| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

補足－600－40－30 容器のスロッシングによる影響評価について

2021年10月
東北電力株式会社

1．概要

容器の内包流体には，水平方向の地震によりスロッシングが発生し，地震のエネルギーが分散される。そ のため，容器胴板及び基礎ボルトの耐震強度評価は，スロッシングを考慮して内包流体を地震により摇動し ない部分（固定質量）と揺動する部分（自由質量）に分けて評価するより，スロッシングを考慮せずに内包流体全てを固定質量で評価する方が保守的な評価結果となる。したがって，今回工認において申請している容器の多くは，内包流体を固定質量として評価しているが，復水貯蔵タンクは内包流体を自由質量と固定質量に分けてスロッシング荷重を算出している〈参考1〉。

さらに，容器の屋根においては，スロッシングで内包流体が屋根に到達する場合，スロッシングによる荷重が作用する。そこで，スロッシングで内包流体が容器の屋根に与える影響について評価する。

2．評価対象の選定
スロッシングによる影響評価の対象は，耐震重要度分類 S クラス及び重大事故等対処設備から，スロッ シングによる溢水等のおそれがあるものを選定する。なお，添付書類「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」において，地震時に溢水源とする容器（基準地震動S s に対する耐震性を確認してい ない機器）は，本評価の対象外とする。表1に影響評価の対象とした容器を示す。

表1影響評価の対象容器（1／2）

名称	形状	而撔重要度分類	設備分類	内径 （mm）	$\begin{aligned} & \text { 全高 } \\ & (\mathrm{mm}) \end{aligned}$	胴高さ （mm）	液位 （mm）
原子炉補機泠却水サ ージタンク（A）（B）	平底たて置き円筒形容器	S	常設而震／防止 常設／緩和 常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	2500	3171	3147	2955
高王炬心スプレイ補幾椧却水サージタンク	平底たて置き円筒形容器	S	常設／防止 （DB 拡張）	1200	2041	2017	1835
ほう酸水注入系貯蔵 タンク	平底たて置き円筒形容器	S	常設而震／防止常設／緩和	2750	3690	3669	3405
復水貯蔵タンク	平底たて置き 円筒形容器	B	常設而震／防止 常設／緩和 常設／防止 （DB 拡張）	20000	12433	11800	10100
ほうら酸水注入系テス トタンク	四脚たて置き円筒形容器	C	－	965	1356	1350	1260.8

表1 影響平価の対象容器（2／2）

名称	形状	耐震重要度分類	設備分類	内径 （mm）	$\begin{aligned} & \text { 全高 } \\ & \text { (mm) } \end{aligned}$	胴高さ （mm）	$\begin{gathered} \text { 液位 } \\ (\mathrm{mm}) \end{gathered}$
CUW プリコートタンク	平底たて置き 円筒形容器	B	－	965	1409	1397	1169.3
FPC プリコートタンク	平底たて置き 円筒形容器	B	－	965	1409	1397	1169.3
HNCW サージタンク	四脚たて置き 円筒形容器	C	－	1400	1678.5	1660.5	1508
所内温水系サージタンク	平底たて置き 円筒形容器	C	－	1200	1839	1821	1643
DG 燃料油ドレンタンク （A）（B）	平底たて置き 円筒形容器	C	－	600	712	700	650
HPCSDG 燃料油ドレンタ ンク	平底たて置き円筒形容器	C	－	600	712	700	650
HPCSDG 潤滑油補給タンク	平底たて置き円筒形容器	C	－	1200	1760.5	1748.5	1591.5
RW 制御室 HVAC 冷水供給設備膨張タンク	平底たて置き矩形容器	C	－	$\begin{gathered} \hline \text { 矩形 } \\ 1100 \times 1100 \end{gathered}$	1207	1200	1100
ガスタービン発電設備燃料小出槽	平底たて置き円筒形容器	－	常設耐震／防止常設／緩和	1009	810	800	750
緊急時対策所軽油タンク	平底たて置き円筒形容器	－	常設耐震／防止常設／緩和	2200	3041	3020	2820

