女川原子力発電所第2号機 工事計画審査資料	
資料番号	02 －工－B－19－0335＿改 1
提出年月日	2021 年 10 月 8 日

VI－2－5－7－2－3 高圧炉心スプレイ補機冷却海水ポンプの耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有値解析及び構造強度評価 3
3.1 固有値解析及び構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 解析モデル及び諸元 9
3． 4 固有周期 9
3.5 設計用地震力 11
3.6 サポート部の計算方法 13
3．6．1 記号の説明 13
3．6．2 応力の計算方法 13
3.7 計算条件 13
3.8 応力の評価 14
3．8．1 ボルトの応力評価 14
4．機能維持評価 15
4.1 基本方針 15
4．2 ポンプの動的機能維持評価 16
4．2．1 評価対象部位 16
4．2．2 評価基準値 16
4．2．3 評価方法 16
4． 3 原動機の動的機能維持評価 17
4．3．1 評価対象部位 17
4．3．2 評価基準値 17
4．3．3 記号の説明 18
4．3．4 評価方法 19
5．評価結果 23
5.1 設計基準対象施設としての評価結果 23
5.2 重大事故等対処設備としての評価結果 23

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき，高圧炉心スプレイ補機冷却海水ポンプが設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

高圧炉心スプレイ補機冷却海水ポンプは，設計基準対象施設においては S クラス施設 に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，高圧炉心スプレイ補機冷却海水ポンプは，添付書類「VI－2－1－13 機器•配管系 の計算書作成の方法」に記載のたて軸ポンプであるため，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また，高圧炉心スプレイ補機冷却海水ポンプは，添付書類「VI－2－1－9 機能維持の基本方針」に記載の立形斜流ポンプであり，高圧炉心スプレイ補機冷却海水ポンプの原動機は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の立形ころがり軸受電動機である。共 に機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから，原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版）（以下「 J E A G 4 6 O1」という。）に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

2．一般事項
2.1 構造計画

高圧炉心スプレイ補機冷却海水ポンプの構造計画を表2－1に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
$\begin{aligned} & \text { ポンプはポンプベー } \\ & \text { スに固定され, ポン } \\ & \text { プベースは基礎ボル } \\ & \text { トで基礎に据え付け } \\ & \text { る。中間サポートベ } \\ & \text { ースは, 中間サポー } \\ & \hline \text { ト基礎ボルトで中間 } \\ & \text { 基礎に据え付ける。 } \\ & \text { 中間サポートは, 中 } \\ & \text { 間サポート取付ボル } \\ & \text { トで中間サポートベ } \\ & \text { ースに据え付ける。 } \end{aligned}$	ターボ形 （ターボ形たて軸ポ ンプ（海水ポンプ））	（単位：mm）

Abstract

表 2－1 構造計画 \qquad表 2

表 2－1 構造計画

 － －

3．固有値解析及び構造強度評価
3.1 固有値解析及び構造強度評価方法

高圧炉心スプレイ補機冷却海水ポンプの構造強度評価は，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基 づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
高圧炉心スプレイ補機冷却海水ポンプの荷重の組合せ及び許容応力状態のらち設計基準対象施設の評価に用いるものを表 3－1 に，重大事故等対処設備の評価に用いるものを表3－2 に示す。

3．2．2 許容応力
高圧炉心スプレイ補機冷却海水ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 3－3 及び表 3－4 のとおりとする。

3．2．3 使用材料の許容応力評価条件
高圧炉心スプレイ補機冷却海水ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3－5 に，重大事故等対処設備の評価に用 いるものを表3－6に示す。

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	原子炉補機冷却設備	高圧炉心スプレイ補機冷却海水ポンプ	S	Non＊ 1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	III ${ }_{\text {A }} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
注記＊：クラス 3 ポンプの荷重の組合せ及び許容応力状態を適用する。また，クラス 3 ポンプの支持構造物を含寺。						
表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）						
施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$I V_{\text {A }} \mathrm{S}$
原子炉冷却系統施設	原子炉補機冷却設備	高圧炉心スプレイ補機冷却海水ポンプ	常設／防止 （DB 拡張）	重大事故等 クラス 2 ポンプ ${ }^{*} 2$	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。 ＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

許容応力状態	許容限界＊		
	一次一般膜応力	- 次膜応力＋ - 次曲げ応力	
III ${ }_{\text {A }} \mathrm{S}$	S_{y} と 0.6 • S_{u} の小さい方。 ただし，オーステナイト系ステ ンレス鋼及び高ニッケル合金 については上記値と 1.2 •Sと の大きい方。	左欄の 1.5 倍の値	弾性設計用地震動 S d 又は基準地震動 S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2•Sy以下であれば疲労解析は不要。
$I V_{A} \mathrm{~S}$			
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2•S y 以下であれば疲労解析は不要。

[^0]表3－4許容応力（クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物）

＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ \quad(\mathrm{MPa}) \end{gathered}$
コラムパイプ		最高使用温度	50				
基礎ボルト		周囲環境温度	50				
ポンプ取付ボルト		最高使用温度	50				
原動機取付ボルト		周囲環境温度	50				
第一中間サポート基礎ボルト		周囲環境温度	50				
第一中間サポート取付ボルト		周囲環境温度	50				
第二中間サポート基礎ボルト		周囲環境温度	50				
第二中間サポート取付ボルト		周囲環境温度	50				

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{\text {y }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(R T) \\ (\mathrm{MPa}) \end{gathered}$
コラムパイプ		最高使用温度	50				
基礎ボルト		周囲環境温度	50				
ポンプ取付ボルト		最高使用温度	50				
原動機取付ボルト		周囲環境温度	50				
第一中間サポート基礎ボルト		周囲環境温度	50				
第一中間サポート 取付ボルト		周囲環境温度	50				
第二中間サポート基礎ボルト		周囲環境温度	50				
第二中間サポート取付ボルト		周囲環境温度	50				

3.3 解析モデル及び諸元
（1）固有値解析に用いる解析モデルは，水平方向の応答を考慮した 1 次元応答解析モ デルとする。
（2）モデル化に際しては，シャフト及びコラムパイプに対して付加質量及び排除水体積質量を考慮する。
（3）固有値解析及び構造強度評価に用いる解析モデル及び諸元は，本計算書の【高圧炉心スプレイ補機冷却海水ポンプの耐震性についての計算結果】の機器要目及び その他の機器要目に示す。
（4）解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.4 固有周期

