女川原子力発電所第 2 号機	
工事計画審查資料	
料番号	02－工－B－19－0263＿改 1
提出年月日	2021 年 10 月 5 日

VI－2－10－1－2－3－4 ガスタービン発電設備 燃料小出槽の
耐震性についての計算書

2021 年10月
東北電力株式会社
1．概要 1
2．一般事項 1
2． 1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2．4．1 ガスタービン発電設備燃料小出槽の記号の説明 5
2．4．2 ガスタービン発電設備燃料小出槽架台の記号の説明 8
2.5 計算精度と数値の丸め方 9
3．評価部位 10
4．構造強度評価 11
4.1 構造強度評価方法 11
4.2 荷重の組合せ及び許容応力 11
4．2．1 荷重の組合せ及び許容応力状態 11
4．2．2 許容応力 11
4．2．3 使用材料の許容応力評価条件 11
4.3 設計用加速度 16
4．4 計算方法 17
4．4．1 応力の計算方法 17
4．5 計算条件 28
4．5．1 胴の応力計算条件 28
4．5．2 取付ボルトの応力計算条件 28
4．5．3 架台取付ボルトの応力計算条件 28
4． 6 応力の評価 29
4．6．1 胴の応力評価 29
4．6．2 ボルトの応力の評価 32
5．評価結果 34
5.1 重大事故等対処設備としての評価結果 34
5．1．1 構造強度評価結果 34

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，ガスタービン発電設備燃料小出槽が設計用地震力に対して十分な構造強度を有していることを説明するものである。

また，間接支持構造物である車両が設計用地震力に対して十分な支持機能を有してい ることは，添付書類「VI－2－10－1－2－3－1 ガスタービン発電設備 機関•発電機の耐震性についての計算書」で説明している。

ガスタービン発電設備燃料小出槽は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備と しての構造強度評価を示す。

なお，ガスタービン発電設備燃料小出槽は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の平底たて置円筒形容器と類似の構造であるため，添付書類「VI－2－1－13－3 平底たて置円筒形容器の耐震性についての計算書作成の基本方針」を

2．一般事項
2.1 構造計画

ガスタービン発電設備燃料小出槽の構造計画を表2－1に示す。

枠囲みの内容は商業機密の観点から公開できません。

2.2 評価方針

ガスタービン発電設備燃料小出槽の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示すガスタービン発電設備燃料小出槽の部位を踏まえ「3．評価部位」に て設定する箇所に発生する応力等が許容限界内に収まることを，加振試験で得られた設計用加速度を用い，「4．構造強度評価」にて示す方法にて確認することで実施す る。確認結果を「5．評価結果」に示す。

ガスタービン発電設備燃料小出槽の耐震評価フローを図2－1に示す。

図 2－1 ガスタービン発電設備燃料小出槽の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補—1984）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

2． 4 記号の説明
2．4．1 ガスタービン発電設備燃料小出槽の記号の説明

記号	記号の説明	単位
A_{b}	取付ボルトの軸断面積	mm^{2}
a_{H}	水平方向設計用加速度	$\mathrm{m} / \mathrm{s}^{2}$
a v	鉛直方向設計用加速度	$\mathrm{m} / \mathrm{s}^{2}$
C c	取付ボルト計算における係数	－
C ${ }_{\text {t }}$	取付ボルト計算における係数	－
D bi	底板の内径	mm
D bo	底板の外径	mm
D c	取付ボルトのピッチ円直径	mm
D I	胴の内径	mm
d	ボルトの呼び径	mm
E	胴の縦弾性係数	MPa
e	取付ボルト計算における係数	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 又は SSB－3133に定める値	MPa
F c	取付面に作用する圧縮力	N
F_{t}	取付ボルトに作用する引張力	N
f_{b}	曲げモーメントに対する許容座屈応力	MPa
$f_{\text {c }}$	軸圧縮荷重に対する許容座屈応力	MPa
$f_{\text {s b }}$	せん断力のみを受ける取付ボルトの許容せん断応力	MPa
$f_{\text {to }}$	引張力のみを受ける取付ボルトの許容引張応力	MPa
$f_{\mathrm{t} \mathrm{s}}$	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
H	水頭	mm
k	取付ボルト計算における中立軸の荷重係数	－
ℓ_{1}, ℓ_{2}	取付ボルト計算における中立軸から荷重作用点までの距離	mm
$\ell \mathrm{g}$	取付面から容器重心までの距離	mm
$\mathrm{M}_{\text {s }}$	取付面に作用する転倒モーメント	$\mathrm{N} \cdot \mathrm{mm}$
m 0	燃料小出槽の運転時質量	kg
$\mathrm{m}_{\text {e }}$	燃料小出槽の空質量	kg
n	取付ボルトの本数	－
S	設計•建設規格付録材料図表 Part5 表5に定める値	MPa
S a	胴の許容応力	MPa

