```
本資料のうち，枠囲みの内容は商業機密の観点から公開できま
``` せん。
\begin{tabular}{|c|c|}
\hline 女川原子力発電所第 2 号機 & 工事計画審査資料 \\
\hline 資料番号 & 02 －工－B－08－0001＿改 2 \\
\hline 提出年月日 & 2021 年 10 月 5 日 \\
\hline
\end{tabular}

VI－2－9－2－1－2 サプレッションチェンバの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 5
3．評価部位 6
4．地震応答解析及び構造強度評価 9
4.1 地震応答解析及び構造強度評価方法 9
4.2 荷重の組合せ及び許容応力 9
4．2．1 荷重の組合せ及び許容応力状態 9
4．2．2 許容応力 9
4．2．3 使用材料の許容応力評価条件 9
4．2．4 設計荷重 14
4．3 解析モデル及び諸元 16
4． 4 固有周期 21
4.5 設計用地震力 27
4.6 計算方法 29
4．6．1 応力評価点 29
4．6．2 応力計算方法 31
4.7 計算条件 31
4．8 応力の評価 31
5．評価結果 32
5.1 設計基準対象施設としての評価結果 32
5.2 重大事故等対処設備としての評価結果 39
6．参照図書 44

\section*{1．概要}

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－ 1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，サプレッションチ ェンバが設計用地震力に対して十分な構造強度を有していることを説明するものである。

サプレッションチェンバは，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力による荷重及び重大事故等時の荷重に対する評価について記載するものとし，前述の荷重を除く荷重によるサプレッ ションチェンバの評価は，平成 2 年 5 月 24 日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））による（以下「既工認」という。）。

\section*{2．一般事項}

\section*{2.1 構造計画}
サプレッションチェンバの構造計画を表 2-1 に示す。

\section*{2．2 評価方針}

サプレッションチェンバの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件 に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合 せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力によ る応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法 にて確認することで実施する。確認結果を「5．評価結果」に示す。 サプレッションチェンバの耐震評価フローを図 2－1 に示す。

注記＊：スロッシング荷重を考慮
図 2－1 サプレッションチェンバの耐震評価フロー

\section*{2.3 適用規格•基準等}

適用規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補— 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

\section*{2.5 計算精度と数値の丸め方}

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりである。

表 2－2 表示する数値の丸め方
\begin{tabular}{|c|c|c|c|c|}
\hline 数値の種類 & 単位 & 処理桁 & 処理方法 & 表示桁 \\
\hline 固有周期 & s & 小数点以下第 4 位 & 四捨五入 & 小数点以下第 3 位 \\
\hline 震度 & - & 小数点以下第 3 位 & 切上げ & 小数点以下第 2 位 \\
\hline 圧力 & kPa & - & - & 整数位 \(^{* 1}\) \\
\hline 温度 & \({ }^{\circ} \mathrm{C}\) & - & - & 整数位 \\
\hline 質量 & kg & 有効数字 3 桁 & 四捨五入 & 有効数字 2 桁 \\
\hline 密度 & \(\mathrm{kg} / \mathrm{m}^{3}\) & 有効数字 3 桁 & 四捨五入 & 有効数字 2 桁 \\
\hline 長さ & mm & - & - & 整数位 \\
\hline 角度 & \(\circ\) & - & - & 整数位 \({ }^{* 1}\) \\
\hline 縦弾性係数 & MPa & 有効数字 4 桁目 & 四捨五入 & 有効数字 3 桁 \\
\hline ポアソン比 & - & - & - & 小数点以下第 1 位 \\
\hline 算出応力 & MPa & 小数点以下第 1 位 & 切上げ & 整数位 \\
\hline 許容応力 & MPa & 小数点以下第 1 位 & 切捨て & 整数位 \({ }^{* 2}\) \\
\hline
\end{tabular}

注記 \(* 1\) ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
サプレッションチェンバの形状及び主要寸法を図 3－1 及び図 3－2 に，評価部位及び使用材料 を表3－1に示す。

\(\mathrm{A} \sim \mathrm{A}\) 断面図
\[
\mathrm{D}_{1}=\square \quad \mathrm{R}_{1}=\square \quad \mathrm{t}_{1}=\square \quad \theta_{1}=\square
\]
（単位：mm）
図 3－1 サプレッションチェンバの形状及び主要寸法

（単位：mm）
図 3－2 サプレッションチェンバ強め輪の形状及び主要寸法

表 3－1 評価部位及び使用材料表
\begin{tabular}{|c|c|c|}
\hline 評価部位 & 使用材料 & 備考 \\
\hline サプレッションチェンバ & SGV480 & \\
\hline
\end{tabular}

4．地震応答解析及び構造強度評価
4.1 地震応答解析及び構造強度評価方法
（1）サプレッションチェンバは，ボックスサポートにより拘束支持された円環状の円筒構造 であり，地震荷重はボックスサポートを介して原子炉建屋に伝達される。サプレッション チェンバは，ドライウェルとベント管を介して接続されているが，ベント管のベント管ベ ローズにより振動が伝達しない構造であり，地震による摇れは，原子建屋基礎版上からボ ックスサポートを介しサプレッションチェンバに入力される。

サプレッションチェンバに作用する地震力は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」から求められる水平及び鉛直の固有周期に応じた応答加速度に基づき，スペ クトルモーダル解析を用いて算出する。サプレッションチェンバの耐震評価として，上記 の応答解析に基づき算出した地震力を用いて，構造強度評価を行う。また，重大事故等対処設備としての評価においては，重大事故等時における水頭圧を考慮する。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

