本資料のうち，枠囲みの内容 は商業機密の観点から公開で
きません。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－9－4－4－3－1 静的触媒式水素再結合装置の耐震性についての計算書

2021年10月
東北電力株式会社

目 次

1．概要 1
2．一般事項 1
2．1 構造計画 1
2．2 評価方針 4
2.3 適用規格•基準等 5
2． 4 記号の説明 6
2.5 計算精度と数値の丸め方 8
3．評価部位 9
4．地震応答解析及び構造強度評価 9
4． 1 地震応答解析及び構造強度評価方法 9
4． 2 荷重の組合せ及び許容応力 9
4．2．1 荷重の組合せ及び許容応力状態 9
4．2．2 許容応力 9
4．2．3 使用材料の許容応力評価条件 10
4．3 解析モデル及び諸元 14
4． 4 固有周期 17
4.5 設計用地震力 19
4．6 計算方法 20
4．6．1 静的触媒式水素再結合装置本体 20
4．6． 2 架台 20
4．6．3 取付ボルト 20
4．6．4 基礎ボルト 25
4．7 計算条件 28
4．8 応力の評価 28
4．8．1 静的触媒式水素再結合装置本体及び架台の応力評価 28
4．8．2 取付ボルト及び基礎ボルトの応力評価 28
5．評価結果 29
5． 1 重大事故等対処設備としての評価結果 29

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，静的触媒式水素再結合装置が設計用地震力に対して十分な構造強度を有しているこ とを説明するものである。
静的触媒式水素再結合装置は，重大事故等対処設備においては常設重大事故緩和設備に分類さ れる。以下，重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

静的触媒式水素再結合装置は，固定方法により床面固定と壁面固定の 2 種類があるため，床面固定（以下，「その 1」という。）の構造計画を表 2－1 に，壁面固定（以下，「その 2 」という。） の構造計画を表 2－2に示す。

計画の概要		概略構造図				
基礎•支持構造	主体構造					
静的触媒式水素再結合装置本体はそれぞれ取付ボルト 4 本 で架台に固定する。 取付ボルトは熱膨張を逃がす構造となっている。 架台はプレートを介して基礎 ボルトにて床面に固定する。 1 つの架台につき静的触媒式水素再結合装置本体 1 台を取付ける。	静的触媒式水素再結合装置本体は，鋼板 を角形に組み立てた ハウジングの内部に触媒カートリッジを装荷した構造であ る。	静的触媒式水素再結合装置（その 1） （単位：mm）				

計画の概要		概略構造図		
基礎•支持構造	主体構造			
静的触媒式水素再結合装置本体はそれぞれ取付ボルト 4 本 で架台に固定する。 取付ボルトは熱膨張を逃がす構造となっている。 架台はプレートを介して基礎 ボルトにて壁面に固定する。 1 つの架台につき静的触媒式水素再結合装置本体 1 台を取付ける。	静的触媒式水素再結合装置本体は，鋼板 を角形に組み立てた ハウジングの内部に触媒カートリッジを装荷した構造であ る。		静的触媒式水素再結合装置（その 2）	

2． 2 評価方針

静的触媒式水素再結合装置の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す静的触媒式水素再結合装置の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．3 解析モ デル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

