女川原子力発電所第2号機 工事計画審査資料	
資料番号	02 －補－E－19－0610－8＿改5
提出年月日	2021 年 10 月 4 日

補足－610－8 原子炉建屋基礎版の耐震性についての計算書に関する補足説明資料

1．工事計画添付書類に係る補足説明資料
添付書類「VI－2－9－3－4 原子炬建屋基礎版の耐震性についての計算書」の記載内容を補足するための資料を以下に示す。

別紙1 応力解析における既工認と今回工認の解析モデル及び手法の比較
別紙1－1 原子炉建屋基礎版の応力解析モデルへの弾塑性解析の適用
別紙2 応力解析におけるモデル化，境界条件及び拘束条件の考え方
別紙3 地震荷重の入力方法
別紙4 応力解析における断面の評価部位の選定
別紙5 最大接地圧について
別紙6 剛性低下を考慮した影響検討
1別紙7 原子炉建屋基礎版の応力解析における応力平均化の考六方
別紙8 原子炉建屋基礎版の応力解析における浮力の影響検討

別紙10—原子炉建屋基整版評価にお河る誘発上下動の取ら扱いについて

別紙 7 原子炉建屋基礎版の応力解析における応力平均化の考え方
1．概要 別紙 7－1
2．応力平均化の考え方 別紙 7－2
2.1 応力平均化を実施した領域における断面の評価要素 別紙7－2
2．2 応力平均化の方法 別紙 7－4
2.3 応力平均化の結果 別紙 7－9
2.4 断面の評価結果 別紙 7－11
2．4．1 断面の評価方法 別紙 7－11
2．4．2 断面の評価結果 別紙 7－11

1．概要

本資料は，補足説明資料「補足－610－8 原子炉建屋基礎版の耐震性評価についての計算書に関 する補足説明資料」のらち「別紙 6 剛性低下を考慮した影響検討」の不確かさケースの初期剛性に基づく解析ケース及び基本ケースの初期剛性に基づく解析ケース（工認ケース）を対象とし て，原子炉建屋基礎版の応力解析における応力平均化の考え方について示すものである。

3 次元 FEM モデルを用いた応力の算定において，FEM 要素に応力集中等が見られる場合につい ては，「日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説（以下「R $\mathrm{C}-\mathrm{N}$ 規準」という。））」に基づき，応力の再配分等を考慮してある一定の領域の応力を平均化し たらえで断面の評価を行っている。この場合，当該要素における応力度ではなく，周囲の複数の要素で平均化した応力度に対して断面の評価を実施していることから，本資料では，複数の要素 での応力平均化の考え方及びその結果を示す。

2．応力平均化の考え方
2.1 応力平均化を実施した領域における断面の評価要素

断面の評価要素は，応力平均化を行うことによって応力が変わることから，応力平均化前の断面力に対する検定値を元に選定している。

原子炉建屋基礎版では，応力平均化前の応力分布において，局所的に大きな面外せん断力が発生している要素を断面の評価要素とし，応力平均化を行い，応力平均化後の値に対する断面 の評価を実施した。

応力平均化を実施した要素を表 2－1，要素位置図を図 2－1 に示す。

表 2－1 応力平均化要素
（a）不確かさケースの初期剛性に基づく解析モデル

評価項目	方向	要素番号	組合せケース	平均化前の検定値 （発生値／許容値）
面外せん断 応力度	NS	1158	4	1.00

（b）基本ケースの初期剛性に基づく解析モデル

評価項目	方向	要素番号	組合せケース	平均化前の検定値 （発生値／許容値）
面外せん断 応力度	NS	1158	4	0.98

$\theta_{P N}$

図 2－1 要素位置図

2．2 応力平均化の方法

3 次元 FEM モデルを用いた応力解析においては，部村断面やモデル形状が大きく変化して不連続になっている箇所は，局部的な応力集中が発生しやすい。原子炉建屋基礎版の 3 次元 FEM モデルを用いた応力解析において，当該部は図 $2-2$ に示すようにシェル壁，耐震壁と隣接した要素であり，応力が集中しやすい。図2－3に示す面外せん断力のコンター図を見ると，当該要素周辺では大きな面外せん断力が発生していることが分かる。

そこで，今回の原子炬建屋基礎版の応力解析においては，弾塑性解析を採用し，材料の非線形特性を設定しているが，面外せん断力に対しては非線形特性を考慮できないことから，「R C $-N$ 規準」を参考に，コンクリートのひび割れによる応力の再配分を考慮し，応力の平均化を行った。なお，基礎版全体でも鉄筋ひずみの最大値は，工認ケースで 0.488×10^{-3} ，不確かさケ ースの初期剛性に基づく解析モデルで 0.512×10^{-3} であり，鉄筋降伏時のひずみ 1.68×10^{-3} を下回っていること，応力平均化範囲及びその周辺領域では全面的な曲げ降伏状態には至ってい ないことを確認している。