\section*{4．2 荷重の組合せ及び許容応力}

4．2．1 荷重の組合せ及び許容応力状態
サプレッションチェンバの荷重の組合せ及び許容応力状態のうち，設計基準対象施設 の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示 す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

\section*{4．2．2 許容応力}

サプレッションチェンバの許容応力は添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 に示すとおりとする。

4．2．3 使用材料の許容応力評価条件
サプレッションチェンバの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{表4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）} \\
\hline \multicolumn{2}{|l|}{施設区分} & 機器名称 & 耐震重要度分類 & 機器等
の区分 & \multicolumn{2}{|l|}{荷重の組合せ＊1} & 許容応力状態 \\
\hline \multirow[t]{3}{*}{原子炉格納施設} & \multirow[t]{3}{*}{原子炉格納容器} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{3}{*}{S} & \multirow[t]{3}{*}{\begin{tabular}{l}
クラスMC \\
容器
\end{tabular}} & \(\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}\)＊ & \[
\begin{gathered}
(9) \\
(10)^{* 3} \\
(13) \\
(15) \\
\hline
\end{gathered}
\] & \(\mathrm{III}_{4} \mathrm{~S}\) \\
\hline & & & & & \(\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S}\) s & \[
\begin{gathered}
(11) \\
(12)^{* 3} \\
(14) \\
\hline
\end{gathered}
\] & \(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\) \\
\hline & & & & & \(\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{* * 2}\) & （16） & \(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\) \\
\hline
\end{tabular}
注記＊1：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－6の荷重の組合せのNo．を示す。 ＊2：原子炉格納容器は冷却材喪失事故後の最終障壁となることから，構造体全体としての安全裕度を確認する意味で，冷却材喪失事故後の最大内圧との組合せを考慮する。
＊3：運転状態 I による燃料交換時の活荷重は，サプレッションチェンバに作用しないことから，荷重の組合せとして考慮せず評価しない。
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{施設区分} & 機器名称 & 設備分類＊\({ }^{* 1}\) & 機器等
の区分 & \multicolumn{2}{|l|}{荷重の組合せ＊2} & 許容応力状態 \\
\hline \multirow[t]{2}{*}{原子炉格納施設} & \multirow[t]{2}{*}{\begin{tabular}{l}
原子炉格納 \\
容器
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
常設耐震／防止 \\
常設／緩和
\end{tabular}} & \multirow[t]{2}{*}{重大事故等 クラス2容器} & \(\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{Sd}^{* 3}\) & （V（L）－1） & \(\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}\) \\
\hline & & & & & \(\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S}_{\text {S }}\) & （V（LL）－1） & \(\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}\) \\
\hline
\end{tabular}
注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。
＊3：重大事故等後の最高内圧及び最高温度との組合せを考慮する。
＊4： \(\mathrm{V}_{\mathrm{A}} \mathrm{S}\) として \(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\) の許容限界を用いる。
表4－3 クラスMC容器及び重大事故等クラス2容器の許容応力

注記＊1：3•Sを超えるときは弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。また，SmはSと読み替える。）の簡易弾塑性解析を用いる。
＊2：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
ただし，PVB－3140（6）の「応力の全振幅」は「S d 又はS s 地震動による応力の全振幅」と読み替える。
＊4 •設計•建設規格 PVB－3111に基づき，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ \(\alpha\) ）を用い る。
＊5： \(\mathrm{V}_{\mathrm{A}} \mathrm{S}\) として \(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\) の許容限界を用いる。
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
評価部位 \\
（応力評価対象）
\end{tabular} & 材料 & \multicolumn{2}{|l|}{\begin{tabular}{l}
温度条件 \\
（ \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & \[
\begin{gathered}
\mathrm{S} \\
(\mathrm{MPa})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{S}_{\text {y }} \\
(\mathrm{MPa})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{S}_{\mathrm{u}} \\
(\mathrm{MPa}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
S_{y}(R T) \\
(\mathrm{MPa}) \\
\hline
\end{gathered}
\] \\
\hline サプレッションチェンバ & SGV480 & 周囲環境温度 & 104 & 131 & 237 & 430 & － \\
\hline
\end{tabular}
表4－5 使用材料の許容応力評価条件（重大事故等対処設備）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
評価部位 \\
（応力評価対象）
\end{tabular} & 材料 & \multicolumn{2}{|l|}{\begin{tabular}{l}
温度条件 \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & \[
\begin{gathered}
\mathrm{S} \\
(\mathrm{MPa})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{S}_{\mathrm{y}} \\
(\mathrm{MPa})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{S}_{\mathrm{u}} \\
(\mathrm{MPa}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\
(\mathrm{MPa}) \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{サプレッションチェンバ} & \multirow[t]{2}{*}{SGV480} & \begin{tabular}{l}
周囲環境 \\
温度
\end{tabular} & \(178{ }^{* 1}\) & 131 & 228 & 422 & － \\
\hline & & 周囲環境温度 & \(111{ }^{* 2}\) & 131 & 236 & 429 & － \\
\hline
\end{tabular}

\footnotetext{
注記＊1：SA 後長期（L）のサプレッションチェンバ温度を考慮する。
}
＊2：SA 後長期（LL）のサプレッションチェンバ温度を考慮する。