固有値解析の結果を表 3－7，振動モード図を図 3－1 及び図 3－2に示す。固有周期は， 0.05 秒を超えており，柔構造であることを確認した。

表 3－7 固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数＊		鉛直方向 刺激係数＊
		NS 方向	EW 方向		
1 次	水平	0.074	0.594	0.594	-
2 次	水平	0.054	-0.623	-0.623	-
3 次	水平	0.029	-	-	-

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリクスの積から算出した値を示す。

3.5 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数 は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。評価に用いる設計用地震力を表3－8 及び表 3－9に示す。

表 3－8 設計用地震力（設計基準対象施設）

据付場所及び床面高さ（m）		海水ポンプ室（補機ポンプエリア				0．P．3． $0^{* 1}$	
固有周期（s）		水平： $0.074 * 2$ 鉛直： 0.05 以下					
減衰定数（\％）		水平： 1.0 鉛直：$:-$					
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S S		
モード	固有周期 （s）	応答水平震度		応答鉛直震度	応答水平震度 $* 3$		応答鉛直震度＊3
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次	0.074	－＊6	－＊6	－	8.51	8.51	－
2 次	0.054	－＊6	－＊6	－	7． 32	7． 32	－
3 次	0.029	－＊6	－＊6	－	－	－	－
動的地震力＊4		－＊6	－＊6	－＊6	1． 83	1． 83	1． 94
静的地震力*5		0.58	0.58	0.29	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S S ）より得られる震度を示す。
＊4：S s 又は S dに基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
＊ 5 ：静的震度（3．6•C i 及び 1.2 • C v）を示す。
＊6： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

表 3－9 設計用地震力（重大事故等対処施設）

据付場所及び床面高さ（m）		海水ポンプ室（補機ポンプエリア）0．P．3．0＊1					
固有周期（ s ）		水平： $0.074 * 2$ 鉛直： 0.05 以下					
減衰定数（\％）		水平： 1.0 鉛直：－					
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S S		
モード	固有周期 （s）	応答水平震度		応答鉛直震度	応答水平震度＊3		応答鉛直震度＊3
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次	0.074	－	－	－	8.51	8.51	－
2 次	0.054	－	－	－	7． 32	7． 32	－
3 次	0.029	－	－	－	－	－	－
動的地震力＊4		－	－	－	1.83	1.83	1． 94
静的地震力		－	－	－	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S s）より得られる震度を示す。
＊4：S s 又は S dに基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
3.6 サポート部の計算方法

3．6．1 記号の説明
高圧炉心スプレイ補機冷却海水ポンプのサポート部の応力評価に使用する記号 を表3－10に示す。

表 3－10 記号の説明

記号	記号の説明	単位
W_{j}	サポート取付ボルトに作用する荷重	N
$\mathrm{A}_{\mathrm{sb} \mathrm{b}} \mathrm{H}$	サポート取付ボルトの軸断面積	mm^{2}
n s j	サポート取付ボルトの本数	-
τ_{sbbj}	サポート取付ボルトに生じるせん断応力	MPa

3．6．2 応力の計算方法

多質点モデルを用いて応答計算を行い，得られた荷重 W_{j} により，サポート取付 ボルトに生じるせん断応力は次式で求める。

$$
\begin{equation*}
\tau_{s_{b j}}=\frac{W_{j}}{\mathrm{~A}_{\mathrm{sbj} \cdot \mathrm{n}_{\mathrm{sj}}}} \tag{3.6.2.1}
\end{equation*}
$$

図 3－3 サポート部の応力計算モデル
3.7 計算条件

応力計算に用いる計算条件は，本計算書の【高圧炉心スプレイ補機冷却海水ポンプの耐震性についての計算結果】の設計条件及び機器要目に示す。

3.8 応力の評価

3．8．1 ボルトの応力評価
3．6．2項で求めたボルトのせん断応力 $\tau \mathrm{sbj} \mathrm{j}$ はせん断力のみを受けるボルトの許容応力 $f_{\mathrm{s} s \mathrm{~b}} \mathrm{j}$ 以下であること。

ただし，f s sbjは下表による。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 $f_{\mathrm{s} \mathrm{sbj}}$	$\frac{\mathrm{F}{ }_{j}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}_{j}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4．機能維持評価
4.1 基本方針

高圧炉心スプレイ補機冷却海水ポンプ及び同原動機は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の立形斜流ポンプ及び立形ころがり軸受電動機であり，機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから，J E A G 4601に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき，基準地震動 S s により定まる設計用最大応答加速度（1．0ZPA） を設定する。

4.2 ポンプの動的機能維持評価

4．2．1 評価対象部位
J EAG4601に記載の立形斜流ポンプの動的機能維持評価に従い，以下の部位について評価を実施する。
a．基礎ボルト，ポンプ取付ボルト，原動機取付ボルト
b．コラムパイプ
c．ストッパ
d．軸受
「a．基礎ボルト，ポンプ取付ボルト，原動機取付ボルト」「b．コラムパイプ」 については，「3．固有値解析及び構造強度評価」に従い評価を行った「5．評価結果」にて設計用地震力に対して十分な構造強度を有していることを確認している。「c．ストッパ」については，最も荷重が作用する中間サポート基礎ボルト及び中間サポート取付ボルトについて，「3．6 サポート部の計算方法」に従い評価を行っ た「5．評価結果」にて設計用地震力に対して十分な構造強度を有していることを確認している。

以上より，本計算書においては，軸受を評価対象部位とする。

4．2．2 評価基準値
軸受については，メーカ規定の許容値を評価基準値として設定する。

4．2．3 評価方法
軸受については，多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプ の応答解析結果を用い，得られた軸受の発生荷重に係数 4.3 を乗じ評価する。

4． 3 原動機の動的機能維持評価

4．3．1 評価対象部位
J EAG4601の電動機の動的機能維持評価に従い，以下の部位について評価 を実施する。
a．取付ボルト
b．固定子
c．軸（回転子）
d．端子箱
e．軸受
f．固定子と回転子のクリアランス
g．モータフレーム
h．軸継手
このうち「a．取付ボルト」については，「3．固有値解析及び構造強度評価」
に従い評価を行った「5．評価結果」にて設計用地震力に対して十分な構造強度を有していることを確認している。