静的触媒式水素再結合装置の耐震評価フローを図 2－1 に示す。

図 2－1 静的触媒式水素再結合装置の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4601 •補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
2.4 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b} 1}$	取付ボルトの軸断面積	mm^{2}
$\mathrm{A}_{\mathrm{b}} 2$	基礎ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C V	鉛直方向設計震度	－
d_{1}	取付ボルトの呼び径	mm
d 2	基礎ボルトの呼び径	mm
E	静的触媒式水素再結合装置本体の縦弾性係数	MPa
Es	架台の縦弾性係数	MPa
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
$\mathrm{F}_{\mathrm{b}} \mathrm{p}$	取付ボルトに作用する引張力	N
F ${ }_{x}$	架台に作用する力（ X 方向）	N
F_{y}	架台に作用する力（Y方向）	N
F_{z}	架台に作用する力（ Z 方向）	N
$f_{\text {s b }}$	ボルトの許容せん断応力	MPa
f_{t}	静的触媒式水素再結合装置本体及び架台の許容引張応力	MPa
f_{t} o	引張力のみを受けるボルトの許容引張応力	MPa
f_{t}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
m 。	静的触媒式水素再結合装置本体 1 台あたりの質量	kg
mol	架台を含めた全体の質量	kg
l	基礎ボルト間距離	mm
M_{x}	架台に作用するモーメント（ X 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{y}	架台に作用するモーメント（Y軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	架台に作用するモーメント（ Z 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
n 1	せん断力を受ける取付ボルトの本数	－
n 2	せん断力を受ける基礎ボルトの本数	－
n f 1	引張力を受ける取付ボルトの本数	－
n f 2	架台に作用する力（ F x ，F z ）により引張力を受ける基礎ボルトの本数	－
n f 3	架台に作用するモーメント（ My_{y} ）により引張力を受ける基礎ボルトの本数	－
Q bp	取付ボルトに作用するせん断力	N
Su_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa

記号	記号の説明	単位
T	温度条件	${ }^{\circ} \mathrm{C}$
ν	ポアソン比	-
$\sigma_{\mathrm{b} \text { a }}$	基礎ボルトに作用する引張応力	MPa
$\sigma_{\mathrm{b} \mathrm{p}}$	取付ボルトに作用する引張応力	MPa
σ_{p}	静的触媒式水素再結合装置本体に作用する組合せ応力	MPa
σ_{s}	架台に作用する組合せ応力	MPa
τ_{ba}	基礎ボルトに作用するせん断応力	MPa
$\tau_{\mathrm{b} \mathrm{p}}$	取付ボルトに作用するせん断応力	MPa

2． 5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 2－3 に示すとおりである。

表 2－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	—整数位 $* 1$	
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 3$

注記＊1：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

静的触媒式水素再結合装置の耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる静的触媒式水素再結合装置本体，架台，取付ボルト，基礎 ボルトについて実施する。

静的触媒式水素再結合装置の耐震評価部位については，表 2－1 及び表 2－2 の概略構造図に示 す。

4．地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価方法
（1）地震力は，静的触媒式水素再結合装置に対して水平方向及び鉛直方向から作用するものと し，原則として，強度評価において組み合わせるものとする。なお，取付ボルト及び基礎 ボルトにおいては，作用する荷重の算出において組み合わせるものとする。
（2）触媒カートリッジは，静的触媒式水素再結合装置本体と一体として評価する。なお，解析 モデルでは触媒カートリッジが補強材として作用しないよう，静的触媒式水素再結合装置本体に質量のみを付加する。
（3）静的触媒式水素再結合装置本体は，床又は壁に設置した架台に熱膨脹を逃がすために設置 したベアリングを介して，それぞれ 4 本の取付ボルトで取り付けられており，

そのため，解析モデルでは取付ボルト部 4 箇所全てを剛体として評価する。なお，取付ボルトの強度評価については，解析結果で得られた 4 本の引張力及びせん断力の合計を，保守的に 1 本で受けるものとして理論式により応力を算出 する。
（4）架台は，床又は壁に基礎ボルトで取り付ける。
（5）基礎ボルト部及び取付ボルト部は，剛体として評価する。
（6）静的触媒式水素再結合装置本体及び架台は，三次元のシェル要素を用いてモデル化する。
（7）基礎ボルトの強度評価については，解析結果で得られた荷重を用いて，理論式により応力 を算出する。
（8）耐震計算に用いる寸法は，公称値を使用する。

4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
静的触媒式水素再結合装置の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力

静的触媒式水素再結合装置の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－2 に示す。

4．2．3 使用材料の許容応力評価条件
静的触媒式水素再結合装置の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表 4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
原子炉格納施設	圧力低減設備 その他の安全設備	静的触媒式水素再結合装置	常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Ss} * 3$	IV $\mathrm{AS}^{\text {S }}$
					$\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{S}$	$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を 用いる。）