\section*{4．2．4 設計荷重}
（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用圧力，最高使用温度及び水力学的動荷重は，既工認（参照図書（1））からの変更はなく，次のとおりである。
a．最高使用圧力及び最高使用温度
\begin{tabular}{lc}
内圧 & 427 kPa \\
外圧 & 13.7 kPa \\
温度 & \(104^{\circ} \mathrm{C}\)
\end{tabular}
b．死荷重
サプレッションチェンバ，ボックスサポート及びサプレッションチェンバ内部水の自重を死荷重とする。
死荷重
4． \(2 \times 10^{6} \mathrm{~kg}\)
c．冷却材喪失事故時荷重
事故時圧力は，冷却材喪失事故後の最大内圧とする。
最大内圧 206 kPa
d．逃がし安全弁作動時の荷重
逃がし安全弁作動時，排気管内の気体が T－クエンチヤからサプレッションプール水中に放出される際，サプレッションチェンバに圧力振動荷重が作用する。最大正圧最大負圧

e．水位
水位 O．P．－3800mm
（2）重大事故等対処設備としての設計荷重
a．重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。
\begin{tabular}{|c|c|c|c|}
\hline 内圧 \(\mathrm{P}_{\text {SAL }}\) & 640 kPa & （SA 後長期 & （L）） \\
\hline 内圧 P SALL & 427 kPa & （SA 後長期 & （LL） \\
\hline 温度T SAL & \(178{ }^{\circ} \mathrm{C}\) & （SA 後長期 & （L）） \\
\hline 温度 T SALL & \(111^{\circ} \mathrm{C}\) & （SA 後長期 & （LL）） \\
\hline
\end{tabular}
b．死荷重
サプレッションチェンバ，ボックスサポート及びサプレッションチェンバ内部水の自重を死荷重とする。
死荷重
6． \(77 \times 10^{6} \mathrm{~kg}\)
c．水力学的動荷重
重大事故等対処設備としての水力学的動荷重は，以下のとおりである。
```

    サプレッションチェンバに対して, 低流量蒸気凝縮時に以下に示す蒸気凝縮振動
    (チャギング) 荷重が作用する。
最大正圧

$\square$| kPa |
| :--- |
| kPa |

重大事故等対処設備における水位は，以下のとおりとする。

```
水位
0．P．-1514 mm
d．水位

\section*{4.3 解析モデル及び諸元}
（1）設計基準対象施設としての解析モデル及び諸元
設計基準対象施設としての評価は，以下の 3 つの解析モデルを用いる。サプレッション チェンバ全体はりモデルとサプレッションチェンバ部分シェルモデルに大別され，前者は地震応答解析及び死荷重による変位の算出に用いるモデル，後者は応力解析に用いるモデ ルである。さらに，サプレッションチェンバ部分シェルモデルにおいては，拘束条件や境界条件を変更した 2 つの解析モデルを用いる。解析コードは「MSCN A S T R A N」 を使用する。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

解析モデルの概要を以下に示す。
a．スペクトルモーダル解析及びサプレッションチェンバ部分シェルモデルに与える強制変位の計算は，サプレッションチェンバ全体をはり要素にモデル化したモデルを用い て行う。解析モデルを図 4－1 に，諸元を表 4－6に示す。サプレッションチェンバ，ボ ックスサポートをはり要素で，フランジプレート，基礎ボルトをばね要素でモデル化 する。なお，ボックスサポート等はサプレッションチェンバと一体構造であることか ら，サプレッションチェンバに加えてモデル化を行う。サプレッションチェンバの内部水は，仮想質量法により算定し，NASTRAN の機能である Guyan 縮約法を用いて本モ デルのサプレッションチェンバの各質点に縮約し，付加する。ボックスサポート下端 は，

b．圧力による応力は，サプレッションチェンバを構成する円筒のうち 2 個をシェル要素 にモデル化した部分シェルモデルにより計算する。解析モデルを図4－2，図 4－4 に，諸元を表4－6に示す。円筒部の端面を また，ボックスサポート下端を，

c．死荷重，スロッシング荷重及び地震荷重による応力は，サプレッションチェンバを構成する円筒のらち 2 個をシェル要素にモデル化した部分シェルモデルにより計算する。解析モデルを図 4－3，図4－4に，諸元を表 4－6に示す。円筒部端面の各節点を

ボックスサポート下端に対し，

（2）重大事故等対処設備としての解析モデル及び諸元
重大事故等時のサプレッションチェンバの解析モデルは，

枠囲みの内容は商業機密の観点から公開できません。
\(\square\)
図 4－1 解析モデル サプレッションチェンバ全体はりモデル

図 4－2 解析モデル サプレッションチェンバ部分シェルモデル（圧力荷重）

図 4－3 解析モデル サプレッションチェンバ部分シェルモデル（強制変位荷重）
\(\square\)
4－4 サプレッションチェンバ部分シェルモデルの部材名称

表 4－6（1）機器諸元（その 1）
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{項目} & \multirow[b]{2}{*}{記号} & \multirow[b]{2}{*}{単位} & \multicolumn{2}{|c|}{入力値} \\
\hline & & & 設計基準対象施設 & 重大事故等対処設備 \\
\hline 材質 & － & － & \multicolumn{2}{|c|}{SGV480} \\
\hline 機器質量 & － & Kg & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline 水密度 & － & \(\mathrm{kg} / \mathrm{m}^{3}\) & & \\
\hline 水位 & － & mm & 0．P．-3800 & 0．P．-1514 \\
\hline 温度条件 & T & \({ }^{\circ} \mathrm{C}\) & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline 縦弾性係数 & E & MPa & & \\
\hline ポアソン比 & \(v\) & － & & \\
\hline
\end{tabular}

注記 \(* 1\) ：解析モデルの温度は，通常運転時温度と事故時温度の平均温度とする。なお，許容応力 は保守的に事故時温度で算出する。
＊2：解析モデルの温度は，通常運転時温度と限界温度の平均温度とする。なお，許容応力は各運転状態の最高温度で算出する。