以上より，本計算書においては，固定子，軸（回転子），端子箱，軸受，固定子と回転子のクリアランス及びモータフレームを評価対象部位とする。なお，軸継手は ポンプ軸とモータ軸をリジットに接続するタイプであり，相対変位が発生しないこ と，および地震荷重については軸受で負担するため軸継手部には有意な応力が発生 しないことから，計算書の評価対象外とする。

4．3．2 評価基準値

軸（回転子）及びモータフレームの許容応力は，クラス 2 ポンプの許容応力状態 III ${ }_{A} S$ に準拠し設定する。固定子の許容応力は，クラス 2 支持構造物の許容応力状態 III ${ }_{A} \mathrm{~S}$ に準拠し設定する。端子箱の許容応力は，クラス 2 支持構造物の許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に準拠し設定する。また，軸受については，メーカ規定の軸受の定格荷重を，固定子と回転子間のクリアランスは，変位可能寸法を評価基準値として設定する。

4．3．3 記号の説明

高圧炉心スプレイ補機冷却海水ポンプ用原動機の動的機能維持評価に使用する記号を表4－1 に示す。

表4－1 記号の説明

記号	記号の説明	単位
A_{b} t	端子箱取付ボルトの断面積	mm^{2}
Af_{f}	モータフレームの断面積	mm^{2}
A_{p}	ピンの断面積	mm^{2}
As	軸の断面積	mm^{2}
C_{P}	ポンプ振動による震度	－
C_{H}	水平方向設計震度	－
C_{HT}	端子箱部の最大応答加速度による水平方向震度	－
C v	鉛直方向設計震度	－
D	固定子の外径	mm
ds	軸の径	mm
F ${ }_{k}$	固定子に生じる組合せ荷重	N
$\mathrm{F}_{\mathrm{b}} \mathrm{t}$	端子箱取付ボルトに作用する引張力	N
Fbita	端子箱取付面に対し左右方向の水平方向地震により作用する引張力	N
F bt，b	端子箱取付面に対し前後方向の水平方向地震により作用する引張力	N
F $\mathrm{kg}^{\text {g }}$	自重及び地震力により固定子に生じる荷重	N
F k_{t}	電動機の回転による荷重	N
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h_{t}	端子箱取付面から端子箱重心までの高さ	mm
$L_{1 i}$	重心と下側ボルト間の鉛直方向距離	mm
L 2 i	上側ボルトと下側ボルト間の鉛直方向距離	mm
L 3 i	左側ボルトと右側ボルト間の水平方向距離	mm
M_{f}	モータフレームに作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M s	軸に作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
N	電動機の回転速度	min^{-1}
n p	固定子取付ピンの本数	－
n t	端子箱取付ボルトの本数	－
$\mathrm{n}_{\mathrm{t} 1, \mathrm{y}}$	引張力がはたらく端子箱取付ボルト本数（y 方向）	－
$\mathrm{n}_{\mathrm{t}, \mathrm{l}} \mathrm{l}$	引張力がはたらく端子箱取付ボルト本数（z 方向）	－
P	電動機出力	kW
$Q_{b i}$	端子箱取付ボルトに生じるせん断力	N
$Q_{b t, a}$	水平方向地震によりボルトに作用するせん断力	N
$Q_{b t, ~ b ~}^{\text {b }}$	鉛直方向地震によりボルトに作用するせん断力	N
T m	電動機の回転による発生トルク	$\mathrm{N} \cdot \mathrm{m}$

記号	記号の説明	単位
Tma	電動機最大トルク	\％
T ${ }_{\text {s }}$	ポンプ運転による発生トルク	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{W}_{\text {c }}$	固定子コイル及びコア質量	kg
$\mathrm{W}_{\text {f }}$	モータフレーム質量	kg
W	軸の質量	kg
W_{t}	端子箱質量	kg
$\mathrm{Z}_{\text {f }}$	モータフレームの断面係数	mm^{3}
Z s	軸の断面係数	mm^{3}
$\sigma \mathrm{m}$	モータフレームに生じる組合せ応力	MPa
σ s	軸に生じる組合せ応力	MPa
$\sigma \mathrm{b}$ t	端子箱取付ボルトに生じる引張応力	MPa
$\sigma \mathrm{fm}$	モータフレームに生じる曲げ応力	MPa
$\sigma \mathrm{fw}$	自重及び鉛直方向地震力によりモータフレームに生じる応力	MPa
$\sigma \mathrm{sm}$	軸に生じる曲げ応力	MPa
σ s w	自重及び鉛直方向地震力により軸に生じる応力	MPa
$\tau \mathrm{k}$	固定子に生じるせん断応力	MPa
τ s	ポンプ運転によるねじり応力	MPa
$\tau \mathrm{bt}$	端子箱取付ボルトに生じるせん断応力	MPa

4．3．4 評価方法

（1）固定子
電動機の最大荷重（トルク）は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\frac{974 \cdot \mathrm{P} \cdot \mathrm{~g}}{\mathrm{~N}} \cdot \frac{\mathrm{~T}_{\mathrm{m} \mathrm{a}}}{100} \tag{4.3.4.1}
\end{equation*}
$$

電動機の回転による荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kt}}=\frac{\mathrm{T}_{\mathrm{m}}}{1 / 2 \cdot \mathrm{D}} \tag{4.3.4.2}
\end{equation*}
$$

自重及び鉛直方向地震力により発生する荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kg}}=\mathrm{W}_{\mathrm{c}} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{P}}+1\right) \tag{4.3.4.3}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{k}}=\sqrt{\mathrm{F}_{\mathrm{kt}}{ }^{2}+\mathrm{F}_{\mathrm{kg}}{ }^{2}} \tag{4.3.4.4}\\
& \tau_{\mathrm{k}}=\frac{\mathrm{F}_{\mathrm{k}}}{\mathrm{n}_{\mathrm{p}} \cdot \mathrm{~A}_{\mathrm{p}}} \tag{4.3.4.5}
\end{align*}
$$

（2）軸（回転子）
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{sm}}=\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{Z}_{\mathrm{s}}} \tag{4.3.4.6}
\end{equation*}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{sw}}=\frac{\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{s}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{4.3.4.7}
\end{equation*}
$$

c．ねじり応力

$$
\begin{align*}
& \mathrm{T}_{\mathrm{s}}=\frac{\mathrm{P}}{2 \pi / 60 \cdot \mathrm{~N}} \cdot 10^{6} \tag{4.3.4.8}\\
& \tau_{\mathrm{s}}=\frac{16 \cdot \mathrm{~T}_{\mathrm{s}}}{\pi \cdot \mathrm{~d}_{\mathrm{s}}^{3}} \quad . \tag{4.3.4.9}
\end{align*}
$$

d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\frac{1}{2} \cdot\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)+\frac{1}{2} \cdot \sqrt{\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)^{2}+4 \tau_{\mathrm{s}}^{2}} \tag{4.3.4.10}
\end{equation*}
$$

