5．1．5 計算条件

浸水防止蓋の応力評価に用いる入力値を表5－8に示す。

表5－8 浸水防止蓋の耐震評価に用いる入力値

評価対象部位	記号	単位	定義	数値
浸水防止蓋 （スキンプレート）	$\mathrm{A}_{\text {s }}$	mm ${ }^{2}$	浸水防止蓋の単位幅あたりのせん断断面積	16
	α	－	平板のモーメントに関する係数	0． 085
	β	－	平板のせん断に関する係数	0.55
	1_{x}	mm	浸水防止蓋の短辺長	1250
	A	m^{2}	浸水防止蓋の面積	1.86
	Z	mm ${ }^{3}$	浸水防止蓋の断面係数	42.67
固定ボルト（1）	Rn	kN	固定ボルトの支点反力（引張）	13.2
	Rm	$\mathrm{kN} \cdot \mathrm{mm}$	固定ボルトの支点モーメント	5362
	Rs	kN	固定ボルトの支点反力（せん断）	16.7
	B	mm	固定ボルトのボルト間隔	200
	N	本	照査箇所のボルト本数	4
固定ボルト（2）	Rn	kN	固定ボルトの支点反力（引張）	1.9
	Rm	$\mathrm{kN} \cdot \mathrm{mm}$	固定ボルトの支点モーメント	4558
	Rs	kN	固定ボルトの支点反力（せん断）	33.9
	B	mm	固定ボルトのボルト間隔	200
	N	本	照査箇所のボルト本数	8
ハッチ（1）	追而			
ハッチ（2）				

5.2 変形性評価方法

止水ジョイントは浸水防止蓋と第 3 号機補機冷却海水系放水ピットとの境界部に設置するこ とから浸水防止蓋と第 3 号機補機冷却海水系放水ピットの地震時最大変位量の和が許容限界内 に収まることを確認する。
浸水防止蓋の変位量は浸水防止蓋を支持する第 3 号機海水熱交換器建屋の地震時最大変位量 は材料物性の不確かさを考慮したものとして添付資料「V－2－2－29 第3号機海水熱交換器建屋 の地震応答計算書」の算出結果を用いる。第3号機補機冷却海水系放水ピットの地震時最大変位量は「5．2．1 第3号機補機冷却海水系放水ピットの地盤応答解析方法」に示す方法により算出する。なお，詳細については「9．地震応答解析」に示す。

5．2．1 第3号機補機冷却海水系放水ピットの地盤応答解析方法
第 3 号機補機冷却海水系放水ピットの地震応答解析は添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて設定する。地震応答解析は，構造物と地盤の相互作用を考慮できる二次元動的有限要素法により，基準地震動 S s に基づき設定した水平地震動と鉛直地震動の同時加振に よる逐次時間積分の時刻歴応答解析（全応力解析）により行う。

5．2．2 第 3 号機補機冷却海水系放水ピットの解析断面
第 3 号機補機冷却海水系放水ピットの解析断面は，図5－10に示すとおり NS 断面及び EW 断面の 2 断面とする。

図 5－10（1）第3号機補機冷却海水系放水ピットの解析断面（断面位置図）（1／3）

図 5－10（2）第3号機補機泠却海水系放水ピットの解析断面図（NS 断面）（2／3）

凡 例

岩盤分類境界
速度層境界

図 5－10（3）第3号機補機冷却海水系放水ピットの解析断面図（EW 断面）（3／3）

5．2．3 許容限界

止水ジョイント部材の変形量の許容限界は，漏水試験及び変形試験により，有意な漏え いが生じないことを確認した変形量とする。表5－9に止水ジョイント部材の仕様を表 5－ 10 に変形量の許容限界を示す。

なお，止水ジョイント部材が地震時及び津波時による変位に対し有意な漏えいを生じな い変形に留まること，津波による波圧と余震による変位に対し止水ジョイント部材から有意な漏えいが生じないことを性能確認試験により確認している。また，長期的な耐久性に関しては，耐候性試験により確認している。

表 5－9 止水ジョイント部材の仕様

種別	名称	主成分
M型ゴム	ME300	クロロプレンゴム

表 5－10 止水ジョイント部材の変形量の許容限界

	許容限界（mm）	
	開き方向	せん断方向
変形量	550	550

5．2．4 計算方法

止水ジョイント部材の地震時の評価について，NS 方向及び EW 方向ともに，地震荷重に よる最大相対変位量が許容限界以下であることを確認する。
変形性評価の評価対象部位について図5－11に示す。

A \leqslant

$A<$
平面図

図 5－11 変形性評価の評価対象部位
（1）止水ジョイント①
a．止水ジョイント部材の開き方向の評価用変形量 d_{n}

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{n}}=\left|\mathrm{d} \mathrm{~b}_{\mathrm{NS}}\right|+\left|\mathrm{d}_{\mathrm{p}} \mathrm{NS}\right| \\
& \text { ここで, } \quad \mathrm{d}_{\mathrm{n}} \text { : 止水ジョイント部材の評価用変形量 (開き方向) (mm) } \\
& \mathrm{d}_{\mathrm{b}} \mathrm{NS} \text { : 第 } 3 \text { 号機海水熱交換器建屋の地震時最大応答変位 } \\
& \text { (NS 方向) (mm) }
\end{aligned}
$$

$\mathrm{d} \mathrm{p}_{\mathrm{NS}}$ ：第3号機補機冷却海水系放水ピットの地震時最大応答変位 （NS 方向）（mm）
b．止水ジョイント部材のせん断方向の評価用変形量 d s

$$
\mathrm{d}_{\mathrm{s}}=\left|\mathrm{d} \mathrm{~b}_{\mathrm{EW}}\right|+\left|\mathrm{d}_{\mathrm{E}} \mathrm{EW}\right|
$$

ここで， d_{s} ：止水ジョイント部材の評価用変形量（せん断方向）（mm）
$\mathrm{d} \mathrm{b}_{\mathrm{Ew}}$ ：第3号機海水熱交換器建屋の地震時最大応答変位 （EW 方向）（mm）
d pew ：第3号機補機冷却海水系放水ピットの地震時最大応答変位 （EW 方向）（mm）
（2）止水ジョイント（2）
a．止水ジョイント部材の開き方向の評価用変形量 d_{n} $\mathrm{d}_{\mathrm{n}}=\left|\mathrm{d} \mathrm{b}_{\mathrm{EW}}\right|+\left|\mathrm{d}_{\mathrm{p}} \mathrm{EW}\right|$ ここで， d_{n} ：止水ジョイント部材の評価用変形量（開き方向）（mm）
$\mathrm{d} \mathrm{b}_{\mathrm{EW}}$ ：第3号機海水熱交換器建屋の地震時最大応答変位 （EW 方向）（mm）
$d p_{\text {EW }}$ ：第 3 号機補機冷却海水系放水ピットの地震時最大応答変位 （EW 方向）（mm）
b．止水ジョイント部材のせん断方向の評価用変形量 d $\mathrm{d}_{\mathrm{s}}=\left|\mathrm{d} \mathrm{b}_{\mathrm{NS}}\right|+\left|\mathrm{d}_{\mathrm{p}} \mathrm{NS}\right|$

ここで，：止水ジョイント部材の評価用変形量（せん断方向）
d s
（mm）
$\mathrm{d} \mathrm{b}_{\mathrm{NS}}$ ：第 3 号機海水熱交換器建屋の地震時最大応答変位 （NS 方向）（mm）
d p Ns ：第 3 号機補機冷却海水系放水ピットの地震時最大応答変位 （NS 方向）（mm）
（3）止水ジョイント③
a．止水ジョイント部材の開き方向の評価用変形量 d_{n}

$$
\mathrm{d}_{\mathrm{n}}=\left|\mathrm{d}_{\mathrm{Ns}}\right|+\left|\mathrm{d}_{\mathrm{Ns}}\right|
$$

ここで， d_{n} ：止水ジョイント部材の評価用変形量（開き方向）（mm）
d b NS ：第 3 号機海水熱交換器建屋の地震時最大応答変位 （NS 方向）（mm）
$\mathrm{d} \mathrm{p} \mathrm{NS} \quad:$ 第 3 号機補機冷却海水系放水ピットの地震時最大応答変位 （ NS 方向）（mm）
b．止水ジョイント部材のせん断方向の評価用変形量 d s $\mathrm{d}_{\mathrm{s}}=\left|\mathrm{d}_{\mathrm{EW}}\right|+\left|\mathrm{d} \mathrm{peW}_{\mathrm{EW}}\right|$

ここで， d_{s} ：止水ジョイント部材の評価用変形量（せん断方向）（mm）
d b EW ：第3号機海水熱交換器建屋の地震時最大応答変位 （EW 方向）（mm）
d pew ：第3号機補機冷却海水系放水ピットの地震時最大応答 （EW 方向）（mm）

6．評価結果
浸水防止蓋の応力評価結果を表6－1～表6－14に変形性評価結果を表6－15，表6－16に示 す。全ての部材において発生応力，応力度及び変形量が許容限界以下であることを確認した。

表6－1 応力評価結果（浸水防止蓋）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
浸水防止蓋 （スキンプレート）	曲げ	11	$\mathrm{~N} / \mathrm{mm}^{2}$	205	$\mathrm{~N} / \mathrm{mm}^{2}$	$0.06<1.0$
	せん断	1	$\mathrm{~N} / \mathrm{mm}^{2}$	118	$\mathrm{~N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	12	$\mathrm{~N} / \mathrm{mm}^{2}$	205	$\mathrm{~N} / \mathrm{mm}^{2}$	$0.06<1.0$

表 6－2 応力評価結果（鋼製ブラケット 弱軸方向）

評価対象部位		発生値（弱軸方向＊） （応力度又は荷重）		許容限界		検定値
主桁（1）	曲げ	39	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $20<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	0． $02<1.0$
	組合せ	40	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $20<1.0$
主桁（2）	曲げ	41	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $20<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	0． $03<1.0$
	組合せ	42	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $21<1.0$
斜材	曲げ	19	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	20	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$
横桁	曲げ	27	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $14<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	28	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $14<1.0$
ブレース材	軸力	5	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $03<1.0$
縦桁	曲げ	15	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $08<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	0． $01<1.0$
	組合せ	16	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$

注記 $* \mathrm{H}$ 鋼の弱軸について

ブレース材には等辺山形鋼を用いているため強軸，弱軸はなく断面剛性は一様

表6－3（1）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 弱軸方向）（1／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { モー曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 （kN）	$\begin{gathered} \text { 発生 } \\ \text { 応力, 度 } \\ \sigma \text { 's } \\ (\mathrm{N} / \mathrm{mm} 2) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma ’ \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma \text { 's/ } \sigma^{\prime} \text { sa } \end{gathered}$
1	地震時NS＋1．0＿UD＋0．4	主桁（1）	0.075	20.024	3	205	0.02
		主桁（2）	0.316	17．245	2	205	0.01
		斜材	0.014	2.326	1	205	0.01
		横桁	0.462	0.293	1	205	0.01
		ブレース	－	0.142	1	205	0.01
		縦桁	0.009	2． 038	1	205	0.01
2	地震時NS＋1．0＿UD－0．4	主桁（1）	0.085	23.257	3	205	0.02
		主桁（2）	0.326	19.903	2	205	0.01
		斜材	0.068	6.613	2	205	0.01
		横桁	0.464	0.423	1	205	0.01
		ブレース	－	0.484	1	205	0.01
		縦桁	0.044	9.245	2	205	0.01
3	地震時NS－1．0＿UD＋0．4	主桁（1）	0.065	16.887	2	205	0.01
		主桁（2）	0.306	14.672	2	205	0.01
		斜材	0.038	6.913	2	205	0.01
		横桁	0.461	0.188	1	205	0.01
		ブレース	－	0.451	1	205	0.01
		縦桁	0.025	4.940	1	205	0.01
4	地震時NS－1．0＿UD－0．4	主桁（1）	0.054	13.660	2	205	0.01
		主桁（2）	0.296	12.014	2	205	0.01
		斜材	0.093	13.345	3	205	0.02
		横桁	0.485	0.083	1	205	0.01
		ブレース	－	0.896	2	205	0.01
		縦桁	0.061	12.155	3	205	0.02
5	地震時NS＋0．4＿UD＋1．0	主桁（1）	0.025	6.522	1	205	0.01
		主桁（2）	0.122	5.678	1	205	0.01
		斜材	0.019	3.241	1	205	0.01
		横桁	0.184	0.067	1	205	0.01
		ブレース	－	0.213	1	205	0.01
		縦桁	0.012	2.510	1	205	0.01
6	地震時NS＋0．4＿UD－1．0	主桁（1）	0.052	14.607	2	205	0.01
		主桁（2）	0.153	12.321	2	205	0.01
		斜材	0.116	12.859	3	205	0.02
		横桁	0.213	0.429	1	205	0.01
		ブレース	－	0.919	2	205	0.01
		縦桁	0.076	15.525	3	205	0.02
7	地震時NS－0．4＿UD＋1．0	主桁（1）	0.031	8.240	1	205	0.01
		主桁（2）	0.127	7.085	1	205	0.01
		斜材	0.009	1．291	1	205	0.01
		横桁	0.185	0．129	1	205	0.01
		ブレース	－	0.085	1	205	0.01
		縦桁	0.006	1．437	1	205	0.01
8	地震時NS－0．4＿UD－1．0	主桁（1）	0.021	4． 442	1	205	0.01
		主桁（2）	0.102	3． 263	1	205	0.01
		斜材	0.126	15.894	4	205	0.02
		横桁	0.254	0.279	1	205	0.01
		ブレース	－	1．100	2	205	0.01
		縦桁	0.082	16.689	4	205	0.02

表 6－3（2）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 弱軸方向）（2／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 (kN)	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma,{ }^{\prime} \text {, } \\ (\mathrm{N} / \mathrm{mm} 2) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma \prime \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma \text { 's/ } \sigma^{\prime} \text { sa } \end{gathered}$
9	地震時EW＋1．0＿UD＋0．4	主桁（1）	9.555	22.272	38	205	0.19
		主桁（2）	23.205	31.599	41	205	0.20
		斜材	2.622	4.073	18	205	0.09
		横桁	15.247	14.312	27	205	0.14
		ブレース	－	2.568	5	205	0.03
		縦桁	1.973	3.604	13	205	0.07
10	地震時EW＋1．0＿UD－0．4	主桁（1）	9.554	19.643	38	205	0.19
		主桁（2）	23.218	33.809	41	205	0.20
		斜材	2.653	9.698	19	205	0.10
		横桁	15.293	14.400	27	205	0.14
		ブレース	－	2.882	5	205	0.03
		縦桁	1.981	10.531	15	205	0.08
11	地震時EW－1．0＿UD＋0．4	主桁（1）	9.556	24.801	38	205	0.19
		主桁（2）	23.193	29.466	41	205	0.20
		斜材	2.585	4.540	17	205	0.09
		横桁	15.203	14.226	27	205	0.14
		ブレース	－	2． 296	4	205	0.02
		縦桁	1.975	3.837	13	205	0.07
12	地震時EW－1．0＿UD－0．4	主桁（1）	9.555	27.367	39	205	0.20
		主桁（2）	23.180	27.240	41	205	0.20
		斜材	2.544	10.110	18	205	0.09
		横桁	15.160	14.143	27	205	0.14
		ブレース	－	2.284	4	205	0.02
		縦桁	1.977	11.047	15	205	0.08
13	地震時EW＋0．4＿UD＋1．0	主桁（1）	3.822	10.092	16	205	0.08
		主桁（2）	9.277	11.627	17	205	0.09
		斜材	1.028	2.092	7	205	0.04
		横桁	6.078	5.685	11	205	0.06
		ブレース	－	0.910	2	205	0.01
		縦桁	0.790	2． 213	6	205	0.03
14	地震時EW＋0．4＿UD－1．0	主桁（1）	3.822	11.967	16	205	0.08
		主桁（2）	9.308	17.154	17	205	0.09
		斜材	1． 122	14.264	10	205	0.05
		横桁	6.191	5.902	11	205	0.06
		ブレース	－	1． 625	3	205	0.02
		縦桁	0.806	15.968	8	205	0.04
15	地震時EW－0．4＿UD＋1．0	主桁（1）	3.822	8.706	16	205	0.08
		主桁（2）	9.283	12.793	17	205	0.09
		斜材	1.050	1.852	7	205	0.04
		横桁	6.103	5.733	11	205	0.06
		ブレース	－	1． 057	2	205	0.01
		縦桁	0.789	1.995	6	205	0.03
16	地震時EW－0．4＿UD－1．0	主桁（1）	3.822	15.215	16	205	0.08
		主桁（2）	9.251	12.432	17	205	0.09
		斜材	0.990	14.553	9	205	0.05
		横桁	5.990	5.515	11	205	0.06
		ブレース	－	1.589	3	205	0.02
		縦桁	0.796	16.246	8	205	0.04
最大値		主桁（1）	9.555	27.367	39	205	0.20
		主桁（2）	23.205	31.599	41	205	0.20
		斜材	2.653	9． 698	19	205	0.10
		横桁	15.247	14.312	27	205	0.14
		ブレース	－	2.568	5	205	0.03
		縦桁	1.981	10.531	15	205	0.08

表 6－4（1）せん断に関する応力評価結果（鋼製ブラケット 弱軸方向）（1／2）

ケースNo．	解析ケース	評価部材	せん断力 (kN)	発生 応力度 τ $(\mathrm{N} / \mathrm{mm} 2)$	短期許容応力度 $\begin{gathered} \tau \mathrm{a} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 τ / τ a
1	地震時NS＋1．0＿UD＋0．4	主桁（1）	0.061	1	118	0.01
		主桁（2）	0.283	1	118	0.01
		斜材	0.018	1	118	0.01
		横桁	2.504	1	118	0.01
		縦桁	0.018	1	118	0.01
2	地震時NS＋1．0＿UD－0．4	主桁（1）	0.069	1	118	0.01
		主桁（2）	0.290	1	118	0.01
		斜材	0.110	1	118	0.01
		横桁	2.539	1	118	0.01
		縦桁	0.089	1	118	0.01
3	地震時NS－1．0＿UD＋0．4	主桁（1）	0.053	1	118	0.01
		主桁（2）	0.276	1	118	0.01
		斜材	0.087	1	118	0.01
		横桁	2.559	1	118	0.01
		縦桁	0.050	1	118	0.01
4	地震時NS－1．0＿UD－0．4	主桁（1）	0.045	1	118	0.01
		主桁（2）	0.269	1	118	0.01
		斜材	0.187	1	118	0.01
		横桁	2.615	1	118	0.01
		縦桁	0.122	1	118	0.01
5	地震時NS＋0．4＿UD＋1．0	主桁（1）	0.021	1	118	0.01
		主桁（2）	0.110	1	118	0.01
		斜材	0.043	1	118	0.01
		横桁	1.028	1	118	0.01
		縦桁	0.025	1	118	0.01
6	地震時NS＋0．4＿UD－1．0	主桁（1）	0.041	1	118	0.01
		主桁（2）	0.127	1	118	0.01
		斜材	0.208	1	118	0.01
		横桁	1． 108	1	118	0.01
		縦桁	0.152	1	118	0.01
7	地震時NS－0．4＿UD＋1．0	主桁（1）	0.025	1	118	0.01
		主桁（2）	0.113	1	118	0.01
		斜材	0.016	1	118	0.01
		横桁	0.998	1	118	0.01
		縦桁	0.011	1	118	0.01
8	地震時NS－0．4＿UD－1．0	主桁（1）	0.018	1	118	0.01
		主桁（2）	0.096	1	118	0.01
		斜材	0.239	1	118	0.01
		横桁	1． 138	1	118	0.01
		縦桁	0.165	1	118	0.01

表 6－4（2）せん断に関する応力評価結果（鋼製ブラケット 弱軸方向）（2／2）

ケースNo．	解析ケース	評価部材	せん断力 （kN）	$\begin{gathered} \hline \text { 発生 } \\ \text { 応力度 } \\ \tau \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 短期 } \\ \text { 許容応力度 } \\ \tau \mathrm{a} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 $\tau / \tau \mathrm{a}$
9	地震時EW＋1．0＿UD＋0．4	主桁（1）	13.462	2	118	0.02
		主桁（2）	25.122	3	118	0.03
		斜材	3.036	1	118	0.01
		横桁	28.873	3	118	0.03
		縦桁	6.006	1	118	0.01
10	地震時EW＋1．0＿UD－0．4	主桁（1）	13.460	2	118	0.02
		主桁（2）	25.148	3	118	0.03
		斜材	3.117	1	118	0.01
		横桁	29.018	3	118	0.03
		縦桁	6.027	1	118	0.01
11	地震時EW－1．0＿UD＋0．4	主桁（1）	13.463	2	118	0.02
		主桁（2）	25.099	3	118	0.03
		斜材	3.059	1	118	0.01
		横桁	28.734	3	118	0.03
		縦桁	5.993	1	118	0.01
12	地震時EW－1．0＿UD－0．4	主桁（1）	13.464	2	118	0.02
		主桁（2）	25.075	3	118	0.03
		斜材	3.117	1	118	0.01
		横桁	28.609	3	118	0.03
		縦桁	5.978	1	118	0.01
13	地震時EW＋0．4＿UD＋1．0	主桁（1）	5.385	1	118	0.01
		主桁（2）	10.039	1	118	0.01
		斜材	1． 228	1	118	0.01
		横桁	11.488	1	118	0.01
		縦桁	2.398	1	118	0.01
14	地震時EW＋0．4＿UD－1．0	主桁（1）	5.382	1	118	0.01
		主桁（2）	10.099	1	118	0.01
		斜材	1.411	1	118	0.01
		横桁	11.833	1	118	0.01
		縦桁	2.437	1	118	0.01
15	地震時EW－0．4＿UD＋1．0	主桁（1）	5.384	1	118	0.01
		主桁（2）	10.051	1	118	0.01
		斜材	1.215	1	118	0.01
		横桁	11.565	1	118	0.01
		縦桁	2． 404	1	118	0.01
16	地震時EW－0．4＿UD－1．0	主桁（1）	5.388	1	118	0.01
		主桁（2）	9.990	1	118	0.01
		斜材	1．349	1	118	0.01
		横桁	11.218	1	118	0.01
		縦桁	2.364	1	118	0.01
最大値		主桁（1）	13.464	2	118	0.02
		主桁（2）	25.148	3	118	0.03
		斜材	3.117	1	118	0.01
		横桁	29.018	3	118	0.03
		縦桁	6.027	1	118	0.01

表 6－5 組合せ応力に関する応力評価結果（鋼製ブラケット 弱軸方向）

	評価部材	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma \text {, } \\ (\mathrm{N} / \mathrm{mm} 2) \end{gathered}$	発生応力度 τ （ $\mathrm{N} / \mathrm{mm} 2$ ）	組合せ応力度 σ^{\prime} s （ $\mathrm{N} / \mathrm{mm} 2$ ）	短期許容応力度 $\begin{gathered} \sigma ’ \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime}{ }_{s / \sigma}{ }^{\prime} \text { sa } \end{gathered}$
最大値	主桁（1）	39	2	40	205	0.20
	主桁（2）	41	3	42	205	0.21
	斜材	19	1	20	205	0.10
	横桁	27	3	28	205	0.14
	縦桁	15	1	16	205	0.08

表 6－6 応力評価結果（鋼製ブラケット 強軸方向）

評価対象部位		発生値（強軸方向＊） （応力度又は荷重）		許容限界		検定値
主桁（1）	曲げ	8	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	10	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
主桁（2）	曲げ	7	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	9	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
斜材	曲げ	7	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	9	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
横桁	曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	6	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
ブレース材	軸力	5	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
縦桁	曲げ	14	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	せん断	10	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
	組合せ	23	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.12<1.0$

注記 $*: ~ H ~$ 鋼の強軸について

ブレース材には等辺山形鋼を用いているため強軸，弱軸はなく断面剛性は一様

6．5．3．3－51

表6－7（1）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 強軸方向）（1／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 (kN)	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma \text { 's } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma \prime \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 $\sigma^{\prime} \text { s/ } \sigma^{\prime} \text { sa }$
1	地震時NS＋1．0＿UD＋0．4	主桁（1）	1.935	20.024	5	205	0.03
		主桁（2）	1.935	17.245	3	205	0.02
		斜材	2． 149	2．326	5	205	0.03
		横桁	0.190	0.293	1	205	0.01
		ブレース	－	0.142	1	205	0.01
		縦桁	2.149	2.038	5	205	0.03
2	地震時NS＋1．0＿UD－0．4	主桁（1）	3.679	23.257	8	205	0.04
		主桁（2）	3.661	19.903	5	205	0.03
		斜材	2.598	6.613	7	205	0.04
		横桁	0.520	0.423	1	205	0.01
		ブレース	－	0.484	1	205	0.01
		縦桁	2.623	9.245	8	205	0.04
3	地震時NS－1．0＿UD＋0．4	主桁（1）	1． 202	16.887	4	205	0.02
		主桁（2）	1.235	14.672	3	205	0.02
		斜材	1.768	6.913	5	205	0.03
		横桁	0.127	0.188	1	205	0.01
		ブレース	－	0.451	1	205	0.01
		縦桁	2.631	4.940	7	205	0.04
4	地震時NS－1．0＿UD－0．4	主桁（1）	1.905	13.660	4	205	0.02
		主桁（2）	1.886	12.014	3	205	0.02
		斜材	1.291	13.345	5	205	0.03
		横桁	0.458	0.083	1	205	0.01
		ブレース	－	0.896	2	205	0.01
		縦桁	4.428	12.155	12	205	0.06
5	地震時NS＋0．4＿UD＋1．0	主桁（1）	0.440	6.522	2	205	0.01
		主桁（2）	0.457	5.678	1	205	0.01
		斜材	0.653	3.241	2	205	0.01
		横桁	0.074	0.067	1	205	0.01
		ブレース	－	0.213	1	205	0.01
		縦桁	0.991	2.510	3	205	0.02
6	地震時NS＋0．4＿UD－1．0	主桁（1）	4.558	14.607	8	205	0.04
		主桁（2）	4.529	12.321	6	205	0.03
		斜材	1.777	12.859	6	205	0.03
		横桁	0.748	0.429	1	205	0.01
		ブレース	－	0.919	2	205	0.01
		縦桁	4.419	15.525	12	205	0.06
7	地震時NS－0．4＿UD＋1．0	主桁（1）	0.777	8.240	2	205	0.01
		主桁（2）	0.765	7.085	2	205	0.01
		斜材	1． 054	1．291	3	205	0.02
		横桁	0.097	0.129	1	205	0.01
		ブレース	－	0.085	1	205	0.01
		縦桁	1.443	1．437	4	205	0.02
8	地震時NS－0．4＿UD－1．0	主桁（1）	3.849	4.442	6	205	0.03
		主桁（2）	3.819	3.263	4	205	0.02
		斜材	0.519	15.894	4	205	0.02
		横桁	0.724	0.279	1	205	0.01
		ブレース	－	1． 100	2	205	0.01
		縦桁	5.362	16.689	14	205	0.07

表6－7（2）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 強軸方向）（2／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { モー曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 (kN)	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma \text { 's } \\ (\mathrm{N} / \mathrm{mm} 2) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma ’ \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma \text { 's/ }{ }^{\prime} \text { 'sa } \end{gathered}$
9	地震時EW＋1．0＿UD＋0．4	主桁（1）	0.921	22.272	4	205	0.02
		主桁（2）	1． 237	31.599	4	205	0.02
		斜材	0.384	4.073	2	205	0.01
		横桁	2.536	14.312	4	205	0.02
		ブレース	－	2.568	5	205	0.03
		縦桁	1.028	3.604	3	205	0.02
10	地震時EW＋1．0＿UD－0．4	主桁（1）	2.853	19.643	6	205	0.03
		主桁（2）	2.794	33.809	5	205	0.03
		斜材	0.744	9.698	4	205	0.02
		横桁	2.507	14.400	4	205	0.02
		ブレース	－	2.882	5	205	0.03
		縦桁	3.287	10.531	9	205	0.05
11	地震時EW－1．0＿UD＋0．4	主桁（1）	0.990	24.801	4	205	0.02
		主桁（2）	1． 158	29.466	4	205	0.02
		斜材	0． 384	4.540	2	205	0.01
		横桁	2.567	14.226	4	205	0.02
		ブレース	－	2． 296	4	205	0.02
		縦桁	1.210	3.837	4	205	0.02
12	地震時EW－1．0＿UD－0．4	主桁（1）	2． 857	27．367	7	205	0.04
		主桁（2）	3.089	27.240	5	205	0.03
		斜材	0.717	10.110	4	205	0.02
		横桁	2.637	14.143	4	205	0.02
		ブレース	－	2． 284	4	205	0.02
		縦桁	3.417	11.047	9	205	0.05
13	地震時EW＋0．4＿UD＋1．0	主桁（1）	0.495	10.092	2	205	0.01
		主桁（2）	0.581	11.627	2	205	0.01
		斜材	0．207	2.092	1	205	0.01
		横桁	1． 038	5.685	2	205	0.01
		ブレース	－	0.910	2	205	0.01
		縦桁	0.234	2． 213	1	205	0.01
14	地震時EW＋0．4＿UD－1．0	主桁（1）	4.227	11.967	7	205	0.04
		主桁（2）	4.048	17.154	6	205	0.03
		斜材	1.086	14.264	5	205	0.03
		横桁	1． 251	5.902	2	205	0.01
		ブレース	－	1.625	3	205	0.02
		縦桁	4.849	15.968	13	205	0.07
15	地震時EW－0．4＿UD＋1．0	主桁（1）	0.485	8.706	2	205	0.01
		主桁（2）	0.563	12.793	2	205	0.01
		斜材	0．208	1． 852	1	205	0.01
		横桁	1.023	5.733	2	205	0.01
		ブレース	－	1.057	2	205	0.01
		縦桁	0.235	1.995	1	205	0.01
16	地震時EW－0．4＿UD－1．0	主桁（1）	4． 179	15.215	8	205	0.04
		主桁（2）	4.301	12.432	5	205	0.03
		斜材	1． 076	14.553	5	205	0.03
		横桁	1． 144	5.515	2	205	0.01
		ブレース	－	1．589	3	205	0.02
		縦桁	4.938	16.246	14	205	0.07
最大値		主桁（1）	3.679	23.257	8	205	0.04
		主桁（2）	4.529	12.321	7	205	0.04
		斜材	2.598	6.613	7	205	0.04
		横桁	1． 202	16.887	4	205	0.02
		ブレース	1.935	20.024	5	205	0.03
		縦桁	5．362	16.689	14	205	0.07

表 6－8（1）せん断に関する応力評価結果（鋼製ブラケット 強軸方向）（1／2）

ケースNo．	解析ケース	評価部材	せん断力 (kN)	発生 応力度 τ $(\mathrm{N} / \mathrm{mm} 2)$	短期許容応力度 $\begin{gathered} \tau \mathrm{a} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 τ / τ a
1	地震時NS＋1．0＿UD＋0．4	主桁（1）	3.123	1	118	0.01
		主桁（2）	3.075	1	118	0.01
		斜材	2.969	3	118	0.03
		横桁	0.572	1	118	0.01
		縦桁	6.686	5	118	0.05
2	地震時NS＋1．0＿UD－0．4	主桁（1）	6.839	3	118	0.03
		主桁（2）	6.650	3	118	0.03
		斜材	3.794	3	118	0.03
		横桁	1.616	1	118	0.01
		縦桁	3.414	3	118	0.03
3	地震時NS－1．0＿UD＋0．4	主桁（1）	1．727	1	118	0.01
		主桁（2）	1． 564	1	118	0.01
		斜材	2.234	2	118	0.02
		横桁	0.613	1	118	0.01
		縦桁	10.665	8	118	0.07
4	地震時NS－1．0＿UD－0．4	主桁（1）	4． 192	2	118	0.02
		主桁（2）	3.963	2	118	0.02
		斜材	1． 447	2	118	0.02
		横桁	1． 723	1	118	0.01
		縦桁	13.128	10	118	0.09
5	地震時NS＋0．4＿UD＋1．0	主桁（1）	0.765	1	118	0.01
		主桁（2）	0.679	1	118	0.01
		斜材	0.830	1	118	0.01
		横桁	0.326	1	118	0.01
		縦桁	4.050	3	118	0.03
6	地震時NS＋0．4＿UD－1．0	主桁（1）	8.832	3	118	0.03
		主桁（2）	8.525	3	118	0.03
		斜材	2.893	3	118	0.03
		横桁	2.459	1	118	0.01
		縦桁	5.501	4	118	0.04
7	地震時NS－0．4＿UD＋1．0	主桁（1）	1． 435	1	118	0.01
		主桁（2）	1． 403	1	118	0.01
		斜材	1． 300	1	118	0.01
		横桁	0．299	1	118	0.01
		縦桁	5.641	5	118	0.05
8	地震時NS－0．4＿UD－1．0	主桁（1）	7.773	3	118	0.03
		主桁（2）	7.450	3	118	0.03
		斜材	0.855	1	118	0.01
		横桁	2.516	1	118	0.01
		縦桁	10.620	8	118	0.07

表 6－8（2）せん断に関する応力評価結果（鋼製ブラケット 強軸方向）（2／2）

ケースNo．	解析ケース	評価部材	せん断力 (kN)	発生応力度 $\begin{gathered} \tau \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	短期許容応力度 $\begin{gathered} \tau \mathrm{a} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 $\tau / \tau \text { a }$
9	地震時EW＋1．0＿UD＋0．4	主桁（1）	1.778	1	118	0.01
		主桁（2）	1.811	1	118	0.01
		斜材	0.432	1	118	0.01
		横桁	3.739	2	118	0.02
		縦桁	1.578	2	118	0.02
10	地震時EW＋1．0＿UD－0．4	主桁（1）	5.551	2	118	0.02
		主桁（2）	5.042	2	118	0.02
		斜材	1． 248	1	118	0.01
		横桁	4.596	2	118	0.02
		縦桁	4.953	4	118	0.04
11	地震時EW－1．0＿UD＋0．4	主桁（1）	1．864	1	118	0.01
		主桁（2）	1．932	1	118	0.01
		斜材	0.426	1	118	0.01
		横桁	3.798	2	118	0.02
		縦桁	1． 889	2	118	0.02
12	地震時EW－1．0＿UD－0．4	主桁（1）	5.540	2	118	0.02
		主桁（2）	5.570	2	118	0.02
		斜材	1． 253	1	118	0.01
		横桁	4.808	2	118	0.02
		縦桁	5.201	4	118	0.04
13	地震時EW＋0．4＿UD＋1．0	主桁（1）	0.972	1	118	0.01
		主桁（2）	1.016	1	118	0.01
		斜材	0.234	1	118	0.01
		横桁	1.620	1	118	0.01
		縦桁	0.822	1	118	0.01
14	地震時EW＋0．4＿UD－1．0	主桁（1）	8.317	3	118	0.03
		主桁（2）	7.882	3	118	0.03
		斜材	1.875	2	118	0.02
		横桁	3.486	2	118	0.02
		縦桁	7.250	6	118	0.06
15	地震時EW－0．4＿UD＋1．0	主桁（1）	0.960	1	118	0.01
		主桁（2）	0.895	1	118	0.01
		斜材	0.237	1	118	0.01
		横桁	1.583	1	118	0.01
		縦桁	0.826	1	118	0.01
16	地震時EW－0．4＿UD－1．0	主桁（1）	8.289	3	118	0.03
		主桁（2）	8.093	3	118	0.03
		斜材	1． 876	2	118	0.02
		横桁	3.473	2	118	0.02
		縦桁	7.421	6	118	0.06
最大値		主桁（1）	8.832	3	118	0.03
		主桁（2）	8.525	3	118	0.03
		斜材	3.794	3	118	0.03
		横桁	4.808	2	118	0.02
		縦桁	13.128	10	118	0.09

表 6－9 組合せ応力に関する応力評価結果（鋼製ブラケット 強軸方向）

	評価部材	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma \text { ' } \mathrm{s} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	発生応力度 τ （ $\mathrm{N} / \mathrm{mm} 2$ ）	組合せ 応力度 σ＇s （ $\mathrm{N} / \mathrm{mm} 2$ ）	短期許容応力度 $\begin{gathered} \sigma ’ \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime} \text { s/ } \sigma^{\prime} \text { sa } \end{gathered}$
最大値	主桁（1）	8	3	10	205	0.05
	主桁（2）	7	3	9	205	0.05
	斜材	7	3	9	205	0.05
	横桁	4	2	6	205	0.03
	縦桁	14	10	23	205	0.12

表 6－10 応力評価結果 固定ボルト

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
	引張	16． 7	kN	50.2	kN	0． $34<1.0$
固定ボルト①	せん断	4． 2	kN	35.1	kN	$0.12<1.0$
	組合せ	－		－		$0.13<1.0$
固定ボルト（2）	引張	6． 0	kN	37.8	kN	$0.16<1.0$
	せん断	4． 3	kN	18.4	kN	0． $24<1.0$
	組合せ	－		－		0． $08<1.0$

表 6－11（1）固定ボルトに関する評価結果（引張）（1／2）

ケースNo．	解析ケース	固定ボルト（1）（上部）				
		$\begin{gathered} \text { 発生作用力 } \\ \text { 引張 } \end{gathered}$			許容限界 引張 Tda	照査値 Td／Tda
		Rn／本	Rm ／本	Td		
1	地震時NS＋1．0＿UD＋0．4	－	0.30	0.3	50.2	0.01
2	地震時NS＋1．0＿UD－0．4	－	5.36	5.4	50.2	0.11
3	地震時NS－1．0＿UD＋0．4	2.67	6.58	9.3	50.2	0.19
4	地震時NS－1．0＿UD－0．4	3.29	11.07	14.4	50.2	0.29
5	地震時NS＋0．4＿UD＋1．0	－	2.48	2.5	50.2	0.05
6	地震時NS＋0．4＿UD－1．0	1.03	11.05	12.1	50.2	0.25
7	地震時NS－0．4＿UD＋1．0	1． 42	3.61	5.1	50.2	0.11
8	地震時NS－0．4＿UD－1．0	2.66	13.41	16.1	50.2	0.33
9	地震時EW＋1．0＿UD＋0．4	0.40	2.57	3.0	50.2	0.06
10	地震時EW＋1．0＿UD－0．4	1.24	8.22	9.5	50.2	0.19
11	地震時EW－1．0＿UD＋0．4	0.48	3.03	3.6	50.2	0.08
12	地震時EW－1．0＿UD－0．4	1.31	8.55	9.9	50.2	0.20
13	地震時EW＋0．4＿UD＋1．0	0.21	0.59	0.8	50.2	0.02
14	地震時EW＋0．4＿UD－1．0	1.82	12.13	14.0	50.2	0.28
15	地震時EW－0．4＿UD＋1．0	0.21	0.59	0.8	50.2	0.02
16	地震時EW－0．4＿UD－1．0	1.86	12.35	14.3	50.2	0.29
	最大値	3.29	13.41	16.7	50.2	0.34

表6－11（2）固定ボルトに関する評価結果（引張）（2／2）

ケースNo．	解析ケース	固定ボルト（2）（下部）				
		$\begin{gathered} \text { 発生作用力 } \\ \text { 引張 } \end{gathered}$			許容限界 引張 Tda	照査値 Td／Tda
		Rn／本	Rm／本	Td		
1	地震時NS＋1．0＿UD＋0．4	－	2.25	2.3	37.8	0.07
2	地震時NS＋1．0＿UD－0．4	－	4.60	4.6	37.8	0.13
3	地震時NS－1．0＿UD＋0．4	－	0.11	0.2	37.8	0.01
4	地震時NS－1．0＿UD－0．4	－	2.39	2.4	37.8	0.07
5	地震時NS＋0．4＿UD＋1．0	0.11	0.18	0.3	37.8	0.01
6	地震時NS＋0．4＿UD－1．0	－	5.70	5.7	37.8	0.16
7	地震時NS－0．4＿UD＋1．0	0.23	0.98	1.3	37.8	0.04
8	地震時NS－0．4＿UD－1．0	－	4.82	4.9	37.8	0.13
9	地震時EW＋1．0＿UD＋0．4	－	1.55	1.6	37.8	0.05
10	地震時EW＋1．0＿UD－0．4	－	3.57	3.6	37.8	0.10
11	地震時EW－1．0＿UD＋0．4	－	1.45	1.5	37.8	0.04
12	地震時EW－1．0＿UD－0．4	－	3.87	3.9	37.8	0.11
13	地震時EW＋0．4＿UD＋1．0	0.18	0.73	1.0	37.8	0.03
14	地震時EW＋0．4＿UD－1．0	－	5.29	5.3	37.8	0.15
15	地震時EW－0．4＿UD＋1．0	0.18	0.71	0.9	37.8	0.03
16	地震時EW－0．4＿UD－1．0	－	5.38	5.4	37.8	0.15
	最大値	0.23	5.70	6.0	37.8	0.16

表 6－12（1）固定ボルトに関する評価結果（せん断）（1／2）

ケースNo．	解析ケース	固定ボルト（1）（上部）		
		発生作用力 せん断 q	許容限界 せん断 qa	照査値 q／qa
1	地震時NS＋1．0＿UD＋0．4	0.6	35.1	0.02
2	地震時NS＋1．0＿UD－0．4	2.4	35.1	0.07
3	地震時NS－1．0＿UD＋0．4	1.3	35.1	0.04
4	地震時NS－1．0＿UD－0．4	3.1	35.1	0.09
5	地震時NS＋0．4＿UD＋1．0	0.7	35.1	0.02
6	地震時NS＋0．4＿UD－1．0	3.9	35.1	0.12
7	地震時NS－0．4＿UD＋1．0	0.4	35.1	0.02
8	地震時NS－0．4＿UD－1．0	4.2	35.1	0.12
9	地震時EW＋1．0＿UD＋0．4	1.0	35.1	0.03
10	地震時EW＋1．0＿UD－0．4	2.7	35.1	0.08
11	地震時EW－1．0＿UD＋0．4	1.0	35.1	0.03
12	地震時EW－1．0＿UD－0．4	2.8	35.1	0.08
13	地震時EW＋0．4＿UD＋1．0	0.6	35.1	0.02
14	地震時EW＋0．4＿UD－1．0	4.0	35.1	0.12
15	地震時EW－0．4＿UD＋1．0	0.5	35.1	0.02
16	地震時EW－0．4＿UD－1．0	4.1	35.1	0.12
	最大値	4.2	35.1	0.12

表6－12（2）固定ボルトに関する評価結果（せん断）（2／2）

ケースNo．	解析ケース	固定ボルト（2）（下部）		
		発生作用力 せん断 \qquad	許容限界 せん断 qa	照査値 q／qa
1	地震時NS＋1．0＿UD＋0．4	3.0	18.4	0.17
2	地震時NS＋1．0＿UD－0．4	3.4	18.4	0.19
3	地震時NS－1．0＿UD＋0．4	2.6	18.4	0.15
4	地震時NS－1．0＿UD－0．4	2.2	18.4	0.12
5	地震時NS＋0．4＿UD＋1．0	1.0	18.4	0.06
6	地震時NS＋0．4＿UD－1．0	2.1	18.4	0.12
7	地震時NS－0．4＿UD＋1．0	1.3	18.4	0.08
8	地震時NS－0．4＿UD－1．0	0.3	18.4	0.02
9	地震時EW＋1．0＿UD＋0．4	4.0	18.4	0.22
10	地震時EW＋1．0＿UD－0．4	4.3	18.4	0.24
11	地震時EW－1．0＿UD＋0．4	3.7	18.4	0.21
12	地震時EW－1．0＿UD－0．4	3.5	18.4	0.20
13	地震時EW＋0．4＿UD＋1．0	1.5	18.4	0.09
14	地震時EW＋0．4＿UD－1．0	2.2	18.4	0.12
15	地震時EW－0．4＿UD＋1．0	1.6	18.4	0.09
16	地震時EW－0．4＿UD－1．0	2.0	18.4	0.11
	最大値	4.3	18.4	0.24

表 6－13（1）固定ボルトに関する評価結果（組合わせ）（1／2）

表 6－13（2）固定ボルトに関する評価結果（組合わせ）（2／2）

	固定ボルト（2）（下部）		
	発生作用力		組合せ
	引張 Td	せん断 q	
最大値	6.0	4.3	0.08

表 6－14 応力評価結果（ハッチ部固定ボルト）

| $\begin{array}{c}\text { 評価対象部位 }\end{array}$ | | $\begin{array}{c}\text { 発生値 } \\ \text {（応力度又は荷重）}\end{array}$ | 許容限界 |
| :---: | :---: | :---: | :---: | :---: |$)$ 検定値

表6－15 変形性評価結果

評価対象部位		地震時最大応答変位 （mm）		地震時相対変位量 （mm）	許容限界 （mm）
		第 3 号機海水熱交換器建屋	第 3 号機補機冷却海水系放水ピット	評価用 変位量	
止水ジョイント （1）	開き方向	20	52	72	550
	せん断方向	21	137	158	550
止水ジョイント （2）	開き方向	21	137	158	550
	せん断方向	20	52	72	550
止水ジョイント （3）	開き方向	20	52	72	550
	せん断方向	21	137	158	550

表 6－16 第3号機海水熱交換器建屋及び第3号機補機冷却海水系放水ピット の地震時最大応答変位

| d b
 NS | ：第 3 号機海水熱交換器建屋の |
| :---: | :---: | :---: |
| 地震時最大応答変位（NS 方向）＊ | |$\quad 20 \mathrm{~mm}$

注記＊：添付資料「V－2－2－29 第3号機海水熱交換器建屋の地震応答計算書」より

7．第 3 号機補機冷却海水系放水ピットの耐震評価の概要
本資料は，浸水防止蓋（第 3 号機補機冷却海水系放水ピット）（以下「浸水防止蓋」という。） の止水ジョイントが設置される第 3 号機補機冷却海水系放水ピットが基準地震動 S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

第 3 号機補機冷却海水系放水ピットに要求される機能の維持を確認するに当たつては，地震応答解析に基づく構造部材の健全性評価及び基礎地盤の支持性能評価により行う。

浸水防止蓋の止水ジョイントの変形性評価に用いる第 3 号機補機冷却海水系放水ピットの地震時最大変位量は本書の地震応答解析による解析値を用いている。

8．耐震評価の基本方針

8． 1 位置

第 3 号機補機冷却海水系放水ピットの位置を図 8－1 に示す。

図 8－1 第3号機補機冷却海水系放水ピットの位置図

8.2 構造概要

第 3 号機補機冷却海水系放水ピットの概要図を図 8－2～図8－7に，概略配筋図を図8—8～図8－10に示す。

第 3 号機補機冷却海水系放水ピットは，浸水防止設備である浸水防止蓋の止水ジョイントの支持構造物としての支持機能，および津波に対する止水機能が要求される。

第 3 号機補機冷却海水系放水ピットは，岩盤上にマンメイドロック（以下，「MMR」とい う。）を介して設置される。また，中床版を配した二階建て構造となっており，上部•下部と もに各エリアが隔壁により仕切られている。
第 3 号機補機冷却海水系放水ピットは，加振方向に平行に配置される妻壁や隔壁等の面部材 を耐震部材として考慮する箱形構造物である。第3号機海水熱交換器建屋とは緩衝材を介して接している。

図 8－2 第 3 号機補機冷却海水系放水ピット平面図

図 8－3 第3号機補機冷却海水系放水ピット縦断図（A－A 断面）

南
北

（単位：m）
図 8－4 第3号機補機冷却海水系放水ピット横断図（B－B 断面）

（単位：m）

図 8－5 第3号機補機冷却海水系放水ピット平面図（C－C 断面）

（単位：m）
図 8－6 第3号機補機冷却海水系放水ピット平面図（D－D 断面）

図 8－7 第3号機補機冷却海水系放水ピット平面図（E－E 断面）
6．5．3．3－67

図 8－8 第3号機補機冷却海水系放水ピット概略配筋図（平面図）

図 8－9 第3号機補機冷却海水系放水ピット概略配筋図（縦断図）

図 8－10 第 3 号機補機冷却海水系放水ピット概略配筋図（横断図）

6．5．3．3－70

8． 3 評価方針

第 3 号機補機冷却海水系放水ピットは，浸水防止設備である浸水防止蓋の止水ジョイントを設置していることから基準地震動 S s に対して十分な構造強度及び支持機能を有していること及び止水機能を確認する。

第 3 号機補機冷却海水系放水ピットの耐震評価フローを図 8－11～図8－12 に示す。図8－ 11 は地震応答解析の評価フロー図であり，図 8－12 は構造部材の健全性評価の評価フロー図 である。

地震応答解析は，「8．基本方針」に基づき，「9．1 地震時荷重算出断面」に示す断面に おいて，「9．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法を用いた時刻歴応答解析により行うこととし，「9．3 荷重及び荷重の組合せ」及び「9．5解析モデル及び諸元」に示す条件を基に，「9．4 入力地震動」により設定する入力地震動を用いて実施する。

地震応答解析による地震時土圧，慣性力及び基礎地盤の接地圧は，第 3 号機補機冷却海水系放水ピットの耐震評価に用いる。

また，地震応答解析による第 3 号機補機冷却海水系放水ピット天端の地震時最大応答変位は浸水防止蓋の変形性評価に用いる。

第 3 号機補機冷却海水系放水ピットの耐震評価は，地震応答解析の結果に基づき，表 8－1 に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。
構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及び支持する機能を損なわないことを確認する。

構造部材の健全性評価については，構造部材の発生応力が許容限界以下であることを確認す る。基礎地盤の支持性能評価については，基礎地盤に生じる接地圧が極限支持力に基づく許容限界以下であることを確認する。

基礎地盤の支持性能評価は，地震応答解析により算定される接地圧が，添付書類「VI－2－1－9機能維持の基本方針」に基づく許容限界を下回ることを確認する。

図 8－11 第3号機補機冷却海水系放水ピットの地震応答解析フロー

図 8－12 第3号機補機冷却海水系放水ピットの耐震評価フロー

表 8－1 第 3 号機補機冷却海水系放水ピットの評価項目

評価方針	評価項目	部位	評価方法	許容限界	
構造強度 を有する	構造部材の健全性	$\begin{aligned} & \text { 鉄筋コン } \\ & \text { クリート } \end{aligned}$ 部材	発生応力度，断面力が許容限界を下回ることを確認	曲げ・軸力	短期許容応力度
こと及び 支持する				せん断力	短期許容せん断力
機能を損	基礎地盤の支持性能	基礎地盤	発生する接地圧が許容限界を下回る ことを確認	岩盤の極限支持力＊	
こと		MMR		MMR の支圧強度＊	
止水機能	構造部材の健全性	鉄筋コン クリート 部材	発生応力度，断面力が許容限界を下回ることを確認	曲げ・軸力	短期許容応力度
ないこと				せん断力	短期許容せん断力

注記＊：妥当な安全余裕を考慮する。

8.4 適用基準

第 3 号機補機冷却海水系放水ピットの耐震評価に当たつては，土木学会 2002 年 コンクリ ート標準示方書［構造性能照査編］（以下「コンクリート標準示方書」という。），日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編，日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IIIコンクリート橋編及び原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）を適用する。

表 8－2 に適用する規格，基準類を示す。

表 8－2 適用する規格，基準類

項 目	適用する規格，基準類	備考
使用材料及び材料定数	－土木学会 2002 年 コンクリー卜標準示方書［構造性能照査編］ －日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IIIコンクリート橋編	- 鉄筋の材料諸元（ $\gamma, \mathrm{E}, ~ v$ ） - コンクリートの材料諸元（ γ ， E，v ）
荷重及び荷重の組合せ	－土木学会 2002 年 コンクリー卜標準示方書［構造性能照査編］	－永久荷重，偶発荷重等の適切 な組合せを検討
許容限界	－土木学会 2002 年 コンクリー卜標準示方書［構造性能照査編］ －日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 －日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IIIコンクリート橋編	－曲げ・軸力系の破壊に対する照査において，発生応力度が短期許容応力度（コンクリー卜許容圧縮応力度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$ ，鉄 筋 許 容 引張応力度 $435 \mathrm{~N} / \mathrm{mm}^{2}$ ）以下であることを確認＊ －せん断破壊に対する照査にお いて，発生せん断力が短期許容せん断力（コンクリート許容せん断応力度 $0.975 \mathrm{~N} / \mathrm{mm}^{2}$ ，鉄筋許容引張応力度 $294 \mathrm{~N} / \mathrm{mm}^{2}$ から算出される許容せん断力）以下であることを確認＊
地震応答解析	－原子力発電所耐震設計技術指針 （J EAG4601－1987）	－有限要素法による二次元モデ ルを用いた時刻歴非線形解析

注記＊：妥当な安全余裕を考慮する。

9．地震応答解析

9.1 地震時荷重算出断面

第3号機補機冷却海水系放水ピットの地震時荷重算出断面位置を図 9－1 に示す。地震時荷重算出断面は，南北•東西方向ともに構造物中心を通る断面（NS 断面，EW 断面）とする。地震時荷重算出用地質断面図を図 9－2～図9－3 に示す。

なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向 （NS 断面）が弱軸方向となり，東西方向（EW 断面）が強軸方向となる。

図 9－1 第3号機補機冷却海水系放水ピットの地震時荷重算出断面位置図

図 9－2 第 3 号機補機冷却海水系放水ピット 地震時荷重算出用地質断面図（NS 断面）

> 凡 例

図 9－3 第 3 号機補機冷却海水系放水ピット 地震時荷重算出用地質断面図（EW 断面）

9．2 解析方法

第3号機補機冷却海水系放水ピットの地震応答解析は，添付書類「VI－2－1－6 地震応答解析 の基本方針」のらち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえ て実施する。
地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行らこととし，解析手法について，図 9－4 に示す解析手法の選定フローに基づき選定する。図 9－2，図 9－3 に示すとおり，第 3 号機補機泠却海水系放水ピット近傍の設計用地下水位は躯体底版より低いこと，また躯体より離れた箇所（南側及び西側）には躯体底版標高より上部に地下水位以深の盛土が存在するが，19～23m程度の土被りがあることから液状化 の影響はないと判断した。従って，解析手法は「（2）全応力解析」を選定する。
南北方向において第 3 号機補機冷却海水系放水ピットは一部 MMRを介して海水熱交換器建屋 に支持され，また緩衝材を介して接しており，隣接構造物の地震応答が第 3 号機補機冷却海水系放水ピットに伝達することが考えられるため，隣接構造物となる海水熱交換器建屋をモデル化する。第 3 号機補機冷却海水系放水ピットのモデル化については，第 3 号機補機冷却海水系放水ピット中心位置において各構造部材と等価な剛性を有する線形はり要素にてモデル化する。
地震応答解析については，解析コード「Soil Plus Dynamic 2015 Build3」を使用する。な お解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。
地震応答解析手法の選定フローを図9－5に示す。

注記＊：三次元構造解析に複数断面の荷重を作用させる場合，断面によって解析手法が異なる場合でも保守的に荷重の大きい組合せを採用する。

図 9－4 解析手法の選定フロー

図9－5 地震応答解析手法の選定フロー

9．2．1 構造部材
第3号機補機冷却海水系放水ピットの構造部材は，線形はり要素にてモデル化し，水平方向には構造物の幅に応じた仮想剛梁を設置する。

9．2．2 地盤物性及び材料特性の設定
地盤物性及び材料物性のばらつきの影響を考慮するため，表 9－1 に示す解析ケースを設定する。

第 3 号機補機冷却海水系放水ピットは，MMR 上に設置され，南北方向では，北側に海水熱交換器建屋が分布し，南側には盛土が分布する。一方，東西方向では，両側面に盛土が分布し，主たる荷重は盛土の土圧となることから，盛土，旧表土の初期せん断弾性係数の ばらつきを考慮する。

初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2）及び③を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の推定強度に基づいて設定した解析ケース（4）を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「9．2．4 地震応答解析の解析ケースの選定」に示す。

表 9－1 解析ケース

解所分一大			
			（ G_{d} ：動せ人断群生生数
$\begin{gathered} \text { ケース(1) } \\ \left(\begin{array}{l} \text { 基本 } \end{array}\right) \end{gathered}$	讙倛䳡蟅	平何值	平何值
ケース（2）		平本值10	平何值
ケース（3）	售樭鹪蟅	平㘴值10	平何值
ケース（4）	実䌅こ基がく恎宿蟅 ${ }^{*}$	平约值	平约值

注記＊：新設構造物のため，推定した圧縮強度とする

9．2．3 減衰定数

構造部材の減衰定数は，「補足 610－20 屋外重要土木構造物の耐震安全性評価につい て」に従い，粘性減衰及び履歴減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。Rayleigh 減衰の設定フローを図9－6に示す。
$[\mathrm{C}]=\alpha[\mathrm{M}]+\beta \quad[\mathrm{K}]$
［C］：減衰係数マトリックス，［M］：質量マトリックス，
［K］：剛性マトリックス
α, β ：係数

固有値解析

－盛土•旧表土の減衰定数
：2．0\％
－D 級岩盤の減衰定数
：2．8\％
－D級以外の岩盤の減衰定数
：3．0\％

- セメント改良土の減衰定数
- 躯体（鉄筋コンクリート）の減衰定数：5． 0%
- 固有振動数 f
- 固有振動数における減衰定数 h i

Rayleigh 減衰における係数 α, β

$$
\alpha=\frac{2 \omega_{1} \omega_{2}\left(h_{1} \omega_{2}-h_{2} \omega_{1}\right)}{\omega_{2}^{2}-\omega_{1}^{2}}, \quad \beta=\frac{2\left(h_{2} \omega_{2}-h_{1} \omega_{1}\right)}{\omega_{2}^{2}-\omega_{1}^{2}}
$$

$$
\omega_{1}=2 \pi \mathrm{f}_{1}, ~ \omega_{2}=3 \omega_{1}, ~ \mathrm{~h}_{1}=\mathrm{h}_{2}=0.02
$$

$$
\text { Rayleigh 減衰 } \quad[\mathrm{C} 〕=\alpha 〔 \mathrm{M} 〕+\beta 〔 \mathrm{~K} 〕
$$

〔C〕：減衰係数マトリックス
〔M〕：質量マトリックス
〔K〕：剛性マトリックス

図 9－6 全応力解析における Rayleigh 減衰の設定フロー

Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定にあたつては，地盤の低次のモードが特に支配的となる地中埋設構造物のような地盤及び構造物連成系に対して，その特定のモードの影響が大きいことを考慮し，かつ振動モードの全体系に占める割合の観点から刺激係数に着目し， 1 次及び 2 次モードの固有振動数に基づき定めることとする。 2 次モードの固有円振動数（ ω_{2} ）は，水平成層地盤の 2 次固有振動数が 1 次固有振動数の 3 倍であること から， 1 次モードの固有円振動数（ ω_{1} ）の 3 倍とする。

固有値解析結果の一覧を表9－2に，固有値解析におけるモード図を図9－7に，固有値解析結果に基づき設定した Rayleigh 減衰を図 9－8に，係数 $\alpha, ~ \beta$ を表 $9-3$ に示す。

表 9－2（1）固有値解析結果（EW 断面）

	固有振動数 （Hz）	有効質量比（\％）		刺激係数		備考
		T x	T y	β x	β y	
1	2． 334	24	0	81.89	－0．14	1 次として採用
2	2． 881	0	1	－0． 02	－15． 47	－
3	3.943	1	0	－15． 76	0.07	－
4	4． 842	0	2	0.18	22.15	－
5	5． 156	0	0	5.82	2． 10	－
6	5． 262	5	0	－37． 86	10． 47	－
7	5． 276	1	2	－15． 20	－25． 01	－
8	5． 857	0	0	2． 64	8.81	－
9	5.989	4	0	－35． 33	0.86	－
10	6． 133	0	1	1． 15	11.77	－

表 9－2（2）固有値解析結果（NS 断面）

$1 \text { 次モード }\left(\mathrm{f}_{1}=2.334 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 81.89$ ）	2 次モード $\left(\mathrm{f}_{2}=2.881 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}:-0.02$ ）
3 次モード $\left(\mathrm{f}_{3}=3.943 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}:-15.76$ ）	 4 次モード $\left(\mathrm{f}_{4}=4.842 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 0.18$ ）