注記 $~ 1 ~ 1: 「$ 常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{PsAD}+\mathrm{MsAD}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。
O 2
（3） $\mathrm{VI}-2-9-4-4-3-1$
R 2

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）	許容限界 ${ }^{*} 1$ ，＊2 （ボルト等）	
	一次応力	一次応力	
	組合せ	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$			

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
静的触媒式水素再結合装置本体	＊ 1	最高使用温度	300			
架台	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	最高使用温度	300	170	373	－
	STKR400	最高使用温度	300	145	373	－
取付ボルト	SUS316	最高使用温度	300	131	427	205
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	$\begin{gathered} 66 \\ \left(300^{* 2}\right) \end{gathered}$	150	373	－

注記 $* 1$ ：SUS304 相当
＊2：周囲環境温度は $66^{\circ} \mathrm{C}$ であるが，保守的に機器の最高使用温度である $300^{\circ} \mathrm{C}$ を使用する。

4.3 解析モデル及び諸元

静的触媒式水素再結合装置の解析モデルを図4－1 及び図4－2に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【静的触媒式水素再結合装置の耐震性についての計算結果】の機器要目に示す。
（1）静的触媒式水素再結合装置本体及び架台を三次元のシェル要素でモデル化する。
（2）拘束条件として，架台は床又は壁への取付部を固定端とする。また，静的触媒式水素再結合装置本体は，架台に取付ボルトで固定する。なお，基礎ボルト部及び取付ボルト部は，剛体として評価する。
（3）静的触媒式水素再結合装置本体及び架台の質量は，密度にて与えるものとする。ただし，触媒カートリッジの質量は，静的触媒式水素再結合装置本体の前後面に分布荷重として与 える。
（4）取付ボルト及び基礎ボルトの応力は，解析結果で得られた荷重（反力，モーメント）を用 いて理論式により算出する。
（5）計算機コードは，「MSC NASTRAN」を使用し，固有値，静的触媒式水素再結合装置本体及び架台の応力を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要につ いては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
\square
図 4－1 解析モデル（静的触媒式水素再結合装置（その 1））
\square
図 4－2 解析モデル（静的触媒式水素再結合装置（その 2 ））

4． 4 固有周期

計算機コード「MSC NASTRAN」により求めた固有値解析の結果を表4－4に示す。固有周期は 0.05 秒以下であり，剛であることを確認した。

表 4－4 固有周期

形状	モード	卓越方向	固有周期（s）	刺激係数		
				水平方向		鉛直方向
				X方向	Y方向	
その 1	1 次	鉛直方向	0.040	－	－	－
	2 次	水平方向	0． 031	－	－	－
その 2	1 次	鉛直方向	0.040	－	－	－
	2 次	水平方向	0． 027	－	－	－

図 4－4 その 2 振動モード（1 次モード 鉛直方向 0.040 s ）

枠囲みの内容は商業機密の観点から公開できません。

4.5 設計用地震力

評価に用いる設計用地震力を表4－5に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

表 4－5 設計用地震力（重大事故等対処設備）

形状	据付場所 及び 床面高さ （m）	固有周期（s）		弾性設計用地震力 S d 又は静的震度		基準地震動 S s	
		水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
その 1	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { 0. P. } 33.20^{*} \\ & \text { (0. P. } 33.81 \text {) } \end{aligned}$	0.031	0.040	－	－	$\mathrm{C}_{\mathrm{H}}=2.71$	$\mathrm{C}_{\mathrm{V}}=1.78$
その 2	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. } 33.20^{*} \\ \text { (0. P. } 41.911 \text {) } \end{gathered}$	0． 027	0.040	－	－	$\mathrm{C}_{\mathrm{H}}=3.73$	$\mathrm{C}_{\mathrm{V}}=1.91$