（3）端子箱
a．取付ボルトに作用する引張力

$$
\mathrm{F}_{\mathrm{bt}, \mathrm{a}}=
$$

$$
\frac{\mathrm{W}_{\mathrm{t}} \cdot\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{h}_{\mathrm{t}} \cdot \mathrm{~g}_{\mathrm{t} 1, \mathrm{z}} \cdot \mathrm{~L}_{2 \mathrm{i}}}{\mathrm{n}_{\mathrm{t}} \cdot\left(\mathrm{C}_{\mathrm{HT}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{h}_{\mathrm{t}} \cdot \mathrm{~g}} \mathrm{n}_{\mathrm{t} 1, \mathrm{y}} \cdot \mathrm{~L}_{3 \mathrm{i}} \quad
$$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} t, \mathrm{~b}}= \tag{4.3.4.11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{W}_{\mathrm{t}} \cdot\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{h}_{\mathrm{t}} \cdot \mathrm{~g}+\mathrm{W}_{\mathrm{t}} \cdot\left(\mathrm{C}_{\mathrm{HT}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{L}_{1 \mathrm{i}} \cdot \mathrm{~g}}{\mathrm{n}_{\mathrm{t} 1, \mathrm{z}} \cdot \mathrm{~L}_{2 \mathrm{i}}} \tag{4.3.4.12}
\end{equation*}
$$

$$
F_{b t}=M a x\left[\begin{array}{lll}
F_{b t}, & F_{b t,} \tag{4.3.4.13}
\end{array}\right]
$$

b．取付ボルトの引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b} \mathrm{t}}=\frac{\mathrm{F}_{\mathrm{bt}}}{\mathrm{~A}_{\mathrm{bt}}} \tag{4.3.4.14}
\end{equation*}
$$

c．取付ボルトに生じるせん断力

$$
\begin{align*}
& Q_{b t, a}=W_{t} \cdot\left(C_{\text {нT }}+C_{P}\right) \cdot g \tag{4.3.4.15}\\
& Q_{b t, b}=W_{t} \cdot\left(1+C_{v}+C_{p}\right) \cdot g \tag{4.3.4.16}\\
& Q_{b t}=\sqrt{Q_{b t, a}^{2}+Q_{b t, b}^{2}} \tag{4.3.4.17}
\end{align*}
$$

d．取付ボルト 1 本あたりにはたらくせん断応力

$$
\begin{equation*}
\tau_{b t}=\frac{Q_{b t}}{n_{t} \cdot A_{b t}} \tag{4.3.4.18}
\end{equation*}
$$

（4）軸受
多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果 を用い，軸受の発生荷重を評価する。
（5）固定子と回転子のクリアランス
多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果 を用い，固定子一軸（回転子）の相対変位が固定子一軸（回転子）間空隙寸法を下回ることを確認する。
（6）モータフレーム
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{fm}}=\frac{\mathrm{M}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{f}}} \tag{4.3.4.19}
\end{equation*}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{fw}}=\frac{\left(1+\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{f}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{f}}} \tag{4.3.4.20}
\end{equation*}
$$

c．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{m}}=\sigma_{\mathrm{fm}}+\sigma_{\mathrm{fw}} \tag{4.3.4.21}
\end{equation*}
$$

5．評価結果
5.1 設計基準対象施設としての評価結果

高圧炉心スプレイ補機冷却海水ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は基準地震動 S s を下回つており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ補機冷却海水ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分 な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
【高圧炬ふスプレイ補機冷却海水ポンプの耐震性についての計算結果】 1．設計基淮対象施設
1.1 構造强度評価
1．1．1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾牲設計用地震動S d又は静的震度		基淮地震動S s		ポンブ振動 による震度	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度$\left({ }^{(} \mathrm{C}\right)$	最高使用圧力 （ MPa ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				
高王炬心スプレイ補幾洽却海水 ポンプ	S	$\begin{gathered} \begin{array}{c} \text { 海水ポンプ室 } \\ \text { (禣幾ポンプエリア) } \\ \text { 0. P. 3.0*1 } \end{array} \end{gathered}$	0.074	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－${ }^{2}$	－＊	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=1.83 \\ \text { 又は*3 } \end{gathered}$	$\mathrm{C}_{\mathrm{v}}=1.94$		50	50	0． 78

[^1]

O 2 （5）VI－2－5－7－2－3 R 2

	（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）	
	M	
部 材	弾性設計用地震動S d又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \mathrm{S} \text { s } \end{gathered}$
コラムパイプ		
己＊ $\mathrm{IIHS}_{\text {S }}$ に	ては，基淮地震動S	評価する。

1．1．3 計筧数値

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動S d又は静的震度	基準地震動 S s	弾生設計用地震動S d又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基淮地震動 S s
基礎ボルト $(i=1)$						
ポンプ取付ボルト $(\mathrm{i}=2)$						
原動機取付ボルト $(\mathrm{i}=3)$						

[^2]（3）サポート取付ボルトに作用する力
（単位：N）

注記 $*: \mathrm{II}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

1．1．4 結論

> | 1．1．4．1 固有周期 | |
| :---: | :--- |
| モード $: ~$ | 固有周期 |
| 水平 1 次 | $\mathrm{T}_{\mathrm{H} 1}=0.074$ |
| 鉛直 1 次 | $\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下 |

> | 1．1．4．1 图位有周期 $: ~$ | ） |
| :---: | :---: |
| モード有周期 | |
| 水平 1 次 | $\mathrm{T}_{\mathrm{H} 1}=0.074$ |
| 鉛直 1 次 | $\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下 |