図 9－7（1）固有値解析結果（EW 断面）（1／3）

5 次モード（ $\mathrm{f}_{5}=5.156 \mathrm{~Hz}$ ） （刺激係数 $\beta \mathrm{x}$ ：5．82）	 6 次モード（ $\mathrm{f}_{6}=5.262 \mathrm{~Hz}$ ） （刺激係数 $\beta \mathrm{x}:-37.86$ ）
7 次モード $\left(\mathrm{f}_{7}=5.276 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}:-15.20$ ）	$8 \text { 次モード }\left(\mathrm{f}_{8}=5.857 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 2.64$ ）

図 9－7（2）固有値解析結果（EW 断面）（2／3）

図 9－7（3）固有値解析結果（EW 断面）（3／3）

$1 \text { 次モード }\left(\mathrm{f}_{1}=2.487 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 88.05$ ）	2 次モード $\left(\mathrm{f}_{2}=3.267 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}:-22.70$ ）
$3 \text { 次モード }\left(\mathrm{f}_{3}=3.694 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 98.93$ ）	4 次モード $\left(\mathrm{f}_{4}=4.247 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 8.66$ ）

図 9－7（4）固有値解析結果（NS 断面）（1／3）

$5 \text { 次モード }\left(\mathrm{f}_{5}=4.916 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 7.69$ ）	 6 次モード（ $\mathrm{f}{ }_{6}=4.991 \mathrm{~Hz}$ ） （刺激係数 $\beta \mathrm{x}: 51.92$ ）
 7 次モード $\left(\mathrm{f}_{7}=5.136 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}: 163.52$ ）	$8 \text { 次モード }\left(\mathrm{f}_{8}=5.403 \mathrm{~Hz}\right)$ （刺激係数 $\beta \mathrm{x}:-8.97$ ）

図 9－7（5）固有値解析結果（NS 断面）（2／3）

図 9－7（6）固有値解析結果（NS 断面）（3／3）

表 9－3 Rayleigh 減衰における係数 α, β の設定結果

断面	α	β
EW 断面	4.400×10^{-1}	6.818×10^{-4}
NS 断面	4.688×10^{-1}	6.399×10^{-4}

図 9－8（1）設定した Rayleigh 減衰（EW 断面）

図 9－8（2）設定した Rayleigh 減衰（NS 断面）

6．5．3．3－92

9．2．4 地震応答解析の解析ケースの選定

（1）浸水防止蓋の止水ジョイントの耐震評価における解析ケース
浸水防止蓋の止水ジョイントの耐震評価においては，すべての基準地震動 S s に対し解析ケース①（基本ケース）を実施する。ケース①（基本ケース）により得られた最大応答変位と第 3 号機海水熱交換器建屋の地震応答解析により得られた最大応答変位（基本ケー ス）の合計値が最大の地震動を用いてケース（2）～（4）を実施する。浸水防止蓋の止水ジョイ ントの耐震評価における解析ケースを表 9－4に示す。

表 9－4 耐震評価における解析ケース

注記＊1：耐震評価にあたつては，土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアルに従い，水平方向の位相反転を考慮する。地震動の位相につい て，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示 す。
＊2：新設構造物のため推定した圧縮強度を使用する。
（2）躯体の耐震評価における解析ケース
躯体の耐震評価においては，すべての基準地震動 S s に対し，解析ケース①（基本ケー ス）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 以上となるすべての照査項目に対して，最も厳し い地震動を用いて，解析ケース（2）～④を実施する。耐震評価における解析ケースを表 9— 5 に示す。

表 9－5 耐震評価における解析ケース

注記＊1：耐震評価にあたつては，土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアルに従い，水平方向の位相反転を考慮する。地震動の位相につい て，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示 す。
＊2：新設構造物のため推定した圧縮強度を使用する。
9.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

9．3．1 耐震評価上考慮する状態

第 3 号機補機冷却海水系放水ピットの地震応答解析において，地震以外に考慮する状態 を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

9．3．2 荷重
第 3 号機補機冷却海水系放水ピットの地震応答解析において，考慮する荷重を以下に示 す。
（1）固定荷重（G）
固定荷重として，躯体自重及び内水重量を考慮する。
（2）積載荷重（P）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（ C s ）
基準地震動S s による荷重を考慮する。

9．3．3 荷重の組合せ

荷重の組合せを表9－6に示す。

表 9－6 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G：固定荷重
P：積載荷重（積雪荷重 Ps_{s} を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s）

9.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のう ち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 $9-9$ に入力地震動算定の概念図を，図 $9-10 \sim$ 図 $9-23$ にEW断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを，図 $9-24 ~$ 図 $9-37$ にNS断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「Ark Quake Ver．3．10」を使用する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5計算機プログラム（解析コード）の概要」に示す。

図 9－9 入力地震動算定の概念図

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 水平成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 水平成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 鉛直成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （EW断面 鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 水平成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ NS 断面 水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（ NS 断面 鉛直成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（ NS 断面 鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （NS断面 鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ NS 断面 水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図9－37 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（ NS 断面 鉛直成分：S s－N 1）

9.5 解析モデル及び諸元

9．5．1 解析モデル

（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。

具体的には，原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）を参考に，図 9－38に示すとおりモデル幅を構造物基礎幅の 5 倍程度以上，構造物下端からモデル下端 までの高さを構造物幅の 2 倍程度以上確保する。

なお，解析モデルの境界条件は，側面及び底面ともに粘性境界とする。
地盤の要素分割については，波動をなめらかに表現するため，対象とする波長の 5 分の 1 程度を考慮し設定する。

図 9－38 モデル化範囲の考え方
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
第 3 号機補機冷却海水系放水ピットは断面形状に応じた断面諸元を有する構造はり（線形はり要素）によりモデル化する。

第 3 号機補機冷却海水系放水ピットの幅，並びに底版部の健全性等を適切に評価するた め，水平方向には構造物寸法と等しい仮想剛はりを設置する。軸剛性及び曲げ剛性は線形 はり要素の 1000 倍，質量はゼロとする。

構造物の解析モデル詳細を図9－39に示す。

図 9－39（1）構造物の解析モデル（EW）

図 9－39（2）構造物の解析モデル（NS）
（4）隣接構造物のモデル化
NS 方向において隣接構造物となる第 3 号機海水熱交換器建屋は，第 3 号機補機冷却海水系放水ピットと緩衝材を介して接しており，荷重の伝達を考慮する必要がある。そのため，第 3 号機海水熱交換器建屋と等価な剛性を付与させたモデルとする。構造部材については，平面応力要素によりモデル化する。

等価剛性モデルの設定方法は第 3 号機海水熱交換器建屋のS R モデルは添付資料「V－2－ 2－29 第 3 号機海水熱交換器建屋の地震応答計算書」を参考に節点位置における変位と新 たに作成した二次元平面応力要素モデルの変位が等しくなるようにコンクリートのせん断弾性係数を補正し，等価剛性モデルに付与する。剛性の調整方法を図9－40に，剛性の調整結果を図9－41に示す。

$100 \mathrm{kN} / \mathrm{m}$
図 9－40 剛性の調整方法

図 9－41 剛性の調整結果
（5）地盤のモデル化
D級を除く岩盤は線形の平面ひずみ要素でモデル化する。また，盛土，旧表土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化す る。第3号機補機冷却海水系放水ピットの地震応答解析モデルを図 9－42～図9－43に示 す。

図 9－42 第3号機補機冷却海水系放水ピットの地震応答解析モデル図（EW 断面）

図 9－43 第3号機補機冷却海水系放水ピットの地震応答解析モデル図（NS 断面）
（6）ジョイント要素の設定
地盤と構造体の接合面にジョイント要素を設けることにより，強震時の地盤と構造体の接合面における剥離及びすべりを考慮する。

ジョイント要素は，地盤と構造体の接合面で法線方向及びせん断方向に対して設定する。法線方向については，引張が生じた場合，剛性及び応力をゼロとし，剥離を考慮する。せ ん断方向については，地盤と構造体の接合面におけるせん断抵抗力以上のせん断荷重が生 じた場合，せん断剛性をゼロとし，すべりを考慮する。
せん断強度 $\tau \mathrm{f}$ は次式のMohr—Coulomb 式により規定される。粘着力 c 及び内部摩擦角 ϕ は周辺地盤の c，ϕ とし，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基 づき表 9－7 のとおりとする。また，要素間の粘着力 c 及び内部摩擦角 ϕ は，境界の各強度のらちせん断強度が小さい地盤強度を設定する。

$$
\begin{aligned}
& \tau_{\mathrm{f}}=\mathrm{c}+\sigma^{\prime} \mathrm{t} \text { a } \mathrm{n} \phi \\
& \text { ここで, }
\end{aligned}
$$

$\tau_{\mathrm{f}}:$ せん断強度 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\mathrm{c}:$ 粘着力 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\phi:$ 内部摩擦角 (度)
$\sigma^{\prime}:$: 破壊面の直応力 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

表 9－7 周辺地盤との境界に用いる強度特性

周辺状況		内部摩察角中（度）
盛上＊	100.0	33.9
盛土 ${ }^{\text {湯 }}$	60.0	30.0
昍表土＊	0.0	38.7
明表土 ${ }^{\text {为 }}$	80.0	26.2
D級	100.0	24.0
G級	460.0	44.0
G級	780.0	50.0
G 級	1290.0	54.0
既颜MR	3104.4	40.0
䅏MR	6000.0	40.0

注記 $* 1$ ：地下水位以浅
$* 2$ ：地下水位以深

ジョイント要素のばね定数は，数値解析上，不安定な挙動を起こさない程度に十分な値 とし，松本らの方法（松本ら：基礎構造物における地盤•構造物境界面の実用的な剛性評価法，応用力学論文集 Vol． 12 pp1061－1070，2009）に従い，表9－8のとおり設定する。 ジョイント要素の力学特性を図 9－44 に示す。

表9－8 ジョイント要素のばね定数

地盤	せん断岡性ks $\left(\mathrm{N}_{\mathrm{N}}^{\left.\mathrm{N} / \mathrm{m}^{3}\right)}\right.$	圧絍風性 k_{n} $\left(\mathrm{N} / \mathrm{m}^{3}\right)$
盛土	1．0 0×10^{6}	1． 0×10^{6}
啱盤	1.0×10^{7}	1． 0×10^{7}

せん断応力

図 9－44 ジョイント要素の力学特性

第 3 号機補機冷却海水系放水ピットは第 3 号機海水熱交換器建屋と緩衝材を介して接し ており，この間にも境界条件としてジョイント要素を設置して圧縮力の伝達を考慮してい る。この間のジョイント要素のばね定数を表 9－9 に示す。圧縮剛性の第一勾配は緩衝材 の剛性から設定し，緩衝材の厚さ（ 10 cm ）までの変位に対して適用する。第二勾配は数値解析上不安定な挙動を起こさない程度に十分大きい値として設定し，緩衝材の厚さ以上の変位が生じた場合，衝突を考慮する。力学特性を図 9－45 に，ジョイント要素の配置図を図 9－46に示す。

表 9－9 第3号機補機冷却海水系放水ピットと第 3 号機海水熱交換器建屋間の ジョイント要素のばね定数

緩動才厚さ	繀岡性（第 公配）$k_{n 1}$ $\left(\mathrm{N} / \mathrm{m}^{3}\right)^{2}$	圧緼性（第公配 k_{r} （ N / mi ）
10 cm	$6.9 \times 10^{3 *}$	1． 0×10^{7}

注記＊：緩衝材の剛性から設定

図9－45 第3号機補機冷却海水系放水ピットと第 3 号機海水熱交換器建屋間の ジョイント要素の力学特性

凡 例	
\square B 級	－旧表土
$\square \mathrm{C}_{\text {\＃}}$ 級	\square 盛土
$\square \mathrm{Cm}$ 級	－MMR
$\square \mathrm{CL}$ 級	\square 第3号機補機冷却海水系放水ピッ
$\square \mathrm{D}$ 級	－ジョイント要素
回速度層境界	\square 海水熱交換器建屋

図 9－46（1）ジョイント要素の配置図（EW 断面）

凡 例	
$\square \square$ B 級	\square 旧表土
$\square \overline{\mathrm{C}_{\mathrm{H}}}$ 級	\square 盛土
$\square \overline{\mathrm{CM}}$ 級	$\square \mathrm{MMR}$
$\square \overline{\mathrm{CL}}$ 級	\square 第3号機補機冷却海水系放水ピット
$\square \overline{\mathrm{D}}$ 級	－ジョイント要素
\square 速度層境界	\square 海水熱交換器建屋

図 9－46（2）ジョイント要素の配置図（NS 断面）

9．5．2 使用材料及び材料の物性値

構造物の使用材料を表9－10に，材料の物性値を表9－11に示す。

表 9－10 使用材料

材料	仕様
コンクリート	設計基準強度 $\quad 50.0 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	$\mathrm{SD} 345, \mathrm{SD} 490$

表 9－11 材料の物性値

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$		24.0	
	ヤング係数 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	設計基準強度		

9．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

9．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位の一覧を表9－12に，設計用地下水位を図 9－47～図9－48 に示す。

表 $9-12$ 設計用地下水位の一覧		
施設名称	地震時荷重算出断面	設計用地下水位
第 3 号機補機冷却海水系 放水ピット	EW 断面	0. P．$-13.00 \mathrm{~m} \sim 0$. P．-6.00 m
	NS 断面	0. P．$-14.00 \mathrm{~m} \sim 0$. P．-4.875 m

図 9－47 設計用地下水位（EW 断面）

図 9－48 設計用地下水位（NS 断面）
9.6 地震応答解析結果

9．6．1 浸水防止蓋の変形性評価に用いる EW 断面の解析結果
基準地震動 S s に対する，第 3 号機補機冷却海水系放水ピット天端位置での地震時最大応答変位結果を表 9－13に示す。

表 9－13 地震時最大応答変位結果（EW 断面）

地震動名		最大姲答変位（m）			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	59			
	－	55			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	52			
	＋	56			
Ss－D3	$++$	48			
	＋	46			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	74			
	＋	72			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	77			
	－	70			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	38			
	＋	36			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	130			
	－	137	135	136	136

今回ケース（1）により得られた最大応答変位と第3号機海水熱交換器建屋の地震応答解析により得られた最大応答変位の合計値が最大であった地震動（S s－N 1 （ -+ ））のケース（2）～（4）を実施。

9．6．2 浸水防止蓋の変形性評価に用いる NS 断面の解析結果
基準地震動S s に対する，第 3 号機補機冷却海水系放水ピット天端位置での地震時最大応答変位結果を表9－14に示す。

表 9－14 地震時最大応答変位結果（NS 断面）

地震動名		最大忘答変位（m）			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	＋	42			
	－	40			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	43			
	－	45	42	43	45
Ss－D3	$+$	37			
	－	41			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	42			
	－	38			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	42			
	－	44			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	26			
	－	46			
$\mathrm{Ss}-\mathrm{N} 1$	$+$	51	49	51	52
	－	45			

今回ケース①化ケより得られた最大応答変位と第3号機海水熱交換器建屋の地震応答解析により得られた最大応答変位の合計値が最大であった地震動（S s－D $2(-+)$ ）のケース（2）～（4）を実施。また，ケース①で最大応答変位となった地震動（S s－N 1（＋＋））のケース（2）～（4）を実施。

10．耐震評価

10． 1 構造部材の健全性及び止水機能に対する評価方法

10．1．1 評価方針

第 3 号機補機冷却海水系放水ピットの詳細設計フローを図 $10-1$ ，各部材評価で照査対象とする鉄筋を図 10－2，各部材評価で照査対象とする鉄筋種別概念を図 $10-3$ ，各部材評価で照査対象とする鉄筋を表 $10-1$ に示す。

図 10－1 詳細設計フロー

a）二次元地震応答解析からの応答値の抽出

b）鉛直方向梁要素の鉛直断面設計

c）水平断面の設計（二次元静的フレーム計算）

d）中床版及び底版の設計
図 10－2 部材評価概念図

図 10－3 各部材評価で照査対象とする鉄筋種別概念図

表 10－1 各部材評価で照査対象とする鉄筋

部材	照査対象鉄筋	記号	部材評価	備考
側壁	鉛直鉄筋	\longrightarrow	構造物線形はり要素の鉛直断面設計（曲げ軸力）	
	水平鉄筋	－	構造物線形はり要素の鉛直断面設計（せん断力）	＊
			水平断面の設計（曲げ軸力）	
	せん断補強筋	－	水平断面の設計（せん断力）	
底版	水平鉄筋	－	底版の設計（曲げモーメント）	
	せん断補強筋	－	底版の設計（せん断力）	
中床版	水平鉄筋	－	中床版の設計（曲げモーメント）	
	せん断補強筋	\square	中床版の設計（せん断力）	

注記＊：側壁における水平方向の鉄筋の設計について，二次元地震応答解析モデルにおける側壁の面内方向のせん断力に対するせん断力照査で設計する水平鉄筋（面内方向のせん断補強筋） と，水平断面フレーム解析モデルにおける同側壁の面外方向の最大荷重に対する曲げ軸力照査で設計する水平鉄筋（主鉄筋）は同じ方向の鉄筋であり，両設計で算定される必要水平鉄筋量を足し合わせた合計必要水平鉄筋量以上を同側壁の面内方向に配置する。これと ともに，水平断面フレーム解析モデルにおける同側壁の面外方向の最大荷重に対するせん

断力照査で設計するせん断補強筋を同側壁の面外方向に配置する。
本構造物は南北方向よりも東西方向の寸法が大きく，隔壁等の配置から弱軸方向，強軸方向が明確である。そのため，評価は弱軸方向である南北方向で行い，上記の設計計算に より面内方向の合計必要鉄筋量以上の鉄筋を，強軸方向である東西方向にも配置するもの とする。

10．1．2 評価対象断面の方向

本構造物の位置を図 10－4に示す。
本構造物は大きく分けて放流水を一時的に貯留する区画（水槽部），それを支持する区画（支持部）に分けられ，それぞれの区画に南北方向に複数の隔壁を有する箱型構造物である。また外形寸法は南北方向が 3.4 m であるのに対して東西方向の寸法は 13.0 m で ある。これらから弱軸断面方向，強軸断面方向は明確であり，評価対象断面は南北方向 とする。南北方向の設計計算により算出された必要鉄筋量以上の鉄筋を構造物全周に配置するものとする。

図 10－4 第3号機補機冷却海水系放水ピット平面配置図

10．1．3 鉛直断面に対する耐震評価

（1）鉛直断面の曲げ軸力に対する評価
第 3 号機補機冷却海水系放水ピットは選定された断面（南北方向）を解析断面として選定し，二次元地震応答解析を実施し部材の設計を行う。鉛直鉄筋は二次元地震応答解析に おいて算出される線形はり要素の発生断面力（曲げモーメント及び軸力）を用いて照査を行い，構造部材の曲げ軸力による発生応力が許容限界以下であることを確認する。図 10 －5に線形はり要素の鉛直断面設計概念図を示す。

図 10－5 線形はり要素の鉛直断面設計概念図

図 10－6に鉛直鉄筋配置の概念図を示す。鉛直鉄筋を配置する範囲は長辺方向の側壁内 とする。側壁の開口幅は側壁よりも大きいため，この区間は開口部以外に配置される鉄筋 のみを有効として照査を行うことで開口の影響を考慮する。

なお，ここに示されていない区間（南北方向側壁及び隔壁）の鉛直鉄筋は南北方向の設計計算により算出された必要鉄筋量と同じ鉄筋量とする。

図 10－6 鉛直鉄筋配置概念図
（2）鉛直断面のせん断力に対する評価
鉛直断面のせん断照査については，発生せん断力（S）に対して図 10－7に示す有効断面積（ A_{w} ，図中赤塗範囲）で抵抗するものとし，せん断応力度 τ が「日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IIIコンクリート橋編」に示される短期許容せん断応力度 τ a 1 以下である場合にはせん断補強筋は不要である。

短期許容せん断応力度 τ a 1 を超える場合はせん断補強筋（ $\mathrm{A}_{\mathrm{s} 1}$ ）が必要となり，二次元地震応答解析により算出される線形はり要素の発生せん断力を用いて照査を行い，構造部材の発生せん断力が鉄筋コンクリートとしての許容限界すなわち短期許容せん断力 V_{a}以下であることを確認する。

本構造物を 1 本の線形はりとしてモデル化した場合，加振方向の側壁（耐震壁）ははり要素のウェブとして機能する。はり要素に発生する面外せん断力に対し，はり要素のウェ ブでせん断に抵抗するものとし，はり要素のせん断応力度 τ を算定する。このときの A_{w} ははりの有効せん断面積（＝ウェブの断面積）である。

図 10－7 せん断有効断面積概念図
（3）版部材が側壁を固定することによる隅角部の評価（曲げ）
側壁と版部材の隅角部には，各部材の剛性に起因する端曲げが発生するために，隅角部 における曲げモーメントの廻り込みに対する影響検討を行う。
a．版部材の拘束効果による側壁の検討
図 $10-8$ に版部材から側壁に廻り込む曲げモーメントを算定する場合の概念図を，図 10－9にはり要素の設置する形状ばねの算出方法を示す。

図 10－8 版部材から側壁に廻り込む曲げモーメント概念図

図 10－9 矩形立坑の形状ばねの算出方法

版部材と側壁の隅角部には，版部材の曲げモーメント（Mo）が側壁に廻り込む。ま た，側壁が版部材に支持される拘束効果により，地震時荷重を面外方向に受けた場合に曲げモーメントが反転する（M1，M2）。この現象は二次元地震応答解析において考慮 することができない。このためここでは，側壁と版部材の結合部における曲げモーメン ト増分の廻り込みを考慮した検討を行う。
版部材の端曲げモーメント（Mo）は，境界条件を固定支持として「日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説」により算定する。

側壁は版部材中心間距離で固定支持された，単位幅を有するはり要素でモデル化し，地震時荷重を作用させた場合に，支持位置に発生する曲げモーメント（M1，M2）を算定する。

地震時荷重については各鉛直スパンの地盤反力（ジョイント要素の直方向反力）の合算値が最大となる時刻の地盤反力分布を用いる。
本検討において側壁を単位奥行き当たりのはり要素でモデル化するが，実際には直交壁が存在し，側壁の変形を抑制している。そのため，立坑の形状ばねを考慮した弾性床上のはりとしてモデル化を行い曲げモーメントを算定する。矩形断面の形状ばねの算定 は，側壁，直交壁で閉鎖された形状に対し，単位荷重を作用させた場合に側壁に発生す る最大変位を用いて算出する。

版部材の端曲げモーメント（Mo）及び版部材に拘束された側壁に発生する端曲げモ ーメント（M1，M2 のうちモーメントの連続性を考えて両者の最大値を用いる）の和 を設計曲げモーメントとする。

上記により得られる設計曲げモーメントから鉛直鉄筋の引張応力度を算定し，鋁直断面の設計における鉛直鉄筋の引張応力度に加算した照査を行い，必要な場合は補強鉄筋 を配置する。
b ．側壁の拘束効果による版部材の検討
版部材については版部材の端曲げモーメント（Mo）及び側壁から版部材へ廻り込む モーメント（M1，M2 のらち最大値）の和を設計曲げモーメントとする。

上記により得られる設計曲げモーメントから版部材主鉄筋の引張応力度を算定し，版部材の設計における版部材主鉄筋の引張応力度を加算した照査を行い，必要な場合は補強鉄筋を配置する。

10．1．4 水平断面に対する耐震評価
（1）設計断面の選定
水平断面については，構造物側壁及び隔壁を線形はり要素としてモデル化した二次元静的フレーム解析に常時荷重，地震時荷重を作用させたときに発生する断面力に対し，水平鉄筋及びせん断補強筋の設計を行う。

作用させる荷重は，二次元地震応答解析結果から抽出した構造物側方の地震時地盤反力 （ジョイント要素ばね反力）のうち全時刻最大値と，二次元地震応答解析と同じメッシュ で鉛直方向に重力加速度を載荷して算出した常時地盤反力（ジョイント要素ばね反力）の和である。

構造物の曲げモーメント，軸力，せん断力による発生応力度が許容限界以下であること を確認する。なお，ここで設計する主鉄筋（A s 2）は，二次元フレーム解析モデルの側壁面外方向の地震時最大地盤反力で生じる曲げ軸力に対する鉄筋である。

図 10－10に水平断面の設計断面選定図を示す。

図 10－10 水平断面の評価概念図（フレーム計算）

本構造物は側壁の厚さ，隔壁の枚数が異なることから，図 10－11 に示す 2 断面を選定 し，設計を行う。

（1）水槽部

図 10－11 設計断面選定図
（2）躯体モデル化
a．開口部がない水平断面（対象：支持部検討断面）
水平断面については，構造物側壁及び隔壁を，それぞれ図心位置において線形はり要素としてモデル化した二次元静的フレーム解析を行う。

境界条件については，「日本道路協会 平成 24 年 3 月 道路橋示方書•同解説
I 共通編•IV下部構造編」に準拠し，単純支持とする。
二次元静的フレーム解析におけるはり要素の要素分割については，土木学会マニュア
6. 5. 3. 3-151

ルに準拠して，各分割要素が断面厚または有効高さの 2.0 倍以下として設定する。
図 10－12 に二次元静的フレーム解析における剛域の考え方を示す。二次元静的フレ ーム解析においては，「土木学会 2002 年 コンクリート標準示方書［構造性能照査編］」 に準拠し，隅角部に剛域を設ける。

図 10－12 二次元静的フレーム解析における剛域の考え方
b．開口部を含む水平断面（対象：水槽部検討断面）
側壁に開口部がある場合，及び全高にわたり設置されていない隔壁が存在する場合に ついては構造物側壁及び隔壁を線形はり要素としてモデル化し，側壁開口部または隔壁欠損部上下に位置する部材に相当する等価剛性を入力した静的フレーム解析により水平断面の照査を行う。

等価剛性は，開口部，欠損部を考慮しない状態で算出された剛性を検討高さで除すこ とにより奥行き 1.0 m 当たりで設定する。
境界条件，はり要素の要素分割及び剛域の設定は，a．開口部がない水平断面と同じ設定とする。
（3）荷重条件
図 $10-13$ に水平断面の荷重図を示す。
地盤と構造物の連成系モデルによる二次元地震応答解析結果に基づき，水平断面の検討 では，構造物の両側に地盤からの最大荷重を作用させる場合（両押し時）と，片側のみに地盤からの最大荷重を作用させる場合（片押し時）について検討する。また，片側のみ荷重を載荷させる場合は，構造物の，南北方向の非対称性を考慮して片側一方ずつ載荷する。従って都合三つの荷重状態について検討する。

水平断面の設計荷重として，図 10－13 に示すように，両押し時は二次元地震応答解析 により得られる構造物側方の地震時地盤反力（ジョイント要素ばね反力）の全時刻最大値 を抽出し，構造物平面の両側から同じ最大荷重を常時荷重とともに作用させる。

片押し時は，両押し時と同じ地震時地盤反力の最大値を構造物平面の片側から最大荷重 として常時荷重とともに作用させる。

常時荷重については常時土圧を考慮する。設計断面の適用範囲毎に最浅部（最小）と最深部（最大）の常時荷重を算定し，図 10－13 に示すように，構造物水平断面の静的フレ ーム解析に用いる。

図 10－13 構造物水平断面の荷重図

10．1．5 版部材の設計

底版及び中床版については，種々の境界条件の下で理論式により導き出された平板の断面力計算図表「日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説」によ り設計断面力を算定する。
スパンは側壁及び隔壁の中心間距離とし，境界条件は単純支持とする。
設計荷重は，中床版は躯体及び内水の慣性力，底版は仮想剛梁要素（底面）下面の地盤反力（ジョイント要素ばね反力）とし，平板全面に等分布として一律載荷する。慣性力算定のための鉛直方向加速度，仮想剛梁要素（底面）下面の地盤反力はいずれも検討地震動最大とする。

なお，設計断面力の算定及び評価は最もスパンが長い位置で行い，算定された必要鉄筋量と同量を全スパンにおいても配置する。
中床版及び底板断面力の算出寸法を図 $10-14$ に示す。

図 10－14 中床版及び底版断面力算出寸法

10.2 基礎地盤の支持性能に対する評価方法

基礎地盤の支持性能に係る評価対象部位は第 3 号機補機冷却海水系放水ピットを直接支持 する MMR と，新設するMMR を支持する基礎地盤とし，発生する応力（接地圧）が許容限界以下であることを確認する。

10．3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。
（1）構造部材の健全性に対する許容限界
構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•III コンクリート橋編に基づき，短期許容応力度とする。また，せん断破壊に対する許容限界は， コンクリートと鉄筋の短期許容応力度から算定した短期許容せん断力とする。コンクリート及び鉄筋の許容応力度を表 $10-2$～表 $10-3$ に示す。

溢水防止蓋の止水ジョイントを支持する機能及び止水機能を要求されるが，短期許容応力度により照査を行うため，構造強度を有することの確認と許容限界が同一となることから，全部材に対して構造強度を有することを確認することで，支持する機能及び止水機能を損な わないことの確認も同時に行う。

表 10－2 コンクリートの許容応力度及び短期許容応力度

設計基準強度	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度 ${ }^{*}$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
$\mathrm{f}, \quad \mathrm{ck}=50.0\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	許容曲げ圧縮応力度 $\sigma^{\prime}{ }^{\mathrm{ca}}$	16.0	24.0
	許容せん断応力度 $\tau_{\mathrm{a} 1}$	0.65	0.975

注記＊：日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IIIコンクリー
ト橋編により地震時の割り増し係数として 1.5 を考慮する。

表 10－3 鉄筋の許容応力度及び短期許容応力度

鉄筋の種類	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD490	許容引張応力度 σ_{sa}	290	435
		196	294

注記＊：日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 により地震時の割り増し係数として 1.5 を考慮する。
（2）基礎地盤の支持性能に対する許容限界
基礎地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。基礎地盤（牧の浜部層）の許容限界を表10－4に示す。

表 10－4 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	牧の浜部層	11.4

MMR（新設）に発生する接地圧に対する許容限界は，土木学会 2002 年 コンクリート標準示方書［構造性能照査編］に基づき，コンクリートの支圧強度とする。

MIR（新設）の許容限界を表 $10-5$ に示す。

表 10－5 MMR（新設）の支持性能に対する許容限界

評価項目	MMR（新設）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
支圧強度	コンクリート $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=30.0 \mathrm{~N} / \mathrm{mm}^{2}\right)$	$\mathrm{f}^{\prime}{ }_{\mathrm{a}}=30.0$

10． 4 耐震評価結果

10．4．1 第 3 号機補機冷却海水系放水ピットの断面諸元
鉛直断面，水平断面及び版部材の評価に用いる断面諸元を表 $10-6$ に示す。

表 10－6 鉄筋コンクリート断面諸元

部材	部材厚 （mm）	X 方向 （水平方向）		Y方向 （鉛直方向）		せん断補強筋
		配置鉄筋	$\begin{gathered} \hline \text { 芯かぶり } \\ (\mathrm{mm}) \end{gathered}$	配置鉄筋	$\begin{gathered} \hline \text { 芯かぶり } \\ (\mathrm{mm}) \end{gathered}$	
底版	2000	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	130	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	165	D25＠150×150
中床版	1500	$\begin{aligned} & \text { D29@150 } \\ & \text { D29@150 } \end{aligned}$	130	$\begin{aligned} & \text { D29@150 } \\ & \text { D29@150 } \end{aligned}$	165	D19＠300×300
側壁（1）	1000	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	130	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	165	D19＠150×300
側壁（2）	1300	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	130	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	165	D22＠300×300
側壁（3）	1800	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	130	$\begin{aligned} & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \\ & 2-\text { D35@150 } \end{aligned}$	165	D22＠300×300
隔壁（1）	1000	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	130	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	165	D22＠300×300

10．4．2 鉛直断面に対する耐震評価結果
（1）構造部材の曲げ軸力に対する評価結果
コンクリートの曲げ軸力に対する照査結果を表 10－7に，評価位置における最大照査値 を表 10－8に示す。照査値が最も厳しい値となる結果を表 10－9に示し，そのケースの断面力図を図 $10-15$ に示す。

鉄筋の曲げ軸力に対する照査結果を表 10－10に，評価位置における最大照査値を表 10 －11に示す。照査値が最も厳しい値となる結果を表 10－12に示し，そのケースの断面力図を図 $10-16$ に示す。

許容応力度法による照査を行った結果，評価位置においてコンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。

表 10－7（1）（1）水槽部曲げ・軸力系の破壊に対する照査値（鉛直断面コンクリート）

地震動名		曲げ・軸力系の破捳こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.06			
	－	0.09			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.09			
	＋	0.07	0.08	0.07	0.07
Ss－D3	＋＋	0.05			
	－	0.06			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.04			
	－	0.05			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.06			
	－	0.04			
$\mathrm{Ss}-\mathrm{F} 3$	$+$	0.06			
	－	0.06			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.05			
	－	0.03			

表 10－7（2）（2）水槽部曲げ・軸力系の破壊に対する照査値（鉛直断面コンクリート）

地震動名		曲げ・軸ノ系の破真こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	＋＋	0.09			
	－	0.11			
$\mathrm{Ss}-\mathrm{D} 2$	$+$	0.11			
	－	0.10	0.10	0.10	0.09
$\mathrm{Ss}-\mathrm{D} 3$	$++$	0.07			
	＋	0.08			
$\mathrm{Ss}-\mathrm{F} 1$	＋＋	0.07			
	－	0.06			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.07			
	－	0.07			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.09			
	－	0.09			
$\mathrm{Ss}-\mathrm{N} 1$	＋＋	0.08			
	－	0.09			

表 10－7（3）（3）水槽部曲げ・軸力系の破壊に対する照査値（鉛直断面コンクリート）

地霍動名		曲げ・軸力系の破寰対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
Ss－D1	＋	0.13			
	＋	0.16			
Ss－D2	＋	0.17			
	＋	0.16	0.15	0.17	0.15
Ss－D3	＋	0． 13			
	－	0.13			
Ss－F1	＋＋	0.12			
	＋	0.09			
Ss－F2	＋＋	0.11			
	＋	0.11			
Ss－F3	＋	0.14			
	＋	0.15			
$\mathrm{Ss}-\mathrm{N} 1$	＋	0.14			
	－	0.08			

表 10－7（4）（5）支持部曲げ・軸力系の破壊に対する照査値（鉛直断面コンクリート）

地震動名		曲げ・車力系の破壊こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.26			
	－	0.23			
Ss－D2	$++$	0.29			
	＋	0.33	0.32	0.33	0.33
Ss－D3	$++$	0.32			
	－	0.28			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.27			
	－	0.21			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.23			
	－	0.26			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.27			
	－	0.33			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.29			
	＋	0． 16			

表 10－8 各評価位置における曲げ・軸力系の破壊に対する最大照査値（鉛直断面コンクリート）

評価位置		断面性状			鉄筋 仕様	解 析 ケ － ス	地震動	発生断面力		発生 応力度 σ ， c （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 $\sigma^{\prime} \mathrm{C}$ $\begin{gathered} \prime \\ \sigma^{\prime} \text { са } \end{gathered}$
		部材幅 （mm）	部材 高 （mm）	有効高 （mm）				$\begin{gathered} \text { 曲げ } \\ \text { モーメ } \\ \text { ント } \\ (k N \cdot \\ m / m) \end{gathered}$	軸力 （kN ／m）			
（1）水槽部	3	14600	3400	2900	$\begin{aligned} & \text { 4-D35@150 } \\ & \text { 4-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	－2793	228	1.97	24	0.09
（2）水槽部	6	13000	3400	2900	$\begin{aligned} & \text { 4-D35@150 } \\ & \text { 4-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D2 } \\ (++) \end{gathered}$	4405	－284	2． 61	24	0.11
（3）水槽部	9	13000	3400	2900	$\begin{aligned} & \text { 4-D35@150 } \\ & \text { 4-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D2 } \\ (++) \end{gathered}$	6214	－423	4.02	24	0.17
（5）支持部	11	13000	3400	2750	$\begin{aligned} & \text { 4-D35@150 } \\ & \text { 4-D35@150 } \end{aligned}$	（4）	$\begin{gathered} \text { Ss-D2 } \\ (-+) \end{gathered}$	11718	－785	7.88	24	0.33

立坑南北方向

6．5．3．3－162

表 10－9 曲げ・軸力系の破壊に対する最大照査値（鉛直断面コンクリート）

評価位置	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生断面力		発生 応力度 $\begin{gathered} \sigma^{\prime} \quad \text { c } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma^{\prime} \quad c a \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 σ^{\prime} c σ^{\prime} ca
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$			
（5）支持部	（4）	Ss－D2（－＋）	11718	－785	7.88	24	0.33

（a）曲げモーメント（kN•m／m）

図 10－15（1）曲げ・軸力系の破壊に対する最大照査値となる時刻の断面力
（鉛直断面コンクリート）

（b）軸力 $(\mathrm{kN} / \mathrm{m})$

（c）せん断力 $(\mathrm{kN} / \mathrm{m})$

図 10－15（2）曲げ・軸力系の破壊に対する最大照査値となる時刻の断面力
（鉛直断面コンクリート）

表 10－10（1）（1）水槽部曲げ・軸力系の破壊に対する照査値（鉛直断面鉄筋）

地震動名		曲げ・軸力系の破壊て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0． 13			
	－	0.15			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.20			
	－	0． 18	0． 18	0． 17	0.16
Ss－D3	$++$	0.13			
	－	0． 13			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.11			
	－	0． 12			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.14			
	－	0.09			
$\mathrm{Ss}-\mathrm{F} 3$	＋＋	0.14			
	－	0.14			
$\mathrm{Ss}-\mathrm{N} 1$	＋	0.13			
	＋	0.09			

表10－10（2）（2）水槽部曲げ・軸力系の破壊に対する照査値（鉛直断面鉄筋）

地䨱動名		曲げ・軸ノ系の破真て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	＋	0． 19			
	－	0.20			
Ss－D2	＋	0.25			
	－	0.23	0.22	0.23	0.22
Ss－D3	＋	0.17			
	－	0． 18			
$\mathrm{Ss}-\mathrm{F} 1$	＋	0.16			
	＋	0.15			
$\mathrm{Ss}-\mathrm{F} 2$	＋	0． 16			
	－	0.14			
Ss－F 3	＋	0.20			
	－	0． 20			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0． 19			
	－	0.18			

表 $10-10$（3）（3）水槽部曲げ・軸力系の破壊に対する照査値（鉛直断面鉄筋）

地震動名		曲げ・軸力系の破壊て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.26			
	－	0.32			
Ss－D2	$++$	0.33			
	＋	0.32	0.30	0.32	0.30
Ss－D3	$++$	0.25			
	－	0.26			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.24			
	－	0.20			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.21			
	－	0.20			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.28			
	－	0.28			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.26			
	＋	0.16			

表 10－10（4）（5）支持部曲げ・軸力系の破壊に対する照査値（鉛直断面鉄筋）

地䨍動名		曲げ・軸力采の破壊て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	＋	0.68			
	－	0.64			
Ss－D2	＋	0.75			
	－	0.80	0.79	0.81	0.82
Ss－D3	$+$	0.79			
	－	0.71			
$\mathrm{Ss}-\mathrm{F} 1$	$+$	0.69			
	－	0.54			
$\mathrm{Ss}-\mathrm{F} 2$	$+$	0.72			
	－	0.59			
$\mathrm{Ss}-\mathrm{F} 3$	$+$	0.67			
	－	0.80			
$\mathrm{Ss}-\mathrm{N} 1$	＋	0.68			
	－	0.48			

表 10－11 各評価位置における曲げ・軸力系の破壊に対する最大照査値（鉛直断面鉄筋）

評価位置		断面性状			鉄筋 仕様		地震動	発生断面力		発生 応力度 $\sigma \mathrm{s}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期 許容 応力度 σ sa （ $\mathrm{N} / \mathrm{mm}^{2}$ ） 部材幅 （mm）	照査値 σ s ／ o sa 部材高 （mm）
		部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）				$\begin{gathered} \text { 曲げ } \\ \text { モーメン } \\ \text { ト } \\ (\mathrm{kv} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$			
（1）水槽部	3	14600	3400	2900	$\begin{aligned} & \text { 4-D35@150 } \\ & 4-\text { D35@150 } \end{aligned}$	（1）	$\begin{gathered} \hline \text { Ss-D1 } \\ (-+) \end{gathered}$	3089	－257	85	435	0． 20
（2）水槽部	6	13000	3400	2900	$\begin{aligned} & 4-\text { D35@150 } \\ & 4-\text { D35@150 } \end{aligned}$	（1）	$\begin{gathered} \hline \text { Ss-D2 } \\ (++) \end{gathered}$	4405	－284	105	435	0.25
（3）水槽部	9	13000	3400	2900	$\begin{aligned} & \text { 4-D35@150 } \\ & \text { 4-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D2 } \\ (++) \end{gathered}$	6214	－423	142	435	0.33
（5）支持部	11	13000	3400	2750	$\begin{aligned} & 4-\text { D35@150 } \\ & 4-\text { D35@150 } \end{aligned}$	（4）	$\begin{gathered} \text { Ss-D2 } \\ (-+) \end{gathered}$	11596	－968	355	435	0.82

立坑南北方向

6．5．3．3－167

表 10－12 曲げ・軸力系の破壊に対する最大照査値（鉛直断面鉄筋）

評価位置	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生断面力		発生 応力度 os （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 $\begin{gathered} \sigma \text { sa } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 σ S ／ σ sa
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 軸力 } \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$			
（5）支持部	（4）	$\begin{gathered} \mathrm{Ss}-\mathrm{D} 2 \\ (-+) \end{gathered}$	11596	－968	355	435	0． 82

（a）曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

図 10－16（1）曲げ・軸力系の破壊に対する最大照査値となる時刻の断面力 （鉛直断面鉄筋）

6．5．3．3－168

（b）軸力 $(\mathrm{kN} / \mathrm{m})$

（c）せん断力 $(\mathrm{kN} / \mathrm{m})$

図 10－16（2）曲げ・軸力系の破壊に対する最大照査値となる時刻の断面力
（鉛直断面鉄筋）
（2）鉛直断面のせん断力に対する耐震評価結果
せん断力の破壊に対する照査結果を表 10－13に，評価位置における最大照査値を表 10 －14に示す。照査値が最も厳しい値となる結果を表 10－15に示し，そのケースの断面力図を図 10－17に示す。鉛直断面のせん断力に対する照査を行った結果，評価位置におい てせん断応力度が短期許容せん断応力度以下である又はコンクリートの負担するせん断力 （V c）と，斜め引張鉄筋の負担するせん断力（V s）を合わせた短期許容せん断力（V a）が，発生せん断力（V）以上であることを確認した。

表 10－13（1）（1）水槽部せん断力の破壊に対する照査値（鉛直断面）

地震動名		せん断力の破懐て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.18			
	－	0.21			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.26			
	＋	0.20	0． 18	0.21	0.17
Ss－D3	$++$	0.16			
	－	0.17			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.16			
	－	0.12			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0． 19			
	－	0.15			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0． 19			
	－	0.20			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.19			
	＋	0.12			

表 $10-13$（2）（2）水槽部せん断力の破壊に対する照査値（鉛直断面）

地震動名		せん断力の破壊て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0． 19			
	－	0.20			
$\mathrm{Ss}-\mathrm{D} 2$	＋＋	0.20			
	－	0.21	0． 19	0.22	0． 19
$\mathrm{Ss}-\mathrm{D} 3$	$++$	0.17			
	－	0.18			
$\mathrm{Ss}-\mathrm{F} 1$	$+$	0.17			
	－	0.12			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.15			
	－	0.17			
$\mathrm{Ss}-\mathrm{F} 3$	＋＋	0.21			
	－	0.20			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.21			
	＋	0． 12			

表 $10-13$（3）③水槽部せん断力の破壊に対する照査値（鉛直断面）

地震動名		せん断力の破䍖て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.30			
	－	0.29			
Ss－D2	$+$	0.45			
	－	0． 40	0.38	0.40	0.39
Ss－D3	$+$	0.37			
	－	0.36			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.34			
	－	0.25			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.28			
	－	0.34			
$\mathrm{Ss}-\mathrm{F} 3$	$+$	0.34			
	－	0.38			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.43			
	＋	0.21			

6．5．3．3－171

表 10－13（4）（5）支持部せん断力の破壊に対する照査値（鉛直断面）

地震動名		せん断力の破鯣て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.27			
	＋	0.25			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.34			
	－	0.34	0.34	0.35	0.35
Ss－D3	$++$	0.33			
	－	0.30			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.32			
	＋	0.23			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.28			
	＋	0.27			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.30			
	＋	0.38			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.31			
	\cdots	0． 24			

表 10－14 各評価位置におけるせん断力破壊に対する最大照査値（鉛直断面）

評価位置		断面性状			鉄筋仕様	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 V （kN）	短期許容 せん断力 Va （kN）	$\begin{aligned} & \text { 照査値 } \\ & \mathrm{V} / \mathrm{Va} \end{aligned}$
		部材 幅 （mm）	部材 高 （mm）	有効高 （mm）						
（1）水槽部	2	14600	3400	2900	$\begin{aligned} & 4-D 35 \times 2 \\ & 2-D 35 \times 3 \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D2 } \\ (++) \end{gathered}$	18198	72050	0.26
（2）水槽部	6	13000	3400	2900	$\begin{aligned} & 4-\mathrm{D} 35 \times 2 \\ & 2-\mathrm{D} 35 \times 3 \end{aligned}$	（3）	$\begin{gathered} \text { Ss-D2 } \\ (-+) \end{gathered}$	15516	72050	0.22
（3）水槽部	9	13000	3400	2900	4－D35×2	（1）	$\begin{gathered} \text { Ss-D2 } \\ (++) \end{gathered}$	17485	39716	0． 45
（5）支持部	12	13000	3400	2750	$\begin{aligned} & 4-D 35 \times 2 \\ & 2-D 35 \times 5 \end{aligned}$	（1）	$\begin{gathered} \hline \text { Ss-F3 } \\ (-+) \end{gathered}$	－34233	91988	0.38

立坑南北方向

表 10－15 せん断力の破壊に対する最大照査値（鉛直断面）

評価位置	解析 ケース	発生 せん断力 地震動	せん短期許容 せ $(\mathrm{kN} / \mathrm{m})$	Va $(\mathrm{kN} / \mathrm{m})$	V / Va 査値
（3）水槽部	（1）	$\mathrm{Ss}-\mathrm{D} 2$ $(++)$	1345	3055	0.45

（a）曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

図 10－17（1）せん断力の破壊に対する最大照査値となる時刻の断面力（鉛直断面）

（b）軸力 $(\mathrm{kN} / \mathrm{m})$

図 10－17（2）せん断力の破壊に対する最大照査値となる時刻の断面力（鉛直断面）

10．4．3 水平断面に対する耐震評価結果
（1）水平断面の曲げ軸力に対する評価結果
コンクリートの曲げ軸力に対する照査結果を表 $10-16$ に，評価位置における最大照査値を表 10－17に示す。照査値が最も厳しい値となる結果を表 $10-18$ に示し，そのケース の断面力図を図 10－19に示す。

鉄筋の曲げ軸力に対する照査結果を表 10－19に，評価位置における最大照査値を表 10 － 20 に示す。照査値が最も厳しい値となる結果を表 10－21に示し，そのケースの断面力図を図 10－20に示す。

許容応力度法による照査を行った結果，評価位置においてコンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。

水平方向の設計断面は 2 断面とし，地震時荷重の載荷方法（両押し，片押し（熱交間建屋側），片押し（盛土側）），地震時荷重の方向及び常時土水圧の大小により 1 つの設計断面に対し1 地震波につき9 ケースの解析を行い，側壁及び中壁の応力度照査を行ってい る（図 $10-18$ ）。

各照査表においては，1 地震波に対し9 ケースの解析を行い，照査値が最大となる組合せに対する照査結果を示す。

許容応力度法による照査を行った結果，評価位置においてコンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。

表 10－16（1）水槽部曲げ軸力系の破壊に対する照査値（側壁長辺側）
（水平断面コンクリート）

地震動名		曲げ・軸入采し破真こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.08			
	－	0.11			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.09			
	＋	0.10	0.09	0.09	0.10
$\mathrm{Ss}-\mathrm{D} 3$	$++$	0.08			
	－	0.09			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.09			
	－	0.08			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.08			
	－	0.09			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.07			
	－	0.10			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.09			
	＋	0.09			

表10－16（2）水槽部曲げ軸力系の破壊に対する照査値（側壁短辺側）
（水平断面コンクリート）

地震動名		曲げ・軸力采の破真こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.15			
	－	0.21			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0． 18			
	－	0． 18	0.17	0.18	0． 18
Ss－D3	$++$	0.14			
	－	0． 16			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.16			
	－	0.15			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.14			
	－	0.17			
Ss－F 3	＋＋	0.13			
	－	0． 19			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.18			
	－	0.17			

6．5．3．3－177

表 10－16（3）水槽部曲げ軸力系の破壊に対する照査値（隔壁）
（水平断面コンクリート）

地震動名		曲げ・軸入采し破真こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.08			
	－	0.11			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.10			
	＋	0.10	0.09	0.10	0.10
$\mathrm{Ss}-\mathrm{D} 3$	$++$	0.08			
	－	0.09			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.09			
	－	0.08			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.08			
	－	0.09			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.07			
	－	0.10			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.09			
	＋	0.09			

表 10－16（4）支持部曲げ軸力系の破壊に対する照査値（側壁長辺側）
（水平断面コンクリート）

地震動名		曲げ・軸力系の破獨こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.02			
	－	0.02			
Ss－D2	$++$	0.02			
	－	0.02	0.02	0.02	0.02
Ss－D3	$++$	0.02			
	－	0.02			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.02			
	＋	0.02			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.02			
	＋	0.02			
Ss－F3	$++$	0.02			
	－	0.03			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.02			
	＋	0.02			

6．5．3．3－178

表10－16（5）支持部曲げ軸力系の破壊に対する照査値（側壁短辺側）（水平断面コンクリート）

地震動名		曲げ・軸力采の破獨こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.03			
	－	0.03			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.03			
	－	0.03	0.03	0.03	0.03
$\mathrm{Ss}-\mathrm{D} 3$	$++$	0.03			
	－	0.03			
$\mathrm{Ss}-\mathrm{F} 1$	$+$	0.03			
	－	0.03			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.03			
	－	0.03			
$\mathrm{Ss}-\mathrm{F} 3$	$+$	0.03			
	－	0.04			
$\mathrm{Ss}-\mathrm{N} 1$	$+$	0.03			
	－	0.03			

表 10－16（6）支持部曲げ軸力系の破壊に対する照査値（隔壁）（水平断面コンクリート）

地震動名		曲げ・車力系の破獨て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.05			
	＋	0.05			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.06			
	＋	0.06	0.06	0.06	0.06
$\mathrm{Ss}-\mathrm{D} 3$	$++$	0.06			
	＋	0.06			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.06			
	－	0.05			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.05			
	＋	0.05			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.05			
	－	0.06			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.06			
	－	0.05			

$\begin{aligned} & \text { 地曘時荷方重の } \\ & \hline \end{aligned}$	両押し	片押し（䓡交拾建屋僻）	片押し（辟土溉）
掌㙴寺圧			
左石堦㢣反力最天	$\begin{array}{\|l\|l\|l\|l} \hline & & & \\ \exists & 0 \end{array}$		
賞暲夫圧原			
凡例			掌時土压 + 地票時最大地鳘反力奠時士圧

図 10－18 照査表における決定ケースの識別方法

表 10－17 曲げ・軸力系の破壊に対する最大照査値（水平断面コンクリート）

評価位置		載荷 方法	断面性状			$\begin{aligned} & \text { 鉄筋 } \\ & \text { 仕様 } \end{aligned}$	$\begin{aligned} & \text { 解 } \\ & \text { 析 } \\ & \text { ケ } \\ & \text { - } \\ & \text { ス } \end{aligned}$	地震 動	発生断面力		発生 応力度 $\begin{gathered} \sigma^{\prime} \quad \text { c } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期 許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 σ ，c σ^{\prime} ca	
		部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$				$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$					
水槽部長辺	11		片押し （海水熱 交換器 建屋側）	1000	1000	820	$\begin{aligned} & 2-\text { D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	438	341	2.55	24	0.11
水槽部短辺	15	両押し	1000	1000	820	$\begin{aligned} & 2-D 35 @ 150 \\ & \text { 2-D35@150 } \\ & \hline \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	815	1151	4． 95	24	0.21	
水槽部隔壁	39	片押し 海水（熱 交換器 建屋側）	1000	1000	870	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	268	1650	2.61	24	0.11	
支持部長辺	35	片押し （盛土 側）	1000	1300	1120	$\begin{aligned} & 2-\text { D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	135	227	0.52	24	0． 03	
支持部短辺	20	両押し	1000	1300	1120	$\begin{aligned} & 2-D 35 @ 150 \\ & 2-\text { D35@150 } \\ & \hline \end{aligned}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \\ \hline \end{gathered}$	133	721	0.75	24	0.04	
支持部隔壁	52	片押し （盛土 側）	1000	1000	870	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	28	1544	1.42	24	0.06	

水槽部

支持部

表 10－18 曲げ・軸力系の破壊に対する最大照査値（水平断面コンクリート）

評価位置	解析ケース	地震動	発生断面力		発生 応力度 $\begin{gathered} \sigma^{\prime} \mathrm{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 σ^{\prime} са （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値$\sigma,{ }^{\prime}$c$\sigma^{\prime} \mathrm{ca}$
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 軸力 } \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$			
水槽部短辺	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	815	1151	4.95	24	0． 21

曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

軸力 $(\mathrm{kN} / \mathrm{m})$

せん断力（ kN / m ）

図 10－19 曲げ・軸力系の破壊に対する最大照査値となる時刻の断面力 （水平断面コンクリート）

表 10－19（1）水槽部曲げ軸力系の破壊に対する照査値（側壁長辺側）（水平断面鉄筋）

地霍動名		曲げ・軸力采の破瞋対する照查			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
Ss－D1	＋	0.10			
	＋	0.13			
Ss－D2	$+$	0.11			
	＋	0.12	0.11	0.11	0.11
Ss－D3	＋＋	0.09			
	＋	0.10			
$\mathrm{Ss}-\mathrm{F} 1$	＋＋	0.10			
	＋	0.10			
$\mathrm{Ss}-\mathrm{F} 2$	＋	0.09			
	＋	0.11			
Ss－F3	＋＋	0.08			
	＋	0.12			
$\mathrm{Ss}-\mathrm{N} 1$	＋＋	0.11			
	＋	0.10			

表 10－19（2）水槽部曲げ軸力系の破壊に対する照査值（側壁短辺側）（水平断面鉄筋）

地靎動名		曲げ・軸系か破㯖效する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
Ss－D1	＋＋	0.10			
	＋	0.14			
Ss－D2	＋＋	0.12			
	＋	0.12	0.11	0.12	0.12
Ss－D3	＋	0.10			
	＋	0.11			
$\mathrm{Ss}-\mathrm{F} 1$	＋	0.11			
	＋	0.10			
Ss－F2	＋＋	0.10			
	＋	0.12			
Ss－F3	＋＋	0.09			
	＋	0.12			
$\mathrm{Ss}-\mathrm{N} 1$	＋＋	0.12			
	＋	0.11			

表 10－19（3）水槽部曲げ軸力系の破壊に対する照査値（隔壁）（水平断面鉄筋）

地震動名		曲げ・軸采か破獨こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	＋＋	－			
	－	－			
$\mathrm{Ss}-\mathrm{D} 2$	$+$	－			
	－	－			
$\mathrm{Ss}-\mathrm{D} 3$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 1$	＋	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	－			
	－	－			
Ss－F3	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	－			
	＋	－			

発生応力度が圧縮のため照査値なし

表 10－19（4）支持部曲げ軸力系の破壊に対する照査値（側壁長辺側）（水平断面鉄筋）

地震動名		曲げ・軸力采の破真こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.02			
	＋	0.02			
$\mathrm{Ss}-\mathrm{D} 2$	$+$	0.02			
	－	0.02	0.02	0.02	0.02
$\mathrm{Ss}-\mathrm{D} 3$	＋＋	0.02			
	＋	0.02			
$\mathrm{Ss}-\mathrm{F} 1$	$+$	0.02			
	－	0.02			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.02			
	－	0.02			
$\mathrm{Ss}-\mathrm{F} 3$	$+$	0.02			
	－	0.03			
$\mathrm{Ss}-\mathrm{N} 1$	＋	0.02			
	－	0.02			

表 10－19（5）支持部曲げ軸力系の破壊に対する照査値（側壁短辺側）（水平断面鉄筋）

地霆動名		曲げ・軸力系の破獨こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{D} 3$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	－			
	－	－			

発生応力度が圧縮のため照査値なし

表 10－19（6）支持部曲げ軸力系の破壊に対する照査値（隔壁）（水平断面鉄筋）

地震動佲		曲げ・軸力系の破獨こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{D} 2$	$+$	－			
	－	－			
Ss－D3	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	－			
	－	－			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	－			
	－	－			

発生応力度が圧縮のため照査値なし

表 10－20 曲げ・軸力系の破壊に対する最大照査値（水平断面鉄筋）

評価位置		載荷 方法	断面性状			鉄筋仕様	解 析 ケ ー ス	地震動	発生断面力		発生 応力度 σ s （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期 許容 応力度 $\begin{gathered} \sigma \text { sa } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 σ s ／ σ sa	
		部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$				$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$					
水槽部 長辺	11		両押し	1000	1000	820	$\begin{aligned} & 2-\text { D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	438	0	55	435	0.13
水槽部短辺	15	両押し	1000	1000	820	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	815	1151	59	435	0．14	
水槽部隔壁	33	片押し （海水 熱交換 器建屋 側）	1000	1000	870	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	183	1112	-5 （圧縮）	435	－	
支持部 長辺	14	両押し	1000	1300	1120	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	94	0	9	435	0． 03	
支持部 短辺	20	両押し	1000	1300	1120	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	54	263	-1 （圧縮）	435	－	
支持部隔壁	45	片押し （海水 熱交換 器建屋 側）	1000	1000	870	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	11	470	－6 （圧縮）	435	－	

水槽部

支持部

表 10－21 曲げ・軸力系の破壊に対する最大照査値（水平断面鉄筋）

評価位置	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生断面力		発生 応力度 $\begin{gathered} \sigma \mathrm{s} \\ (\mathrm{~N} / \mathrm{mm} 2) \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \end{gathered}$	照査値 σ s ／ o sa
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$			
水槽部短辺	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	815	1151	59	435	0． 14

軸力（ kN / m ）

図 10－20 曲げ・軸力系の破壊に対する最大照査値となる時刻の断面力 （水平断面鉄筋）
（2）水平断面のせん断力に対する耐震評価結果
せん断力の破壊に対する照査結果を表 10－22 に，評価位置における最大照査値を表 10 －23に示す。照査値が最も厳しい値となる結果を表 10－24に示し，そのケースの断面力図を図 10－21 に示す。水平断面のせん断力に対する照査を行った結果，評価位置におい てせん断応力度が短期許容せん断応力度以下である又はコンクリートの負担するせん断力 （V c）と，斜め引張鉄筋の負担するせん断力（V s）を合わせた短期許容せん断力（V a）が，発生せん断力（V）以上であることを確認した。

また，水平鉄筋に対しては，面外方向の最大土圧により発生する応力度と，面内方向の せん断力により発生応力度を足し合わせた応力度が短期許容応力度以下であることを確認 した。表 $10-25$ に水平鉄筋の足し合わせ最大照査値を示す。

表 $10-22$（1）水槽部せん断力の破壊に対する照査値（側壁長辺側）（水平断面）

地震動名		せん断力の破壊て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$+$	0.36			
	－	0． 49			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.41			
	－	0.43	0.40	0.42	0.43
Ss－D3	＋＋	0.33			
	－	0.38			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.37			
	－	0.35			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.33			
	－	0.41			
$\mathrm{Ss}-\mathrm{F} 3$	＋＋	0.31			
	－	0.43			
$\mathrm{Ss}-\mathrm{N} 1$	＋＋	0.41			
	－	0.38			