記号	記号の説明	単位
S u	設計•建設規格付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格付録材料図表 Part5 表8に定める値	MPa
S_{y}（R T）	設計•建設規格付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
S	取付ボルトと取付面の縦弾性係数比	－
t	胴板の厚さ	mm
t_{1}	取付ボルト面積相当板幅	mm
t 2	圧縮側取付面相当幅	mm
z	取付ボルト計算における係数	－
α	取付ボルト計算における中立軸を定める角度	rad
η	座屈応力に対する安全率	－
π	円周率（ $=3.14159$ ）	－
ρ^{\prime}	液体の密度（ $=$ 比重 $\times 10^{-6}$ ）	$\mathrm{kg} / \mathrm{mm}^{3}$
$\sigma 0$	胴の一次一般膜応力の最大値	MPa
$\sigma 0 \mathrm{c}$	胴の組合せ圧縮応力	MPa
$\sigma 0 \mathrm{t}$	胴の組合せ引張応力	MPa
$\sigma 2$	地震動のみによる胴の一次応力と二次応力の和の変動値の最大値	MPa
$\sigma 2{ }_{\phi}$	地震動のみによる胴の周方向一次応力と二次応力の和	MPa
$\sigma 2 \mathrm{c}$	地震動のみによる胴の一次応力と二次応力の和の変動値（圧縮側）	MPa
$\sigma 2 \mathrm{t}$	地震動のみによる胴の一次応力と二次応力の和の変動値（引張側）	MPa
$\sigma 2 \mathrm{xc}$	地震動のみによる胴の軸方向一次応力と二次応力の和（圧縮側）	MPa
$\sigma 2 \mathrm{xt}$	地震動のみによる胴の軸方向一次応力と二次応力の和（引張側）	MPa
σ b	取付ボルトに生じる引張応力	MPa
σ c	取付部に生じる圧縮応力	MPa
$\sigma \times 1, \quad \sigma \quad{ }_{\phi 1}$	静水頭により胴に生じる軸方向及び周方向応力	MPa
$\sigma \times 2$	胴の空質量による軸方向圧縮応力	MPa
$\sigma \times 3$	胴の鉛直方向地震による軸方向応力	MPa
$\sigma \times 4$	水平方向地震により胴に生じる曲げモーメントによる軸方向応力	MPa
$\sigma \mathrm{xc}$	胴の軸方向応力の和（圧縮側）	MPa
$\sigma \mathrm{xt}$	胴の軸方向応力の和（引張側）	MPa
$\sigma{ }_{\phi}$	胴の周方向応力の和	MPa
$\sigma_{\phi}{ }^{2}$	静水頭に鉛直方向地震が加わり胴に生じる周方向応力	MPa
τ	地震により胴に生じるせん断応力	MPa
τ b	取付ボルトに生じるせん断応力	MPa

記号	記号の説明	単位
$\phi_{1}(\mathrm{x})$	圧縮荷重に対する許容座屈応力の関数	MPa
$\phi_{2}(\mathrm{x})$	曲げモーメントに対する許容座屈応力の関数	MPa

2．4．2 ガスタービン発電設備燃料小出槽架台の記号の説明

記号	記号の説明	単位
A_{Kb}	架台取付ボルトの軸断面積	mm^{2}
a KH	水平方向設計用加速度	$\mathrm{m} / \mathrm{s}^{2}$
a kV	鉛直方向設計用加速度	$\mathrm{m} / \mathrm{s}^{2}$
d_{K}	ボルトの呼び径	mm
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{Kb}	架台取付ボルトに作用する引張力（1本当たり）	N
$f_{\text {s b }}$	せん断力のみを受ける架台取付ボルトの許容せん断応力	MPa
$f_{\text {to }}$	引張力のみを受ける架台取付ボルトの許容引張応力	MPa
f_{ts}	引張力とせん断力を同時に受ける架台取付ボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h_{K}	取付面から重心までの距離	mm
$\ell_{\mathrm{K} 1}$	重心と架台取付ボルト間の水平方向距離＊${ }^{\text {a }}$	mm
$\ell_{\mathrm{K} 2}$	重心と架台取付ボルト間の水平方向距離＊1	mm
m_{K}	質量	kg
n K	架台取付ボルトの本数	－
n Kf	評価上引張力を受けるとして期待する架台取付ボルトの本数	－
Q ${ }_{\text {Kb }}$	架台取付ボルトに作用するせん断力	N
S_{u}	設計•建設規格付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格付録材料図表 Part5 表8に定める値	MPa
π	円周率（ $=3.14159$ ）	－
$\sigma \mathrm{Kb}$	架台取付ボルトに生じる引張応力	MPa
τ kb	架台取付ボルトに生じるせん断応力	MPa

注記 $* 1: \ell_{\mathrm{K} 1} \leqq \ell_{\mathrm{K} 2}$
2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりである。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	比重	－	小数点以下第 3 位	四捨五入	小数点以下第 2 位
	質量	kg	－	－	整数位
$\begin{aligned} & \text { 長 } \\ & \text { さ } \end{aligned}$	下記以外の長さ	mm	－	－	整数位＊1
	胴板の厚さ	mm	－	－	小数点以下第 1 位
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
	算出応力	MPa	小数点以下第1位	切上げ	整数位
	許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊3
	加速度	$\mathrm{m} / \mathrm{s}^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