> $\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下
> － 0.07

1．1．4．2 ボルトの応力（単位： MPa ）							1．1．4．3 コラムパイプの応力				（単位： MPa ）		
部 材	材 料	応力	弾性設計用地震動S d又は静的震度		基準地震動S s		部 材	材 料		膜応力			
					部 材	材 料		算出応力	許容応力				
			算出応力	許容応力			算出応力	許容応力	コラムパイプ		弾性設計用地震動 S d	$\sigma=62^{*}$	$\mathrm{Sa}=199$
基礎ボルト$(i=1)$		引張り	$\sigma_{\mathrm{b} 1}=34^{* 2}$	$f_{\text {t }{ }_{\text {1 }}=153 * 1}$	$\sigma_{\mathrm{b} 1}=34$	$f_{\text {t }{ }^{1} 1}=153^{* 1}$		又は静的震度		$0=62$	S a $=199$		
		せん断	$\tau_{\mathrm{b} 1}=13^{* 2}$	$f_{\text {sb } 1}=118$	$\tau_{\mathrm{b}_{1}}=13$	$f_{\text {sb } 1}=118$		基準地震動S s		$\sigma=62$	S a $=306$		
ポンプ取付ボルト （ $\mathrm{i}=2$ ）		引張り	$\sigma_{\mathrm{b} 2}=21^{* 2}$	$f_{\mathrm{ts} 2}=505^{* 1}$	$\sigma_{\mathrm{b}_{2}}=21$	$f_{\mathrm{ts} 2}=505^{* 1}$	すべて許容応力以下である。		注記＊：基淮地震動S s こよる算出値				
		せん断	$\tau_{\mathrm{b} 2}=4^{* 2}$	$f_{\mathrm{sb} 2}=389$	$\tau_{\mathrm{b} 2}=4$	$f_{\text {s b } 2}=389$							
原動機取付ボルト$(\mathrm{i}=3)$		引張り	$\sigma_{\text {b } 3}=19 * 2$	$f_{\mathrm{ts} 3}=505 * 1$	$\sigma_{\text {b } 3}=19$	$f_{\mathrm{ts} 3}=505^{* 1}$							
		せん断	$\tau_{\mathrm{b} 3}=9 * 2$	$f_{\text {s b } 3}=389$	$\tau_{\text {b } 3}=9$	$f_{\text {s b } 3}=389$							
すべて許容応力以下である。		注記 $* 1: f_{\mathrm{t} \mathrm{si}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{b} \mathrm{i}}, f_{\mathrm{toi}}\right]$ より算出 ＊2 ：基淮地震動 S s による算出値											

機器名称	形式		定格容量 （ $\mathrm{m}^{3} / \mathrm{h}$ ）		据付場所及び床面高さ （m）		固有周期（s）				基淮地震動S s			ポンフ振動 による震度	最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$		周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）					
			水平方向	鉛直方向		水平方向設計震度		鋁直方向設計震度														
高圧烼心スプレイ補幾泠却海水ポンプ	立形斜流ポンプ				250	海水ポンプ室 （補機ポンプエリア） 0．P．3．0＊		0． 074		$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$		$\begin{gathered} \mathrm{C}_{\mathrm{H}}=1.53 \\ \text { 又は*2 } \end{gathered}$	$\mathrm{C}_{\mathrm{V}}=1.61$			50		50				
$\begin{array}{r} \text { 注記 } * 1 \text { : 基淮床レベル } \\ \quad * 2 \text { : 基漼地震動 } \end{array}$	$\begin{aligned} & \text { 虏示。 } \\ & \text { sに基づ } \end{aligned}$	計用床	答曲線	上り得ら			そる値															
	形式		$\begin{aligned} & \text { 出力 } \\ & (\mathrm{kW}) \end{aligned}$		据付場所及び 床面高さ （m）		固有周期（s）				基淮地震動S s			ポンブ振動 による震度	端子箱部の最大応答加速度 による水平方向震度				最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$		
器名称			水平方向	鉛直方向		水平方向設計震度	鉛直方向設計震度															
高圧烼心スプレイ補幾冷却烸水ポンプ用原動機	立形ころがり㫎電動機				60	$\begin{gathered} \text { 海水ポンプ室 } \\ \text { (禣機ポンプエリア) } \\ \text { 0. P. 3.0* } \end{gathered}$		0． 074		$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$		$\begin{gathered} \mathrm{C}_{\mathrm{H}}=1.53 \\ \text { 又は } 2 \mathrm{C} \end{gathered}$		$\mathrm{C}_{\mathrm{V}}=1.61$		$\mathrm{C}_{\text {HT }}=1.53$				－	50	
注記 $* 1$ ：基準床レベルを示す。 ＊2：基淮地震動S s に基づく設計用床応答曲線より得られる値 1．2．2 機器要目																						
（1）固定子									（2）軸（回転子）													
部 材	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{~min}^{-1}\right) \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{ma}} \\ & (\%) \end{aligned}$	$\begin{gathered} \hline \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{p}} \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{W}_{\mathrm{c}} \\ & (\mathrm{~kg}) \end{aligned}$	n_{p}	部 材				$\begin{gathered} \mathrm{M}_{\mathrm{s}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{s}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{aligned} & \mathrm{W}_{\mathrm{s}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}} \\ & \left(\mathrm{~m}^{2}\right)^{2} \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{~min}^{-1}\right) \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{s}} \\ & (\mathrm{~mm}) \end{aligned}$						
固定子	1500	200	430	187.5	200	8	軸				$\xrightarrow{7.333 \times} 10^{4}$	$\begin{gathered} 1.633 \times \\ 10^{4} \end{gathered}$	59	$2.376 \times$ 10^{3}	1500	55						
（3）端子箱												（4）モータフレーム										
部 材	$\begin{aligned} & \mathrm{W}_{\mathrm{t}} \\ & (\mathrm{~kg}) \end{aligned}$	n_{t}	$\mathrm{n}_{\mathrm{t} 1, \mathrm{y}}$	$\mathrm{n}_{\mathrm{t} 1, \mathrm{z}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{bt}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{bt}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{L}_{1 \mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$			$\begin{aligned} & \mathrm{L}_{3 \mathrm{i}} \\ & (\mathrm{~nm}) \end{aligned}$	h_{t} （mm）	部 材			$\begin{gathered} \mathrm{M}_{\mathrm{f}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{f}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{aligned} & \mathrm{W}_{\mathrm{f}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{f}} \\ & \left(\mathrm{man}^{2}\right) \end{aligned}$				
端子箱	18	4	2	2	78.5	$\frac{5.534 x}{10^{2}}$	110	110	10	110	250	モータフレーム			3． $642 \times$	$2.259 \times$ 10^{6}	190	2．097 10^{4}				

1．2．3 結論

1．2．3．1 機能確認済加速度との比較			
		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
ポンプ	水平方向	3.37	10.0
	鉛直方向	1.61	1.0
原動機	水平方向	1.53	2.5
	鉛直方向	1.61	1.0