表 4－6（2）機器諸元（その 2）
\begin{tabular}{|l|l|l|}
\hline & 項目 & 要素数
\end{tabular} 節点数

\section*{4． 4 固有周期}
（1）設計基準対象施設としての固有周期
固有周期は，「4．3 解析モデル及び諸元」に示すモデルを用いて解析により算出する。設計基準対象施設における固有周期を表 4－7 に，主要振動モード図を 3 モード代表して図 4－5 にそれぞれ示す。水平方向及び鉛直方向に対し，固有周期は 0.05 秒を超えており，柔構造であることを確認した。

表 4－7 固有周期（設計基準対象施設）
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{モード} & \multirow[t]{2}{*}{\begin{tabular}{l}
固有周期 \\
（s）
\end{tabular}} & \multicolumn{3}{|c|}{刺激係数＊} \\
\hline & & X方向 & Y方向 & Z 方向 \\
\hline 1 次 & 0.077 & & & \\
\hline 2 次 & 0.077 & & & \\
\hline 3 次 & 0.073 & & & \\
\hline 4 次 & 0． 073 & & & \\
\hline 5 次 & 0． 067 & & & \\
\hline 6 次 & 0.060 & & & \\
\hline 7 次 & 0． 060 & & & \\
\hline 8 次 & 0.053 & & & \\
\hline 9 次 & 0.053 & & & \\
\hline 10 次 & 0． 052 & & & \\
\hline 11 次 & 0.052 & & & \\
\hline 12 次 & 0.050 & & & \\
\hline
\end{tabular}

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積か ら算出した値を示す。
\(\square\)
図 4－5 主要振動モード図（設計基準対象施設）（その1）

4 次モード
図 4－5 主要振動モード図（設計基準対象施設）（その 2）
枠囲みの内容は商業機密の観点から公開できません。
\(\square\)
5 次モード
図 4－5 主要振動モード図（設計基準対象施設）（その 3）

枠囲みの内容は商業機密の観点から公開できません。
（2）重大事故等対処設備としての固有周期
固有周期は，「4．3 解析モデル及び諸元」に示すモデルを用いて解析により算出する。重大事故等対処設備における固有周期は表 4－8 に，主要振動モード図を 3 モード代表とし て図 4－6 にそれぞれ示す。水平方向及び鉛直方向に対し，固有周期は 0.05 秒を超えており，柔構造であることを確認した。

表 4－8 固有周期（重大事故等対処設備）
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{モード} & \multirow[t]{2}{*}{\begin{tabular}{l}
固有周期 \\
（s）
\end{tabular}} & \multicolumn{3}{|c|}{刺激係数＊} \\
\hline & & X方向 & Y方向 & Z 方向 \\
\hline 1 次 & 0． 104 & & & \\
\hline 2 次 & 0． 104 & & & \\
\hline 3 次 & 0.097 & & & \\
\hline 4 次 & 0.097 & & & \\
\hline 5 次 & 0.085 & & & \\
\hline 6 次 & 0.076 & & & \\
\hline 7 次 & 0.076 & & & \\
\hline 8 次 & 0.069 & & & \\
\hline 9 次 & 0.069 & & & \\
\hline 10 次 & 0.068 & & & \\
\hline 11 次 & 0.066 & & & \\
\hline 12 次 & 0.066 & & & \\
\hline 13 次 & 0.051 & & & \\
\hline 14 次 & 0.051 & & & \\
\hline 15 次 & 0.047 & & & \\
\hline
\end{tabular}

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積か ら算出した値を示す。

枠囲みの内容は商業機密の観点から公開できません。
\(\square\)

枠囲みの内容は商業機密の観点から公開できません。

\section*{4.5 設計用地震力}

評価に用いる設計用地震力を表 4－9 及び表 4－10に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 4－9 設計用地震力（設計基準対象施設）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
据付 \\
設置
\end{tabular} & 所及び
;さ (m) & & & 原子炉建屋 & P．-8.1 & & \\
\hline & 減衰 & （\％） & & & \(: 1.0{ }^{* 2}\) & 鉛直： & & \\
\hline & & & & \begin{tabular}{l}
計用地震 \\
は静的震
\end{tabular} & \[
\mathrm{S} \mathrm{~d}
\] & & 地震動 & \\
\hline & モード & 固有周期 & 応答水 & 震度 \({ }^{* 3}\) & 応答鉛直震度 \({ }^{* 3}\) & 応答水 & 震度 \({ }^{* 3}\) & 応答鉛直震度 \({ }^{* 3}\) \\
\hline \(\sim\) & & & X方向 & Y 方向 & Z 方向 & X方向 & Y方向 & Z 方向 \\
\hline ～ & 1 次 & 0.077 & & & & & & \\
\hline ， & 2 次 & 0.077 & & & & & & \\
\hline \(\bigcirc\) & 3 次 & 0.073 & & & & & & \\
\hline 5 & 4 次 & 0.073 & & & & & & \\
\hline （a） & 5 次 & 0.067 & & & & & & \\
\hline & 6 次 & 0.060 & & & & & & \\
\hline \(\bigcirc\) & 7 次 & 0.060 & & & & & & \\
\hline & 8 次 & 0.053 & & & & & & \\
\hline & 9 次 & 0.053 & & & & & & \\
\hline & 10 次 & 0.052 & & & & & & \\
\hline & 11 次 & 0.052 & & & & & & \\
\hline & 12 次 & 0.050 & － & － & － & － & － & － \\
\hline & \multicolumn{2}{|l|}{動的地震力 \({ }^{* 4}\)} & 0.48 & 0.48 & 0． 40 & 0.99 & 0.99 & 0.69 \\
\hline & \multicolumn{2}{|l|}{静的地震力 \({ }^{* 5}\)} & 0.36 & 0.36 & 0． 29 & － & － & － \\
\hline
\end{tabular}