注記＊：基準床レベルを示す。

4.6 計算方法

4．6．1 静的触媒式水素再結合装置本体
静的触媒式水素再結合装置本体の応力は，自重，鉛直方向地震及び水平方向地震（X， Y）を考慮し，三次元シェル要素による解析結果を用いる。ここで，応力の算出式は下記 による。

応力の種類	単位	応力算出式
組合せ応力	MPa	$\sqrt{\sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}{ }^{2-\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}+3 \tau_{\mathrm{xy}}{ }^{2}}}$

4． 6.2 架台
架台の応力は，静的触媒式水素再結合装置本体と同様に，自重，鉛直方向地震及び水平方向地震（X，Y）を考慮し，三次元シェル要素による解析結果を用いる。応力の算出式 は静的触媒式水素再結合装置本体と同様である。

4．6．3 取付ボルト
取付ボルトの応力は，解析結果で得られた反力から理論式により引張応力及びせん断応力を算出する。

解析で得られた取付ボルトの反力を表 4－6に示す。

図 4－5 計算モデル（長辺方向転倒）

図 4－6 計算モデル（短辺方向転倒）

表 4－6 取付ボルト発生反力（単位：N）			
形状	対象機器	反力	
		F_{bp}	$Q_{b p}$
その 1	静的触媒式水素再結合装置	1． 858×10^{3}	1． 841×10^{3}
その 2	静的触媒式水素再結合装置	2． 201×10^{3}	2． 401×10^{3}

（1）引張応力
取付ボルトに対する引張力は図 4－5 及び図 4－6 で取付ボルトを支点とする転倒を考え， この片側の取付ボルト 1 本で受けるものとして計算する。

引張応力
$\sigma_{\mathrm{bp}}=\frac{\mathrm{F}_{\mathrm{bp}}}{\mathrm{A}_{\mathrm{b} 1}}$
取付ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 1}$ は，次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 1}=\frac{\pi}{4} \cdot \mathrm{~d}_{1}^{2} \tag{4.6.3.2}
\end{equation*}
$$

（2）せん断応力
取付ボルトに対するせん断力は，取付ボルト 1 本で受けるものとして計算する。

せん断応力

$$
\begin{equation*}
\tau_{b p}=\frac{Q_{b p}}{A_{b 1}} \tag{4.6.3.3}
\end{equation*}
$$

4．6．4 基礎ボルト

基礎ボルトの応力は，解析で得られた反力及びモーメントから理論式により，引張応力及びせん断応力を算出する。

解析で得られた架台基礎ボルト部の反力及びモーメントを表4－7に示す。

図 4－7 計算モデル（架台基礎ボルト部（その 1 ））

図 4－8 計算モデル（架台基礎ボルト部（その 2 ））

表 4－7 基礎ボルトの発生反力，モーメント

形状	対象機器	反力（N）			モーメント（ $\mathrm{N} \cdot \mathrm{mm})$		
		F_{y}	F_{z}	M_{x}	M_{y}	M_{z}	
その 1		1.382×10^{3}	53.95	1.418×10^{3}	8.904×10^{3}	7.099×10^{5}	8.796×10^{3}
その 2	静的触媒式水 素再結合装置	1.519×10^{3}	28.67	1.185×10^{3}	3.860×10^{4}	4.642×10^{5}	2.484×10^{4}

（1）引張応力
基礎ボルトに対する引張応力は，次式により求める。

引張応力（その 1）

$$
\begin{equation*}
\sigma_{\mathrm{ba}_{\mathrm{a}}}=\frac{\mathrm{F}_{\mathrm{z}}}{\mathrm{n}_{\mathrm{f} 2} \cdot \mathrm{~A}_{\mathrm{b} 2}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{n}_{\mathrm{f} 3} \cdot \ell \cdot \mathrm{~A}_{\mathrm{b} 2}} \tag{4.6.4.1}
\end{equation*}
$$

引張応力（その 2）

$$
\begin{equation*}
\sigma_{\mathrm{ba}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{n}_{\mathrm{f} 2} \cdot \mathrm{~A}_{\mathrm{b} 2}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{n}_{\mathrm{f} 3} \cdot l \cdot \mathrm{~A}_{\mathrm{b} 2}} \tag{4.6.4.2}
\end{equation*}
$$

