本資料のらち，枠囲みの内容は商業機密の観点から公開できま せん。

| 女川原子力発電所第 2 号機 | 工事計画審査資料 |
| :---: | :---: |
| 資料番号 | 02 －工－B－08－0020＿改 1 |
| 提出年月日 | 2021 年 10 月 5 日 |

VI－3－3－6－1－1－8 ボックスサポートの強度計算書
1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
2.2 評価方針 ..... 3
2.3 適用基準 ..... 3
2.4 記号の説明 ..... 4
2.5 計算精度と数値の丸め方 ..... 5
3．評価部位 ..... 6
4．強度評価 ..... 9
4． 1 強度評価方法 ..... 9
4.2 荷重の組合せ及び許容応力 ..... 9
4．2．1 荷重の組合せ及び許容応力状態 ..... 9
4．2．2 許容応力 ..... 9
4．2．3 使用材料の許容応力評価条件 ..... 9
4．2．4 設計荷重 ..... 13
4.3 計算方法 ..... 15
4．3．1 応力評価点 ..... 15
4．3．2 ボックスプレート（応力評価点 P1） ..... 17
4．3．3 フランジプレート及びベースプレート（応力評価点 P6，P7） ..... 18
4．3．4 コンクリート（ベースプレート下面）（応力評価点 P9） ..... 21
4． 4 計算条件 ..... 22
4.5 応力の評価 ..... 22
5．評価結果 ..... 23
5.1 重大事故等対処設備としての評価結果 ..... 23
6．参照図書 ..... 25

## 1．概要

本計算書は，ボックスサポートの強度計算書である。
ボックスサポートは，設計基準対象施設のボックスサポートを重大事故等クラス 2 支持構造物として兼用する機器である。

以下，重大事故等クラス 2 支持構造物として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」に基づき，ボックスサポートの強度評価を示す。

なお，本計算書においては，重大事故等時における荷重に対して，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））（以下「既工認」という。） に示す手法に従い強度評価を行う。

2．一般事項
2.1 構造計画

ボックスサポートの構造計画を表 2－1 に示す。
表 2－1 構造計画

| 計画の概要 |  | 概略構造図 |
| :---: | :---: | :---: |
| 基礎•支持構造 | 主体構造 |  |
| ボックスサポートは，原子炉建屋基礎版に拘束支持される。ボックスサポ ートは，サプレッション チェンバ（大円）の半径方向の熱膨張を吸収する目的で可動し，サプレッ ションチェンバの鉛直方向の荷重を原子炉建屋に伝達させる。 | ボックスサポートは， ボックスプレート，フ ランジプレート，シヤ ラグ，ベースプレー ト，シヤコネクタ，基礎ボルト等からなる鋼製構造物である。 |  |

## 2．2 評価方針

ボックスサポートの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関す る説明書」及び「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において重大事故等時における温度，圧力による応力等が許容限界内に収まることを，「4．強度評価」にて示す方法にて確認することで実施する。確認結果 を「5．評価結果」に示す。

ボックスサポートの応力評価フローを図2－1 に示す。


図2－1 ボックスサポートの強度評価フロー

## 2.3 適用基準

適用基準を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第501号）（以下「告示第501号」という。）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補一 1984）


## 2.5 計算精度と数値の丸め方

精度は，有効数字6胻以上を確保する。
表示する数値の丸め方は表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

| 数値の種類 | 単位 | 処理桁 | 処理方法 | 表示桁 |
| :--- | :---: | :---: | :---: | :---: |
| 最高使用圧力 | kPa | - | - | 整数位 |
| 温度 | ${ }^{\circ} \mathrm{C}$ | - | - | 整数位 |
| 許容応力 ${ }^{*} 1$ | MPa | 小数点以下第 1 位 | 切捨て | 整数位＊2 |
| 算出応力 | MPa | 小数点以下第 1 位 | 切上げ | 整数位＊2 |

注記＊1：告示第 5 0 1 号別表に記載された温度の中間における許容引張応力，設計降伏点及び設計引張強さは，比例法により補間した値の小数点以下第 2 位を切り捨て，小数点以下第 1 位ま での値として算出する。得られた値をSI 単位に換算し，SI 単位に換算した値の小数点以下第 1 位を切り捨て，整数位までの値とする。
＊2：必要に応じ，小数点以下第 1 位または小数点以下第 2 位を用いる。