表 $10-22$（2）水槽部せん断力の破壊に対する照査値（側壁短辺側）（水平断面）

地震動名		せん断力の破獨て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0． 19			
	－	0.26			
Ss－D2	＋＋	0.22			
	－	0.22	0.21	0.22	0.22
$\mathrm{Ss}-\mathrm{D} 3$	＋＋	0.18			
	－	0.20			
$\mathrm{Ss}-\mathrm{F} 1$	$+$	0.20			
	＋	0． 19			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.17			
	－	0.21			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0． 16			
	－	0.23			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.21			
	＋	0.20			

表 10－22（3）水槽部せん断力の破壊に対する照査値（隔壁）（水平断面）

地零動名					
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
Ss－D1	＋＋	0.14			
	－	0.19			
Ss－D2	＋	0． 16			
	＋	0.17	0.16	0.16	0.17
Ss－D3	＋＋	0.13			
	＋	0.15			
$\mathrm{Ss}-\mathrm{F} 1$	＋＋	0.15			
	＋	0.14			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.13			
	－	0.16			
Ss－F3	＋＋	0.12			
	－	0.17			
$\mathrm{Ss}-\mathrm{N} 1$	＋	0.16			
	－	0.15			

表 10－22（4）支持部せん断力の破壊に対する照査値（側壁長辺側）（水平断面）

地零動名		せん断力秛㯖效する照查			
		ケース（1）	ケース（2）	ケース（3）	ケース4）
Ss－D1	＋＋	0.22			
	－	0.22			
$\mathrm{Ss}-\mathrm{D} 2$	＋＋	0.23			
	＋	0.25	0.25	0.24	0.25
Ss－D3	＋＋	0.24			
	－	0.24			
Ss－F1	＋	0.23			
	＋	0.20			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.22			
	－	0.23			
$\mathrm{Ss}-\mathrm{F} 3$	＋	0.22			
	－	0.27			
$\mathrm{Ss}-\mathrm{N} 1$	＋＋	0.23			
	＋	0.21			

表 10－22（5）支持部せん断力の破壊に対する最大照查値（側壁短辺側）（水平断面鉄筋）

地需動名		せん断加破㯖效する照查			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
Ss－D1	＋	0.07			
	＋	0.07			
Ss－D2	＋	0.07			
	＋	0.08	0.08	0.08	0.08
Ss－D3	＋＋	0.08			
	＋	0.08			
Ss－F1	＋＋	0.07			
	＋	0.06			
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0.07			
	＋	0.07			
Ss－F3	＋＋	0.07			
	＋	0.09			
$\mathrm{Ss}-\mathrm{N} 1$	＋＋	0.07			
	＋	0.06			

表 10－22（6）支持部せん断力の破壊に対する最大照査値（隔壁）（側壁水平断面鉄筋）

地需動名					
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
Ss－D1	＋＋	0.04			
	＋	0.04			
Ss－D2	＋＋	0.05			
	＋	0.05	0.05	0.05	0.05
Ss－D3	＋	0.05			
	＋	0.05			
$\mathrm{Ss}-\mathrm{F} 1$	＋＋	0.05			
	＋	0.04			
Ss－F2	＋＋	0.05			
	＋	0.05			
Ss－F3	＋	0.04			
	＋	0.05			
$\mathrm{Ss}-\mathrm{N} 1$	＋	0.05			
	＋	0.04			

表 10－23 せん断力の破壊に対する最大照査値（水平断面）

評価位置		載荷 方法	断面性状			鉄筋仕様	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生せん断力 V （ kN / m ）	短期許容 せん断力 Va （kN／m）	照査値 V／Va	
		部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）								
水槽部長辺	9		両押し	1000	1000	820	$\begin{gathered} \text { D19@150× } \\ 300 \\ \hline \end{gathered}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \\ \hline \end{gathered}$	820	1682	0． 49
水槽部 短辺	30	片押し （盛土 側）	1000	1000	820	$\begin{gathered} \text { D22@300× } \\ 300 \end{gathered}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	421	1682	0． 26	
水槽部隔壁	31	片押し （熱交換 建屋側）	1000	1000	870	$\begin{gathered} \text { D22@300 } \times \\ 300 \end{gathered}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	241	1325	0． 19	
支持部 長辺	39	片押し （熱交換 建屋側）	1000	1300	1120	$\begin{gathered} \text { D22@300 } \times \\ 300 \end{gathered}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	450	1706	0． 27	
支持部短辺	19	片押し （熱交換 建屋側）	1000	1300	1120	$\begin{gathered} \text { D22@300 } \times \\ 300 \end{gathered}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	137	1706	0． 09	
支持部隔壁	52	片押し （盛土 側）	1000	1000	870	$\begin{gathered} \text { D22@300 } \times \\ 300 \end{gathered}$	（1）	$\begin{gathered} \text { Ss-F3 } \\ (-+) \end{gathered}$	64	1325	0． 05	

水槽部

支持部

表 10－24 せん断力の破壊に対する最大照査値（水平断面）

評価位置	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 V $(\mathrm{kN} / \mathrm{m})$	短期許容 せん断力 Va （kN／m）	照査値 V／Va
水槽部長辺	（1）	Ss－D1（－＋）	820	1682	0.49

曲げモーメント (kN•m/m)

軸力 $(\mathrm{kN} / \mathrm{m})$

図 10－21 せん断破壊に対する最大照査値となる時刻の断面力
（水平断面）

6．5．3．3－193

表 10－25 水平鉄筋足し合わせ最大照査値

評価位置	検討方法＊	断面性状			鉄筋仕様	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生応力度 σ s （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容応力度 σ sa （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{gathered} \text { 照査値 } \\ \sigma \mathrm{s} \\ / \\ \sigma \mathrm{sa} \end{gathered}$
		$\begin{gathered} \hline \text { 部材 } \\ \text { 幅 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 部材 } \\ \text { 高 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	有効 高 （mm）						
水槽部 短辺	面外方向検討	1000	1000	820	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	Ss－D1（－＋）	59	294	0.21
	面内方向検討	14600	3400	2900	$\begin{aligned} & 4-\text { D } 35 \times 2 \\ & 2-\text { D } 35 \times 3 \end{aligned}$	（1）	Ss－D1（－＋）	74	294	0． 26
	合計	－	－	－	－	（1）	Ss－D1（－＋）	133	294	0． 46
水槽部 隔壁	面外方向検討	1000	1000	870	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	（1）	Ss－D1（－＋）	－5（圧縮）	294	－
	面内方向検討	14600	3400	2900	$\begin{aligned} & 4-\text { D } 35 \times 2 \\ & 2-\text { D } 35 \times 3 \end{aligned}$	（1）	Ss－D1（－＋）	74	294	0． 26
	合計	－	－	－	－	（1）	Ss－D1（－＋）	74	294	0． 26
支持部 短辺	面外方向検討	1000	1000	820	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	Ss－F3（－＋）	-1 （圧縮）	294	－
	面内方向検討	13000	3400	2750	$\begin{aligned} & 4-\text { D } 35 \times 2 \\ & 2-D 35 \times 5 \end{aligned}$	（1）	Ss－F3（－＋）	60	294	0.21
	合計	－	－	－	－	（1）	Ss－F3（－＋）	60	294	0.21
支持部 隔壁	面外方向検討	1000	1000	870	$\begin{aligned} & \text { D35@150 } \\ & \text { D35@150 } \end{aligned}$	（1）	Ss－F3（－＋）	－6（圧縮）	294	－
	面内方向検討	13000	3400	2750	$\begin{aligned} & 4-\text { D } 35 \times 2 \\ & 2-\text { D } 35 \times 5 \end{aligned}$	（1）	Ss－F3（－＋）	60	294	0.21
	合計	－	－	－	－	（1）	Ss－F3（－＋）	60	294	0.21

注記＊：面外方向検討：二次元フレーム解析により算定される，最大土圧が作用することにより水平方向主鉄筋に発生する応力度
面内方向検討：鉛直断面のせん断力に対し，水平方向主鉄筋をせん断補強筋とみなして算定する応力度

10．4．4 中床版に対する耐震評価結果の曲げに対する耐震評価結果
（1）中床版の曲げ軸力に対する評価結果
コンクリートの曲げ軸力に対する照査結果を表 $10-26$ に，最大照査値を表 $10-27$ に示 す。

鉄筋の曲げ軸力に対する照査結果を表 $10-28$ に，最大照査値を表 $10-29$ に示す。
許容応力度法による照査を行った結果，評価位置においてコンクリートの圧縮応力度と
鉄筋の引張応力度が短期許容応力度以下であることを確認した。

表 10－26 中床版曲げ・軸力系の破壊に対する照査値（コンクリート）

地需動名		曲げ・軸〉系の破真こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.01			
	－	0.01			
$\mathrm{Ss}-\mathrm{D} 2$	$+$	0.01			
	－	0.01	0.01	0.01	0.01
Ss－D3	$++$	0.01			
	＋	0.01			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.01			
	＋	0.01			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.01			
	－	0.01			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.01			
	＋	0.01			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.01			
	－	0.01			

表 10－27 中床版曲げ・軸力系の破壊に対する最大照査値（コンクリート）

評価位置	断面性状			鉄筋仕様	$\begin{aligned} & \text { 解 } \\ & \text { 析 } \\ & \text { ケ } \\ & \text { ー } \\ & \text { ス } \end{aligned}$	地震動	発生断面力		発生 応力度 $\begin{gathered} \sigma^{\prime} \quad c \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime} \text { c } \\ \quad / \\ \sigma^{\prime} \text { ca } \end{gathered}$
	部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$			
④中床版	1000	1500	1370	$\begin{aligned} & \text { D29@150 } \\ & \text { D29@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	33	0	0.14	24	0.01

中床版評価位置図

6．5．3．3－196

表 10－28 中床版曲げ・軸力系の破壊に対する照査値（鉄筋）

地震動名		曲げ・軸力采の破㯖こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.02			
	－	0.02			
Ss－D2	$++$	0.02			
	－	0.02	0.02	0.02	0.02
Ss－D3	$++$	0.01			
	－	0.02			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.01			
	＋	0.01			
$\mathrm{Ss}-\mathrm{F} 2$	$+$	0.01			
	－	0.01			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.02			
	－	0.01			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.01			
	－	0.01			

表 10－29 中床版曲げ・軸力系の破壊に対する最大照査値（鉄筋）

評価位置	断面性状			鉄筋 仕様	解 析 ケ ー ス	地震動	発生断面力		発生 応力度 $\begin{gathered} \sigma \mathrm{s} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 σ sa （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 $\sigma \mathrm{S}$ l o sa
	部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$			
（4）中床版	1000	1500	1370	$\begin{aligned} & \text { D29@150 } \\ & \text { D29@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D1 } \\ (-+) \end{gathered}$	25	0	5	435	0.02

（2）中床版のせん断に対する耐震評価結果
せん断力の破壊に対する照査結果を表 10－30に最大照査値を表 10－31に示す。中床版 のせん断力に対する照査を行った結果，評価位置においてせん断応力度が短期許容せん断応力度以下である又はコンクリートの負担するせん断力（Vc）と，斜め引張鉄筋の負担 するせん断力（V s ）を合わせた短期許容せん断力（V a ）が，発生せん断力（V）以上 であることを確認した。

表 10－30 中床版せん断力の破壊に対する照査値

地震動名		せん断力の破壊て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	＋＋	0.14			
	－	0.13			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0． 13			
	－	0.13	0.13	0.13	0.13
Ss－D3	$++$	0.12			
	－	0． 12			
$\mathrm{Ss}-\mathrm{F} 1$	$++$	0.11			
	－	0.10			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.12			
	－	0.11			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.12			
	－	0.11			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0.11			
	$-$	0.11			

表 10－31 せん断力の破壊に対する最大照査値

評価位置	断面性状			鉄筋 仕様	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 V （kN／m）	短期許容 せん断力 Va （kN／m）	照査値V / Va
	部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）						
（4）中床版	1000	1500	1370	D29＠150 D29＠150	（1）	Ss－D1（－＋）	146	1076	0． 14

評価位置図

6．5．3．3－199

10．4．5 底版に対する耐震評価結果
（1）底版の曲げ軸力に対する評価結果
コンクリートの曲げ軸力に対する照査結果を表 $10-32$ に最大照査値を表 $10-33$ に示す。鉄筋の曲げ軸力に対する照査結果を表 $10-34$ に最大照査値を表 $10-35$ に示す。
許容応力度法による照査を行った結果，評価位置においてコンクリートの圧縮応力度と
鉄筋の引張応力度が短期許容応力度以下であることを確認した。

表 10－32 底版曲げ・軸力系の破壊に対する照査値（コンクリート）

地㽭動名		曲け軸力采か破蜀こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
S s－D1	$+$	0． 10			
	－	0.10			
$\mathrm{Ss}-\mathrm{D} 2$	$+$	0.11			
	－	0.11	0.11	0.11	0.11
S s－D3	$++$	0.09			
	－	0.09			
$\mathrm{Ss}-\mathrm{F} 1$	＋	0.09			
	－	0.09			
$\mathrm{Ss}-\mathrm{F} 2$	＋	0.10			
	－	0.09			
Ss－F 3	$++$	0.08			
	－	0.09			
$\mathrm{Ss}-\mathrm{N} 1$	＋	0.09			
	－	0.08			

表 10－33 曲げ・軸力系の破壊に対する最大照査値（コンクリート）

評価位置	断面性状			鉄筋仕様	$\begin{aligned} & \text { 解 } \\ & \text { 析 } \\ & \text { ケ } \\ & \text { ー } \\ & \text { ス } \end{aligned}$	地震動	発生断面力		発生 応力度 σ ，C （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	
	部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$			
底版	1000	2000	1820	$\begin{aligned} & 2-\text { D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（4）	$\begin{gathered} \text { Ss-D2 } \\ (-+) \\ \hline \end{gathered}$	1609	0	2.50	24	0.11

表 10－34 底版曲げ・軸力系の破壊に対する照査値（鉄筋）

地震動垎		曲げ・軸力系の破捳こ対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース4
$\mathrm{Ss}-\mathrm{D} 1$	$++$	0.13			
	－	0． 13			
$\mathrm{Ss}-\mathrm{D} 2$	$++$	0.14			
	－	0.15	0.14	0.14	0.15
$\mathrm{Ss}-\mathrm{D} 3$	$++$	0． 12			
	－	0． 12			
$\mathrm{Ss}-\mathrm{F} 1$	＋＋	0.12			
	＋	0.12			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.13			
	－	0.12			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.11			
	－	0.12			
$\mathrm{Ss}-\mathrm{N} 1$	$++$	0． 13			
	＋	0.11			

表 10－35 底版曲げ・軸力系の破壊に対する最大照査値（鉄筋）

評価位置	断面性状			鉄筋仕様	解 析 ケ ー ス	地震動	発生断面力		発生 応力度 σ s （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 σ sa $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 σ S ／ σ sa
	部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$			
底版	1000	2000	1820	$\begin{aligned} & 2-\text { D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（4）	$\begin{gathered} \text { Ss-D2 } \\ (-+) \end{gathered}$	1225	0	61	435	0.15

評価位置図

（2）底版のせん断に対する耐震評価結果
せん断力の破壊に対する照査結果を表 $10-36$ に最大照査値を表 $10-37$ に示す。底版の せん断力に対する照査を行った結果，評価位置においてせん断応力度が短期許容せん断応力度以下である又はコンクリートの負担するせん断力（Vc）と，斜め引張鉄筋の負担す るせん断力（V s）を合わせた短期許容せん断力（V a ）が，発生せん断力（V）以上で あることを確認した。

表 10－36 底版せん断力の破壊に対する照査値

地震動名		せん断力の破壊て対する照査			
		ケース（1）	ケース（2）	ケース（3）	ケース（4）
$\mathrm{Ss}-\mathrm{D} 1$	$+$	0.58			
	－	0.57			
$\mathrm{Ss}-\mathrm{D} 2$	$+$	0． 62			
	－	0.62	0.61	0.62	0.63
Ss－D3	＋＋	0.52			
	－	0.52			
$\mathrm{Ss}-\mathrm{F} 1$	＋＋	0.50			
	－	0.52			
$\mathrm{Ss}-\mathrm{F} 2$	$++$	0.56			
	－	0.51			
$\mathrm{Ss}-\mathrm{F} 3$	$++$	0.45			
	－	0.50			
$\mathrm{Ss}-\mathrm{N} 1$	$+$	0.54			
	－	0.47			

表 10－37 せん断力の破壊に対する最大照査値

評価位置	断面性状			鉄筋 仕様	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 V （kN／m）	短期許容 せん断力 Va （kN／m）	照査値 V／Va
	部材 幅 （mm）	部材 高 （mm）	有効 高 （mm）						
底版	1000	2000	1820	D25＠150×150	（4）	$\begin{gathered} \hline \text { Ss-D2 } \\ (-+) \end{gathered}$	7012	11249	0.63

評価位置図

6．5．3．3－204

10．4．6 版部材が側壁を固定することによる隅角部の評価結果
版部材が側壁を固定することによる隅角部の評価結果について，表 $10-38$ に底版及び中床版主鉄筋の曲げに対する評価結果を，表 $10-39$ に側壁鉛直鉄筋の評価結果を示す。
構造物躯体における許容応力度法による照査を行った結果，評価位置において鉄筋の引張応力度が短期許容応力度以下であることを確認した。
以上より，版部材が側壁を固定することによる隅角部の発生値は，許容限界以下であ ることを確認した。

表 10－38 中床版，底版の評価結果

評価位置		断面性状			$\begin{aligned} & \text { 鉄筋 } \\ & \text { 仕様 } \end{aligned}$	$\begin{aligned} & \text { 解 } \\ & \text { 析 } \\ & \text { ケ } \\ & \text { ー } \end{aligned}$	地震動	発生断面力		引張応力度$\begin{gathered} \sigma \mathrm{s} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma \text { sa } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\sigma \mathrm{S}$ l o sa
		$\begin{gathered} \text { 部材 } \\ \text { 幅 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 部材 } \\ \text { 高 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 有効 } \\ \text { 高 } \\ (\mathrm{mm}) \end{gathered}$				$\begin{gathered} \text { 曲げ } \\ \text { モーメン } \\ \text { ト } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$			
	計算図表	1000	1500	1370	$\begin{aligned} & \text { D29@150 } \\ & \text { D29@150 } \end{aligned}$	（1）	Ss－D2（＋＋）	32	0	7	435	0.02
	拘束効果 による曲げ	1000	1500	1370	$\begin{aligned} & \text { D29@150 } \\ & \text { D29@150 } \end{aligned}$	（1）	Ss－D2（＋＋）	385	0	72	435	0.17
	合計	1000	1500	1370	$\begin{aligned} & \text { D29@150 } \\ & \text { D29@150 } \end{aligned}$	（1）	Ss－D2（＋＋）	417	0	78	435	0.18
底 版	計算図表	1000	3000	2820	$\begin{aligned} & 2-\text { D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（2）	Ss－D2（－＋）	1556	0	80	435	0． 19
	拘束効果 による曲げ	1000	3000	2820	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（2）	Ss－D2（－＋）	153	0	8	435	0.02
	合計	1000	3000	2820	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（2）	Ss－D2（－＋）	1709	0	88	435	0.21

表 10－39 側壁鉛直鉄筋の評価結果

	評価位置	断面性状			鉄筋仕様	解 析 ケ ー ス	地震動	発生断面力		引張応力度 σ s （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容応力度 σ sa （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 $\sigma \mathrm{S}$ ／ σ sa
		部材 幅 （mm）	$\begin{gathered} \text { 部材 } \\ \text { 高 } \\ (\mathrm{mm}) \end{gathered}$	有効高 （mm）				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$			
$\begin{array}{\|c\|} \hline \end{array} \left\lvert\, \begin{aligned} & \text { 則 } \\ & \text { 壁 } \\ & (\\ & \text { 中 } \\ & \text { 床 } \\ & \text { 版 } \\ & \text { 部 } \\ & \\ & \hline \end{aligned}\right.$	鉛直断面の 曲げ軸力破 壊による照 査	13000	3400	2900	$\begin{aligned} & \text { 4-D35@150 } \\ & \text { 4-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D2 } \\ (++) \end{gathered}$	6214	423	142	435	0． 33
	中床版から の拘束効果 による曲げ	1000	1000	820	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（1）	$\begin{gathered} \text { Ss-D2 } \\ (++) \end{gathered}$	417	0	57	435	0.14
	合計									199	435	0． 46
 側 壁 （ 底 版 ） 	鉛直断面の 曲げ軸力破 壊による照 査	13000	3400	2750	$\begin{aligned} & \text { 4-D35@150 } \\ & \text { 4-D35@150 } \end{aligned}$	（2）	$\begin{gathered} \text { Ss-D2 } \\ (-+) \end{gathered}$	5913	1976	234	435	0.54
	底版からの 拘束効果 による曲げ	1000	1300	1120	$\begin{aligned} & \text { 2-D35@150 } \\ & \text { 2-D35@150 } \end{aligned}$	（2）	$\begin{gathered} \text { Ss-D2 } \\ (-+) \end{gathered}$	1709	0	155	435	0． 36
	合計									389	435	0． 90

10．4．7 基礎地盤の支持性能に対する評価結果
（1）基礎地盤
基礎地盤の支持性能に対する最大照査値を表 $10-40$ に，照査結果を表 $10-41$ に示す。 また，最大接地圧分布図を図 10－22に示す。

第 3 号機補機冷却海水系放水ピットの基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 10－40 基礎地盤の支持性能最大照査値

地震動		ケース①	ケース（2）	ケース③）	ケース（4）
S s－D 1	＋＋	0.10			
	－＋	0． 12			
S s－D 2	＋＋	0.11			
	－＋	0.09	0.08	0.08	0.09
S s－D 3	＋＋	0.09			
	－＋	0． 10			
S s－F1	＋＋	0.08			
	－＋	0.11			
S s－F 2	＋＋	0.12			
	－＋	0.09			
S s－F 3	＋＋	0.10			
	－＋	0． 10			
S s－N 1	＋＋	0.12			
	－＋	0.11			

表 10－41 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	$\mathrm{Ss}-\mathrm{N} 1(++)$	1.3	11.4	0.12

図 10－22 基礎地盤の最大接地圧分布図
（2）MMR（新設）
MMR（新設）の支持性能対する最大照査値を表 $10-42$ に，照査結果を表 $10-43$ に示す。 また，最大接地圧分布図を図 $10-23$ に示す。

第 3 号機補機冷却海水系放水ピットの MMR（新設）に発生する最大接地圧が，支圧強度 を下回ることを確認した。

表 10－42 MMR の支持性能最大照査値

地震動		ケース①	ケース（2）	ケース③	ケース（4）
$\mathrm{S} s-\mathrm{D} 1$	＋＋	0． 18			
	－＋	0． 18			
S s－D 2	＋＋	0． 19			
	－＋	0.21	0． 20	0． 20	0.21
S s－D 3	＋＋	0． 16			
	－＋	0． 17			
$\mathrm{S} s-\mathrm{F} 1$	＋＋	0． 17			
	－＋	0． 16			
$\mathrm{Sos}-\mathrm{F} 2$	$++$	0． 17			
	－＋	0． 17			
$\mathrm{Ss}-\mathrm{F} 3$	＋＋	0． 16			
	－＋	0.16			
$S \mathrm{~s}-\mathrm{N} 1$	$++$	0.16			
	－＋	0.15			

表 10－43 MMR（新設）の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime}{ }_{\mathrm{a}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
（4）	$\mathrm{Ss}-\mathrm{D} 2(-+)$	6.1	30.0	0.21

構造物底面

支圧強度 $30.0 \mathrm{~N} / \mathrm{mm}^{2}$

図 10－23 MMR（新設）の最大接地圧分布図
（3）健全性評価
MMR（新設）のせん断破壊に対する局所安全係数を表 10－44 に，引張破壊に対する局所安全係数を表10－45に示す。

また，せん断破壊及び引張破壊に対する局所安全係数が 1.0 を下回るケースについて，最大せん断応力発生時刻及び最大引張応力発生時刻の局所安全係数分布を図 10－24～図10－ 61 に示す。

なお，せん断破壊又は引張破壊に対する局所安全係数が 1.0 を下回る要素が最も多いケー スにおける変形図を図 $10-62$ に，主応力図を図 10 － 63 に示す。
fs $=R / S$
ここに， f s：局所安全係数
R：せん断強度または引張強度
S：発生せん断応力または発生引張応力

図 10－50に示すように，局所的に引張破壊している要素が分布しているが，図 $10-62$ に示す変形図のとおり，当該時刻は第 3 号機補器冷却海水系放水ピット全体が海水熱交換器建屋方向に変形しており，局所的な引張破壊とせん断破壊はその影響によるものである。また，図 10－63 に示す主応力図より，ひび割れ面は鉛直下向きになるため，支持性能を損ならす べり線は想定されないことから，MMR（新設）の安定性に影響を及ぼすことはない。なお，第 3 号機補器冷却海水系放水ピットとMMR（新設）間のジョイント要素においてすべりは発生していないことから，滑動に対しても安全である。

以上から，MMR（新設）の健全性を確認した。

表 10－44 MMR（新設）のせん断破壊に対する局所安全係数

解析 ケース	地震動		せん断応力 $\mathrm{S}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	せん断強度 $\mathrm{R}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値＊ R／S
（1）	S s－D 1	$++$	4． 87	6.00	1． 23
		－＋	7． 26	6． 00	0． 82
	S s－D 2	＋＋	5． 72	6． 00	1.04
		－＋	5.85	6.00	1． 02
	S s－D 3	＋＋	5.65	6． 00	1． 06
		－＋	4． 81	6.00	1． 24
	S s－F 1	＋＋	6.11	6． 00	0.98
		－＋	4． 84	6． 00	1． 23
	$\mathrm{Ss}-\mathrm{F} 2$	＋＋	4． 90	6． 00	1． 22
		－＋	6． 26	6． 00	0.95
	Ss－F 3	$++$	4． 89	6． 00	1． 22
		－＋	6.89	6． 00	0． 87
	S s－N 1	＋＋	5． 76	6． 00	1.04
		－＋	4.94	6.00	1． 21
（2）	S s－D 2	$-+$	5． 86	6． 00	1． 02
（3）	S s－D 2	－＋	5． 55	6． 00	1． 08
（4）	Ss－D 2	－＋	5.97	6.00	1.00

注記＊：最小安全率として最小値となる数値を記載。照査値R／S＞1．0 であることを確認する。

表 10－45 MMR（新設）の引張破壊に対する局所安全係数

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{aligned} & \text { 引張応力 } \\ & \mathrm{S}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{aligned}$	$\begin{gathered} \text { 引張強度 } \\ \mathrm{R}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値＊ R / S
（1）	S s－D 1	$++$	9． 44	2． 22	0． 23
		－＋	9． 26	2． 22	0． 23
	S s－D 2	＋＋	10.00	2． 22	0． 22
		－＋	12． 20	2． 22	0． 18
	S s－D 3	$++$	11.58	2． 22	0． 19
		$-+$	11.07	2． 22	0． 20
	$\mathrm{Ss}-\mathrm{F} 1$	＋＋	11.90	2． 22	0． 18
		$-+$	9． 44	2． 22	0． 23
	$\mathrm{Ss}-\mathrm{F} 2$	＋＋	9． 44	2． 22	0． 23
		－＋	10.43	2． 22	0． 21
	Ss－F 3	＋＋	9． 96	2． 22	0． 22
		$-+$	14． 19	2． 22	0． 15
	S s－N 1	$++$	13． 16	2． 22	0． 16
		$-+$	10.65	2． 22	0． 20
（2）	S s－D 2	－＋	11.93	2． 22	0． 18
（3）	S s－D 2	$-+$	11． 39	2． 22	0． 19
（4）	S s－D 2	$-+$	12． 17	2.22	0.18

注記＊：最小安全率として最小値となる数値を記載。照査値R／S＞1．0 であることを確認する。

図 10－24 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），S s－D $1 \quad(++), \quad \mathrm{t}=43.64 \mathrm{~s})$

図 10－25 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目）

$$
\text { (ケース (1) , 地震動 S s - D } 1 \quad(++), \quad \mathrm{t}=21.17 \mathrm{~s})
$$

図 10－26 MMR（新設）のせん断応力最大時刻の局所安全係数（せん断破壊着目） （ケース（1），地震動 S s－D $1 \quad(-+), \quad t=20.36 s)$

図 10－27 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－D $1 \quad(-+), ~ t=20.36 s)$

図 10－28 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース 1 ），地震動 S s－D $1(-+), ~ t=14.25 \mathrm{~s})$

図 10－29 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目）
（ケース（1），地震動 S s－D $2(++), \quad t=8.63 \mathrm{~s})$

図 10－30 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－D $2(++), \quad \mathrm{t}=12.93 \mathrm{~s})$

図 10－31 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目）

$$
\text { (ケース (1), 地震動 S s-D } 2(-+), \quad \mathrm{t}=13.41 \mathrm{~s})
$$

図 10－32 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－D $2(-+), \quad t=13.42 \mathrm{~s})$

図 10－33 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目）
（ケース（1），地震動 S s－D $3(++), \quad \mathrm{t}=8.83 \mathrm{~s})$

図 10－34 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目）
（ケース（1），地震動 S s－D $3(++), \quad \mathrm{t}=8.83 \mathrm{~s})$

図 10－35 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目）

$$
(ケ ー ス(1), \text { 地震動S s - D } 3(-+), \quad t=15.64 \mathrm{~s})
$$

図 10－36 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－D $3(-+), \quad t=15.64 \mathrm{~s})$

図 10－37 MMR（新設）のせん断応力最大時刻の局所安全係数（せん断破壊着目）
（ケース（1），地震動 S s－F $1 \quad(++), \quad \mathrm{t}=20.10 \mathrm{~s})$

図 10－38 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $1 \quad(++), ~ t=20.10 \mathrm{~s})$

図 10－39 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $1 \quad(++), \quad \mathrm{t}=20.21 \mathrm{~s})$

図 10－40 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $1(-+), \quad \mathrm{t}=14.66 \mathrm{~s})$

図 10－41 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $1 \quad(-+), \quad t=14.66 \mathrm{~s})$

図 10－42 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $2(++), ~ t=27.80$ s）

図 10－43 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $2(++), \quad t=26.94 \mathrm{~s})$

図 10－44 MMR（新設）のせん断応力最大時刻の局所安全係数（せん断破壊着目） （ケース（1），地震動 S s－F $2(-+), \quad \mathrm{t}=28.55 \mathrm{~s}$ ）

図 10－45 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $2(-+), \quad t=28.55 \mathrm{~s})$

図 10－46 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目）
（ケース（1），地震動 S s－F $2(-+), \quad \mathrm{t}=28.47 \mathrm{~s})$

図 10－47 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $3(++), \quad \mathrm{t}=26.73 \mathrm{~s})$

図 10－48 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $3(++), \quad t=27.84 \mathrm{~s})$

図 10－49 MMR（新設）のせん断応力最大時刻の局所安全係数（せん断破壊着目）
（ケース（1），地震動 S s－F $3(-+), \quad \mathrm{t}=26.85 \mathrm{~s})$

図 10－50 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $3(-+), \quad \mathrm{t}=26.85 \mathrm{~s}$ ）

図 10－51 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－F $3(-+), \quad \mathrm{t}=26.86 \mathrm{~s})$

図 10－52 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－N $1 \quad(++), ~ t=7.55 \mathrm{~s})$

図 10－53 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－N $1 \quad(++), \quad \mathrm{t}=7.55 \mathrm{~s})$

図 10－54 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動 S s－N $1(-+), ~ t=6.90 s)$

図 10－55 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（1），地震動S s－N $1(-+), \quad t=7.39 \mathrm{~s})$

図 10－56 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（2），地震動 S s－D $2(-+), \quad \mathrm{t}=13.41 \mathrm{~s})$

図 10－57 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（2），地震動 S s－D $2(-+), \quad \mathrm{t}=13.42 \mathrm{~s})$

図 10－58 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース③）地震動 S s－D $2(-+), ~ t=6.93 \mathrm{~s})$

図 10－59 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（3），地震動 S s－D $2(-+), \quad t=13.42 \mathrm{~s})$

図 10－60 MMR（新設）のせん断応力最大時刻の局所安全係数（引張破壊着目） （ケース（4），地震動 S s－D $2(-+), \quad \mathrm{t}=13.41 \mathrm{~s})$

図 10－61 MMR（新設）の引張応力最大時刻の局所安全係数（引張破壊着目） （ケース（4），地震動 S s－D $2(-+), \quad \mathrm{t}=13.42 \mathrm{~s})$

- ：変形前
- ：変形後

図 10－62 変形図
（ケース（1），地震動 S s－F $3(-+), \quad \mathrm{t}=26.85 \mathrm{~s}$ ）

- ：圧縮
- ：引張

図 10－63 主応力図
（ケース（1），地震動S s－F3（－＋），t＝26．85s）
6．浸水防護施設に関する補足説明
6.5 浸水防止設備に関する補足説明
6．5．3 浸水防止蓋に関する補足説明
6．5．3． 4 浸水防止蓋（第 3 号機補機冷却海水系放水ピット）の強度計算書に関する補足説明
目 次
1．概要 1
2．基本方針 2
2.1 配置概要 2
2.2 構造計画 4
2.3 評価方針 5
2.4 適用基準 7
2.5 記号の説明 8
3．評価対象部位 10
3.1 応力評価の評価対象部位 10
3.2 変形性評価の評価対象部位 13
4．固有値解析 14
4． 1 固有値解析のモデルの設定及び解析手法 14
4．2 固有振動数の計算結果 16
5．構造強度評価 20
5.1 応力評価方法 20
5.2 変形性評価方法 40
6．評価結果 42
（別紙1）津波によるボイリング対策について
（別紙2）スキンプレートの止水対策について

1．概要

本資料は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している構造強度に基づき，浸水防護施設のらち浸水防止蓋（第 3 号機補機冷却海水系放水ピ ット）（以下「浸水防止蓋」という。）が津波の冠水に伴う突き上げ荷重及び余震を考慮した荷重に対して，主要な構造部材が十分な構造強度を有していることを説明するものである。 なお，浸水防止蓋の強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．基本方針

2.1 配置概要

浸水防止蓋は，第3号機補機冷却海水系放水ピット上部から浸水を防止するために設置する。浸水防止蓋の設置位置図を図 $2-1$ ，浸水対策図を図 $2-2$ に示す。

図 2－1 浸水防止蓋の設置位置図

図2－2（1）第3号機放水立坑～第3号機補機冷却海水系放水ピット
浸水対策配置図（平面図）

図2－2（2）第3号機放水立坑～第3号機補機冷却海水系放水ピット
浸水対策配置図（ $\mathrm{A}-\mathrm{A}$ 断面図）

2．2 構造計画

浸水防止蓋は，第 3 号機補機冷却海水系放水ピットからの浸水を防止するため，近接する第 3 号機海水熱交換器建屋側面に鋼製ブラケットを介して固定ボルトにて固定し，地震時に異な る挙動を示す可能性がある第 3 号機補機泠却海水系放水ピットとの境界部には止水ジョイント （M 型ジョイント）を設置することで止水性を確保する構造とする。

また，浸水防止蓋はメンテナンス等のため開閉を行うハッチを組み合わせた構造とする。浸水防止蓋の構造計画を表2－1に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		構造概略図
基礎•支持構造	主体構造	
十分な支持性能を有す る第 3 号機海水熱交換器建屋側面 に固定ボル トで固定す る。	浸水防止 蓋，鋼製ブ ラケット及 び固定ボル トにより構 成する。 第 3 号機補 機冷却海水 系放水ピッ トとの境界 部には止水 ジョイント （M型ジョ イント）を 設置する。 また，浸水 防止蓋には ハッチを設 置する。	鋼製ブラケット 浸水防止蓋

6．5．3．4－4

2． 3 評価方針

浸水防止蓋の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」 に示す浸水防止蓋の構造を踏まえ，「3．評価対象部位」にて設定する評価部位の応力評価と変形性評価を実施することで，構造強度を有すること及び止水性を損なわないことを確認す る。
浸水防止蓋，鋼製ブラケット及び固定ボルトの応力評価については，「4．固有値解析」で算出した固有振動数に基づく余震荷重により算出した応力が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認する。

止水ジョイントは浸水防止蓋と第 3 号機補機冷却海水系放水ピットとの境界部に設置するこ とから浸水防止蓋と第 3 号機補機冷却海水系放水ピットに生じる変位量を用いて評価する。な お，余震荷重による変位量は設計用地震力による変位量を下回ることは明白であることから，添付書類「VI－2－10－2－8－4 浸水防止蓋（第3号機補機冷却海水系放水ピット）の耐震性につ いての計算書」にて算定した設計用地震力における最大変位量が，重畳時（津波荷重と余震荷重作用時）の止水ジョイントの許容限界内に収まることを確認する。応力評価及び変形性評価 の確認結果を「6．評価結果」にて確認する。

強度評価フローを図 $2-3$ に示す。

図2－3 強度評価フロー

2.4 適用基準

適用する規格•基準等を以下に示す。
（1）日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法
（2）日本建築学会 2010 年 各種合成構造設計指針•同解説
（3）日本産業規格（J I S ）
（4）日本建築学会 2018 年 鉄筋コンクリート構造計算規準•同解説

2.5 記号の説明

浸水防止蓋の強度評価に用いる記号を表2－2にそれぞれ示す。
表2－2（1）浸水防止蓋の強度評価に用いる記号（1／2）

記号	単位	定義
S d	kN	弾性設計用地震動S d－D 2 に伴う余震荷重
S d H	kN	弾性設計用地震動S d－D 2 の水平方向の余震荷重
S dim（NS）	kN	弾性設計用地震動 S d－D 2 の水平方向（ $\mathrm{N}-\mathrm{S}$ ） の余震荷重
S ditew）	kN	弾性設計用地震動S d－D 2 の水平方向（E－W） の余震荷重
S d v	kN	弾性設計用地震動S d－D 2 の鉛直方向の余震荷重
$\alpha_{\text {H }}$	－	弾性設計用地震動S d－D 2 の水平方向の余震震度
$\alpha_{\mathrm{H}(\mathrm{NS})}$	－	弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ の水平方向（ $\mathrm{N}-\mathrm{S}$ ） の余震震度
$\alpha_{\text {H（EW）}}$	－	弾性設計用地震動S d－D 2 の水平方向（E－W） の余震震度
α V	－	弾性設計用地震動S d－D 2 の鉛直方向の余震震度
G	kN	固定荷重
$\mathrm{C}_{\text {D }}$	－	抗力係数
$\rho 0$	t／m ${ }^{3}$	水の密度
U	m／s	流速
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
H	mm	評価高さ
P s	kN	積雪荷重
W s	$\mathrm{N} / \mathrm{m}^{2}$	1 cm 当りの積雪荷重
d s	cm	積雪高さ
A	m^{2}	浸水防止蓋の面積
Pt	kN／m ${ }^{2}$	突き上げ荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	$\mathrm{N} \cdot \mathrm{mm}$	最大曲げモーメント
x	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度
A s	mm ${ }^{2}$	浸水防止蓋の単位幅あたりのせん断断面積
Z	mm ${ }^{3}$	浸水防止蓋の断面係数
α	－	平板のモーメントに関する係数

表2－2（2）浸水防止蓋の強度評価に用いる記号（2／2）

記号	単位	定義
β	－	平板のせん断力に関する係数
w	$\mathrm{kN} / \mathrm{m}^{2}$	浸水防止蓋に作用する単位面積当りの等分布荷重
w＇	$\mathrm{N} / \mathrm{mm}^{2} \cdot \mathrm{~mm}$	浸水防止蓋に作用する単位幅当りの等分布荷重
1_{x}	mm	浸水防止蓋の短辺長
t	mm	浸水防止蓋の厚さ
T d	kN	固定ボルト1本当りに作用する引張力
q	kN	固定ボルト1本当りに作用するせん断力
R n	kN	固定ボルトの支点反力（引張）
Rm	kN • mm	固定ボルトの支点モーメント
R s	kN	固定ボルトの支点反力（せん断）
B	mm	照査箇所のボルト間隔（mm）
N	本	照査箇所の固定ボルトの本数
$\sigma \mathrm{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	ハッチの固定ボルト 1 本当りに生じる引張応力度
T s	kN	ハッチの固定ボルト 1 本当りに作用する引張力
A h	mm^{2}	ハッチの受圧面積
n s	本	ハッチの固定ボルトの本数
A＇	mm^{2}	ハッチの固定ボルトの有効断面積
τ s	$\mathrm{N} / \mathrm{mm}^{2}$	ハッチの固定ボルト1本当りに生じるせん断応力度
q s	kN	ハッチの固定ボルト1本当りに作用するせん断力

3．評価対象部位
浸水防止蓋の評価対象部位は，「2．2 構造計画」に設定している構造を踏まえて，突き上げ津波荷重及び余震荷重の作用方向及び伝達過程を考慮し設定する。

3.1 応力評価の評価対象部位

応力評価の評価対象部位は，津波荷重及び余震荷重が浸水防止蓋及び鋼製ブラケットに作用 し，鋼製ブラケットを固定している固定ボルトを介して躯体に伝達することから，浸水防止蓋，鋼製ブラケット及び固定ボルトを応力評価の評価対象部位として設定する。

また，浸水防止蓋のハッチ部の運用について，原則閉止運用とするとともに，定期点検時等 により開状態となる場合においても速やかに閉操作できる人員を，ハッチ付近に待機させる運用とすることから（詳細は，「6．5．3 浸水防止蓋に関する補足説明 参考資料 1 浸水防止蓋 の開閉運用について」に示す。），閉止時を基本とした荷重の作用方向及び伝達過程を考慮す る。ハッチ部に作用する慣性力は締付部（固定ボルト）を介して浸水防止蓋に伝達されること から締付部の固定ボルトを評価対象部位として設定する。

応力評価の評価対象部位について図 3－1 に示す。

$\mathrm{A}-\mathrm{A}$ 断面

図 3－1（1）評価対象部位（応力評価）

6．5．3．4－11

B－B 断面

ハッチ（1）断面図

ハッチ（2）断面図

図 3－1（2）評価対象部位（応力評価）

3.2 変形性評価の評価対象部位

変形性評価の評価対象部位は，余震に伴う浸水防止蓋と第 3 号機補機冷却海水系放水ピット の変位が止水ジョイントに作用することから，止水ジョイントを変形性評価の評価対象部位と して設定する。変形性評価の評価対象部位について図 3－2 に示す。

平面図

$B-B$ 断面

$\mathrm{C}-\mathrm{C}$ 断面
図 3－2 評価対象部位（変形性評価）

4．固有値解析
4．1 固有値解析のモデルの設定及び解析手法
浸水防止蓋と鋼製ブラケットは一体化された三次元性を有する構造であることを踏まえ，図 4－1 に示す三次元フレームモデルにより固有値解析を実施する。
解析コードは「Engineer’s StudioVer．6．00．4」を用いる。
解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。

対象部材	材質	断面形状
$:$ 主松（1）	SUS304	$\mathrm{H}-200 \times 200 \times 20 \times 20$
- 主析（2）	SUS304	$\mathrm{H}-200 \times 300 \times 20 \times 20$
- 斜材	SUS304	$\mathrm{H}-200 \times 200 \times 8 \times 12$
- 横析	SUS304	$\mathrm{H}-200 \times 300 \times 20 \times 20$
－ブレース材	SUS304	$\mathrm{L}-60 \times 60 \times 5$
：縦析	SUS304	$\mathrm{H}-200 \times 200 \times 8 \times 12$

図 4－1（1）固有値解析モデル（1／2）

記号	$\mathrm{x}^{* 1}$	$\mathrm{y}^{* 1}$	$\mathrm{z}^{* 1}$
	剛結 $^{* 2}$	剛結 $^{* 2}$	剛結 $^{* 2}$
-	ピン＊2	ピン＊2	ピン＊2

注記 ※1：x，y，z は要素座標系で，xは部材軸方向となる。
$※ 2: ~ H$ 鋼の接合箇所は剛結とし，ブレースと H 鋼をボルトにて接合している箇所についてはピンとする。

図 4－1（2）固有値解析モデル（2／2）

4．2 固有振動数の計算結果

固有振動数の解析結果を表 4－1 及び図 4－2 に示す。固有振動数は 20 Hz 以上であることか ら，剛構造である。

表 4－1（1）固有値解析結果（1／2）

振動モード 次数	卓越方向	固有周期 T（Sec）	固有振動数 $\mathrm{f}(\mathrm{Hz})$	x 方向刺激係数	$\mathrm{y} \text { 方向 }$ 刺激係数	z方向刺激係数
1	z方向	0.041	24.17	－0．001	－0．002	－2．814
2		0.030	33.88	－0．001	－0．041	0.015
3		0.027	36.90	0.000	0.047	－0．005
4		0.027	37.58	－0．001	0.007	0.003
5		0.026	37.82	0.002	0.015	0.021
6		0.026	38.20	－0．001	0.023	－0．018
7		0.026	38.58	0.002	0.017	－0．015
8		0.025	40.04	－0．001	－0．006	－0．012
9		0.024	41.27	0.003	0.018	－0．009
10		0.024	42.24	0.000	0.002	0.056
11		0.024	42.51	0.001	－0．003	0.002
12		0.023	43.13	0.003	0.016	0.002
13		0.021	47.97	－0．001	0.005	－0．602
14		0.015	66.63	－0．914	1.508	0.002
15		0.015	66.93	0.344	－0．523	0.012
16		0.015	67.26	－0．334	0.535	－0．001
17		0.015	67.89	－0．001	－0．006	－0．013
18		0.015	68.52	0.147	－0．235	0.005
19		0.014	69.15	0.042	－0．039	0.012
20		0.014	69.48	－0．161	0.214	－0．003
21		0.014	69.82	0.011	0.000	0.003
22		0.014	70.04	－0．035	0.045	0.001
23		0.014	70.30	－0．014	0.016	0.004
24		0.014	71.22	0.240	－0．350	－0．011
25		0.014	71.96	－0．220	0.280	0.004
26		0.010	98.46	0.010	0.023	－0．034
27		0.010	98.71	－0．007	－0．035	0.051
28		0.010	98.94	－0．007	－0．049	0.091
29		0.010	99.05	0.007	0.032	0.059
30		0.010	99.93	－0．001	0.005	－0．006
31		0.010	101.16	－0．007	－0．027	－0．017
32		0.010	101.54	0.004	0.018	0.020
33		0.010	103.15	0.019	0.086	0.027
34		0.010	103.46	0.005	0.021	－0．032
35		0.010	104.21	－0．005	－0．026	0.002
36		0.010	105.06	－0．038	－0．197	－0．052
37		0.009	106.77	－0．003	－0．015	0.402
38	y方向	0.009	108.71	0.298	1.639	－0．022
39		0.009	110.96	0.164	0.901	0.033
40		0.009	112.38	0.195	1.075	0.009
41		0.009	116.39	－0．006	－0．027	－0．005
42		0.009	116.84	－0．023	－0．114	0.006
43		0.008	124.01	－0．052	－0．266	0.002
44		0.008	130.57	－0．037	－0．196	－0．005
45		0.007	136.73	0.004	0.070	－0．043
46		0.007	137.74	0.102	0.435	0.004
47		0.007	139.18	0.026	0.046	－0．055
48		0.007	139.88	－0．023	－0．140	－0．019
49		0.007	141.16	0.012	－0．006	－0．043
50		0.007	142.27	0.030	0.067	0.010

表 4－1（2）固有値解析結果 $(2 / 2)$

振動モード 次数	卓越方向	固有周期 T（Sec）	固有振動数 f（ Hz ）	x方向刺激係数	y 方向刺激係数	z 方向刺激係数
51		0.007	142.84	0.021	0.053	－0．064
52		0.007	146.25	－0．010	－0．045	－0．013
53		0.007	148.80	－0．008	0.020	－0．037
54		0.007	151.22	－0．038	－0．002	－0．020
55		0.006	154.27	0.039	0.129	0.025
56		0.006	157.99	0.026	－0．008	0.516
57		0.006	158.18	－0．016	－0．026	－0．190
58		0.006	161.64	－0．027	－0．122	－0．031
59		0.006	163.43	－0．004	－0．034	－0．014
60		0.006	168.10	－0．114	－0．074	0.305
61		0.006	169.82	0.292	0.131	0.021
62		0.006	170.31	0.133	0.104	0.023
63		0.006	170.52	－0．257	－0．126	－0．079
64		0.006	171.62	0.126	0.057	－0．016
65		0.006	173.74	－0．005	－0．064	－0．004
66		0.006	176.20	0.000	－0．007	0.080
67		0.006	179.44	－0．046	0.017	－0．009
68		0.005	182.04	0.007	－0．027	－0．109
69		0.005	182.70	0.011	－0．003	0.046
70		0.005	183.98	－0．029	－0．013	－0．001
71		0.005	184.52	－0．050	－0．013	0.008
72		0.005	184.97	0.093	0.072	0.017
73		0.005	185.27	0.014	－0．019	0.016
74		0.005	186.19	－0．023	－0．010	0.047
75		0.005	187.50	－0．080	－0．047	0.000
76		0.005	189.22	0.030	0.010	0.058
77		0.005	191.58	0.078	0.071	－0．073
78		0.005	191.94	0.022	0.021	0.176
79		0.005	196.63	－0．023	－0．003	0.180
80		0.005	197.46	0.012	0.019	－0．040
81		0.005	204.43	0.007	0.018	0.018
82		0.005	209.76	－0．006	0.004	0.033
83		0.005	215.25	0.020	0.042	0.123
84		0.005	218.42	0.018	0.024	0.031
85		0.004	222.59	－0．269	－0．139	0.362
86		0.004	232.50	－0．238	－0．415	－0．135
87		0.004	233.03	0.160	0.197	－0．067
88		0.004	234.20	－0．198	－0．248	0.011
89		0.004	236.83	0.106	0.212	0.063
90		0.004	240.15	0.083	0.152	－0．068
91		0.004	249.88	－0．093	0.064	－0．023
92		0.004	253.89	0.355	0.071	0.172
93		0.004	260.07	－0．240	0.105	－0．070
94		0.004	273.57	－0．023	－0．014	－0．003
95	x 方向	0.004	276.20	1.433	0.149	－0．001
96		0.004	277.12	0.790	0.082	－0．005
97		0.004	278.75	1.240	0.114	－0．007
98		0.004	282.21	1.035	0.061	－0．008
99		0.004	284.68	0.308	0.179	－0．011
100		0.003	287.67	－0．113	－0．023	0.003

振動モード：1 次，固有振動数 24.17 Hz

振動モード：38 次，固有振動数 108.71 Hz
図 4－2（1）固有値解析結果（ $1 / 2$ ）

振動モード：95 次，固有振動数 276.20 Hz
図 4－2（2）固有値解析結果（2／2）

5．構造強度評価

5．1 応力評価方法

浸水防止蓋，鋼製ブラケット及び固定ボルトの応力評価は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「5．1．2 許容限界」にて示す許容限界以下であることを確認する。

5．1．1 荷重及び荷重の組合せ

（1）荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを以下に示す。

$$
\mathrm{G}+\mathrm{Pt}+\mathrm{Sd}+\mathrm{Ps}
$$

ここで，G ：固定荷重 (kN)
P t ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
S d ：弾性設計用地震動 S d－D 2 による余震荷重（ kN ）
P s ：積雪荷重（kN）

なお，浸水防止蓋については，鉛直方向の荷重の組合せにおいて，自重及び積雪荷重は鉛直下向きに作用し計算上有利となる事から考慮しない。
（2）荷重の設定
応力評価に用いる荷重は，以下のとおりとする。
a．固定荷重（G）
固定荷重として，浸水防止蓋を構成する部材の自重を考慮する。
b．突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重は，浸水防止蓋に作用するものとする。また，評価においては浸水津波荷重を含むものとし，以下の式により算出する。
$\mathrm{P}_{\mathrm{t}}=1 / 2 \cdot \mathrm{C}_{\mathrm{D}} \cdot \rho_{0} \cdot \mathrm{U}^{2}+\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{H}$
ここで， P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
C_{D} ：抗力係数（ $=2.01$ ）
$\rho_{0}:$ 水の密度 $\left(=1.03 \mathrm{t} / \mathrm{m}^{3}\right)$
U ：流速 $(=1.0 \mathrm{~m} / \mathrm{s})$
g ：重力加速度（ $\left.=9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$
H ：評価高さ
（設計津波水位 0．P．+18.0 m 一設置位置 0. P．$+14.6 \mathrm{~m}=3.4 \mathrm{~m}$ ）
c．積雪荷重（Ps）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のらち，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

積雪荷重による質量は以下に式より算出する。

P s $=0.35 \cdot \mathrm{~W} \mathrm{~s} \cdot \mathrm{~d} \mathrm{~s} \cdot \mathrm{~A} \cdot 10^{-3}$
ここで， P s ：積雪荷重 (kN)
Ws： 1 cm 当りの積雪荷重 $20\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
d s ：積雪高さ 43 （ cm ）
A ：浸水防止蓋の面積（ m^{2} ）
d．余震荷重（S d）
余震荷重として，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算 の方針」に示すとおり，弾性設計用地震動S d－D 2 に伴ら地震力を考慮する。

「4．固有値解析」に示したとおり，浸水防止蓋と鋼製ブラケットを一体として解析 した固有振動数が 20 Hz 以上であることを確認したため，応力評価に用いる設計震度は，材料物性の不確かさを考慮したものとして添付書類「VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書」の地震応答解析結果を用いる。地震応答解析ケースを表5－ 1 に，設計震度を表5－2 に示す。ここで，地震力は浸水防止蓋の設置位置における水平方向の最大応答加速度から設定する震度を用いて評価するものとし，下記のとおり算出する。

S d ${ }_{H}=(G+P s) \cdot \alpha_{H}$
ここで， $\mathrm{S} \mathrm{d}_{\mathrm{H}}$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ の水平方向の余震荷重（kN）
G ：固定荷重（kN）
Ps ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ の水平方向の余震震度

また，表5－2のとおり，鉛直方向の余震震度が 1 未満であることから，浸水防止蓋 の自重と鉛直方向の地震力を足し合わせた荷重は，突き上げ津波荷重を相殺する向きに作用するため，浸水防止蓋の応力評価においては自重と鉛直方向の地震力を保守的に考慮しないこととする。

表5－1 地震応答解析ケース

対像地素動	ケース名	スケルトンカーブ		建屋材枓娍衰	地腭物性	
		初明埧性	終局酎力		人力地战動	
弹性設計用地震動$\mathrm{Sd}-\mathrm{D} 2$(水平)	$\left\lvert\, \begin{aligned} & \text { ケース } \\ & \text { (基本ケース) } \end{aligned}\right.$	2011年3月11日東北地方太平羊沛地震め視測記㖨を用いだンきュ レーション解析により䘤正	設計基晋㱛度を用い JEAG 式て評価	5\％		
	ケース2	闰上	同上：	同上：	同1：	
	ケース3					標倍地監 - －
粥性設計用地震動 $\mathrm{sd}-\mathrm{D}_{2}$ （铂南）	$\begin{aligned} & \hline \text { クース1 } \\ & \text { (基本クース) } \end{aligned}$	設計㒳䦌	－	5\％	直授大力	
	ケース2	同上	－	同立：	同上：	標地地锷 +0
	ケース3					

表5－2 余震震度

表中の 0．P．は第 3 号機海水熱交換器建屋の地震応答計算書での値を示す。

5．1．2 許容限界

浸水防止蓋の許容限界は，「3．評価対象部位」にて設定した部位に対し，添付書類
「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。
（1）使用材料
浸水防止蓋，鋼製ブラケット及び固定ボルトの使用材料を表5－3に示す。

表 5－3 使用材料

評価対象部位		材質	仕様
浸水防止蓋	スキンプレート	SUS304	$\mathrm{t}=16$（mm）
鋼製ブラケット	主桁（1）	SUS304	$\mathrm{H}-200 \times 200 \times 20 \times 20(\mathrm{~mm})$
	主桁（2）	SUS304	$\mathrm{H}-200 \times 300 \times 20 \times 20(\mathrm{~mm})$
	横桁	SUS304	$\mathrm{H}-200 \times 300 \times 20 \times 20 \quad(\mathrm{~mm})$
	斜材	SUS304	$\mathrm{H}-200 \times 200 \times 8 \times 12(\mathrm{~mm})$
	ブレース材	SUS304	L－60×60×5（mm）
	縦桁	SUS304	$\mathrm{H}-200 \times 200 \times 8 \times 12$（mm）
固定ボルト	固定ボルト（1）	SUS304	M20
	固定ボルト（2）	SUS304	M20
ハッチ①	スキンプレート	SUS304	$\mathrm{t}=16$（mm）
	固定ボルト	SUS304	追而
ハッチ（2）	スキンプレート	SUS304	$\mathrm{t}=16$（mm）
	固定ボルト	SUS304	追而

（2）許容限界
a．浸水防止蓋，鋼製ブラケット，ハッチ
浸水防止蓋，鋼製ブラケットの許容応力度は，「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一」に基づき表5－4の値とする。

表 5－4 浸水防止蓋，鋼製ブラケットの短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
	曲げ	せん断
SUS304	205	118

b．固定ボルト
固定ボルトの許容荷重は，「3．評価対象部位」に記載した固定ボルトに作用する荷重の向きを踏まえて，「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基 づき算定する。

地震荷重を考慮する場合の固定ボルトの許容荷重を表5－5に示す。
なお，固定ボルトは躯体に埋め込まれていることから，固定ボルトが引張力を受ける場合においては，固定ボルトの降伏により決まる許容荷重（ $\mathrm{P}_{\mathrm{a} 1}$ ）），付着力により決 まる許容荷重（ P_{a} 3 ）を比較して，いずれか小さい値を採用する。また，固定ボルト がせん断力を受ける場合においては，固定ボルトのせん断強度により決まる許容荷重 （ q_{a} 1），定着したコンクリート躯体の支圧強度により決まる許容荷重（ q a 2 ）及び コーン状破壊により決まる許容荷重（ q a 3 ）を比較して，いずれか小さい値を採用す る。

地震荷重を考慮する場合の固定ボルトの許容荷重の設定に用いる入力値を表 5－5 に，許容荷重を表5－6に示す。

引張力を受ける場合
$\mathrm{P}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{pa}} \cdot \mathrm{sc}_{\mathrm{c}} \mathrm{a}$
$\mathrm{P}_{\mathrm{a} 3}=\Phi_{3} \cdot \tau_{\mathrm{a}} \cdot \pi \cdot \mathrm{d}_{\mathrm{a}} \cdot 1_{\mathrm{ce}}$
ここで， $\mathrm{P}_{\mathrm{a} 1}$ ：固定ボルトの降伏により決まる場合の固定ボルト 1 本当たりの許容引張力（N）
Pa3：固定ボルトの付着力により決まる場合の固定ボルト 1 本当たりの許容引張力（N）
Φ_{1} ：低減係数（短期荷重用）
Φ_{3} ：低減係数（短期荷重用）
s σ_{pa} ：固定ボルトの引張強度（＝s $\sigma \mathrm{y}$ ）（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
s σ y ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sc ：：固定ボルトの断面積（ mm^{2} ）
$\mathrm{d}_{\mathrm{a}} \quad$ ：固定ボルトの径（mm）
6．5．3．4－25

1 ce
：固定ボルトの強度算定用埋込み長さ
$\left(=1 \mathrm{e}-2 \mathrm{~d}_{\mathrm{a}}\right) \quad(\mathrm{mm})$
1 e ：固定ボルトの有効埋込み長さ（mm）
τ a ：へりあき及び固定ボルトのピッチによる付着強度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）