「R C－N規準」においては，「線材では，部材端に生じる斜めせん断ひび割れによって部材有効せい程度離れた断面の引張鉄筋の応力度が部材端と同じ大きさまで増大する現象（テンシ ョンシフト）が生じるが，面材では，斜めひび割れが発生した場合においても，材軸直交方向 ～の応力再配分によって，線材におけるテンションシフトのような現象は生じにくいと考えら れる。」とされており，耐震壁の面外せん断力について，「面材であるため，局部的に応力の集中があったとしても，応力の再配分を生じ，破壊に至ることはない。」とされている。また，基礎版のような大断面を有する面材の面外せん断力について，「通常の場合，FEM 解析の要素サイ ズは，基䂣版厚より小さいため，付図 2.2 に模式的に示されるように設計用面外せん断力は想定されるひび割れ領域での平均面外せん断力に対して大きめの評価となっているといえる。ま た，基礎版においても，耐震壁と同様，面材における面外せん断力の再配分も期待できる。」と されている。「R C－N 規準」の付図 2.2 を図 $2-4$ に示す。
壁，床スラブ，基礎版のような面材については，「R C－N 規準」に示されるように，面材に荷重を作用させる直交部材からせん断破壊面が 45 度の角度で進展すると考えられることから， せん断破壊面が面材の表面から裏面まで貫通する範囲，すなわち部材厚の範囲に応力が再配分 されると考えられる。原子炬建屋基礎版における面外せん断力に対する応力平均化の考え方を図2－5に示す。

以上より，応力の平均化は，応力コンター図及び基礎版の直上の壁配置等を考慮し，当該要素の応力方向に位置する要素に対して，壁面から基礎版の部材厚である 6.0 m 分の範囲で行っ た。また，応力平均化に用いる一連の要素が連続した壁により拘束される場合には，これらが壁直下の範囲に含まれていること，図 $2-3$ に示す面外せん断力のコンター図より，当該要素周辺では大きな面外せん断力が発生していることを踏まえると応力方向の直交方向にも応力が再配分されると考え，応力方向の直交方向に隣接する要素を含む範囲で平均化を行った。各要素 について応力平均化範囲を図 2－6に示す。
$\theta_{P N}$

図 2－2 原子炉建屋基礎版に接続する壁の配置
c4004 Qx

※要素25～360は円周方向を示す。 ※太線部は壁の位置を示す。

組合せケース 4（放射方向，NS 方向）
（a）不確かさケースの初期剛性に基づく解析モデル
c3004 Qx

※要素 $25 \sim 360$ は円周方向を示す。 ※太線部は壁の位置を示す。

組合せケース 4（放射方向，NS 方向）
（b）基本ケースの初期剛性に基づく解析モデル
図 2－3 面外せん断力のコンター図

別紙 7－6

図2－4 「R C -N 規準」の付図 2.2

図 2－5 原子炉建屋基礎版における面外せん断力に対する応力平均化の考え方

\square ：応力平均化実施要素平均化実施に用いた周辺要素
：壁直下の範囲（平均化対象外）
．．．．．．：隣接要素への応力平均化範囲
NS 方向 要素番号 1158

図 2－6 応力平均化範囲

2.3 応力平均化の結果

応力平均化の手法として，下式のとおり，要素面積を考慮した重み付け平均で平均化を行っ ている。応力平均化に用いる各要素の発生値，面積及び重み付け値を表 $2-2$ 及び表 $2-4$ に示す。 また，応力平均化の結果を表 $2-3$ 及び表 $2-5$ に示す。

$$
\tau_{\mathrm{ave}}=\Sigma\left(\tau_{\mathrm{i}} \times \mathrm{A}_{\mathrm{i}}\right) / \sum \mathrm{A}_{\mathrm{i}}
$$

ここで，
$\tau \mathrm{ave}$ ：平均化後の面外せん断応力度
$\tau_{\mathrm{i}} \quad$ ：平均化前の各要素の面外せん断応力度（発生値）
A_{i} ：応力平均化範囲における各要素の面積

表 2－2 応力平均化に用いる各要素の発生値，面積及び重み付け値
（不確かさケースの初期剛性に基づく解析モデル）

方向	応力平均化 対象要素	組合せ ケース	要素番号	発生値 $\begin{gathered} \tau_{\mathrm{i}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	要素面積 $\begin{aligned} & \mathrm{A}_{\mathrm{i}} \\ & \left(\mathrm{~m}^{2}\right) \end{aligned}$	重み付け値 $\begin{aligned} & \tau_{i} \times \mathrm{A}_{\mathrm{i}} \\ & \left(\times 10^{6} \mathrm{~N}\right) \end{aligned}$
NS	1158	4	1126	0． 74	1． 10	0.82
			1127	1． 16	4． 84	5． 61
			1128	1． 48	4． 62	6． 85
			1129	1． 46	2． 64	3.86
			1157	2． 13	0． 40	0.86
			1158	2.41	1． 76	4.25
			1159	2． 39	1.68	4.01
			1160	2． 16	0.96	2． 07
				合計	18.00	28.33