3．評価部位
ボックスサポートの形状及び主要寸法を図 3－1 に，評価部位及び使用材料を表 3－1 に示す。


図 3－1 ボックスサポートの形状及び主要寸法（その 1）
$\square$
（1）ボックスプレート
（2）フランジプレート
（3）シヤラグ
（4）基礎ボルト
（5）ベースプレート
（6）シヤコネクタ
（7）シヤプレート
（8）補強リブ
（9）ベースプレート（外側）（10）シヤコネクタ（外側）
（11）パッド


図 3－1 ボックスサポートの形状及び主要寸法（その 2）

表 3－1 評価部位及び使用材料表

| 評価部位 | 使用材料 | 備考 |
| :---: | :---: | :---: |
| ボックスプレート | SM41B |  |
| フランジプレート | SM41B |  |
| シヤラグ | SM41B |  |
| ベースプレート | SM41B |  |
| シヤコネクタ（外側） |  |  |
| 補強リブ |  |  |
| パッド |  |  |
| 基礎ボルト |  |  |
| コンクリート | $\begin{gathered} \text { コンクリート } \\ \left(\mathrm{F}_{\mathrm{c}}=32.3 \mathrm{~N} / \mathrm{mm}^{2}\left[330 \mathrm{~kg} / \mathrm{cm}^{2}\right]\right. \end{gathered}$ |  |

## 4．強度評価

4． 1 強度評価方法
（1）ボックスサポートは，サプレッションチェンバに溶接された箱型の支持構造であり，サ プレッションチェンバ（大円）の半径方向の熱膨張を吸収する目的で可動する。鉛直方向 のサプレッションチェンバの荷重は，ボックスプレート，フランジプレート，ベースプレ
ート及び基礎ボルト等を介して原子炉建屋に伝達される。
ボックスサポートの強度評価として，添付書類「VI－1－8－1 原子炉格納施設の設計条件 に関する説明書」において設定された荷重を用いて，「4．3 計算方法」に示す方法に従い強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表 2－1 に示す。

## 4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

ボックスサポートの荷重の組合せ及び許容応力状態のうち，重大事故等対処設備の評価に用いるものを表4－1に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

## 4．2．2 許容応力

ボックスサポートの許容応力及び許容応力度は，添付書類「VI－3－1－5 重大事故等ク ラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「 2.3 適用基準」に基づき，表 4－2 及び表 4－3に示すとおりとする。

4．2．3 使用材料の許容応力評価条件
ボックスサポートの使用材料の許容応力評価条件のうち，重大事故等対処設備の評価 に用いるものを表4－4に示す。

| 施設区分 |  | 機器名称 | 機器等 <br> の区分 | 荷重の組合せ＊1，＊2 |  | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉格納施設 | 原子炉格納容器 | ボックス <br> サポート | 重大事故等 クラス2 <br> 支持構造物 | $\mathrm{D}+\mathrm{P}_{\mathrm{SA}}+\mathrm{M}_{\mathrm{SA}}$ | $\begin{aligned} & (V(S)-1) \\ & (V(S)-2) \end{aligned}$ | 重大事故等時＊3 |

 ラスMC 支持構造物）に準じた許容応力状態及び荷重の組合せを適用する。
＊ 3 ：重大事故等時として $\mathrm{IV}_{\mathrm{A}}$ の許容限界を用いる。
O 2 （3）VI－3－3－6－1－1－8 R 1

| 表4－2 重大事故等クラス2支持構造物の許容応力 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\qquad$ | ボルト等以外 |  |  |  |  | ボルト等 |
|  | 一次応力 |  |  |  |  | 一次応力 |
|  | 引張 | せん断 | 圧縮 | 曲げ | 支圧 | 引張 |
| 重大事故等時＊ | $1.5 \cdot \mathrm{ft}$＊ | $1.5 \cdot \mathrm{fs}$＊ | $5 \cdot \mathrm{f}$ | 5 f | $5 \cdot$ | 1．5．f t＊ |