ガスタービン発電設備燃料小出槽の耐震評価は，「4．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる胴，取付ボルト及び架台取付ボルトについて実施 する。

ガスタービン発電設備燃料小出槽の耐震評価箇所については，表2－1の概略構造図に示す。

4．構造強度評価

4.1 構造強度評価方法
（1）ガスタービン発電設備燃料小出槽の応力計算モデルは，1 質点系とする。
（2）ガスタービン発電設備燃料小出槽は，加振試験で得られたガスタービン発電設備燃料小出槽頂部における最大応答加速度を設計用加速度として用いて発生応力 を算出し，応力評価を行う。
（3）胴をはりと考え，変形モードは曲げ及びせん断変形を考慮する。
（4）耐震計算に用いる寸法は，公称値を使用する。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ガスタービン発電設備燃料小出槽の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1 に示す。

4．2．2 許容応力

ガスタービン発電設備燃料小出槽の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－2及び表4－3のとおりとする。

4．2．3 使用材料の許容応力評価条件
ガスタービン発電設備燃料小出槽の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－4に示す。
表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設俑）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
非常用電源 設備	非常用発電装置	ガスタービン発電設備燃料小出槽	常設耐震／防止 常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}{ }^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：重大事故等クラス2容器及びその他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。
表 4－2 許容応力（重大事故等クラス2容器）

許容応力状態	許容限界＊${ }^{\text {，}}$ ，$* 2$		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	$\begin{array}{c\|c} \hline \text { 一次 }+ \text { 二次応力 } & \text { 一次 }+ \text { 二次 }+ \\ \text { ピーク応力 } \end{array}$
$\mathrm{IV}_{A} \mathrm{~S}$ $\mathrm{~V}_{\mathrm{A}} \mathrm{S}$ $\left(\mathrm{V}_{A} \mathrm{~S}\right.$ としてIV${ }_{\mathrm{A}} \mathrm{S}$ の 許容限界を用いる。）	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。

＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \hline \mathrm{V}_{\mathbb{A}} \mathrm{S} \\ \left(\mathrm{~V}_{\mathbb{A}} \mathrm{S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	1.5 －${ }^{\text {s }}{ }^{*}$

[^0]

4． 3 設計用加速度
構造強度評価に用いる入力加速度には，添付書類「VI－2－10－1－2－3－1 ガスタービ ン発電設備 機関•発電機の耐震性についての計算書」の「4．加振試験」で得られ たガスタービン発電設備燃料小出槽の設計用加速度を用いる。設計用加速度を表4－5に示す。

表 4－5 設計用加速度（重大事故等対処設備）

据付場所及び床面高さ （m）	弾性設計用地震動 S d又は静的震度		基準地震動 S s$\left(\mathrm{m} / \mathrm{s}^{2}\right)$	
	水平方向設計震度	鉛直方向設計震度	水平方向設計用加速度	鉛直方向設計用加速度
緊急用電気品建屋 $\text { 0. P. 62. } 90^{*}$	－	－	26． 28	18.93

注記 $*$ ：基準床レベルを示す。

4． 4 計算方法
4．4．1 応力の計算方法
（1）ガスタービン発電設備燃料小出槽の応力の計算方法
ガスタービン発電設備燃料小出槽の概要図を図4－1に，取付部の荷重説明図を図4－2に示す。

図4－1 ガスタービン発電設備燃料小出槽 概要図

図4－2 取付部の荷重説明図
a．胴の計算方法
（a）静水頭及び鉛直方向地震による応力

$$
\begin{align*}
& \sigma_{\phi 1}=\frac{\rho^{\prime} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{I}}}{2 \cdot \mathrm{t}} \\
& \sigma_{\phi 2}=\frac{\rho^{\prime} \cdot \mathrm{H}^{\prime} \cdot \mathrm{D}_{\mathrm{I}} \cdot \mathrm{a}_{\mathrm{v}}}{2 \cdot \mathrm{t}} \tag{4.4.1.2}\\
& \sigma_{\mathrm{x} 1}=0 \quad \ldots \ldots \ldots \ldots \ldots \tag{4.4.1.3}
\end{align*}
$$

（b）運転時質量及び鉛直方向地震による応力
胴が底板と接合する点には，胴自身の質量による圧縮応力と鉛直方向地震 による軸方向応力が生じる。

$$
\begin{align*}
& \sigma_{\mathrm{x} 2}=\frac{\mathrm{m}_{\mathrm{e}} \cdot \mathrm{~g}}{\pi \cdot\left(\mathrm{D}_{\mathrm{I}}+\mathrm{t}\right) \cdot \mathrm{t}} \tag{4.4.1.4}\\
& \sigma_{\mathrm{x} 3}=\frac{\mathrm{m}_{\mathrm{e}} \cdot \mathrm{a}_{\mathrm{v}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{I}}+\mathrm{t}\right) \cdot \mathrm{t}} \tag{4.4.1.5}
\end{align*}
$$