3．評価方法

3.1 評価方針

容器のスロッシングについては，地震動の増加により波高が大きくなり，波面が屋根に衝突すること で屋根に荷重が作用するが，波面衝突によってスロッシング形状の乱れが大きくなり，衝突圧力が抑え られる傾向がある。この波面衝突による荷重は，内包流体の上部（自由質量）が屋根に沿って上昇する ことによるものである。
一方，スロッシングによる波は，衝突により砕けること，発生する荷重のうち瞬間的な荷重は，屋根 の変形に与える影響は限定的であることが参考 2 （電力共同研究「円筒形タンクのスロッシング評価」） に示されている。
また，参考 3 （容器構造設計指針•同解説）より容器の屋根の角度が 5° より小さい場合，固定屋根に よるスロッシングの影響が拘束され，スロッシングを起こした内包流体が上昇できず腰掛圧が生じない ことが示されているとともに，参考4（固定屋根を有する円筒液体タンクの耐震設計（第 2 報））におい ても，腰掛圧は受圧点における最高液位からの静水圧におおよそ等しいので，平板及び平板に近い屋根 の場合は無視してよいと示されている。

上記を踏まえ，下記の手順により容器のスロッシング評価による影響について確認する。評価フロー を図1に示す。
（1）屋根に波高が到達するか＊1。
（2）屋根に角度があるか＊2。
③ 波高が屋根に到達する場合は，解析等による評価を実施。

注記 $* 1$ ：屋根に波高が到達しない場合は，（2）以降の評価を対象外とする。 ＊ 2 ：屋根に角度がない場合には，（3）以降の評価の対象外とする。

図 1 容器のスロッシングによる影響評価フロー

4．影響評価

図 1 に示す評価フローに基づく各評価の結果を以下に示す。

4.1 屋根への波高の到達について（評価フロー①）

屋根への波高の到達の有無に係る評価結果を表 2 に示す。表 2 に示すとおり，復水貯蔵タンクについ ては，屋根へ波高が到達しない。よって，復水貯蔵タンクについては，スロッシングによる影響は無し と判断し，その他の容器について，評価フローに基づき容器の屋根角度の有無について評価を実施する。

表2 屋根への波高の到達の有無に係る評価結果

	$\begin{gathered} \text { 液位 } \\ \mathrm{H}[\mathrm{~m}] \end{gathered}$	液位から屋根ま での高さ $\zeta[\mathrm{m}]$	スロッシング の波高 $\zeta_{s}[\mathrm{~m}]$	屋根への波高 到達の有無 （有：$\zeta \leqq \zeta_{\mathrm{s}}$ ） （無：$\zeta>\zeta$ ）
原子炉補機冷却水サージ タンク （A）（B）	2． 955	0． 192	1． 66	有
高圧炉心スプレイ補機椧却水サージタンク	1． 835	0． 182	0.78	有
ほう酸水注入系貯蔵タンク	3.405	0． 264	1． 79	有
復水貯蔵タンク	10． 100	1． 700	1． 47	無
ほう酸水注入系 テストタンク	1． 2608	0． 089	0.63	有
$\begin{gathered} \hline \text { CUW プリコート } \\ \text { タンク } \end{gathered}$	1． 1693	0． 227	0.60	有
$\begin{gathered} \hline \text { FPC プリコート } \\ \text { タンク } \end{gathered}$	1． 1693	0.227	0.62	有
$\begin{gathered} \text { HNCW サージ } \\ \text { タンク } \end{gathered}$	1． 508	0． 152	0.94	有
所内温水系サージタンク	1． 643	0． 175	0.80	有
DG 燃料油ドレンタンク （A）（B）	0.65	0.05	0.49	有
HPCSDG 燃料油 ドレンタンク	0.65	0.05	0． 49	有
HPCSDG 潤滑油補給タンク	1． 5915	0． 157	0.77	有
RW 制御室 HVAC 冷水供給設備膨張タンク	1.1	0.1	0.68	有
ガスタービン発電設備燃 料小出槽	0.75	0.05	0.58	有
緊急時対策所軽油タンク	2． 82	0.2	1． 20	有

注記＊：復水貯蔵タンクについては，ハウスナー理論（USAEC，Nuclear Reactors and Earthquakes， TID－7024，Chapter 6，Appendix F，1963．8），その他の容器については，速度ポテンシャル理論 に基づき評価。復水貯蔵タンクの評価内容については，添付書類「VI－2－5－6－2－2 復水貯蔵タン クの耐震性についての計算書」に，その他の容器の評価内容については，参考5に示す。
4.2 屋根角度の有無について（評価フロー（2））

