. 전	14 14		算出応力	許容応力
		弹性設計用地震動Sd	* <mark>~</mark>	- 100
コラムパイプ		又は静的震度	0	661— B C
		基準地震動S s	σ = <mark>62</mark>	S a =306
すべて許容応力に	わ以下である。	注記*:基	基準地震動S s	助Ssによる算出値

(単位:MPa)

1.1.4.3 コラムパイプの応力

(単位:MPa)

、「日本でごえ」、「*め*つ。

 $\exists *1: f_{t_s i} = Min \left[1.4 \cdot f_{t_0 i} - 1.6 \cdot \tau_{b_i} , f_{t_0 i} \right]$ より第 *2: 基準地震動S s/こよる算出値

1.1.4.4 サポート取付ボルトの応力

(単位:MPa)

基準地震動S s	許容応力	$f_{\rm ssb1}{=}142$	$f_{\rm ssb2} = 142$	$f_{\rm s\ s\ b\ 3} = 142$	$f_{\rm ssb4}{=}142$
	算出応力	τ _{sb1} =20	τ _{sb2} =13	τ _{sb3} = <mark>18</mark>	τ _{sb4} = <mark>11</mark>
弹性設計用地震動Sd又は静的震度	許容応力	$f_{\rm ssb1} = 118$	$f_{\rm ssb2}$ =118	$f_{\rm ssb3}$ =118	$f_{\rm ssb4}$ =118
弹性設計用地震重	算出応力	د ^{s b 1} == 20*	τ _{sb2} =13*	τ _{sb3} =18*	℃ _{s b4} = <mark>11</mark> *
ふ		小子	小子	小子	地心守
技					
部材		第一中間サポート 基礎ポルト (j=1)	第一中間サポート 取付ボルト (j=2)	第二中間サポート 基礎ポルト (j=3)	第二中間サポート 取付ボルト (j=4)

注記*:基準地震動Ssによる算出値

すべて許容値以下である。

R 2
5 - 7 - 2 - 3
VI-2-5-
6
02

1.2 動的機能維持評価

1.2.1 設計条件

L

		定格容量	据付場所及び	固有周期(s)]期(s)	基準地震動S s	鋤S s	ポンプ振動	最高使用	周囲環境	
機器名称	式	(m ³ /h)	床面高 cx (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	による震度	追ぼ (C)	温度 (°C)	
高圧炉心スプレイ 補機冷却確水ポンプ	立形斜流ポンプ	250	海水ボンプ室 (補機ポンプエリア) 0.P.3.0* <mark> </mark>	0.074	0.05 以下	C _H = <mark>1. 53</mark> 又は*2	$C_{\rm V} = 1.61$		50	50	
注記*1:基準床レベル	を示す。										

*2: 基準地震動S sに基づく設計用床応答曲線より得られる値

		PI C. D. PARL I	1								
		出力	据付場所及び	固有周期(s)]朔(s)	基準地震動S	動S s	ポンプ振動	端子箱部の最大応答加速度	最高使用	周囲環境
機器名称	実施	(kW)	床面高な	学过去后	中中中小学	水平方向	鉛直方向	による震度	による水平方向震度	温度	迴便
			(m)			設計震度	設計震度			\tilde{O}	\tilde{O}
高圧炉心スプレイ	四年のミアイト日子		東イバン学			- - - -					
補機冷却海水ポンプ	上が一つかり単文	60	(補機ポンプエリア)	0.074	60 .0	$C_{\rm H} = 1.33$	$C_V = 1.61$		$C_{HT} = \frac{1.53}{1.53}$	I	50
用原動機	电头滚		0. P. 3. 0* ¹		Ž -	X12+2	-				
注記*1:基準床レベルを示す。	を示す。										

*2:基準地震動Ssに基づく設計用床応答曲線より得られる値

1.2.2 機器要目 (1) 国定子

	d s	(uuu)	Ľ	cc	
	Z	(\min^{-1})		nnet	
	${\rm A_s}$	(mm^2)	$2.376\times$	10^{3}	
	W_{s}	(kg)		60	
	$Z_{\rm s}$	(mm^3)	$1.633\times$	10^{4}	
	M_{s}	(N· mm)	7. 333×	10^{4}	
(2) 軸 (回転子)	44 2144		- 1 -#	田田	
	Ş	11 p	с	o	
	W_{c}	(kg)	000	2002	
	$A_{\rm p}$	(mm^2)	107 5	101.0	
	D	(uuu)	Ver	400	
	T_{ma}	(%)	000	2002	
	N	(\min^{-1})		nnet	
(1) 固定子	7 7		\ ↓ Ħ	自た丁	