せん断力を受ける場合
$\mathrm{q}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{qa}} \cdot \mathrm{sc}_{\mathrm{c}} \mathrm{a}$
$\mathrm{q}_{\mathrm{a} 2}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{qa}} \cdot \mathrm{sc}_{\mathrm{c}} \mathrm{a}$
$\mathrm{q}_{\mathrm{a} 3}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{qc}}$
ここで， q a1 ：固定ボルトのせん断強度により決まる場合の固定ボ ルト 1 本当たりの許容せん断力（ N ）
q a 2 ：定着した躯体の支圧強度により決まる場合の固定ボ ルト 1 本当たりの許容せん断力（ N ）
q a 3
：定着した躯体のコーン状破壊により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
Φ_{1} ：低減係数（短期荷重用）
Φ_{2} ：低減係数（短期荷重用）
：固定ボルトのせん断強度（ $=0.7 \cdot \mathrm{~s} \sigma \mathrm{y})$
（ $\mathrm{N} / \mathrm{mm} 2$ ）
s σ y ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm} 2$ ）
sca ：固定ボルトの断面積（mm2）
c σ qa ：コンクリートの支圧強度（ $\mathrm{N} / \mathrm{mm} 2$ ）

$$
(=0.5 \sqrt{\mathrm{Fc} \cdot \mathrm{Ec}})
$$

c σ_{t} ：コーン状破壊に対するコンクリートの引張強度 $(\mathrm{N} / \mathrm{mm} 2) \quad(=0.31 \sqrt{\mathrm{~F} \quad \mathrm{c}})$

F ：コンクリートの設計基準強度（ $\mathrm{N} / \mathrm{mm} 2$ ）
E ：コンクリートのヤング係数（ $\mathrm{N} / \mathrm{mm} 2$ ）
$\mathrm{A}_{\mathrm{q} \mathrm{c}}$ ：せん断力に対するコーン状破壊面の有効投影面積 （mm2）

表 5－5 固定ボルトの許容荷重の設定に用いる入力値

記号	単位	定義		数値
Φ_{1}	－	低減係数（短期荷重用）		1.0
Φ_{2}	－	低減係数（短期荷重用）		$2 / 3$
Φ_{3}	－	低減係数（短期荷重用）		2／3
${ }_{\mathrm{s}} \sigma_{\mathrm{pa}}$	N／mm2	固定ボルトの許容引張応力度		205
${ }_{\text {s }} \sigma_{\mathrm{y}}$	N／mm2	固定ボルトの規格降伏点強度		205
sca	mm2	固定ボルトの断面積		245
d_{a}	mm	固定ボルトの径		20
1 ce	mm	固定ボルトの強度算定用埋込み長さ	固定ボルト①	140
			固定ボルト（2）	220
1 e	mm	固定ボルトの有効埋込み長さ	固定ボルト①	180
			固定ボルト（2）	260
$\tau_{\text {a }}$	$\mathrm{N} / \mathrm{mm} 2$	へりあき及び固定ボルトのピッチによる付着強度	固定ボルト①	8.69
			固定ボルト（2）	4.11
${ }_{\mathrm{s}} \sigma_{\mathrm{q} a}$	N／mm2	固定ボルトのせん断応力度		143.50
c σ q a	N／mm2	コンクリートの支圧強度		450.90
${ }_{\text {c }} \sigma_{\text {t }}$	$\mathrm{N} / \mathrm{mm} 2$	コーン状破壊に対するコンクリートの引張強度		1． 76
F ${ }_{\text {c }}$	N／mm2	コンクリートの設計基準強度		32.4
E c	N／mm2	コンクリートのヤング係数		25100
$\mathrm{A}_{\mathrm{q} ~}^{\text {c }}$	mm2	せん断力に対するコーン状破壊面の有効投影面積	固定ボルト①	－＊
			固定ボルト（2）	15708

注記＊固定ボルト①は第 3 号機海水熱交換器建屋の壁面に設置するため，へりあきはなしとする。

表 5－6（1）地震荷重を考慮する場合の固定ボルト①）短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	$\mathrm{P}_{\text {a } 1}$	P ${ }_{\text {a }}$	設定値	q a 1	q a 2	q a 3	設定値
SUS304	50.2	50.9	50.2	35.1	73.6	－＊	35.1

注記＊固定ボルト①は第 3 号機海水熱交換器建屋の壁面に設置するため，へりあきはなしとする。

表 5－6（2）地震荷重を考慮する場合の固定ボルト（2）の短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	$\mathrm{P}_{\mathrm{a} 1}$	$\mathrm{P}_{\mathrm{a} 3}$	設定値	q a 1	q a 2	q a 3	設定値
SUS304	50.2	37.8	37.8	35.1	73.6	18.4	18.4

6．5．3．4－27

5．1．3 余震荷重

荷重の組合せは，表5－7に示すとおり組合せ係数法（1．0：0．4）により評価する。

表 5－7 荷重の組合せ

ケース No．	荷重の組合せ
1	$\mathrm{G}+\mathrm{Pas}_{\text {s }}+1.0 \mathrm{~S} \mathrm{~d}_{\mathrm{H}(\mathrm{NS})}+0.4 \mathrm{Sd}_{\mathrm{V}}$
2	$\mathrm{G}+\mathrm{P} \mathrm{s}+1.0 \mathrm{Sd}_{\mathrm{H}(\mathrm{NS})}-0.4 \mathrm{Sd}_{\mathrm{V}}$
3	$\mathrm{G}+\mathrm{P} \mathrm{s}-1.0 \mathrm{Sd}_{\mathrm{H}(\mathrm{NS})}+0.4 \mathrm{Sd}_{\mathrm{V}}$
4	$\mathrm{G}+\mathrm{P} \mathrm{s}-1.0 \mathrm{~S} \mathrm{~d}_{\mathrm{H}(\mathrm{NS})}-0.4 \mathrm{~S} \mathrm{~d}_{\mathrm{V}}$
5	$\mathrm{G}+\mathrm{P} \mathrm{s}+0.4 \mathrm{Sd}_{\mathrm{H}(\mathrm{NS})}+1.0 \mathrm{Sd}_{\mathrm{V}}$
6	$\mathrm{G}+\mathrm{P} \mathrm{s}^{\text {c }}-0.4 \mathrm{Sd}_{\mathrm{H}(\mathrm{NS})}+1.0 \mathrm{Sd}_{\mathrm{V}}$
7	$\mathrm{G}+\mathrm{P} \mathrm{s}+0.4 \mathrm{Sd}_{\mathrm{H}(\mathrm{NS})}-1.0 \mathrm{Sd}_{\mathrm{V}}$
8	$\mathrm{G}+\mathrm{P} \mathrm{s}-0.4 \mathrm{Sd}_{\mathrm{H}(\mathrm{NS})}-1.0 \mathrm{Sd}_{\mathrm{V}}$
9	$\mathrm{G}+\mathrm{P} \mathrm{s}^{+}+1.0 \mathrm{Sd}_{\mathrm{H}(\mathrm{EW})}+0.4 \mathrm{~S} \mathrm{~d}_{\mathrm{V}}$
10	$\mathrm{G}+\mathrm{P} \mathrm{s}^{+}+1.0 \mathrm{Sd}_{\mathrm{H}(\mathrm{EW})}-0.4 \mathrm{~S} \mathrm{~d}_{\mathrm{V}}$
11	$\mathrm{G}+\mathrm{P} \mathrm{s}-1.0 \mathrm{Sd}_{\mathrm{H}(\mathrm{EW})}+0.4 \mathrm{Sd}_{\mathrm{V}}$
12	$\mathrm{G}+\mathrm{Pas}_{\text {s }}-1.0 \mathrm{~S} \mathrm{~d}_{\mathrm{H} \text {（EW）}}-0.4 \mathrm{Sd}_{\mathrm{V}}$
13	$\mathrm{G}+\mathrm{Ps}+0.4 \mathrm{Sd}_{\mathrm{H} \text {（EW）}}+1.0 \mathrm{Sd}_{\mathrm{V}}$
14	$\mathrm{G}+\mathrm{P} \mathrm{s}^{\text {c }}-0.4 \mathrm{Sd}_{\mathrm{H}(\mathrm{EW})}+1.0 \mathrm{~S} \mathrm{~d}_{\mathrm{V}}$
15	$\mathrm{G}+\mathrm{P} \mathrm{s}^{+}+0.4 \mathrm{Sd}_{\mathrm{H} \text {（EW）}}-1.0 \mathrm{Sd}_{\mathrm{V}}$
16	$\mathrm{G}+\mathrm{P} \mathrm{s}^{\text {c }}-0.4 \mathrm{Sd}_{\mathrm{H}(\mathrm{EW})}-1.0 \mathrm{~S} \mathrm{~d}_{\mathrm{V}}$

G：固定荷重（kN）
P s ：積雪荷重（kN）
$\mathrm{S}_{\mathrm{H}(\mathrm{NS})}$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ の水平方向（ $\mathrm{N}-\mathrm{S}$ ）の余震荷重

$$
\left((\mathrm{G}+\mathrm{P} \mathrm{~s}) \times \alpha_{\mathrm{H}(\mathrm{NS})}\right)
$$

$\mathrm{S} \mathrm{d}_{\mathrm{H}(\mathrm{EW})}$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ の水平方向（E－W）の余震荷重

$$
\left((\mathrm{G}+\mathrm{P} \mathrm{~s}) \times \alpha_{\mathrm{H}(\mathrm{EW})}\right)
$$

Sd V ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ の鉛直方向の余震荷重

$$
\left((\mathrm{G}+\mathrm{P} \mathrm{~s}) \times \alpha_{\mathrm{v}}\right) \quad(\mathrm{kN})
$$

5．1．4 計算方法

浸水防止蓋，鋼製ブラケット及び固定ボルトに発生する応力度が，許容限界以下である ことを確認する。
（1）浸水防止蓋
浸水防止蓋は図 5－1 に示すとおり主桁間に分割して設置することから三辺固定スラブ モデルとして断面力を算出する。評価箇所は図 5－1 に示すとおり，断面力が大きいと考 えられる主桁間の幅が最大の箇所とする。浸水防止蓋に作用する等分布荷重（鉛直震度含 む）が作用している板に発生する曲げ応力およびせん断応力は「日本建築学会 2018 年鉄筋コンクリート構造計算規準•同解説」（図 5－2）より算出する。

図 5－1 浸水防止蓋の評価箇所
a．浸水防止蓋に作用する単位面積当りの等分布荷重 w
$\mathrm{w}=\mathrm{P} \mathrm{t}$
ここで， Pt ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
b．浸水防止蓋に作用する単位幅当りの等分布荷重w，

$$
\mathrm{w}^{\prime}=\mathrm{w} / 1000
$$

ここで，w＇：浸水防止蓋に作用する単位幅当りの等分布荷重 （ $\mathrm{N} / \mathrm{mm}^{2} \cdot \mathrm{~mm}$ ）
c．最大曲げ応力 σ
求めた曲げモーメントのらち最大となる曲げモーメントについて，以下の式にて最大曲げ応力を算出する。

$$
\mathrm{M}=\alpha \cdot \mathrm{w}^{\prime} \cdot \mathrm{l}_{\mathrm{x}}{ }^{2}
$$

ここで， M ：最大モーメント $(\mathrm{N} \cdot \mathrm{mm})$
α ：平板のモーメントに関する係数
w ：浸水防止蓋に作用する単位幅当りの等分布荷重

$$
\left(\mathrm{N} / \mathrm{mm}^{2} \cdot \mathrm{~mm}\right)
$$

1 x ：浸水防止蓋の短辺長（mm）

$$
\sigma=\mathrm{M} / \mathrm{Z}
$$

ここで，	σ	：最大曲げ応力 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M	：最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$	
Z	$:$ スキンプレートの断面係数 $\left(\mathrm{mm}^{3}\right)$	

d．最大せん断応力 τ
求めたせん断力のらち最大となるせん断力について，以下の式にてせん断応力度を算出する。

$$
\mathrm{Q}=\beta \cdot \mathrm{w}^{\prime} \cdot 1_{\mathrm{x}}
$$

ここで， Q ：せん断力（ N ）
β ：平板のせん断に関する係数
w ：浸水防止蓋に作用する単位幅当りの等分布荷重 （ N / mm ）
$1_{\mathrm{x}} \quad$ ：浸水防止蓋の短辺長 (mm)
$\tau=\mathrm{Q} / \mathrm{A} s$
ここで，τ ：最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：最大せん断応力（ N ）
As ：浸水防止蓋の単位幅あたりのせん断断面積（mm²）

図 5－2 応力算出図
e．曲げ応力度とせん断応力度の組合せに対する検討
浸水防止蓋に生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
\mathrm{x}= & \sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
\mathrm{x} & : \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\sigma & : \text { 最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\tau & : \text { 最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

（2）鋼製ブラケット
鋼製ブラケットの応力評価に用いるモデルは固有値解析を行ったモデルと同一とし，鋼製ブラケットの計算には解析コード「Engineer’s StudioVer．6．00．4」を使用して評価部位に生じる断面力を求める。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。モデルに入力する荷重は，

「5．1．1 荷重及び荷重の組合せ」に示すとおりである。
各部材に入力する荷重図を図5－3～図5－9に示す。

図 5－3 鋼製ブラケットの耐震評価モデルへの入力荷重（死荷重）

図 5－4 鋼製ブラケットの耐震評価モデルへの入力荷重（積雪荷重）

図 5－5 鋼製ブラケットの耐震評価モデルへの入力荷重（突き上げ津波荷重）

図 5－6 鋼製ブラケットの耐震評価モデルへの入力荷重（地震時荷重）（＋NS 方向）

図 5－7 鋼製ブラケットの耐震評価モデルへの入力荷重（地震時荷重）（－NS 方向）

図 5－8 鋼製ブラケットの耐震評価モデルへの入力荷重（地震時荷重）（＋EW 方向）

図 5－9 鋼製ブラケットの耐震評価モデルへの入力荷重（地震時荷重）（－EW 方向）
（3）固定ボルト
鋼製ブラケットの解析により得られる固定ボルト部の応力により，固定ボルトに作用す る応力度を求め，許容限界以下であることを確認する。なお，固定ボルト①の照査箇所の ボルト本数は 4 本であり，また固定ボルト（2）の照査箇所のボルト本数は 8 本である。固定 ボルト詳細図を図 5－10に示す。
a．固定ボルトに作用する引張力 T d
$\mathrm{T} \mathrm{d}=\mathrm{Rn} / \mathrm{N}+\mathrm{Rm} / \mathrm{B} /(\mathrm{N} / 2)$
ここで， Td ：固定ボルト 1 本当りに作用する引張力（ kN ）
Rn ：固定ボルトの支点反力（引張）（kN）
Rm ：固定ボルトの支点モーメント（ $\mathrm{kN} \cdot \mathrm{mm}$ ）
B ：固定ボルトのボルト間隔（mm）
N ：照査箇所の固定ボルトの本数（本）
b．固定ボルトに作用するせん断力 q
$\mathrm{q}=\mathrm{R} \mathrm{s} / \mathrm{N}$
ここで， q ：固定ボルト 1 本当りに作用するせん断力（ kN ）
R s ：解析で得られる支点反力（せん断）（kN）
N ：浸水防止蓋に取り付く固定ボルトの本数（本）

図 5－10 固定ボルト詳細図

6．5．3．4－37

（4）ハッチ

固定ボルトに作用する荷重を以下の式により算出する。
なお，固定ボルト①）の照査箇所のボルト本数は12本であり，また固定ボルト（2）の照査箇所のボルト本数は8本である。
a．固定ボルト 1 本当りに生じる鉛直方向の引張応力度 $\sigma \mathrm{t}$

$$
\sigma \mathrm{t}=\mathrm{T} \mathrm{~s} \cdot 10^{3} / \mathrm{A}^{\prime}
$$

$$
\mathrm{T} \mathrm{~s}=\left(\mathrm{Pt} \cdot \mathrm{Ah}+\mathrm{S} \mathrm{~d}_{\mathrm{V}}\right) \cdot 10^{-6} / \mathrm{n}_{\mathrm{s}}
$$

ここで，$\sigma \mathrm{t}$ ：ハッチの固定ボルト 1 本当りに生じる引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T s ：ハッチの固定ボルト 1 本当りに作用する引張力（ kN ）
Pt ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
Ah ：ハッチの受圧面積（ mm^{2} ）
n s ：ハッチの固定ボルトの本数（本）
A’：ハッチの固定ボルトの有効断面積（ mm^{2} ）
b．弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う鉛直方向の余震荷重 $\mathrm{S} d \mathrm{v}$

$$
\mathrm{S} d \mathrm{v}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{v}}
$$

ここで， $\mathrm{S} \mathrm{d}_{\mathrm{v}}$ ：弾性設計用地震動 S d －D 2 に伴う鉛直方向の余震荷重 (kN)
G ：固定荷重（kN）
P s ：積雪荷重（kN）
$\alpha \mathrm{V}$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う鉛直方向の余震震度
c．弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重 $\mathrm{S} d \mathrm{~h}$

$$
\mathrm{Sdh}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{H}}
$$

ここで， S dh ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う水平方向の余震震度
d．固定ボルト 1 本当りに生じるせん断応力度 τ s
$\tau_{\mathrm{s}}=\mathrm{q}_{\mathrm{s}} \cdot 10^{3} / \mathrm{A}^{\prime}$
ここで， $\mathrm{q}_{\mathrm{s}}=\mathrm{S} \mathrm{dh} / \mathrm{n} \mathrm{s}$
$\tau \mathrm{s}$ ：ハッチの固定ボルト 1 本当りに生じるせん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
q s ：ハッチの固定ボルト 1 本当りに作用するせん断力 $(k N)$
$\mathrm{S} d \mathrm{~h}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重（ kN ）
n s ：ハッチの固定ボルトの本数（本）
A’：ハッチの固定ボルトの有効断面積 $\left(\mathrm{mm}^{2}\right)$

5．1．5 計算条件

浸水防止蓋の応力評価に用いる入力値を表5－8に示す。

表5－8 浸水防止蓋の強度評価に用いる入力値

評価対象部位	記号	単位	定義	数値
浸水防止蓋 （スキンプレート）	$\mathrm{A}_{\text {S }}$	mm^{2}	浸水防止蓋の単位幅あたりのせん断断面積	16
	α	－	平板のモーメントに関する係数	0.085
	β	－	平板のせん断に関する係数	0.55
	1_{x}	mm	浸水防止蓋の短辺長（mm）	1250
	A	m^{2}	浸水防止蓋の面積	1.86
	Z	mm^{3}	浸水防止蓋の断面係数	42.67
固定ボルト①	Rn	kN	固定ボルトの支点反力（引張）	11.4
	Rm	$\mathrm{kN} \cdot \mathrm{mm}$	固定ボルトの支点モーメント	2935
	Rs	kN	固定ボルトの支点反力（せん断）	36.9
	B	mm	照査箇所のボルト間隔	200
	N	本	照査箇所の固定ボルトの本数	4
固定ボルト（2）	Rn	kN	固定ボルトの支点反力（引張）	40.7
	Rm	kN • mm	固定ボルトの支点モーメント	19197
	R s	kN	固定ボルトの支点反力（せん断）	39.6
	B	mm	照査箇所のボルト間隔	200
	N	本	照査箇所の固定ボルトの本数	8
ハッチ①	追而			
ハッチ（2）				

5.2 変形性評価方法

止水ジョイントは浸水防止蓋と第 3 号機補機冷却海水系放水ピットとの境界部に設置するこ とから浸水防止蓋と第 3 号機補機冷却海水系放水ピットに生じる変位量を用いて評価する。

余震荷重による変位量は設計用地震力による変位量を下回ることは明白であることから，添付書類「VI－2－10－2－8－4 浸水防止蓋（第3号機補機冷却海水系放水ピット）の耐震性につい ての計算書」にて算定した設計用地震力による最大変位量が，重畳時（津波荷重と余震荷重作用時）の止水ジョイントの許容限界内に収まることを確認する。

5．2．1 許容限界

重畳時（津波荷重と余震荷重作用時）の止水ジョイント部材の変形量の許容限界は，漏水試験及び変形試験により，有意な漏えいが生じないことを確認した変形量とする。表5 －9に止水ジョイント部材の仕様を表 5－10に変形量の許容限界を示す。

なお，止水ジョイント部材が地震時及び津波時による変位に対し有意な漏えいを生じな い変形に留まること，津波による波圧と余震による変位に対し止水ジョイント部材から有意な漏えいが生じないことを性能確認試験により確認している。また，長期的な耐久性に関しては，耐候性試験により確認している。

表 5－9 止水ジョイント部材の仕様

種別	名称	主成分
M型ゴム	ME300	クロロプレンゴム

表 5－10 重畳時（津波荷重と余震荷重作用時）の止水ジョイント部材の変形量の許容限界

	許容限界（mm）	
	開き方向	せん断方向
変形量	350	350

5．2．2 設計用地震力における最大変位量

添付書類「VI－2－10－2－8－4 浸水防止蓋（第3号機補機冷却海水系放水ピット）の耐震性についての計算書」にて算定した設計用地震力による最大変位量を表 5－11に示す。

表 5－11 設計用地震力による最大変位量

区分		地震時最大変位量 （mm）		
		第 3 号機海水熱交換器建屋	第 3 号機補機冷却海水系放水ピット	評価用変位量
止水ジョイント（1）	開き方向	20	52	72
	せん断方向	21	137	158
止水ジョイント（2）	開き方向	21	137	158
	せん断方向	20	52	72
止水ジョイント（3）	開き方向	20	52	72
	せん断方向	21	137	158

6．評価結果
浸水防止蓋の応力評価結果を表6－1～表6－14に，変形性評価結果を表6－15に示す。全て の部材において発生応力，応力度又は変形量が許容限界以下であることを確認した。

表 6－1 応力評価結果（浸水防止蓋）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
浸水防止蓋	曲げ	111	$\mathrm{~N} / \mathrm{mm}^{2}$	205	$\mathrm{~N} / \mathrm{mm}^{2}$	$0.55<1.0$
	せん断	2	$\mathrm{~N} / \mathrm{mm}^{2}$	118	$\mathrm{~N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	112	$\mathrm{~N} / \mathrm{mm}^{2}$	205	$\mathrm{~N} / \mathrm{mm}^{2}$	$0.55<1.0$

表 6－2 応力評価結果（鋼製ブラケット 弱軸方向）

評価対象部位		発生値（弱軸方向＊） （応力度又は荷重）		許容限界		検定値
主桁（1）	曲げ	28	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	29	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.15<1.0$
主桁（2）	曲げ	29	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.15<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	30	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.15<1.0$
斜材	曲げ	20	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.10<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	21	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.11<1.0$
横桁	曲げ	19	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.10<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	20	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$
ブレース材	軸力	8	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
縦桁	曲げ	15	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	0． $01<1.0$
	組合せ	16	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$

注記 $*: ~ H$ 鋼の弱軸について

ブレース材には等辺山形鋼を用いているため強軸，弱軸はなく断面剛性は一様

表6－3（1）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 弱軸方向）（1／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { モー曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 (kN)	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma, \text { 's } \\ (\mathrm{N} / \mathrm{mm} 2) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma \prime \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime} \text { s/ }{ }^{\prime} \text { 'sa } \end{gathered}$
1	津波時NS＋1．0＿UD＋0．4	主桁（1）	0.049	20.654	3	205	0.02
		主桁（2）	0.169	15.302	2	205	0.01
		斜材	0.418	45.366	10	205	0.05
		横桁	0.616	1． 210	2	205	0.01
		ブレース	－	3.303	6	205	0.03
		縦桁	0.272	35.231	8	205	0.04
2	津波時NS＋1．0＿UD－0．4	主桁（1）	0.043	18.770	2	205	0.01
		主桁（2）	0.150	13.759	2	205	0.01
		斜材	0.388	42.278	10	205	0.05
		横桁	0.594	1.111	2	205	0.01
		ブレース	－	3.049	6	205	0.03
		縦桁	0.253	31.804	7	205	0.04
3	津波時NS－1．0＿UD＋0．4	主桁（1）	0.139	37.219	4	205	0.02
		主桁（2）	0.427	29.842	3	205	0.02
		斜材	0.401	45.165	10	205	0.05
		横桁	0.490	1． 460	1	205	0.01
		ブレース	－	3.211	6	205	0.03
		縦桁	0.261	33.505	7	205	0.04
4	津波時NS－1．0＿UD－0．4	主桁（1）	0.133	35.335	4	205	0.02
		主桁（2）	0.409	28.300	3	205	0.02
		斜材	0.371	42.525	10	205	0.05
		横桁	0.470	1． 360	1	205	0.01
		ブレース	－	3.011	6	205	0.03
		縦桁	0.242	30.078	7	205	0.04
5	津波時NS＋0．4＿UD＋1．0	主桁（1）	0.081	24.895	3	205	0.02
		主桁（2）	0.260	19.035	2	205	0.01
		斜材	0.435	47.004	11	205	0.06
		横桁	0.467	1． 360	1	205	0.01
		ブレース	－	3.412	6	205	0.03
		縦桁	0.284	37.283	8	205	0.04
6	津波時NS＋0．4＿UD－1．0	主桁（1）	0.066	20.185	3	205	0.02
		主桁（2）	0.214	15.178	2	205	0.01
		斜材	0.360	40.372	9	205	0.05
		横桁	0.412	1.111	1	205	0.01
		ブレース	－	2． 887	5	205	0.03
		縦桁	0.235	28.716	6	205	0.03
7	津波時NS－0．4＿UD＋1．0	主桁（1）	0.116	31.521	4	205	0.02
		主桁（2）	0.364	24.851	3	205	0.02
		斜材	0.429	47.072	11	205	0.06
		横桁	0.433	1.459	1	205	0.01
		ブレース	－	3.373	6	205	0.03
		縦桁	0．279	36.593	8	205	0.04
8	津波時NS－0．4＿UD－1．0	主桁（1）	0.101	26.811	3	205	0.02
		主桁（2）	0.317	20.994	2	205	0.01
		斜材	0.353	40.471	9	205	0.05
		横桁	0.365	1．211	1	205	0.01
		ブレース	－	2． 872	5	205	0.03
		縦桁	0.230	28.025	6	205	0.03

表 6－3（2）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 弱軸方向）（2／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { モー曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 (kN)	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma \text { 's } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma ’ \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime} \text { S/ } \sigma^{\prime} \text { 'sa } \end{gathered}$
9	津波時EW＋1．0＿UD＋0．4	主桁（1）	6.413	34.405	28	205	0.14
		主桁（2）	15.455	30.496	28	205	0.14
		斜材	1.693	44.955	18	205	0.09
		横桁	9.861	8.985	18	205	0.09
		ブレース	－	4． 177	8	205	0.04
		縦桁	1．357	34.630	14	205	0.07
10	津波時EW＋1．0＿UD－0．4	主桁（1）	6.413	32.886	27	205	0.14
		主桁（2）	15.462	28.953	28	205	0.14
		斜材	1.679	42.314	18	205	0.09
		横桁	9.888	8.983	18	205	0.09
		ブレース	－	3.977	7	205	0.04
		ブレ	1．346	31.203	14	205	0.07
11	津波時EW－1．0＿UD＋0．4	主桁（1）	6.419	33.325	27	205	0.14
		主桁（2）	15.702	34.288	29	205	0.15
		斜材	1.985	45.129	20	205	0.10
		横桁	10.588	10.238	19	205	0.10
		ブレース	－	3.922	7	205	0.04
		フ縦桁	1． 455	34.106	15	205	0.08
12	津波時EW－1．0＿UD－0．4	主桁（1）	6.419	31.441	27	205	0.14
		主桁（2）	15.695	33.009	29	205	0.15
		斜材	1．961	42.489	19	205	0.10
		横桁	10.561	10.185	19	205	0.10
		ブレース	－	3.728	7	205	0.04
		フ縦桁	1.435	30.679	14	205	0.07
13	津波時EW＋0．4＿UD＋1．0	主桁（1）	2.563	26.076	12	205	0.06
		主桁（2）	6.145	25.112	12	205	0.06
		斜材	0.759	46.987	13	205	0.07
		横桁	3.843	4． 158	7	205	0.04
		ブレース	－	3.759	7	205	0.04
		縦桁	0.648	37.043	10	205	0.05
14	津波時EW＋0．4＿UD－1．0	主桁（1）	2.563	22.280	12	205	0.06
		主桁（2）	6.143	21.255	12	205	0.06
		斜材	0.733	40.386	11	205	0.06
		横桁	3.792	3.988	7	205	0.04
		ブレース	－	3.259	6	205	0.03
		縦桁	0.621	28.475	9	205	0.05
15	津波時EW－0．4＿UD＋1．0	主桁（1）	2.569	29.963	13	205	0.07
		主桁（2）	6.360	22.948	13	205	0.07
		斜材	0.956	47.057	14	205	0.07
		横桁	4.474	4.634	8	205	0.04
		ブレース	－	3.536	7	205	0.04
		縦桁	0.757	36.833	11	205	0.06
16	津波時EW－0．4＿UD－1．0	主桁（1）	2.570	25.254	12	205	0.06
		主桁（2）	6.342	19.752	12	205	0.06
		斜材	0.897	40.456	12	205	0.06
		横桁	4.406	4． 433	8	205	0.04
		ブレース	－	3.049	6	205	0.03
		縦桁	0.708	28.266	9	205	0.05
最大値		主桁（1）	6.413	34.405	28	205	0.14
		主桁（2）	15.702	34.288	29	205	0.15
		斜材	1．985	45.129	20	205	0.10
		横桁	10.588	10.238	19	205	0.10
		ブレース	0.272	35.231	8	205	0.04
		縦桁	1.455	34.106	15	205	0.08

表6－4（1）せん断に関する応力評価結果（鋼製ブラケット 弱軸方向）（1／2）

ケースNo．	解析ケース	評価部材	せん断力 (kN)	$\begin{gathered} \hline \text { 発生 } \\ \text { 応力度 } \\ \tau \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	短期許容応力度 τ a （ $\mathrm{N} / \mathrm{mm} 2$ ）	照査値 τ / τ a
1	津波時NS＋1．0＿UD＋0．4	主桁（1）	0.036	1	118	0.01
		主桁（2）	0.122	1	118	0.01
		斜材	0.796	1	118	0.01
		横桁	2.112	1	118	0.01
		縦桁	0.550	1	118	0.01
2	津波時NS＋1．0＿UD－0．4	主桁（1）	0.033	1	118	0.01
		主桁（2）	0.109	1	118	0.01
		斜材	0.732	1	118	0.01
		横桁	2.078	1	118	0.01
		縦桁	0.510	1	118	0.01
3	津波時NS－1．0＿UD＋0．4	主桁（1）	0.109	1	118	0.01
		主桁（2）	0.333	1	118	0.01
		斜材	0.752	1	118	0.01
		横桁	2.064	1	118	0.01
		縦桁	0.528	1	118	0.01
4	津波時NS－1．0＿UD－0．4	主桁（1）	0.104	1	118	0.01
		主桁（2）	0.319	1	118	0.01
		斜材	0.688	1	118	0.01
		横桁	2.030	1	118	0.01
		縦桁	0.488	1	118	0.01
5	津波時NS＋0．4＿UD＋1．0	主桁（1）	0.061	1	118	0.01
		主桁（2）	0.196	1	118	0.01
		斜材	0.831	1	118	0.01
		横桁	1． 498	1	118	0.01
		縦桁	0.573	1	118	0.01
6	津波時NS＋0．4＿UD－1．0	主桁（1）	0.050	1	118	0.01
		主桁（2）	0.161	1	118	0.01
		斜材	0.670	，	118	0.01
		横桁	1．288	1	118	0.01
		縦桁	0.474	1	118	0.01
7	津波時NS－0．4＿UD＋1．0	主桁（1）	0.090	1	118	0.01
		主桁（2）	0.280	1	118	0.01
		斜材	0.813	1	118	0.01
		横桁	1.551	1	118	0.01
		縦桁	0.564	1	118	0.01
8	津波時NS－0．4＿UD－1．0	主桁（1）	0.079	1	118	0.01
		主桁（2）	0.246	1	118	0.01
		斜材	0.653	1	118	0.01
		横桁	1.342	1	118	0.01
		縦桁	0.465	1	118	0.01

表6－4（2）世ん断に関する応力評価結果（鋼製ブラケット 弱軸方向）（2／2）

ケースNo．	解析ケース	評価部材	せん断力 (kN)	発生応力度 $(\mathrm{N} / \mathrm{mm} 2)$	短期許容応力度 $\begin{gathered} \tau \mathrm{a} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 τ / τ a
9	津波時EW＋1．0＿UD＋0．4	主桁（1）	9.044	2	118	0.02
		主桁（2）	16.687	2	118	0.02
		斜材	2.458	1	118	0.01
		横桁	18.220	2	118	0.02
		縦桁	3.978	1	118	0.01
10	津波時EW＋1．0＿UD－0．4	主桁（1）	9.043	2	118	0.02
		主桁（2）	16.683	2	118	0.02
		斜材	2.419	1	118	0.01
		横桁	18.304	2	118	0.02
		縦桁	3.975	1	118	0.01
11	津波時EW－1．0＿UD＋0．4	主桁（1）	9.035	2	118	0.02
		主桁（2）	17.090	2	118	0.02
		斜材	2.765	1	118	0.01
		横桁	20.480	2	118	0.02
		縦桁	4． 150	1	118	0.01
12	津波時EW－1．0＿UD－0．4	主桁（1）	9.036	2	118	0.02
		主桁（2）	17.077	2	118	0.02
		斜材	2.701	1	118	0.01
		横桁	20.396	2	118	0.02
		縦桁	4.143	1	118	0.01
13	津波時EW＋0．4＿UD＋1．0	主桁（1）	3.621	1	118	0.01
		主桁（2）	6． 726	1	118	0.01
		斜材	1． 269	1	118	0.01
		横桁	6.547	1	118	0.01
		縦桁	1.696	1	118	0.01
14	津波時EW＋0．4＿UD－1．0	主桁（1）	3.619	1	118	0.01
		主桁（2）	6.717	1	118	0.01
		斜材	1． 170	1	118	0.01
		横桁	6.757	1	118	0.01
		縦桁	1.641	1	118	0.01
15	津波時EW－0．4＿UD＋1．0	主桁（1）	3.611	1	118	0.01
		主桁（2）	6.983	1	118	0.01
		斜材	1.619	1	118	0.01
		横桁	8.933	1	118	0.01
		縦桁	1.941	1	118	0.01
16	津波時EW－0．4＿UD－1．0	主桁（1）	3.613	1	118	0.01
		主桁（2）	6.949	1	118	0.01
		斜材	1． 458	1	118	0.01
		横桁	8.723	1	118	0.01
		縦桁	1.842	1	118	0.01
最大値		主桁（1）	9.044	2	118	0.02
		主桁（2）	17.090	2	118	0.02
		斜材	2． 765	1	118	0.01
		横桁	20.480	2	118	0.02
		縦桁	4． 150	1	118	0.01

表6－5 組合せ応力に関する応力評価結果（鋼製ブラケット 弱軸方向）

	評価部材	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma \text { 's } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \tau \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	組合せ応力度 σ^{\prime} s （ $\mathrm{N} / \mathrm{mm} 2$ ）	短期許容応力度 $\begin{gathered} \sigma ’ \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime} \text { s/ } \sigma^{\prime} \text { 'sa } \end{gathered}$
最大値	主桁（1）	28	2	29	205	0.15
	主桁（2）	29	2	30	205	0.15
	斜材	20	1	21	205	0.11
	横桁	19	2	20	205	0.10
	縦桁	15	1	16	205	0.08

表6－6 応力評価結果（鋼製ブラケット 強軸方向）

評価対象部位		発生値（強軸方向＊） （応力度又は荷重）		許容限界		検定値
主桁（1）	曲げ	30	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.15<1.0$
	せん断	13	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	0． $12<1.0$
	組合せ	38	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $19<1.0$
主桁（2）	曲げ	18	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $09<1.0$
	せん断	11	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$
	組合せ	27	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
斜材	曲げ	15	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	0． $03<1.0$
	組合せ	16	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0．08＜1．0
横析	曲げ	5	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	組合せ	10	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $05<1.0$
ブレース材	軸力	8	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $04<1.0$
縦析	曲げ	12	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
	せん断	9	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	組合せ	20	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$

ブレース材には等辺山形鋼を用いているため強軸，弱軸はなく断面剛性は一様

表 6－7（1）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 強軸方向）（1／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 (kN)	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma \text {, } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	短期 許容応力度 o＇sa $(\mathrm{N} / \mathrm{mm} 2)$	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime} \text { s/ } \sigma^{\prime} \text { sa } \end{gathered}$
1	津波時NS＋1．0＿UD＋0．4	主桁（1）	17.727	20.654	27	205	0.14
		主桁（2）	15.187	15.302	16	205	0.08
		斜材	3.272	45.366	15	205	0.08
		横桁	3.317	1． 210	4	205	0.02
		ブレース	－	3.303	6	205	0.03
		縦桁	1.587	35.231	9	205	0.05
2	津波時NS＋1．0＿UD－0．4	主桁（1）	16.719	18.770	25	205	0.13
		主桁（2）	14.193	13.759	15	205	0.08
		斜材	3.432	42.278	14	205	0.07
		横桁	3.129	1．111	4	205	0.02
		ブレース	－	3.049	6	205	0.03
		縦桁	2.009	31.804	10	205	0.05
3	津波時NS－1．0＿UD＋0．4	主桁（1）	18.746	37.219	30	205	0.15
		主桁（2）	16.188	29.842	18	205	0.09
		斜材	2.294	45.165	12	205	0.06
		横桁	3.355	1． 460	4	205	0.02
		ブレース	－	3.211	6	205	0.03
		縦桁	2.935	33.505	12	205	0.06
4	津波時NS－1．0＿UD－0．4	主桁（1）	17.738	35.335	28	205	0.14
		主桁（2）	15.194	28.300	17	205	0.09
		斜材	1.855	42.525	11	205	0.06
		横桁	3.167	1． 360	4	205	0.02
		ブレース	－	3.011	6	205	0.03
		縦桁	2.440	30.078	10	205	0.05
5	津波時NS＋0．4＿UD＋1．0	主桁（1）	18.789	24.895	29	205	0.15
		主桁（2）	16.233	19.035	17	205	0.09
		斜材	2.666	47.004	14	205	0.07
		横桁	3.470	1．360	4	205	0.02
		ブレース	－	3.412	6	205	0.03
		縦桁	0.706	37.283	8	205	0.04
6	津波時NS＋0．4＿UD－1．0	主桁（1）	16．268	20.185	25	205	0.13
		主桁（2）	13.748	15.178	15	205	0.08
		斜材	3.065	40.372	13	205	0.07
		横桁	3.000	1．111	3	205	0.02
		ブレース	－	2.887	5	205	0.03
		縦桁	1．340	28.716	8	205	0.04
7	津波時NS－0．4＿UD＋1．0	主桁（1）	19.197	31.521	30	205	0.15
		主桁（2）	16.633	24.851	18	205	0.09
		斜材	2.017	47.072	12	205	0.06
		横桁	3.485	1．459	4	205	0.02
		ブレース	－	3．373	6	205	0.03
		縦桁	2.134	36.593	11	205	0.06
8	津波時NS－0．4＿UD－1．0	主桁（1）	16.676	26.811	26	205	0.13
		主桁（2）	14.148	20.994	15	205	0.08
		斜材	2.417	40.471	12	205	0.06
		横桁	3.015	1．211	3	205	0.02
		ブレース	－	2.872	5	205	0.03
		縦桁	0.897	28.025	7	205	0.04

表 6－7（2）曲げおよび軸力に関する応力評価結果（鋼製ブラケット 強軸方向）（2／2）

ケースNo．	解析ケース	評価部材	$\begin{gathered} \text { モー曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 (kN)	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma, ~ \\ (\mathrm{~N} / \mathrm{sm} 2) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma \prime \text { sa } \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma \text { 's/ } \sigma \text { 'sa } \end{gathered}$
9	津波時EW＋1．0＿UD＋0．4	主桁（1）	18.195	34.405	29	205	0.15
		主桁（2）	15.903	30.496	18	205	0.09
		斜材	2.460	44.955	13	205	0.07
		横桁	3.174	8.985	4	205	0.02
		ブレース	－	4． 177	8	205	0.04
		縦桁	0.966	34.630	8	205	0.04
10	津波時EW＋1．0＿UD－0．4	主桁（1）	17.186	32.886	27	205	0.14
		主桁（2）	14.909	28.953	17	205	0.09
		斜材	2.620	42.314	13	205	0.07
		横桁	3.052	8.983	4	205	0.02
		ブレース	－	3.977	7	205	0.04
		縦桁	0.472	31.203	6	205	0.03
11	津波時EW－1．0＿UD＋0．4	主桁（1）	18.279	33.325	29	205	0.15
		主桁（2）	15.472	34.288	18	205	0.09
		斜材	2.463	45.129	13	205	0.07
		横桁	3.953	10.238	5	205	0.03
		ブレース	－	3.922	7	205	0.04
		縦桁	0.996	34.106	8	205	0.04
12	津波時EW－1．0＿UD－0．4	主桁（1）	17.270	31.441	27	205	0.14
		主桁（2）	14.478	33.009	17	205	0.09
		斜材	2.622	42.489	13	205	0.07
		横桁	3.793	10.185	5	205	0.03
		ブレース	－	3.728	7	205	0.04
		縦桁	0.501	30.679	6	205	0.03
13	津波時EW＋0．4＿UD＋1．0	主桁（1）	18.976	26.076	29	205	0.15
		主桁（2）	16.519	25.112	18	205	0.09
		斜材	2．341	46.987	13	205	0.07
		横桁	3.259	4． 158	4	205	0.02
		ブレース	－	3.759	7	205	0.04
		縦桁	1.346	37.043	9	205	0.05
14	津波時EW＋0．4＿UD－1．0	主桁（1）	16.455	22.280	25	205	0.13
		主桁（2）	14.034	21.255	15	205	0.08
		斜材	2.740	40.386	13	205	0.07
		横桁	2.789	3.988	3	205	0.02
		ブレース	－	3.259	6	205	0.03
		縦桁	0.691	28.475	6	205	0.03
15	津波時EW－0．4＿UD＋1．0	主桁（1）	19.010	29.963	30	205	0.15
		主桁（2）	16.347	22.948	18	205	0.09
		斜材	2.342	47.057	13	205	0.07
		横桁	3.695	4.634	4	205	0.02
		ブレース	－	3.536	7	205	0.04
		縦桁	1．358	36.833	9	205	0.05
16	津波時EW－0．4＿UD－1．0	主桁（1）	16.488	25.254	26	205	0.13
		主桁（2）	13.862	19.752	15	205	0.08
		斜材	2．741	40.456	13	205	0.07
		横桁	3.225	4.433	4	205	0.02
		ブレース	－	3.049	6	205	0.03
		縦桁	0.672	28.266	6	205	0.03
最大値		主桁（1）	18.746	37.219	30	205	0.15
		主桁（2）	16.188	29.842	18	205	0.09
		斜材	3.272	45.366	15	205	0.08
		横桁		2.887	5	205	0.03
		ブレース	0.706	37． 283	8	205	0.04
		縦桁	2． 294	45.165	12	205	0.06

表 6－8（1）せん断に関する応力評価結果（鋼製ブラケット 強軸方向）（1／2）

ケースNo．	解析ケース	評価部材	せん断力 (kN)	発生応力度 $\begin{gathered} \tau \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	短期許容応力度 $\begin{gathered} \tau \mathrm{a} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 τ / τ a
1	津波時NS＋1．0＿UD＋0．4	主桁（1）	38.803	13	118	0.12
		主桁（2）	32.163	11	118	0.10
		斜材	2.987	3	118	0.03
		横桁	11.909	4	118	0.04
		縦桁	5.999	5	118	0.05
2	津波時NS＋1．0＿UD－0．4	主桁（1）	37.069	12	118	0.11
		主桁（2）	30.463	10	118	0.09
		斜材	3.411	3	118	0.03
		横桁	11.367	4	118	0.04
		縦桁	7.487	6	118	0.06
3	津波時NS－1．0＿UD＋0．4	主桁（1）	40.376	13	118	0.12
		主桁（2）	33.753	11	118	0.10
		斜材	1.986	2	118	0.02
		横桁	11.993	4	118	0.04
		縦桁	11.337	9	118	0.08
4	津波時NS－1．0＿UD－0．4	主桁（1）	38.642	13	118	0.12
		主桁（2）	32.052	11	118	0.10
		斜材	1． 471	2	118	0.02
		横桁	11.452	4	118	0.04
		縦桁	9.594	7	118	0.06
5	津波時NS＋0．4＿UD＋1．0	主桁（1）	40.575	13	118	0.12
		主桁（2）	33.915	11	118	0.10
		斜材	1.712	2	118	0.02
		横桁	12.340	4	118	0.04
		縦桁	2.714	2	118	0.02
6	津波時NS＋0．4＿UD－1．0	主桁（1）	36.240	12	118	0.11
		主桁（2）	29.664	10	118	0.09
		斜材	2.773	2	118	0.02
		横桁	10.986	4	118	0.04
		縦桁	4.844	4	118	0.04
7	津波時NS－0．4＿UD＋1．0	主桁（1）	41.205	13	118	0.12
		主桁（2）	34.551	11	118	0.10
		斜材	1．346	1	118	0.01
		横桁	12.374	4	118	0.04
		縦桁	7.977	6	118	0.06
8	津波時NS－0．4＿UD－1．0	主桁（1）	36.870	12	118	0.11
		主桁（2）	30.300	10	118	0.09
		斜材	1． 497	2	118	0.02
		横桁	11.020	4	118	0.04
		縦桁	3.617	3	118	0.03

表6－8（2）せん断に関する応力評価結果（鋼製ブラケット 強軸方向）（2／2）

ケースNo．	解析ケース	評価部材	せん断力 （kN）	発生応力度 $\begin{gathered} \tau \\ (\mathrm{N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	短期許容応力度 $\begin{gathered} \tau \mathrm{a} \\ (\mathrm{~N} / \mathrm{mm} 2) \\ \hline \end{gathered}$	照査値 τ / τ a
9	津波時EW＋1．0＿UD＋0．4	主桁（1）	39.564	13	118	0.12
		主桁（2）	33.139	11	118	0.10
		斜材	1．389	1	118	0.01
		横桁	13.623	5	118	0.05
		縦桁	3.505	3	118	0.03
10	津波時EW＋1．0＿UD－0．4	主桁（1）	37.830	12	118	0.11
		主桁（2）	31.438	10	118	0.09
		斜材	1． 813	2	118	0.02
		横桁	13.082	5	118	0.05
		縦桁	1．761	2	118	0.02
11	津波時EW－1．0＿UD＋0．4	主桁（1）	39.615	13	118	0.12
		主桁（2）	32.777	11	118	0.10
		斜材	1．396	1	118	0.01
		横桁	12.970	5	118	0.05
		縦桁	3.608	3	118	0.03
12	津波時EW－1．0＿UD－0．4	主桁（1）	37.881	12	118	0.11
		主桁（2）	31.077	10	118	0.09
		斜材	1.820	2	118	0.02
		横桁	12.312	4	118	0.04
		縦桁	1．864	2	118	0.02
13	津波時EW＋0．4＿UD＋1．0	主桁（1）	40.880	13	118	0.12
		主桁（2）	34.306	11	118	0.10
		斜材	1．073	1	118	0.01
		横桁	13.026	5	118	0.05
		縦桁	4.844	4	118	0.04
14	津波時EW＋0．4＿UD－1．0	主桁（1）	36.545	12	118	0.11
		主桁（2）	30.054	10	118	0.09
		斜材	2.134	2	118	0.02
		横桁	11.672	4	118	0.04
		縦桁	2．373	2	118	0.02
15	津波時EW－0．4＿UD＋1．0	主桁（1）	40.900	13	118	0.12
		主桁（2）	34.161	11	118	0.10
		斜材	1.076	1	118	0.01
		横桁	12.461	4	118	0.04
		縦桁	4.885	4	118	0.04
16	津波時EW－0．4＿UD－1．0	主桁（1）	36.565	12	118	0.11
		主桁（2）	29.910	10	118	0.09
		斜材	2.136	2	118	0.02
		横桁	10.815	4	118	0.04
		縦桁	2.305	2	118	0.02
最大値		主桁（1）	41.205	13	118	0.12
		主桁（2）	34.551	11	118	0.10
		斜材	3.411	3	118	0.03
		横桁	13.623	5	118	0.05
		縦桁	11.337	9	118	0.08

表 6－9 組合せ応力に関する応力評価結果（鋼製ブラケット 強軸方向）

	評価部材			組合せ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	短期 許容応力度 σ^{\prime} sa $(\mathrm{N} / \mathrm{mm} 2)$	$\begin{aligned} & \text { 照查値 } \\ & \sigma^{\prime}{ }^{\prime} s_{\sigma}{ }^{\prime} \text { sa } \end{aligned}$
最大値	主桁（1）	30	13	38	205	0.19
	主桁（2）	18	11	27	205	0.14
	斜材	15	3	16	205	0.08
	横析	5	5	10	205	0.05
	縦桁	12	9	20	205	0.10

表 6－10 応力評価結果（固定ボルト）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
	引張	10.2	kN	50.2	kN	$0.21<1.0$
固定ボルト①	せん断	9.3	kN	35.1	kN	$0.27<1.0$
	組合せ	－		－		$0.12<1.0$
固定ボルト（2）	引張	29.1	kN	37.8	kN	$0.77<1.0$
	せん断	5.0	kN	18.4	kN	$0.28<1.0$
	組合せ	－		－		$0.67<1.0$

表 6－11（1）固定ボルトに関する評価結果（引張）（1／2）

ケースNo．	解析ケース	固定ボルト（1）（上部）					
		$\begin{gathered} \text { 発生作用力 } \\ \text { 引張 } \end{gathered}$			許容限界 引張 Tda	照査値 Td／Tda	検定値
		Rn／本	Rm／本	Td			
1	津波時NS＋1．0＿UD＋0．4	－	3.97	4.0	50.2	0.08	1.0
2	津波時NS＋1．0＿UD－0．4	－	5.03	5.1	50.2	0.11	1.0
3	津波時NS－1．0＿UD＋0．4	2.84	7.34	10.2	50.2	0.21	1.0
4	津波時NS－1．0＿UD－0．4	2.40	6.10	8.5	50.2	0.17	1.0
5	津波時NS＋0．4＿UD＋1．0	0.44	1.43	1.9	50.2	0.04	1.0
6	津波時NS＋0．4＿UD－1．0	－	3.35	3.4	50.2	0.07	1.0
7	津波時NS－0．4＿UD＋1．0	2.00	5.34	7.4	50.2	0.15	1.0
8	津波時NS－0．4＿UD－1．0	0.91	2.25	3.2	50.2	0.07	1.0
9	津波時EW＋1．0＿UD＋0．4	0.88	2.42	3.3	50.2	0.07	1.0
10	津波時EW＋1．0＿UD－0．4	0.45	1.18	1.7	50.2	0.04	1.0
11	津波時EW－1．0＿UD＋0．4	0.91	2.49	3.4	50.2	0.07	1.0
12	津波時EW－1．0＿UD－0．4	0． 47	1． 26	1.8	50.2	0.04	1.0
13	津波時EW＋0．4＿UD＋1．0	1． 22	3.37	4.6	50.2	0.10	1.0
14	津波時EW＋0．4＿UD－1．0	－	1.73	1.8	50.2	0.04	1.0
15	津波時EW－0．4＿UD＋1．0	1.23	3.40	4.7	50.2	0.10	1.0
16	津波時EW－0．4＿UD－1．0	－	1.68	1.7	50.2	0.04	1.0
	最大値	2.84	7.34	10.2	50.2	0.21	1.0

表 6－11（2）固定ボルトに関する評価結果（引張）（2／2）

ケースNo．	解析ケース	固定ボルト（2）（下部）					
		発生作用力 引張			許容限界引張 Tda	照査値 Td／Tda	検定値
		Rn／本	Rm／本	Td			
1	津波時NS＋1．0＿UD＋0．4	4.67	22.16	26.9	37.8	0.72	1.0
2	津波時NS＋1．0＿UD－0．4	4.30	20.90	25.2	37.8	0.67	1.0
3	津波時NS－1．0＿UD＋0．4	4.87	23.44	28.4	37.8	0.76	1.0
4	津波時NS－1．0＿UD－0．4	4.50	22.18	26.7	37.8	0.71	1.0
5	津波時NS＋0．4＿UD＋1．0	5.01	23.49	28.5	37.8	0.76	1.0
6	津波時NS＋0．4＿UD－1．0	4.09	20.34	24.5	37.8	0.65	1.0
7	津波時NS－0．4＿UD＋1．0	5.09	24.00	29.1	37.8	0.77	1.0
8	津波時NS－0．4＿UD－1．0	4.17	20.85	25.1	37.8	0.67	1.0
9	津波時EW＋1．0＿UD＋0．4	4.77	22.75	27.6	37.8	0.74	1.0
10	津波時EW＋1．0＿UD－0．4	4.40	21．49	25.9	37.8	0.69	1.0
11	津波時EW－1．0＿UD＋0．4	4.78	22.85	27.7	37.8	0.74	1.0
12	津波時EW－1．0＿UD－0．4	4.41	21.59	26.0	37.8	0.69	1.0
13	津波時EW＋0．4＿UD＋1．0	5.05	23.72	28.8	37.8	0.77	1.0
14	津波時EW＋0．4＿UD－1．0	4.13	20.57	24.7	37.8	0.66	1.0
15	津波時EW－0．4＿UD＋1．0	5.05	23.77	28.9	37.8	0.77	1.0
16	津波時EW－0．4＿UD－1．0	4.13	20.61	24.8	37.8	0.66	1.0
	最大値	5.09	24.00	29.1	37.8	0.77	1.0

6．5．3．4－56

表 6－12（1）固定ボルトに関する評価結果（せん断）（1／2）

ケースNo．	解析ケース	固定ボルト（1）（上部）			
		発生作用力 せん断 q	```許容限界 せん断 qa```	照査値 q／qa	検定値
1	津波時NS＋1．0＿UD＋0．4	8.6	35.1	0.25	1.0
2	津波時NS＋1．0＿UD－0．4	7.5	35.1	0.22	1.0
3	津波時NS－1．0＿UD＋0．4	8.2	35.1	0.24	1.0
4	津波時NS－1．0＿UD－0．4	7.1	35.1	0.21	1.0
5	津波時NS＋0．4＿UD＋1．0	9.3	35.1	0.27	1.0
6	津波時NS＋0．4＿UD－1．0	6.6	35.1	0.19	1.0
7	津波時NS－0．4＿UD＋1．0	9.1	35.1	0.26	1.0
8	津波時NS－0．4＿UD－1．0	6.4	35.1	0.19	1.0
9	津波時EW＋1．0＿UD＋0．4	8.4	35.1	0.24	1.0
10	津波時EW＋1．0＿UD－0．4	7.4	35.1	0.22	1.0
11	津波時EW－1．0＿UD＋0．4	8.3	35.1	0.24	1.0
12	津波時EW－1．0＿UD－0．4	7.2	35.1	0.21	1.0
13	津波時EW＋0．4＿UD＋1．0	9.2	35.1	0.27	1.0
14	津波時EW＋0．4＿UD－1．0	6.5	35.1	0.19	1.0
15	津波時EW－0．4＿UD＋1．0	9.2	35.1	0.27	1.0
16	津波時EW－0．4＿UD－1．0	6.5	35.1	0.19	1.0
	最大値	9.3	35.1	0.27	1.0

表6－12（2）固定ボルトに関する評価結果（せん断）（2／2）

ケースNo．	解析ケース	固定ボルト（2）（下部）			
		発生作用力 せん断 q	許容限界 せん断 qa	照査値 q／qa	検定値
1	津波時NS＋1．0＿UD＋0．4	1.4	18.4	0.08	1.0
2	津波時NS＋1．0＿UD－0．4	1.2	18.4	0.07	1.0
3	津波時NS－1．0＿UD＋0．4	5.0	18.4	0.28	1.0
4	津波時NS－1．0＿UD－0．4	4.8	18.4	0.27	1.0
5	津波時NS＋0．4＿UD＋1．0	2.7	18.4	0.15	1.0
6	津波時NS＋0．4＿UD－1．0	2.1	18.4	0.12	1.0
7	津波時NS－0．4＿UD＋1．0	4.1	18.4	0.23	1.0
8	津波時NS－0．4＿UD－1．0	3.5	18.4	0.20	1.0
9	津波時EW＋1．0＿UD＋0．4	4.4	18.4	0.24	1.0
10	津波時EW＋1．0＿UD－0．4	4.2	18.4	0.23	1.0
11	津波時EW－1．0＿UD＋0．4	4.3	18.4	0.24	1.0
12	津波時EW－1．0＿UD－0．4	4.2	18.4	0.23	1.0
13	津波時EW＋0．4＿UD＋1．0	3.3	18.4	0.18	1.0
14	津波時EW＋0．4＿UD－1．0	2.8	18.4	0.16	1.0
15	津波時EW－0．4＿UD＋1．0	3.8	18.4	0.21	1.0
16	津波時EW－0．4＿UD－1．0	3.2	18.4	0.18	1.0
	最大値	5.0	18.4	0.28	1.0

6．5．3．4－57

表6－13（1）固定ボルトに関する評価結果（組合わせ）（1／2）

	固定ボルト①（上部）			
	発生作用力		組合せ	検定値
	$\begin{gathered} \hline \text { 引張 } \\ \mathrm{Td} \\ \hline \end{gathered}$	せん断 q		
最大値	10.2	9.3	0.12	1.0

表6－13（2）固定ボルトに関する評価結果（組合わせ）（2／2）

	固定ボルト（2）（下部）			
	発生作用力		組合せ	検定値
	引張 Td	せん断 q		
最大値	29． 1	5.0	0.67	1.0

表 6－14 応力評価結果（ハッチ部固定ボルト）

| $\begin{array}{c}\text { 評価対象部位 }\end{array}$ | | $\begin{array}{c}\text { 発生値 } \\ \text {（応力度又は荷重）}\end{array}$ | 許容限界 |
| :--- | :---: | :---: | :---: | :---: |$)$ 検定値

表6－15 変形性評価結果

評価対象部位		地震時最大変位量 （mm）		地震時相対変位量 （mm）	許容限界 （mm）
		第 3 号機海水熱交換器建屋	第 3 号機補機冷却海水系放水ピット	評価用 変位量	
止水ジョイント①	開き方向	20	52	72	350
	せん断方向	21	137	158	350
止水ジョイント（2）	開き方向	21	137	158	350
	せん断方向	20	52	72	350
止水ジョイント③	開き方向	20	52	72	350
	せん断方向	21	137	158	350

（別紙1）津波によるボイリング対策について

1．概要

第 3 号機補機冷却海水系放水ピットは図 $1-1$ に示すような構造であり，第 3 号機海水熱交換器建屋側面に鋼製ブラケットにて固定された浸水防止蓋と第 3 号機補機冷却海水系放水ピットと の境界部には止水ジョイント（M 型ジョイント）を設置することにより止水性を確保する。一方，第 3 号機補機冷却海水系放水ピットと第 3 号機海水熱交換器建屋の間については，それぞれ独立 した構造であり，両者の間には遊間が存在する。第3号機補機冷却海水系放水ピットの概要図及 び遊間の関係について，図 1－2～図1－5に示す。この 3 号機補機冷却海水系放水ピットと第 3 号機海水熱交換器建屋の遊間に津波が侵入した場合を考慮し，この遊間部に対しても止水ジョイン ト（M型ジョイント）を設置する。
止水ジョイント（M 型ジョイント）については，地中に埋設し止水性を確保することとするが， この場合ボイリングの発生に留意する必要性がある。
ボイリングは，図 $1-6$ に示すような飽和した地盤において，山留壁前後の水頭差により下流側 の地盤に浸透力が作用し，地盤の水中自重と比べて大きくなると浸透破壊する現象であるが，第 3 号機補機冷却海水系放水ピットが設置される箇所は地下水位低下設備の機能により常時，地震時において地下水位が第 3 号機補機冷却海水系放水ピット底面よりも低く保たれた状態となって いること，また，津波が第 3 号機補機冷却海水系放水ピット内に滞留する時間は最大 3 分程度で あること（（図 1－7 に示す第 3 号放水立坑の滞留時間より）を踏まえると，その間に，内外の水頭差により，第 3 号機補機泠却海水系放水ピット側部の地盤が飽和し浸透破壊に至る可能性は極 めて低いものと推定される。