基礎ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 2}$ は，次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 2}=\frac{\pi}{4} \cdot \mathrm{~d}_{2}{ }^{2} \tag{4.6.4.3}
\end{equation*}
$$

（2）せん断応力
基礎ボルトに対するせん断応力は，次式により求める。

せん断応力（その1）

$$
\begin{equation*}
\tau_{\mathrm{ba}}=\frac{\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{y}}{ }^{2}}}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}+\frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{n}_{2} \cdot \frac{\ell}{2} \cdot \mathrm{~A}_{\mathrm{b} 2}} \tag{4.6.4.4}
\end{equation*}
$$

せん断応力（その 2 ）

$$
\begin{equation*}
\tau_{\mathrm{ba}}=\frac{\sqrt{\mathrm{F}_{\mathrm{y}}^{2}+\mathrm{F}_{\mathrm{z}}^{2}}}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}+\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{n}_{2} \cdot \frac{\ell}{2} \cdot \mathrm{~A}_{\mathrm{b} 2}} \tag{4.6.4.5}
\end{equation*}
$$

4．7 計算条件

応力解析に用いる自重（静的触媒式水素再結合装置本体及び架台）及び荷重（地震荷重）は，本計算書の【静的触媒式水素再結合装置の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 静的触媒式水素再結合装置本体及び架台の応力評価
4．6．1 項及び 4．6．2 項で求めた静的触媒式水素再結合装置本体及び架台の組合せ応力 が許容応力 f_{t} 以下であること。

ただし，f t は下表による。

	基準地震動 S s による荷重との組合せの場合
許容引張応力 f_{t}	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$

4．8．2 取付ボルト及び基礎ボルトの応力評価
4．6．3項で求めた取付ボルトの引張応力 $\sigma \mathrm{b} \mathrm{p}$ 及び4．6．4項で求めた基礎ボルトの引張応力 $\sigma_{\mathrm{b} \text { a }}$ は次式より求めた許容引張応力 f_{t} 以下であること。

ただし，f_{t} oは下表による。
$f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right]$
 せん断応力 $f_{\mathrm{s} \text { b }}$ 以下であること。

ただし，$f_{\text {sb }}$ は下表による。

	基準地震動 S s による荷重との組合せの場合
許容引張応力 f_{to}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果
5.1 重大事故等対処設備としての評価結果

静的触媒式水素再結合装置の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している ことを碓認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【静的触媒式水素再結合装置（その 1）の耐震性についての計算結果】

1．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾性設計用地震動 Sd又は静的震度		基準地震動S s		最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度		
静的触媒式水素再結合装置 （その 1）	常設／緩和	原子炉建屋 0．P． $33.20^{* 1}$ （0．P． 33.81 ）	0． 031	0.040	－	－	$\mathrm{C}_{\mathrm{H}}=2.71$	$\mathrm{C}_{\mathrm{v}}=1.78$	300	$\begin{gathered} 66 \\ \left(300^{* 2}\right) \end{gathered}$

注記 $* 1$ ：基準床レベルを示す。
＊2：周囲環境温度は $66^{\circ} \mathrm{C}$ であるが，保守的に機器の最高使用温度である $300^{\circ} \mathrm{C}$ を使用する。

$\begin{aligned} & \mathrm{m}_{\mathrm{o}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{ol}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \hline \ell \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Es}_{\mathrm{s}} \\ (\mathrm{MPa}) \end{gathered}$	v	$\begin{gathered} \mathrm{d}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} 1} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{d}_{2} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} 2} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n 1	$\mathrm{n}_{\mathrm{f} 1}$＊	n 2	n f 2	n f 3
					0.3	$\begin{gathered} 12 \\ \text { (M12) } \end{gathered}$	113． 1	$\begin{gathered} 12 \\ \text { (M12) } \end{gathered}$	113． 1	1	1 1	2	2	1