		×	
${\rm A_{f}}$	(mm^2)	2.097 \times	10^{4}
$W_{\rm f}$	(kg)	UU F	190
Z f	(mm^3)	$2.259 \times$	10^{6}
${\rm M_{f}}$	(N· mm)	$3.642 \times 2.259 \times$	10 ⁶
		F. 471 - 1	the start

枠囲みの内容は商業機密の観点から公開できません。

端子箱 (3)

L _{1 i} (mn)	110
$Q_{b t}$ (N)	$\frac{5.534\times}{10^2}$
${ m A}_{ m b\ t}$	<mark>78. 5</mark>
n t 1, z	2
n t 1, y	2
n t	4
W _t (kg)	<mark>18</mark>
部 材	端子箱

(4) モータフレーム

h t (mm)

L _{3 i} (mm)

 $L_{2 i}$ (mm)

250

110

110

28

1.2.3 結論

1.2.3.1 機能確認済加速度との比較

 $(\times 9.8 \text{m/s}^2)$

					オコラム
機能確認済加速度	10.0	1.0	2.5	1.0	市の機能維持評価用加速度はコラ
機能維持評価用加速度*	3. 37	1.61	1. 53	1.61	が随度とする。 <mark>なお,水平方向</mark> の
	水平方向	鉛直方向	水平方向	鉛直方向	: 基準地震動 S sにより定まる応答加速度とする。
	0 - / 10	\ \ \	四年十条	小明地波	注記*:基準地震動

芯答加速度又は設計用最大応答加速度(1.0・2PA)のいずれか大きい方を、鉛直方向は設計用最大応答加速度(1.0・2PA)を設定する。 ポンプは、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。 原動機は、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。

ム先端(原動機にあっては軸受部)の

1.2.3.2 立形斜流ポンプの動的機能維持評価

1.2.3.2.1 代表評価項目の評価

基礎ボルト,ポンプ取付ボルト,コラムンペプ<mark>及び</mark>ストッパこついては,構造強度評価にて設計用地震力に対して十分な構造強度を有しているため,計算は省略する。

1.2.3.2.2 上記以外の基本評価項目の評価 1.2.3.2.2.1 軸受の評価

(N・4/)則)

-	甲법文のノ京判団		(M:元)中)
	刀炮架把走	発生荷重	許容荷重
	ポンプ軸受(1 段目)	4.894×10^{3}	7.060 $\times 10^3$
	ポンプ軸受 (2 段目)	4.684×10^{3}	2. 118×10^4
	ポンプ軸受 (3 段目)	4.607×10^{3}	2. 118×10^4
	ポンプ軸受 (4 段目)	4.580×10^{3}	2. 118×10^4
	ポンプ軸受(5段目)	4.539×10^{3}	2. 118×10^4
	ポンプ軸受 (6 段目)	5.678×10^{3}	2. 118×10^4
	ポンプ軸受 (7 段目)	4.760×10^{3}	2. 118×10^{4}
	ポンプ軸受 (8 段目)	4.594×10^{3}	2. 118×10^4
	ポンプ軸受(9 段目)	3.926×10^{3}	2. 118×10^4
	十二十七十七十		

すべて許容値以下である。

1.2.3.3 立形ころがり軸受電動機の動的機能維持評価

1.2.3.3.1 代表評価項目の評価

原動機取付ボルトについては、構造強度評価にて設計用地震力に対して十分な構造強度を有しているため、計算は省略する。

1.2.3.3.2 上記以外の基本評価項目の評価

1.2.3.3.2.1 固定子の評価

評価部位

固定子

(単位:MPa) 許容応力 発生応力

121

ഹ

せん野 応力

すべて許容応力以下である。

1.2.3.3.2.2 軸 (回転子) の評価

营利曲音队位	発生応力	許容応力
軸 (回転子)	16	474
 すべて許容応力以下である。		

(単位:MPa)

1.2.3.3.2.3 端子箱の評価

3 端子箱の評価			(単位:M ^a)
过化油油水量	応力	発生応力	許容応力
致之 世	引張り	11	184 <mark>*</mark>
	せん断	2	142
すべて許容応力以下である。	注記*:	主記*:Ats=Min [1.4・Ato-1.6・ で b, Ato] より算出	.6・ τ b, fto] より算出