表 2－3 応力平均化結果
（不確かさケースの初期剛性に基づく解析モデル）

方向	要素番号	組合せケース	面外せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
			平均化前	平均化後
NS	1158	4	2.41	1.57

表 2－4 応力平均化に用いる各要素の発生値，面積及び重み付け値
（基本ケースの初期剛性に基づく解析モデル）

方向	応力平均化 対象要素	組合せ ケース	要素番号	発生値 $\begin{gathered} \tau_{\mathrm{i}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	要素面積 A_{i} （m）	重み付け値 $\begin{aligned} & \tau{ }_{i} \times \mathrm{A}_{\mathrm{i}} \\ & \left(\times 10^{6} \mathrm{~N}\right) \end{aligned}$
NS	1158	4	1126	0． 72	1． 10	0.79
			1127	1． 12	4． 84	5.41
			1128	1． 43	4.62	6.62
			1129	1． 40	2． 64	3.69
			1157	2.04	0． 40	0． 82
			1158	2． 36	1． 76	4． 16
			1159	2． 32	1.68	3.90
			1160	2.08	0.96	2.00
				合計	18.00	27． 39

表 2－5 応力平均化結果
（基本ケースの初期剛性に基づく解析モデル）

方向	要素番号	組合せケース	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	
			平均化前	平均化後
NS	1158	4	2． 36	1.52

2.4 断面の評価結果

2．4． 1 断面の評価方法
断面の評価方法として，面外せん断力の発生値が許容値を超えないことを確認する。許容値は，「R C -N 規準」に基づき算出する。

2．4．2 断面の評価結果

応力平均化後の評価結果を表 2－6に示す。表 2－6より，応力平均化後の面外せん断応力度の発生値が許容値を超えないことを確認した。

表 2－6 応力平均化後の評価結果
（a）不確かさケースの初期剛性に基づく解析モデル

方向	要素番号	組合せケース	面外せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		平均化後の検定値 （発生値／許容値）
			4	1.57	
NS			発生値	許容値	0.66

（b）基本ケースの初期剛性に基づく解析モデル

方向	要素番号	組合せケース	面外せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		平均化後の検定値 （発生値／許容値）
			4	1.52	
NS			発生値	許容値	

別紙9 原子炉建屋基礎版の応力解析における地震時増分土圧の算定 について

目 次

1．概要 別紙 9－1
2．地震時増分土圧の算定 別紙 9－2
2.1 算定のプロセス 別紙 9－2
2.2 建屋等価剛性の算定 別紙9－3
2.3 入力地震動の算定 別紙 9－5
2． 4 解析モデル 別紙 9－7
2．4．1 解析モデル概要 別紙 9－7
2．4．2 建屋諸元 別紙 9－7
2．4．3 地盤諸元 別紙 9－11
2.5 地震応答解析 別紙 9－14
2.6 地震時増分土圧の算定結果 別紙 9－14
3．隣接構造物の影響確認 別紙 9－17
3.1 影響確認方針 別紙 9－17
3.2 地震時増分土圧の算定結果 別紙 9－18
3.3 まとめ 別紙 9－19

1．概要

本資料は，原子炉建屋基礎版の評価に用いる地震時増分土圧の算定について，使用し た解析モデル及び算定プロセスを説明するものである。本資料においては，EW 方向断面 を代表に説明する。

また，原子炉建屋基礎版の評価に用いる地震時増分土圧は，隣接構造物を考慮してい ない解析モデルにより評価している。一方，原子炉建屋の東側には海水ポンプ室が位置 していることから，本資料では，原子炉建屋の基礎版評価に用いる地震時増分土圧につ いて，海水ポンプ室を考慮した地震応答解析から得られる地震時増分土圧との比較を行 い，その保守性を確認する。