注記＊1：サプレッションチェンバが設置される原子炉建屋 O．P．－8．10m の床応答スペクトルを適用する。
＊2：添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の溶接構造物に適用される減衰定数を用いる。
＊3：各モードの固有周期に対し，設計用床応答スペクトルより得られる震度を示す。
＊4：S d 又はS s 地震動に基づく設計用最大応答加速度より定めた震度を示す。
＊5：静的震度（3．6•C i 及び \(1.2 \cdot \mathrm{C}_{\mathrm{v}}\) ）を示す。

枠囲みの内容は商業機密の観点から公開できません。

表 4－10 設計用地震力（重大事故等対処設備）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
据付場所及び \\
設置高さ（m）
\end{tabular}} & \multicolumn{6}{|c|}{原子炉建屋 0．P．－8．10＊1} \\
\hline \multicolumn{2}{|l|}{減衰定数（\％）} & \multicolumn{6}{|c|}{水平： \(1.0{ }^{* 2}\) 鉛直： \(1.0{ }^{* 2}\)} \\
\hline \multicolumn{2}{|c|}{地震力} & \multicolumn{3}{|c|}{弾性設計用地震動 S d又は静的震度} & \multicolumn{3}{|c|}{基準地震動 S s} \\
\hline \multirow[t]{2}{*}{モード} & \multirow[t]{2}{*}{\begin{tabular}{l}
固有周期 \\
（s）
\end{tabular}} & \multicolumn{2}{|l|}{応答水平震度 \({ }^{* 3}\)} & \begin{tabular}{l}
応答鉛直 \\
震度 \({ }^{* 3}\)
\end{tabular} & \multicolumn{2}{|l|}{応答水平震度 \({ }^{* 3}\)} & 応答鉛直震度 \({ }^{* 3}\) \\
\hline & & X方向 & Y 方向 & Z 方向 & X方向 & Y方向 & Z 方向 \\
\hline 1 次 & 0.104 & \multicolumn{6}{|l|}{\multirow[t]{14}{*}{}} \\
\hline 2 次 & 0． 104 & & & & & & \\
\hline 3 次 & 0.097 & & & & & & \\
\hline 4 次 & 0.097 & & & & & & \\
\hline 5 次 & 0.085 & & & & & & \\
\hline 6 次 & 0.076 & & & & & & \\
\hline 7 次 & 0.076 & & & & & & \\
\hline 8 次 & 0． 069 & & & & & & \\
\hline 9 次 & 0． 069 & & & & & & \\
\hline 10 次 & 0． 068 & & & & & & \\
\hline 11 次 & 0． 066 & & & & & & \\
\hline 12 次 & 0． 066 & & & & & & \\
\hline 13 次 & 0.051 & & & & & & \\
\hline 14 次 & 0.051 & & & & & & \\
\hline 15 次 & 0.047 & － & － & － & － & － & － \\
\hline \multicolumn{2}{|l|}{動的地震力 \({ }^{* 4}\)} & 0． 48 & 0.48 & 0.40 & 0.99 & 0.99 & 0.69 \\
\hline \multicolumn{2}{|l|}{静的地震力 \({ }^{* 5}\)} & 0.36 & 0.36 & 0． 29 & － & － & － \\
\hline
\end{tabular}

注記＊1：サプレッションチェンバが設置される原子炉建屋 O．P．－8．10m の床応答スペクトルを適用する。
＊2：添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の溶接構造物に適用される減衰定数を用いる。
＊3：各モードの固有周期に対し，設計用床応答スペクトルより得られる震度を示す。
＊4：S d 又は S s 地震動に基づく設計用最大応答加速度より定めた震度を示す。
＊5：静的震度（3．6•C i 及び \(1.2 \cdot \mathrm{C}_{\mathrm{v}}\) ）を示す。

枠囲みの内容は商業機密の観点から公開できません。

\section*{4.6 計算方法}

4．6．1 応力評価点
サプレッションチェンバの応力評価点は，サプレッションチェンバを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 4－11 及び図 4－7 に示す。

表 4－11 応力評価点
\begin{tabular}{|c|l|}
\hline 応力評価点番号 & \multicolumn{1}{|c|}{ 応力評価点 } \\
\hline P1 & 胴中央部外側 \\
\hline P2 & 胴中央部底部 \\
\hline P3 & 胴中央部内側 \\
\hline P4 & 胴中央部頂部 \\
\hline P5 & 胴エビ継手部外側 \\
\hline P6 & 胴エビ継手部底部 \\
\hline P7 & 胴エビ継手部内側 \\
\hline P8 & 胴エビ継手部頂部 \\
\hline P9 & 内側ボックスサポート取付部 \\
\hline P10 & 外側ボックスサポート取付部 \\
\hline
\end{tabular}

図 4－7 サプレッションチェンバの応力評価点

枠囲みの内容は商業機密の観点から公開できません。

\section*{4．6．2 応力計算方法}

サプレッションチェンバの応力計算方法について以下に示す。
（1）設計基準対象施設としての応力計算
設計基準対象施設における応力は，応力評価点 P1～P10 に対し，「4．3 解析モデル及 び諸元」に示すサプレッションチェンバ部分シェルモデルにより算出する。水力学的動荷重は，参照図書（1）に示す水力学的動荷重による応力を用いる。水平 2 方向及び鉛直方向の設計用地震力による応力は，二乗和平方根により組み合わせる。
（2）重大事故等対処設備としての応力計算
重大事故等対処設備における応力は，応力評価点 P1～P10 に対し，「4．3 解析モデル及び諸元」に示すサプレッションチェンバ部分シェルモデルにより算出する。水力学的動荷重は，参照図書（1）に示す水力学的動荷重による応力を用いる。水平 2 方向及び鉛直方向の設計用地震力による応力は，二乗和平方根により組み合わせる。