1.2.3.3.2.4 軸受の評価

4	軸受の評価		(単位:N)
	之内省省	発生荷重	許容荷重
	子神神云	2.183×10^{2}	
	下普通曲受	3.242×10^{3}	
	すべて許容帯重以下である。		

「計谷何里以「こめる。 4

1.2.3.3.5.5 固定子と回転子のクリアランスの評価

国定子と回転子のクリアランスの評価		(皿:功)
評価部位	回転子のたわみ	許容変位量
固定子と回転子のクリアランス	0	0.8
- べて許容変位量以下である。		

1.2.3.3.2.6 モータフレームの評価

すべて許容応力以下である。

許容応力 45 発生応力 က モータフレーム 評価部位

(単位:MPa)

1.3 その他の機器要目

(1) 節点データ

岱占来旦		節点座標(mm)	
節点番号 —	Х	У	Z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

(公士	+.	1
(余元)	A)
VI24		/

節点番号		節点座標(mm)
即尽留万	Х	У	Z
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			

枠囲みの内容は商業機密の観点から公開できません。

(2) 要素の断面性状

		L. L. Lat	ut a state	断面二次
断面特性番号	要素両端の節点	材料	断面積	モーメント
(要素番号)	番号	番号	(mm^2)	(mm^4)
1	1-2	111		6. 362×10^5
2	2-3	111		6. 362×10^5
3	3-4	111		6. 362×10^5
4	4-5	111		6. 362×10^5
5	5-6	111		6. 362×10^5
6	6-7	111		6. 362×10^5
7	7-8	111		6. 362×10^5
8	8-9	111		6. 362×10^5
9	9-10	111		6. 362×10^5
10	10-11	111		6. 362×10^5
11	11-12	111		6. 362×10^5
12	12-13	111		6. 362×10^5
13	13-14	111		6. 362×10^5
14	14-15	111		6. 362×10^5
15	15-16	111		6. 362×10^5
16	16-17	111		6. 362×10^5
17	17-18	111		6. 362×10^5
18	18-19	111		6. 362×10^5
19	19-20	111		6. 362×10^5
20	20-21	111		6. 362×10^5
21	21-22	111		2. 198×10^5
22	22-23	112		3. 220×10^{6}
23	23-24	112		5. 970×10^{6}
24	24-25	112		1. 180×10^{6}
25	26-27	111		1.554×10^{8}
26	27-28	111		4. 632×10^8
27	28-29	111		4. 632×10^8
28	29-30	111		6. 287×10^7
29	30-31	111		6. 287×10^7
30	31-32	111		6. 287×10^7
31	32-33	111		6. 287×10^7
32	33-34	111		6. 287×10^7
33	34-35	111		6. 287×10^7
34	35-36	111		6. 287×10^7
35	36-37	111		6. 287×10^7
36	37-38	111		6. 287×10^7
37	38-39	111		6. 287×10^7
38	39-40	111		6. 287×10^7
39	40-41	111		6. 287×10^7
40	41-42	111		6. 287×10^7
	*	-		

(続き)

断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm ²)	断面二次 モーメント (mm ⁴)
41	42-43	111		6. 287×10^7
42	43-44	111		6. 287×10^7
43	44-45	111		6. 287×10^7
44	45-46	111		6. 287×10^7
45	46-47	111		6. 287×10^7
46	47-48	111		6. 287×10^7
47	48-49	111		2. 546×10^{6}
48	50-51	113		3. 588×10^9
49	51-52	113		2.769 $\times 10^9$
50	52-53	113		1.861×10^{9}
51	53-54	113		2.769 $\times 10^9$
52	54-55	113		3.677×10^9
53	55-56	114		4. 540×10^8
54	56-57	114		4. 540×10^8
55	57-58	114		8.820 $\times 10^{8}$
56	58-59	114		8.820 $\times 10^{8}$
57	59-60	114		8.820 $\times 10^{8}$
58	60-61	114		3.520×10^8
59	61-62	114		3. 520×10^8

枠囲みの内容は商業機密の観点から公開できません。

(3) ばね結合部の指定

ばねの両端	の節点番号	ばね定数
2	29	
5	32	
7	34	
9	36	
11	38	
13	40	
15	42	
18	45	
21	48	
23	56	
24	61	
47	51	
31		
37		
50	_	
50	_	