注記＊：基準地震動S s により定まる応答加速度とする。なお，水平方向の機能維持評価用加速度はコラム先端（原動機にあっては軸受部）の応答加速度又は設計用最大応签加速度（1．0•ZPA）のいずれか大きい方を，鈖直方向は設計用最大応答加速度（ $1.0 \cdot \mathrm{ZPA})$ を設定する。 ポンプは，鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。
原動機は，鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。
1．2．3．2 立形斜流ポンプの動的機能維持評価
1．2．3．2．1 代表評価項目の評価
基礎ボルト，ポンプ取付ボルト，コラムパイプ及びストッパについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
1．2．3．2．2 上記以外の基本評価項目の評価

すべて許容値以下である。
1．2．3．3 立形ころがり軸受電動機の動的機能維持評価
1．2．3．3．1 代表評価項目の評価
原動機取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
（単位： MPa ）
固定子の詊価

評価部位	応力	発位： MPa ）	
固定子	せん断	5	許容応力

すべて許容応力以下である。
1．2．3．3．2．1

1．2．3．3．2．2 軸（回転子）の評価

軸（回転子）の評価
評価部位
軸（回転子）
単位： MPa ）

すべて許容応力以下である。

軸受の評価
（評価部位
上部軸受
下位：N）
下部軸受
発生荷重

すべて許容荷重以下である。
\＃

すべて許容変位量以下である。
1．2．3．3．2．6 モータフレームの評価

モータフレームの評価	（単位： MPa ）	
評価部位	発生応力	許容応力
モータフレーム	3	45

モータフレームの評価	（単位： MPa ）	
評価部位	発生応力	許容応力
モータフレーム	3	45

すべて許容応力以下である。
1．2．3．3．2．5
\dot{j}
\dot{j}
\dot{j}
\dot{i}

\qquad

1．3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（続き）

節点番号	節点座標（mm）		
	x	y	z
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （mm ${ }^{2}$ ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
1	1－2	111		6． 362×10^{5}
2	2－3	111		6． 362×10^{5}
3	3－4	111		6． 362×10^{5}
4	4－5	111		6.362×10^{5}
5	5－6	111		6． 362×10^{5}
6	6－7	111		6.362×10^{5}
7	7－8	111		6． 362×10^{5}
8	8－9	111		6． 362×10^{5}
9	9－10	111		6.362×10^{5}
10	10－11	111		6.362×10^{5}
11	11－12	111		6.362×10^{5}
12	12－13	111		6.362×10^{5}
13	13－14	111		6． 362×10^{5}
14	14－15	111		6． 362×10^{5}
15	15－16	111		6． 362×10^{5}
16	16－17	111		6.362×10^{5}
17	17－18	111		6． 362×10^{5}
18	18－19	111		6． 362×10^{5}
19	19－20	111		6． 362×10^{5}
20	20－21	111		6． 362×10^{5}
21	21－22	111		2． 198×10^{5}
22	22－23	112		3.220×10^{6}
23	23－24	112		5.970×10^{6}
24	24－25	112		1． 180×10^{6}
25	26－27	111		1.554×10^{8}
26	27－28	111		4.632×10^{8}
27	28－29	111		4.632×10^{8}
28	29－30	111		6.287×10^{7}
29	30－31	111		6.287×10^{7}
30	31－32	111		6.287×10^{7}
31	32－33	111		6.287×10^{7}
32	33－34	111		6.287×10^{7}
33	34－35	111		6.287×10^{7}
34	35－36	111		6.287×10^{7}
35	36－37	111		6.287×10^{7}
36	37－38	111		6.287×10^{7}
37	38－39	111		6.287×10^{7}
38	39－40	111		6.287×10^{7}
39	40－41	111		6.287×10^{7}
40	41－42	111		6． 287×10^{7}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	$\begin{gathered} \text { 断面積 } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
41	42－43	111		6． 287×10^{7}
42	43－44	111		6.287×10^{7}
43	44－45	111		6.287×10^{7}
44	45－46	111		6.287×10^{7}
45	46－47	111		6.287×10^{7}
46	47－48	111		6.287×10^{7}
47	48－49	111		2.546×10^{6}
48	50－51	113		3.588×10^{9}
49	51－52	113		2.769×10^{9}
50	52－53	113		1． 861×10^{9}
51	53－54	113		2． 769×10^{9}
52	54－55	113		3.677×10^{9}
53	55－56	114		4.540×10^{8}
54	56－57	114		4.540×10^{8}
55	57－58	114		8． 820×10^{8}
56	58－59	114		8.820×10^{8}
57	59－60	114		8． 820×10^{8}
58	60－61	114		3.520×10^{8}
59	61－62	114		3.520×10^{8}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数
2	29	
5	32	
7	34	
9	36	
11	38	
13	40	
15	42	
18	45	
21	48	
23	56	
24	61	
47	51	
31	-	
37	-	
50	-	
50	-	

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

（続き）

節点番号	質量（kg）
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縦弹性係数 （ MPa ）	質量密度 （kg／mm ${ }^{3}$ ）	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
111	50			0.3		ポンプ
112	50			0.3		原動機
113	50			0.3		ポンプ
114	50			0.3		原動機

【高圧灲心スプレイ補機冷却烸水ポンプの耐震性についての計算結果】 2．重大事故等対処設備
2.1 構造強度評価
2．1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基準地震動S s		ポンブ振動 による震度	最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用圧力 （ MPa ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				
高圧灲心スプレイ補機冷却海水 ポンプ	常設／防止 （DB 拡張）		0.074	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=1.83 \\ \text { 又は } 22 \end{gathered}$	$\mathrm{C}_{\mathrm{V}}=1.94$		50	50	0． 78

注記 $* 1$ ：基漼床レベルを示す。
$\quad * 2$ ：基漼地震動 S s に基づく設計用床応答曲線より得られる値

コラムパイプ					
部 材	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{D}_{\mathrm{C}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$
コラムパイプ					

注記 $*: ~$ 最高使用温度で算出

部 材	m_{i} (kg)	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{bi}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n_{i}	n_{ff}	$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$
基礎ボルト $(i=1)$					6	6	－				
ポンプ取付ボルト $(\mathrm{i}=2)$					16	16	3． 820×10^{5}				
原動機取付ボルト $(\mathrm{i}=3)$					8	8	3． 820×10^{5}				