しかしながら，ここでは，安全側に津波滞水時間内に地盤が飽和した場合を想定し，浸水防止蓋（第3号機補機冷却海水系放水ピット）がボイリングに対し裕度を持っていることを碓認する。

（全体図）

図 1－1（1）浸水経路概要図

図 $1-1$（2）浸水経路概要図（視点 A 詳細）

図 1－2 第3号機補機冷却海水系放水ピット平面図

図 $1-3$ 第 3 号機補機冷却海水系放水ピット縦断図

図 1－4 第3号機補機冷却海水系放水ピット平面図（C－C 断面）

遊間部へ津波が流入することから，
遊間部へ流入した津波を止水ジョイントにて止水する。

図 $1-5$ 第 3 号機補機冷却海水系放水ピット平面図（D－D 断面）

図 1－6 ボイリング概略図

図 1－7 津波滞留時間（第3号機放水立坑）

2．ボイリング対策の評価

2.1 基本方針

前述のとおり，浸水防止蓋（第 3 号機補機冷却海水系放水ピット）は津波時において浸水防止蓋（第 3 号機補機冷却海水系放水ピット）内部に海水が一時的に貯留されるため，その水頭差の影響により第3号機補機冷却海水系放水ピット側部の地盤に津波が浸透することを想定し ボイリングの影響について検討する。

2．2 評価方法

ボイリングの評価においては，「山留め設計指針 平成 29 年（日本建築学会）」に示されてい る式を用いて行った。（Terzaghi の方法）。ボイリングに対する安全性検討式（日本建築学会）を図 2－1 に示す。また，安全率は1．2以上を確保することが示されている。

```
ホイリンタに対する安全の検討は, 下式による (図6.2).
    F=\frac{2\mp@subsup{\gamma}{}{\prime}D}{\mp@subsup{\gamma}{w}{*}\mp@subsup{h}{w}{*}}\quadF\geqq1.2
    記号 F: ※イイリンクに対する安全率
        r':土の水中単位体皘重量 (kN/m
```



```
                根人れ深き (m)
        hm
        \gamma\omega:水の単位休皘重量 (kN/m
```

図 2－1 ボイリングに対する安全性検討式（日本建築学会）

2．3 評価条件

ボイリングの評価にあたっては，設計津波水位による水頭差並びに，地震時の揺すり込み沈下による根入れ長の低減を考慮する。ボイリングを検討する評価対象位置を図 2－2 に示す。な お，保守的に評価する観点から，2．3．1～2．3．3に示す内容について留意する。

図 2－2 ボイリング評価検討箇所

2．3．1 設計津波水位の設定

表2－1に示す設計津波水位を採用した。

表2－1 設計津波水位

設置箇所	設計津波水位 (m)
浸水防止蓋	0．P．+18.0
（第 3 号機補機冷却海水系放水ピット $)$	

2．3．2 設計用地表面の設定

設計用地表面の設定にあたつては，地盤の揺すり込み沈下を考慮する。地下水位以浅の不飽和土の摇すり込み沈下量の算定においては，海野ら＊1の知見を採用し，安全側に飽和土が完全に液状化した後の再圧密による体積収縮量と等しいと仮定した。地下水以深の飽和地盤については，過剰間隙水圧の消散に伴う体積ひずみの関係から沈下量について算定 した。沈下量の算定に当たっては，図 2－3 に示す体積ひずみと液状化抵抗率の関係＊2を考慮する。上記の検討からより揺すり込み沈下量が大きい場合を考慮し，設計用地表面は地下水位以浅，以深ともに対象位置の盛土厚さの 1.4% ，旧表土厚さの 2.8% の沈下量を考慮した。なお，揺すり込み沈下率の設定の詳細については，補足説明資料「補足－200－ 14 可搬型重大事故等対処設備の保管場所及びアクセスルートについて」に示す。また，盛土，旧表土の層厚については，図 2－2 に示す地質断面図における各評価対象位置から読 み取った。

評価対象箇所の揺すり込み沈下量を表2－2に示す。評価では評価対象箇所の揺すり込み沈下量を考慮する。

注記＊1：同一繰返しせん断履歴における乾燥砂と飽和砂の堆積収縮量の関係
（海野ら，2006）
注記＊2：Evaluation Of Settlements In Sand Deposits Following Liquefaction During Earthquakes（石原ら，1992）

図 2－3 評価対象箇所の摇すり込み沈下量の算定方法

表 2－2 評価対象箇所の揺すり込み沈下量

設計対象箇所	盛土層厚 (m) A	旧表土層厚 (m) B	沈下量（m）
(C)	28.80	0.00	0.41
(2)	23.30	0.00	0.33

2．3．3 評価用地下水位の設定

浸透流解析から設定した第 3 号機補機冷却海水系放水ピット部の設計用地下水位は底面以深になるが，ボイリングに対する保守的な評価として，飽和状態にあることを仮定し，地表面に地下水位があるものとした。

2．3．4 評価モデル
「2．3 評価条件」により設定した評価モデルを図 2－4に示す。

図 2－4 評価モデル

注記 $* 1$ ：評価対象位置における地盤の摇すり込み沈下量を考慮する。 ＊2：ボイリングの検討において保守的となるよう地表面とする。

2． 4 評価結果

ボイリングに対する安全性の評価結果を表 2－3 に示す。評価対象箇所における安全率はい ずれも 1.2 以上であることを確認し，津波によるボイリングは発生しないことを確認した。

表2－3 評価結果

評価対象位置	設計津波水位 $(0 . \mathrm{P} .+\mathrm{m})$	設計用 地表面 $(0 . \mathrm{P} .+$ $\mathrm{m})$	根入れ 深さ D (m)	土の水中 水位差 $\mathrm{hw})$	土水の単位 単位体積 重量 γ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	体積重量 $\gamma \mathrm{w}$ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	安全率

（別紙2）スキンプレートの止水対策について

1．概要

浸水防止蓋（第 3 号機補機冷却海水系放水ピット）は第 3 号機補機泠却海水系放水ピットか らの浸水を防止するため，近接する第 3 号機海水熱交換器建屋側面に鋼製ブラケットを介して固定ボルトにて固定する。
浸水防止蓋はスキンプレートで構成されており，既設配管との取り合いを考慮し分割して取 り付けることから主桁や受桁に溶接またはボルトにて固定する。
分割したスキンプレート間の固定部には隙間が生じるため，シール材を設置することで，津波に対し有意な漏えいを生じさせない性能を保持する設計としている。

また，受桁とスキンプレート間および主桁とスキンプレート間においてもシール材を設置し，津波に対し有意な漏えいを生じさせない性能を確保する。

継目部のシール材を評価対象とし，津波時の水圧に対してシール材の接着が保持され，機能維持されることを確認する。

シール材の仕様は防潮壁鋼製遮水壁（鋼析）で使用するものと同仕様のものを計画しており， シール材の耐候性試験（熱老化試験，乾湿繰り返し試験）については防潮壁鋼製遮水壁（鋼桁） の評価で実施している。
浸水防止蓋（スキンプレート）の構造概要を図 $1-1$ に示す。また，浸水防止蓋の施工概要を図 $1-2$ に，シール材の配置概要を図 $1-3$ に示す。

止水種別 B（スキンプレートと受桁•

図 1－1 浸水防止蓋（スキンプレート）の構造概要
（1）受桁，仮受桁を設置

（2）スキンプレート（第3号機海水
熱交換器建屋側）を設置
スキンプレートと受桁はボルトで接合

（3）スキンプレート（第3号機補機
冷却海水系放水ピット側）を溶接
した主桁•横桁部材を設置

（5）斜材（接続部）を設置

図 $1-2(1)$ 浸水防止蓋の施工概要

（8）止水ジョイント取付

図 $1-2$（2）浸水防止蓋の施工概要

断面（3）－（3）（止水種別 B）

断面（2）－（2）（止水種別 B）

断面（4）－（4）（止水種別 B）

図 1－3 シール材の配置概要

2．シール材の接着性能に関する評価

2.1 評価方法

シール材の接着性能については，津波荷重によって生じる引張せん断応力を算出し，シール材の引張接着強さ以下であることを確認する。

シール材の仕様を表 2－1 に，施工方法を図 2－1 に示す。

表 2－1 シール材の仕様

シール材名称	主成分	引張せん断強さ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	耐候性
	2 液性特殊変性 シリコーン エポキシ樹脂	2.00	50 年

図 2－1（1）シール材の施工方法（止水種別A）

図 2－1（2）シール材の施工方法（止水種別B）

2.2 評価結果（止水種別 A）

表 2－2 に設計諸元を示す。シール材に作用する津波荷重作用時の引張せん断応力度を算出し，引張せん断強さに対して十分に小さいことを確認した。

表2－2 設計諸元

項目	数値	備考
設計圧力 p	$0.15 \mathrm{~N} / \mathrm{mm}^{2}$	止水ジョイント部材と同じ設計圧力に設定
受圧幅 b	15 mm	スキンプレート間の幅に施工•製作誤差と して＋5mmを考慮する。 （スキンプレート間隔 $10 \mathrm{~mm}+5 \mathrm{~mm})$
シール材の厚さt	15 mm	施工誤差 $(-1 \mathrm{~mm})$ を考慮する （スキンプレート厚さ $16 \mathrm{~mm}-1 \mathrm{~mm})$
シール材の引張せん断強度	$2.00 \mathrm{~N} / \mathrm{mm}^{2}$	

接着部の引張せん断応力度の算出と評価
シール材が受ける荷重の合計 $\mathrm{F}=\mathrm{p} \cdot \mathrm{b}=2.25 \mathrm{~N} / \mathrm{mm}$
片側の単位奥行き当りの接着面積 $\mathrm{A}=15 \mathrm{~mm}^{2} / \mathrm{mm}$
接着部の引張せん断応力度 $\tau=(\mathrm{F} / 2) / \mathrm{A}=0.15 \mathrm{~N} / \mathrm{mm}^{2}<2.00 \mathrm{~N} / \mathrm{mm}^{2}$

2.3 評価結果（止水種別B）

表 2－3 に設計諸元を示す。シール材に作用する津波荷重作用時の引張せん断応力度を算出し，引張せん断強さに対して十分に小さいことを確認した。

表2－3 設計諸元

項目	数値	備考
設計圧力 p	$0.15 \mathrm{~N} / \mathrm{mm}^{2}$	止水ジョイント部材と同じ設計圧力に設定
受圧幅 b	15 mm	シール設置幅に施工•製作誤差として +5 mm を考慮する。 （鋼材間隔 $10 \mathrm{~mm}+5 \mathrm{~mm})$
シール材の厚さt	15 mm	施工誤差 $(-1 \mathrm{~mm})$ を考慮する （シール材厚さ $16 \mathrm{~mm}-1 \mathrm{~mm})$
シール材の引張せん断強度	$2.00 \mathrm{~N} / \mathrm{mm}^{2}$	

接着部の引張せん断応力度の算出と評価
シール材が受ける荷重の合計 $\mathrm{F}=\mathrm{p} \cdot \mathrm{b}=2.25 \mathrm{~N} / \mathrm{mm}$
片側の単位奥行き当りの接着面積 $\mathrm{A}=15 \mathrm{~mm}^{2} / \mathrm{mm}$
接着部の引張せん断応力度 $\tau=(\mathrm{F} / 2) / \mathrm{A}=0.15 \mathrm{~N} / \mathrm{mm}^{2}<2.00 \mathrm{~N} / \mathrm{mm}^{2}$

2.4 維持管理方針の検討

シール材及の維持管理は，耐候性試験結果に基づく耐用年数が 50 年相当であることを踏ま え，初回点検のほか，定期的な目視点検を行い，部材の劣化，変状の発生•進行を把握すると ともに，状態に応じてシール材の再施工を行う方針とする。

点検時期及び点検方法を表2．4に示す。なお，詳細は本方針に従い，施設の供用開始前まで に適切に策定する。

表2．4 シール材の点検時期•点検方法

時期	分類		時期，頻度	方法
維持管理開始時	初回点検		竣工直後	定期点検に準じる
供用中	点検＊1	巡視点検	1 回 $/$ 年	目視点検
		定期点検	1 回 $/ 10$ 年	目視点検

注記＊1：巡視点検では可視範囲で，定期点検では足場等を用いて全範囲を点検し，劣化及びひび割れ等の不具合の有無を確認するとともに，必要に応じてシール材の除去及び再施工を行う。
6．浸水防護施設に関する補足資料
6.5 浸水防止設備に関する補足説明
6．5．3 浸水防止蓋に関する補足説明
6．5．3． 5 浸水防止蓋（第 3 号機海水熱交換器建屋）の耐震性についての計算書に関する補足説明
目 次
1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 4
2.3 評価方針 5
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位及び評価対象設備 9
4．固有値解析 11
4．1 固有値解析の計算方法 11
4．2 固有振動数の計算条件 12
4．3 固有振動数の計算結果 13
5．構造強度評価 14
5.1 構造強度評価方法 14
5.2 荷重及び荷重の組合せ 14
5.3 許容限界 16
5.4 設計用地震力 22
5.5 評価方法 24
5.6 評価条件 35
6．評価結果 37

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度に基づき，浸水防止設備のうち浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）及 び浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2） （以下，「浸水防止蓋」という。）が設計用地震力に対して，主要な構造部材が十分な構造健全性 を有することを確認するものである。その耐震評価は浸水防止蓋の固有値解析及び応力評価によ り行う。

浸水防止蓋は，浸水防護施設としてSクラス施設に分類される。以下，浸水防止設備としての構造強度評価を示す。

なお，浸水防止蓋の耐震評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，第3号機海水熱交換器建屋海水ポンプ設置エリアの床面に設置する。
浸水防止蓋の設置位置図を図2－1に，流入対策配置図を図2－2に示す。

図 2－1 浸水防止蓋の設置位置図
（第3号機海水熱交換器建屋 地下中 2 階）

平面図
図 2－2 第3号機海水熱交換器建屋 流入対策配置図（1／2）

図 2－2 第3号機海水熱交換器建屋 流入対策配置図（2／2）

2.2 構造計画

浸水防止蓋の構造は，長方形又は正方形のスキンプレートに主桁（溝形鋼又は鋼板）を組合 せた構造とする。

浸水防止蓋は，第3号機海水熱交換器建屋海水ポンプ設置エリア床面に設置する固定ボルト にて固定する。浸水防止蓋の構造計画を表2－1 に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第 3 号機海水熱交換器建屋海水 ポンプ設置エリ ア床面に設置す る固定ボルトで固定する。	浸水防止蓋及 び固定ボルト により構成す る。	

2．3 評価方針

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及 び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」に示す浸水防止蓋の構造を踏まえ，
「3．評価対象部位及び評価対象設備」にて設定する評価対象部位において，「4．固有値解析」で算出した固有振動数に基づく設計用地震力により算出した応力等が許容限界内に収まる ことを，「5．構造強度評価」に示す方法にて確認する。応力評価の確認結果を「6．評価結果」にて確認する。

耐震評価フローを図 $2-3$ に示す。

図 2－3 耐震評価フロー

2.4 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 2010 年 各種合成構造設計指針•同解説
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
- 機械工学便覧（日本機械学会）

2.5 記号の説明

浸水防止蓋の耐震評価に用いる記号を表 $2-2$ に示す。

表 2－2 耐震評価に用いる記号（1／2）

記号	単位	定義
S s	kN	基準地震動S s による地震荷重
k_{H}	－	基準地震動 S s に伴う水平方向の設計震度
k v	－	基準地震動 S s に伴う鉛直方向の設計震度
G	kN	固定荷重
P s	kN	積雪荷重
W s	$\mathrm{N} / \mathrm{m}^{2}$	1 cm 当りの積雪荷重
d s	cm	積雪高さ
A	m^{2}	浸水防止蓋の面積
$\mathrm{W}_{\text {s s }}$	kN／m ${ }^{2}$	単位面積当りの等分布荷重
$\mathrm{W}_{\text {s s }}$ ，	kN／m	単位長さ当りの等分布荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	$\mathrm{kN} \cdot \mathrm{m}$	最大曲げモーメント
x	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度
A s	mm^{2}	主桁のせん断断面積
Z	mm^{3}	主桁の断面係数
L_{1}	mm	主桁の負担幅
L_{2}	mm	主桁全長
L_{3}	mm	スキンプレートの支持長辺長さ
L_{4}	mm	スキンプレートの支持短辺長さ
β_{1}	－	スキンプレートの辺長比に応じた係数
t	mm	スキンプレートの厚さ

表 2－2 耐震評価に用いる記号（2／2）

記号	単位	定義
N	本	固定ボルト（2）の本数
T ${ }_{\text {d }}$	kN	固定ボルト（2）1 本当りに作用する引張力
q	kN	固定ボルト（2）1 本当りに作用するせん断力
σ t	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト（1）1 本当りに生じる引張応力度
τ s	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト（1）1 本当りに生じるせん断応力度
T s	kN	固定ボルト（1）1 本当りに作用する引張力
q s	kN	固定ボルト（1）1 本当りに作用するせん断力
A＇	mm^{2}	固定ボルト（1）の有効断面積
n s	本	固定ボルト（1）の本数
σ f	$\mathrm{N} / \mathrm{mm}^{2}$	枠下フランジに生じる最大曲げ応力度
M_{f}	kN • m	枠下フランジに作用する最大曲げモーメント
Z_{f}	mm^{3}	枠下フランジの断面係数
L_{7}	mm	枠ウェブ中心から下フランジ端部までの距離
$\tau{ }_{\text {f }}$	$\mathrm{N} / \mathrm{mm}^{2}$	枠下フランジに生じる最大せん断応力度
Q_{f}	kN	枠下フランジに生じる最大せん断力
A_{f}	mm^{2}	枠下フランジのせん断断面積
Q_{w}	kN	枠ウェブに作用する最大せん断力
τ_{w}	$\mathrm{N} / \mathrm{mm}^{2}$	枠ウェブに生じる最大せん断応力度
A s w	mm^{2}	枠ウェブのせん断断面積
C_{w}	kN	鉛直方向の地震荷重により枠ウェブに作用する最大圧縮力
$\sigma_{\text {cw }}$	$\mathrm{N} / \mathrm{mm}^{2}$	鉛直方向の地震荷重により枠ウェブに生じる最大圧縮応力度
A_{w}	mm^{2}	枠ウェブの断面積
T_{a}	kN	固定ボルト（2）の短期許容引張荷重
q a	kN	固定ボルト（2）の短期許容せん断荷重
σ b	$\mathrm{N} / \mathrm{mm}^{2}$	ベースプレートに生じる最大曲げ応力度
M_{b}	kN • m	ベースプレートに作用する最大曲げモーメント
$\mathrm{Z}_{\text {b }}$	mm^{3}	ベースプレートの断面係数
L_{8}	mm	ベースプレートの評価長さ
B	mm	ベースプレートの有効幅
t b	mm	ベースプレートの板厚
$\tau \mathrm{b}$	$\mathrm{N} / \mathrm{mm}^{2}$	ベースプレートに生じる最大せん断応力度
Q_{b}	kN	ベースプレートに作用する最大せん断力
A s b	mm^{2}	ベースプレートのせん断断面積

3．評価対象部位及び評価対象設備
浸水防止蓋の評価対象部位は，「2．2 構造計画」にて設定している構造を踏まえて，地震に伴 う荷重の作用方向及び伝達過程を考慮し設定する。また，浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）は構成部材の寸法，規格が等しく，評価結果が変わらないことから，浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）及び浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）を評価対象設備とする。

浸水防止蓋の評価対象部位は，地震に伴ら慣性力が浸水防止蓋のスキンプレート，主桁，固定 ボルト（1），枠及びベースプレートに伝わり，浸水防止蓋を固定する固定ボルト（2）を介して躯体に伝達されることから，浸水防止蓋の評価対象部位は，スキンプレート，主桁，固定ボルト（1），固定ボルト（2），枠及びベースプレートとする。評価対象部位を図3－1に示す。

浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）
図 3－1 評価対象部位（1／2）
\square
浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）図 3－1 評価対象部位（ $2 / 2$ ）

4．固有値解析

4． 1 固有値解析の計算方法
浸水防止蓋の構造に応じて解析モデルを設定し，固有振動数を算出する。

4．1．1 解析モデルの設定

浸水防止蓋は，スキンプレート及び主桁の組合せにより剛な断面を有しているととも に，固定ボルト（1），枠及びベースプレートを介し，固定ボルト（2）にて浸水防止蓋と躯体を固定する構造であることから，浸水防止蓋の主桁を両端支持はりに単純化したモ デルとし，モデル化に用いるはり長さは，主桁の全長とする。図4－1に解析モデル図を示す。

図 4－1 浸水防止蓋の固有値解析モデル

4．1．2 記号の説明

浸水防止蓋の固有振動数算出に用いる記号を表4－1 に示す。

表 4－1 浸水防止蓋の固有振動数算出に用いる記号

記号	単位	
f	Hz	一次固有振動数
L	mm	はり定義
E	$\mathrm{N} / \mathrm{mm}^{2}$	ヤング率
I	mm^{4}	断面二次モーメント
m	$\mathrm{kg} / \mathrm{mm}$	質量分布

4．1．3 固有振動数の算出方法
一次固有振動数 f を「土木学会構造力学公式集」を参考に以下の式より算出する。

$$
\mathrm{f}=\frac{\pi^{2}}{2 \pi \mathrm{~L}^{2}} \cdot \sqrt{\frac{\mathrm{E} \cdot \mathrm{I} \cdot 10^{3}}{\mathrm{~m}}}
$$

4．2 固有振動数の計算条件

固有振動数の計算条件を表 4－2 に示す。

表 4－2 固有振動数の計算条件

設備名称	はり長さ L (mm)	ヤング率 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	断面二次 モーメント I	質量分布 m $\left(\mathrm{mm}^{4}\right)$
$(\mathrm{kg} / \mathrm{mm})$				

4．3 固有振動数の計算結果

固有振動数の計算結果を表 4－3 に示す。固有振動数は， 20 Hz 以上であることから，剛構造 である。

表 4－3 固有振動数の算出結果

設備名称	固有振動数 (Hz)
浸水防止蓋（第3号機海水熱交換器建屋海 水ポンプ設置エリア角落し部）	335
浸水防止蓋（第3号機海水熱交換器建屋海 水ポンプ設置エリア点検用開口部）（No．1）， （No．2）	163

5．構造強度評価

5.1 構造強度評価方法

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位及び評価対象設備」にて設定する評価対象部位に生じる応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。

5.2 荷重及び荷重の組合せ

5．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを以下に示す。
$\mathrm{G}+\mathrm{S} \mathrm{s}+\mathrm{P} \mathrm{s}$
ここで，G：固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
Ps ：積雪荷重（kN）

5．2．2 荷重の設定

耐震評価に用いる荷重は，以下のとおりとする。
（1）固定荷重（G）
固定荷重として，浸水防止蓋を構成する部材の自重を考慮する。
（2）積雪荷重（ P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

積雪荷重による質量は以下に式より算出する。
$\mathrm{P} \mathrm{s}=0.35 \cdot \mathrm{~W} \mathrm{~s} \cdot \mathrm{~d} \mathrm{~s} \cdot \mathrm{~A} \cdot 10^{-3}$
ここで， P s ：積雪荷重 (kN)
W s ： 1 cm 当りの積雪荷重 $20\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
d s ：積雪高さ 43 （ cm ）
A ：浸水防止蓋の面積（ m^{2} ）
（3）基準地震動 S s による地震荷重（S s ）
地震荷重として，基準地震動S s による慣性力を考慮する。ここで，地震荷重は，浸水防止蓋の固定荷重及び積雪荷重に設計震度を乗じた次式により算出する。
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{Ps}) \cdot \mathrm{k}$
ここで，S s ：基準地震動 S s による地震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
$\mathrm{k} \quad$ ：基準地震動 S s に伴ら設計震度（ k_{H} または k_{V} ）

5.3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している許容限界を踏まえ て設定する。

5．3．1 使用材料

浸水防止蓋を構成するスキンプレート，主桁，固定ボルト（1），固定ボルト（2），枠及 びベースプレートの使用材料を表5－1に示す。

表 5－1 使用材料

設備名称	評価対象部位	材質	仕様
浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部）	スキンプレート	SUS304	$\mathrm{t}=16$（mm）
	主桁	SUS304	C－ $80 \times 40 \times 5 \times 5$（mm）
	固定ボルト（1）	SUS304	M16
	固定ボルト（2）	SUS304	M16
	ベースプレート	SUS304	$\mathrm{t}=19$（mm）
浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）	スキンプレート	SUS304	$\mathrm{t}=12$（mm）
	主桁	SUS304	PL－16×150（mm）
	固定ボルト（1）	SUS304	M30
	固定ボルト（2）	SUS304	M16
	枠	SUS304	$\mathrm{H}-150 \times 150 \times 7 \times 10$（mm）
	ベースプレート	SUS304	$\mathrm{t}=19$（mm）

5．3．2 許容限界

（1）スキンプレート，主桁，固定ボルト（1），枠，ベースプレート
鋼材の許容応力度は，「日本建築学会 2005年 鋼構造設計規準－許容応力度設計法－」を踏まえて表5－2の値とする。

表 5－2 鋼材の短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$			
SUS304	曲げ	引張	せん断	圧縮
	205	205	118	192

注：許容応力度を決定する場合の基準値 F は，日本産業規格（J I S ）に基づく。

（2）固定ボルト
 （2）

固定ボルト（2）の許容荷重は，「3．評価対象部位及び評価対象設備」に記載した固定ボ ルト（2）に作用する荷重の向きを踏まえて，「日本建築学会 2010年 各種合成構造設計指針•同解説」に基づき算定する。

固定ボルト（2）は躯体に埋め込まれていることから，固定ボルト（2）が引張力を受け る場合においては，固定ボルト（2）の降伏により決まる許容荷重（ $\mathrm{P}_{\mathrm{a} 1}$ ），付着力により決まる許容荷重（ P_{a} 3 ）を比較して，いずれか小さい値を採用する。また，固定ボルト（2） がせん断力を受ける場合においては，固定ボルト（2）のせん断強度により決まる許容荷重 （ q a 1 ），定着したコンクリート躯体の支圧強度により決まる許容荷重（ q a 2 ）及びコー ン状破壊により決まる許容荷重（ C a 3 ）を比較して，いずれか小さい値を採用する。

突き上げ津波荷重を考慮する場合の固定ボルト（2）の許容荷重設定に用いる入力値を表 5－3及び表5－4に，許容荷重を表5－5及び表5－6に示す。

引張力を受ける場合
$\mathrm{P}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{pa}} \cdot \mathrm{sca}_{\mathrm{c}}$
$\mathrm{P}_{\mathrm{a} 3}=\Phi_{3} \cdot \tau_{\mathrm{a}} \cdot \pi \cdot \mathrm{d}_{\mathrm{a}} \cdot 1_{\mathrm{ce}}$
ここで， $\mathrm{P}_{\mathrm{a} 1}$ ：固定ボルトの降伏により決まる場合の固定ボルト 1 本当たり の許容引張力（N）
Pa3：固定ボルトの付着力により決まる場合の固定ボルト 1 本当た りの許容引張力（ N ）
Φ_{1} ：低減係数（短期荷重用）
Φ_{3} ：低減係数（短期荷重用）
s σ_{pa} ：固定ボルトの引張強度 $\left(={ }_{\mathrm{s}} \sigma_{\mathrm{y}}\right)\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
s $\sigma_{\mathrm{y}}^{\text {y }}$ ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sca ：固定ボルトの断面積（ mm^{2} ）
$\mathrm{d}_{\mathrm{a}} \quad$ ：固定ボルトの径（mm）
1 ce ：固定ボルトの強度算定用埋込み長さ（ $=1 \mathrm{e}-2 \mathrm{~d}_{\mathrm{a}}$ ）（mm）
1 e ：固定ボルトのコンクリート内への有効埋込み長さ（mm）
τ a ：へりあき及び固定ボルトのピッチによる低減を考慮した付着強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{q}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{qa}} \cdot \mathrm{s}$ c a
$\mathrm{q}_{\mathrm{a} 2}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{qa}} \cdot \mathrm{sc}$ a
$\mathrm{q} \mathrm{a} 3=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{q} \mathrm{c}}$
ここで， $\mathrm{q}_{\mathrm{a} 1}$ ：固定ボルトのせん断強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 2 ：定着した躯体の支圧強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 3 ：定着した躯体のコーン状破壊により決まる場合の固定ボルト 1 本当たりの許容せん断力（N）
Φ_{1} ：低減係数（短期荷重用）
Φ_{2} ：低減係数（短期荷重用）
s σ qa ：固定ボルトのせん断強度（ $=0.7$ • s σ y $) ~\left(N / \mathrm{mm}^{2}\right)$
s $\sigma_{\mathrm{y}}^{\text {y }}$ ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sca ：固定ボルトの断面積（ mm^{2} ）
c σ_{qa} ：コンクリートの支圧強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right) \quad\left(=0.5 \sqrt{\mathrm{~F}_{\mathrm{c}} \cdot \mathrm{E}_{\mathrm{c}}}\right)$
c σ_{t} ：コーン状破壊に対するコンクリートの引張強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

$$
\left(=0.31 \sqrt{\mathrm{~F}_{\mathrm{c}}}\right)
$$

Fe ：コンクリートの設計基準強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
E ：コンクリートのヤング係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{A}_{\mathrm{q} \mathrm{c}}$ ：せん断力に対するコーン状破壊面の有効投影面積（ mm^{2} ）

表 5－3 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）の固定ボルト（2）の許容荷重の設定に用いる入力値

記号	単位	定義	数値
Φ_{1}	－	低減係数（短期荷重用）	1.0
Φ_{2}	－	低減係数（短期荷重用）	$2 / 3$
Φ_{3}	－	低減係数（短期荷重用）	2／3
${ }_{\mathrm{s}} \sigma_{\mathrm{pa}}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの引張強度	205
s σ y	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの規格降伏点強度	205
sca	mm^{2}	固定ボルトの断面積	157
d_{a}	mm	固定ボルトの径	16
1 ce	mm	固定ボルトの強度算定用埋込み長さ	82
τ a	$\mathrm{N} / \mathrm{mm}^{2}$	へりあき及び固定ボルトのピッチによる低減を考慮 した付着強度	12． 17
s σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトのせん断強度	143.5
c σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの支圧強度	450
c σ t	$\mathrm{N} / \mathrm{mm}^{2}$	コーン状破壊に対するコンクリートの引張強度	1． 76
F ${ }_{\text {c }}$	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの設計基準強度	32.4
E c	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートのヤング係数	25100
$\mathrm{A}_{\mathrm{q} ~}^{\text {c }}$	mm^{2}	せん断力に対するコーン状破壊面の有効投影面積	19007

表 5－4 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）
（No．1）（No．2）の固定ボルト（2）の許容荷重の設定に用いる入力値

記号	単位	定義	数値
Φ_{1}	－	低減係数（短期荷重用）	1.0
Φ_{2}	－	低減係数（短期荷重用）	$2 / 3$
Φ_{3}	－	低減係数（短期荷重用）	2／3
${ }_{\mathrm{s}} \sigma_{\mathrm{pa}}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの引張強度	205
s σ y	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの規格降伏点強度	205
sca	mm^{2}	固定ボルトの断面積	157
d_{a}	mm	固定ボルトの径	16
1 ce	mm	固定ボルトの強度算定用埋込み長さ	82
τ a	$\mathrm{N} / \mathrm{mm}^{2}$	へりあき及び固定ボルトのピッチによる低減を考慮 した付着強度	12． 42
s σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトのせん断強度	143.5
c σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの支圧強度	450
c σ t	$\mathrm{N} / \mathrm{mm}^{2}$	コーン状破壊に対するコンクリートの引張強度	1． 76
F ${ }_{\text {c }}$	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの設計基準強度	32.4
E c	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートのヤング係数	25100
$\mathrm{A}_{\mathrm{q} ~}^{\text {c }}$	mm^{2}	せん断力に対するコーン状破壊面の有効投影面積	37738

表 5－5 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）の固定ボルト（2）の短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	Pa_{1}	Pa3	設定値	q a 1	q a 2	q a 3	設定値
SUS304	32． 1	33.4	32.1	22.5	47.1	22.3	22.3

表 5－6 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部） （No．1），（No．2）の固定ボルト（2）の短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	$\mathrm{P}_{\text {a } 1}$	$\mathrm{P}_{\text {a }} 3$	設定値	q a 1	q a 2	q a 3	設定値
SUS304	32． 1	34． 1	32.1	22.5	47． 1	44． 2	22.5

5.4 設計用地震力

「4．固有値解析」に示したとおり浸水防止蓋の固有振動数が 20 Hz 以上であることを確認 したため，浸水防止蓋の耐震評価に用いる設計震度は，材料物性の不碓かさを考慮したものと して添付書類「VI－2－2－29 第3号機海水熱交換器建屋の地震地応答計算書」の地震応答解析結果を用いる。地震応答解析ケースを表5－7に，設計震度を表5－8に示す。

表 5－7 地震応答解析ケース

対象地震動	ケース名	スケルトンカーブ		建屋材料減衰	地盤物性	
		初期唰性	終局耐力		入力地震動	底面地盤ばね
基準地震動S s （水平）	$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	2011年3月11日東北地方太平洋沖地震の観測記録を用いたシミュレーシ ヨン解析により補正	設計基淮強度を用い JEAG 式で評価	5\％	表層地盤の非線形性を考慮	標準地盤
	ケース 2	同上	同上	同上	同上	標準地盤＋${ }^{\text {a }}$
	ケース 3					標準地盤 $-\sigma$
	ケース 4	基本ケースの 0.53 倍＊	同上	同上	同上	標準地盤
	ケース 5					標準地盤＋σ
	ケース 6					標準地盤 $-\sigma$
基準地震動S s （鉛直）	$\begin{array}{\|l\|} \hline \text { ケース } 1 \\ \text { (基本ケース) } \end{array}$	設計剛性	－	5\％	直接入力	標準地盤
	ケース2	同上	－	同上	同上	標準地盤＋$+\sigma$
	ケース 3					標準地盤 $-\sigma$

 ついて評価し，最も剛性低下するケースの低下後の剛性を初期剛性の不確かさとして考慮する。具体的には，基準地震動 S s入力前後の 1 次固有振動数の比（ f_{Ss} 入力後／ f_{Ss} 入力前）を基本ケースの初期剛性に掛けることによって算定する。

表 5－8 設計震度

注 ：表中の O．P．は第三号機海水熱交換器建屋の地震応答計算書での値を示す。

5.5 評価方法

浸水防止蓋を構成する主桁，スキンプレート，固定ボルト（1），枠及びベースプレートに発生する応力度並びに固定ボルト（2）に発生する応力が，許容限界以下であることを確認する。

主桁とスキンプレートについては，箇所によって評価結果に差異が生じることから，図 5－1及び図 5－2 にそれぞれ評価の対象とする主桁，スキンプレートを示す。

また，図5－3に，固定ボルト（1），固定ボルト（2），枠及びベースプレートの納まりを示す。

5．5．1 主桁

主桁の支持条件は両端をピン支持とし，図5－1に示すとおり，主桁が荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施する。
（1）基準地震動 S s による地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{v}}$
ここで，S s ：基準地震動 S s による地震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
k_{v} ：基準地震動 S s に伴う鉛直方向の設計震度
（2）主桁に作用する単位長さ当りの鉛直方向の等分布荷重 W_{s} s

$$
\mathrm{W}_{\mathrm{s} \mathrm{~s}},=(\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{L}_{1} \cdot 10^{-3} / \mathrm{A}
$$

ここで， $\mathrm{W}_{\mathrm{s} \mathrm{s}}$ ，：主桁に作用する単位長さ当りの鉛直方向の等分布荷重 $(\mathrm{kN} / \mathrm{m})$
G ：固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P s ：積雪荷重（kN）
L_{1} ：主桁の負担幅（mm）
A ：浸水防止蓋の面積 $\left(\mathrm{m}^{2}\right)$
（3）主桁に生じる最大せん断応力度 τ
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{As}$
τ ：主桁に生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：主桁に生じる最大せん断力（ kN ）
A s ：主桁のせん断断面積（ mm^{2} ）
ここで， $\mathrm{Q}=1 / 2 \cdot \mathrm{~W}_{\mathrm{ss}} \quad \cdot \mathrm{L}_{2} \cdot 10^{-3}$
$\mathrm{W}_{\mathrm{s} \mathrm{s}}$ ，：主桁に作用する単位長さ当りの鉛直方向の等分布荷重 $(\mathrm{kN} / \mathrm{m})$
L_{2} ：主桁全長（mm）
（4）主桁に生じる最大曲げ応力度 σ
$\sigma=\mathrm{M} \cdot 10^{6} / \mathrm{Z}$
σ ：主桁に生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：主桁に生じる最大曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m}$ ）
Z ：主桁の断面係数 $\left(\mathrm{mm}^{3}\right)$
ここで， $\mathrm{M}=1 / 8 \cdot \mathrm{~W}_{\mathrm{ss}}{ }^{\prime} \cdot\left(\mathrm{L}_{2} \cdot 10^{-3}\right)^{2}$
W_{ss} ，：主桁に作用する単位長さ当りの鉛直方向の等分布荷重 $(\mathrm{kN} / \mathrm{m})$
L_{2} ：主桁全長（mm）
（5）主桁に生じる組合せ応力度 x
主桁に生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年鋼構造設計規準－許容応力度設計法－」に基づく次式により算定し，短期許容引張応力度以下であることを確認する。
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$
x ：組合せ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
σ ：最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
τ ：最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

図 5－1 評価の対象とする主桁

5．5．2 スキンプレート

図5－2に示すとおり，スキンプレートが荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施する。
（1）基準地震動 S s による地震荷重 S s

$$
\mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{kv}
$$

ここで，S s ：基準地震動 S s による地震荷重（kN）

G	：固定荷重 (kN)
P s	：積雪荷重 (kN)
k_{v}	：基準地震動 S s に伴う鉛直方向の設計震度

（2）スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 W_{s} s

$$
\mathrm{W}_{\mathrm{s} \mathrm{~s}}=(\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P} \mathrm{~s}) / \mathrm{A}
$$

ここで，$W_{s s}$ ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 （ $\mathrm{kN} / \mathrm{m}^{2}$ ）

G ：固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P s ：積雪荷重（kN）
A ：浸水防止蓋の面積 $\left(\mathrm{m}^{2}\right)$
（3）スキンプレートに生じる最大曲げ応力度 σ
スキンプレートに生じる曲げ応力度は機械工学便覧に基づき次式より算出する。
$\sigma=\beta_{1} \cdot \mathrm{~W}_{\mathrm{s}} \cdot \mathrm{L}_{4}{ }^{2} \cdot 10^{-3} / \mathrm{t}^{2}$
ここで，σ ：スキンプレートに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
ここで，$W_{s s}$ ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{4} ：スキンプレートの支持短辺長さ（mm）
β_{1} ：スキンプレートの辺長比に応じた係数
t ：スキンプレートの厚さ (mm)
（4）スキンプレートに生じる最大せん断応力度 τ
$\tau=\mathrm{W}_{\mathrm{s} \mathrm{s}} \cdot \mathrm{L}_{3} \cdot \mathrm{~L}_{4} \cdot 10^{-3} /\left\{2 \cdot\left(\mathrm{~L}_{3}+\mathrm{L}_{4}\right) \cdot \mathrm{t}\right\}$
ここで，$\tau \quad:$ スキンプレートに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
W_{ss} ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 （ $\mathrm{kN} / \mathrm{m}^{2}$ ）
L_{3} ：スキンプレートの支持長辺長さ（mm）
L_{4} ：スキンプレートの支持短辺長さ (mm)
t ：スキンプレートの厚さ (mm)
（5）スキンプレートに生じる組合せ応力度 x
スキンプレートに生じる曲げ応力度，せん断応力度を算定し，スキンプレートの短期許容応力度以下であることを確認する。またスキンプレートに生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－」 に基づく次式により算定し，短期許容引張応力度以下であることを確認する。
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$
x ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
σ ：最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
τ ：最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
\square
（a）角落し部（平面図）
（b）点検用開口部（平面図）
図 5－2 評価の対象とするスキンプレート

5．5．3 固定ボルト（1）

（1）基準地震動 S s による水平方向の地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{H}}$
ここで， S s ：基準地震動 S s による水平方向の地震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad$ ：基準地震動 S s に伴う水平方向の設計震度
（2）基準地震動 S s による鉛直方向の地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{v}}$
ここで，S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
k_{V} ：基準地震動 S s に伴う鉛直方向の設計震度
（3）固定ボルト（1）1本当りに生じる引張応力度 σ_{t}
$\sigma_{\mathrm{t}}=\mathrm{T}_{\mathrm{s}} \cdot 10^{3} / \mathrm{A}^{\prime}$
ここで， $\mathrm{T}_{\mathrm{s}}=\mathrm{S} \mathrm{s} / \mathrm{n} \mathrm{s}$
σ_{t} ：固定ボルト（1）1本当りに生じる引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T_{s} ：固定ボルト（1）1本当りに作用する引張力（kN）
S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
n s ：固定ボルト（1）の本数（本）
A \quad ：固定ボルト（1）の有効断面積 $\left(\mathrm{mm}^{2}\right)$
（4）固定ボルト（1）1本当りに生じるせん断応力度 $\tau \mathrm{s}$

$$
\tau_{\mathrm{s}}=\mathrm{q} \mathrm{~s} \cdot 10^{3} / \mathrm{A}^{\prime}
$$

ここで， $\mathrm{q}_{\mathrm{s}}=\mathrm{S} \mathrm{s} / \mathrm{n} \mathrm{s}$
$\tau \mathrm{s}$ ：固定ボルト（1）1本当りに生じるせん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
q s ：固定ボルト（1）1本当りに作用するせん断力（kN）
S s ：基準地震動 S s による水平方向の地震荷重（ kN ）
n s ：固定ボルト（1）の本数（本）
A \quad ：固定ボルト（1）の有効断面積 $\left(\mathrm{mm}^{2}\right)$

図 5－3 固定ボルト（1），固定ボルト（2），枠及びベースプレートの納まり（1／2）

枠囲みの内容は商業機密の観点から公開できません。

6．5．3．5－29

$\mathrm{B}-\mathrm{B}$ 断面図

a 部詳細図
図 5－3 固定ボルト（1），固定ボルト（2），枠及びベースプレートの納まり（2／2）

5．5．4 固定ボルト（2）

（1）基準地震動 S s による水平方向の地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{Ps}) \cdot \mathrm{k}_{\mathrm{H}}$
ここで， S s ：基準地震動 S s による水平方向の地震荷重（ kN ）
G ：固定荷重（kN）
Ps ：積雪荷重（kN）
k_{H} ：基準地震動 S s に伴う水平方向の設計震度
（2）基準地震動 S s による鉛直方向の地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{v}}$
ここで， S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
k v ：基準地震動 S s に伴う鉛直方向の設計震度
（3）固定ボルト（2）1 本当りに作用する引張力 T_{d}
$\mathrm{T}_{\mathrm{d}}=\mathrm{S} \mathrm{s} / \mathrm{N}$
ここで， T_{d} ：固定ボルト（2）1 本当りに作用する引張力（kN）
S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
N ：固定ボルト（2）の本数（本）
（4）固定ボルト（2）1 本当りに作用するせん断力 q
$\mathrm{q}=\mathrm{S} \mathrm{s} / \mathrm{N}$
ここで， q ：固定ボルト（2）1本当りに作用するせん断力（kN）
S s ：基準地震動S s による水平方向の地震荷重（kN）
N ：固定ボルト（2）の本数（本）
（5）組合せ評価方法
組合せによる評価を「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づ く次式により算出し，1 以下であることを確認する。
$\left(\mathrm{T}_{\mathrm{d}} / \mathrm{T}_{\mathrm{a}}\right)^{2}+\left(\mathrm{q} / \mathrm{qa}_{\mathrm{a}}\right)^{2} \leqq 1$
ここで， T_{d} ：固定ボルト（2）1 本当りに作用する引張力（kN）
T_{a} ：固定ボルト（2）の短期許容引張荷重（kN）
q ：固定ボルト（2）1本当りに作用するせん断力（kN）
qa ：固定ボルト（2）の短期許容せん断荷重（kN）

5．5．5 枠

枠上フランジについては，直接荷重を負担しない構造となっていることから，下フラン ジ及びウェブについて評価を実施する。
（1）枠下フランジに生じる最大曲げ応力度 σ f
$\sigma_{\mathrm{f}} \quad=\left(\mathrm{M}_{\mathrm{f}} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{f}}$
σ_{f} ：枠下フランジに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M_{f} ：枠下フランジに作用する最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
Z_{f} ：枠下フランジの断面係数 $\left(\mathrm{mm}^{3}\right)$
ここで， $\mathrm{M}_{\mathrm{f}}=\mathrm{S} \mathrm{s} / 8 \cdot \mathrm{~L}_{7} \cdot 10^{-3}$
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{v}}$
S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
L_{7} ：枠ウェブ中心から下フランジ端部までの距離（mm）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
k_{V} ：基準地震動 S s に伴う鉛直方向の設計震度
（2）枠下フランジに生じる最大せん断応力度 $\tau{ }_{f}$

$$
\begin{aligned}
\tau_{\mathrm{f}} & =\mathrm{Q}_{\mathrm{f}} \cdot 10^{3} / \mathrm{A}_{\mathrm{f}} \\
\mathrm{Q}_{\mathrm{f}} & =\mathrm{S} \mathrm{~s} / 8
\end{aligned}
$$

$$
\mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{v}}
$$

τ_{f} ：枠下フランジに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q_{f} ：枠下フランジに生じる最大せん断力（kN）
S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
A_{f} ：枠下フランジのせん断断面積（ mm^{2} ）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
k_{v} ：基準地震動 S s に伴う鉛直方向の設計震度
（3）枠下フランジに生じる組合せ応力度 x

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma_{\mathrm{f}}^{2}+3 \cdot \tau_{\mathrm{f}}^{2}} \\
& \mathrm{x} \quad: \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma_{\mathrm{f}} \quad: \text { 枠下フランジに生じる最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \tau_{\mathrm{f}} \quad: \text { 枠下フランジに生じる最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

（4）水平方向の地震荷重により枠ウェブに作用する最大せん断力 Q_{w}

$$
\begin{array}{ll}
\mathrm{Q}_{\mathrm{w}} & =\mathrm{S} \mathrm{~s} / 2 \\
\mathrm{~S} \mathrm{~s} & =(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}}
\end{array}
$$

$\mathrm{Q}_{\mathrm{w}} \quad$ ：枠ウェブに作用する最大せん断力 (kN)
S s ：基準地震動 S s による地震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad$ ：基準地震動 S s に伴う水平方向の設計震度
（5）水平方向の地震荷重により枠ウェブに生じる最大せん断応力度 τ_{w}

$$
\begin{array}{ll}
\tau_{\mathrm{w}} \quad & \left(\mathrm{Q}_{\mathrm{w}} \cdot 10^{3}\right) / \mathrm{A} \mathrm{~s}_{\mathrm{w}} \\
\tau_{\mathrm{w}} \quad & : \text { 水平方向の地震荷重により枠ウェブに生じる } \\
& \text { 最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{Q}_{\mathrm{w}} & : \text { 枠ウェブに作用する最大せん断力 }(\mathrm{kN}) \\
\mathrm{A} \mathrm{~s} \mathrm{w}_{\mathrm{w}} & : \text { 枠ウェブのせん断断面積 }\left(\mathrm{mm}^{2}\right)
\end{array}
$$

（6）鉛直方向の地震荷重により枠ウェブに作用する最大圧縮力 C_{w}
$\mathrm{C}_{\mathrm{w}} \quad=\mathrm{S} \mathrm{s} / 4$
C_{w} ：鉛直方向の地震荷重により枠ウェブに作用する最大圧縮力（ kN ）
S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
（7）鉛直方向の地震荷重により枠ウェブに生じる最大圧縮応力度 σ_{cw} $\sigma_{\mathrm{cw}}=\left(\mathrm{C}_{\mathrm{w}} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{w}}$
σ_{cw} ：鉛直方向の地震荷重により枠ウェブに生じる最大圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
A_{w} ：枠ウェブの断面積 $\left(\mathrm{mm}^{2}\right)$

5．5．6 ベースプレート ベースプレートは片持ち梁として評価を実施する。
（1）ベースプレートに生じる最大曲げ応力度 σ b

$$
\begin{array}{rlrl}
\sigma_{\mathrm{b}} & & \left(\mathrm{M}_{\mathrm{b}} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{b}} \\
\sigma_{\mathrm{b}} & : \text { ベースプレートに生じる最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{M}_{\mathrm{b}} & : \text { ベースプレートに作用する最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Z}_{\mathrm{b}} & : \text { ベースプレートの断面係数 }\left(\mathrm{mm}^{3}\right) \\
\text { ここで, } & \mathrm{M}_{\mathrm{b}} & =\mathrm{T}_{\mathrm{d}} \cdot \mathrm{~L}_{8} \cdot 10^{-3} \\
\mathrm{~T}_{\mathrm{d}} & : \text { 固定ボルト }(2) 1 \text { 本当りに作用する引張力 }(\mathrm{kN}) \\
\mathrm{L}_{8} & : \text { ベースプレートの評価長さ }(\mathrm{mm}) \\
\mathrm{Z}_{\mathrm{b}} & =\left(\mathrm{B} \cdot \mathrm{t}_{\mathrm{b}}{ }^{2}\right) / 6 \\
\mathrm{~B} & : \text { ベースプレートの有効幅 }(\mathrm{mm}) \\
\mathrm{t}_{\mathrm{b}} & : \text { ベースプレートの板厚 }(\mathrm{mm})
\end{array}
$$

（2）ベースプレートに生じる最大せん断応力度 τ_{b}

$$
\begin{array}{lll}
\tau_{\mathrm{b}} & & =\left(\mathrm{Q}_{\mathrm{b}} \cdot 10^{3}\right) / \mathrm{As}_{\mathrm{b}} \\
\mathrm{Q}_{\mathrm{b}} & & =\mathrm{T}_{\mathrm{d}} \\
& \tau_{\mathrm{b}} & : \text { ベースプレートに生じる最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{Q}_{\mathrm{b}} & : \text { ベースプレートに作用する最大せん断力 }(\mathrm{kN})
\end{array}
$$

A s b ：ベースプレートのせん断断面積 $\left(\mathrm{mm}^{2}\right)$
（3）ベースプレートに生じる組合せ応力度 x

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma_{\mathrm{b}}{ }^{2}+3 \cdot \tau_{\mathrm{b}}{ }^{2}} \\
& \mathrm{x} \text { : 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma_{\mathrm{b}} \text { : ベースプレートに生じる最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \tau_{\mathrm{b}} \text { : ベースプレートに生じる最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

5.6 評価条件

浸水防止蓋の耐震評価に用いる入力値を表5－9及び表5－10に示す。

表 5－9 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部） の耐震評価に用いる入力値

評価対象 部位	記号	単位	定義	数値
共通	G	kN	固定荷重	3.040
	P s	kN	積雪荷重	0． 481
主桁	A	m^{2}	浸水防止蓋の面積	1.6
	L_{1}	mm	主桁の負担幅	430
	L_{2}	mm	主桁全長	420
	$\mathrm{A}_{\text {S }}$	mm^{2}	主桁のせん断断面積	400
	Z	mm^{3}	主桁の断面係数	1． 78×10^{4}
$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	A	m^{2}	浸水防止蓋の面積	1.6
	L_{3}	mm	スキンプレートの支持長辺長さ	430
	L_{4}	mm	スキンプレートの支持短辺長さ	420
	β_{1}	－	スキンプレートの辺長比に応じた係数	0.4
	t	mm	スキンプレートの厚さ	16
固定 ボルト（1）	n s	本	固定ボルト（1）の本数	36
	A＇	mm^{2}	固定ボルト（1）の有効断面積	157
固定 ボルト（2）	N	本	固定ボルト（2）の本数	27
$\begin{aligned} & \text { ベース } \\ & \text { プレート } \end{aligned}$	L_{8}	mm	ベースプレートの評価長さ	36
	Z_{b}	mm^{3}	ベースプレートの断面係数	4332
	B	mm	ベースプレートの有効幅	72
	t_{b}	mm	ベースプレートの板厚	19
	A s b	mm^{2}	ベースプレートのせん断断面積	1368

表 5－10 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）の耐震評価に用いる入力値

評価対象部位	記号	単位	定義	数値
共通	G	kN	固定荷重	3． 138
	P s	kN	積雪荷重	0． 301
主桁	A	m^{2}	浸水防止蓋の面積	1.0
	L_{1}	mm	主桁の負担幅	250
	L_{2}	mm	主桁全長	1000
	$\mathrm{A}_{\text {S }}$	mm^{2}	主桁のせん断断面積	2400
	Z	mm^{3}	主桁の断面係数	6.00×10^{4}
$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	A	m^{2}	浸水防止蓋の面積	1.0
	L_{3}	mm	スキンプレートの支持長辺長さ	250
	L_{4}	mm	スキンプレートの支持短辺長さ	200
	β_{1}	－	スキンプレートの辺長比に応じた係数	0.5
	t	mm	スキンプレートの厚さ	12
固定 ボルト（1）	n s	本	固定ボルト（1）の本数	8
	A＇	mm^{2}	固定ボルト（1）の有効断面積	561
固定 ボルト（2）	N	本	固定ボルト（2）の本数	15
枠	L_{7}	mm	枠ウェブ中心から下フランジ端部までの距離	75
	A_{w}	mm^{2}	枠ウェブの断面積	7000
	A s w	mm^{2}	枠ウェブのせん断断面積	7000
	Z_{f}	mm^{3}	枠下フランジの断面係数	14170
	A_{f}	mm^{2}	枠下フランジのせん断断面積	10000
$\begin{aligned} & \text { ベース } \\ & \text { プレート } \end{aligned}$	L_{8}	mm	ベースプレートの評価長さ	80
	Z_{b}	mm^{3}	ベースプレートの断面係数	9627
	B	mm	ベースプレートの有効幅	160
	t_{b}	mm	ベースプレートの板厚	19
	A s b	mm^{2}	ベースプレートのせん断断面積	3040

6．評価結果

浸水防止蓋の耐震評価結果を表6－1 及び表6－2に示す。各部材の断面検定を行った結果，全 ての部材において発生応力又は応力度が許容限界以下であることを確認した。

表 6－1 浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部）
の耐震評価結果

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
主桁	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	5	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
スキンプレート	曲げ	2	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	3	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
固定ボルト（1）	引張	1	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
固定ボルト（2）	引張	0.2	kN	32.1	kN	$0.01<1.0$
	せん断	0.3	kN	22.3	kN	$0.02<1.0$
	組合せ					$0.01<1.0$
ベースプレート	曲げ	2	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	3	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$

表 6－2 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）の耐震評価結果

評価対象部位			発生値 （応力度又は荷重）		許容限界		検定値
主桁		曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
		せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
		組合せ	5	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
スキンプレート		曲げ	2	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
		せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
		組合せ	3	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
固定ボルト（1）		引張	1	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
		せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
固定ボルト（2）		引張	0.3	kN	32.1	kN	$0.01<1.0$
		せん断	0.5	kN	22.5	kN	$0.03<1.0$
		組合せ	－		－		$0.01<1.0$
枠	下フランジ	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
		せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
		組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	ウェブ	圧縮	1	$\mathrm{N} / \mathrm{mm}^{2}$	192	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
		せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
ベースプレート		曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
		せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
		組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$

6．浸水防護施設に関する補足資料

6.5 浸水防止設備に関する補足説明

6．5．3 浸水防止蓋に関する補足説明
6．5．3． 6 浸水防止蓋（第 3 号機海水熱交換器建屋）の強度計算書に関する補足説明

目 次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 4
2.3 評価方針 5
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位及び評価対象設備 9
4．構造強度評価 11
4．1 構造強度評価方法 11
4.2 荷重及び荷重の組合せ 11
4．3 許容限界 15
4．4 評価方法 21
4.5 評価条件 32
5．評価結果 36

1．概要

本資料は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定 している構造強度に基づき，浸水防止設備のうち浸水防止蓋（第 3 号機海水熱交換器建屋海水ポ ンプ設置エリア角落し部）及び浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）（以下，「浸水防止蓋」という。）が津波の冠水に伴う突き上げ荷重及 び余震を考慮した荷重に対して津波防護対象設備を内包する建屋及び区画の設置された敷地に浸水することを防止するために，十分な構造健全性を有していることを説明するものである。 なお，浸水防止蓋の強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，第3号機海水熱交換器建屋海水ポンプ設置エリアの床面に設置する。
浸水防止蓋の設置位置図を図 $2-1$ に，流入対策図を図 $2-2$ に示す。

図 2－1 浸水防止蓋の設置位置図
（第3号機海水熱交換器建屋 地下中 2 階）

平面図
図 2－2 第3号機海水熱交換器建屋 流入対策配置図（1／2）

図 2－2 第3号機海水熱交換器建屋 流入対策配置図（2／2）

2.2 構造計画

浸水防止蓋の構造は，長方形又は正方形のスキンプレートに主桁（溝形鋼又は鋼板）を組合 せた構造とする。

浸水防止蓋は，第3号機海水熱交換器建屋海水ポンプ設置エリア床面に設置する固定ボルト にて固定する。浸水防止蓋の構造計画を表2－1 に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第 3 号機海水熱交換器建屋海水 ポンプ設置エリ ア床面に設置す る固定ボルトで固定する。	浸水防止蓋及 び固定ボルト により構成す る。	

2.3 評価方針

浸水防止蓋の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算 の方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」に示 す浸水防止蓋の構造を踏まえ，「3．評価対象部位及び評価対象設備」にて設定する評価対象部位において，「4．構造強度評価」に示す方法にて確認する。強度評価の確認結果を「5．評価結果」にて確認する。

強度評価フローを図 $2-3$ に記す。

図 2－3 強度評価フロー

2.4 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 2010 年 各種合成構造設計指針•同解説
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
- 機械工学便覧（日本機械学会）

2.5 記号の説明

浸水防止蓋の強度評価に用いる記号を表2－2に示す。

表 2－2 浸水防止蓋の強度評価に用いる記号（ $1 / 2$ ）

記号	単位	定義
S d	kN	弾性設計用地震動S d－D 2 に伴ら余震荷重
$\alpha_{\text {H }}$	－	弾性設計用地震動S d－D 2 に伴う水平方向の余震荷重
α_{V}	－	弾性設計用地震動S d－D 2 に伴う鉛直方向の余震震度
P_{t}	$\mathrm{kN} / \mathrm{m}^{2}$	突き上げ津波荷重
$\mathrm{C}_{\text {d }}$	－	抗力係数
U	m／s	流速
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
H	mm	評価高さ
P s	kN	積雪荷重
W s	$\mathrm{N} / \mathrm{m}^{2}$	1 cm 当りの積雪荷重
d s	cm	積雪高さ
A	m^{2}	浸水防止蓋の面積
$\mathrm{W}_{\mathrm{s} \text { s }}$	kN／m ${ }^{2}$	単位面積当りの等分布荷重
$\mathrm{W}_{\text {s s }}$＇	kN／m	単位長さ当りの等分布荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	$\mathrm{kN} \cdot \mathrm{m}$	最大曲げモーメント
x	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度
A s	mm ${ }^{2}$	主桁のせん断断面積
Z	mm ${ }^{3}$	主桁の断面係数
L_{1}	mm	主桁の負担幅
L_{2}	mm	主桁全長
L_{3}	mm	スキンプレートの支持長辺長さ
L_{4}	mm	スキンプレートの支持短辺長さ
L_{5}	mm	スキンプレートの突き上げ津波受圧面長辺長さ
L_{6}	mm	スキンプレートの突き上げ津波受圧面短辺長さ
β_{1}	－	スキンプレートの辺長比に応じた係数
t	mm	スキンプレートの厚さ
G	kN	固定荷重
ρ_{0}	t／m ${ }^{3}$	水の密度