4．7 計算条件
応力解析に用いる荷重を，「4．2 荷重の組合せ及び許容応力」及び「4．5 設計用地震力」 に示す。

\section*{4．8 応力の評価}

「4．6 計算方法」で求めた各応力が，表 4－3 に示す許容応力以下であること。ただし，一次十二次応力が許容値を満足しない場合は，設計•建設規格 PVB－3300（PVB－3313 を除く。 Sm は S と読み替える。）に基づいて疲労評価を行い，疲労累積係数が 1.0 以下であること。

5．評価結果
5.1 設計基準対象施設としての評価結果

サプレッションチェンバの設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。

なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23 項「繰返し荷重に対する解析」に記載のとおり，地震を含む機械的荷重の繰り返しに対する規定で ある設計•建設規格 PVB－3140（6）を満足しているため，各許容応力状態における一次 + 二次 + ピーク応力強さの評価は不要である。
（1）構造強度評価結果
構造強度評価の結果を表 5－1 及び表5－2に示す。
表中の「荷重の組合せ」欄には，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関 する説明書」における表 3－6 の荷重の組合せのNo．を記載する。

なお，一次膜応力十一次曲げ応力の許容応力を求める際の形状係数 \(\alpha\) は，応力評価上の断面である中実矩形断面の 1.5 を用いている。
表 5－1 許容応力状態IIIAS対する評価結果（ \(\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}\)＊）（その 1 ）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{III}_{4} \mathrm{~S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{\begin{tabular}{l}
荷重の \\
組合せ
\end{tabular}} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & & \\
\hline & & & & MPa & MPa & & & \\
\hline \multirow[t]{14}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{3}{*}{P1} & \multirow[t]{3}{*}{胴中央部外側} & 一次一般膜応力 & 36 & 237 & \(\bigcirc\) & （13） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 36 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次 + 二次応力 & 48 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{3}{*}{P2} & \multirow[t]{3}{*}{胴中央部底部} & 一次一般膜応力 & 38 & 237 & \(\bigcirc\) & （13） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 38 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次 + 二次応力 & 30 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{3}{*}{P3} & \multirow[t]{3}{*}{胴中央部内側} & 一次一般膜応力 & 32 & 237 & \(\bigcirc\) & （13） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 32 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次 + 二次応力 & 38 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{3}{*}{P4} & \multirow[t]{3}{*}{胴中央部頂部} & 一次一般膜応力 & 16 & 237 & \(\bigcirc\) & （9），（13） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 16 & 356 & \(\bigcirc\) & （9），（13） & \\
\hline & & & 一次 + 二次応力 & 22 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{2}{*}{P5} & \multirow[t]{2}{*}{胴エビ継手部外側} & 一次膜応力 + 一次曲げ応力 & 24 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次＋二次応力 & 46 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline
\end{tabular}
表 5－1 許容応力状態IIIAS対する評価結果（ \(\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}\)＊）（その 2 ）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{II}_{\text {S }} \mathrm{S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{荷重の組合せ} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & & \\
\hline & & & & MPa & MPa & & & \\
\hline \multirow[t]{10}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{2}{*}{P6} & \multirow[t]{2}{*}{胴エビ継手部底部} & 一次膜応力 + 一次曲げ応力 & 74 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次＋二次応力 & 30 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{2}{*}{P7} & \multirow[t]{2}{*}{胴エビ継手部内側} & 一次膜応力 + 一次曲げ応力 & 31 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次＋二次応力 & 42 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{2}{*}{P8} & \multirow[t]{2}{*}{胴エビ継手部頂部} & 一次膜応力 + 一次曲げ応力 & 19 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次＋二次応力 & 26 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{2}{*}{P9} & \multirow[t]{2}{*}{内側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 86 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次＋二次応力 & 86 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline & \multirow[t]{2}{*}{P10} & \multirow[t]{2}{*}{外側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 92 & 356 & \(\bigcirc\) & （13） & \\
\hline & & & 一次＋二次応力 & 96 & 393 & \(\bigcirc\) & （9），（13） & \\
\hline
\end{tabular}
表 5－2（1）許容応力状態 \(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\) に対する評価結果（ \(\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}\) ）（その 1 ）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{IV}_{4} \mathrm{~S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{荷重の組合せ} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & & \\
\hline & & & & MPa & MPa & & & \\
\hline \multirow[t]{14}{*}{サプレッショ
ンチェンバ} & \multirow[t]{3}{*}{P1} & \multirow[t]{3}{*}{胴中央部外側} & 一次一般膜応力 & 56 & 258 & \(\bigcirc\) & （14） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 56 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 88 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{3}{*}{P2} & \multirow[t]{3}{*}{胴中央部底部} & 一次一般膜応力 & 51 & 258 & \(\bigcirc\) & （14） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 51 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 54 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{3}{*}{P3} & \multirow[t]{3}{*}{胴中央部内側} & 一次一般膜応力 & 48 & 258 & \(\bigcirc\) & （14） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 48 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 70 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{3}{*}{P4} & \multirow[t]{3}{*}{胴中央部頂部} & 一次一般膜応力 & 25 & 258 & \(\bigcirc\) & （11），（14） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 25 & 387 & \(\bigcirc\) & （11），（14） & \\