注記＊：重大事故等時として $\mathrm{IV}_{\mathrm{A}}$ の許容限界を用いる。

| 表4－3 コンクリート部の許容応力度 |  |  |
| :---: | :---: | :---: |
| 許容応力状態 <br> 応力分類 | コンク | （単位： $\mathrm{N} / \mathrm{mm}^{2}$ ） |
|  | 圧縮応力度 | せん断応力度 |
| 重大事故等時＊ | $0.75 \cdot \mathrm{~F}$ c | $1.5 \cdot \min \left(\frac{\mathrm{~F}_{\mathrm{c}}}{30}, 0.49+\frac{\mathrm{F}_{\mathrm{c}}}{100}\right)$ |

注記＊：重大事故等時としてIV ${ }_{\mathrm{A}}$ の許容限界を用いる。
O 2 （3）VI－3－3－6－1－1－8 R 2

| 表 4－4 使用材料の許容応力評価条件（重大事故等対象設備） |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 評価部位 <br> （応力評価対象） | 材料 | 温度条件 <br> $\left({ }^{\circ} \mathrm{C}\right)$ |  | $\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$ | $\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$ |
| $\begin{aligned} & \text { ボックスプレート, } \\ & \text { フランジプレート, } \\ & \text { ベースプレート } \end{aligned}$ | SM41B | 周囲環境 <br> 温度 | 200 | － | 169 | 372 | － |

## 4．2．4 設計荷重

（1）重大事故等対処設備としての評価温度
重大事故等対処設備としての評価温度は，以下のとおりとする。

$$
\text { 温度 T s A } \quad 200^{\circ} \mathrm{C} \text { (SA 短期) }
$$

（2）死荷重
サプレッションチェンバ，ボックスサポート及びサプレッションチェンバ内部水の自重を死荷重とする。

## 死荷重 <br> 6． $77 \times 10^{6} \mathrm{~kg}$

（3）水力学的動荷重
重大事故等対処設備としての水力学的動荷重は，以下のとおりとする。
（a）チャギング荷重
サプレッションチェンバに対して，低流量蒸気凝縮時に以下に示す蒸気凝縮振動荷重が作用する。

| 最大正圧 |  |
| :--- | :--- |
| 最大負圧 | $\square \mathrm{kPa}$ |
| kPa |  |

（b）逃がし安全弁作動時の荷重
逃がし安全弁作動時，排気管内の気体が T－クエンチャからサプレッションプール水中に放出される際，サプレッションチェンバに圧力振動荷重が作用する。

| 最大正圧 | $\square \mathrm{kPa}$ |
| :--- | ---: |
| 最大負圧 | $\square \mathrm{kPa}$ |

（4）ボックスサポート 1 個当たりに作用する鉛直荷重
前記（1）から（3）の条件下における，添付書類「VI－3－3－6－1－1－7 サプレッションチェ ンバの強度計算書」に示すサプレッションチェンバ及びボックスサポートの応力解析で計算された，ボックスサポート1個当たりに作用する鉛直方向荷重を表4－5に示す。

なお，設計荷重の設定上，水平方向荷重は生じない。

表 4－5 ボックスサポート 1 個当たりに作用する鉛直方向荷重（重大事故等対処設備）

| 荷重 | 鉛直方向荷重＊1 <br> （N） |  |
| :---: | :---: | :---: |
|  | F |  |
|  | 内側＊2 | 外側＊2 |
| 死荷重 |  |  |
| チャギング荷重（最大上向） |  |  |
| チャギング荷重（最大下向） |  |  |
| 逃がし安全弁作動時の荷重（最大上向） |  |  |
| 逃がし安全弁作動時の荷重（最大下向） |  |  |


＊2：内側はサプレッションチェンバ大円の内側に設置されたボックスサポート，外側はサプレッションチェンバ大円の外側に設置されたボックスサポートを示す。

## 4．3 計算方法

4．3．1 応力評価点
ボックスサポートの応力評価点は，ボックスサポートを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 4－6 及び図 4－1に示す。