（c）水平方向地震による応力
水平方向の地震力により胴は底板接合部で最大となる曲げモーメントを受 ける。この曲げモーメントによる軸方向応力と地震力によるせん断応力は次 のように求める。

$$
\begin{align*}
& \sigma_{\mathrm{x} 4}=\frac{4 \cdot \mathrm{~m}_{0} \cdot \mathrm{a}_{\mathrm{H}} \cdot \ell_{\mathrm{g}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{I}}+\mathrm{t}\right)^{2} \cdot \mathrm{t}} \tag{4.4.1.6}\\
& \tau=\frac{2 \cdot \mathrm{~m}_{0} \cdot \mathrm{a}_{\mathrm{H}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{I}}+\mathrm{t}\right) \cdot \mathrm{t}}
\end{align*}
$$

（4．4．1．7）
（d）組合せ応力
（a）～（c）項によって求めた胴の応力は以下のように組み合わせる。
イ．一次一般膜応力
（イ）組合せ引張応力

$$
\begin{align*}
& \sigma_{\phi}=\sigma_{\phi 1}+\sigma_{\phi 2} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{4.4.1.8}\\
& \sigma_{0 \mathrm{t}}=\frac{1}{2} \cdot\left\{\sigma_{\phi}+\sigma_{\mathrm{xt}}+\sqrt{\left(\sigma_{\phi}-\sigma_{\mathrm{xt}}\right)^{2}+4 \cdot \tau^{2}}\right\} \tag{4.4.1.9}\\
& \sigma_{\mathrm{xt}}=\sigma_{\mathrm{x} 1}-\sigma_{\mathrm{x} 2}+\sigma_{\times 3}+\sigma_{\mathrm{x} 4} \ldots \ldots \ldots \ldots \ldots \ldots \tag{4.4.1.10}
\end{align*}
$$

（ロ）組合せ圧縮応力

$$
\begin{equation*}
\sigma_{\phi}=-\sigma_{\phi 1}-\sigma_{\phi 2} \tag{4.4.1.11}
\end{equation*}
$$

σ_{x} が正の値（圧縮側）のときは，次の組合せ圧縮応力を求める。

$$
\begin{align*}
& \sigma_{0 \mathrm{c}}=\frac{1}{2} \cdot\left\{\sigma_{\phi}+\sigma_{\mathrm{xc}}+\sqrt{\left(\sigma_{\phi}-\sigma_{\mathrm{xc}}\right)^{2}+4 \cdot \tau^{2}}\right\} \tag{4.4.1.12}\\
& \sigma_{\mathrm{xc}}=-\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 4} \ldots \ldots \ldots \tag{4.4.1.13}
\end{align*}
$$

したがって，胴の組合せ一次一般膜応力の最大値は $\sigma \quad=\operatorname{Max}\left\{\right.$ 組合せ引張応力 $\left(\begin{array}{lll}\sigma & 0\end{array}\right)$ ，組合せ圧縮応力 $\left.\left(\begin{array}{lll}\sigma & 0\end{array}\right)\right\}$

とする。
一次応力は一次一般膜応力と同じ値になるので省略する。

ロ．地震動のみによる一次応力と二次応力の和の変動値
（イ）組合せ引張応力
$\sigma_{2 \mathrm{t}}=\sigma_{2 \phi}+\sigma_{2 \mathrm{xt}}+\sqrt{\left(\sigma_{2 \phi}-\sigma_{2 \mathrm{xt}}\right)^{2}+4 \cdot \tau^{2}} \ldots \ldots$（4．4．1．15）
ここで
$\sigma{ }_{2 \phi}=\sigma{ }_{\phi}{ }_{2}$
（4．4．1．16）
$\sigma 2 \mathrm{xt}^{2}=\sigma \mathrm{x} 3+\sigma \mathrm{x} 4$
（4．4．1．17）
（ロ）組合せ圧縮応力
$\sigma_{2 \mathrm{c}}=\sigma_{2 \phi}+\sigma_{2 \mathrm{xc}}+\sqrt{\left(\sigma_{2 \phi}-\sigma_{2 \mathrm{xc}}\right)^{2}+4 \cdot \tau^{2}}$
ここで
$\sigma{ }_{2 \phi}=-\sigma{ }_{\phi 2}$
（4．4．1．19）
$\sigma 2 \mathrm{xc}=\sigma \times 3+\sigma \times 4$
（4．4．1．20）

したがって，胴の地震力のみによる一次応力と二次応力の和の変動値 の最大値は，次式による。
$\sigma_{2}=\operatorname{Max}\left\{\right.$ 組合せ引張応力 $\left(\begin{array}{ll}\sigma & 2 \mathrm{t}\end{array}\right)$ ，組合せ圧縮応力 $\left.\left(\begin{array}{ll}\sigma & 2 \mathrm{c}\end{array}\right)\right\}$
（4．4．1．21）
b．取付ボルトの計算方法
（a）引張応力
転倒モーメントが作用した場合に生じる取付ボルトの引張荷重と取付部の圧縮荷重については，荷重と変位量の釣り合い条件を考慮することにより求 める。（図4－2参照）

イ．$\sigma_{\mathrm{b}}, ~ \sigma \mathrm{c}$ を仮定して取付ボルトの応力計算における中立軸の荷重係数 k を求める。

$$
\begin{equation*}
\mathrm{k}=\frac{1}{1+\frac{\sigma_{\mathrm{b}}}{\mathrm{~s} \cdot \sigma_{\mathrm{c}}}} \tag{4.4.1.22}
\end{equation*}
$$