\hline & & & 一次＋二次応力 & 40 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{2}{*}{P5} & \multirow[t]{2}{*}{胴エビ継手部外側} & 一次膜応力 + 一次曲げ応力 & 39 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 86 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline
\end{tabular}
表 5－2（1）許容応力状態 \(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\) に対する評価結果（ \(\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}\) ）（その 2 ）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{荷重の組合せ} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & & \\
\hline & & & & MPa & MPa & & & \\
\hline \multirow[t]{10}{*}{サプレッショ
ンチェンバ} & \multirow[t]{2}{*}{P6} & \multirow[t]{2}{*}{胴エビ継手部底部} & 一次膜応力 + 一次曲げ応力 & 85 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 56 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{2}{*}{P7} & \multirow[t]{2}{*}{胴エビ継手部内側} & 一次膜応力 + 一次曲げ応力 & 46 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 78 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{2}{*}{P8} & \multirow[t]{2}{*}{胴エビ継手部頂部} & 一次膜応力 + 一次曲げ応力 & 28 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 48 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{2}{*}{P9} & \multirow[t]{2}{*}{内側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 116 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 158 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline & \multirow[t]{2}{*}{P10} & \multirow[t]{2}{*}{外側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 126 & 387 & \(\bigcirc\) & （14） & \\
\hline & & & 一次＋二次応力 & 180 & 393 & \(\bigcirc\) & （11），（14） & \\
\hline
\end{tabular}
表 5－2（2）許容応力状態 \(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\) に対する評価結果（ \(\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}{ }^{*}\) ）（その1）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{荷重の組合せ} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & & \\
\hline & & & & MPa & MPa & & & \\
\hline \multirow[t]{14}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{3}{*}{P1} & \multirow[t]{3}{*}{胴中央部外側} & 一次一般膜応力 & 76 & 258 & \(\bigcirc\) & （16） & \\
\hline & & & 一次膜応力＋一次曲げ応力 & 76 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 48 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{3}{*}{P2} & \multirow[t]{3}{*}{胴中央部底部} & 一次一般膜応力 & 65 & 258 & \(\bigcirc\) & （16） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 65 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 30 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{3}{*}{P3} & \multirow[t]{3}{*}{胴中央部内側} & 一次一般膜応力 & 71 & 258 & \(\bigcirc\) & （16） & \\
\hline & & & 一次膜応力＋一次曲げ応力 & 71 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 38 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{3}{*}{P4} & \multirow[t]{3}{*}{胴中央部頂部} & 一次一般膜応力 & 62 & 258 & \(\bigcirc\) & （16） & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 62 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 22 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{2}{*}{P5} & \multirow[t]{2}{*}{胴エビ継手部外側} & 一次膜応力＋一次曲げ応力 & 41 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 46 & 393 & \(\bigcirc\) & （16） & \\
\hline
\end{tabular}
表 5－2（2）許容応力状態 \(\mathrm{V}_{\mathrm{A}} \mathrm{S}\) に対する評価結果（ \(\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}{ }^{*}\) ）（その 2）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{IV}_{\mathrm{A}} \mathrm{S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{\begin{tabular}{l}
荷重の \\
組合せ
\end{tabular}} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & & \\
\hline & & & & MPa & MPa & & & \\
\hline \multirow[t]{10}{*}{\[
\begin{aligned}
& \text { サプレッショ } \\
& \text { ンチェンバ }
\end{aligned}
\]} & \multirow[t]{2}{*}{P6} & \multirow[t]{2}{*}{胴エビ継手部底部} & 一次膜応力 + 一次曲げ応力 & 38 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 30 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{2}{*}{P7} & \multirow[t]{2}{*}{胴エビ継手部内側} & 一次膜応力 + 一次曲げ応力 & 58 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 42 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{2}{*}{P8} & \multirow[t]{2}{*}{胴エビ継手部頂部} & 一次膜応力 + 一次曲げ応力 & 42 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 26 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{2}{*}{P9} & \multirow[t]{2}{*}{内側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 73 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 86 & 393 & \(\bigcirc\) & （16） & \\
\hline & \multirow[t]{2}{*}{P10} & \multirow[t]{2}{*}{外側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 76 & 387 & \(\bigcirc\) & （16） & \\
\hline & & & 一次＋二次応力 & 96 & 393 & \(\bigcirc\) & （16） & \\
\hline
\end{tabular}