2．地震時増分土圧の算定
2.1 算定のプロセス

地震時増分土圧の算定プロセスの概要を図 $2-1$ に示す。

注：［ ］内は，本資料における章番号を示す。

図 2－1 地震時増分土圧の算定プロセスの概要
2.2 建屋等価剛性の算定

土圧算定に用いる解析プログラムである解析コード「SuperFLUSH／2D」では，周波数応答解析を行うため，線形問題にしか適用が出来ない。建屋は，基準地震動 S s に対 する地震応答解析時に非線形領域に到達することから，等価線形剛性を以下の手順に より算出する。
（1）質点系モデル（非線形）において，各床レベルの応答加速度時刻歴波形をフーリエ変換し，フーリエスペクトルを算定する。さらに，基礎上レベルの応答波形フーリ エスペクトルで除すことで，基礎上に対する建屋各床レベルのフーリエスペクトル比（伝達関数）を算出する（図2－2 の青線）。
（2）質点系モデル（線形）において，①と同様の手順により，フーリエスペクトル比を算出する（図2－2 の赤線）。
（3）質点系モデル（非線形）と質点系モデル（線形）のフーリエスペクトル比の1次ピ ーク振動数を比較すると，図 $2-2$ で示したように差が生じる。非線形モデルの 1 次 ピーク振動数 f_{1} と，線形モデルの 1 次ピーク振動数 f_{2} を算出する。
（4）振動数比 $\mathrm{f}_{1} / \mathrm{f}_{2}$ を算出する。
（5）振動数比を 2 乗することにより，剛性比 α を算定する（表 2－1 参照）。
（6）等価線形モデルの剛性は，非線形地震応答解析モデルの初期剛性 K に剛性比 α を乗 じ， $\mathrm{K}_{\mathrm{e}}=\alpha \cdot \mathrm{K}$ とする。

図 2－2 質点系モデル（非線形）と質点系モデル（線形）の伝達関数の例

表 2－1 1 次ピーク振動数比及び剛性比 α（EW 方向）

地震波	非線形モデルの 1 次ピーク振動数 $\mathrm{f}_{1}(\mathrm{~Hz})$	線形モデルの 1 次ピーク振動数 $\mathrm{f}_{2}(\mathrm{~Hz})$	1 次ピーク振動数比	剛性比 α
Ss－D1	4． 102	4． 571	0.90	0.81
Ss－D2	4.058	4.590	0.88	0.78
Ss－D3	4． 431	4． 571	0.97	0.94
Ss－F1	4． 550	4.571	1． 00	0.99
Ss－F2	4． 371	4.619	0.95	0.90
Ss－F3	4． 475	4.565	0.98	0.96
Ss－N1	4． 189	4.604	0.91	0.83
最小値	－	－	－	0． 78

2.3 入力地震動の算定

解析モデルに入力する地震動は，解放基盤表面で定義された基準地震動 S S から， 2 次元 FEM モデル入力基盤面（0．P．-200 m ）までの地盤モデルを用いて，一次元波動論 （SHAKE）により求める。入力地震動の算定の概念図を図 $2-3$ に，地盤モデルの諸元 を表2－2～表2－4に示す。地盤物性の不確かさケースの地盤モデルは，標準地盤モ デルの各層のVSの値を変動係数 7% で変動させたモデルである。

図 $2-3$ 入力地震動の算定の概念図

表 2－2 入力地震動算定地盤物性（標準地盤）

	地層レベル 0．P．（m）			密度 $\rho\left(\mathrm{t} / \mathrm{m}^{3}\right)$	せん断波速度 $V_{S}(\mathrm{~m} / \mathrm{s})$	せん断弾性係数 G（ $\times 10^{7} \mathrm{kN} / \mathrm{m}^{2}$ ）
底面地盤	－14． 1	\sim	-25.0	2.43	1300	0． 4110
	－25．0	\sim	－80．0	2.51	2150	1． 157
	－80．0	\sim	－200	2.55	2440	1． 520

表 2－3 入力地震動算定地盤物性（ $+\sigma$ 地盤）

	地層レベル 0．P．（m）			密度 $\rho \quad\left(t / m^{3}\right)$	せん断波速度 Vs（m／s）	せん断弾性係数 $\mathrm{G}\left(\times 10^{7} \mathrm{kN} / \mathrm{m}^{2}\right)$
底面地盤	-14.1	\sim	-25.0	2.43	1390	0． 4695
	－25．0	\sim	－80．0	2.51	2300	1． 328
	－80．0	\sim	－200	2． 55	2610	1． 737

表 2－4 入力地震動算定地盤物性（ $-\sigma$ 地盤）

	地層レベル 0．P．（m）			密度 $\rho\left(\mathrm{t} / \mathrm{m}^{3}\right)$	せん断波速度 Vs（m／s）	せん断弾性係数 $\mathrm{G}\left(\times 10^{7} \mathrm{kN} / \mathrm{m}^{2}\right)$
底面地盤	－14．1	\sim	－25．0	2． 43	1210	0.3558
	－25．0	\sim	－80．0	2.51	2000	1． 004
	－80．0	\sim	－200	2． 55	2270	1． 314

2． 4 解析モデル

2．4．1 解析モデル概要
解析モデル図を図2－4に示す。モデルの側方境界はエネルギ伝達境界とし，底面境界は粘性境界とする。

図 2－4 解析モデル図

2．4．2 建屋諸元

建屋諸元は，質点系モデル（図2－5）をベースに単位幅（1m）のモデルに換算 して算定する。また，建屋諸元の算定にあたつては，「2．2 建屋等価剛性の算定」 を踏まえて，剛性比 0.78 を考慮する。建屋諸元を表2－5 及び表2－6に示す。