枠囲みの内容は商業機密の観点から公開できません。

(4) 節点の質量

節点番号	質量(kg)
1	<u> </u>
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

枠囲みの内容は商業機密の観点から公開できません。

(続き)	
節点番号	質量(kg)
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

(5) 材料物性值

材料番号	温度 (℃)	縦弾性係数 (MPa)	質量密度 (kg/mm ³)	ポアソン比 (-)	材質	部位
111	50			0.3		ポンプ
112	50			0.3		原動機
113	50			0.3		ポンプ
114	50			0.3		原動機

O 2 (5) VI-2-5-7-2-3 R 2

【高圧炉心スプレイ補緩冷却海水ポンプの耐震性についての計算結果】

2. 重大事故等对処設備

2.1 構造強度評価

2.1.1 設計条件

			、",開国之田	相て、)	弹性設計用	生設計用地震動 S d	中、年、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、	T.		日十二日		
サチケン	田之く共に言	据付場所及び床面高さ	回行问	(A) (S)	又は能	又は静的震度	<u> 在</u> 中山辰	S C M	ポンプ振動	東回 医用 留事	回西来児	最高使用圧力
小戏石下白小小	或如用力强	(m)	명구소사	(위구·보\)경	水平方向	鉛直方向	水平方向	鉛直方向	による震度		N E E E E E E E E E E E E E	(MPa)
					設計震度	設計震度	設計震度	設計震度		$\tilde{\mathcal{O}}$	Ĵ	
高圧炉心スプレイ	가구가 고문문	海水ポンプ室										
補機冷却每水	而成人的儿子	(補機ポンプエリア)	0.074	0.00	I			$C_{V} = 1.94$		50	50	0.78
ポンプ		0. P. 3. 0* ¹		<u>、</u> ズ			×12×2					
子戸、「「一、」」、「一、」、「一、」、「一、」、	+11+15											

注記*1:基準床レベルを示す。

*2:基準地震動Ssに基づく設計用床応答曲線より得られる値

2.1.2 機器要目

t (mm)

D_c

S u (MPa)

注記*1:最高使用温度で算出

*2:周囲環境温度で算出

(3) サポート取付ボルト

前书 村 (m ²) (M ²								
(mr ²) ¹¹ ^{s1} (MPa) (MPa) (MPa) 4 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	立立 (14)	$A_{\rm sbj}$	Ş	S_{yj}	S_{uj}	$S_{yj}(RT)$		[!] ч
	K K	(mm^2)	nsj	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
	第一中間サポート							
	基礎ボルト		4					
	(j = 1)							
	第一中間サポート							
	取付ボルト		8					
	(j = 2)							
	第二中間サポート							
	基礎ボルト		4					
	(j = 3)							
	第二中間サポート							
(j = 4)	取付ボルト		8					
	(j =4)							

Z	(rpm)	
^а Н	(m m)	

(5) VI-2-5-7-2-3 R 2 02

2.1.3 計算数値

(1) ボルトに作用する力

(2) コラムパイプに作用する力

(mm·N: 功jjm)

基準地震動 S s

弾性設計用地震動 Sd又は静的震度

Σ

	部材		しょくいん					
	基準地震動	S s						
$Q_{b i}$ (N)	弹性設計用地震動Sd	又は静的震度						
	基準地震動	S s						
F _{bi} (N)	弹性設計用地震動 S d	又は静的震度						
	基準地震動	Ss						
M _i (N•mm)	弹性設計用地震動S d	又は静的震度						
	部材		基礎ボルト	(i = 1)	ポンプ取付ボルト	(i = 2)	原動機取付ボルト	(i = 3)

(3) サポート取付ボルトに作用する力

(N:4)東)

Wj	中派寺で、	査1年1月1日 S									
M	弹性設計用地震動	S d 又は静的震度									
			第一中間サポート基礎ボルト	(j = 1)	第一中間サポート取付ボルト	(j = 2)	第二中間サポート基礎ボルト	(j = 3)	第二中間サポート取付ボルト	(j = 4)	

2.1.4 結論

(単位:s	国有周期	$T_{\rm H1} = 0.074$	$T_{V1}=0.05 \text{ MF}$
2.1.4.1 固有周期	オート	水平 1次	鉛直 1次

(単位:s)