ロ。 取付ボルトの応力計算における中立軸を定める角度 α を求める。

$$
\begin{equation*}
\alpha=\cos ^{-1}(1-2 \cdot \mathrm{k}) \tag{4.4.1.23}
\end{equation*}
$$

八。 各定数 $\mathrm{e}, \mathrm{z}, \mathrm{C}_{\mathrm{t}}$ 及び C_{c} を求める。

$$
\begin{array}{r}
\mathrm{e}=\frac{1}{2} \cdot\left\{\frac{(\pi-\alpha) \cdot \cos ^{2} \alpha+\frac{1}{2} \cdot(\pi-\alpha)+\frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha}{(\pi-\alpha) \cdot \cos \alpha+\sin \alpha}\right. \\
\left.+\frac{\frac{1}{2} \cdot \alpha-\frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha+\alpha \cdot \cos ^{2} \alpha}{\sin \alpha-\alpha \cdot \cos \alpha}\right\}
\end{array}
$$

$$
\mathrm{z}=\frac{1}{2} \cdot\left(\cos \alpha+\frac{\frac{1}{2} \cdot \alpha-\frac{3}{2} \cdot \sin \alpha \cdot \cos \alpha+\alpha \cdot \cos ^{2} \alpha}{\sin \alpha-\alpha \cdot \cos \alpha}\right)
$$

$$
\begin{align*}
& \mathrm{C}_{\mathrm{t}}=\frac{2 \cdot\{(\pi-\alpha) \cdot \cos \alpha+\sin \alpha\}}{1+\cos \alpha} \tag{4.4.1.26}\\
& \mathrm{C}_{\mathrm{c}}=\frac{2 \cdot(\sin \alpha-\alpha \cdot \cos \alpha)}{1-\cos \alpha}
\end{align*}
$$

二。 各定数を用いて， F_{t} 及び F_{c} を求める。

$$
\begin{align*}
& F_{t}=\frac{M_{s}-\left(\mathrm{g}-\mathrm{a}_{\mathrm{v}}\right) \cdot \mathrm{m}_{0} \cdot \mathrm{z}^{2} \cdot \mathrm{D}_{\mathrm{c}}}{\mathrm{e} \cdot \mathrm{D}_{\mathrm{c}}} \tag{4.4.1.28}\\
& \mathrm{~F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{t}}+\left(\mathrm{g}-\mathrm{a}_{\mathrm{v}}\right) \cdot \mathrm{m}_{\mathrm{o}} \tag{4.4.1.29}\\
& \text { ここで } \\
& \mathrm{M}_{\mathrm{s}}=\mathrm{a}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{o}} \cdot \ell_{\mathrm{g}} \\
& \text { (4.4.1.30) }
\end{align*}
$$

取付ボルトに引張力が作用しないのは，α が π に等しくなったときで あり，式（4．4．1．24）及び式（4．4．1．25）において α を π に近づけた場合の値 $\mathrm{e}=0.75, \mathrm{z}=0.25$ を式（4．4．1．28）に代入して得られる F ＋の値によ って引張力の有無を判定する。
$\mathrm{F}_{\mathrm{t}} \leqq 0$ ならば引張力は作用しない。
$\mathrm{F}_{\mathrm{t}}>0$ ならば引張力が作用しているので次の計算を行う。

ホ。 σ b及び $\sigma \mathrm{c}$ を求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{2 \cdot \mathrm{~F}_{\mathrm{t}}}{\mathrm{t}_{1} \cdot \mathrm{D}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{t}}} \tag{4.4.1.31}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\mathrm{c}}=\frac{2 \cdot \mathrm{~F}_{\mathrm{c}}}{\left(\mathrm{t}_{2}+\mathrm{s} \cdot \mathrm{t}_{1}\right) \cdot \mathrm{D}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{c}}} \tag{4.4.1.32}
\end{equation*}
$$

ここで
$\mathrm{t}_{1}=\frac{\mathrm{n} \cdot \mathrm{A}_{\mathrm{b}}}{\pi \cdot \mathrm{D}_{\mathrm{c}}}$
（4．4．1．33）
$\mathrm{t}_{2}=\frac{1}{2} \cdot\left(\mathrm{D}_{\mathrm{bo}_{\mathrm{o}}}-\mathrm{D}_{\mathrm{b}_{\mathrm{I}}}\right)-\mathrm{t}_{1}$

$$
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}
$$

σ 吸び σ 。はイ項にて仮定した値と十分に近似していることを確認す る。この場合 $\sigma \mathrm{b}$ 及び $\sigma \mathrm{c}$ を取付ボルトと取付面に生じる応力とする。
（b）せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{m}_{0} \cdot \mathrm{a}_{\mathrm{H}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.4.1.36}
\end{equation*}
$$