屋根角度の有無に係る評価結果を表 3 に示す。表 3 に示すとおり，評価対象とした全容器については，屋根に角度がないことを確認した。よって，評価対象とした全容器については，スロッシングによる影響は無いと判断する。

表3 容器の屋根角度の有無に係る評価結果（1／2）

名 称	形 状	屋根形状	角度の有無
原子炉補機冷却水サージタンク （A）（B）	平底たて置き円筒形容器 （図2）	平板	無
高圧炬心スプレイ補機冷却水サ ージタンク	平底たて置き円筒形容器 （図2）	平板	無
ほう酸水注入系貯蔵タンク	平底たて置き円筒形容器 （図2）	平板	無
ほう酸水注入系テストタンク	四脚たて置き円筒形容器 （図3）	平板	無
CUW プリコートタンク	平底たて置き円筒形容器 （図2）	平板	無
FPC プリコートタンク	平底たて置き円筒形容器 （図2）	平板	無
HNCW サージタンク	四脚たて置き円筒形容器 （図3）	平板	無
所内温水系サージタンク	平底たて置き円筒形容器 （図2）	平板	無
DG 燃料油ドレンタンク（A）（B）	平底たて置き円筒形容器 （図2）	平板	無
HPCSDG 燃料油ドレンタンク	平底たて置き円筒形容器 （図2）	平板	無
HPCSDG 潤滑油補給タンク	平底たて置き円筒形容器 （図2）	平板	無

表3 容器の評価手法の選定結果（2／2）

名 称	形 状	屋根形状	角度の有無
RW 制御室 HVAC 冷水供給設 備膨張タンク	平底たて置き矩形容器 （図2）	平板	無
ガスタービン発電設備燃料小 出槽	平底たて置き円筒形容器 （図2）	平板	無
緊急時対策所軽油タンク	平底たて置き円筒形容器 （図2）	平板	無

図2 構造概要図（平底たて置き円筒形容器及び平底たて置き矩形容器）

図3 構造概要図（四脚たて置き円筒形容器）

5．影響評価結果

以上の結果から，評価の対象となる全容器についてスロッシングによる影響がないことを確認した。

参考資料
〈参考1〉スロッシングを考慮した場合の内包流体の挙動について
〈参考2〉円筒形タンクのスロッシング評価 抜粋（日本保全学会第7回学術講演会 2010．7．15予稿集）
〈参考3〉容器構造設計指針•同解説 抜粋
〈参考4〉固定屋根を有する円筒液体タンクの耐震設計（第 2 報）抜粋（圧力技術 17 巻（1979）4号）
〈参考5〉速度ポテンシャル理論によるスロッシングの 1 次固有周期及び波高の算出方法

〈参考 1 〉スロッシングを考慮した場合の内包流体の挙動について

1．スロッシングを考慮した内包流体における荷重とモーメントの低減について タンクに地震荷重が作用した際に，内包流体にスロッシングが生じる。
スロッシングが生じることで内包流体は上下方向にも動くことになり，内包流体に作用する地震エネル ギーの一部が上下方向のエネルギーに変換され，タンク胴板に水平方向荷重として作用するエネルギーの総量が減少する。

また，内包流体がスロッシングにより揺動することで荷重の作用方向が逸散し，内部流体に対する水平方向荷重作用点の重心高さが，内包流体を揺動しない固定質量と見做した場合に比へ低くなる。

それらを考慮することで，水平方向に作用するエネルギー総量の減少及び荷重作用点の低下となり，タ ンク本体及び基砝ボルトに作用する地震荷重（水平方向荷重及び転倒モーメント）が低減される。
スロッシングによる重心高さ及び荷重低減のイメージを以下に示す。
スロッシングによる波高は地震動の増加により大きくなるが，波面衝突によってスロッシング形状の乱 れが大きくなり，衝突圧力が抑えられる傾向である。したがって，地震動が大きいときのスロッシングに よる内包流体の挙動に対しても考え方は同様である。