R 2	
2-5-7-2-3	
5 VI-2-E	
02	

プの応力	材料				以下である。				
2.1.4.3 コラムペイプの応力	部材		コラム・ペプ		すべて許容応力以下である。				
(单位: ma)	基準地震動S s	許容応力	$f_{\rm t \ s \ 1} \!=\! 184^{*}$	$f_{\rm s \ b \ 1} \!=\! 142$	$f_{ m t\ s\ 2}{=}505^{*}$	$f_{\rm s \ b \ 2} = 389$	$f_{\rm t \ s} = 505^{*}$	$f_{\rm s \ b}{}_{\rm 3}{=}389$, i]より算出
	基準地	算出応力	$\sigma_{b1} = \frac{34}{34}$	$\tau_{\mathrm{b1}} = \frac{13}{13}$	σ _{b2} =21	$\tau_{b2} = \frac{4}{4}$	$\sigma \frac{1}{b_3} = \frac{19}{2}$	$\tau \frac{1}{b3} = 9$	$\tau_{\rm b~i}$, $f_{\rm to}$
	弾性設計用地震動Sdズは 静的震度	許容応力	I	I	I	I	I	I	注記*: $f_{t_s i} = Min \left[1.4 \cdot f_{t_0 i} - 1.6 \cdot \tau_{b_i} , f_{t_0 i} \right] $ より算出
	弾性設計用地 静的	算出応力							$r_{\rm t \ s \ i} = Min \left[1.\right]$
	応力		引張り	せん断	引張り	せん断	引張り	せん断	注記*:/
	材料								2°
2.1.4.2 ボルトの応力	部 村		基礎ボルト	(i = 1)	ポンプ取付ボルト	(i =2)	原動機取付ボルト	(i = 3)	すべて許容応力以下である。

S a =306

σ =<mark>62</mark>

基準地震動S s 又は静的震度

許容応力

算出応力

一次一般填心力

I

I

弹性設計用地震動Sd

(単位:MPa)

トの応じ
ト取付ボル
サポー
44
1.4.

部 材 材 材 材 材 校 地 成 項性設計用地画的 A 又は前的應 基準地画的 s 第一時 第一時 第四方 第四方 第四方 第四方 第四方 第一時 1(j=1) 世人断 - - - 5,5,1=142 第一時 世人断 - - - - 5,6,1=142 第一時 地付が - - - - 5,6,1=142 第二時 七人断 - - - 7,6,6,1=142 $f_{5,6,1}=142$ 第二時 第八小小 - - - - 7,6,6,1=142 第二時 1(j=2) セム - - - 7,6,6,1=142 第二時 - - - - - - 7,6,6,1=142 第二十間 - - - - - 7,6,6,1=142 第二十間 - - - - - - - - - - - -	2.1.4.4 サポート取付ボルトの応力	くトの応力					(単位:MPa)
第1 第1 第1 第1 世人断 一 「 1 世人断 一 1 1 セ人断 一 1 1 セ人断 1 1 1 セ人断 1 1 1			内 志 力	衡性設計用地震動	S d 又は静的震度	新進地震	襲動S s
・ ・ ・				算出応力	許容応力	算出応力	許容応力
セン断	第一中間サポート 基礎ボルト (j=1)		せん断	I	I	$\tau_{sb1} = \frac{20}{20}$	$f_{\rm s\ s\ b\ 1}\!=\!142$
 せん断 - て sb3=18 せん断 - て sb3=11 せん断 - て sb4=11 	第一中間サポート 取付ボルト (j=2)		蛹ツ夬	I	I	τ _{sb2} = <mark>13</mark>	$f_{\rm s\ s\ b\ 2} = 142$
セン断 - ^{て s b 4 = 11}	第二中間サポート 基礎ボルト (j=3)		蛹でみ	Ι	I	τ _{sb3} = <mark>18</mark>	$f_{\rm s\ s\ b\ 3}{=}142$
	第二中間サポート 取付ボルト (j=4)		せん断	I	I	$\tau_{sb4} = \frac{11}{11}$	$f_{\rm s\ s\ b\ 4} = 142$