（2）架台取付ボルトの応力の計算方法
架台取付ボルトの応力は，設計用加速度により作用するモーメントによって生 じる引張力とせん断力について計算する。

図 4－3 計算モデル図（短辺方向転倒）
\square
図4－4 計算モデル図（長辺方向転倒）
（短辺方向転倒及び長辺方向転倒（ $\mathrm{g}-\mathrm{a} \mathrm{KV}$ ）＜<0 の場合）
a．引張応力
架台取付ボルトに対する引張力は，図 4－3 及び図4－4でそれぞれのボルトを支点とする転倒を考え，これを片側のボルトで受けるものとして計算する。

短辺方向転倒の引張力計算式

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Kb}}=\frac{\mathrm{m}_{\mathrm{K}} \cdot \mathrm{a}_{\mathrm{KH}} \cdot \mathrm{~h}_{\mathrm{K}}-\mathrm{m}_{\mathrm{K}} \cdot\left(\mathrm{~g}-\mathrm{a} \mathrm{KV}_{\mathrm{KV}}\right) \cdot \ell_{\mathrm{K} 2}}{\mathrm{n}_{\mathrm{Kf}} \cdot\left(\ell_{\mathrm{K} 1}+\ell_{\mathrm{K} 2}\right)} \tag{4.4.1.37}
\end{equation*}
$$

長辺方向転倒の引張力計算式

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Kb}}=\frac{\mathrm{m}_{\mathrm{K}} \cdot \mathrm{a}_{\mathrm{KH}} \cdot \mathrm{~h}_{\mathrm{K}}-\mathrm{m}_{\mathrm{K}} \cdot\left(\mathrm{~g}-\mathrm{a}_{\mathrm{KV}}\right) \cdot \ell_{\mathrm{K} 2}}{\mathrm{n}_{\mathrm{Kf}} \cdot\left(\ell_{\mathrm{K} 1}+\ell_{\mathrm{K} 2}\right)} \tag{4.4.1.38}
\end{equation*}
$$

短辺方向転倒の引張応力は，式（4．4．1．37）より

$$
\begin{equation*}
\sigma_{K b}=\frac{\mathrm{F}_{\mathrm{Kb}}}{\mathrm{~A}_{\mathrm{Kb}}} \tag{4.4.1.39}
\end{equation*}
$$

長辺方向転倒の引張応力は，式（4．4．1．38）より

$$
\begin{equation*}
\sigma_{K b}=\frac{\mathrm{F}_{\text {Kb }}}{\mathrm{A}_{\mathrm{Kb}}} \tag{4.4.1.40}
\end{equation*}
$$

σ кьは，上式で得られる大きい方の値とする。
ここで，ボルトの軸断面積 $\mathrm{A}_{\text {кьは次式により求める。 }}$

$$
\begin{equation*}
\mathrm{A}_{\mathrm{Kb}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{K}^{2}} \tag{4.4.1.41}
\end{equation*}
$$

b．せん断応力
架台取付ボルトに対するせん断力は，ボルト全本数で受けるものとして計算 する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{Kb}}=\mathrm{m}_{\mathrm{K}} \cdot \mathrm{a}_{\mathrm{KH}} \tag{4.4.1.42}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{Kb}}=\frac{\mathrm{Q}_{\mathrm{Kb}}}{\mathrm{n}_{\mathrm{K}} \cdot \mathrm{~A}_{\mathrm{Kb}}} \tag{4.4.1.43}
\end{equation*}
$$

4.5 計算条件

4．5．1 胴の応力計算条件
胴の応力計算に用いる計算条件は，本計算書の【ガスタービン発電設備燃料小出槽の耐震性についての計算結果】の設計条件および機器要目に示す。

4．5．2 取付ボルトの応力計算条件
取付ボルトの応力計算に用いる計算条件は，本計算書の【ガスタービン発電設備燃料小出槽の耐震性についての計算結果】の設計条件および機器要目に示す。

4．5．3 架台取付ボルトの応力計算条件
架台取付ボルトの応力計算に用いる計算条件は，本計算書の【ガスタービン発電設備燃料小出槽の耐震性についての計算結果】の設計条件および機器要目に示 す。

4． 6 応力の評価

4．6．1 胴の応力評価
（1）4．4．1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S a以下で あること。ただし，S aは下表による。

応力の種類	許容応力 S_{a}
	基準地震動 S s による荷重の組合せの場合
一次一般膜応力	設計引張強さ S_{u} の 0.6 倍
一次応力と	地震動のみによる一次応力と二次応力の和の変動値が 設計降伏点 S_{y} の 2 倍以下であれば，疲労解析は不要 とする。和

一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省略する。
（2）圧縮膜応力（圧縮応力と曲げによる圧縮側応力の組合せ）は次式を満足するこ と。（座屈の評価）

$$
\begin{equation*}
\frac{\eta \cdot(\sigma \times 2+\sigma \times 3)}{f_{\mathrm{c}}}+\frac{\eta \cdot \sigma_{\times 4}}{f_{\mathrm{b}}} \leqq 1 \tag{4.6.1.1}
\end{equation*}
$$