\section*{5.2 重大事故等対処設備としての評価結果}

サプレッションチェンバの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している

ことを確認した。
なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の3．1．23 項「繰返し荷重に対する解析」に記載のとおり，地震を含む機械的荷重の繰り返しに対する規定で ある設計•建設規格 PVB－3140（6）を満足しているため，各許容応力状態における一次 + 二次 + ピーク応力強さの評価は不要である。
（1）構造強度評価結果
構造強度評価結果を表5－3に示す。
なお，一次膜応力十一次曲げ応力の許容応力を求める際の形状係数 \(\alpha\) は，応力評価上の断面である中実矩形断面の 1.5 を用いている。
O 2 （3） \(\mathrm{VI}-2-9-2-1-2\) R 2
表 5－3（1）許容応力状態 \(\mathrm{V}_{\mathrm{A}} \mathrm{S}\) に対する評価結果（ \(\left.\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}\right) ~(そ の 1) ~\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \substack{\text { 把 } \\
\text { 茞 }}
\end{aligned}
\] & & & & & & & & & & & & & & \\
\hline & \[
\frac{\text { 寝 }}{\frac{1}{7}}
\] & \(\bigcirc\) \\
\hline & & \(\stackrel{\sim}{\sim}\) & \(\stackrel{\circ}{\circ}\) & ® & مٌ & \[
\underset{\sim}{\infty}
\] & ®্ঠ. & 禁 & \[
\underset{\propto}{\infty}
\] & ®్ల & 咼 & \[
\underset{\sim}{\infty}
\] & ® & \(\stackrel{\otimes}{\infty}\) & \(\stackrel{\circ}{\circ}\) \\
\hline & & \[
\stackrel{\stackrel{1}{\sim}}{\sim}
\] & \[
\stackrel{10}{\mathrm{~N}}
\] & ® & ơ & \％ & ㄷ． & ®尺요 & Ò & \(\bigcirc\) & \(\stackrel{\square}{\Omega}\) & \(\stackrel{\text { ® }}{\sim}\) & 아 & \(\stackrel{\text { O }}{\sim}\) & \(\infty\) \\
\hline & \[
\begin{aligned}
& \text { 箘令 } \\
& \text { 真 }
\end{aligned}
\] & & & & & & \[
\begin{aligned}
& R \\
& \\
& \hline
\end{aligned}
\] & & & & & & \[
\] & 4雨和用次一+4视期次一 & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & & & & & & & & & & & & & & \\
\hline & & & \(\Xi\) & & & 玉 & & & ๕ & & & \＃ & & & \\
\hline & & \multicolumn{14}{|c|}{} \\
\hline
\end{tabular}
O 2 （3）VI－2－9－2－1－2 R 2
表 5－3（1）許容応力状態 \(\mathrm{V}_{A} \mathrm{~S}\) に対する評価結果（ \(\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}\) ）（その 2）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{A}} \mathrm{S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & \\
\hline & & & & MPa & MPa & & \\
\hline \multirow[t]{10}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{2}{*}{P6} & \multirow[t]{2}{*}{胴エビ継手部底部} & 一次膜応力＋一次曲げ応力 & 111 & 380 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 52 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P7} & \multirow[t]{2}{*}{胴エビ継手部内側} & 一次膜応力＋一次曲げ応力 & 161 & 380 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 76 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P8} & \multirow[t]{2}{*}{胴エビ継手部頂部} & 一次膜応力 + 一次曲げ応力 & 126 & 380 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 48 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P9} & \multirow[t]{2}{*}{内側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 221 & 380 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 154 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P10} & \multirow[t]{2}{*}{外側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 220 & 380 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 168 & 393 & \(\bigcirc\) & \\
\hline
\end{tabular}
O 2 （3）VI－2－9－2－1－2 R 2
表 5－3（2）許容応力状態 \(\mathrm{V}_{\mathrm{A}} \mathrm{S}\) に対する評価結果（ \(\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{s}\) ）（その1）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{A}} \mathrm{S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & \\
\hline & & & & MPa & MPa & & \\
\hline \multirow[t]{14}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{3}{*}{P1} & \multirow[t]{3}{*}{胴中央部外側} & 一次一般膜応力 & 204 & 257 & \(\bigcirc\) & \\
\hline & & & 一次膜応力＋一次曲げ応力 & 204 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 166 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{3}{*}{P2} & \multirow[t]{3}{*}{胴中央部底部} & 一次一般膜応力 & 172 & 257 & \(\bigcirc\) & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 172 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 106 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{3}{*}{P3} & \multirow[t]{3}{*}{胴中央部内側} & 一次一般膜応力 & 189 & 257 & \(\bigcirc\) & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 189 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 136 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{3}{*}{P4} & \multirow[t]{3}{*}{胴中央部頂部} & 一次一般膜応力 & 160 & 257 & \(\bigcirc\) & \\
\hline & & & 一次膜応力 + 一次曲げ応力 & 160 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 78 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P5} & \multirow[t]{2}{*}{胴エビ継手部外側} & 一次膜応力 + 一次曲げ応力 & 116 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 162 & 393 & \(\bigcirc\) & \\
\hline
\end{tabular}
O 2 （3）VI－2－9－2－1－2 R 2
表 5－3（2）許容応力状態 \(\mathrm{V}_{\mathrm{A}} \mathrm{S}\) に対する評価結果（ \(\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{s}\) ）（その 2 ）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{評価対象設備} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{応力評価点}} & \multirow[t]{3}{*}{応力分類} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {A }} \mathrm{S}\)} & \multirow[t]{3}{*}{判定} & \multirow[t]{3}{*}{備考} \\
\hline & & & & 算出応力 & 許容応力 & & \\
\hline & & & & MPa & MPa & & \\
\hline \multirow[t]{10}{*}{\[
\begin{gathered}
\text { サプレッショ } \\
\text { ンチェンバ }
\end{gathered}
\]} & \multirow[t]{2}{*}{P6} & \multirow[t]{2}{*}{胴エビ継手部底部} & 一次膜応力 + 一次曲げ応力 & 106 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 104 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P7} & \multirow[t]{2}{*}{胴エビ継手部内側} & 一次膜応力 + 一次曲げ応力 & 157 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 152 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P8} & \multirow[t]{2}{*}{胴エビ継手部頂部} & 一次膜応力 + 一次曲げ応力 & 112 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 92 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P9} & \multirow[t]{2}{*}{内側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 204 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 300 & 393 & \(\bigcirc\) & \\
\hline & \multirow[t]{2}{*}{P10} & \multirow[t]{2}{*}{外側ボックスサポート取付部} & 一次膜応力 + 一次曲げ応力 & 213 & 386 & \(\bigcirc\) & \\
\hline & & & 一次＋二次応力 & 330 & 393 & \(\bigcirc\) & \\
\hline
\end{tabular}

6．参照図書
（1）女川原子力発電所第2号機 第2回工事計画認可申請書添付書類「IV－3－1－1－13 サプレッションチェンバの強度計算書」```