すべて許容値以下である。

料囲みの内容は商業機密の観点から公開できません。

43

5 VI-2-5-7-2-3 R 2 02

> 2.2 動的機能維持評価 2.2.1 設計条件

		定格容量	据付場所及び	固有周期(s))朔(s)	基準地震動 S s	動S s	ポンプ振動	最高使用	周囲環境
機器名称	形式	(m ³ /h)	床面高さ (m)	水平方向	火平 方向 鉛直方向	水平方向 設計震度	鉛直方向 設計震度	による震度	温度 (°C)	温度 (°C)
高圧向心スプレイ 補機冷却確水ボソプ	立形斜流 ポンプ	250	海水ボンプ室 (補機ポンプエリア) 0.P.3.0*	0.074	0. 05 以下	C _H = <mark>1. 53</mark> <mark>又は*2</mark>	$C_{\rm V} = 1.61$		50	50
注記*1:基準床レベルを示す。	を示す。									

*2: 基準地震動S sに基づく設計用床応答曲線より得られる値

							ľ		•	•	
		出力	据付場所及び	固有周期	周期(s)	基準地震動	動Ss	ポンプ読号	端子箱部の最大応答加速度	最高使用	周囲環境
機器名称	式	(kw)	光画画の (国)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	による震度	による水平方向震度	温度 (°C)	温度 (°C)
高圧炉心スプレイ 補緩冷却確水ポンプ用 原動機	立形ころがり軸受 電動機	09	海水ポンプ室 (補機ポンプエリア) 0.P.3.0*	0.074	0. 05 以下	C _H = <mark>1. 53</mark> 又は * 2	$C_{\rm V} = 1.61$		С _{нт} = <mark>1. 53</mark>	I	50
注記*1:基準末レベルを示す。	汚す。										

*2:基準地震動Ssに基づく設計用床応答曲線より得られる値

2.2.2 機器要目

	Z	(\min^{-1})	1 1.000	nnet	
	${\rm A_s}$	(mm^2)	$2.376\times$	10^{3}	
	W_{s}	(kg)	Ċ	60	
	$Z_{\rm s}$	(mm^3)	$1.633\times$	10^{4}	
	M_{s}	(N· mm)	7. 333×	10^4	
(2) 軸 (回転子)	11 14		十甲	田田	
	ţ	II p	с	ø	
	W_{c}	(kg)	000	700	
	A_{p}	(mm^2)	107	101.0	
	D	(mm)	064	430	
	T_{ma}	(%)	000	700	
	Z	(\min^{-1})		nnet	
(1) 固定子	++ 11 4		个 中 田	国他于	

	${\rm A}_{\rm f}$	(mm^2)	$2.097 \times$	10^4
	${\rm W}_{\rm f}$	(kg)	007	190
	Z f	(mn^3)	2.259 \times	10 ⁶
	${\rm M_{f}}$	(N· mm)	3. $642 \times$	10 ⁶
(4) モータフレーム	77 1177	신지 (미	Ĩ	モーダンレーム

料囲みの内容は商業機密の観点から公開できません。

h t (mm)	250
L _{3 i} (mm)	110
$L_{2 i}$ (mm)	110
L _{1 i} (mn)	110
\mathbf{Q}_{bt} (N)	$\frac{5.534\times}{10^2}$
${ m A}_{ m b\ t}$ (mm ²)	<mark>78. 5</mark>
n t 1, z	2
n t 1, y	2
n _t	4
W _t (kg)	<mark>18</mark>
部材	端子箱

(3) 端子箱

d s (mm)

55

2.2.3 結論

2.2.3.1 機能確認済加速度との比較

 $(\times 9.8 \text{m/s}^2)$

					はコラム先端(原動機にあっては軸受部)の
機能確認済加速度	10.0	1.0	2.5	1.0	向の機能維持評価用加速度
機能維持評価用加速度*	<mark>3. 37</mark>	1.61	1. 53	1.61	加速度とする。 <mark>なお、水平方</mark>
	水平方向	鉛直方向	水平方向	鉛直方向	岐動Ssにより定まる応答加
	10° × 10°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	日本土公公	小小男小孩	注記*:基準地震動

答加速度又は設計用最大応答加速度(1.0・2PA)のいずれか大きい方を、鉛直方向は設計用最大応答加速度(1.0・2PA)を設定する。 ポンプは、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。 原動機は、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。

2.2.3.2 立形斜流ポンプの動的機能維持評価

2.2.3.2.1 代表評価項目の評価

基礎ボルト,ポンプ取付ボルト,コラムンペプ<mark>及び</mark>ストッパこついては,構造強度評価にて設計用地震力に対して十分な構造強度を有しているため,計算は省略する。

2.2.3.2.2 上記以外の基本評価項目の評価2.2.3.2.2.1 軸受の評価

(単位:N)