（スロッシングを考慮しない場合）

上向きと水平方向に分散

（スロッシングを考慮した場合）

－ 4 …地震荷重

モーメントを水平方向荷重で除したものが重心高さとすると，重心高さ！ $\boldsymbol{I}_{\mathrm{g}}$ は以下の式で表される。 モーメント $M=$ 水平方向荷重 $F \times$ 重心高さ ℓ_{g} より，$\ell_{\mathrm{g}}=\mathrm{M} / \mathrm{F}$
ここで，水平方向荷重 $\mathrm{F}=$ 水平方向加速度 $\alpha_{\mathrm{H}} \times$ 質量 m
内包流体の全質量を自由質量と固定質量に分けて考えた場合，内包流体の全質量 $\mathrm{m}_{\mathrm{T}}=$ 自由質量 $\mathrm{m}_{1}+$ 固定質量 m_{0} となる。

スロッシングを考慮した場合，自由質量 m_{1} は揺動により荷重作用方向が分散することから，水平方向荷重が減少するが，加速度は変化していないため自由質量 m_{1} が小さくなるものとして，等価自由質量 $\mathrm{m}_{1}{ }^{\prime}$ と見做す。次に，重心高さ ℓ gは，
$l_{\mathrm{g}}=\left(\mathrm{m}_{1} \times \mathrm{m}_{1}\right.$ の重心高さ $\ell_{\mathrm{g}} 1+\mathrm{m}_{0} \times \mathrm{m}_{0}$ の重心高さ $\left.\ell_{\mathrm{g}} 0\right) ~ / ~$ 全質量 m_{T} により求まる。
スロッシングを考慮することにより， m_{1} が等価自由質量 $\mathrm{m}_{1}{ }^{\prime}$ として小さくなることで， $\mathrm{m}_{1}{ }^{\prime}$ の重心高 さも等価重心高さ $l_{g_{1}}$ ，と見做し，スロッシングを考慮した重心高さは，

$$
\ell_{\mathrm{g}}^{\prime}=\left(\mathrm{m}_{1}^{\prime} \times \ell_{\mathrm{g} 1}^{\prime}+\mathrm{m}_{0} \times \ell_{\mathrm{g} 0}\right) / \mathrm{m}_{\mathrm{T}} \text { となり, } \ell_{\mathrm{g}} \text { より低くなる。 }
$$

注：自由質量 m_{1} はスロッシングにより揺動すると仮定する内包流体の質量を，固定質量 m_{0} はスロッシン グにより揺動しないと仮定する内包流体の質量として，質量 $\mathrm{m}_{\text {Tを分けたそれぞれの質量を示す。また，}}$等価自由質量 m_{1}＇は揺動することによる荷重分散を質量が低減するものとして表したものである。

以上より，スロッシングを考慮した場合，上下方向へのエネルギーの分散が生じることにより，水平方向の地震荷重は低減される。さらに，自由質量部分の荷重低減を等価自由質量として質量低減と見做すこ とにより，荷重作用点である重心高さが低くなり，水平方向モーメントも低減される。

2．復水貯蔵タンクにおける自由質量の設定について
建設時から復水貯蔵タンクの耐震評価においては，内包流体の自由質量を考慮して地震応答解析を実施し，水平方向の応答加速度を求めている。添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」に示し た水平方向における地震応答解析モデルを参考図 1 に示す。

参考図1復水貯蔵タンクの地震応答解析モデル
（添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」図 3－4 復水貯蔵タンク基礎のモデル図 （南北方向）引用）

ここで参考図 1 に示す節点番号 25 を揺動する内包流体としてモデル化しており，このモデル化について は，単純円筒モデルのハウスナー理論（USAEC，Nuclear Reactors and Earthquakes，TID－7024，Chapter 6， Appendix F，1963．8）に基づいて設定している。

なお，ハウスナー理論はスロッシングを考慮するための方法としてJEAG4601－1987にも引用され ている（参考図2参照）。

参考図2 ハウスナー理論による液体摇動の解析モデル
（J EAG4601－1987 図6．5．2－42引用）

復水貯蔵タンクの内包流体の自由質量 m_{1} とばね定数 k_{1} は以下の式により算出する。式に用いる記号の説明を参考表1に示す。

参考表1 記号の説明

記号	記号の説明	値	単位
m_{1}	内包流体の自由質量	-	t
m_{T}	内包流体の全質量	3173	t
R	胴の内半径	10	m
H	内包流体の最高水位	10.1	m
g	重力加速度	9.80665	$\mathrm{~m} / \mathrm{s}^{2}$
ω	自由質量の固有円振動数	-	$\mathrm{rad} / \mathrm{s}$
k_{1}	自由質量のばね定数	-	t / m