ここで f_{c} は次による。

$$
\frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}} \leqq \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき }
$$

$$
\begin{equation*}
f_{\mathrm{c}}=\mathrm{F} \tag{4.6.1.2}
\end{equation*}
$$

$$
\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}<\frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}<\frac{8000 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき }
$$

$$
f_{\mathrm{c}}=\mathrm{F} \cdot\left[1-\frac{1}{6800 \cdot \mathrm{~g}} \cdot\left\{\mathrm{~F}-\phi_{2}\left(\frac{8000 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right\} \cdot\left(\frac{\mathrm{D}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}-\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right]
$$

$$
\frac{8000 \cdot \mathrm{~g}}{\mathrm{~F}} \leqq \frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}} \leqq 800 \text { のとき }
$$

$$
\begin{equation*}
f_{\mathrm{c}}=\phi_{1}\left(\frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}\right) \tag{4.6.1.4}
\end{equation*}
$$

ただし $\phi_{1}(x)$ は次の関数を使用する。

$$
\phi_{1}(x)=0.6 \cdot \frac{E}{x} \cdot\left[1-0.901 \cdot\left\{1-\exp \left(-\frac{1}{16} \cdot \sqrt{x}\right)\right\}\right]
$$

（4．6．1．5）

また，f_{b} は次による。

$$
\begin{align*}
& \frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}} \leqq \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき } \\
& f_{\mathrm{b}}=\mathrm{F} \tag{4.6.1.6}\\
& \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}<\frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}<\frac{9600 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき } \\
& f_{\mathrm{b}}=\mathrm{F} \cdot\left[1-\frac{1}{8400 \cdot \mathrm{~g}} \cdot\left\{\mathrm{~F}-\phi_{2}\left(\frac{9600 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right\} \cdot\left(\frac{\mathrm{D} \mathrm{I}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}-\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right]
\end{align*}
$$

$$
\begin{align*}
& \frac{9600 \cdot \mathrm{~g}}{\mathrm{~F}} \leqq \frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}} \leqq 800 \quad \text { のとき } \\
& f_{\mathrm{b}}=\phi_{2}\left(\frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}\right) \quad \ldots \ldots \ldots . \tag{4.6.1.8}
\end{align*}
$$

ただし $\phi_{2}(\mathrm{x})$ は次の関数を使用する。

$$
\begin{equation*}
\phi_{2}(\mathrm{x})=0.6 \cdot \frac{\mathrm{E}}{\mathrm{x}} \cdot\left[1-0.731 \cdot\left\{1-\exp \left(-\frac{1}{16} \cdot \sqrt{\mathrm{x}}\right)\right\}\right] \tag{4.6.1.9}
\end{equation*}
$$

η は安全率で次による。

$$
\begin{align*}
& \frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}} \leqq \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき } \\
& \eta=1 \\
& \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}<\frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}<\frac{8000 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき } \\
& \eta=1+\frac{0.5 \cdot \mathrm{~F}}{6800 \cdot \mathrm{~g}} \cdot\left(\frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}}-\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}\right) \tag{4.6.1.11}\\
& \frac{8000 \cdot \mathrm{~g}}{\mathrm{~F}} \leqq \frac{\mathrm{D}_{\mathrm{I}}+2 \cdot \mathrm{t}}{2 \cdot \mathrm{t}} \text { のとき } \\
& \eta=1.5 \tag{4.6.1.12}
\end{align*}
$$

4．6．2 ボルトの応力の評価
（1）取付ボルト
4．4．1項で求めたボルトの引張応力 σ bは，次式より求めた許容引張応力 f_{ts} 以下であること。ただし，f_{to} は下表による。

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{4.6.2.1}
\end{equation*}
$$

せん断応力 τ bは，せん断力のみを受けるボルトの許容せん断応力 $f_{\mathrm{s} \text { b以下で }}$ あること。

ただし，$f_{\mathrm{s} \text { bは下表による。 }}$

| 許容引張応力 |
| :---: | :---: |
| f_{to} |$|$| 基準地震動 S s による
 荷重との組合せの場合 |
| :---: |
| F^{*}
 許容せん断応力
 f_{sb} |
| $\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$ |

（2）架台取付ボルト
4．4．1項で求めたボルトの引張応力 $\sigma \mathrm{k}$ は，次式より求めた許容引張応力 f_{t} 以下であること。

ただし，$f_{\mathrm{t} \text { oは下表による。 }}$

$$
\begin{equation*}
f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{Kb}}, f_{\mathrm{to}}\right] \tag{4.6.2.2}
\end{equation*}
$$

せん断応力 τ кьは，せん断力のみを受けるボルトの許容せん断応力 f_{s} 以下で あること。

ただし，$f_{\mathrm{s} \text { bは下表による。 }}$

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{to}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果

5.1 重大事故等対処設備としての評価結果

ガスタービン発電設備燃料小出槽の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。

5．1．1 構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
【ガスタービン発電設備然料小出槽の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件
1．1．1 ガスタービン発電設備燃料小出槽

機器名称	設備分類	据付場所及び床面高さ （m）	弾性設計用地震動 S d又は静的震度		基漼地震動S s （m／s ${ }^{2}$ ）		最高使用 圧力 （MPa）	最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）	比重
			水平方向設計震度	鉛直方向設計震度	水平方向 設計用 加速度	鋁直方向 設計用 加速度				
ガスタービン発電設備燃料小出槽	常設而震／防止常設／緩和	緊急用電気品建屋 0. P. 62. 90*	－	－	$\mathrm{a}_{\mathrm{H}}=26.28$	$\mathrm{a}_{\mathrm{v}}=18.93$	静水頭	50	50	0.86