 単比文のノ青州田		(N:171年)
江和市场	発生荷重	許容荷重
ポンブ軸受(1 段目)	4.894×10^{3}	7. 060×10^3
ポンブ軸受(2 段目)	4.684×10^{3}	2. 118×10^4
ポンブ軸受(3 段目)	4.607×10^{3}	2. 118×10^4
ポンプ軸受 (4 段目)	4.580×10^{3}	2. 118×10^4
ポンプ軸受(5 段目)	4.539×10^{3}	2. 118×10^4
ポンプ軸受 (6 段目)	5.678×10^{3}	2. 118×10^4
ポンプ軸受 (7 段目)	4.760×10^{3}	2. 118×10^4
ポンブ軸受(8 段目)	4.594×10^{3}	2. 118×10^4
ポンプ軸受(9 段目)	3.926×10^{3}	2. 118×10^4
ナバト對於諸に下たなス		

すべて許容値以下である。

2.2.3.3 立形ころがり軸受電動機の動的機能維持評価

2.2.3.3.1 代表評価項目の評価

原動機取付ボルトについては、構造強度評価にて設計用地震力に対して十分な構造強度を有しているため、計算は省略する。 2.2.3.3.2 上記以外の基本評価項目の評価

2.2.3.3.2.1 固定子の評価

固定子の評価			(単位:MPa)
評評的位	応力	発生応力	許容応力
固定子	せん断	2	121

すべて許容応力以下である。

2.2.3.3.2.2 軸 (回転子) の評価

<i>元N培曲)</i> 走量	発生応力	許容応力
・神(回転子)	16	474
すべて許容応力以下である。		

(単位:MPa)

2.2.3.3.2.3 端子箱の評価

3 端子箱の評価			(単位:MPa)
江阳帝国	成力	発生応力	許容応力
英心之 田平	引張り	11	184 <mark>*</mark>
	せん断	2	142
すべて許容応力以下である。	注記*:	註記*:A_s=Min[1.4・A₀-1.6・τ^b,A₀]より算出	.6・τb, fto] より算H

2.2.3.3.2.4 軸受の評価

4	軸受の評価		() () () ()
	對人民的公司	発生荷重	許容荷重
	上部軸受	2.183×10^{2}	
	下部軸受	3.242×10^{3}	
	すべて許容帯重以下である。		

C いけんの単くい ~

2.2.3.3.2.5 固定子と回転子のクリアランスの評価

2	固定子と回転子のクリアランスの評価		(11)(11)(11)(11)(11)(11)(11)(11)(11)(11
	石內省市 之外	セマンの土理回	許容変位量
	固定子と回転子のクリアランス	0	0.8
	すべて許容変位量以下である。		