応力計算方法は既工認から変更はなく，参照図書（1）に示すとおりである。

表 4－6 応力評価点

| 応力評価点番号 | 応力評価点 |
| :---: | :---: |
| P1 | ボックスプレート |
| P2＊ | ボックスプレート取付部 |
| P2＇＊ | ボックスプレート（上側）取付部 |
| P3＊ | フランジプレートとシヤラグ接触部 |
| P4＊ | シヤラグ取付部 |
| P5＊ | 基礎ボルト |
| P6 | フランジプレート |
| P6＊＊ | フランジプレート（外側） |
| P7 | ベースプレート |
| P8＊ | シヤコネクタ（外側）取付部 |
| P9 | コンクリート（ベースプレート下面） |
| P10＊ | コンクリート（シヤコネクタ（外側）側面） |
| P11＊ | コンクリート（シヤプレート上面） |
| P12＊ | パッド取付部 |

注記 $*: ~$ 重大事故等時における荷重値が小さく無視できるので評価を行 わない。

図 4－1 ボックスサポートの応力評価点
枠囲みの内容は商業機密の観点から公開できません。

## 4．3．2 ボックスプレート（応力評価点 P1）

ボックスプレートに作用する荷重の状態を図4－2に示す。


図 4－2 ボックスプレートに作用する荷重の状態
（1）荷重
図 4－2 の応力評価点P1 に作用する荷重は，表 4－5 に示す鉛直方向荷重Fを用いる。
（2）断面性能
応力評価点P1 における断面性能を表4－7 に示す。

| 表4－7 ボックスプレートの断面性能＊ |  |  |
| :---: | :---: | :---: |
| 位置 | 断面積A |  |
| 内側ボックスサポート |  |  |
| 外側ボックスサポート |  |  |

注記＊：補強リブを含む。
（3）応力計算
前記（1）の荷重作用時の応力計算方法を示す。

応力評価点P1（内側ボックスサポート及び外側ボックスサポート）
圧縮応力

$$
\sigma_{c}=\frac{\mathrm{F}}{\mathrm{~A}}
$$

4．3．3 フランジプレート及びベースプレート（応力評価点 P6，P7） フランジプレート及びベースプレートに作用する荷重の状態を図 4－3 に示す。


図 4－3 フランジプレート及びベースプレートに作用する荷重の状態
（1）荷重
図 4－3 の応力評価点 P6，P7 に作用する荷重は，表 4－5 に示す鉛直方向荷重Fを用いる。 コンクリートの圧縮応力 $\sigma \mathrm{c}$ は，
$\sigma_{\mathrm{c}}=\frac{\mathrm{F}}{\ell_{12} \times \ell_{13}+8 \times \mathrm{n} \times \mathrm{A}_{\mathrm{b}}}$
ここに，
$\mathrm{n} \quad: \quad \mathrm{n}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{C}}=15$
$\mathrm{E}_{\mathrm{s}}$ ：ボルトの縦弾性係数
$\mathrm{E}_{\mathrm{C}}$ ：コンクリートの縦弾性係数
N ：ボルトの本数（片側） $\mathrm{N}=4$
$\mathrm{A}_{\mathrm{b}} \quad: ~ ホ ゙ ル ト 一$ 本の断面積（呼び径 $\square$ ）


コンクリート及び基礎ボルトからベースプレートが受ける反力を，図4－4 のように考慮し，P6に対しては B 点，P7 に対しては B＇点における応力を計算する。
（a）フランジプレート
（b）ベースプレート

図 4－4 フランジプレート及びベースプレートの計算モデル
（a）フランジプレート
ボルトからの反力は，

$$
\mathrm{F}_{\mathrm{CB}}=\mathrm{N} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n} \cdot \sigma_{\mathrm{c}}
$$

B点より右側のコンクリートからの反力は，

$$
\mathrm{F}_{\mathrm{CC}}=\ell_{24} \cdot \ell_{12} \cdot \sigma_{\mathrm{c}}
$$

（b）ベースプレート
B ‘点より右側のコンクリートからの反力は，

$$
\mathrm{F}_{\mathrm{CC}}=\ell_{29} \cdot \ell_{12} \cdot \sigma_{\mathrm{c}}
$$