$$
\begin{aligned}
\mathrm{m}_{1} & =0.318 \cdot \frac{\mathrm{~m}_{\mathrm{T}} \cdot \mathrm{R}}{\mathrm{H}} \cdot \tanh \left(1.84 \cdot \frac{\mathrm{H}}{\mathrm{R}}\right) \\
& =0.318 \cdot \frac{3173 \cdot 10}{10.1} \cdot \tanh \left(1.84 \cdot \frac{10.1}{10}\right) \\
& =951.6 \\
\omega & =\sqrt{\frac{\mathrm{g}}{\mathrm{R}} \cdot 1.84 \cdot \tanh \left(1.84 \cdot \frac{\mathrm{H}}{\mathrm{R}}\right)} \\
& =\sqrt{\frac{9.80665}{10} \cdot 1.84 \cdot \tanh \left(1.84 \cdot \frac{10.1}{10}\right)} \\
& =1.311
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{k}_{1} & =\frac{\mathrm{m}_{1} \cdot \omega^{2}}{\mathrm{~g}} \\
& =\frac{951.4 \cdot 1.719}{9.80665} \\
& =166.8
\end{aligned}
$$

以上のとおり，算出した値を参考図 1 に示す解析モデルに設定し，地震応答解析を実施している。
なお，復水貯蔵タンクは高さ方向で胴板の厚みが違うことから，固定質量についても，胴板の厚さが変 わる高さで節点を設けた多質点モデルとしている。自由質量から得られるスロッシング荷重と胴板厚さの違いを考慮した地震応答解析モデルによって，各胴板の断面力（せん断力及びモーメント）を算出し，構造強度評価に用いている。

また，済動解析により得られた圧力時刻歷を用い たびら゙みをFig10に示す。断撃圧に相当する部分はな いが，全体として馳駧圧力による応答解析およびひ ずみを模顥しており，流動解析で得られた圧力時刻歴を用いた天板の動的応答解析によっても，天板の変形举動を模擬できることが分かった。
最後に，試験で計測された圧力時刻歴むよび，流動解析で得られた圧力時刻愿それぞれの最大値を静的に加えた結果を Fig． 11 に示す。いずれの結果も試験で計測されたひずみに対し大きく，これらの評価 が安全側の評価であることが分かった。

〈参考3〉容器構造設計指針•同解説 拔粋

枠囲みの内容は商業機密の観点から公開できません。

\square

図 1 街䡒圧力
る。文献（6）ではこの問題について充分検討を加えてい ない。平板の落下衛緊に関与る 2,3 の研究例 ${ }^{(8),(3)}$ を委考にして，第3章にて実験式を考える。

黃扑圧 P_{h} は，図 1 の受圧点Aになける最高液位から の静水匡に大珞等しいので，（2）式から求められる。

$$
\begin{equation*}
P_{\mathrm{A}}=\rho g(\zeta,-h) \quad\left(\mathrm{kgf} / \mathrm{cm}^{2}\right) \tag{2}
\end{equation*}
$$

平板及び 平板に近い屋极の場合 P_{n} は無祝してよいと考えられる。

又，ζ_{0} 及びら，将次のようたして求みら礼る。
屋椹により波高の成長がさませげられないとをの円简容器内のスロッシンク波高ちは达度ボテンシャルから求 められ（3）．（4）．（5），特に正弦波遌渡疬䈶については䉍略計算式分方る。 n 波目の応答波高ちr (n) は

$$
\begin{equation*}
\zeta_{r}(n)=\frac{\alpha}{g} R A_{(n)} \beta_{p} \frac{J_{1}\left(1.841 \frac{r}{R}\right)}{J_{1}(1.841)} \quad(\mathrm{cm}) \tag{3}
\end{equation*}
$$

となる。ここで
$\boldsymbol{\alpha}:$ 加振加速度 $\left(\mathrm{cm} / \mathrm{sec}^{2}\right)$
R ：タンク半径（ cm ）
$r:$ タンク中心からの距喊（cm）
$A_{(\kappa)}: n$ 波目の応签倍率（区12）
J_{1} ：第 1 種 1 次の Bessel 関数（四13）
β_{p} ：刺澈係数 0.8371