注：赤字は曲げせん断棒の要素番号を示す。
図2－5 原子炉建屋質点系モデル及び諸元（EW 方向）

表 $2-5$ 質点の諸元（EW 方向，単位幅（1m）あたり）

質点番号	質量 （kN）	回転慣性質量 $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}^{2}\right)$
1	560.9	3． 299
2	618.3	3． 643
3	559.0	3.286
4	665.5	3.922
5	675.5	3． 974
6	844.8	4． 968
7	1679.4	12.596
8	1939． 7	14． 557
9	1966.2	14.200
10	134． 4	0.314
11	258.6	0.605
12	1050.6	7.145
13	1030． 3	7.425
14	104． 3	0.126
15	759.6	0.917
16	1678.2	2.051
17	1109.9	1． 338
18	803.8	0.969
19	1217.7	1． 173
20	134.4	0.314
21	154.9	0． 362
22	1116.6	8.457
23	1554．2	11.768
24	1515.2	11． 475
25	1701.4	12.888
26	1908.4	13.895
27	245.2	1． 439
28	411.2	2． 419
29	602.5	3． 553
30	806.5	4． 764
31	811.8	4． 788
32	9796.6	57.808
33	5934.8	34.947

表 2－6 曲げせん断棒の諸元（EW 方向，単位幅（1m）あたり）

部材番号	せん断断面積 $\left(\mathrm{m}^{2}\right)$	断面2次モーメント $\left(\times 10^{2} \mathrm{~m}^{4}\right)$
1	0.532	4． 883
2	0． 745	8.481
3	1． 091	11.156
4	1． 491	14． 403
5	1． 527	14.688
6	0.995	8.584
7	1． 391	12.039
8	2． 126	28.558
9	2.195	29.584
10	0． 173	0.843
11	0.226	1． 623
12	0.673	3.831
13	0.474	4． 416
14	0.822	0.399
15	0.944	1． 251
16	0.922	1． 455
17	0.868	1． 364
18	1． 403	2． 039
19	0.173	0.843
20	0.275	1．338
21	0.688	3.545
22	1． 036	13.935
23	1． 577	19．779
24	2． 208	28． 169
25	2． 171	27． 766
26	0.421	3.883
27	0.710	7.857
28	1． 091	10． 429
29	1． 418	13.740
30	1． 527	13．753
31	84.0	493.922
32	0.111	0． 245

2．4．3 地盤諸元

地盤の要素サイズは 20 Hz 透過となるよう表2－7に従って設定する。原地盤お よび埋戻土の地盤物性を表2－8及び表 $2-9$ に示す。地盤諸元については，原地盤の地盤物性のばらつきを考慮する。また，埋戻土の非線形特性は以下に従って設定する。
$\underline{G / G} 0-\gamma$ 関係
$\mathrm{G} / \mathrm{G}_{0}=1 /\left(1+\gamma / \gamma_{\mathrm{m}}\right)$
$\gamma_{\mathrm{m}}=\tau_{\mathrm{m}} / \mathrm{G}_{0}$
$\mathrm{G}_{0}=1787 \cdot \sigma_{\mathrm{c}}{ }^{0.84}$
$\sigma_{\mathrm{c}}=\mathrm{Z} \cdot \rho_{\mathrm{t}} \cdot 2 / 3\left(\mathrm{MN} / \mathrm{m}^{2}\right)$
Z ：深度（m）（地表面から各層中心までの距離）
$\rho_{\mathrm{t}}=18.6\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
（地下水位以浅は， $18.6 \mathrm{kN} / \mathrm{m}^{2}$ ，地下水位以深は， $20.6 \mathrm{kN} / \mathrm{m}^{3}$ ）
$\tau_{\mathrm{m}}=\tau_{0}+\sigma_{\mathrm{md}} \cdot \tan \phi \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\sigma_{\mathrm{md}}=3 / 4 \cdot \mathrm{Z} \cdot \rho_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau{ }_{0}=0.1\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
$\phi=33.9 \quad{ }^{\circ}$ ）
$\gamma_{\mathrm{m}}=\tau_{\mathrm{m}} / \mathrm{G}_{0}$
G：せん断剛性
Go：初期せん断剛性
γ ：埋戻土のせん断ひずみ

$\underline{h}-\gamma$ 関係

$\mathrm{h}=0.183 \cdot \gamma /(\gamma+0.000261)$
h ：埋戻土の減衰比
γ ：埋戻土のせん断ひずみ

表2－7 地盤の要素サイズ

地層レベル0. P. (m)				せん断波速度 $V_{S}(\mathrm{~m} / \mathrm{s})$ 111	波長 $(\mathrm{f}=20 \mathrm{~Hz})$ （m） 5.55	最大要素サイズ （m） 1． 1
埋戻土	14.8	\sim	－14． 1			
側面地盤	0.0	\sim	－14．1	900	45.0	9.0
底面地盤	－14．1	\sim	－25．0	1300	65.0	13.0
	－25．0	\sim	－80．0	2150	107.5	21.0
	－80．0	\sim	－200	2440	122.0	24.0