（2）断面性能
（a）フランジプレート
応力評価点 P6 における断面性能は，フランジプレートとベースプレートに加え，ボッ クスプレート補強リブの剛性を考慮する。

断面積


断面係数

（b）ベースプレート
応力評価点 P7 における断面性能は，

## ベースプレートよりも短いフランジプレートの幅を

考慮することで保守的な断面性能とする。断面積


断面係数

（3）応力計算
前記（1）の荷重作用時の応力計算方法を示す。

応力評価点 P6
せん断応力

$$
\tau=\frac{\mathrm{F}_{\mathrm{CB}}+\mathrm{F}_{\mathrm{CC}}}{\mathrm{~A}}
$$

曲げ応力

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}}{\mathrm{Z}}
$$

$$
\begin{aligned}
& \text { ここに, } \\
& \qquad \begin{array}{l}
\mathrm{M} \quad: \quad \mathrm{B} \text { 点に生じるモーメント } \\
\\
\\
\\
\mathrm{M}=\mathrm{F}_{\mathrm{C} \mathrm{~B}} \cdot \ell_{23}+\mathrm{F}_{\mathrm{C} \mathrm{C}} \cdot \frac{\ell_{24}}{2}
\end{array}
\end{aligned}
$$

応力評価点 P7
せん断応力

$$
\tau=\frac{\mathrm{F}_{\mathrm{CCC}}}{\mathrm{~A}}
$$

曲げ応力

$$
\begin{aligned}
\sigma_{\mathrm{b}}= & \frac{\mathrm{M}}{\mathrm{Z}} \\
& \text { ここに, } \\
& \mathrm{M} \quad: \quad \mathrm{B}, \quad \text { 点に生じるモーメント } \\
& \mathrm{M}=\mathrm{F}_{\mathrm{Cc}} \cdot \frac{\ell_{29}}{2}
\end{aligned}
$$

4．3．4 コンクリート（ベースプレート下面）（応力評価点 P9）
ベースプレート下面コンクリートの圧縮応力は，「4．3．3 フランジプレート及びベース プレート（応力評価点 P6，P7）」で求めた $\sigma_{\mathrm{C}}$ とする。

4． 4 計算条件
応力計算に用いる荷重を，「4．2 荷重の組合せ及び許容応力」に示す。

4．5 応力の評価
「4．3 計算方法」で求めた応力が許容応力以下であること。

5．評価結果
5.1 重大事故等対処設備としての評価結果

ボックスサポートの重大事故等時の状態を考慮した場合の強度評価結果を以下に示す。発生値は許容限界を満足している。
（1）強度評価結果
強度評価結果を表5－1に示す。
表 5－1 重大事故等時に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SA}}+\mathrm{M}_{\mathrm{SA}}$ ）

| 評価対象設備 | 評価部位 |  | 応力分類 |  | 重大事故等時 |  | 判定 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 算出応力 | 許容応力 |  |  |
|  |  |  | MPa | MPa |  |  |
| ボックス <br> サポート | P1 | ボックスプレート |  |  | 一次応力 | 圧縮 | 22 | 203 | $\bigcirc$ |  |
|  | P6 | フランジプレート |  |  | 一次応力 | せん断 | 4 | 117 | $\bigcirc$ |  |
|  |  |  | 曲げ | 21 |  | 234 | $\bigcirc$ |  |
|  |  |  | 組合せ | 23 |  | 203＊ | $\bigcirc$ |  |
|  | P7 | ベースプレート | 一次応力 | せん断 | 3 | 117 | $\bigcirc$ |  |
|  |  |  |  | 曲げ | 19 | 234 | $\bigcirc$ |  |
|  |  |  |  | 組合せ | 20 | 203＊ | $\bigcirc$ |  |
|  | P9 | $\begin{aligned} & \text { コンクリート } \\ & \text { (ベースプレート下面) } \end{aligned}$ | 一次応力 | 圧縮 | 1.25 | 24． 2 | $\bigcirc$ |  |

[^0]6．参照図書
（1）女川原子力発電所第2号機 第2回工事計画認可申請書添付書類「IV－3－1－1－15 ボックスサポートの強度計算書」


[^0]:    注記＊：許容引張応力の值を用いる。