注記＊：基淮床レベルを示す。

機器名称	設備分類	据付場所及び床面高さ （m）	弾性設計用地震動S d又は静的震度		$\begin{gathered} \text { 基淮地震動S s } \\ \left(\mathrm{m} / \mathrm{s}^{2}\right) \end{gathered}$		周囲環境 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向設計震度	鉛直方向設計震度	水平方向設計用加速度	鋁直方向設計用加速度	
ガスタービン発電設備 燃料小出槽架台	常設耐震 $/$ 防止常設／緩和	緊急用電気品建屋 $\text { 0. P. } 62.90^{*}$	－	－	$\mathrm{a}_{\mathrm{KH}}=26.28$	$\mathrm{a}_{\mathrm{KV}}=18.93$	50

1．2 機器要目

$\begin{aligned} & \mathrm{m}_{0} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{e}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{I}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{g}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	s	n

D_{C} (mm)	D_{b} (mm)	$\mathrm{D}_{\mathrm{b} 1}$ $(\mathrm{~mm})$	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	弾性設計用地震動 S d 又は静的震度	$\mathrm{M}_{\mathrm{s}}(\mathrm{N} \cdot \mathrm{mm})$
1076	1136	1009	12 $(\mathrm{M} 12)$	113.1	-	7.896×10^{6}

1．2．2 ガスタービン発電設備然料小出槽架台

m_{K} $(\mathrm{~kg})$	h_{K} (mm)	d_{K} (mm)	A_{Kb} $\left(\mathrm{mm}^{2}\right)$	n_{K}	S_{y} (MPa)	S_{u} (MPa)

$\ell_{\mathrm{K} 1}{ }^{* 2}$ $(\mathrm{~mm})$ $\ell_{\mathrm{K} 2}{ }^{* 2}$ $(\mathrm{~mm})$ $\mathrm{n}_{\mathrm{Kf}}{ }^{* 2}$ F^{*} (mPa) 弾性設計用地震動 S d 又は静的震度 転倒方向

＊ 2 ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒こ対する評価時の要目を示す。
（単位： MPa ）

（単位： MPa ）	
基淮地震動 S s	
軸方向応力	せん断応力
-	-
-	-
$\sigma_{x 2}=1$	-
$\sigma_{x 3}=1$	-
$\sigma_{x 4}=3$	$\tau=3$
$\sigma_{x t}=3$	-
$\sigma_{x \mathrm{c}}=3$	-
$\sigma_{0 \mathrm{t}}=6$	
$\sigma_{0 \mathrm{c}}=5$	

（単位：MPa）

1 Pa ）

	弾性設計用地震動S d 又は静的震度	基淮地震動S s
引張応力	－	$\sigma_{\mathrm{b}}=16$
せん断応力	－	$\tau_{\mathrm{b}}=11$

1．3．1 ガスタービン発電設備燃料小出槽
（1）胴に生じる応力
a．一次一般膜応力

		弾生設計用地震動S d 又は静的震度		
		周方向応力	軸方向応力	せん断応力
静水頭による応力		－	－	－
鉛直方向地震による引張応力		－	－	－
空質量による圧縮応力		－	－	－
鉛直方向地震による軸方向応力		－	－	－
水平方向地震による圧縮応力		－	－	－
応力の和	引張側	－	－	－
	圧縮側	－	－	－
組合せ応力	引張り	－		
	圧縮	－		

b．地震動のみによって生じる一次応力と二次応力の和の変動値

－					周方向応力
		周方向応力	軸方向応力	せん断応力	
鉛直方向地震による応力		－	－	－	$\sigma_{\phi 2}=2$
水平方向地震による圧縮応力		－	－	－	－
応力の和	引張側	－	－	－	$\sigma_{2 \phi}=2$
	圧縮側	－	－	－	$\sigma_{2 \phi}=-2$
組合せ応力 （変動値）	引張り	－			
	圧縮	－			

（2）取付ボルトに生じる応力 \qquad

1．4 結論
1．4．1 ガスタービン発電設備燃料小出槽
胴板
部
（EdN：TTV带）

部 材		応力			基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板		一次一般膜	－	－	$\sigma_{0}=6$	
		一次＋二次	－	－	$\sigma_{2}=11$	
		圧縮と曲げの組合せ （座屈の評価）	－		$\frac{\eta \cdot\left(\sigma_{\times 2}+\sigma_{\times 3}\right)}{f_{\mathrm{c}}}+\frac{\eta \cdot \sigma_{\times 4}}{f_{\mathrm{b}}} \leqq 1$	
			－		0.02 （無次元）	
取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}}=16$	
		せん断	－	－	$\tau_{\mathrm{b}}=11$	

すべて許容応力以下である。
注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right]$

O2（3）VI－2－10－1－2－3－4 R2E

（短刀方向）

[^0]: 注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
 ＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