Г

2.2.3.3.2.6 モータフレームの評価

ータフレームの評価		(単位: ma)
习机培研环	発生応力	許容応力
モータフレーム	3	45

すべて許容応力以下である。

2.3 その他の機器要目

(1) 節点データ

9 Mr H TU H		節点座標(mm)	
節点番号 —	Х	У	Z
1		·	
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

11-	4.4		>
(24)	⇒.	F)
- \/E	Л.	\sim	1

節点番号		節点座標(mm)	
即尽管力	Х	У	Z
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			

(2) 要素の断面性状

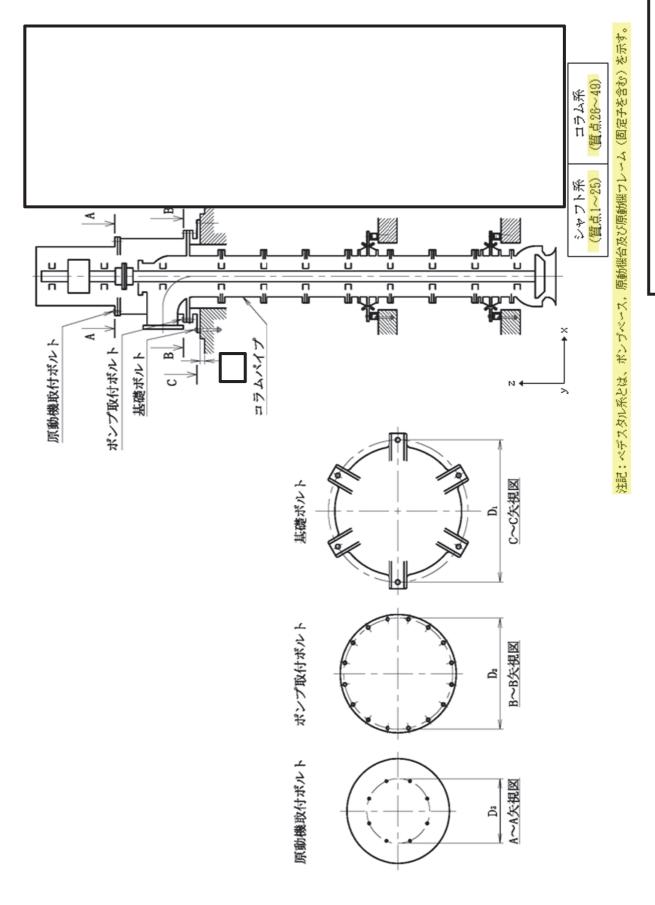
	亜ギエ山の炊上	++101	NKT TIT	断面二次
断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm ²)	モーメント
				(mm ⁴)
1	1-2	111		6. 362×10^5
2	2-3	111		6. 362×10^5
3	3-4	111		6. 362×10^5
4	4-5	111		6. 362×10^5
5	5-6	111		6. 362×10^5
6	6-7	111		6. 362×10^5
7	7-8	111		6. 362×10^5
8	8-9	111		6. 362×10^5
9	9-10	111		6. 362×10^5
10	10-11	111		6. 362×10^5
11	11-12	111		6. 362×10^5
12	12-13	111		6. 362×10^5
13	13-14	111		6. 362×10^5
14	14-15	111		6. 362×10^5
15	15-16	111		6. 362×10^5
16	16-17	111		6. 362×10^5
17	17-18	111		6. 362×10^5
18	18-19	111		6. 362×10^5
19	19-20	111		6. 362×10^5
20	20-21	111		6. 362×10^5
21	21-22	111		2. 198×10^5
22	22-23	112		3.220×10^{6}
23	23-24	112		5.970 $\times 10^{6}$
24	24-25	112		1.180×10^{6}
25	26-27	111		1.554×10^{8}
26	27-28	111		4. 632×10^8
27	28-29	111		4. 632×10^8
28	29-30	111		6. 287×10^7
29	30-31	111		6. 287×10^7
30	31-32	111		6. 287×10^7
31	32-33	111		6. 287×10^7
32	33-34	111		6. 287×10^7
33	34-35	111		6. 287×10^7
34	35-36	111		6. 287×10^7
35	36-37	111		6. 287×10^7
36	37-38	111		6. 287×10^7
37	38-39	111		6. 287×10^7
38	39-40	111		6. 287×10^7
39	40-41	111		6. 287×10^7
40	41-42	111		6. 287×10^7
-				

(続き)

断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm ²)	断面二次 モーメント (mm ⁴)
41	42-43	111		6. 287×10^7
42	43-44	111		6. 287×10^7
43	44-45	111		6. 287×10^7
44	45-46	111		6. 287×10^7
45	46-47	111		6. 287×10^7
46	47-48	111		6. 287×10^7
47	48-49	111		2. 546×10^{6}
48	50-51	113		3.588×10^9
49	51-52	113		2.769 $\times 10^9$
50	52-53	113		1.861×10^{9}
51	53-54	113		2.769 $\times 10^9$
52	54-55	113		3.677×10^9
53	55-56	114		4. 540×10^8
54	56-57	114		4. 540×10^8
55	57-58	114		8.820 $\times 10^{8}$
56	58-59	114		8.820 $\times 10^{8}$
57	59-60	114		8.820 $\times 10^{8}$
58	60-61	114		3. 520×10^8
59	61-62	114		3. 520×10^8

(3) ばね結合部の指定

ばねの両端	の節点番号	ばね定数
2	29	
5	32	
7	34	
9	36	
11	38	
13	40	
15	42	
18	45	
21	48	
23	56	
24	61	
47	51	
31	-	
37	-	
50	-	
50	-	


(4) 節点の質量

節点番号	質量(kg)
即尽备方	貝里(kg)
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
13	
13	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

(続き)	
節点番号	質量(kg)
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

(5) 材料物性值

材料番号	温度 (℃)	縦弾性係数 (MPa)	質量密度 (kg/mm ³)	ポアソン比 (-)	材質	部位
111	50			0.3		ポンプ
112	50			0.3		原動機
113	50			0.3		ポンプ
114	50			0.3		原動機