注記 $* 1$ ：最高使用温度で算出
＊2：周囲環境温度で算出

2．1．3 計算数値
（1）ボルトに作用する力

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動 S d又は静的震度	$\begin{gathered} \hline \text { 基漼地震動 } \\ \text { S s } \end{gathered}$	弾性設計用地震動 Sd又は静的震度	$\begin{gathered} \hline \text { 基淮地震動 } \\ \text { S s } \end{gathered}$	弾性設計用地震動 Sd又は静的震度	$\begin{gathered} \hline \text { 基淮地震動 } \\ \mathrm{S} \text { 號 } \\ \hline \end{gathered}$
基礎ボルト $(\mathrm{i}=1)$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \end{gathered}$						
原動機取付ボルト $(\mathrm{i}=3)$						

（単位：N）

2．1．4．1 图有周位： s ）	
モード	固有周期
水平 1 次	$\mathrm{T}_{\mathrm{H} 1}=0.074$
鉛直 1 次	$\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下

2．1．4 結論

2．1．4．3 コラムパイプの応力			（単位： MPa ）	
		一次一般摸応力		
部 材	材		算出応力	許容応力
コラムパイプ		弾性設計用地震動S d又は静的震度	－	－
		基漼地震動S s	$\sigma=62$	S a $=306$

すべて許容応力以下である。
（弾位： MPa ）

部 材	材 料	応 力	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	－	－	$\sigma_{\text {b } 1}=34$	$f_{\mathrm{ts} 1}=184^{*}$
$(\mathrm{i}=1)$		せん断	－	－	$\tau_{\mathrm{b} 1}=13$	$f_{\text {s b } 1}=142$
ポンプ取付ボルト		引張り	－	－	$\sigma_{\mathrm{b} 2}=21$	$f_{\mathrm{ts} 2}=505^{*}$
$(\mathrm{i}=2)$		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$f_{\mathrm{s} \mathrm{b} 2}=389$
原動機取付ボルト		引張り	－	－	$\sigma_{\text {b } 3}=19$	$f_{\mathrm{ts} 3}=505^{*}$
$(\mathrm{i}=3)$		せん断	－	－	$\tau_{\mathrm{b} 3}=9$	$f_{\mathrm{s} \text { b }{ }^{\text {2 }}}=389$
注記＊：$f_{\mathrm{ts} \mathrm{i}}=\mathrm{Min}[$				$\left[1.4 \cdot f_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{b} \mathrm{i}}, f_{\mathrm{toi}}\right]$		

（単位： MPa ）

部 材				弾性設計用地震動S d 又 は 静的震度		基淮地震動S s	
				算出応力	許容応力	算出応力	許容応力
第一中間サポート基礎ボルト $(\mathrm{j}=1)$			せん断	－	－	$\tau_{\mathrm{sb} 1}=20$	$f_{\text {s s b } 1}=142$
第一中間サポート取付ボルト $(\mathrm{j}=2)$			せん断	－	－	$\tau_{\mathrm{sb} 2}=13$	$f_{\text {s s b } 2}=142$
第二中間サポート基礎ボルト $(\mathrm{j}=3)$			せん断	－	－	$\tau_{\text {sb } 3}=18$	$f_{\text {s s b } 3}=142$
第二中間サポート取付ボルト $(\mathrm{j}=4)$			せん断	－	－	$\tau_{\mathrm{sb} 4}=11$	$f_{\text {s s b } 4}=142$

すべて許容値以下である。

機器名称	形式	定格容量$\left(\mathrm{m}^{3} / \mathrm{h}\right)$	据付場所及び床面高さ （m）	固有周期（s）		基準地震動S s		ポンブ振動 による震度	最高使用 温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方向	鈖直方向	水平方向設計震度	鈖直方向設計震度			
高圧灲心スプレイ補機彾却海水ポンプ	立形斜流 ポンプ	250	海水ポンプ室 （補機ポンプエリア） 0．P．3．0＊	0． 074	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{gathered} C_{\mathrm{H}}=1.53 \\ \text { 又は } * 2 \end{gathered}$	$\mathrm{C}_{\mathrm{V}}=1.61$		50	50

[^3]| 機器名称 | 形式 | 出力
 （kW） | 据付場所及び床面高さ
 （m） | 固有周期（s） | | 基漼地震動S s | | ポンプ振動 による震度 | 端子箱部の最大応答加速度
 による水平方向震度 | 最高使用
 温度
 （ $\left.{ }^{\circ} \mathrm{C}\right)$ | 周囲環境
 温度
 （ $\left.{ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 水平方向 | 鉛直方向 | 水平方向設計震度 | 鉛直方向設計震度 | | | | |
| 高圧烼心スプレイ補機冷却海水ポンプ用原動機 | 立形ころがり軸受電動機 | 60 | | 0． 074 | $\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$ | $\begin{gathered} C_{H}=1.53 \\ \text { 又は*2 } \end{gathered}$ | $\mathrm{C}_{\mathrm{V}}=1.61$ | | $\mathrm{C}_{\mathrm{HT}}=1.53$ | － | 50 |

[^4]（1）固定子

部 材	$\begin{gathered} \mathrm{N} \\ \left(\min ^{-1}\right) \end{gathered}$	T_{ma} （\％）	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{p}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{W}_{\mathrm{c}} \\ & (\mathrm{~kg}) \end{aligned}$	n_{p}	部 材	$\begin{gathered} \mathrm{M}_{\mathrm{s}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{s}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{aligned} & \mathrm{W}_{\mathrm{s}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \left(\mathrm{~min}^{-1}\right) \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{s}} \\ & (\mathrm{~mm}) \end{aligned}$
固定子	1500	200	430	187.5	200	8	軸	$\frac{7.333 \times}{10^{4}}$	$1.633 \times$ 10^{4}	59	$2.376 \times$ 10^{3}	1500	55

$\begin{gathered} \mathrm{M}_{\mathrm{f}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{f}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{aligned} & \mathrm{W}_{\mathrm{f}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{f}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$
$\frac{3.642 \times}{10^{6}}$	$2.259 \times$ 10^{6}	190	2． $097 \times$
林囲みの内容は商業機密の観点から公開でき			