表 2－2 浸水防止蓋の強度評価に用いる記号（2／2）

記号	単位	記号の説明
N	本	固定ボルト（2）の本数
T ${ }_{\text {d }}$	kN	固定ボルト（2）1 本当りに作用する引張力
q	kN	固定ボルト（2）1 本当りに作用するせん断力
T s	kN	固定ボルト（1）1 本当りに作用する引張力
q s	kN	固定ボルト（1）1 本当りに作用するせん断力
σ t	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト（1）1 本当りに生じる引張応力度
τ s	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト（1）1 本当りに生じるせん断応力度
A ${ }^{\prime}$	mm^{2}	固定ボルト（1）の有効断面積
n s	本	固定ボルト（1）の本数
σ f	$\mathrm{N} / \mathrm{mm}^{2}$	枠下フランジに生じる最大曲げ応力度
M_{f}	$\mathrm{kN} \cdot \mathrm{m}$	枠下フランジに作用する最大曲げモーメント
$\mathrm{Z}_{\text {f }}$	mm^{3}	枠下フランジの断面係数
L_{7}	mm	枠ウェブ中心から下フランジ端部までの距離
$\mathrm{Q}_{\text {w }}$	kN	枠ウェブに作用する最大せん断力
$\tau_{\text {w }}$	$\mathrm{N} / \mathrm{mm}^{2}$	枠ウェブに生じる最大せん断応力度
T w	kN	鉛直方向の余震荷重により枠ウェブに作用する引張力
$\sigma \mathrm{tw}$	$\mathrm{N} / \mathrm{mm}^{2}$	鉛直方向の余震荷重により枠ウェブに生じる引張応力度
A_{w}	mm^{2}	枠ウェブの断面積
A s w	mm^{2}	枠ウェブのせん断断面積
P v	$\mathrm{kN} / \mathrm{m}^{2}$	弾性設計用地震動S d－D 2 に伴う鉛直方向の動水圧荷重
$\tau{ }_{\mathrm{f}}$	$\mathrm{N} / \mathrm{mm}^{2}$	枠下フランジに生じる最大せん断応力度
A_{f}	mm^{2}	枠下フランジのせん断断面積
T ${ }_{\text {a }}$	kN	固定ボルト（2）の短期許容引張荷重
q a	kN	固定ボルト（2）の短期許容せん断荷重
σ b	$\mathrm{N} / \mathrm{mm}^{2}$	ベースプレートに生じる最大曲げ応力度
M_{b}	$\mathrm{kN} \cdot \mathrm{m}$	ベースプレートに作用する最大曲げモーメント
Z_{b}	mm^{3}	ベースプレートの断面係数
L_{8}	mm	ベースプレートの評価長さ
B	mm	ベースプレートの有効幅
t b	mm	ベースプレートの板厚
τ b	$\mathrm{N} / \mathrm{mm}^{2}$	ベースプレートに生じる最大せん断応力度
Q_{b}	kN	ベースプレートに作用する最大せん断力
A s b	mm^{2}	ベースプレートのせん断断面積

3．評価対象部位及び評価対象設備

浸水防止蓋の評価対象部位は，「2．2 構造計画」にて設定している構造を踏まえて，突き上げ津波荷重及び余震荷重の伝達過程を考慮し設定する。また，浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）は構成部材の寸法，規格が等しく，評価結果が変わらないことから，浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落 し部）及び浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）を評価対象設備とする。

浸水防止蓋の評価対象部位は，津波荷重及び余震荷重が浸水防止蓋のスキンプレート，主桁，固定ボルト（1），枠及びベースプレートに伝わり，浸水防止蓋を固定する固定ボルト（2）を介し て躯体に伝達されることから，浸水防止蓋の評価対象部位は，スキンプレート，主桁，固定ボル ト（1），固定ボルト（2），枠及びベースプレートとし，評価対象部位を図 3－1に示す。

浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）
図 3－1 評価対象部位（ $1 / 2$ ）
\square
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）図 3－1 評価対象部位 $(2 / 2)$

4．構造強度評価

4． 1 構造強度評価方法
浸水防止蓋の強度評価は，「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に て設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位及び評価対象設備」にて設定する評価対象部位に生じる応力等が「4．3 許容限界」にて示す許容限界以下であることを確認する。
4.2 荷重及び荷重の組合せ

4．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを以下に示す。

$$
\mathrm{G}+\mathrm{P}_{\mathrm{t}}+\mathrm{Sd}+\mathrm{Ps}
$$

ここで，G：固定荷重 (kN)
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
S d ：余震荷重（弾性設計用地震動 S d－D 2 に伴う地震力）（ kN ）
P s ：積雪荷重（kN）
なお，鉛直方向の荷重の組合せにおいては，自重及び積雪荷重は鉛直下向きに作用し計算上有利となる事から考慮しない。

4．2．2 荷重の設定

強度評価に用いる荷重は，以下のとおりとする。
（1）固定荷重（G）
固定荷重として，浸水防止蓋を構成する部材の自重を考慮する。
（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重は，浸水防止蓋に作用するものとする。また，評価においては浸水津波荷重を含むものとし，以下の式により算出する。また，評価高さの考え方を図 4－1 に示 す。

$$
\mathrm{P}_{\mathrm{t}}=1 / 2 \cdot \mathrm{C}_{\mathrm{D}} \cdot \rho_{0} \cdot \mathrm{U}^{2}+\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{H} \cdot 10^{-3}
$$

ここで， P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
C_{D} ：抗力係数 $(=2.01)$
$\rho_{0} \quad:$ 水の密度 $\left(\mathrm{t} / \mathrm{m}^{3}\right)$
$\mathrm{U} \quad$ ：流速 $(=1.0 \mathrm{~m} / \mathrm{s})$
$\mathrm{g}:$ 重力加速度 $\left(=9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$
H ：評価高さ（mm）

図 4－1 評価高さの考え方
（3）積雪荷重（ P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

積雪荷重による質量は以下に式より算出する。
$\mathrm{P}_{\mathrm{s}}=0.35 \cdot \mathrm{~W} \mathrm{~s} \cdot \mathrm{~d} \mathrm{~s} \cdot \mathrm{~A} \cdot 10^{-3}$
ここで， P s ：積雪荷重 (kN)
W s ：1cm 当りの積雪荷重 20 （ $\mathrm{N} / \mathrm{m}^{2}$ ）
d s ：積雪高さ 43 （ cm ）
A ：浸水防止蓋の面積（ m^{2} ）
（4）余震荷重（ S d ）
余震荷重として，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力及び動水圧荷重を考慮する ものとし，水平方向については，弾性設計用地震動 S d－D 2 に伴う地震力を考慮する。鉛直方向については，弾性設計用地震動 S d－D 2 に伴う動水圧荷重を考慮する。

なお，浸水防止蓋の強度評価に用いる余震震度は，材料物性の不確かさを考慮したもの として添付書類「VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書」の地震応答解析結果を用いる。地震応答解析ケースを表 4－1 に，余震震度を表4－2に示す。ここで，地震力は浸水防止蓋の設置位置における水平方向の最大応答加速度から設定する震度を用 いて評価するものとし，下記のとおり算出する。
$\mathrm{Sd}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{H}}$
ここで， Sd ：弾性設計用地震動 S d －D 2 に伴う水平方向の余震荷重（ kN ）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 S d－D 2 に伴う水平方向の余震震度

また，表4－2のとおり，鉛直方向の余震震度が 1 未満であることから，浸水防止蓋の自重と鉛直方向の地震力を足し合わせた荷重は，突き上げ津波荷重を相殺する向きに浸水防止蓋に作用するため，強度評価においては浸水防止蓋の自重と鉛直方向の地震力を保守的に考慮しないこととする。

動水圧荷重は，浸水防止蓋の設置位置における鉛直方向の最大応答加速度から設定する震度，水の密度及び評価高さを用いて評価するものとし，下記のとおり算出する。
$\mathrm{P}_{\mathrm{v}}=\rho_{0} \cdot \alpha_{\mathrm{V}} \cdot \mathrm{g} \cdot \mathrm{H} \cdot 10^{-3}$
ここで， P_{v} ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\rho_{0} \quad$ ：水の密度 $\left(\mathrm{t} / \mathrm{m}^{3}\right)$
$\alpha_{\mathrm{V}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う鉛直方向の余震震度
$\mathrm{g}:$ 重力加速度 $\left(=9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$
H ：評価高さ (mm)

表 4－1 地震応答解析ケース

対奂地震動	ケース名	スケルトンカーブ		建屋材料減衰	地墼物性	
		初期閊性	終局㭻力		入力地震動	底面地盤ばれる
弹性設計用 地震動 S d－D 2 （水平）	$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	2011年3月11日東北地方太平洋沖地震の観測記録を用いたシミュ レーション解析により補正	設計基淮強度を用い JEAG 式で評侕	5%	表層地磐の非線形性を考慮	標䍜地盤
	ケース2	同上，	同上	同上	同上	標淮地盤＋${ }_{\text {a }}$
	ケース3					標淮地盤－o
弹性設計用 地震動 S d－D 2 （鉛直）	$\begin{aligned} & \hline \text { ケース1 } \\ & \text { (基本ケース) } \end{aligned}$	設計网性	－	5\％	直接人力	標推地盤
	ケース2	同上	－	同上	同上	標準地磐＋o
	ケース3					標準地盤 $-o$

表 4－2 余震震度

地震時荷重算出位置 （m）	地震応答解析結果				設計震度
	方向	弾性設計用地震動 S d－D 2	ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	
0．P．8． 00	NS	S d－D 2	2	1142	$\alpha_{\mathrm{H}}=1.17$
	EW	S d－D 2	2	1077	
	UD	$\mathrm{Sd}-\mathrm{D} 2$	2	625	$\alpha_{\mathrm{v}}=0.64$

注：表中の 0．P．は第三号機海水熱交換器建屋の地震応答計算書での値を示す。

4． 3 許容限界

浸水防止蓋の許容限界は，「3．評価対象部位及び評価対象設備」にて設定した部位に対し，
「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえ設定する。

4．3．1 使用材料

浸水防止蓋を構成するスキンプレート，主桁，固定ボルト（1），固定ボルト（2），枠及 びベースプレートの使用材料を表4－3に示す。

表 4－3 使用材料

設備名称	評価対象部位	材質	仕様
浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部）	スキンプレート	SUS304	$\mathrm{t}=16$（mm）
	主桁	SUS304	C－ $80 \times 40 \times 5 \times 5$（mm）
	固定ボルト（1）	SUS304	M16
	固定ボルト（2）	SUS304	M16
	ベースプレート	SUS304	$\mathrm{t}=19$（mm）
浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設 置エリア点検用開口 部）（No．1），（No．2）	スキンプレート	SUS304	$\mathrm{t}=12 \quad(\mathrm{~mm})$
	主桁	SUS304	PL－16×150（mm）
	固定ボルト（1）	SUS304	M30
	固定ボルト（2）	SUS304	M16
	枠	SUS304	$\mathrm{H}-150 \times 150 \times 7 \times 10$（mm）
	ベースプレート	SUS304	$\mathrm{t}=19$（mm）

4．3．2 許容限界

（1）スキンプレート，主桁，固定ボルト（1），枠，ベースプレート
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－」を踏まえて表4－4の値とする。

表 4－4 鋼材の短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		
	曲げ	引張	せん断
SUS304	205	205	118

注：許容応力度を決定する場合の基準値 F は，日本産業規格（J I S ）に基づく。
（2）固定ボルト（2）
固定ボルト（2）の許容荷重は，「3．評価対象部位及び評価対象設備」に記載した固定ボ ルト（2）に作用する荷重の向きを踏まえて，「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づき算定する。

固定ボルト（2）は躯体に埋め込まれていることから，固定ボルト（2）が引張力を受け る場合においては，固定ボルト（2）の降伏により決まる許容荷重（ $\mathrm{P}_{\mathrm{a}} \mathrm{a}$ ）），付着力により決まる許容荷重（ P_{a} 3 ）を比較して，いずれか小さい値を採用する。また，固定ボルト（2） がせん断力を受ける場合においては，固定ボルト（2）のせん断強度により決まる許容荷重 （ $\mathrm{q}_{\mathrm{a} 1}$ ），定着したコンクリート躯体の支圧強度により決まる許容荷重（ $\mathrm{q}_{\mathrm{a}} \mathrm{a}$ ）及びコー ン状破壊により決まる許容荷重（ q a 3）を比較して，いずれか小さい値を採用する。

突き上げ津波荷重を考慮する場合の固定ボルト（2）の許容荷重設定に用いる入力値を表 4－5 及び表4－6に，許容荷重を表4－7及び表4－8に示す。

引張力を受ける場合
$\mathrm{P}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{pa}} \cdot \mathrm{scc}_{\mathrm{a}}$
$\mathrm{P}_{\mathrm{a} 3}=\Phi_{3} \cdot \tau_{\mathrm{a}} \cdot \pi \cdot \mathrm{d}_{\mathrm{a}} \cdot \mathrm{l}_{\mathrm{ce}}$
ここで， $\mathrm{P}_{\mathrm{a} 1}$ ：固定ボルトの降伏により決まる場合の固定ボルト 1 本当たり の許容引張力（ N ）
$\mathrm{P}_{\mathrm{a} 3}$ ：固定ボルトの付着力により決まる場合の固定ボルト 1 本当た りの許容引張力（ N ）
Φ_{1} ：低減係数（短期荷重用）
Φ_{3} ：低減係数（短期荷重用）
$\mathrm{s}_{\mathrm{s}} \sigma_{\mathrm{pa}}$ ：固定ボルトの引張強度 $\left(={ }_{\mathrm{s}} \sigma_{\mathrm{y}}\right)\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
s σ_{y} ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sc a ：固定ボルトの断面積（ mm^{2} ）
$\mathrm{d}_{\mathrm{a}} \quad$ ：固定ボルトの径（mm）
1 ce ：固定ボルトの強度算定用埋込み長さ（ $=1 \mathrm{e}-2 \mathrm{~d} \mathrm{a}) ~(\mathrm{~mm})$
1 e ：固定ボルトのコンクリート内への有効埋込み長さ（mm）
$\tau_{\text {a }}$ ：へりあき及び固定ボルトのピッチによる低減を考慮した付着強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{q}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{qa}} \cdot \mathrm{s}$ c a
$\mathrm{q}_{\mathrm{a} 2}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{qa}} \cdot \mathrm{sc}$ a
$\mathrm{q} \mathrm{a} 3=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{q} \mathrm{c}}$
ここで， $\mathrm{q}_{\mathrm{a} 1}$ ：固定ボルトのせん断強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 2 ：定着した躯体の支圧強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 3 ：定着した躯体のコーン状破壊により決まる場合の固定ボルト 1 本当たりの許容せん断力（N）
Φ_{1} ：低減係数（短期荷重用）
Φ_{2} ：低減係数（短期荷重用）
s σ qa ：固定ボルトのせん断強度（ $=0.7$ • s σ y $) ~\left(N / \mathrm{mm}^{2}\right)$
s σ_{y} ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sca ：固定ボルトの断面積（ mm^{2} ）
c σ_{qa} ：コンクリートの支圧強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right) \quad\left(=0.5 \sqrt{\mathrm{~F}_{\mathrm{c}} \cdot \mathrm{E}_{\mathrm{c}}}\right)$
c σ_{t} ：コーン状破壊に対するコンクリートの引張強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

$$
\left(=0.31 \sqrt{\mathrm{~F}_{\mathrm{c}}}\right)
$$

Fe ：コンクリートの設計基準強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
E ：コンクリートのヤング係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
A_{qc} ：せん断力に対するコーン状破壊面の有効投影面積（ mm^{2} ）

表 4－5 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）の固定ボルト（2）の許容荷重の設定に用いる入力値

記号	単位	定義	数値
Φ_{1}	－	低減係数（短期荷重用）	1.0
Φ_{2}	－	低減係数（短期荷重用）	2／3
Φ_{3}	－	低減係数（短期荷重用）	$2 / 3$
s $\sigma_{\text {p a }}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの引張強度	205
s σ y	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの規格降伏点強度	205
sca	mm^{2}	固定ボルトの断面積	157
d_{a}	mm	固定ボルトの径	16
1 ce	mm	固定ボルトの強度算定用埋込み長さ	82
$\tau_{\text {a }}$	$\mathrm{N} / \mathrm{mm}^{2}$	へりあき及び固定ボルトのピッチによる低減を考慮 した付着強度	12.17
s σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトのせん断強度	143.5
c σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの支圧強度	450
c σ t	$\mathrm{N} / \mathrm{mm}^{2}$	コーン状破壊に対するコンクリートの引張強度	1.76
F c	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの設計基準強度	32.4
E c	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートのヤング係数	25100
A_{qc}	mm^{2}	せん断力に対するコーン状破壊面の有効投影面積	19007

表 4－6 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）
（No．1）（No．2）の固定ボルト（2）の許容荷重の設定に用いる入力値

記号	単位	定義	数値
Φ_{1}	－	低減係数（短期荷重用）	1.0
Φ_{2}	－	低減係数（短期荷重用）	$2 / 3$
Φ_{3}	－	低減係数（短期荷重用）	2／3
${ }_{\mathrm{s}} \sigma_{\mathrm{pa}}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの引張強度	205
s σ y	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの規格降伏点強度	205
sca	mm^{2}	固定ボルトの断面積	157
d_{a}	mm	固定ボルトの径	16
1 ce	mm	固定ボルトの強度算定用埋込み長さ	82
τ a	$\mathrm{N} / \mathrm{mm}^{2}$	へりあき及び固定ボルトのピッチによる低減を考慮 した付着強度	12． 42
s σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトのせん断強度	143.5
c σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの支圧強度	450
c σ t	$\mathrm{N} / \mathrm{mm}^{2}$	コーン状破壊に対するコンクリートの引張強度	1． 76
F ${ }_{\text {c }}$	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの設計基準強度	32.4
E c	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートのヤング係数	25100
$\mathrm{A}_{\mathrm{q} ~}^{\text {c }}$	mm^{2}	せん断力に対するコーン状破壊面の有効投影面積	37738

表 4－7 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）の固定ボルト（2）の短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	$\mathrm{Pa}_{\text {a }}$	Pa_{3}	設定値	q a 1	q a 2	q a 3	設定値
SUS304	32． 1	33.4	32.1	22.5	47． 1	22.3	22.3

表 4－8 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部） （No．1），（No．2）の固定ボルト（2）の短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	Pa_{a}	P ${ }_{\text {a }}$	設定値	q a 1	q a 2	q a 3	設定値
SUS304	32.1	34.1	32.1	22.5	47． 1	44． 2	22.5

4． 4 評価方法

浸水防止蓋を構成する主桁，スキンプレート，固定ボルト（1），枠及びベースプレートに発生する応力度並びに固定ボルト（2）に発生する応力が，許容限界以下であることを確認する。主桁とスキンプレートについては，箇所によって評価結果に差異が生じることから，図 4－2及び図 4－3にそれぞれ評価の対象とする主桁，スキンプレートを示す。

また，図4－4に，固定ボルト（1），固定ボルト（2），枠及びベースプレートの納まりを示す。

4．4．1 主桁

主桁の支持条件は両端をピン支持とし，図4－2に示すとおり，主桁が荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施する。
（1）主桁に作用する単位長さ当りの鉛直方向の等分布荷重W ${ }_{\mathrm{s}}$
$\mathrm{W}_{\mathrm{s}}{ }^{\prime}=\left(\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{v}}\right) \cdot \mathrm{L}_{1} \cdot 10^{-3}$
ここで，$W_{s \mathrm{~s}}$ ，：主桁に作用する単位長さ当りの鉛直方向の等分布荷重 $(\mathrm{kN} / \mathrm{m})$
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P v ：弾性設計用地震動 S d－D 2 に伴う鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{1} ：主桁の負担幅（mm）
（2）主桁に生じる最大せん断応力度 τ
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A} \mathrm{s}$
τ ：主桁に生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：主桁に生じる最大せん断力（kN）
A s ：主桁のせん断断面積 $\left(\mathrm{mm}^{2}\right)$
ここで， $\mathrm{Q}=1 / 2 \cdot \mathrm{~W}_{\mathrm{s}}{ }^{\prime} \cdot \mathrm{L}_{2} \cdot 10^{-3}$
$\mathrm{W}_{\mathrm{s} \mathrm{s}}$ ，：主桁に作用する単位長さ当りの鉛直方向の等分布荷重 $(\mathrm{kN} / \mathrm{m})$
L_{2} ：主桁全長（mm）
（3）主桁に生じる最大曲げ応力度 σ
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}$
σ ：主桁に生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：主桁に生じる最大曲げモーメント（kN•m）
Z ：主桁の断面係数（ mm^{3} ）
ここで， $\mathrm{M}=1 / 8 \cdot \mathrm{~W}_{\mathrm{s} \mathrm{s}}, ~ \cdot\left(\mathrm{~L}_{2} \cdot 10^{-3}\right)^{2}$
W_{ss} ，：主桁に作用する単位長さ当りの鉛直方向の等分布荷重 $(\mathrm{kN} / \mathrm{m})$
L_{2} ：主桁全長（mm）
（4）主桁に生じる組合せ応力度 x
主桁に生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年鋼構造設計規準－許容応力度設計法－」に基づく次式により算定し，短期許容引張応力度以下であることを確認する。
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$
x ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
σ ：最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
τ ：最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
（a）角落し部（平面図）
（b）点検用開口部（平面図）
図 4－2 評価の対象とする主桁

4．4．2 スキンプレート

図 4－3 に示すとおり，スキンプレートが荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施する。
（1）スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重W $\mathrm{W}_{\mathrm{s}}=\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{v}}$
ここで， $\mathrm{W}_{\mathrm{s} \text { s }}$ ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P v ：弾性設計用地震動 S d－D 2 に伴う鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
（2）スキンプレートに生じる最大曲げ応力度 σ
$\sigma=\beta_{1} \cdot \mathrm{~W}_{\mathrm{s} \mathrm{s}} \cdot \mathrm{L}_{4}{ }^{2} \cdot 10^{-3} / \mathrm{t}^{2}$
ここで，σ ：スキンプレートに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{W}_{\mathrm{s} \text { s }}$ ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{4} ：スキンプレートの支持短辺長さ（mm）
β_{1} ：スキンプレートの辺長比に応じた係数
t ：スキンプレートの厚さ（mm）
（3）スキンプレートに生じる最大せん断応力度 τ
$\tau=\mathrm{W}_{\mathrm{s}} \cdot \mathrm{L}_{3} \cdot \mathrm{~L}_{4} \cdot 10^{-3} /\left\{2 \cdot\left(\mathrm{~L}_{3}+\mathrm{L}_{4}\right) \cdot \mathrm{t}\right\}$
ここで，$\tau:$ スキンプレートに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
W_{s} s：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{3} ：スキンプレートの支持長辺長さ（mm）
L_{4} ：スキンプレートの支持短辺長さ（mm）
t ：スキンプレートの厚さ（mm）
（4）スキンプレートに生じる組合せ応力度 x
スキンプレートに生じる曲げ応力度，せん断応力度を算定し，スキンプレートの短期許容応力度以下であることを確認する。またスキンプレートに生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－」に基づく次式により算定し，短期許容引張応力度以下であることを確認する。

$$
\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
$$

ここで， x ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\sigma:$ 最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau:$ 最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
（a）角落し部（平面図）
（b）点検用開口部（平面図）
図 4－3 評価の対象とするスキンプレート

4．4．3 固定ボルト（1）

（1）固定ボルト（1）1 本当りに生じる鉛直方向の引張応力度 $\sigma \mathrm{t}$

$$
\begin{aligned}
\sigma_{\mathrm{t}} & =\mathrm{T}_{\mathrm{s}} \cdot 10^{3} / \mathrm{A}^{\prime} \\
\mathrm{T}_{\mathrm{s}} & =\left(\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{v}}\right) \cdot \mathrm{L}_{5} \cdot \mathrm{~L}_{6} \cdot 10^{-6} / \mathrm{n}_{\mathrm{s}}
\end{aligned}
$$

ここで，σ_{t} ：固定ボルト（1）1本当りに生じる引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T_{s} ：固定ボルト（1）1本当りに作用する引張力（kN）
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P v ：弾性設計用地震動 S d－D 2 に伴ら鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{5} ：スキンプレートの突き上げ津波受圧面長辺長さ（mm）
L_{6} ：スキンプレートの突き上げ津波受圧面短辺長さ（mm）
n s ：固定ボルト（1）の本数（本）
A’：固定ボルト（1）の有効断面積 $\left(\mathrm{mm}^{2}\right)$
（2）弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重 $\mathrm{S} d$

$$
\mathrm{Sd}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{H}}
$$

ここで， Sd ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重（kN）
G：固定荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震震度
（3）固定ボルト（1）1 本当りに生じるせん断応力度 $\tau \mathrm{s}$
$\tau_{\mathrm{s}}=\mathrm{q}_{\mathrm{s}} \cdot 10^{3} / \mathrm{A}^{\prime}$
ここで， $\mathrm{q}_{\mathrm{s}}=\mathrm{Sd} / \mathrm{n} \mathrm{s}$
$\tau \mathrm{s}$ ：固定ボルト（1）1 本当りに生じるせん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
q s ：固定ボルト（1）1本当りに作用するせん断力（kN）
Sd ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重 (kN)
n s ：固定ボルト（1）の本数（本）
A’：固定ボルト（1）の有効断面積（ mm^{2} ）

平面図
$\mathrm{A}-\mathrm{A}$ 断面図

図 4－4 固定ボルト（1），固定ボルト（2），枠及びベースプレートの納まり（1／2）

平面図
\square
$\mathrm{A}-\mathrm{A}$ 断面図

a 部詳細図
a一a見下げ図
図 4－4 固定ボルト（1），固定ボルト（2），枠及びベースプレートの納まり（2／2）

4．4．4 固定ボルト（2）

（1）固定ボルト（2）1 本当りに作用する引張力 T_{d}
$\mathrm{T}_{\mathrm{d}}=\left(\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{v}}\right) \cdot \mathrm{L}_{5} \cdot \mathrm{~L}_{6} \cdot 10^{-6} / \mathrm{N}$
ここで， T_{d} ：固定ボルト（2）1 本当りに作用する引張力 (kN)
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P v ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{5} ：スキンプレートの突き上げ津波受圧面長辺長さ（mm）
L_{6} ：スキンプレートの突き上げ津波受圧面短辺長さ（mm）
N ：固定ボルト（2）の本数（本）
（2）弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重 S d

$$
\mathrm{Sd}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{H}}
$$

ここで， Sd ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重（kN）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う水平方向の余震震度
（3）固定ボルト（2）1本当りに作用するせん断力 q

$$
\mathrm{q}=\mathrm{Sd} / \mathrm{N}
$$

ここで， q ：固定ボルト
（2）1 本当りに作用するせん断力（kN）

S d ：弾性設計用地震動 S d－D 2 に伴う水平方向の余震荷重（ kN ）
N ：固定ボルト（2）の本数（本）
（4）組合せ評価方法
組合せによる評価を「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づ く次式により算出し，1 以下であることを確認する。

$$
\left(\mathrm{T}_{\mathrm{d}} / \mathrm{T}_{\mathrm{a}}\right)^{2}+\left(\mathrm{q} / \mathrm{q}_{\mathrm{a}}\right)^{2} \leqq 1
$$

ここで， T_{d} ：固定ボルト（2）1 本当りに作用する引張力（kN）
T_{a} ：固定ボルト（2）の短期許容引張荷重（kN）
q ：固定ボルト（2）1 本当りに作用するせん断力（kN）
q a ：固定ボルト（2）の短期許容せん断荷重（kN）

4．4．5 枠

枠上フランジについては，直接荷重を負担しない構造となっていることから，下フラン ジ及びウェブについて評価を実施する。
（1）枠下フランジに生じる最大曲げ応力度 σ f
$\sigma_{\mathrm{f}} \quad=\left(\mathrm{M}_{\mathrm{f}} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{f}}$
σ_{f} ：枠下フランジに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M_{f} ：枠下フランジに作用する最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
Z_{f} ：朹下フランジの断面係数 $\left(\mathrm{mm}^{3}\right)$
ここで， $\mathrm{M}_{\mathrm{f}}=\left(\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{v}}\right) \cdot \mathrm{L}_{5} \cdot \mathrm{~L}_{6} \cdot \mathrm{~L}_{7} \cdot 10^{-9} / 8$
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P v ：弾性設計用地震動 S d－D 2 に伴う鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{5} ：スキンプレートの突き上げ津波受圧面長辺長さ（mm）
L_{6} ：スキンプレートの突き上げ津波受圧面短辺長さ（mm）
L_{7} ：枠ウェブ中心から下フランジ端部までの距離（mm）
（2）枠下フランジに生じる最大せん断応力度 $\tau{ }_{\mathrm{f}}$

$$
\tau_{\mathrm{f}} \quad=\left(\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{v}}\right) \cdot \mathrm{L}_{5} \cdot \mathrm{~L}_{6} \cdot 10^{-3} / 8 / \mathrm{A}_{\mathrm{f}}
$$

τ_{f} ：枠下フランジに生じる最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P v ：弾性設計用地震動 S d－D 2 に伴う鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{5} ：スキンプレートの突き上げ津波受圧面長辺長さ（mm）
L_{6} ：スキンプレートの突き上げ津波受圧面短辺長さ（mm）
A_{f} ：枠下フランジのせん断断面積 $\left(\mathrm{mm}^{2}\right)$
（3）朹下フランジに生じる組合せ応力度 x

$$
\mathrm{x}=\sqrt{\sigma_{\mathrm{f}}{ }^{2}+3 \cdot \tau_{\mathrm{f}}{ }^{2}}
$$

x ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
σ_{f} ：枠下フランジに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
τ f ：枠下フランジに生じる最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（4）水平方向の余震荷重により枠ウェブに作用する最大せん断力 Q_{w}
Q_{w} $=\mathrm{Sd} / 2$
$\mathrm{Sd} \quad=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{H}}$
Q_{w} ：枠ウェブに作用する最大せん断力（kN）
$S d$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向の余震荷重（ kN ）
G ：固定荷重（kN）
P s ：積雪荷重（kN）
α_{H} ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ に伴う水平方向の余震震度
（5）水平方向の余震荷重により枠ウェブに生じる最大せん断応力度 τ_{w}

$$
\begin{aligned}
\tau_{\mathrm{w}} & =\left(\mathrm{Q}_{\mathrm{w}} \cdot 10^{3}\right) / \mathrm{A} \mathrm{~s}_{\mathrm{w}} \\
\tau_{\mathrm{w}} & : \text { 枠ウェブに生じる最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{Q}_{\mathrm{w}} & : \text { 枠ウェブに作用する最大せん断力 }(\mathrm{kN}) \\
{\mathrm{A} \mathrm{~s}_{\mathrm{w}}} & : \text { 枠ウェブのせん断断面積 }\left(\mathrm{mm}^{2}\right)
\end{aligned}
$$

（6）鉛直方向の余震荷重により枠ウェブに作用する引張力 T_{w}

$$
\mathrm{T}_{\mathrm{w}} \quad=\left(\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{v}}\right) \cdot \mathrm{L}_{5} \cdot \mathrm{~L}_{6} \cdot 10^{-6} / 4
$$

T_{w} ：鉛直方向の余震荷重により枠ウェブに作用する引張力（kN）
P_{t} ：突き上げ津波荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
P v ：弾性設計用地震動 S d－D 2 に伴う鉛直方向の動水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{5} ：スキンプレートの突き上げ津波受圧面長辺長さ（mm）
L_{6} ：スキンプレートの突き上げ津波受圧面短辺長さ（mm）
（7）鉛直方向の余震荷重により枠ウェブに生じる引張応力度 $\sigma \mathrm{tw}$

$$
\sigma_{\mathrm{tw}} \quad=\mathrm{T}_{\mathrm{w}} \cdot 10^{3} / \mathrm{A}_{\mathrm{w}}
$$

$\sigma \mathrm{tw}$ ：鉛直方向の余震荷重により朹ウェブに生じる引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
T_{w} ：鉛直方向の余震荷重により枠ウェブに作用する引張力（kN）
A_{w} ：枠ウェブの断面積 $\left(\mathrm{mm}^{2}\right)$
$\begin{aligned} 4.4 .6 & \text { ベースプレート } \\ & \text { ベースプレートは片持ち梁として評価を実施する。 }\end{aligned}$
（1）ベースプレートに生じる最大曲げ応力度 σ b

$$
\begin{aligned}
\sigma_{\mathrm{b}} & =\left(\mathrm{M}_{\mathrm{b}} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{b}} \\
\sigma_{\mathrm{b}} & : \text { ベースプレートに生じる最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{M}_{\mathrm{b}} & : \text { ベースプレートに作用する最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Z}_{\mathrm{b}} & : \text { ベースプレートの断面係数 }\left(\mathrm{mm}^{3}\right) \\
\text { ここで, } & \mathrm{M}_{\mathrm{b}} \\
\mathrm{~T}_{\mathrm{d}} & : \mathrm{T}_{\mathrm{d}} \cdot \mathrm{~L}_{8} \cdot 10^{-3} \\
\mathrm{~L}_{8} & : \text { ベース定ボルト }(2) 1 \text { 本当りに作用する引張力 }(\mathrm{kN}) \\
\mathrm{Z}_{\mathrm{b}} & =\left(\mathrm{B} \cdot \mathrm{t}_{\mathrm{b}}{ }^{2}\right) / 6 \\
\mathrm{~B} & : \text { ベースプレートの有効幅 }(\mathrm{mm}) \\
\mathrm{t}_{\mathrm{b}} & : \text { ベースプレートの板厚 }(\mathrm{mm})
\end{aligned}
$$

（2）ベースプレートに生じる最大せん断応力度 τ_{b}

$$
\begin{array}{lll}
\tau_{\mathrm{b}} & & =\left(\mathrm{Q}_{\mathrm{b}} \cdot 10^{3}\right) / \mathrm{As}_{\mathrm{b}} \\
\mathrm{Q}_{\mathrm{b}} & & =\mathrm{T}_{\mathrm{d}} \\
& \tau_{\mathrm{b}} & : \text { ベースプレートに生じる最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{Q}_{\mathrm{b}} & : \text { ベースプレートに作用する最大せん断力 }(\mathrm{kN})
\end{array}
$$

A s b ：ベースプレートのせん断断面積 $\left(\mathrm{mm}^{2}\right)$
（3）ベースプレートに生じる組合せ応力度 x

$$
\begin{aligned}
\mathrm{x}=\sqrt{\sigma_{\mathrm{b}}^{2}+} & 3 \cdot \tau_{\mathrm{b}}^{2} \\
\mathrm{x} \quad & : \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\sigma_{\mathrm{b}} \quad & : \text { ベースプレートに生じる最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\tau_{\mathrm{b}} \quad & : \text { ベースプレートに生じる最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

4． 5 評価条件

浸水防止蓋の強度評価に用いる入力値を表 4－9 及び表4－10に示す。

表 4－9 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）の強度評価に用いる入力値（ $1 / 2$ ）

評価対象部位	記号	単位	定義	数値
共通	ρ_{0}	$\mathrm{t} / \mathrm{m}^{3}$	水の密度	1.03
	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	H	mm	評価高さ	17500
	A	m^{2}	浸水防止蓋の面積	1.6
	G	kN	スキンプレートと主桁の固定荷重	3.040
	P s	kN	積雪荷重	0.481
	P_{t}	$\mathrm{kN} / \mathrm{m}^{2}$	突き上げ津波荷重	178
	P v	$\mathrm{kN} / \mathrm{m}^{2}$	弾性設計用地震動 S d－D 2 に伴う鉛直方向の動水圧荷重	114
	S d	kN	弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う水平方向 の余震荷重	4． 12
主桁	L_{1}	mm	主桁の負担幅	430
	L_{2}	mm	主桁全長	420
	$\mathrm{A}_{\text {S }}$	mm ${ }^{2}$	主桁のせん断断面積	400
	Z	mm^{3}	主桁の断面係数	1． 78×10^{4}
スキンプレート	L_{3}	mm	スキンプレートの支持長辺長さ	430
	L_{4}	mm	スキンプレートの支持短辺長さ	420
	β_{1}	－	スキンプレートの辺長比に応じた係数	0.4
	t	mm	スキンプレートの厚さ	16

表 4－9 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）の強度評価に用いる入力値（2 $/ 2$ ）

評価対象部位	記号	単位	定義	数値
固定 ボルト（1）	n s	本	固定ボルト（1）の本数	36
	A＇	mm^{2}	固定ボルト（1）の有効断面積	157
	L_{5}	mm	スキンプレートの突き上げ津波受圧面長辺長さ	3005
	L_{6}	mm	スキンプレートの突き上げ津波受圧面短辺長さ	380
固定 ボルト（2）	N	本	固定ボルト（2）の本数	27
	L_{5}	Mm	スキンプレートの突き上げ津波受圧面長辺長さ	3005
	L_{6}	mm	スキンプレートの突き上げ津波受圧面短辺長さ	380
$\begin{aligned} & \text { ベース } \\ & \text { プレート } \end{aligned}$	L_{8}	mm	ベースプレートの評価長さ	36
	Z_{b}	mm^{3}	ベースプレートの断面係数	4332
	B	mm	ベースプレートの有効幅	72
	t_{b}	mm	ベースプレートの板厚	19
	A s b	mm^{2}	ベースプレートのせん断断面積	1368

表 4－10 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）の
強度評価に用いる入力値（1／2）

評価対象部位	記号	単位	定義	数値
共通	ρ_{0}	$\mathrm{t} / \mathrm{m}^{3}$	水の密度	1． 03
	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	H	mm	評価高さ	17500
	A	m^{2}	浸水防止蓋の面積	1.0
	G	kN	スキンプレートと主桁の固定荷重	3.138
	P s	kN	積雪荷重	0.301
	P_{t}	$\mathrm{kN} / \mathrm{m}^{2}$	突き上げ津波荷重	178
	P v	$\mathrm{kN} / \mathrm{m}^{2}$	弾性設計用地震動 S d－D 2 に伴う鉛直方向の動水圧荷重	114
	S d	kN	弹性設計用地震動 S d－D 2 に伴う水平方向 の余震荷重	4.02
主桁	L_{1}	mm	主桁の負担幅	250
	L_{2}	mm	主桁全長	1000
	$\mathrm{A}_{\text {S }}$	mm^{2}	主桁のせん断断面積	2400
	Z	mm^{3}	主桁の断面係数	6． 00×10^{4}
$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	L_{3}	mm	スキンプレートの支持長辺長さ	250
	L_{4}	mm	スキンプレートの支持短辺長さ	200
	β_{1}	－	スキンプレートの辺長比に応じた係数	0.5
	t	mm	スキンプレートの厚さ	12

表 4－10 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）の強度評価に用いる入力値（ $2 / 2$ ）

評価対象部位	記号	単位	定義	数値
固定 ボルト （1）	n s	本	固定ボルト（1）の本数	8
	A＇	mm^{2}	固定ボルト（1）の有効断面積	561
	L_{5}	mm	スキンプレートの突き上げ津波受圧面長辺長さ	850
	L_{6}	mm	スキンプレートの突き上げ津波受圧面短辺長さ	850
固定 ボルト （2）	N	本	固定ボルト（2）の本数	15
	L 5	mm	スキンプレートの突き上げ津波受圧面長辺長さ	850
	L_{6}	mm	スキンプレートの突き上げ津波受圧面短辺長さ	850
枠	L_{5}	mm	スキンプレートの突き上げ津波受圧面長辺長さ	850
	L_{6}	mm	スキンプレートの突き上げ津波受圧面短辺長さ	850
	L_{7}	mm	枠ウェブ中心から下フランジ端部までの距離	75
	Z_{f}	mm^{3}	枠下フランジの断面係数	14170
	A_{w}	mm^{2}	枠ウェブの断面積	7000
	A s w	mm^{2}	枠ウェブのせん断断面積	7000
	A_{f}	mm^{2}	枠下フランジのせん断断面積	10000
$\begin{aligned} & \text { ベース } \\ & \text { プレート } \end{aligned}$	L_{8}	mm	ベースプレートの評価長さ	80
	Z_{b}	mm^{3}	ベースプレートの断面係数	9627
	B	mm	ベースプレートの有効幅	160
	t_{b}	mm	ベースプレートの板厚	19
	A s b	mm^{2}	ベースプレートのせん断断面積	3040

5．評価結果

浸水防止蓋の強度評価結果を表5－1 及び表5－2に示す。各部材の断面検定を行った結果，す べての部材において発生応力又は応力度が許容限界以下であることを確認した。

表 5－1 浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア角落し部） の強度評価結果

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
主桁	曲げ	156	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.77<1.0$
	せん断	66	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.56<1.0$
	組合せ	193	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.95<1.0$
スキンプレート	曲げ	81	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.40<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	81	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.40<1.0$
固定ボルト（1）	引張	59	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.29<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
固定ボルト（2）	引張	12.4	kN	32.1	kN	$0.39<1.0$
	せん断	0.2	kN	22． 3	kN	$0.01<1.0$
	組合せ	－		－		$0.16<1.0$
ベースプレート	曲げ	103	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.51<1.0$
	せん断	10	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
	組合せ	105	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.52<1.0$

表 5－2 浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）の強度評価結果

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
主桁	曲げ	153	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.75<1.0$
	せん断	16	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
	組合せ	155	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.76<1.0$
スキンプレート	曲げ	41	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.20<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	41	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.20<1.0$
固定ボルト（1）	引張	48	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.24<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
固定ボルト（2）	引張	14.1	kN	32.1	kN	$0.44<1.0$
	せん断	0.3	kN	22.5	kN	$0.02<1.0$
	組合せ	－		－		$0.20<1.0$
下フランジ	曲げ	140	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.69<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	140	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.69<1.0$
ウェブ	引張	8	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
ベースプレート	曲げ	118	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.58<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	118	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	組合せ	119	$\mathrm{N} / \mathrm{mm}^{2}$	205	$\mathrm{N} / \mathrm{mm}^{2}$	$0.59<1.0$

6.5 浸水防止設備に関する補足説明

6．5．3 浸水防止蓋に関する補足説明
6.5 .3 .7 浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））の耐震性についての
計算書に関する補足説明

目 次

1．概要．． 1

2.1 配置概要 ．． 2
2.2 構造計画 ．． 4
2.3 評価方針 ．．． 5
2.4 適用規格•基準等．． 6
2.5 記号の説明．．． 7

3．評価対象部位 ．． 12
4．固有値解析 ．． 14
4．1 固有振動数の計算方法．．． 14
4．2 固有振動数の計算条件．．． 15
4.3 固有振動数の計算結果 ．．． 15

5．構造強度評価．．． 16
5.1 構造強度評価方法 ．．． 16
5.2 荷重及び荷重の組合せ ．．． 16
5.3 許容限界 ．．． 18
5.4 設計用地震力 ．． 23
5.5 評価方法 ．．． 27

6．評価結果．． 53
（別紙1）ハッチ開放時におけるヒンジ部の評価．．． 56
（別紙 2 ）海水ポンプ室と原子炉機器冷却海水配管ダクト（鉛直部）の最大加速度応答の比較•65

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度に基づき，浸水防止設備のらち浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））（以下「浸水防止蓋」という。）が設計用地震力に対して，主要な構造部材が十分な構造健全性を有するこ とを確認するものである。その耐震評価は浸水防止蓋の固有値解析及び応力評価により行う。浸水防止蓋は，浸水防止設備として S クラスの施設に分類される。以下，浸水防止設備として の構造強度評価を示す。

なお，浸水防止蓋の耐震評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）からの浸水を防止するため に設置する。

浸水防止蓋の設置位置図を図 $2-1$ ，流入対策図を図 $2-2$ に示す。

図 2－1 浸水防止蓋の設置位置図

図2－2（1）第2号機 海水ポンプ室 流入対策配置図（平面図）

図 2－2（2）第2号機 海水ポンプ室 流入対策配置図（B－B 断面図）

2.2 構造計画

浸水防止蓋の構造は，長方形のスキンプレートに主桁（H 型鋼）を組み合わせた浸水防止蓋 と，メンテンナンス等のため開閉を行うハッチを組み合わせた構造とする。ハッチ部の開閉運用の詳細については，「6．5．3 浸水防止蓋に関する補足説明 参考資料1浸水防止蓋の開閉運用について」に示す。

浸水防止蓋は，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）上部に固定ボルトにて固定 する。浸水防止蓋の構造計画を表2－1 に示す。

表 2－1 浸水防止蓋の構造計画

2.3 評価方針

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及 び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」に示す浸水防止蓋の構造を踏ま え，「3．評価対象部位」にて設定する評価部位において，「4．固有値解析」で算出した固有振動数に基づく設計用地震力により算出した応力等が許容限界内に収まることを，「5．構造強度評価」に示す方法にて確認する。応力評価の確認結果を「6．評価結果」にて確認する。耐震評価フローを図 2－3に示す。

図 2－3 耐震評価フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す。
（1）日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一
（2）日本建築学会 2010 年 各種合成構造設計指針•同解説
（3）機械工学便覧（日本機械学会）
（4）ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）（基準解説編設備計画マニュ アル編）

2.5 記号の説明

浸水防止蓋の耐震評価に用いる記号を表2－2 に示す。

表2－2（1）浸水防止蓋の耐震評価に用いる記号（主桁，スキンプレート，固定ボルト）

記号	単位	定義
S s	kN	基準地震動S s による地震荷重
k_{H}	－	基準地震動 S s の水平方向の設計震度
k_{v}	－	基準地震動S s の鉛直方向の設計震度
G	kN	固定荷重
P s	kN	積雪荷重
W s	$\mathrm{N} / \mathrm{m}^{2}$	1 cm 当りの積雪荷重
d s	cm	積雪高さ
A	m^{2}	浸水防止蓋の面積
W s s	$\mathrm{kN} / \mathrm{m}^{2}$	単位面積当りの等分布荷重
W s s ${ }^{\text {，}}$	kN／m	単位長さ当りの等分布荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	$\mathrm{kN} \cdot \mathrm{m}$	最大曲げモーメント
x	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度
A s	mm^{2}	せん断断面積
Z	mm^{3}	断面係数
L_{1}	mm	主桁の負担幅
L_{2}	mm	主桁全長
L_{3}	mm	固定ボルト中心位置から主桁（戸当り部）中心までの距離
L_{4}	mm	スキンプレートの支持長辺長さ
L 5	mm	スキンプレートの支持短辺長さ
B	mm	主桁（戸当り部）下フランジの有効幅
t b	mm	主桁（戸当り部）下フランジの厚さ
β_{2}	－	スキンプレートの辺長比に応じた係数
t	mm	スキンプレートの厚さ
N	本	浸水防止蓋に取り付く固定ボルトの本数
T d	kN	固定ボルト1本当りに作用する引張力
q	kN	固定ボルト1本当りに作用するせん断力

表2－2（2）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義
共通	$\mathrm{W}_{\text {HR }}$	kN	水平荷重（回転軸直角方向）
	$\mathrm{W}_{\text {HP }}$	kN	水平荷重（回転軸平行方向）
	W_{v}	kN	鉛直荷重
	W_{R}	kN	水平荷重（回転軸水平方向）による偶力
	k_{H}	－	基準地震動S s の水平方向の設計震度
	k_{v}	－	基準地震動S s の鉛直方向の設計震度
	G	kN	ハッチの固定荷重
	P s	kN	積雪荷重
	L	mm	ハッチ中心から回転軸までの水平距離
	L_{h}	mm	ヒンジ支点間水平距離
	$\mathrm{F}_{\text {HR }}$	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	σ_{N}	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	σ br	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	$\sigma_{\text {b P }}$	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	$\sigma_{\text {b V } 1}$	$\mathrm{N} / \mathrm{mm}^{2}$	鉛直方向荷重の曲げ応力度
	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	τ v	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の⿰丬じりせん断応力度
	$\tau_{\text {PX }}$	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）
	Z_{2}	mm ${ }^{3}$	回転軸直角方向回りの断面係数（中間部）
	Z_{p}	mm ${ }^{3}$	極断面係数
	A	mm ${ }^{2}$	断面積

表2－2（3）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

評価 対象 部位	記号	単位	定義
$\begin{aligned} & \text { ヒンジ } \\ & \text { プレート } \\ & \text { (スキンプ } \\ & \text { レート側) } \end{aligned}$	σ N	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	σ b R	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	$\sigma \mathrm{b} \mathrm{P}$	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ基部からピン穴間距離
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）
	A	mm^{2}	断面積
	B	mm	ヒンジプレート幅
	t	mm	ヒンジプレート板厚
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm^{3}	断面係数
	A	mm^{2}	ヒンジピンの断面積
	D	mm	ヒンジピンの直径

表2－2（4）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \\ & \hline \end{aligned}$	記号	単位	定義
ヒンジ 固定 ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	P_{R}	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{V}	kN	鉛直方向荷重による引張力
	Q	kN	ボルトせん断力
	Q_{R}	kN	回転軸直角方向によるせん断力
	Q_{P}	kN	回転軸平行方向によるせん断力
	L	mm	ヒンジ基部ーピン穴間距離
	L v	mm	回転軸平行方向のボルトピッチ
	L_{H}	mm	回転軸直角方向のボルトピッチ
	N_{H}	本	回転軸平行方向のボルト本数
	N_{V}	本	回転軸直角方向のボルト本数
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	P_{R}	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{v}	kN	鉛直方向荷重による引張力
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm^{2}	エンドプレートの有効断面積
	L	mm	ヒンジ板表面からボルト穴までの距離
	t	mm	エンドプレートの板厚

表2－2（5）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \\ & \hline \end{aligned}$	記号	単位	定義
スイング ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	A	mm ${ }^{2}$	断面積
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm ${ }^{3}$	断面係数
	A	mm ${ }^{2}$	スイングボルトピンの断面積
	D	mm	スイングボルトピンの直径
$\begin{gathered} \text { ナット } \\ \text { 受部 } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
	L	mm	腕長さ
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm ${ }^{2}$	ナット受部の有効断面積
	t	mm	ナット受部の板厚
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	R v 2	kN	スイングボルトピン受金具が負担する締付部に作用する鉛直荷重
	A	mm ${ }^{2}$	スイングボルトピン受部の断面積
	B	mm	スイングボルトピン受部の幅
	t	mm	スイングボルトピン受部の板厚

3．評価対象部位
浸水防止蓋の評価対象部位は，「2．2 構造計画」に設定している構造を踏まえて，地震に伴 ら荷重の作用方向及び伝達過程を考慮し設定する。
浸水防止蓋の本体（ハッチ部以外）については，地震に伴う慣性力が浸水防止蓋のスキンプレ ート，主桁に伝わり，浸水防止蓋を固定する固定ボルトを介して躯体に伝達されることから，ス キンプレート，主桁及び固定ボルトを評価対象部位として設定する。

浸水防止蓋のハッチ部の運用について，原則閉止運用とするとともに，定期点検時等により開状態となる場合においても速やかに閉操作できる人員を，ハッチ付近に待機させる運用とするこ とから（詳細は，「6．5．3 浸水防止蓋に関する補足説明 参考資料 1 浸水防止蓋の開閉運用に ついて」に示す。），閉止時を基本とした荷重の作用方向及び伝達過程を考慮する。ハッチ部に作用する慣性力は，ヒンジ部（ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン， ヒンジ固定ボルト及びエンドプレート）及び締付部（スイングボルト，スイングボルトピン，ナ ット受部及びスイングボルトピン受部）を介して受桁に伝達されることから，ヒンジ部及び締付部の各部位を評価対象部位として設定する。なお，ヒンジ部については開放時における評価も実施する。開放時における評価については，「別紙1 ハッチ開放時におけるヒンジ部の評価」に示す。
評価対象部位を図3－1に示す。

図3－1（1）評価対象部位（スキンプレート，主桁及び固定ボルト）

図 3－1（2）評価対象部位（ハッチ部）

4．固有値解析
4．1 固有振動数の計算方法
浸水防止蓋の構造に応じて解析モデルを設定し，固有振動数を算出する。

4．1．1 解析モデルの設定
浸水防止蓋は，スキンプレート及び主桁の組合せにより剛な断面を有しているととも に，固定ボルトを介し，浸水防止蓋と躯体を固定する構造であることから，浸水防止蓋の主桁を両端ピン支持に単純化したモデルとし，モデル化に用いるはり長さは，主桁の全長 とする。図4－1に解析モデル図を示す。

図 4－1 浸水防止蓋の固有値解析モデル

4．1．2 記号の説明
浸水防止蓋の固有振動数算出に用いる記号を表 4－1 に示す。

表 4－1 浸水防止蓋の固有振動数の計算に用いる記号

記号	単位	定義
f	Hz	一次固有振動数
L	mm	はりの長さ
E	$\mathrm{N} / \mathrm{mm}^{2}$	ヤング率
I	mm^{4}	主桁の断面二次モーメント
m	$\mathrm{kg} / \mathrm{mm}$	質量分布

4．1．3 固有振動数の算出方法
固有振動数 f を「土木学会構造力学公式集」を参考に以下の式より算出する。

$$
\mathrm{f}=\frac{\pi^{2}}{2 \pi \mathrm{~L}^{2}} \sqrt{\frac{\mathrm{E} \cdot \mathrm{I} \cdot 10^{3}}{\mathrm{~m}}}
$$

4．2 固有振動数の計算条件
固有振動数の計算条件を表4－2に示す。

表 4－2 固有振動数の計算条件

はり長さ L	ヤング率 E	断面二次 モーメント I	質量分布 m
(mm)			

4．3 固有振動数の計算結果

固有振動数の計算結果を表4－3 に示す。固有振動数は 20 Hz 以上であることから，剛構造で ある。

表 4－3 固有振動数の計算結果
固有振動数
（Hz）
175． 46

5．構造強度評価
5.1 構造強度評価方法

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。
5.2 荷重及び荷重の組合せ

5．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを下記に示す。

$$
\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{Ps}
$$

ここで，G ：固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P s ：積雪荷重（kN）

5．2．2 荷重の設定
耐震評価に用いる荷重は，以下のとおりとする。
（1）固定荷重（G）
固定荷重として，浸水防止蓋を構成する部材の自重を考慮する。
（2）積雪荷重（P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

積雪荷重による質量は以下の式より算出する。

$$
\begin{aligned}
\mathrm{P} \mathrm{~s}=0.35 \cdot \mathrm{~W} \mathrm{~s} \cdot \mathrm{~d} \mathrm{~s} & \cdot \mathrm{~A} \cdot 10^{-3} \\
\text { 乙こで, } \quad \mathrm{P} \mathrm{~s} & : \text { 積雪荷重 }(\mathrm{kN}) \\
\mathrm{W} \mathrm{~s} & : 1 \mathrm{~cm} \text { 当りの積雪荷重 } 20 \quad\left(\mathrm{~N} / \mathrm{m}^{2}\right) \\
\mathrm{d} \mathrm{~s} & : \text { 積雪高さ } 43 \quad(\mathrm{~cm}) \\
\mathrm{A} & : \text { 浸水防止蓋の面積 } \quad\left(\mathrm{m}^{2}\right)
\end{aligned}
$$

（3）基準地震動 S s による地震荷重（S s ）
地震荷重として，基準地震動 S s に伴う慣性力を考慮する。地震荷重は浸水防止蓋の固定荷重及び積雪荷重に設計震度を乗じた次式により算出する。

```
S s = (G + P s ) • k
    ここで, S s : 基準地震動 S s による地震荷重(kN)
    G : 固定荷重(kN)
    P s : 積雪荷重(kN)
    k : 基準地震動 S s の設計震度
```


5.3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している許容限界を踏ま えて設定する。

5．3．1 使用材料

浸水防止蓋を構成する各部材の使用材料を表5－1 に示す。

表 5－1 使用材料

評価対象部位	材質	仕様
スキンプレート	SM490Y	$\mathrm{t}=16$（mm）
ハッチ	SM490Y	$\mathrm{t}=16$（mm）
主桁	SM490Y	$\mathrm{H}-250 \times 250 \times 9 \times 14(\mathrm{~mm})$
固定ボルト	SM490Y	M16
ヒンジプレート	SM490Y	$\begin{aligned} & \text { ハッチ側 } \quad \mathrm{t}=25(\mathrm{~mm}) \\ & \text { スキンプレート側 } \quad \mathrm{t}=40(\mathrm{~mm}) \end{aligned}$
ヒンジピン	SM490Y	径 40 （mm）
ヒンジ固定ボルト	SM490Y	M20
エンドプレート	SM490Y	$\mathrm{t}=32(\mathrm{~mm})$
スイングボルト	SM490Y	M16
スイングボルトピン	SM490Y	径 16 （mm）
ナット受部	SM490Y	$\mathrm{t}=16$（mm）
スイングボルトピン受部	SM490Y	$\mathrm{t}=9 \quad(\mathrm{~mm})$

5．3．2 許容限界

（1）スキンプレート，主桁
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—」 を踏まえて表5－2の値とする。

表 5－2 鋼材の短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
	曲げ	せん断
SM490Y	325	188

（2）固定ボルト
固定ボルトの許容荷重は，「3．評価対象部位」に記載した固定ボルトに作用する荷重 の向きを踏まえて，「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づき算定する。
固定ボルトは躯体に埋め込まれていることから，固定ボルトが引張力を受ける場合にお いては，固定ボルトの降伏により決まる許容荷重（ $\mathrm{P}_{\mathrm{a}}^{\mathrm{a}}$ ）），付着力により決まる許容荷重（ $\mathrm{P}_{\mathrm{a}}^{3}$ ）を比較して，いずれか小さい値を採用する。また，固定ボルトがせん断力を受ける場合においては，固定ボルトのせん断強度により決まる許容荷重（ q a a ），定着 したコンクリート躯体の支圧強度により決まる許容荷重（ q_{a} 2 2 ）及びコーン状破壊によ り決まる許容荷重（ q a 3）を比較して，いずれか小さい値を採用する。

地震荷重を考慮する場合の固定ボルトの許容荷重の設定に用いる入力値を表 5－3 に，許容荷重を表5－4に示す。

引張力を受ける場合

$\mathrm{P}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{pa}} \cdot \mathrm{sc} \mathrm{a}$
$\mathrm{P}_{\mathrm{a} 3}=\Phi_{3} \cdot \tau_{\mathrm{a}} \cdot \pi \cdot \mathrm{d}_{\mathrm{a}} \cdot 1_{\mathrm{c}} \mathrm{e}$
ここで， $\mathrm{P}_{\mathrm{a} 1}$ ：固定ボルトの降伏により決まる場合の固定ボルト 1 本当たり の許容引張力（ N ）
$\mathrm{P}_{\mathrm{a} 3}$ ：固定ボルトの付着力により決まる場合の固定ボルト 1 本当た りの許容引張力（ N ）
Φ_{1} ：低減係数（短期荷重用）
Φ_{3} ：低減係数（短期荷重用）
$\mathrm{s} \sigma_{\mathrm{pa}}$ ：固定ボルトの引張強度（ $=\mathrm{s}_{\mathrm{s}} \sigma_{\mathrm{y}}$ ）（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
s σ y ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sc a ：固定ボルトの断面積（mm²）
d_{a} ：固定ボルトの径（mm）
1 ce ：固定ボルトの強度算定用埋込み長さ（ $=1 \mathrm{e}-2 \mathrm{~d}_{\mathrm{a}}$ ）（mm）
τ a ：へりあき及び固定ボルトのピッチによる付着強度の低減係数

せん断力を受ける場合
$\mathrm{q}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{qa}} \cdot \mathrm{sca}$
$\mathrm{q}_{\mathrm{a} 2}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{qa}} \cdot \mathrm{sca}$
$\mathrm{q}_{\mathrm{a} 3}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{q}} \mathrm{c}$
ここで， $\mathrm{q}_{\mathrm{a} 1}$ ：固定ボルトのせん断強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 2 ：定着した躯体の支圧強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 3 ：定着した躯体のコーン状破壊により決まる場合の固定ボルト 1本当たりの許容せん断力（N）
Φ_{1} ：低減係数（短期荷重用）
Φ_{2} ：低減係数（短期荷重用）
s σ qa ：固定ボルトのせん断強度（ $=0.7$ • σ_{y} ）（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
s σ y ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sc a ：固定ボルトの断面積（ mm^{2} ）
c σ_{qa} ：コンクリートの支圧強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right) \quad(=0.5 \sqrt{\mathrm{Fc} \cdot \mathrm{Ec}})$
c $\sigma \mathrm{t}$ ：コーン状破壊に対するコンクリートの引張強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

$$
(=0.31 \sqrt{\mathrm{~F} \mathrm{c}})
$$

F ：コンクリートの設計基準強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
E ：コンクリートのヤング係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{A}_{\mathrm{q}} \mathrm{c}$ ：せん断力に対するコーン状破壊面の有効投影面積（ mm^{2} ）