ら。は（3）式で $r=R$ とおけ談求京る。 \quad な は加振力と同 じ振動数で正弦振動しているので，その円振動数を ω_{f} ，静止液面と屋根の受圧点Aの間屚をhとすねば

$$
\begin{equation*}
h=\zeta_{r} \sin \omega_{f} t \tag{4}
\end{equation*}
$$

と近做できるから，タンク屋根に到達した時の液面速度 らっは（5）式で示される。

$$
\begin{equation*}
\dot{\zeta}_{r}=\zeta_{r} \omega_{f} \cos ^{-1}\left(\sin \frac{h}{\zeta_{r}}\right) \quad(\mathrm{cm} / \mathrm{sec}) \tag{5}
\end{equation*}
$$

衔緊圧の分布は定まる。

共报時の ω_{f} は次式で示される。

$$
\begin{equation*}
\omega_{f}=\sqrt{1.841 \frac{g}{R} \tanh 1.841 \frac{H}{R}} \quad(\mathrm{rad} / \mathrm{sec}) \tag{6}
\end{equation*}
$$

ここで

$$
H: \text { 液位 (cm) }
$$

3．実 験

3.1 トーム及び円錐屋根

スロッシンク時，夕ンク屋根に作用字を荷重を調べる ため，フクリル慜の陷径 $1^{\mathrm{n}} \times$ 高さ 1 の の円筒椎烈タンク による実験を行った。 ${ }^{(6)}$ 機型タンク及び王力牯配賢を図 2 に示守。

実験はタンク内容液の一次固有铏動数にて，変位振け

液位 $100 \mathrm{~cm}: ~$ 変位 10 mm

図 3 ドーム屋根王力波形

図11 細撃圧力と衡突速度（3波まての最大值）

4．応答計算

3宰きでの実験結果を用いて地力計算をする上ての留意与べきことは衡嚮圧力と碩推圧力の作用時問の違いで ある。
 る多いかっ，作用時間が長いため静的な力として取り扱っ て良い。他方，衛撃圧は，圧力䧵としては大きいが，作用時間が短いため，力皏としては小さい。そこで，この場合は积的な応䈶を考えてやる必要がある。

又，作用時間の特性から，碩排王はタンクの全体応力解析の荷重として用いるべきであり，衙慗圧は屋根の局部的な応力解析に用いるべきであるら。

5．結 言

地䨖時，円筒形洨体タンクが受ける流体力のらち，ス ロッシンク時に固定屋桹に作用する力について実験を行 い，次のことを明らかにした。

1）固定屋根に作用广る圧力には衔撃压力と原揭压力 がある。
2）衛撃圧力は圧力値は大きいことが多いが，作用時間は短い。
3）願挂圧力は，ある程度角度がある屋拱で発生し，平板又は平板に近い尿根では発生しない。
4）媵掛圧は，圧力値は衡摯圧より小さいことが多い か作用時問が長い。
5）街撃圧ゃよび顗嗬圧力の简䧄計算式を提罙した。 なぁ，本斏告の実験には，内容液として水を用いた。

图 12 枕答信率

图 $13 \mathrm{~J}_{1}$ の値
実祭のタンクにねいて水と異なる詝蔵波の場合，空気の諶迈み等が水と異なれれば（9）式は若干の攸正を要するこ とも考えられる。これについては機会を見つけて確認し たい。

券 考 文 献

屋䜋を有する円简液体タンクの耐震設計（その1）＂昘力技相，Vo1．17，No3（1979）
応答 第2縠＂，生産研究，第26羙4号，（1974．4）pp 22～ 25
（3）K．Senda \＆K．Nakagawa，＂On the Vibration of an Elevated Water Tank（I）＂Tech．Rep．of Osaka Univ． Vol． 4 No 17 （1954）
 3棴＂－生洨研究，第26卷 8 号，（1976．8）pp 1～4
保安防災技街指針（资科槅）（1974）
（6）越智塑夫，小核德之，＂円简形タンクのスロッシンダ実験＂，石川島播磨技報，17棇6号（1977）pp 607～615
力＂，高匡力， 3 淃 1 号（1965）pp 370～376
（8）S．L．Chuang，${ }^{\text {a }}$ Investigation of Impact of Rigid and Elastic Bodies with Water＂Navel Ship Research and Development Center AD 702727 （1970）
 て＂，造船场会詥文集，90号（1956）pp 69～75