表 2－8 原地盤の地盤物性
（a）標準地盤

0. P．（m）		単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	ポアソン比	せん断弾性係数 $\left(\times 10^{7} \mathrm{kN} / \mathrm{m}^{2}\right)$
上端	下端			0.1930
14.8	-14.1	23.8	0.415	0.4110
-14.1	-25.0	24.6	0.368	1.157
-25.0	-80.0	24.0	0.354	1.520
-80.0	-200.0	25.0	0.354	1.520
-200.0	-	25.0		

（b）＋o 地盤

0. P．（m）		単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	ポアソン比	せん断弾性係数 $\left(\times 10^{7} \mathrm{kN} / \mathrm{m}^{2}\right)$
上端	下端			0.2380
14.8	-14.1	23.8	0.415	0.4695
-14.1	-25.0	24.6	0.368	1.328
-25.0	-80.0	24.0	0.354	1.737
-80.0	-200.0	25.0	0.354	1.737
-200.0	-	25.0		

（c）－σ 地盤

$0 . \mathrm{P} .(\mathrm{m})$		単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	ポアソン比	せん断弾性係数 $\left(\times 10^{7} \mathrm{kN} / \mathrm{m}^{2}\right)$
上端	下端			0.1523
14.8	-14.1	23.8	0.415	0.3558
-14.1	-25.0	24.6	0.368	1.004
-25.0	-80.0	24.0	0.354	1.314
-80.0	-200.0	25.0	0.354	1.314
-200.0	-	25.0		

表 2－9 埋戻土の地盤物性

0．P．（m）		単位体積重量 （ $\mathrm{kN} / \mathrm{m}^{3}$ ）	ポアソン比	せん断弾性係数$\left(\times 10^{5} \mathrm{kN} / \mathrm{m}^{2}\right)$
上端	下端			
14.8	13.9	18.6	0． 48	0． 2287
13.9	13.0	18.6	0.48	0.5755
13.0	12.1	18.6	0.48	0.8840
12.1	11.1	18.6	0.48	1． 188
11.1	10.1	18.6	0． 48	1． 493
10.1	9． 0	18.6	0． 48	1． 801
9.0	8.0	18． 6	0.48	2.099
8.0	7.0	18.6	0.48	2． 376
7.0	6.0	18． 6	0.48	2.646
6.0	5.1	18． 6	0． 48	2.898
5.1	4． 3	18.6	0． 48	3． 121
4． 3	3.5	18.6	0.48	3.327
3.5	2． 8	18.6	0． 48	3.518
2.8	2.0	18． 6	0.48	3． 707
2.0	1． 4	18.6	0.48	3.882
1． 4	0． 7	18.6	0． 48	4． 044
0.7	0.0	18.6	0.48	4． 216
0.0	－0． 8	18.6	0． 48	4． 399
－0． 8	－0． 5	18.6	0． 48	4． 581
－0． 5	－2．2	18.6	0.48	4． 749
－2．2	－2．9	18.6	0.48	4． 916
－2．9	－3．6	18.6	0.48	5.082
－3． 6	－4． 3	18.6	0.48	5． 247
－4． 3	－5． 0	18.6	0． 48	5.411
-5.0	-5.7	18.6	0． 48	5.574
-5.7	－6． 5	18.6	0.48	5． 748
－6． 5	－7． 3	18.6	0.48	5.932
－7． 3	－8． 1	18.6	0.48	6． 116
－8．1	－9．1	18.6	0.48	6． 320
－9．1	－10．0	18.6	0.48	6.535
-10.0	－10．6	18.6	0． 48	6． 704
－10．6	－11．1	18.6	0． 48	6． 827
－11．1	－12．1	18.6	0.48	6.948
－12．1	－13．1	18.6	0.48	7.077
－13．1	－14．1	18.6	0． 48	7． 205

2.5 地震応答解析

作成した入力地震動を解析モデルに入力して地震応答解析（周波数応答解析）を行 う。使用プログラムは，解析コード「SuperFLUSH／2D」である。
2.6 地震時増分土圧の算定結果

建屋と地盤を結ぶ剛ばねの反力を，各剛ばねの支配幅で除して地震時増分土圧を算定する。算定した地震時増分土圧を表2－10及び表2－11に，地震時土圧荷重を表2 － 12 に示す。

表 2－10（1）東側の地震時増分土圧の算定結果（標準地盤）

$0 . \mathrm{P} .(\mathrm{m})$	地震時増分土圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$						
	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$
14.8	92.0	98.2	85.7	66.8	87.5	77.9	123.0
10.5	92.0	98.2	85.7	66.8	87.5	77.9	123.0
10.5	153.7	181.4	155.2	129.3	192.0	183.8	247.0
2.6	153.7	181.4	155.2	129.3	192.0	183.8	247.0
2.6	237.4	258.1	194.0	170.9	257.4	271.3	357.3
-4.45	237.4	258.1	194.0	170.9	257.4	271.3	357.3
-4.45	465.0	472.7	374.1	322.2	387.8	439.5	629.1
-8.1	465.0	472.7	374.1	322.2	387.8	439.5	629.1