注記＊：上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。

部材	材料	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
静的触媒式水素再結合装置本体	＊ 1			
架台	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 170 \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	373	204
	STKR400	145	373	174
取付ボルト	SUS316	131	427	176
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 150 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	373	180

注記 $* 1$ ：SUS304 相当

O 2 （3）VI－2－9－4－4－3－1 R 2

部材	F_{x}		$F_{\text {y }}$		F_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－	1． 382×10^{3}	－	53.95	－	1． 418×10^{3}

$\stackrel{\omega}{\sim}$

部材	M_{x}		M_{y}		M_{z}	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基䂣ボルト	－	8.904×10^{3}	－	7． 099×10^{5}	－	8.796×10^{3}

1.4 結論

1．4．1 固有周期		（単位：s ）
モード	卓越方向	固有周期
1 次	鉛直方向	0.040

1．4．2 応力及び許容荷重
（単位： MPa ）

部材	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
静的触媒式水素再結合装置本体		組合せ	－	－	$\sigma_{\mathrm{p}}=121$	$f_{\mathrm{t}}=171$
架台	STKR400＊2	組合せ	－	－	$\sigma_{\text {s }}=32$	$f_{\mathrm{t}}=174$
取付ボルト	SUS316	引張り	－	－	$\sigma_{\mathrm{b}} \mathrm{p}=17$	$f_{\mathrm{t} \mathrm{s}}=132 * 3$
		せん断	－	－	$\tau_{\mathrm{bp}}=17$	$f_{\mathrm{sb}}=102$
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{ba}}=40$	$f_{\mathrm{ts}}=108^{* 3}$
		せん断	－	－	$\tau_{\mathrm{ba}}=7$	$f_{\text {s b }}=83$

すべて許容応力以下である。
注記＊1：SUS304 相当
＊2：最大応力発生部の材料を示す。
$* 3: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t}}\right.$ o $-1.6 \cdot \tau_{\mathrm{b}}$ ，$\left.f_{\mathrm{t} \text { o }}\right]$ にて算出

【静的触媒式水素再結合装置（その 2）の耐震性についての計算結果】

2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度		
静的触媒式水素再結合装置 （その 2）	常設／緩和	原子炉建屋 0．P． $33.20^{* 1}$ （0．P． 41.911 ）	0.027	0.040	－	－	$\mathrm{C}_{\mathrm{H}}=3.73$	$\mathrm{C}_{\mathrm{V}}=1.91$	300	$\begin{gathered} 66 \\ \left(300^{* 2}\right) \end{gathered}$

＊2：周囲環境温度は $66^{\circ} \mathrm{C}$ であるが，保守的に機器の最高使用温度である $300^{\circ} \mathrm{C}$ を使用する。

注記＊：上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。

部材	材料	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
静的触媒式 水素再結合装置本体	＊ 1			
架台	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚さ } \leqq 16 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 170 \\ (\text { 厚さ } \leqq 16 \mathrm{~mm} \text {) } \end{gathered}$	373	204
取付ボルト	SUS316	131	427	176
基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 150 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	373	180

注記 $* 1: ~ S U S 304$ 相当
2.3 計算数値

			（単位：N）	
部材	$\mathrm{F}_{\mathrm{b}} \mathrm{p}$		Q_{bp}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト	－	2． 201×10^{3}	－	2． 401×10^{3}

2．3．2 基礎ボルトに作用する力
（単位：N）

部材	F_{x}		F_{y}		F_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弹性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	-	1.519×10^{3}	-	28.67	-	1.185×10^{3}

部材	M_{x}		M_{y}		M_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－	3． 860×10^{4}	－	4． 642×10^{5}	－	2． 484×10^{4}

2． 4 結論
2．4．1 固有周期（単位：s）

モード	卓越方向	固有周期
1 次	鉛直方向	0.040

すべて許容応力以下である。
注記 $* 1$ ：SUS304 相当
＊2：$f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t}}\right.$ 。 $]$ にて算出