表 5－3 固定ボルトの許容荷重の設定に用いる入力値

記号	単位	定義	数値
Φ_{1}	－	低減係数（短期荷重用）	1.0
Φ_{2}	－	低減係数（短期荷重用）	2／3
Φ_{3}	－	低減係数（短期荷重用）	$2 / 3$
${ }_{\mathrm{s}} \sigma \mathrm{pa}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの引張強度	325
s σ y	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの規格降伏点強度	325
sca	mm^{2}	固定ボルトの断面積	157
d_{a}	mm	固定ボルトの径	16
1 ce	mm	固定ボルトの強度算定用埋込み長さ	168
τ a	－	へりあき及び固定ボルトのピッチによる付着強度の低減係数	6． 71
s σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトのせん断強度	227.50
c σ q a	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの支圧強度	346.82
c σ t	$\mathrm{N} / \mathrm{mm}^{2}$	コーン状破壊に対するコンクリートの引張強度	1． 40
F	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの設計基準強度	20.5
E ${ }_{\text {c }}$	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートのヤング係数	23470
A_{qc}	mm^{2}	せん断力に対するコーン状破壊面の有効投影面積	35343

表 5－4 地震荷重を考慮する場合の固定ボルトの短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	Pa 1	Pa_{3}	設定値	q a 1	qa 2	q a 3	設定値
SM490Y	51.0	37.7	37.7	35.7	36.3	32.9	32.9

（3）ハッチ部
ハッチを構成する各部材の許容値は，「ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）（基準解説編設備計画マニュアル編）」を踏まえて表 5－5 の値とする。

表 5－5 ハッチを構成する各部材の許容限界

評価対象部位	材質	短期許容応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）		
		曲げ	せん断	引張
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$	SM490Y	265	153	－
$\begin{gathered} \text { ヒンジプレート } \\ \text { (スキンプレート側) } \end{gathered}$	SM490Y	265	153	－
ヒンジピン	SM490Y	265	153	－
ヒンジ固定ボルト	SM490Y	265	153	－
エンドプレート	SM490Y	265	153	－
スイングボルト	SM490Y	－	－	265
スイングボルトピン	SM490Y	273	157	－
ナット受部	SM490Y	273	157	－
スイングボルトピン受部	SM490Y	－	－	273

5.4 設計用地震力

浸水防止蓋を設置する揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）と一体構造となって いる原子炉機器冷却海水配管ダクト（鉛直部）は，規模及び重量共に大きい海水ポンプ室に懸架されており，海水ポンプ室と一体となつて挙動する。また，「4．固有値解析」に示したと おり，浸水防止蓋の固有振動数は 20 Hz 以上であることから，浸水防止蓋の耐震評価に用いる設計震度は，海水ポンプ室の地盤物性及び材料物性の不確かさを考慮したものとして添付書類
「VI－2－2－7 海水ポンプ室の地震応答計算書」の地震応答解析結果を用いる。地震応答解析ケ ースを表 5－6 に示す。耐震評価に用いる応答加速度は，原子炉機器冷却海水配管ダクト（鉛直部）が接する図 5－1 に示すスクリーンエリア及び補機ポンプエリアのうち最大加速度が大 きい方を用いる。なお，海水ポンプ室の地震応答解析結果を用いることの保守性については，「別紙2 海水ポンプ室と原子炉機器冷却海水配管ダクト（鉛直部）の最大加速度応答の比較」 に示す。

耐震評価で用いる海水ポンプ室の最大加速度分布図を図 5－2 に，最大加速度を表5－7に，設計震度を表5－8に示す。

表 5－6 海水ポンプ室の地震応答解析ケース

解析ケース	$\begin{gathered} \text { 材料物性 } \\ (\text { コンクリート) } \\ \left(\mathrm{E}_{0}: \text { : ヤング係数 }\right) \end{gathered}$	地盤物性	
		盛土，旧表土，改良地盤，D級岩盤 （ G_{0} ：初期せん断弾性係数）	C C_{1} 級岩盤，C_{M} 級岩盤， C C 級岩盤，B 級岩盤 （ G_{d} ：動せん断弾性係数）
ケース① （基本ケース）	設計基準強度	平均値	平均値
ケース（2）	設計基漼強度	平均値 $+1 \sigma$	平均値
ケース（3）	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

図 5－1（1）海水ポンプ室平面図

（単位：m）

図5－1（2）海水ポンプ室断面図（スクリーンエリア）（A－A 断面）

図 5－1（3）海水ポンプ室断面図（補機ポンプエリア）（B－B 断面）

\square ：耐震評価に用いる最大加速度

6．5．3．7－25

表 5－7（1）最大加速度（水平方向）

地震時荷重算出断面	地震動	位相	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
スクリーンエリア （東西方向）	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} \mathrm{1}$	++	ケース（2）	4822

表 5－8（2）最大加速度（鉛直方向）

地震時荷重算出断面	地震動	位相	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
スクリーンエリア （東西方向）	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} \mathrm{1}$	++	ケース（4）	2101

表 5－8 設計震度

設置場所	床面高さ（m）	基準地震動 S s の設計震度	
		水平方向 k_{H}	鉛直方向 k_{v}
揚水井戸（第2号 機海水ポンプ室防 潮壁区画内）	0．P．14．0	4.92	

5.5 評価方法

浸水防止蓋を構成する各部材に発生する応力より算定する応力度が，許容限界以下であるこ とを確認する。主桁については，スキンプレートからの荷重を主で負担する主桁（受部）と固定ボルトで躯体と固定する主桁（戸当り部）の評価を実施する。主桁（受け部）の評価は，評価上最も厳しい条件となる断面で実施する。主桁（戸当り部）については，スキンプレートに上向きの荷重が作用する場合の主桁と固定ボルトの偏心荷重による主桁（戸当り部）下フラン ジに対して評価を実施する。図 5－3 に評価の対象とする主桁を示す。スキンプレートについて は，評価上最も厳しい条件となる断面で評価を実施する。図5－4に評価の対象とするスキン プレートを示す。また，図 5－5 に固定ボルトの納まりを示す。

5．5．1 主桁

（1）主桁（受部）
主桁（受部）の支持条件は両端をピン支持とし，図 5－3 に示すとおり，主桁（受部） が荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施す る。
（a）基準地震動 S s による地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k} \mathrm{v}$
ここで， S s ：基準地震動 S s による地震荷重（kN）
G ：主桁とスキンプレートの固定荷重（kN）
P s ：積雪荷重（kN）
k v ：基準地震動 S s の鉛直方向の設計震度
（b）主桁（受部）に作用する単位長さ当りの鉛直方向の等分布荷重W s s ， W s $\mathrm{s}^{\prime}=(\mathrm{G}+\mathrm{S} \mathrm{s}+\mathrm{P} \mathrm{s}) \cdot \mathrm{L}_{1} \cdot 10^{-3} / \mathrm{A}$

ここで，W s s ，主桁（受部）に作用する単位長さ当りの鉛直方向の等分布荷重（ kN / m ）
G ：主桁とスキンプレートの固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P s ：積雪荷重（kN）
L_{1} ：主桁（受部）の負担幅（mm）
A ：浸水防止蓋の面積（ m^{2} ）
（c）主桁（受部）に作用する最大せん断応力度 τ

$$
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A} \mathrm{~s}
$$

τ ：主桁（受部）に作用する最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：主桁（受部）に作用する最大せん断力（kN）
A s ：主桁（受部）のせん断断面積（mm²）
ここで， $\mathrm{Q}=1 / 2 \cdot \mathrm{Ws} \mathrm{s}^{\prime} \cdot \mathrm{L}_{2} \cdot 10^{-3}$

Q	：主桁（受部）に作用する最大せん断力（kN）
W s s	：主桁（受部）に作用する単位長さ当りの鉛直方向の等分布荷重
$(\mathrm{kN} / \mathrm{m})$	

（d）主析（受部）に作用する最大曲げ応力度 o

```
\sigma=(M•10
    o : 主桁(受部)に作用する最大曲げ応力度 (N/mm
    M : 主梼(受部)に作用する最大曲げモーメント (kN•m)
    Z : 主桁の断面係数 (mm
    ここで, M = 1/8•Wss' • ( L L2•10-3) 2
        M : 主桁 (受部)に作用する最大曲げモーメント (kN•m)
        W s s, : 主桁(受部)に作用する単位長さ当りの鉛直方向の等分布荷重
                                (kN/m)
            L2 : 主析 (受部) 全長 (mm)
```

（e）主桁（受部）に作用する組合せ応力度
主桁（受部）に作用する曲げ応力度，せん断応力度を算定し，主桁の短期許容応力度以下であることを確認する。また，主桁に生じる曲げ応力度とせん断応力度から，組合 せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一」に基づく次式により算定し，短期許容応力度以下であることを碓認する。

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \quad \mathrm{x}: \text { : 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma: \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \tau: \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

（2）主桁（戸当り部）下フランジ
図 5－3 に示すとおり，スキンプレートに上向きの荷重が作用する場合の主桁（戸当り部）と固定ボルトの偏心荷重による主桁（戸当り部）下フランジに対して，支持条件を片持ち梁として評価を実施する。
（a）基準地震動 S s による地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{v}}$
ここで， S s ：基準地震動 S s による地震荷重（kN）
G ：主桁とスキンプレートの固定荷重（kN）
Ps ：積雪荷重（kN）
k_{v} ：基準地震動 S s の鉛直方向の設計震度
（b）主桁（戸当り部）下フランジに作用する最大曲げ応力度 σ

$$
\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}
$$

σ ：主桁（戸当り部）下フランジに作用する最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
M ：主桁（戸当り部）下フランジに作用する最大曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m}$ ）
Z ：主桁（戸当り部）下フランジの断面係数（ mm^{3} ）
ここで， $\mathrm{M}=\mathrm{T} \mathrm{d} \cdot \mathrm{L}_{3} \cdot 10^{-3}$
$\mathrm{Z}=\left(\mathrm{B} \cdot \mathrm{t}_{\mathrm{b}}\right) / 6$
M ：主桁（戸当り部）下フランジに作用する最大曲げモーメント（kN•m）
T d ：固定ボルト1本当りに作用する引張力（kN）
L_{3} ：固定ボルト中心位置から主桁（戸当り部）中心位置までの距離（mm）
B ：主桁（戸当り部）下フランジの有効幅（mm）
tb：主桁（戸当り部）下フランジの厚さ（mm）
（c）主桁（戸当り部）下フランジに作用する最大せん断応力度 τ
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A} \mathrm{s}$
τ ：主桁（戸当り部）下フランジに作用する最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：主桁（戸当り部）下フランジに作用する最大せん断力（kN）
A s：主桁（戸当り部）下フランジのせん断断面積（mm ${ }^{2}$ ）
ここで， $\mathrm{Q}=\mathrm{T} \mathrm{d}$
T d ：固定ボルト1本当りに作用する引張力
（kN）
（d）主桁（戸当り部）下フランジに作用する組合せ応力度
主桁（戸当り部）下フランジに作用する曲げ応力度，せん断応力度を算定し，主桁の短期許容応力度以下であることを確認する。また，主桁に生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法 －」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \quad \mathrm{x} \\
& \\
& \quad \begin{aligned}
& : \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \text { : 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& : \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
\end{aligned}
$$

図 5－3 評価の対象とする主桁

5．5．2 スキンプレート
スキンプレートの支持条件は四辺固定とし，図 5－4 に示すとおり，評価上最も厳しい条件となるよう評価を実施する。曲げ応力度及びせん断応力度は「機械工学便覧（日本機械学会）」より以下の式にて算出する。
（1）基準地震動 S s による地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{v}}$
ここで， S s ：基準地震動 S s による地震荷重（kN）
G ：スキンプレートの固定荷重（kN）
Ps ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{v}} \quad$ ：基準地震動 S s の鉛直方向の設計震度
（2）スキンプレートに作用する単位面積当りの鉛直方向の荷重W s s

$$
\mathrm{W} s \mathrm{~s}=(\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P} \mathrm{~s}) / \mathrm{A}
$$

ここで， W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
G ：スキンプレートの固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
Ps ：積雪荷重（kN）
A ：浸水防止蓋の面積（ m^{2} ）
（3）スキンプレートに作用する最大曲げ応力度 σ
スキンプレートに作用する曲げ応力度は「機械工学便覧（日本機械学会）」に基づき次式により算出する。

$$
\sigma=\beta_{2} \cdot \mathrm{~W} \text { s s } \cdot \mathrm{L}_{5}{ }^{2} \cdot 10^{-3} / \mathrm{t}^{2}
$$

ここで，σ ：スキンプレートに作用する最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
β_{2} ：スキンプレートの辺長比に応じた係数
W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
L_{5} ：スキンプレートの支持短辺長さ (mm)
t ：スキンプレートの厚さ（mm）
（4）スキンプレートに作用する最大せん断応力度 τ
スキンプレートに作用するせん断応力度は「機械工学便覧（日本機械学会）」に基づき次式により算出する。

$$
\tau=\mathrm{W} \text { s s } \cdot \mathrm{L}_{4} \cdot \mathrm{~L}_{5} \cdot 10^{-3} /\left(\mathrm{t} \cdot\left(\mathrm{~L}_{4}+\mathrm{L}_{5}\right) \cdot 2\right)
$$

ここで，$\tau \quad$ ：スキンプレートに作用する最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
L_{4} ：スキンプレートの支持長辺長さ (mm)
L_{5} ：スキンプレートの支持短辺長さ（mm）
t ：スキンプレートの厚さ（mm）
（5）スキンプレートに作用する組合せ応力度
スキンプレートに作用する曲げ応力度，せん断応力度を算定し，スキンプレートの短期許容応力度以下であることを確認する。また，スキンプレートに生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \quad \mathrm{x} \\
& \\
& \\
& \\
& \\
& \\
& \tau
\end{aligned} \quad \text { : 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

図 5－4 評価の対象とするスキンプレート

5．5．3 固定ボルト
（1）基準地震動 S s による水平方向の地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{H}}$
ここで， S s ：基準地震動 S s による水平方向の地震荷重（kN）
G ：浸水防止蓋の固定荷重（kN）
Ps ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad$ ：基準地震動 S s の水平方向の設計震度
（2）基準地震動 S s による鋁直方向の地震荷重 S s

$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{kv}$

ここで， S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
G ：浸水防止蓋の固定荷重（kN）
Ps ：積雪荷重（kN）
k v ：基準地震動 S s の鉛直方向の設計震度
（3）固定ボルトに作用する引張力 T d
$\mathrm{T} d=\mathrm{S} \mathrm{s} / \mathrm{N}$
ここで，$\quad \mathrm{Td}$ ：固定ボルト1本当りに作用する引張力（ kN ）
S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
N ：浸水防止蓋に取り付く固定ボルトの本数
（4）固定ボルトに作用するせん断力 q

```
\(\mathrm{q}=\mathrm{S} \mathrm{s} / \mathrm{N}\)
    ここで, q : 固定ボルト 1 本当りに作用するせん断力 (kN)
        S s : 基準地震動 S s による水平方向の地震荷重 (kN)
            N : 浸水防止蓋に取り付く固定ボルトの本数
```


図 5－5 固定ボルトの納まり

5．5．4 ハッチ固定部

ハッチのヒンジ部及び締付部の構造概要を図 5－6 に，荷重算定式を図 5－7に示す。ヒ ンジ部及び締付部の評価は，荷重の作用方向及び伝達過程を考慮する。ヒンジ部について はヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン，ヒンジ固定ボルト及び エンドプレートについて評価を行う。締付部については，スイングボルト，スイングボル トピン，ナット受部及びスイングボルトピン受部について評価を行う。なお，ハッチ開放時におけるヒンジ部の評価については，「別紙 1 ハッチ開放時におけるヒンジ部の評価」 に示す。

図 5－6（1）ヒンジ部の構造概要

図 5－6（2）締付部の構造概要

$$
\begin{aligned}
\mathrm{W}_{\mathrm{HR}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}} \\
\mathrm{~W}_{\mathrm{HP}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}} \\
\mathrm{~W}_{\mathrm{V}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \\
& +(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{V}} \\
\mathrm{~F}_{\mathrm{HR}}= & \alpha_{1} \cdot \mathrm{~W}_{\mathrm{HR}}+\mathrm{W}_{\mathrm{R}} \\
\mathrm{~F}_{\mathrm{HP}}= & \alpha_{2} \cdot \mathrm{~W}_{\mathrm{HP}} \\
\mathrm{~F}_{\mathrm{V} 1 \mathrm{I}}= & \alpha_{3} \cdot \mathrm{~W}_{\mathrm{V}} \\
\mathrm{~F}_{\mathrm{v} 2}= & \beta \cdot \mathrm{W}_{\mathrm{V}}
\end{aligned}
$$

ここで,

ここで，
$\mathrm{W}_{\mathrm{R}}=\mathrm{W}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{h}}$
W_{HR} ：水平荷重（回転軸直角方向）（kN）
W_{HP} ：水平荷重（回転軸平行方向）（kN）
W_{V} ：鉛直荷重（kN）
W_{R} ：水平荷重（回転軸水平方向）による偶力（kN）
L_{c} ：ハッチ中心から回転軸までの水平距離（mm）
$\mathrm{L}_{\mathrm{h}} \quad$ ：ヒンジ支点間水平距離（mm）
G ：ハッチの固定荷重（kN）
P s ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad$ ：基準地震動 S S の水平方向の設計震度
$\mathrm{k}_{\mathrm{V}} \quad$ ：基準地震動 S s の鉛直方向の設計震度
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）
F v 1 ：ヒンジ部に作用する鉛直荷重（kN）
F $\mathrm{v} 2^{2}$ ：締付部に作用する鉛直荷重（kN）
$\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta:$ 分担率

$$
\left(\alpha_{1}=0.5, \quad \alpha_{2}=0.5, \quad \alpha_{3}=0.1, \quad \beta=0.1\right)
$$

図 5－7 ハッチの構造概要及び荷重算定式
6．5．3．7－37

5．5．4．1 ヒンジプレート（ハッチ側）
ヒンジプレート（ハッチ側）の中間部及びハッチ接合部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（ハッチ側） のモデル図及び応力算定式を図5－8に示す。

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）中間部

$$
\begin{aligned}
& \sum \sigma=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bP}}+\sigma_{\mathrm{bVV}} \text { ここで, } \\
& \sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}_{1} \quad \sigma_{\mathrm{N}} \quad \text { : 軸方向引張応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{2} \quad \sigma_{\mathrm{bP}} \quad: \text { 回転軸平行方向荷重の曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma_{\mathrm{bV} 1}=\mathrm{F}_{\mathrm{V} 1} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{1} \quad \sigma_{\mathrm{bV} 1} \text { : 鉛直方向荷重の曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \tau_{\mathrm{P}} \text { : 回転軸平行方向荷重のせん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \tau_{\mathrm{v}} \text { : 鉛直方向荷重のせん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{x} \text { : 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{F}_{\mathrm{HR}} \text { : ヒンジ部に作用する水平荷重 (回転軸直角方向) (kN) } \\
& \mathrm{F}_{\mathrm{HP}} \text { : ヒンジ部に作用する水平荷重 (回転軸平行方向) (kN) } \\
& \text { F }{ }_{\mathrm{v} 1} \text { : ヒンジ部に作用する鉛直荷重 (kN) } \\
& \mathrm{L}_{\mathrm{h}} \quad: \text { ヒンジ支点間水平距離 (mm) } \\
& \left.Z_{1} \text { : 回転軸平行方向回りの断面係数 (中間部) (mm }{ }^{3}\right) \\
& \left.\mathrm{Z}_{2} \text { : 回転軸直角方向回りの断面係数 (中間部) (mm }{ }^{3}\right) \\
& \mathrm{A}_{1} \text { : ヒンジプレート (ハッチ側) の断面積 (} \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

図 5－8（1）ヒンジプレート（ハッチ側）のモデル図及び中間部の応力算定式

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）ハッチ接合部
$\sum \sigma=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bV} 1}+\sigma_{\mathrm{bR}}+\sigma_{\mathrm{bPP}} \quad$ ここで，
$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{V}_{1}} / \mathrm{A}_{2} \quad \sigma_{\mathrm{N}} \quad$ ：軸方向引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\sigma_{\mathrm{bV} 1}=\mathrm{F}_{\mathrm{V}_{1}} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{1}$
$\sigma_{\mathrm{bR}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L}_{\mathrm{V}} / \mathrm{Z}_{1}$
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{V}} / \mathrm{Z}_{2}$
$\Sigma \tau=\tau_{\mathrm{R}}+\tau_{\mathrm{P}}+\tau_{\mathrm{PX}}$
$\tau_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}$
$\tau_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A}$
$\tau_{\mathrm{PX}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{h}} / \mathrm{Z}_{\mathrm{p}}$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

$\sigma_{\text {N }}$	：軸方向引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma \mathrm{br}$	：回転軸直角方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma \mathrm{bp}$	：回転軸平行方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma \mathrm{bv} 1$	：鉛直方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{R}	：回転軸直角方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{P}	：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{\text {PX }}$	：回転軸平行方向荷重のねじりせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
x	：合成応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{F}_{\mathrm{v} 1}$	：ヒンジ部に作用する鉛直荷重（kN）
F_{HR}	：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP}	：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
L_{h}	：ヒンジ支点間水平距離（mm）
L v	：ヒンジ支点間鉛直距離（mm）
Z_{3}	：回転軸平行方向回りの断面係数（接合部）（ mm^{3} ）
Z_{4}	：回転軸直角方向回りの断面係数（接合部）（ mm^{3} ）
Z_{p}	：極断面係数（ mm^{3} ）
A_{2}	ヒンジプレート（ハッチ側）の断面積（ mm^{2} ）

図5－8（2）ヒンジプレート（ハッチ側）のモデル図及びハッチ接合部の応力算定式

5．5．4．2 ヒンジプレート（スキンプレート側）
ヒンジプレート（スキンプレート側）のエンドプレート接合部に発生する曲げ応力度， せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（スキ ンプレート側）のモデル図及び応力算定式を図 5－9に示す。

図 5－9 ヒンジプレート（スキンプレート側）のモデル図及び応力算定式

5．5．4．3 ヒンジピン
ヒンジピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であるこ とを確認する。ヒンジピンのモデル図及び応力算定式を図 5－10に示す。

$$
\begin{aligned}
& \sigma=\mathrm{F} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} \text { ここで, } \\
& F=\sqrt{F_{H R}{ }^{2}+F_{V 1}{ }^{2}} \\
& \tau=\mathrm{F} / 2 / \mathrm{A} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \mathrm{~F}_{\mathrm{v} 1} \text { : ヒンジ部に作用する鉛直荷重 (kN) } \\
& \text { L : ヒンジ支点間距離 (mm) } \\
& \text { B : 荷重の載荷長 (mm) } \\
& \text { Z : 断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \text { A : ヒンジピンの断面積 (} \mathrm{mm}^{2} \text {) } \\
& \text { D : ヒンジピンの直径 }\left(\mathrm{mm}^{2}\right)
\end{aligned}
$$

図 5－10 ヒンジピンのモデル図及び応力算定式

5．5．4．4 ヒンジ固定ボルト
ヒンジ固定ボルトに発生する引張応力度，せん断応力度，合成応力度が許容限界以下で あることを確認する。ヒンジ固定ボルトのモデル図及び応力算定式を図 5－11に示す。

$\sigma=\mathrm{P} / \mathrm{A}_{4}$
$\mathrm{P}=\mathrm{P}_{\mathrm{R}}+\mathrm{P}_{\mathrm{P}}+\mathrm{P}_{\mathrm{V}}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}}$
$\mathrm{P}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{H}} / \mathrm{N}_{\mathrm{V}}$ $\mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\tau=\mathrm{Q} / \mathrm{A}_{4}$
$\mathrm{Q}=\sqrt{\mathrm{Q}_{\mathrm{R}}{ }^{2}+\mathrm{Q}_{\mathrm{P}}{ }^{2}}$
$\mathrm{Q}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{Q}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma \quad$ ：引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau \quad:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P ：ボルト引張力（kN）
P_{R} ：回転軸直角方向荷重による引張力 (kN)
P_{P} ：回転軸平行方向荷重による引張力（ kN ）
P_{V} ：鉛直方向荷重による引張力（kN）
Q ：ボルトせん断力（kN）
$\mathrm{Q}_{\mathrm{R}} \quad$ ：回転軸直角方向によるせん断力（kN）
Q_{P} ：回転軸平行方向によるせん断力（kN）
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
$\mathrm{F}_{\mathrm{V} 1}$ ：ヒンジ部に作用する鉛直荷重（kN）
L ：ヒンジ基部一ピン穴間距離（mm）
L_{V} ：回転軸平行方向のボルトピッチ（mm）
L_{H} ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V} ：回転軸直角方向のボルト本数

図 5－11 ヒンジ固定ボルトのモデル図及び応力算定式

5．5．4．5 エンドプレート
ヒンジプレート（スキンプレート側）に接合されヒンジ部固定ボルトにより支持される エンドプレートに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下である ことを確認する。エンドプレートのモデル図及び応力算定式を図 5－12 に示す。

$\sigma=\mathrm{P} \cdot \mathrm{L} / \mathrm{Z}$
$P=P_{R}+P_{P}+P_{V}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}}$
$\mathrm{P}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{H}} / \mathrm{N}_{\mathrm{V}}$
$\mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{Z}=\mathrm{B} \cdot \mathrm{t}^{2} / 6$
$\tau=\mathrm{P} / \mathrm{A}$
$\mathrm{A}=\mathrm{B} \cdot \mathrm{t}$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，

σ	$:$ 曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
τ	$:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x	$:$ 合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P	$:$ ボルト引張力 (kN)

P_{R} ：回転軸直角方向荷重による引張力（kN）
P_{P} ：回転軸平行方向荷重による引張力（kN）
P_{V} ：鉛直方向荷重による引張力（kN）
Z ：断面係数 $\left(\mathrm{mm}^{3}\right)$
B ：有効断面幅（mm）
A ：エンドプレートの有効断面積（ mm^{2} ）
L ：ヒンジ板表面からボルト穴までの距離（mm）
t ：エンドプレートの板厚（mm）
L_{V} ：回転軸平行方向のボルトピッチ（mm）
L_{H} ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V}

回転軸直角方向のボルト本数

図 5－12 エンドプレートのモデル図及び応力算定式

5．5．4．6 スイングボルト

スイングボルトに発生する引張応力度が許容限界以下であることを確認する。スイング ボルトのモデル図及び応力算定式を図 5－13 に示す

図 5－13 スイングボルトのモデル図及び応力算定式

5．5．4．7 スイングボルトピン
スイングボルトピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下 であることを確認する。スイングボルトピンのモデル図及び応力算定式を図 5－14に示す。

$$
\begin{array}{lll}
\sigma=\mathrm{F}_{\mathrm{V}_{2}} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} & \text { ここで, } & \\
\tau=\mathrm{F}_{\mathrm{V}_{2}} / 2 / \mathrm{A} & \sigma & : \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{x}={\sqrt{\sigma^{2}}{ }^{2}+3 \cdot \tau^{2}}^{\tau} & : \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{x} & : \text { 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{F}_{\mathrm{v} 2} & : \text { 締付部に作用する鉛直荷重 }(\mathrm{kN}) \\
& \mathrm{L} & : \text { ヒンジ支点間距離 }(\mathrm{mm}) \\
& \mathrm{B} & : \text { 荷重の載荷長 }(\mathrm{mm}) \\
& \mathrm{Z} & \text { : 断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \text { A } & \text { スイングボルトピンの断面積 }\left(\mathrm{mm}^{2}\right)
\end{array}
$$

図 5－14 スイングボルトピンのモデル図及び応力算定式

5．5．4．8 ナット受部

スイングボルトのナットから荷重を伝達するナット受部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ナット受金具のモデル図及び応力算定式を図5－15に示す

ここで,

$$
\sigma \quad: \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\tau \quad: \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{x} \quad \text { : 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{F}_{\mathrm{v} 2} \text { : 締付部に作用する鉛直荷重 (kN) }
$$

$$
\mathrm{L} \quad: \text { 腕長さ (mm) }
$$

Z ：断面係数（ mm^{3} ）
B ：有効断面幅（mm）
A ：ナット受部の有効断面積（ mm^{2} ）
t ：ナット受部の板厚（mm）

図 5－15 ナット受部のモデル図及び応力算定式

$$
\begin{aligned}
& \sigma=\mathrm{F}_{\mathrm{V} 2} \cdot \mathrm{~L} / \mathrm{Z} \\
& \mathrm{Z}=\mathrm{B} \cdot \mathrm{t}^{2} / 6 \\
& \tau=\mathrm{F}_{\mathrm{V}_{2}} / \mathrm{A} \\
& \mathrm{~A}=\mathrm{B} \cdot \mathrm{t} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
\end{aligned}
$$

5．5．4．9 スイングボルトピン受部
スイングボルトピンを支持し，ハッチ部（スキンプレート側）に荷重を伝達するスイン グボルトピン受部に発生する引張応力度が許容限界以下であることを確認する。スイング ボルトピン受部のモデル図及び応力算定式を図 5－16に示す

$\sigma=\mathrm{R}_{\mathrm{V}_{2}} / \mathrm{A}$
$\mathrm{R}_{\mathrm{V}_{2}}=\mathrm{F}_{\mathrm{v} 2} / 2$

ここで，
$\sigma \quad$ ：引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{R}_{\mathrm{v} 2}$ ：スイングボルトピン受金具が負担する締付部に作用する鉛直荷重（kN）

F ${ }_{\mathrm{v} 2}$ ：締付部に作用する鉛直荷重（kN）
A ：スイングボルトピン受部の断面積（ mm^{2} ）

図 5－16 スイングボルトピン受部のモデル図及び応力算定式

5.6 評価条件

浸水防止蓋の耐震評価に用いる入力値を表 5－9 に示す。

表 5－9（1）浸水防止蓋の耐震評価に用いる入力値（主桁，スキンプレート，固定ボルト）

評価対象部位	記号	単位	定義	数値
主桁 （受部）	G	kN	主桁とスキンプレートの固定荷重	13． 30
	P s	kN	積雪荷重	1． 13
	A	m^{2}	浸水防止蓋の面積	3． 74
	L_{1}	mm	主桁（受部）の負担幅	875
	L_{2}	mm	主桁（受部）全長	1700
	A s	mm^{2}	主桁（受部）のせん断断面積	1998
	Z	mm^{3}	主桁（受部）の断面係数	8.46×10^{5}
主桁 （戸当り部） 下フランジ	G	kN	主桁とスキンプレートの固定荷重	13.30
	P s	kN	積雪荷重	1.13
	L_{3}	mm	固定ボルト中心位置から主桁（戸当り部）中心位置までの距離	90
	B	mm	主桁（戸当り部）下フランジの有効幅（mm）	171
	t b	mm	主桁（戸当り部）下フランジの厚さ	14
$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	G	kN	スキンプレートの固定荷重	6． 61
	P s	kN	積雪荷重	1． 13
	A	m^{2}	浸水防止蓋の面積	3． 74
	L_{4}	mm	スキンプレートの支持長辺長さ	935
	L_{5}	mm	スキンプレートの支持短辺長さ	895
	β_{2}	－	スキンプレートの辺長比に応じた係数	0.4
	t	mm	スキンプレートの厚さ	16
固定 ボルト	G	kN	主桁とスキンプレートの固定荷重	13． 30
	P s	kN	積雪荷重	1． 13
	N	本	浸水防止蓋に取り付く固定ボルトの本数	28

表 5－9（2）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸直角方向）（ $1 / 2$ ）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \end{aligned}$ 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	9.66
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	1． 24
	L_{h}	mm	ヒンジ支点間水平距離	135
	$L_{\text {V }}$	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm ${ }^{2}$	断面積	3500
	A_{2}	mm^{2}	断面積	6600
$\begin{array}{\|c} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \\ \text { 側) } \end{array}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	9.66
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3． 60×10^{4}
	A	mm ${ }^{2}$	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	9． 66
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	1． 24
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm ${ }^{3}$	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	9.66
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	1． 24
	L	mm	ヒンジ基部一ピン穴間距離	50
	L_{V}	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表 5－9（3）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸直角方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	P_{R}	kN	回転軸直角方向荷重による引張力	2． 42
	P_{P}	kN	回転軸平行方向荷重による引張力	0
	P_{V}	kN	鉛直方向荷重による引張力	0.31
	Z	mm^{3}	断面係数	1.15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	A	mm^{2}	断面積	121.50

表 5－9（4）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸平行方向）（1／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	16． 86
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	9.66
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	1． 24
	$L_{\text {h }}$	mm	ヒンジ支点間水平距離	135
	L_{V}	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9.25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	16． 86
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	9． 66
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3.60×10^{4}
	A	mm^{2}	断面積	5400
ヒンジ ピン	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	16． 86
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	1． 24
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	16． 86
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	9． 66
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	1． 24
	L	mm	ヒンジ基部ーピン穴間距離	50
	$L_{\text {V }}$	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表 5－9（5）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸平行方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { エンド } \\ \text { プレート } \end{gathered}$	P_{R}	kN	回転軸直角方向荷重による引張力	4． 22
	P_{P}	kN	回転軸平行方向荷重による引張力	1． 73
	P_{V}	kN	鉛直方向荷重による引張力	0.31
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120.0
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	1． 24
	A	mm^{2}	断面積	121.50

6．評価結果
浸水防止蓋の耐震評価結果を表 6－1 に示す。各部材の断面検定を行った結果，すべての部材 において発生応力又は応力度が許容限界以下であることを確認した。

表6－1（1）浸水防止蓋の耐震評価結果（主桁，スキンプレート，固定ボルト）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
主桁 （受け部）	曲げ	5	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	0． $02<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	10	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
主桁 （戸当り部）下フランジ	曲げ	180	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.56<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	181	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.56<1.0$
スキンプレート	曲げ	9	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	0． $03<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	10	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	0． $04<1.0$
固定ボルト	引張	1． 2	kN	37.7	kN	$0.04<1.0$
	せん断	2.6	kN	32.9	kN	$0.08<1.0$
	組合せ	－		－		$0.01<1.0$

表 6－1（2）浸水防止蓋の耐震評価結果（荷重：回転軸直角方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	7	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0．01＜1．0
	組合せ	7	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	6	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	6	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	5	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0．02＜1．0
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	6	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0．03＜1．0
ヒンジピン	曲げ	19	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	4	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0．03＜1．0
	組合せ	21	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
ヒンジ固定ボルト	引張	12	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	10	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0．07＜1．0
	組合せ	21	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
エンドプレート	曲げ	11	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	11	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
スイングボルト	引張	8	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
スイングボルト ピン	曲げ	17	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	せん断	4	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	18	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
ナット受部	曲げ	15	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	15	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	6	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$

表 6－1（3）浸水防止蓋の耐震評価結果（荷重：回転軸平行方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	23	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0．09＜1．0
	せん断	4	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0．03＜1．0
	組合せ	24	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0．09＜1．0
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	10	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	28	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0． $19<1.0$
	組合せ	50	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.18<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	21	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	23	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
ヒンジピン	曲げ	33	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.13<1.0$
	せん断	7	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0． $05<1.0$
	組合せ	35	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.13<1.0$
ヒンジ固定ボルト	引張	26	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$
	せん断	20	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
	組合せ	43	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.15<1.0$
エンドプレート	曲げ	25	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	25	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0．09＜1．0
スイングボルト	引張	8	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
スイングボルト ピン	曲げ	17	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	せん断	4	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	18	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
ナット受部	曲げ	15	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	15	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	6	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$

（別紙1）ハッチ開放時におけるヒンジ部の評価

1．概要

ハッチ開放時におけるヒンジ部（ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピ ン，ヒンジ固定ボルト及びエンドプレート）について評価を行う。ハッチ開放時の荷重算定式を図 1 に示す。なお，各部材のモデル及び応力算定式については，本文「5．5．4 ハッチ」に示す とおりである。

$$
\begin{aligned}
\mathrm{W}_{\mathrm{HR}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}} \\
\mathrm{~W}_{\mathrm{HP}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}} \\
\mathrm{~W}_{\mathrm{V}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \\
& +(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{V}} \\
\mathrm{~F}_{\mathrm{HR}}= & \alpha_{1} \cdot \mathrm{~W}_{\mathrm{HR}}+\mathrm{W}_{\mathrm{R}} \\
\mathrm{~F}_{\mathrm{HP}}= & \alpha_{2} \cdot \mathrm{~W}_{\mathrm{HP}} \\
\mathrm{~F}_{\mathrm{V} 1}= & \alpha_{3} \cdot \mathrm{~W}_{\mathrm{V}}
\end{aligned}
$$

ここで,

$$
\mathrm{W}_{\mathrm{R}}=\mathrm{W}_{\mathrm{HP}} \cdot \mathrm{~L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{h}}
$$

W_{HR} ：水平荷重（回転軸直角方向）（kN）
W_{HP} ：水平荷重（回転軸平行方向）（kN）
W_{V} ：鉛直荷重（kN）
$\mathrm{W}_{\mathrm{R}} \quad:$ 水平荷重（回転軸水平方向）による偶力（kN）
L ：ハッチ中心から回転軸までの水平距離（mm）
L_{h} ：ヒンジ支点間水平距離（mm）
G ：ハッチの固定荷重（kN）
P s ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad$ ：基準地震動 S s の水平方向の設計震度
k v ：基準地震動 S s の鉛直方向の設計震度
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
F v 1 ：ヒンジ部に作用する鉛直荷重（kN）
F ：締付部に作用する鉛直荷重（kN）
$\alpha_{1}, \alpha_{2}, \alpha_{3}$ ：分担率 $\left(\alpha_{1}=0.5, \alpha_{2}=0.5, \alpha_{3}=0.1\right)$
図 1 ハッチ開放時の構造概要及び荷重算定式

2．各部材の評価
ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン，ヒンジ固定ボルト及びエンド プレート）のモデル及び応力算定式については，本文「5．5．4 ハッチ」に示すとおりである。

3．評価条件
各部材の耐震評価に用いる入力値を表1に示す。

表1（1）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸直角方向）（1／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4． 92
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	3． 15
	$L_{\text {h }}$	mm	ヒンジ支点間水平距離	135
	L v	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4.08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4.92
	$\mathrm{F}_{\text {HP }}$	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1.22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3． 60×10^{4}
	A	mm^{2}	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4． 92
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	3.15
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257

表1（2）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸直角方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4． 92
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	3.15
	L	mm	ヒンジ基部ーピン穴間距離	50
	$L_{\text {V }}$	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	P_{R}	kN	回転軸直角方向荷重による引張力	1． 23
	P_{P}	kN	回転軸平行方向荷重による引張力	0
	P_{V}	kN	鉛直方向荷重による引張力	0.79
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160

表1（3）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸平行方向）（ $1 / 2$ ）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \\ & \hline \end{aligned}$	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	8.59
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	4.92
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	3.15
	$L_{\text {h }}$	mm	ヒンジ支点間水平距離	135
	Lv	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z ${ }_{\text {p }}$	mm^{3}	極断面係数	5． 50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	8.59
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	4． 92
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3.60×10^{4}
	A	mm^{2}	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	8.59
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	3.15
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257

表1（4）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸平行方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	8.59
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	4． 92
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	3.15
	L	mm	ヒンジ基部—ピン穴間距離	50
	L_{V}	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	P_{R}	kN	回転軸直角方向荷重による引張力	2.15
	P_{P}	kN	回転軸平行方向荷重による引張力	0． 88
	P_{V}	kN	鉛直方向荷重による引張力	0． 79
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160

4．評価結果
各部材の耐震評価結果を表2に示す。各部材の断面検定を行った結果，すべての部材において発生応力又は応力度が許容限界以下であることを確認した。

表2（1）ヒンジ部の耐震評価結果（荷重：回転軸直角方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		$\frac{\text { 検定値 }}{} \frac{0.05<1.0}{}$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { 中間部 } \end{gathered}$	曲げ	12	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	12	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	7	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	7	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
ヒンジピン	曲げ	12	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	13	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
ヒンジ固定ボルト	引張	9	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	6	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	12	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
エンドプレート	曲げ	8	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	9	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$

表2（2）ヒンジ部の耐震評価結果（荷重：回転軸平行方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	21	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	21	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	9	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	15	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.10<1.0$
	組合せ	26	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	11	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	12	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
ヒンジピン	曲げ	18	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	せん断	4	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	19	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
ヒンジ固定ボルト	引張	16	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	せん断	11	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	組合せ	24	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
エンドプレート	曲げ	15	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	16	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$

（別紙2）海水ポンプ室と原子炉機器冷却海水配管ダクト（鉛直部）の最大加速度応答の比較

1．概要

浸水防止蓋の耐震評価に用いる設計震度について，海水ポンプ室の最大加速度（スクリーン エリアの東西方向及び南北方向のうち，最大加速度が大きいスクリーンエリア（東西方向）を使用）を用いている。

原子炉機器冷却海水配管ダクト（鉛直部）の耐震評価においても，東西方向の最大加速度は海水ポンプ室の地震応答解析結果を用いているが，南北方向について地震応答解析を実施してい ることから，原子炉機器冷却海水配管ダクト（鉛直部）の浸水防止蓋設置相当位置における南北方向の最大加速度と比較し，海水ポンプ室の最大加速度を用いることの保守性を確認する。

2．原子炉機器冷却海水配管ダクト（鉛直部）の最大加速度抽出位置
原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析に用いている解析モデルのうち，浸水防止蓋設置位置相当となる解析モデル及び最大加速度抽出位置を図 1 に示す。なお，原子炉機器冷却海水配管ダクトの地震応答解析の詳細については，添付書類「VI－2－2－12－2 原子炉機器冷却海水配管ダクト（鉛直部）の耐震性についての計算書」に示す。

側方粘吽：境界

図 1 原子炉機器冷却海水配管ダクト（鉛直部）最大加速度（南西方向）抽出位置

3．最大応答加速度の比較結果
海水ポンプ室と原子炉機器冷却海水配管ダクト（鉛直部）の最大加速度の比較結果を表 1 に示す。

表1より，海水ポンプ室の最大加速度は水平方向及び鉛直方向ともに，原子炉機器冷却海水配管ダクト（鉛直部）の最大加速度を上回っていることから，浸水防止蓋の耐震評価にて海水ポ ンプ室の最大加速度を用いることの保守性を確認した。

表1 最大加速度の比較
単位： $\mathrm{cm} / \mathrm{s}^{2}$

	海水ポンプ室		原子炉機器泠却海水 配管ダクト（鈖直部）
	東西方向	南北方向	南北方向
水平方向	4822	1065	878
鉛直方向	2101	898	466

6．浸水防護施設に関する補足説明

6.5 浸水防止設備に関する補足説明

6．5．3 浸水防止蓋に関する補足説明
6.5 .3 .8 浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））の強度計算書に関する
補足説明

目 次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 4
2.3 評価方針 5
2.4 適用基準 6
2.5 記号の説明 7
3．評価対象部位 12
4．構造強度評価 14
4.1 構造強度評価方法 14
4．2 荷重及び荷重の組合せ 14
4． 3 許容限界 20
4． 4 評価方法 25
4.5 評価条件 44
5．評価結果 49

1．概要

本資料は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定 している構造強度に基づき，浸水防止設備のうち浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））（以下「浸水防止蓋」という。）が地震後の繰返しの襲来を想定した津波荷重及び余震を考慮した荷重に対して，主要な構造部材が十分な構造強度を有していることを説明す るものである。

なお，浸水防止蓋の強度評価においては，平成23年3月11日に発生した東北地方太平洋沖地震 による地殻変動に伴い，牡鹿半島全体で約1mの地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）からの浸水を防止するため に設置する。

浸水防止蓋の設置位置図を図 2－1 に，流入対策図を図2－2 に示す。

図2－1 浸水防止蓋の設置位置図

図2－2（1）第2号機 海水ポンプ室 流入対策配置図（平面図）

図2－2（2）第2号機 海水ポンプ室 流入対策配置図（B－B 断面図）

2.2 構造計画

浸水防止蓋の構造は，長方形のスキンプレートに主桁（H 型鋼）を組み合わせた浸水防止蓋 と，メンテンナンス等のため開閉を行うハッチを組み合わせた構造とする。
浸水防止蓋は，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）上部に固定ボルトにて固定 する。浸水防止蓋の構造計画を表2－1 に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		構造概略図
基礎• 支持構造	主体構造	
揚 水 井 戸 （第 2 号機海水ポンプ室防潮壁区画内）上部 に固定ボル トで固定す る。	浸 水 防 止蓋，ハッチ 及び固定ボ ルトにより構成する。	B A－A

2.3 評価方針

浸水防止蓋の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」 に示す浸水防止蓋の構造を踏まえ，「3．評価対象部位」にて設定する評価部位において，「4．4 評価方法」で算出した応力等が許容限界内に収まることを，「4．構造強度評価」に示す方法にて確認する。強度評価の確認結果を「5．評価結果」にて確認する。

強度評価フローを図2－3に示す。

図 2－3 強度評価フロー

2． 4 適用基準
適用する規格，基準等を以下に示す。
（1）日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一
（2）日本建築学会 2010 年 各種合成構造設計指針•同解説
（3）機械工学便覧（日本機械学会）
（4）ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）（基準解説編設備計画マニュ アル編）

2.5 記号の説明

浸水防止蓋の強度評価に用いる記号を表 $2-2$ にそれぞれ示す。

表 2－2（1）浸水防止蓋の強度評価に用いる記号（主桁，スキンプレート，固定ボルト）

記号	単位	定義
S d	kN	弾性設計用地震動 S d－D 2 による余震荷重
α_{H}	－	弾性設計用地震動 S d－D 2 の水平方向の余震震度
$\alpha_{\text {v }}$	－	弾性設計用地震動 S d－D 2 の鉛直方向の余震震度
G	kN	固定荷重
P h	kN	浸水津波荷重
ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	水の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
h_{1}	0．P．m	設計津波水位
h_{2}	0．P．m	浸水防止蓋の設置高さ
A	m^{2}	浸水防止蓋の面積
P s	kN	積雪荷重
W s	$\mathrm{N} / \mathrm{m}^{2}$	1 cm 当りの積雪荷重
d s	cm	積雪高さ
W s s	$\mathrm{kN} / \mathrm{m}^{2}$	単位面積当りの等分布荷重
W s s ${ }^{\text {，}}$	kN／m	単位長さ当りの等分布荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	kN • m	最大曲げモーメント
x	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度
A s	mm^{2}	せん断断面積
Z	mm^{3}	断面係数
L_{1}	mm	主桁の負担幅
L_{2}	mm	主桁全長
L_{3}	mm	スキンプレートの支持長辺長さ
L_{4}	mm	スキンプレートの支持短辺長さ
β_{2}	－	スキンプレートの辺長比に応じた係数
t	mm	スキンプレートの厚さ
N	本	浸水防止蓋に取り付く固定ボルトの本数
T d	kN	固定ボルト 1 本当りに作用する引張力
q	kN	固定ボルト1本当りに作用するせん断力

6．5．3．8－7

表2－2（2）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義
共通	$\mathrm{W}_{\text {HR }}$	kN	水平荷重（回転軸直角方向）
	$\mathrm{W}_{\text {HP }}$	kN	水平荷重（回転軸平行方向）
	W_{v}	kN	鉛直荷重
	W_{R}	kN	水平荷重（回転軸水平方向）による偶力
	k_{H}	－	基準地震動S s の水平方向の設計震度
	k_{v}	－	基準地震動S s の鉛直方向の設計震度
	G	kN	ハッチの固定荷重
	P s	kN	積雪荷重
	L	mm	ハッチ中心から回転軸までの水平距離
	L_{h}	mm	ヒンジ支点間水平距離
	$\mathrm{F}_{\text {HR }}$	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	σ_{N}	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	σ br	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	$\sigma_{\text {b P }}$	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	$\sigma_{\text {b V } 1}$	$\mathrm{N} / \mathrm{mm}^{2}$	鉛直方向荷重の曲げ応力度
	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	τ v	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の⿰丬じりせん断応力度
	$\tau_{\text {PX }}$	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）
	Z_{2}	mm ${ }^{3}$	回転軸直角方向回りの断面係数（中間部）
	Z_{p}	mm ${ }^{3}$	極断面係数
	A	mm ${ }^{2}$	断面積

表2－2（3）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

評価 対象 部位	記号	単位	定義
$\begin{aligned} & \text { ヒンジ } \\ & \text { プレート } \\ & \text { (スキンプ } \\ & \text { レート側) } \end{aligned}$	σ N	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	σ b R	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	$\sigma \mathrm{b} \mathrm{P}$	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ基部からピン穴間距離
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）
	A	mm^{2}	断面積
	B	mm	ヒンジプレート幅
	t	mm	ヒンジプレート板厚
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm^{3}	断面係数
	A	mm^{2}	ヒンジピンの断面積
	D	mm	ヒンジピンの直径

表2－2（4）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \\ & \hline \end{aligned}$	記号	単位	定義
ヒンジ 固定 ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	P_{R}	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{V}	kN	鉛直方向荷重による引張力
	Q	kN	ボルトせん断力
	Q_{R}	kN	回転軸直角方向によるせん断力
	Q_{P}	kN	回転軸平行方向によるせん断力
	L	mm	ヒンジ基部ーピン穴間距離
	L_{V}	mm	回転軸平行方向のボルトピッチ
	L_{H}	mm	回転軸直角方向のボルトピッチ
	N_{H}	本	回転軸平行方向のボルト本数
	N_{V}	本	回転軸直角方向のボルト本数
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	P_{R}	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{V}	kN	鉛直方向荷重による引張力
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm ${ }^{2}$	エンドプレートの有効断面積
	L	mm	ヒンジ板表面からボルト穴までの距離
	t	mm	エンドプレートの板厚

表2－2（5）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \\ & \hline \end{aligned}$	記号	単位	定義
スイング ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	A	mm ${ }^{2}$	断面積
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm ${ }^{3}$	断面係数
	A	mm ${ }^{2}$	スイングボルトピンの断面積
	D	mm	スイングボルトピンの直径
$\begin{gathered} \text { ナット } \\ \text { 受部 } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
	L	mm	腕長さ
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm ${ }^{2}$	ナット受部の有効断面積
	t	mm	ナット受部の板厚
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	R v 2	kN	スイングボルトピン受金具が負担する締付部に作用する鉛直荷重
	A	mm ${ }^{2}$	スイングボルトピン受部の断面積
	B	mm	スイングボルトピン受部の幅
	t	mm	スイングボルトピン受部の板厚

3．評価対象部位
浸水防止蓋の評価対象部位は，「2．2 構造計画」に設定している構造を踏まえて，津波荷重及び余震荷重の作用方向及び伝達過程を考慮し設定する。

浸水防止蓋の本体（ハッチ部以外）については，津波荷重及び余震荷重に伴う慣性力がスキン プレート，主桁に伝わり，浸水防止蓋を固定する固定ボルトを介して躯体に伝達されることから， スキンプレート，主桁及び固定ボルトを評価対象部位として設定する。

浸水防止蓋のハッチ部の運用について，原則閉止運用とするとともに，定期点検時等により開状態となる場合においても速やかに閉操作できる人員を，ハッチ付近に待機させる運用とするこ とから（詳細は，「6．5．3 浸水防止蓋に関する補足説明 参考資料1 浸水防止蓋の開閉運用に ついて」に示す。），閉止時を基本とした荷重の作用方向及び伝達過程を考慮する。ハッチ部に作用する慣性力は，ヒンジ部（ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン， ヒンジ固定ボルト及びエンドプレート）及び締付部（スイングボルト，スイングボルトピン，ナ ット受部及びスイングボルトピン受部）を介して受桁に伝達されることから，ヒンジ部及び締付部の各部位を評価対象部位として設定する。

浸水防止蓋の評価対象部位を，図3－1に示す。

図3－1（1）評価対象部位（スキンプレート，主桁及び固定ボルト）

図 3－1（2）評価対象部位（ハッチ部）

4．構造強度評価

4.1 構造強度評価方法

浸水防止蓋の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「4．3 許容限界」にて示す許容限界以下であることを確認する。

4．2 荷重及び荷重の組合せ

4．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを下記に示す。

$$
\begin{aligned}
\mathrm{G}+\mathrm{Ph}+\mathrm{Sd}+\mathrm{Ps} \\
\text { ここで, } \mathrm{G} \quad \text { : 固定荷重 }(\mathrm{kN})
\end{aligned}
$$

Ph ：浸水津波荷重（kN）
S d ：余震荷重（kN）
P s ：積雪荷重（kN）

4．2．2 荷重の設定

強度評価に用いる荷重は以下のとおりとする。
（1）固定荷重（D）
固定荷重として，浸水防止蓋を構成する部材の自重を考慮する。
（2）浸水津波荷重（Ph）
浸水津波荷重は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，津波高さ及び浸水防止蓋の設置高さを考慮した静水圧を次式により算出する。

```
\(\mathrm{P} \mathrm{h}=\rho_{\circ} \cdot \mathrm{g} \cdot\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) \cdot \mathrm{A}\)
    ここで, \(\quad \rho\) 。 : 水の密度 \(1.03\left(\mathrm{t} / \mathrm{m}^{3}\right)\)
            \(\mathrm{g} \quad:\) 重力加速度 \(9.80665\left(\mathrm{~m} / \mathrm{s}^{2}\right)\)
            \(\mathrm{h}_{1}\) : 設計津波水位 (0.P. m)
            \(\mathrm{h}_{2}\) : 浸水防止蓋の設置高さ (0. P. m)
            A : 浸水防止蓋の面積 ( \(\mathrm{m}^{2}\) )
```

（3）積雪荷重（P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

```
積雪荷重による質量は以下の式より算出する。
P s}=0.35\cdotW s • d s • A P 10-3
ここで, P s : 積雪荷重(kN)
W s : 1cm 当りの積雪荷重 20(N/m2)
d s : 積雪高さ 43 (cm)
A : 浸水防止蓋の面積 (m2)
```

（4）余震荷重（ S d ）
余震荷重として，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力及び動水圧荷重を考慮す るものとし，水平方向については，弾性設計用地震動 S d－D 2 に伴う地震力を考慮する。鉛直方向については，弾性設計用地震動 S d－D 2 に伴う地震力と動水圧荷重を考慮する。

浸水防止蓋を設置する揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）と一体構造とな つている原子炉機器冷却海水配管ダクト（鉛直部）は，規模及び重量共に大きい海水ポン プ室に懸架されており，海水ポンプ室と一体となって挙動することから，浸水防止蓋の強度評価に用いる余震震度は，海水ポンプ室の地盤物性及び材料物性の不確かさを考慮した ものとして添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」の地震応答解析結果を用いる。地震応答解析ケースを表 4－1 に示す。強度評価に用いる応答加速度は，原子炉機器冷却海水配管ダクト（鉛直部）が接する図 4－1 に示すスクリーンエリア及び補機ポ ンプエリアのらち最大加速度が大きい方を用いる。

強度評価で用いる海水ポンプ室の最大加速度分布図を図4－2 に，最大加速度を表4－2 に，余震震度を表4－3に示す。

なお，地震力は，浸水防止蓋の固定荷重，浸水津波荷重及び積雪荷重に余震震度を乗じ た次式により算出する。

$$
\begin{aligned}
& \mathrm{Sd}=(\mathrm{G}+\mathrm{Ph}+\mathrm{Ps}) \cdot \alpha_{\mathrm{H}} \\
& \mathrm{Sd}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{v}}
\end{aligned}
$$

ここで， Sd ：弾性設計用地震動 S d－D 2 による余震荷重（kN）
G ：固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 S d－D 2 による水平方向の余震震度
$\alpha_{V} \quad$ ：弾性設計用地震動 S d－D 2 による鉛直方向の余震震度

表 4－1 海水ポンプ室の地震応答解析ケース

解析ケース	$\begin{gathered} \text { 材料物性 } \\ \text { (コンクリート) } \\ \left(\mathrm{E}_{0}: ~\right. \text { : ヤング係数 } \end{gathered}$	地盤物性	
		盛土，旧表土， 改良地盤，D級岩盤 （ G_{0} ：初期せ ん断弾性係数）	（ G_{d} ：動せん断弾性係数）
ケース① （基本ケース）	設計基準強度	平均値	平均値
ケース（2）	設計基準強度	平均値＋1 σ	平均値
ケース③	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

図 4－1（1）海水ポンプ室平面図

（単位：m）

図 4－1（2）海水ポンプ室断面図（スクリーンエリア）（A－A 断面）

図 4－1（3）海水ポンプ室断面図（補機ポンプエリア）（B－B 断面）
\square ：強度評価に用いる最大加速度

（補機ポンプエリア（東西方向）， S d — D $2(++)$ ，解析ケース③）
図 4－2（1）最大加速度分布図（水平方向）
\square ：強度評価に用いる最大加速度

（補機ポンプエリア（東西方向）， $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ ，解析ケース（2））
図 4－2（2）最大加速度分布図（鉛直方向）

表 4－2（1）最大加速度（水平方向）

地震時荷重算出断面	地震動	位相	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
補機ポンプエリア $($ 東西方向）	$\mathrm{Sd}-\mathrm{D} 2$	++	ケース③	2262

表 4－2（2）最大加速度（鉛直方向）

地震時荷重算出断面	地震動	位相	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
補機ポンプエリア （東西方向）	$\mathrm{S} \mathrm{d}-\mathrm{D} 2$	++	ケース（2）	951

表 4－3 余震震度

設置場所	床面高さ（m）	弾設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ の余震震度	
		水平方向 α_{H}	鉛直方向 α_{v}
揚水井戸（第2号 機海水ポンプ室防 潮壁区画内）	0．P．14．0	2.31	

4．3 許容限界

浸水防止蓋の許容限界は，「3．評価対象部位」にて設定した部位に対し，添付書類「VI－ 3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏ま えて設定する。

4．3．1 使用材料

浸水防止蓋を構成する各部材の使用材料を表4－4に示す。

> 表 4-3 使用材料

評価対象部位	材質	仕様
スキンプレート	SM490Y	$\mathrm{t}=16$（mm）
ハッチ	SM490Y	$\mathrm{t}=16$（mm）
主桁	SM490Y	$\mathrm{H}-250 \times 250 \times 9 \times 14(\mathrm{~mm})$
固定ボルト	SM490Y	M16
ヒンジプレート	SM490Y	ハッチ側 $\mathrm{t}=25(\mathrm{~mm})$ スキンプレート側 $\quad \mathrm{t}=40$（mm）
ヒンジピン	SM490Y	径 40 （mm）
ヒンジ固定ボルト	SM490Y	M20
エンドプレート	SM490Y	$\mathrm{t}=32(\mathrm{~mm})$
スイングボルト	SM490Y	M16
スイングボルトピン	SM490Y	径 16 （mm）
ナット受部	SM490Y	$\mathrm{t}=16$（mm）
スイングボルトピン受部	SM490Y	$\mathrm{t}=9 \quad(\mathrm{~mm})$

4．3．2 許容限界

（1）スキンプレート，主桁
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一」 に基づき表 4－5の値とする。

表 4－5 鋼材の短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
	曲げ	せん断
SM490Y	325	188

6．5．3．8－20
（2）固定ボルト
固定ボルトの許容荷重は，「3．評価対象部位」に記載した固定ボルトに作用する荷重 の向きを踏まえて，「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づき算定する。
固定ボルトは躯体に埋め込まれていることから，固定ボルトが引張力を受ける場合にお いては，固定ボルトの降伏により決まる許容荷重（ $\mathrm{P}_{\mathrm{a}}^{\mathrm{a}}$ ）），付着力により決まる許容荷重（ $\mathrm{P}_{\mathrm{a}}^{3}$ ）を比較して，いずれか小さい値を採用する。また，固定ボルトがせん断力を受ける場合においては，固定ボルトのせん断強度により決まる許容荷重（ q a a ），定着 したコンクリート躯体の支圧強度により決まる許容荷重（ q_{a} 2 2 ）及びコーン状破壊によ り決まる許容荷重（ q a 3）を比較して，いずれか小さい値を採用する。
津波荷重及び余震荷重を考慮する場合の固定ボルトの許容荷重の設定に用いる入力値を表 4－6に，許容荷重を表4－7に示す。