注：赤字は最大値を示す。

表 2－10（2）東側の地震時増分土圧の算定結果（ $+\sigma$ 地盤）

$0 . \mathrm{P} .(\mathrm{m})$	地震時増分土圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$						
	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$
14.8	87.4	99.0	84.4	67.5	85.5	79.8	124.9
10.5	87.4	99.0	84.4	67.5	85.5	79.8	124.9
10.5	155.2	176.8	159.2	134.7	195.2	184.9	249.7
2.6	155.2	176.8	159.2	134.7	195.2	184.9	249.7
2.6	242.1	260.7	199.2	178.2	259.5	276.6	365.4
-4.45	242.1	260.7	199.2	178.2	259.5	276.6	365.4
-4.45	479.4	491.1	384.0	335.5	390.9	447.9	650.5
-8.1	479.4	491.1	384.0	335.5	390.9	447.9	650.5

注：赤字は最大値を示す。

表 2－10（3）東側の地震時増分土圧の算定結果（ $-\sigma$ 地盤）

$0 . \mathrm{P} .(\mathrm{m})$	地震時増分土圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$						
	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$
14.8	96.0	96.7	85.5	65.4	89.4	76.9	119.8
10.5	96.0	96.7	85.5	65.4	89.4	76.9	119.8
10.5	155.6	187.4	149.2	122.6	183.4	183.3	241.3
2.6	155.6	187.4	149.2	122.6	183.4	183.3	241.3
2.6	229.8	252.6	187.4	161.0	248.9	257.2	343.5
-4.45	229.8	252.6	187.4	161.0	248.9	257.2	343.5
-4.45	447.3	450.2	362.8	304.3	385.5	429.3	605.4
-8.1	447.3	450.2	362.8	304.3	385.5	429.3	605.4

注：赤字は最大値を示す。

表 2－11（1）西側の地震時増分土圧の算定結果（標準地盤）

0．P．（m）	地震時増分土圧（kN／m）						
	S s－D 1	S s－D 2	S s－D 3	S s－F 1	S s－F 2	S s－F 3	S s－N 1
14.8	100.5	116.8	94.0	88.6	90.9	97.7	98.4
10.5	100.5	116.8	94.0	88.6	90.9	97.7	98.4
10.5	125．9	131.8	121.7	111.0	117.5	131.6	120.4
2.6	125．9	131.8	121.7	111.0	117.5	131.6	120.4
2.6	115.8	140.4	107.2	109.8	121.8	122.1	81.2
－4．45	115.8	140.4	107．2	109.8	121.8	122.1	81.2
－4．45	227.1	245.3	173.4	197.3	240.4	244.8	293.2
－8．1	227.1	245.3	173.4	197． 3	240.4	244.8	293． 2

注：赤字は最大値を示す。

表 2－11（2）西側の地震時増分土圧の算定結果（ $+\sigma$ 地盤）

0．P．（m）	地震時増分土圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$						
	S s－D 1	S s－D 2	S s－D 3	S s－F 1	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~F} 2$	S s－F 3	S s－N 1
14.8	98.9	116． 4	92.4	87.9	87.7	98.3	93.7
10.5	98.9	116.4	92.4	87.9	87.7	98.3	93.7
10.5	123.3	131.4	117.8	106． 7	110.6	129.5	112.0
2.6	123．3	131.4	117.8	106.7	110.6	129.5	112.0
2.6	120.9	132.1	104.0	104． 3	110.5	116.2	77.6
－4．45	120.9	132． 1	104． 0	104．3	110.5	116． 2	77.6
－4． 45	215.3	225．9	160.6	189． 4	221.9	227.4	282.3
－8．1	215.3	225.9	160.6	189.4	221.9	227.4	282.3

注：赤字は最大値を示す。

表 2－11（3）西側の地震時増分土圧の算定結果（ $-\sigma$ 地盤）

$0 . \mathrm{P} .(\mathrm{m})$	地震時増分土圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$						
	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$
14.8	99.6	115.1	95.3	89.0	92.0	94.9	105.8
10.5	99.6	115.1	95.3	89.0	92.0	94.9	105.8
10.5	128.4	133.5	121.1	116.1	124.3	130.4	132.6
2.6	128.4	133.5	121.1	116.1	124.3	130.4	132.6
2.6	121.2	140.5	114.9	118.0	133.2	126.5	92.6
-4.45	121.2	140.5	114.9	118.0	133.2	126.5	92.6
-4.45	239.8	261.4	193.5	204.0	259.5	256.9	308.8
-8.1	239.8	261.4	193.5	204.0	259.5	256.9	308.8