2．2．3．1 機能確忍済加速度との比較			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能碓認済力加速度	
ポンプ	水平方向	3.37	10.0	
	鈖直方向	1.61	1.0	
原動機	水平方向	1． 53	2.5	
	鉛直方向	1.61	1.0	
：基淮地震動 s sにより定まる応答加速度とする。なお，水平方向の機能維持評価用加速度はコラム先端（原動機にあっては軸受部）の				
応答加速度又は設計用最大応答加速度（ $1.0 \cdot \mathrm{ZPA})$ のいずれか大きい方を，鉛直方向は設計用最大応答加速度（ $1.0 \cdot \mathrm{ZPA)}$ を設定する。				
ポンプは，鉛直方向の機能維持評価用加速度が機能碓認済加速度を超えるため，以下の項目について評価する。原動機は，鉛直方向の機能維持評価用加速度が機能碓認済加速度を超えるため，以下の項目について評価する。				

2．2．3．2 立形斜流ポンプの動的機能維持評価
2．2．3．2．1 代表評価項目の評価
基礎ボルト，ポンプ取付ボルト，コラムパイプ及びストッパについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
2．2．3．2．2 上記以外の基本評価項目の評価
すべて許容値以下である。
2．2．3．3 立形ころがり軸受電動機の動的機能維持評価
2．2．3．3．1 代表評価項目の評価
（単位： MPa ）

評価部位	応力	発生応力	許容応力
固定子	せん断	5	121

すべて許容応力以下である。
2．2．3．3．2．1
（単位：MPa）

評価部位	発生応力	許容応力
軸（回転子）	16	474

評価部位 \qquad
軸受の評価
固定子と回転子のクリアランスの評価（単位：mm）

評価部位
固定子と回転子のクリアランス

固定子と回転子のクリアランス	0	0.8
すべて許容変位量以下である。		

2．2．3．3．2．5
2．2．3．3．2． 4

固定子と回転子のクリアランス	0	0.8
すべて許容変位量以下である。		

－

すべて許容荷重以下である。

[^5]2．2．3．3．2．2 軸（回転子）の評価
2．2．3．3．2．3

すべて許容応力以下である。
\qquad

2.3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

	(続き)			
	節占番号		座標	
	即点番号	X	y	Z
	41			
	42			
	43			
	44			
	45			
	46			
	47			
	48			
	49			
	50			
	51			
	52			
	53			
\sim	54			
0	55			
	56			
$\stackrel{1}{1}$	57			
1	58			
＋10	59			
5	60			
	61			
（1）	62			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
1	1－2	111		6． 362×10^{5}
2	2－3	111		6.362×10^{5}
3	3－4	111		6． 362×10^{5}
4	4－5	111		6． 362×10^{5}
5	5－6	111		6． 362×10^{5}
6	6－7	111		6． 362×10^{5}
7	7－8	111		6． 362×10^{5}
8	8－9	111		6． 362×10^{5}
9	9－10	111		6.362×10^{5}
10	10－11	111		6． 362×10^{5}
11	11－12	111		6． 362×10^{5}
12	12－13	111		6.362×10^{5}
13	13－14	111		6.362×10^{5}
14	14－15	111		6． 362×10^{5}
15	15－16	111		6． 362×10^{5}
16	16－17	111		6． 362×10^{5}
17	17－18	111		6． 362×10^{5}
18	18－19	111		6． 362×10^{5}
19	19－20	111		6． 362×10^{5}
20	20－21	111		6． 362×10^{5}
21	21－22	111		2． 198×10^{5}
22	22－23	112		3.220×10^{6}
23	23－24	112		5.970×10^{6}
24	24－25	112		1.180×10^{6}
25	26－27	111		1.554×10^{8}
26	27－28	111		4.632×10^{8}
27	28－29	111		4.632×10^{8}
28	29－30	111		6.287×10^{7}
29	30－31	111		6.287×10^{7}
30	31－32	111		6.287×10^{7}
31	32－33	111		6.287×10^{7}
32	33－34	111		6.287×10^{7}
33	34－35	111		6.287×10^{7}
34	35－36	111		6.287×10^{7}
35	36－37	111		6.287×10^{7}
36	37－38	111		6.287×10^{7}
37	38－39	111		6.287×10^{7}
38	39－40	111		6． 287×10^{7}
39	40－41	111		6.287×10^{7}
40	41－42	111		6． 287×10^{7}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
41	42－43	111		6.287×10^{7}
42	43－44	111		6.287×10^{7}
43	44－45	111		6.287×10^{7}
44	45－46	111		6.287×10^{7}
45	46－47	111		6.287×10^{7}
46	47－48	111		6.287×10^{7}
47	48－49	111		2． 546×10^{6}
48	50－51	113		3.588×10^{9}
49	51－52	113		2． 769×10^{9}
50	52－53	113		1． 861×10^{9}
51	53－54	113		2． 769×10^{9}
52	54－55	113		3.677×10^{9}
53	55－56	114		4.540×10^{8}
54	56－57	114		4.540×10^{8}
55	57－58	114		8.820×10^{8}
56	58－59	114		8.820×10^{8}
57	59－60	114		8． 820×10^{8}
58	60－61	114		3.520×10^{8}
59	61－62	114		3.520×10^{8}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
2	29		
5	32		
7	34		
9	36		
11	38		
13	40		
15	42		
18	45		
21	48		
23	56		
24	61		
47	51		
31	-		
37	-		
50	-		
50	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

（続き）
節点番号 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

（5）材料物性値

材料番号	温度 （ ${ }^{\circ} \mathrm{C}$ ）	縦弹性係数 （ MPa ）	質量密度 $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
111	50			0.3		ポンプ
112	50			0.3		原動機
113	50			0.3		ポンプ
114	50			0.3		原動機

[^0]: 注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

[^1]: 注記＊1：

[^2]: 注記＊：$\Pi_{A} S$ については，基淮地震動S s で評価する。

[^3]: 主記＊1：基淮床レベルを示す。

[^4]: づく設計用床店答曲線より得られる値

 2．2．2 機器要目

[^5]: \qquad

 $$
 2.2 .3 .3 .2 .6
 $$

 $$
 \begin{aligned}
 & \text { モータフレームの評価 } \\
 & \begin{array}{|c|c|c|}
 \hline \text { 評価部位 } & \text { 単位: } \mathrm{MPa} \text {) } \\
 \hline \text { モータフレー応力 } & \text { 許容応力 } \\
 \hline \text { モーム } & 3 & 45 \\
 \hline
 \end{array}
 \end{aligned}
 $$

 すべて許容心力以下である。

 > すべて許容応力以下である。