〈参考5〉速度ポテンシャル理論によるスロッシングの 1 次固有周期及び波高の算出方法

参考として速度ポテンシャル理論によるスロッシングの 1 次固有周期及び波高を参考表 2 に示す。ここで速度ポテンシャル理論におけるスロッシングの 1 次固有周期及び波高の算出方法は以下のとおりである。
－円筒形容器の場合
$\mathrm{T}:$ スロッシングの 1 次固有周期 $[\mathrm{s}] ~\left((2 \pi / \mathrm{T})^{2}=1.841 \mathrm{~g} / \mathrm{R} \cdot \tanh (1.841 \mathrm{H} / \mathrm{R})\right)$
ζ_{s} ：スロッシングの波高［m］（ $\left.\zeta_{\mathrm{s}}=0.837 \mathrm{R} \cdot \mathrm{S} \mathrm{a}\right)$
－矩形容器の場合
$\mathrm{T}:$ スロッシングの 1 次固有周期 $[\mathrm{s}] ~\left((2 \pi / \mathrm{T})^{2}=1.571 \mathrm{~g} / \mathrm{L} \cdot \tanh (1.571 \mathrm{H} / \mathrm{L})\right)$
ζ_{s} ：スロッシングの波高 $[\mathrm{m}] \quad\left(\zeta_{\mathrm{s}}=0.811 \mathrm{~L} \cdot \mathrm{~S} \mathrm{a}\right)$

参考表2 速度ポテンシャル理論によるスロッシングの 1 次固有周期及び波高の算出結果（ $1 / 2$ ）

	容器内半径 R［m］	液位 H［m］	加速度応答 スペクトル S a［G］	スロッシングの 1 次固有周期 T［s］	液位から屋根 までの高さ ζ［m］	スロッシング の波高 $\zeta_{s}[\mathrm{~m}]$
原子炉補機冷却水 サージタンク （B）	1． 25	2． 955	1． 58	1． 65	0． 192	1． 66
高圧炉心スプレイ 補機冷却水サージ タンク	0.6	1． 835	1． 55	1． 15	0． 182	0.78
ほう酸水注入系貯蔵タンク	1． 375	3.405	1． 55	1． 73	0． 264	1． 79
ほう酸水注入系 テストタンク	0． 4825	1． 2608	1． 55	1． 03	0． 089	0． 63
$\begin{aligned} & \text { CUW プリコート } \\ & \text { タンク } \end{aligned}$	0． 4825	1． 1693	1． 48	1． 03	0． 227	0.60
$\begin{aligned} & \text { FPC プリコート } \\ & \text { タンク } \end{aligned}$	0． 4825	1． 1693	1． 52	1.03	0． 227	0． 62
$\begin{aligned} & \text { HNCW サージ } \\ & \text { タンク } \end{aligned}$	0.7	1.508	1． 59	1． 24	0． 152	0.94
所内温水系サージ タンク	0.6	1． 643	1． 58	1，15	0． 175	0． 80
DG 燃料油ドレン タンク（A）（B）	0.3	0.65	1.95	0.81	0.05	0.49
HPCSDG 燃料油 ドレンタンク	0.3	0.65	1.95	0， 81	0.05	0． 49
HPCSDG 潤滑油補給タンク	0.6	1． 5915	1． 52	1． 15	0． 157	0． 77
ガスタービン発電設備燃料小出槽	1． 009	0.75	1． 29	1． 20	0.05	0． 58
緊急時対策所軽油 タンク	1.1	2． 82	1． 30	1． 55	0.2	1． 20

参考表2 速度ポテンシャル理論によるスロッシングの 1 次固有周期及び波高の算出結果 $(2 / 2)$

	矩形タンク振動方向辺長さ の $1 / 2$ L［m］＊	液位 H［m］	加速度応答 スペクトル S a［G］	スロッシングの 1 次固有周期 T［s］	液位から屋根 までの高さ ち［m］	スロッシング の波高 $\zeta_{\mathrm{s}}[\mathrm{~m}]$
RW 制御室 HVAC 冷 水供給設備膨張 タンク	0.55	1.1	1． 52	1． 19	0.1	0.68