注：赤字は最大値を示す。

表 2－12 地震時土圧荷重

$\begin{gathered} \text { 0. P. } \\ \text { (m) } \end{gathered}$	東側			西側		
	地震時増分土圧 （kN／m2）	常時土圧 （ $\mathrm{kN} / \mathrm{m}^{2}$ ）	地震時土圧荷重 （ $\mathrm{kN} / \mathrm{m}^{2}$ ）	地震時増分土圧 （kN／m）	常時土圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	地震時土圧荷重 （kN／m）
14.8	124.9	0.0	125	116.8	0.0	117
10.5	124.9	40.0	165	116.8	40.0	157
10.5	249.7	40.0	290	133.5	40.0	174
2.6	249.7	113.5	363	133.5	113.5	247
2.6	365.4	113.5	479	140.5	113.5	254
－4．45	365.4	179.0	544	140.5	179.0	320
－4． 45	650.5	179.0	830	308.8	179.0	488
－8．1	650.5	213.0	864	308.8	213.0	522

3．隣接構造物の影響確認

原子炉建屋の基礎版評価に用いる地震時増分土圧は，隣接構造物を考慮していない解析モデルにより評価している。一方，原子炉建屋の東側には海水ポンプ室が位置してい ることから，原子炉建屋の基礎版評価に用いる地震時増分土圧について，海水ポンプ室 を考慮した地震応答解析から得られる地震時増分土圧との比較を行い，その保守性を確認する。

3.1 影響確認方針

原子炉建屋と海水ポンプ室の位置関係を図 3－1 に示す。海水ポンプ室は原子炉建屋の東側にあることから，原子炉建屋東側の地震時増分土圧（基準地震動 S s 7 波の包絡値，地盤のばらつきを考慮）について，①海水ポンプ室を考慮したケースと，（2）海水ポンプ室を考慮しないケースについて比較を行う。

図 3－1 原子炉建屋と海水ポンプ室の位置関係
3.2 地震時増分土圧の算定結果
（1）海水ポンプ室を考慮したケースの地震時増分土圧と（2）海水ポンプ室を考慮しない ケースの地震時増分土圧の比較を表 3－1 に示す。0．P．2．6m～0．P．－11．1mでは（1）海水 ポンプ室を考慮したケースが②海水ポンプ室を考慮しないケースを約 10% 下回るも のの，0．P．14．8m～0．P．2．6m では①海水ポンプ室を考慮したケースが（2）海水ポンプ室 を考慮しないケースを約 5% 上回る結果となった。

表 3－1 地震時増分土圧の比較（原子炉建屋東側）

$0 . \mathrm{P} .[\mathrm{m}]$	地震時増分土圧 $\left[\mathrm{kN} / \mathrm{m}^{2}\right]$		（1海水ポンプ室を 考慮したケース
	（2海水ポンプ室を 考慮しないケース		
10.5	128.5	124.9	1.03
10.5	128.5	124.9	1.03
2.6	262.0	249.7	1.05
2.6	262.0	249.7	1.05
-4.45	327.4	365.4	0.90
-4.45	327.4	365.4	0.90
-11.1	591.6	650.5	0.91

一部で①海水ポンプ室を考慮したケースの土圧が②海水ポンプ室を考慮しないケー スの土圧を上回ったため，基礎版評価に与える影響を検討する。

基礎版評価において土圧荷重は，外壁を各階スラブ位置で支持した連続はりモデル を用いて算定した曲げモーメント（図 $3-2$ の M_{A} ）として入力している。基礎版の FEM モデルに入力する土圧荷重について，①海水ポンプ室を考慮したケースと（2）海水ポン プ室を考慮しないケースの比較を表 3－2 に示す。表 3－2より，①海水ポンプ室を考慮したケースが（2）海水ポンプ室を考慮しないケースを約 6% 下回ることを確認した。

図 3－2 基礎版の FEM モデルに入力する土圧荷重の概念図（原子炉建屋東側）

表 3－2 基䂣版の FEM モデルに入力する土圧荷重の比較（原子炉建屋東側）

基礎版のFEMモデルに入力する土圧荷重［kN•m／m］		（1）／（2）
（1）海水ポンプ室を考慮したケース	（2）海水ポンプ室を考慮しないケース	
10447	11196	0.94

3.3 まとめ

原子炉建屋の基礎版評価に用いる地震時増分土圧について，①海水ポンプ室を考慮 したケースと（2）海水ポンプ室を考慮しないケースの比較を行った。その結果，0．P．2．6m ～0．P．－11．1m では（1）海水ポンプ室を考慮したケースの土圧が（2）海水ポンプ室を考慮 しないケースの土圧を約 10% 下回るものの， 0. P．14． $8 \mathrm{~m} \sim 0$. P． 2.6 m では（1）海水ポンプ室を考慮したケースの土圧が（2）海水ポンプ室を考慮しないケースの土圧を約 5% 上回 った。

一方，基䂣版の FEM モデルに入力する曲げモーメントについては，①海水ポンプ室 を考慮したケースが（2）海水ポンプ室を考慮しないケースを約 6% 下回る結果となった。 これらの結果から，原子炉建屋の基礎版評価に用いる地震時増分土圧には保守性があ ることを確認した。