引張力を受ける場合

$\mathrm{P}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{pa}} \cdot \mathrm{sc} \mathrm{a}$
$\mathrm{P}_{\mathrm{a} 3}=\Phi_{3} \cdot \tau_{\mathrm{a}} \cdot \pi \cdot \mathrm{d}_{\mathrm{a}} \cdot 1_{\mathrm{c}} \mathrm{e}$
ここで， $\mathrm{P}_{\mathrm{a} 1}$ ：固定ボルトの降伏により決まる場合の固定ボルト1本当たり の許容引張力（ N ）
$\mathrm{P}_{\mathrm{a} 3}$ ：固定ボルトの付着力により決まる場合の固定ボルト 1 本当た りの許容引張力（ N ）
Φ_{1} ：低減係数（短期荷重用）
Φ_{3} ：低減係数（短期荷重用）
$\mathrm{s} \sigma_{\mathrm{pa}}$ ：固定ボルトの引張強度（ $=\mathrm{s}_{\mathrm{s}} \sigma_{\mathrm{y}}$ ）（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
s σ y ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sc a ：固定ボルトの断面積（mm²）
d_{a} ：固定ボルトの径（mm）
1 ce ：固定ボルトの強度算定用埋込み長さ（ $=1 \mathrm{e}-2 \mathrm{~d}_{\mathrm{a}}$ ）（mm）
$\tau_{\text {a }}^{\text {：へりあき及び固定ボルトのピッチによる付着強度の低減係数 }}$

せん断力を受ける場合
$\mathrm{q}_{\mathrm{a} 1}=\Phi_{1} \cdot{ }_{\mathrm{s}} \sigma_{\mathrm{qa}} \cdot \mathrm{sca}$
$\mathrm{q}_{\mathrm{a} 2}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{qa}} \cdot \mathrm{sca}$
$\mathrm{q}_{\mathrm{a} 3}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{q}} \mathrm{c}$
ここで， $\mathrm{q}_{\mathrm{a} 1}$ ：固定ボルトのせん断強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 2 ：定着した躯体の支圧強度により決まる場合の固定ボルト 1 本当たりの許容せん断力（ N ）
q a 3 ：定着した躯体のコーン状破壊により決まる場合の固定ボルト 1 本当たりの許容せん断力（N）
Φ_{1} ：低減係数（短期荷重用）
Φ_{2} ：低減係数（短期荷重用）
${ }_{\mathrm{s}} \sigma_{\mathrm{qa}}$ ：固定ボルトのせん断強度 $\left(=0.7\right.$ • $\left.\sigma_{\mathrm{y}}\right) \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
s σ y ：固定ボルトの規格降伏点強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
sc a ：固定ボルトの断面積（ mm^{2} ）
c σ_{qa} ：コンクリートの支圧強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right) \quad(=0.5 \sqrt{\mathrm{Fc} \cdot \mathrm{Ec} \mathrm{c}})$
c σ_{t} ：コーン状破壊に対するコンクリートの引張強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ） $(=0.31 \sqrt{\mathrm{~F} \mathrm{c}})$

F ：コンクリートの設計基準強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
E ：コンクリートのヤング係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{A}_{\mathrm{q} \mathrm{c}}$ ：せん断力に対するコーン状破壊面の有効投影面積（ mm^{2} ）

表 4－6 固定ボルトの許容荷重の設定に用いる入力値

記号	単位	定義	数値
Φ_{1}	－	低減係数（短期荷重用）	1.0
Φ_{2}	－	低減係数（短期荷重用）	2／3
Φ_{3}	－	低減係数（短期荷重用）	2／3
$\mathrm{s} \sigma_{\mathrm{pa}}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの引張強度	325
$\mathrm{s} \sigma_{\mathrm{y}}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトの規格降伏点強度	325
sca	mm^{2}	固定ボルトの断面積	157
d_{a}	mm	固定ボルトの径	16
1 ce	mm	固定ボルトの強度算定用埋込み長さ	168
τ a	－	へりあき及び固定ボルトのピッチによる付着強度の低減係数	6． 71
s $\sigma \mathrm{qa}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルトのせん断強度	227.50
c σ_{qa}	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの支圧強度	346.82
	$\mathrm{N} / \mathrm{mm}^{2}$	コーン状破壊に対するコンクリートの引張強度	1． 40
F_{c}	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートの設計基漼強度	20.5
E c	$\mathrm{N} / \mathrm{mm}^{2}$	コンクリートのヤング係数	23470
A_{qc}	mm^{2}	せん断力に対するコーン状破壊面の有効投影面積	35343

表 4－7 津波荷重及び余震荷重を考慮する場合の固定ボルトの短期許容荷重

材質	短期許容荷重（kN）						
	引張			せん断			
	Pa_{a}	Pa3	設定値	q a 1	q a 2	q a 3	設定値
SM490Y	51.0	37.7	37.7	35.7	36.3	32.9	32.9

（3）ハッチ部
ハッチを構成する各部材の許容値は，「ダム堰施設技術基準（案）（基準解説編設備設計マニュアル編）（ダム堰施設技術協会 平成 28 年 3 月）」を踏まえて表 4－8の値とす る。

表 4－8 ハッチを構成する各部材の許容限界

評価対象部位	材質	短期許容応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）		
		曲げ	せん断	引張
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$	SM490Y	265	153	－
$\begin{gathered} \text { ヒンジプレート } \\ \text { (スキンプレート側) } \end{gathered}$	SM490Y	265	153	－
ヒンジピン	SM490Y	265	153	－
ヒンジ固定ボルト	SM490Y	265	153	－
エンドプレート	SM490Y	265	153	－
スイングボルト	SM490Y	－	－	265
スイングボルトピン	SM490Y	273	157	－
ナット受部	SM490Y	273	157	－
スイングボルトピン受部	SM490Y	－	－	273

4．4 評価方法

浸水防止蓋を構成する各部材に発生する応力より算定する応力度が，許容限界以下であるこ とを確認する。

4．4．1 主桁

主桁の支持条件は両端をピン支持とし，図 4－3 に示すとおり，主桁が荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施する。
（1）弾性設計用地震動 S d－D 2 による余震荷重 S d

$$
\mathrm{S} d=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{v}}
$$

ここで，$\quad \mathrm{Sd}$ ：弾性設計用地震動 S d －D 2 による余震荷重（kN）
G：主桁とスキンプレートの固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{V}} \quad$ ：弾性設計用地震動 S d－D 2 の鉛直方向の余震震度
（2）主桁に作用する単位長さ当りの鉛直方向の等分布荷重W s s ’

$$
\mathrm{W} \mathrm{~s} \mathrm{~s}^{\prime}=(\mathrm{G}+\mathrm{Ph}+\mathrm{Sd}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{L}_{1} \cdot 10^{-3} / \mathrm{A}
$$

ここで，W s s ，主桁に作用する単位長さ当りの鉛直方向の等分布荷重 （ kN / m ）

S d ：弾性設計用地震動 S d－D 2 による余震荷重（kN）
G ：主桁とスキンプレートの固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
L_{1} ：主桁の負担幅（mm）
A ：浸水防止蓋の面積（ m^{2} ）
（3）主桁に作用する最大せん断応力度 τ

$$
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A} \mathrm{~s}
$$

τ ：主桁に作用する最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：主桁に作用する最大せん断力（kN）
A s ：主桁のせん断断面積（ mm^{2} ）
ここで， $\mathrm{Q}=1 / 2 \cdot \mathrm{Ws} \mathrm{s}$ • $\mathrm{L}_{2} \cdot 10^{-3}$
Q ：主桁に作用する最大せん断力（kN）
W s s ，：主桁に作用する単位長さ当りの鉛直方向の等分布荷重（kN／m）
L_{2} ：主桁全長（mm）
（4）主桁に作用する最大曲げ応力度 σ

```
\sigma=(M•106) / Z
    \sigma : 主桁に作用する最大曲げ応力度 ( }\textrm{N}/\mp@subsup{\textrm{mm}}{}{2}\mathrm{ )
    M :主桁に作用する最大曲げモーメント (kN•m)
    Z : 主桁の断面係数 (mm
    ここで, M = 1/8•W s s' • ( L L | 100-3) 2
        M : 主桁に作用する最大曲げモーメント (kN•m)
        W s s ' : 主桁に作用する単位長さ当りの鉛直方向の等分布荷重 (kN/m)
            L
```

（5）主桁に作用する組合せ応力度
主桁に作用する曲げ応力度，せん断応力度を算定し，主桁の短期許容応力度以下である ことを確認する。また，主桁に生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
\mathrm{x} & =\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
\text { ここで, } \quad \mathrm{x} & : \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\sigma & : \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \tau \quad: \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

図 4－3 評価の対象とする主桁

4．4．2 スキンプレート
スキンプレートの支持条件は四辺固定とし，図 4－4 に示すとおり，評価上最も厳しい条件となるよう評価を実施する。曲げ応力度及びせん断応力度は「機械工学便覧（日本機械学会）」より以下の式にて算出する。
（1）弾性設計用地震動 S d－D 2 による余震荷重 S d
$\mathrm{Sd}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{v}}$
ここで，$\quad \mathrm{Sd}$ ：弾性設計用地震動 S d－D 2 による余震荷重（kN）
G ：スキンプレートの固定荷重（kN）
Ph ：浸水津波荷重（kN）
Ps ：積雪荷重（kN）
$\alpha \mathrm{v}$ ：弾性設計用地震動 S d -D 2 の鉛直方向の余震震度
（2）スキンプレートに作用する単位面積当りの鉛直方向の荷重W s s

$$
\mathrm{Wss}=(\mathrm{G}+\mathrm{Ph}+\mathrm{Sd}+\mathrm{Ps}) / \mathrm{A}
$$

ここで， W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）

G ：スキンプレートの固定荷重（kN）
Ph ：浸水津波荷重（kN）
S d ：弾性設計用地震動 S d－D 2 による余震荷重（kN）
Ps ：積雪荷重（kN）
A ：浸水防止蓋の面積（ m^{2} ）
（3）スキンプレートに作用する最大曲げ応力度 σ
スキンプレートに作用する曲げ応力度は「機械工学便覧（日本機械学会）」に基づき次式により算出する。
$\sigma=\beta_{2} \cdot \mathrm{Ws} \mathrm{s} \cdot \mathrm{L}_{4}{ }^{2} \cdot 10^{-3} / \mathrm{t}^{2}$
ここで，σ ：スキンプレートに作用する最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
β_{2} ：スキンプレートの辺長比に応じた係数
W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{4} ：スキンプレートの支持短辺長さ (mm)
t ：スキンプレートの厚さ（mm）
（4）スキンプレートに作用する最大せん断応力度 τ
スキンプレートに作用するせん断応力度は「機械工学便覧（日本機械学会）」に基づき次式により算出する。

$$
\tau=\mathrm{W} \text { s } \mathrm{s} \cdot \mathrm{~L}_{3} \cdot \mathrm{~L}_{4} \cdot 10^{-3} /\left(\mathrm{t} \cdot\left(\mathrm{~L}_{3}+\mathrm{L}_{4}\right) \cdot 2\right)
$$

ここで，$\tau \quad$ ：スキンプレートに作用する最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
L_{3} ：スキンプレートの支持長辺長さ（mm）
L_{4} ：スキンプレートの支持短辺長さ（mm）
t ：スキンプレートの厚さ（ mm ）
（5）スキンプレートに作用する組合せ応力度
スキンプレートに作用する曲げ応力度，せん断応力度を算定し，スキンプレートの短期許容応力度以下であることを確認する。また，スキンプレートに生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
\mathrm{x} & =\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
\text { ここで, } \quad \mathrm{x} & : \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma \\
& : \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \text { : せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

1960 mm

図 4－4 評価の対象とするスキンプレート

4．4．3 固定ボルト

（1）弾性設計用地震動 S d－D 2 による水平方向の余震荷重 $\mathrm{S} d$
$\mathrm{S} \mathrm{d}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{H}}$
ここで， Sd ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による水平方向の余震荷重 （kN）

G ：浸水防止蓋の固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad:$ 弾性設計用地震動 S d－D 2 の水平方向の余震震度
（2）弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による鉛直方向の余震荷重 $\mathrm{S} d$

$$
\mathrm{S} d=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{v}}
$$

ここで，$\quad \mathrm{Sd}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による鉛直方向の余震荷重 （kN）

G ：浸水防止蓋の固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{V} \quad$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ の鉛直方向の余震震度
（3）固定ボルトに作用する引張力 T d

$$
\mathrm{Td}=\mathrm{Sd} / \mathrm{N}
$$

ここで， T d ：固定ボルト 1 本当りに作用する引張力（ kN ）
S d ：弾性設計用地震動 S d－D 2 による鉛直方向の余震荷重 （kN）

N：浸水防止蓋に取り付く固定ボルトの本数
（4）固定ボルトに作用するせん断力 q

$$
\begin{array}{lll}
\mathrm{q}=\mathrm{S} \mathrm{~d} / \mathrm{N} \\
\text { ここで, } & \mathrm{q} & \text { : 固定ボルト } 1 \text { 本当りに作用するせん断力 }(\mathrm{kN}) \\
& \mathrm{S} \mathrm{~d} & \text { : 弾性設計用地震動 } \mathrm{S} \text { d - D 2 による水平方向の余震荷重 }
\end{array}
$$ （kN）

N：浸水防止蓋に取り付く固定ボルトの本数

図 4－5 固定ボルトの納まり

4． 4.4 ハッチ固定部

ハッチのヒンジ部及び締付部の構造概要を図 4－6に，荷重算定式を図 4－7に示す。ヒ ンジ部及び締付部の評価は，荷重の作用方向及び伝達過程を考慮する。ヒンジ部について はヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン，ヒンジ固定ボルト及び エンドプレートについて評価を行う。締付部については，スイングボルト，スイングボル トピン，ナット受部及びスイングボルトピン受部について評価を行う。

図4－6（1）ヒンジ部の構造概要

図4－6（2）締付部の構造概要

$\mathrm{W}_{\mathrm{HR}}=(\mathrm{G}+\mathrm{Ph}+\mathrm{Ps}) \cdot \alpha_{\mathrm{H}}$
$\mathrm{W}_{\mathrm{HP}}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{H}}$
$W_{\mathrm{V}}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s})$
$+(\mathrm{G}+\mathrm{Ph}+\mathrm{Ps}) \cdot \alpha_{\mathrm{v}}$
$\mathrm{F}_{\mathrm{HR}}=\alpha_{1} \cdot \mathrm{~W}_{\mathrm{HR}}+\mathrm{W}_{\mathrm{R}}$
$\mathrm{F}_{\mathrm{HP}}=\alpha_{2} \cdot \mathrm{~W}_{\mathrm{HP}}$
$\mathrm{F}_{\mathrm{v} 1}=\alpha_{3} \cdot \mathrm{~W}_{\mathrm{V}}$
$\mathrm{F}_{\mathrm{v} 2}=\beta \cdot \mathrm{W}_{\mathrm{V}}$

ここで，
$\mathrm{W}_{\mathrm{R}}=\mathrm{W}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{h}}$
W_{HR} ：水平荷重（回転軸直角方向）（kN）
W_{HP} ：水平荷重（回転軸平行方向）（kN）
W_{V} ：鉛直荷重（kN）
W_{R} ：水平荷重（回転軸水平方向）による偶力（kN）
L_{c} ：ハッチ中心から回転軸までの水平距離（mm）
$\mathrm{L}_{\mathrm{h}} \quad$ ：ヒンジ支点間水平距離（mm）
G ：ハッチの固定荷重（kN）
Ph ：浸水津波荷重（kN）
Ps ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 S d－D 2 の水平方向の余震震度
$\alpha_{\mathrm{V}} \quad$ ：弾性設計用地震動 S d－D 2 の鉛直方向の余震震度
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
$\mathrm{F}_{\mathrm{v} 1}$ ：ヒンジ部に作用する鉛直荷重（kN）
$\mathrm{F}_{\mathrm{v} 2}$ ：締付部に作用する鉛直荷重（kN）
$\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta$ ：分担率

$$
\left(\alpha_{1}=0.5, \quad \alpha_{2}=0.5, \quad \alpha_{3}=0.1, \quad \beta=0.1\right)
$$

図 4－7 ハッチの構造概要及び荷重算定式

4．4．4．1 ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）の中間部及びハッチ接合部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（ハッチ側） のモデル図及び応力算定式を図4－8に示す。

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）中間部

$$
\begin{aligned}
& \sum \sigma_{0}=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bP}}+\sigma_{\mathrm{bVV}} \text { ここで, } \\
& \sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}_{1} \quad \sigma_{\mathrm{N}} \quad \text { : 軸方向引張応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{2} \quad \sigma_{\mathrm{bP}} \quad: \text { 回転軸平行方向荷重の曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma_{\mathrm{bV} 1}=\mathrm{F}_{\mathrm{V} 1} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{1} \quad \sigma_{\mathrm{bV} 1} \text { : 鉛直方向荷重の曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \tau_{\mathrm{P}} \text { : 回転軸平行方向荷重のせん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \tau_{\mathrm{v}} \text { : 鉛直方向荷重のせん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{x} \text { : 合成応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \mathrm{F}_{\mathrm{HR}} \text { : ヒンジ部に作用する水平荷重 (回転軸直角方向) (kN) } \\
& \mathrm{F}_{\mathrm{HP}} \text { : ヒンジ部に作用する水平荷重 (回転軸平行方向) (kN) } \\
& \text { F v } 1 \text { : ヒンジ部に作用する鉛直荷重 (kN) } \\
& \mathrm{L}_{\mathrm{h}} \quad \text { : ヒンジ支点間水平距離 (mm) } \\
& \left.Z_{1} \text { : 回転軸平行方向回りの断面係数 (中間部) (mm }{ }^{3}\right) \\
& \left.\mathrm{Z}_{2} \text { : 回転軸直角方向回りの断面係数 (中間部) (mm }{ }^{3}\right) \\
& \mathrm{A}_{1} \text { : ヒンジプレート (ハッチ側) の断面積 (mm²) }
\end{aligned}
$$

図 4－8（1）ヒンジプレート（ハッチ側）のモデル図及び中間部の応力算定式

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）ハッチ接合部
$\sum \sigma=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bV} 1}+\sigma_{\mathrm{bR}}+\sigma_{\mathrm{bPP}} \quad$ ここで，
$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{V}_{1}} / \mathrm{A}_{2} \quad \sigma_{\mathrm{N}} \quad$ ：軸方向引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\sigma_{\mathrm{bV} 1}=\mathrm{F}_{\mathrm{V}_{1}} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{1}$
$\sigma_{b R}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L}_{\mathrm{V}} / \mathrm{Z}_{1}$
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{V}} / \mathrm{Z}_{2}$
$\Sigma \tau=\tau_{\mathrm{R}}+\tau_{\mathrm{P}}+\tau_{\mathrm{PX}}$
$\tau_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}$
$\tau_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A}$
$\tau_{\mathrm{PX}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{h}} / \mathrm{Z}_{\mathrm{p}}$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

$\sigma_{\text {N }}$	：軸方向引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma \mathrm{br}$	：回転軸直角方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
σ b P	：回転軸平行方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma \mathrm{bv} 1$	：鉛直方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{R}	：回転軸直角方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{P}	：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{\text {PX }}$	：回転軸平行方向荷重のねじりせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
x	：合成応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{F}_{\mathrm{v} 1}$	：ヒンジ部に作用する鉛直荷重（kN）
F_{HR}	：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP}	：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
L_{h}	：ヒンジ支点間水平距離（mm）
$L_{\text {v }}$	：ヒンジ支点間鉛直距離（mm）
Z_{3}	：回転軸平行方向回りの断面係数（接合部）（ mm^{3} ）
Z_{4}	：回転軸直角方向回りの断面係数（接合部）（ mm^{3} ）
Z_{p}	：極断面係数（ mm^{3} ）
A_{2}	ヒンジプレート（ハッチ側）の断面積（ mm^{2} ）

図4－8（2）ヒンジプレート（ハッチ側）のモデル図及びハッチ接合部の応力算定式

4．4．4．2 ヒンジプレート（スキンプレート側）

ヒンジプレート（スキンプレート側）のエンドプレート接合部に発生する曲げ応力度， せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（スキ ンプレート側）のモデル図及び応力算定式を図4－9に示す。

$\Sigma \sigma=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bR}}+\sigma_{\mathrm{bP}}$
$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{v} 1} / \mathrm{A}$
$\sigma_{\mathrm{bR}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{Z}_{1}$
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{Z}_{2}$
$\Sigma \tau=\tau_{\mathrm{R}}+\tau_{\mathrm{P}}$
$\tau_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}$
$\tau_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A}$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma_{\mathrm{N}} \quad$ ：軸方向引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
σ_{bR} ：回転軸直角方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
σ_{bP} ：回転軸平行方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{R} \quad$ ：回転軸直角方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{P} ：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
x ：合成応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$F_{\text {HR }}$ ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
$F_{\text {HP }}$ ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
L ：ヒンジ基部からピン穴間距離（mm）
Z_{1} ：回転軸平行方向回りの断面係数 $\left(\mathrm{mm}^{3}\right)$
Z_{2} ：回転軸直角方向回りの断面係数 $\left(\mathrm{mm}^{3}\right)$
A ：ヒンジプレート（スキンプレート側）の断面積 （mm ${ }^{2}$ ）

B ：ヒンジプレート幅（mm）
t ：ヒンジプレート板厚（mm）

図 4－9 ヒンジプレート（スキンプレート側）のモデル図及び応力算定式

4．4．4．3 ヒンジピン

ヒンジピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であるこ とを確認する。ヒンジピンのモデル図及び応力算定式を図 4－10に示す。

$$
\begin{aligned}
& \sigma=\mathrm{F} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} \text { ここで, } \\
& F=\sqrt{F_{H R}{ }^{2}+F_{V_{1}}{ }^{2}} \\
& \tau=\mathrm{F} / 2 / \mathrm{A} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \mathrm{~F}_{\mathrm{v} 1} \text { : ヒンジ部に作用する鉛直荷重 (kN) } \\
& \text { L : ヒンジ支点間距離 (mm) } \\
& \text { B : 荷重の載荷長 (mm) } \\
& \mathrm{Z} \text { : 断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \text { A : ヒンジピンの断面積 (} \mathrm{mm}^{2} \text {) } \\
& \text { D : ヒンジピンの直径 }\left(\mathrm{mm}^{2}\right)
\end{aligned}
$$

図 4－10 ヒンジピンのモデル図及び応力算定式

4．4．4．4 ヒンジ固定ボルト
ヒンジ固定ボルトに発生する引張応力度，せん断応力度，合成応力度が許容限界以下で あることを確認する。ヒンジ固定ボルトのモデル図及び応力算定式を図4－11 に示す。

$$
\begin{aligned}
& \sigma=\mathrm{P} / \mathrm{A}_{4} \\
& \mathrm{P}=\mathrm{P}_{\mathrm{R}}+\mathrm{P}_{\mathrm{P}}+\mathrm{P}_{\mathrm{V}} \\
& \mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{~L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}} \\
& \mathrm{P}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{~L} / \mathrm{L}_{\mathrm{H}} / \mathrm{N}_{\mathrm{V}} \\
& \mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{~N}_{\mathrm{V}}\right) \\
& \tau=\mathrm{Q} / \mathrm{A}_{4} \\
& \mathrm{Q}=\sqrt{\mathrm{Q}_{\mathrm{R}}^{2}+\mathrm{Q}_{\mathrm{P}}^{2}} \\
& \mathrm{Q}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{~N}_{\mathrm{V}}\right) \\
& \mathrm{Q}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{~N}_{\mathrm{V}}\right) \\
& \mathrm{x}=\sqrt{\sigma}{ }^{2}+3 \cdot \tau^{2}
\end{aligned}
$$

ここで，
$\sigma \quad$ ：引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau \quad:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x ：合成応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
P ：ボルト引張力（kN）
P_{R} ：回転軸直角方向荷重による引張力（kN）
P_{P} ：回転軸平行方向荷重による引張力（ $k N$ ）
P_{V} ：鉛直方向荷重による引張力（kN）
Q ：ボルトせん断力（kN）
Q_{R} ：回転軸直角方向によるせん断力（kN）
Q_{P} ：回転軸平行方向によるせん断力（kN）
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）
$\mathrm{F}_{\mathrm{v} 1}$ ：ヒンジ部に作用する鉛直荷重（kN）
L ：ヒンジ基部一ピン穴間距離（mm）
L_{V} ：回転軸平行方向のボルトピッチ（mm）
L_{H} ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V} ：回転軸直角方向のボルト本数

図 4－11 ヒンジ固定ボルトのモデル図及び応力算定式

4．4．4．5 エンドプレート

ヒンジプレート（スキンプレート側）に接合されヒンジ部固定ボルトにより支持される エンドプレートに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下である ことを確認する。エンドプレートのモデル図及び応力算定式を図4－12 に示す。

$\sigma=\mathrm{P} \cdot \mathrm{L} / \mathrm{Z}$
$P=P_{R}+P_{P}+P_{V}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}}$
$\mathrm{P}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{H}} / \mathrm{N}_{\mathrm{V}}$
$\mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{Z}=\mathrm{B} \cdot \mathrm{t}^{2} / 6$
$\tau=\mathrm{P} / \mathrm{A}$
$\mathrm{A}=\mathrm{B} \cdot \mathrm{t}$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，

σ	$:$ 曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
τ	$:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x	$:$ 合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P	$:$ ボルト引張力 (kN)

P_{R} ：回転軸直角方向荷重による引張力（kN）
P_{P} ：回転軸平行方向荷重による引張力（kN）
P_{V} ：鉛直方向荷重による引張力（kN）
Z ：断面係数 $\left(\mathrm{mm}^{3}\right)$
B ：有効断面幅（mm）
A ：エンドプレートの有効断面積（ mm^{2} ）
L ：ヒンジ板表面からボルト穴までの距離（mm）
t ：エンドプレートの板厚（mm）
L_{V} ：回転軸平行方向のボルトピッチ（mm）
L_{H} ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V}
：回転軸直角方向のボルト本数

図 4－12 エンドプレートのモデル図及び応力算定式

4．4．4．6 スイングボルト

スイングボルトに発生する引張応力度が許容限界以下であることを確認する。スイング ボルトのモデル図及び応力算定式を図 4－13 に示す

図 4－13 スイングボルトのモデル図及び応力算定式

4．4．4．7 スイングボルトピン

スイングボルトピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下 であることを確認する。スイングボルトピンのモデル図及び応力算定式を図 $4-14$ に示す。

$$
\begin{aligned}
& \sigma=\mathrm{F}_{\mathrm{V} 2} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} \\
& \text { ここで, } \\
& \sigma \quad \text { : 曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x} \text { : 合成応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \quad \begin{array}{ll}
\mathrm{F}_{\mathrm{v} 2} & \text { : 締付部に作用する鉛直荷 } \\
\mathrm{L} & \text { : ヒンジ支点間距離 (mm) }
\end{array} \\
& \text { B : 荷重の載荷長 (mm) } \\
& \text { Z : 断面係数 (} \mathrm{mm}^{3} \text {) } \\
& \text { A : スイングボルトピンの断面積 (} \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

図 4－14 スイングボルトピンのモデル図及び応力算定式

4．4．4．8 ナット受部

スイングボルトのナットから荷重を伝達するナット受部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ナット受部のモデル図及び応力算定式を図4－15に示す

$$
\begin{aligned}
\sigma & =\mathrm{F}_{\mathrm{v} 2} \cdot \mathrm{~L} / \mathrm{Z} \\
\mathrm{Z} & =\mathrm{B} \cdot \mathrm{t}^{2} / 6 \\
\tau & =\mathrm{F}_{\mathrm{v} 2} / \mathrm{A} \\
\mathrm{~A} & =\mathrm{B} \cdot \mathrm{t} \\
\mathrm{x} & =\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
\end{aligned}
$$

ここで,

$$
\sigma \quad \text { : 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\tau \quad: \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{x} \quad: \text { 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
F_{\mathrm{v} 2} \text { : 締付部に作用する鉛直荷重 (kN) }
$$

$$
\mathrm{L} \quad: \text { 腕長さ (mm) }
$$

$$
\mathrm{Z} \quad \text { : 断面係数 }\left(\mathrm{mm}^{3}\right)
$$

B : 有効断面幅 (mm)
A : ナット受部の有効断面積 (mm²)
t : ナット受部の板厚 (mm)

図 4－15 ナット受部のモデル図及び応力算定式

4．4．4．9 スイングボルトピン受部

スイングボルトピンを支持し，ハッチ部（スキンプレート側）に荷重を伝達するスイン グボルトピン受部に発生する引張応力度が許容限界以下であることを確認する。スイング ボルトピン受部のモデル図及び応力算定式を図4－16に示す

$\sigma=\mathrm{R}_{\mathrm{V}_{2}} / \mathrm{A}$
$\mathrm{R}_{\mathrm{V}_{2}}=\mathrm{F}_{\mathrm{V} 2} / 2$

ここで，
$\sigma \quad$ ：引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
R $\mathrm{v} 2^{2}$ ：スイングボルトピン受金具が負担する締付部に作用する鉛直荷重（kN）

F ${ }_{\mathrm{v} 2}$ ：締付部に作用する鉛直荷重（kN）
A ：スイングボルトピン受部の断面積（ mm^{2} ）

図 4－16 スイングボルトピン受部のモデル図及び応力算定式

4.5 評価条件

浸水防止蓋の強度評価に用いる入力値を表 4－9 に示す。

表 4－9（1）浸水防止蓋の強度評価に用いる入力値（主桁，スキンプレート，固定ボルト）

評価対象部位	記号	単位	定義	数値
主桁	G	kN	主桁とスキンプレートの固定荷重	13.26
	P h	kN	浸水津波荷重	173.78
	h_{1}	0．P．m	設計津波水位	18.6
	h_{2}	0．P．m	浸水防止蓋の設置高さ	14.0
	P s	kN	積雪荷重	1．13
	A	m^{2}	浸水防止蓋の面積	3． 74
	L_{1}	mm	主桁の負担幅	875
	L_{2}	mm	主桁全長	1700
	A s	mm ${ }^{2}$	主桁のせん断断面積	1998
	Z	mm ${ }^{3}$	主桁の断面係数	8． 46×10^{5}
$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	G	kN	スキンプレートの固定荷重	6.61
	P h	kN	浸水津波荷重	173.78
	h_{1}	0．P．m	設計津波水位	18.6
	h_{2}	0．P．m	浸水防止蓋の設置高さ	14.0
	P s	kN	積雪荷重	1.13
	A	m^{2}	浸水防止蓋の面積	3.74
	L_{3}	mm	スキンプレートの支持長辺長さ	945
	L_{4}	mm	スキンプレートの支持短辺長さ	935
	β_{2}	－	スキンプレートの辺長比に応じた係数	0.4
	t	mm	スキンプレートの厚さ	16
固定 ボルト	G	kN	主桁とスキンプレートの固定荷重	13.26
	P h	kN	浸水津波荷重	173.78
	h_{1}	0．P．m	設計津波水位	18.6
	h_{2}	0．P．m	浸水防止蓋の設置高さ	14.0
	P s	kN	積雪荷重	1．13
	N	本	浸水防止蓋に取り付く固定ボルトの本数	28

表 4－9（2）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸直角方向）（ $1 / 2$ ）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \end{aligned}$ 部位	記号	単位	定義	数値
$\begin{array}{\|c} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{array}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	31.59
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5． 39
	L_{h}	mm	ヒンジ支点間水平距離	135
	L_{V}	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z ${ }_{p}$	mm^{3}	極断面係数	5． 50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	31.59
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3.60×10^{4}
	A	mm^{2}	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	31.59
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.39
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm ${ }^{3}$	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	31.59
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	5． 39
	L	mm	ヒンジ基部一ピン穴間距離	50
	L V	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表 4－9（3）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸直角方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	P_{R}	kN	回転軸直角方向荷重による引張力	7.90
	P_{P}	kN	回転軸平行方向荷重による引張力	0
	P_{V}	kN	鉛直方向荷重による引張力	1． 35
	Z	mm^{3}	断面係数	1.15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5． 39
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.39
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5． 389
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.39
	A	mm^{2}	断面積	121.50

表 4－9（4）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸平行方向）（1／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	55． 13
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	31.59
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5． 39
	$L_{\text {h }}$	mm	ヒンジ支点間水平距離	135
	L_{V}	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4.08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9.25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1.02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z ${ }_{\text {p }}$	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{aligned} & \text { ヒンジ } \\ & \text { プレート } \\ & \text { (スキン } \\ & \text { プレート } \end{aligned}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	55.13
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	31.59
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3.60×10^{4}
	A	mm^{2}	断面積	5400
ヒンジ ピン	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	55.13
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.39
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	55.13
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	31.59
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	5． 39
	L	mm	ヒンジ基部ーピン穴間距離	50
	$L_{\text {V }}$	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表 4－9（5）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸平行方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { エンド } \\ \text { プレート } \end{gathered}$	P_{R}	kN	回転軸直角方向荷重による引張力	13．78
	P_{P}	kN	回転軸平行方向荷重による引張力	5.64
	P_{V}	kN	鉛直方向荷重による引張力	1.35
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.39
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.39
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.39
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120.0
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5． 39
	A	mm^{2}	断面積	121.50

5．評価結果

浸水防止蓋の強度評価結果を表5－1に示す。各部材の断面検定を行った結果，全ての部材にお いて発生応力又は応力度が許容限界以下であることを確認した。

表 5－1（1）浸水防止蓋の強度評価結果（主桁，スキンプレート，固定ボルト）

評価対象部位		発生値 （応力度又は荷重）		許容限界 （応力度又は荷重）		検定値
主桁	曲げ	38	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.12<1.0$
	せん断	37	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.20<1.0$
	組合せ	75	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.24<1.0$
スキンプレート	曲げ	120	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.37<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	121	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.38<1.0$
固定ボルト	引張	6.6	kN	37.7	kN	$0.18<1.0$
	せん断	15.6	kN	32.9	kN	$0.48<1.0$
	組合せ	－		－		$0.26<1.0$

表 5－1（2）浸水防止蓋の強度評価結果（荷重：回転軸直角方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$中間部	曲げ	27	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.11<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0． $02<1.0$
	組合せ	27	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0． $10<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	19	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	21	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	14	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
	せん断	6	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	18	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
ヒンジピン	曲げ	63	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.24<1.0$
	せん断	13	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0． $09<1.0$
	組合せ	67	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.24<1.0$
ヒンジ固定ボルト	引張	38	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.15<1.0$
	せん断	33	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.22<1.0$
	組合せ	68	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.24<1.0$
エンドプレート	曲げ	37	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $14<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	37	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.13<1.0$
スイングボルト	引張	35	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $14<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン } \end{gathered}$	曲げ	73	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.27<1.0$
	せん断	14	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	0．09＜1．0
	組合せ	76	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.26<1.0$
ナット受部	曲げ	64	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.24<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	64	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.22<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	23	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$

表 5－1（3）浸水防止蓋の強度評価結果（荷重：回転軸平行方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	80	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.31<1.0$
	せん断	11	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	組合せ	82	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0． $29<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	35	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
	せん断	91	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.60<1.0$
	組合せ	161	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.56<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	68	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $26<1.0$
	せん断	17	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.12<1.0$
	組合せ	74	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.26<1.0$
ヒンジピン	曲げ	109	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $42<1.0$
	せん断	23	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0． $16<1.0$
	組合せ	115	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0． $40<1.0$
ヒンジ固定ボルト	引張	85	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.33<1.0$
	せん断	65	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	0． $43<1.0$
	組合せ	141	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0． $49<1.0$
エンドプレート	曲げ	82	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.31<1.0$
	せん断	10	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	組合せ	83	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.29<1.0$
スイングボルト	引張	35	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
スイングボルト ピン	曲げ	73	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.27<1.0$
	せん断	14	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
	組合せ	76	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.26<1.0$
ナット受部	曲げ	64	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.24<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	64	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.22<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	23	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$

6．5．3． 9 浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））の耐震性についての計算書に関する補足説明

目 次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 4
2.3 評価方針 5
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 12
4．固有値解析 14
4．1 固有振動数の計算方法 14
4．2 固有振動数の計算条件 17
4．3 固有振動数の計算結果 17
5．構造強度評価 18
5.1 構造強度評価方法 18
5.2 荷重及び荷重の組合せ 18
5.3 許容限界 20
5.4 設計用地震力 22
5.5 評価方法 23
5.6 評価条件 41
6．評価結果 46
7．揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）の耐震評価 49
7.1 概要 49
7． 2 評価方針 50
7.3 適用基準 52
8 地震応答解析 53
8.1 位置 53
8．2 構造概要 54
8．3 評価方針 57
8． 4 地盤の応答解析モデル 58
8.5 地盤応答 77
9 耐震評価 78
9． 1 評価方針 78
9.2 荷重及び荷重の組合せ 78
9.3 地下水位 80
9．4 許容限界 80
9.5 評価方法 81
9．6 評価結果 85
（別紙1）ハッチ開放時におけるヒンジ部の評価． 95
（別紙2）地震時における浸水防止機能に係る評価• 104

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度に基づき，浸水防止設備のらち浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））（以下「浸水防止蓋」という。）が設計用地震力に対して，主要な構造部材が十分な構造健全性を有するこ とを確認するものである。その耐震評価は浸水防止蓋の固有値解析及び応力評価により行う。浸水防止蓋は，浸水防止設備としてS クラスの施設に分類される。以下，浸水防止設備として の構造強度評価を示す。

あわせて，浸水防止蓋の間接支持構造物である揚水井戸（第 3 号機海水ポンプ室防潮壁区画内） の構造部材の健全性評価及び基礎地盤の支持性能評価を示す。

なお，浸水防止蓋及び揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）の耐震評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）上部から浸水を防止するた めに設置する。

浸水防止蓋の設置位置図を図 $2-1$ ，流入対策図を図 $2-2$ に示す。

（平面図）

（断面図（揚水井戸（第3号機海水ポンプ室防潮壁区画内），南北方向））
図 2－1 浸水防止蓋の設置位置図

図2－2（1）第3号機 海水ポンプ室 流入対策配置図（平面図）

図2－2（2）第3号機 海水ポンプ室 流入対策配置図（A－A 断面図）

2.2 構造計画

浸水防止蓋の構造は，円形のスキンプレートに受桁（H 型鋼）を組み合わせた浸水防止蓋と， メンテンナンス等のため開閉を行うハッチを組み合わせた構造とする。ハッチ部の開閉運用の詳細については，「6．5．3 浸水防止蓋に関する補足説明 参考資料1浸水防止蓋の開閉運用 について」に示す。

浸水防止蓋は，揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）上部に固定ボルトにて固定 する。浸水防止蓋の構造計画を表2－1に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		構造概略図
基礎• 支持構造	主体構造	
揚水井戸 （第3号機海水ポ ンプ室防潮壁区画内）上部 に固定ボ ルトで固定する。 受桁は揚水井戸に溶接で固定する。	浸水防止蓋 ，受桁，ハッ チ及び固定ボルト により構成する。	

2．3 評価方針

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及 び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」に示す浸水防止蓋の構造を踏ま え，「3．評価対象部位」にて設定する評価部位において，「4．固有値解析」で算出した固有振動数及び「8．地震応答解析」から得られる加速度に基づく設計用地震力により算出した応力等が許容限界内に収まることを，「5．構造強度評価」に示す方法にて確認する。応力評価の確認結果を「6．評価結果」にて確認する。
耐震評価フローを図 $2-3$ に示す。

図 2－3 耐震評価フロー

2.4 適用規格•基準等

適用する規格，基準等を以下に示す。
（1）日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—
（2）機械工学便覧（日本機械学会）
（3）ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）（基準解説編設備計画マニュ アル編）

2.5 記号の説明

浸水防止蓋の耐震評価に用いる記号を表2－2 に示す。

表2－2（1）浸水防止蓋の耐震評価に用いる記号（スキンプレート，受桁，固定ボルト）

記号	単位	定義
S s	kN	基準地震動S s による地震荷重
k_{H}	－	基準地震動 S s の水平方向の設計震度
k_{v}	－	基準地震動S s の鉛直方向の設計震度
G	kN	固定荷重
P s	kN	積雪荷重
W s	$\mathrm{N} / \mathrm{m}^{2}$	1 cm 当りの積雪荷重
d s	cm	積雪高さ
A	m^{2}	浸水防止蓋の面積
W s s	$\mathrm{kN} / \mathrm{m}^{2}$	単位面積当りの等分布荷重
W s s ${ }^{\prime}$	kN／m	単位長さ当りの等分布荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	$\mathrm{kN} \cdot \mathrm{m}$	最大曲げモーメント
x	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度
L_{1}	mm	スキンプレートの支持短辺長さ
L_{2}	mm	スキンプレートの支持長辺長さ
L_{3}	mm	受桁の負担幅
L_{4}	mm	受桁全長
t	mm	スキンプレートの厚さ
N	本	浸水防止蓋に取り付く固定ボルトの本数
A ${ }^{\prime}$	mm^{2}	固定ボルトの有効断面積
σ t	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト1本当りに作用する引張応力度
τ s	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト 1 本当りに作用するせん断応力度

表2－2（2）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義
共通	W_{HR}	kN	水平荷重（回転軸直角方向）
	W_{HP}	kN	水平荷重（回転軸平行方向）
	W_{V}	kN	鉛直荷重
	W_{R}	kN	水平荷重（回転軸水平方向）による偶力
	k_{H}	－	基準地震動S s の水平方向の設計震度
	k v	－	基準地震動S s の鉛直方向の設計震度
	G	kN	ハッチの固定荷重
	P s	kN	積雪荷重
	L ${ }_{\text {c }}$	mm	ハッチ中心から回転軸までの水平距離
	L_{h}	mm	ヒンジ支点間水平距離
	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	σ N	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	σ br	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	σ b P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	$\sigma \mathrm{bv} 1$	$\mathrm{N} / \mathrm{mm}^{2}$	鉛直方向荷重の曲げ応力度
	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のねじりせん断応力度
	$\tau \mathrm{Px}$	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	Z_{1}	mm ${ }^{3}$	回転軸平行方向回りの断面係数（中間部）
	Z_{2}	mm ${ }^{3}$	回転軸直角方向回りの断面係数（中間部）
	Z ${ }_{\text {p }}$	mm^{3}	極断面係数
	A	mm ${ }^{2}$	断面積

表2－2（3）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

評価 対象 部位	記号	単位	定義
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \end{gathered}$ 側）	σ N	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	$\sigma \mathrm{br}$	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	$\sigma \mathrm{b}$ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ基部からピン穴間距離
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）
	A	mm^{2}	断面積
	B	mm	ヒンジプレート幅
	t	mm	ヒンジプレート板厚
ヒンジ ピン	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm^{3}	断面係数
	A	mm^{2}	ヒンジピンの断面積
	D	mm	ヒンジピンの直径

表2－2（4）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義
ヒンジ 固定 ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	$P_{\text {R }}$	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{V}	kN	鉛直方向荷重による引張力
	Q	kN	ボルトせん断力
	Q_{R}	kN	回転軸直角方向によるせん断力
	Q_{P}	kN	回転軸平行方向によるせん断力
	L	mm	ヒンジ基部ーピン穴間距離
	L V	mm	回転軸平行方向のボルトピッチ
	L_{H}	mm	回転軸直角方向のボルトピッチ
	N_{H}	本	回転軸平行方向のボルト本数
	N_{V}	本	回転軸直角方向のボルト本数
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	P_{R}	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{v}	kN	鉛直方向荷重による引張力
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm ${ }^{2}$	エンドプレートの有効断面積
	L	mm	ヒンジ板表面からボルト穴までの距離
	t	mm	エンドプレートの板厚

表2－2（5）浸水防止蓋の耐震評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義
スイング ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	A	mm ${ }^{2}$	断面積
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm ${ }^{3}$	断面係数
	A	mm ${ }^{2}$	スイングボルトピンの断面積
	D	mm	スイングボルトピンの直径
$\begin{gathered} \text { ナット } \\ \text { 受部 } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
	L	mm	腕長さ
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm ${ }^{2}$	ナット受部の有効断面積
	t	mm	ナット受部の板厚
スイング ボルト ピン受部	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	$\mathrm{R}_{\mathrm{v} 2}$	kN	スイングボルトピン受金具が負担する締付部に作用する鉛直荷重
	A	mm ${ }^{2}$	スイングボルトピン受部の断面積
	B	mm	スイングボルトピン受部の幅
	t	mm	スイングボルトピン受部の板厚

3．評価対象部位
浸水防止蓋の評価対象部位は，「2．2 構造計画」に設定している構造を踏まえて，地震に伴 ら荷重の作用方向及び伝達過程を考慮し設定する。
浸水防止蓋の本体（ハッチ部以外）については，地震に伴う慣性力がスキンプレートに伝わり，受桁及び固定ボルトを介して躯体に伝達されることから，スキンプレート，受行及び固定ボルト を評価対象部位として設定する。

浸水防止蓋のハッチ部の運用について，原則閉止運用とするとともに，定期点検時等により開状態となる場合においても速やかに閉操作できる人員を，ハッチ付近に待機させる運用とするこ とから（詳細は，「6．5．3 浸水防止蓋に関する補足説明 参考資料 1 浸水防止蓋の開閉運用に ついて」に示す。），閉止時を基本とした荷重の作用方向及び伝達過程を考慮する。ハッチ部に作用する慣性力は，ヒンジ部（ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン， ヒンジ固定ボルト及びエンドプレート）及び締付部（スイングボルト，スイングボルトピン，ナ ット受部及びスイングボルトピン受部）を介して受桁に伝達されることから，ヒンジ部及び締付部の各部位を評価対象部位として設定する。なお，ヒンジ部については開放時における評価も実施する。開放時における評価については，「別紙1 ハッチ開放時におけるヒンジ部の評価」に示す。

評価対象部位を図3－1に示す。

図 3－1（1）評価対象部位（スキンプレート，受桁及び固定ボルト）

（ヒンジ部の評価対象部位）

図 3－1（2）評価対象部位（ハッチ部）

4．固有値解析
4．1 固有振動数の計算方法
浸水防止蓋の構造に応じて解析モデルを設定し，固有振動数を算出する。

4．1．1 解析モデルの設定

ハッチ部は基本閉止しスキンプレートと一体構造であることから，スキンプレートに ついては，円板に単純化したモデルとし，モデル化に用いる長さはスキンプレート直径 とする。ハッチ部については，周囲をボルトで固定することから，四辺支持の長方形板 に単純化したモデルとする。受桁については，剛な断面を有しているとともに，溶接で躯体と固定する構造であることから，両端固定支持に単純化したモデルとし，モデル化 には，全長が最も長い受桁を対象とする。

図 4－1 に解析モデル図を示す。

図 4－1 スキンプレート，ハッチ及び受桁の固有値解析モデル

4．1．2 記号の説明

各部材の固有振動数算出に用いる記号を表4－1 に示す。

表 4－1（1）スキンプレートの固有振動数の計算に用いる記号

記号	単位	定義
f_{1}	Hz	一次固有振動数
t	mm	スキンプレートの厚さ
a	mm	スキンプレートの半径
E	$\mathrm{N} / \mathrm{mm}^{2}$	ヤング率
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
σ	-	ポアソン比
γ	$\mathrm{N} / \mathrm{mm}^{3}$	鋼材の単位体積重量

表 4－1（2）ハッチの固有振動数の計算に用いる記号

記号	単位	
f_{2}	Hz	一次固有振動数
t	mm	定義
a	mm	ハッチの厚さ
b	mm	ハッチの幅
E	$\mathrm{N} / \mathrm{mm}^{2}$	ヤッチの長さ
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
σ	-	ポアソン比
γ	$\mathrm{N} / \mathrm{mm}^{3}$	鋼材の単位体積重量

表 4－1（3）受桁の固有振動数の計算に用いる記号

記号	単位	定義
f_{3}	Hz	受桁の一次固有振動数
L_{3}	mm	受桁の全長
E	$\mathrm{N} / \mathrm{mm}^{2}$	ヤング率
I_{3}	$\mathrm{~mm}^{4}$	受桁の断面二次モーメント
m_{3}	$\mathrm{~kg} / \mathrm{mm}$	受桁の質量分布

4．1．3 固有振動数の算出方法
固有振動数 f を「機械工学便覧（日本機械学会）」，「土木学会構造力学公式集」を参考に以下の式より算出する。
（1）スキンプレート

$$
\mathrm{f}_{1}=\frac{11 \cdot \mathrm{oO}^{2} \cdot \mathrm{t}}{4 \pi \mathrm{a}^{2}} \sqrt{\frac{\mathrm{E} \cdot \mathrm{~g}}{3 \cdot\left(1-\sigma^{2}\right) \cdot \gamma}}
$$

（2）ハッチ

$$
\mathrm{f}_{2}=\frac{\pi \cdot \mathrm{t}}{4} \cdot\left(\frac{\mathrm{~m}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{n}^{2}}{\mathrm{~b}^{2}}\right) \cdot \sqrt{\frac{\mathrm{E} \cdot \mathrm{~g}}{3 \cdot\left(1-\sigma^{2}\right) \cdot \gamma}}
$$

（3）受桁

$$
\mathrm{f}_{3}=\frac{4 \cdot 73^{2}}{2 \pi \mathrm{~L}_{3}^{2}} \sqrt{\frac{\mathrm{E} \cdot \mathrm{I}_{3} \cdot 10^{3}}{\mathrm{~m}_{3}}}
$$

4．2 固有振動数の計算条件

固有振動数の計算条件を表4－2 に示す。

表 4－2（1）スキンプレートの固有振動数の計算条件

スキンプレ ートの厚さ t (mm)	スキンプレ ートの半径 a (mm)	ヤング率 E	重力加速度 g	ポアソン比 σ	単位体積 重量
16	872	2.05×10^{5}	9.80665	0.3	γ $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\left.(-) \mathrm{mm}^{3}\right)$					

表 4－2（2）ハッチの固有振動数の計算条件

ハッチの 厚さ t	ハッチの幅 (mm)	ハッチの 長さ b	ヤング率 E	重力加速度 g	ポアソン比 (mm)	単位体積 （
16	800	800	2.05×10^{5}	9.80665	0.3	量 γ
$\left(\mathrm{N} / \mathrm{mm}^{3}\right)$						

表 4－2（3）受桁固有振動数の計算条件

はり長さ L	ヤング率 E	断面二次 モーメント I (mm)	質量分布 m
1485	2.05×10^{5}	5.63×10^{6}	3.11×10^{-2}

4．3 固有振動数の計算結果

固有振動数の計算結果を表4－3 に示す。固有振動数は 20 Hz 以上であることから，剛構造で ある。

表 4－3 固有振動数の計算結果

部位	固有振動数 (Hz)
スキンプレート	62.65
ハッチ	384.04
受桁	311.06

5．構造強度評価
5.1 構造強度評価方法

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。

5.2 荷重及び荷重の組合せ

5．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを下記に示す。

$$
\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{Ps}
$$

ここで，G ：固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P s ：積雪荷重（kN）

5．2．2 荷重の設定
耐震評価に用いる荷重は，以下のとおりとする。
（1）固定荷重（G）
固定荷重として，浸水防止蓋を構成する部材の自重を考慮する。
（2）積雪荷重（ P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

```
積雪荷重による質量は以下の式より算出する。
P s}=0.35\cdotW s • d s • A • 10-3
    ここで, P s : 積雪荷重(kN)
    W s : 1cm 当りの積雪荷重 20(N/m2)
    d s : 積雪高さ 43(cm)
    A : 浸水防止蓋の面積 (m}\mp@subsup{}{}{2}
```

（3）基準地震動 S s による地震荷重（S s ）
地震荷重として，基準地震動S s に伴う慣性力を考慮する。地震荷重は浸水防止蓋の固定荷重及び積雪荷重に設計震度を乗じた次式により算出する。

$$
\mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{Ps} \mathrm{~s}) \cdot \mathrm{k}
$$

ここで，$\quad \mathrm{S} \mathrm{s} \quad$ ：基準地震動 S s による地震荷重（kN）
G ：固定荷重（kN）
Ps ：積雪荷重（kN）
k ：基準地震動 S s の設計震度

5．3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している許容限界を踏ま えて設定する。

5．3．1 使用材料

浸水防止蓋を構成する各部材の使用材料を表5－1 に示す。

表 5－1 使用材料

評価対象部位	材質	仕様
スキンプレート	SM490Y	$\mathrm{t}=16$（mm）
ハッチ	SM490Y	$\mathrm{t}=16$（mm）
受桁	SM490Y	$\mathrm{H}-150 \times 150 \times 7 \times 10$（mm）
固定ボルト	SM490Y	M16
ヒンジプレート	SM490Y	ハッチ側 $\quad \mathrm{t}=25$（mm） スキンプレート側 $\quad \mathrm{t}=40(\mathrm{~mm})$
ヒンジピン	SM490Y	径 40 （mm）
ヒンジ固定ボルト	SM490Y	M20
エンドプレート	SM490Y	$\mathrm{t}=32(\mathrm{~mm})$
スイングボルト	SM490Y	M16
スイングボルトピン	SM490Y	径 16 （mm）
ナット受部	SM490Y	$\mathrm{t}=16(\mathrm{~mm})$
スイングボルトピン受部	SM490Y	$\mathrm{t}=9(\mathrm{~mm})$

5．3．2 許容限界

（1）スキンプレート，受桁，固定ボルト
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—」 を踏まえて表5－2の値とする。

表 5－2 鋼材の短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
	曲げ	せん断
SM490Y	325	188

（2）ハッチ部
ハッチを構成する各部材の許容値は，「ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）（基準解説編設備計画マニュアル編）」を踏まえて表 5－3 の値とする。

表 5－3 ハッチを構成する各部材の許容限界

評価対象部位	材質	短期許容応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）		
		曲げ	せん断	引張
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$	SM490Y	265	153	－
$\begin{gathered} \text { ヒンジプレート } \\ \text { (スキンプレート側) } \end{gathered}$	SM490Y	265	153	－
ヒンジピン	SM490Y	265	153	－
ヒンジ固定ボルト	SM490Y	265	153	－
エンドプレート	SM490Y	265	153	－
スイングボルト	SM490Y	－	－	265
スイングボルトピン	SM490Y	273	157	－
ナット受部	SM490Y	273	157	－
スイングボルトピン受部	SM490Y	－	－	273

5.4 設計用地震力

「4．固有値解析」に示したとおり，浸水防止蓋の固有振動数が 20 Hz 以上であることを確認したため，浸水防止蓋の耐震評価に用いる設計震度は「8．地震応答解析」に示す地震応答解析結果を用いる。

耐震評価で用いる揚水井戸（第3号機海水ポンプ室防潮壁区画内）の最大加速度を表5－4 に，設計震度を表5－5に示す。

表 5－4（1）地盤の地表面最大加速度（水平方向）

地震動	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} \mathrm{1}$	ケース（3）	-505.5

表 5－4（2）地盤の地表面最大加速度（鉛直方向）

地震動	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
$\mathrm{S} \mathrm{s}-\mathrm{D} 2$	ケース 1 1	1308.9

表 5－5 設計震度

設置場所	床面高さ（m）	基準地震動 S s の設計震度	
		鉛直方向 k_{v}	
揚水井戸（第3号 機海水ポンプ室 防潮壁区画内）	0．P．14．0	0.52	

5.5 評価方法

浸水防止蓋を構成する各部材に発生する応力より算定する応力度が，許容限界以下であるこ とを確認する。

5．5．1 スキンプレート
スキンプレートの支持条件は四辺固定とし，図 5－1 に示すとおり，評価上最も厳しい条件となるよう評価を実施する。曲げ応力度及びせん断応力度は「機械工学便覧（日本機械学会）」より以下の式にて算出する。
（1）基準地震動 S s による地震荷重 S s

$$
\mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{v}}
$$

ここで，$\quad \mathrm{S}$ s ：基準地震動 S s による地震荷重（kN）
G ：スキンプレートの固定荷重（kN）
P s ：積雪荷重（kN）
kv ：基準地震動 S s の鉛直方向の設計震度
（2）スキンプレートに作用する単位面積当りの鉛直方向の荷重W s s

$$
\mathrm{Ws} \mathrm{~s}=(\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P} \mathrm{~s}) / \mathrm{A}
$$

ここで，W s s ：スキンプレートに作用する単位面積当りの鉛直方向 の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）

G ：スキンプレートの固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P s ：積雪荷重（kN）
A ：浸水防止蓋の面積（ m^{2} ）
（3）スキンプレートに作用する最大曲げ応力度 σ
スキンプレートに作用する曲げ応力度は「機械工学便覧（日本機械学会）」に基づき次式により算出する。

$$
\sigma=\beta_{2} \cdot \mathrm{~W} \text { s s } \cdot \mathrm{L}_{1}{ }^{2} \cdot 10^{-3} / \mathrm{t}^{2}
$$

ここで，	σ	：スキンプレートに作用する最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
	β_{2}	：スキンプレートの辺長比に応じた係数
	W s s	：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
	L_{1}	：スキンプレートの支持短辺長さ（mm）
	t	：スキンプレートの厚さ（mm）

（4）
スキンプレートに作用する最大せん断応力度 τ
スキンプレートに作用するせん断応力度は「機械工学便覧（日本機械学会）」に基づ き次式により算出する。

$$
\tau=\mathrm{W} \text { s } \mathrm{s} \cdot \mathrm{~L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-3} /\left(\mathrm{t} \cdot\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \cdot 2\right)
$$

ここで，$\tau \quad$ ：スキンプレートに作用する最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
L_{1}
：スキンプレートの支持短辺長さ（mm）
L_{2} ：スキンプレートの支持長辺長さ（mm）
t ：スキンプレートの厚さ（mm）
（5）
スキンプレートに作用する組合せ応力度
スキンプレートに作用する曲げ応力度，せん断応力度を算定し，スキンプレートの短期許容応力度以下であることを確認する。また，スキンプレートに生じる曲げ応力度と せん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法－」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{array}{rll}
\mathrm{x} & =\sqrt{\sigma^{2}+3 \cdot \tau^{2}} & \\
\text { ここで, } \quad \mathrm{x} & \text { : 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma & : \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \tau & \text { : せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{array}
$$

図 5－1 評価の対象とするスキンプレート

5．5．2 受桁

受桁の支持条件は両端を固定支持とし，受桁が負担する荷重は保守的にスキンプレート に上載される積雪荷重，スキンプレートの固定荷重の全重量及び地震荷重を受桁に作用さ せる。図5－2に評価の対象とする受桁を示す。
（1）基準地震動 S s による地震荷重 S s

$\mathrm{Sc}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{kv}$		
ここで，	S s	：基準地震動 S s による地震荷重（kN）
	G	：スキンプレートと受桁の固定荷重（kN）
	P s	：積雪荷重（kN）
	k v	：基準地震動 S s の鉛直方向の設計震度

（2）受桁に作用する単位長さ当りの鉛直方向の等分布荷重W s s ，

$$
\mathrm{W} \mathrm{~s}^{\prime}=(\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{L}_{3} \cdot 10^{-3} / \mathrm{A}
$$

ここで，W s s ，：受桁に作用する単位長さ当りの鉛直方向の等分布荷重 （kN／m）
G ：受桁とスキンプレートの固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P s ：積雪荷重（kN）
L_{3} ：受桁の負担幅（mm）
A ：スキンプレートの面積（ m^{2} ）
（3）受桁に作用する最大せん断応力度 τ

$$
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A} \mathrm{~s}
$$

τ ：受桁に作用する最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：受桁に作用する最大せん断力（kN）
A s ：受桁のせん断断面積（ mm^{2} ）
ここで， $\mathrm{Q}=1 / 2 \cdot \mathrm{Ws} \mathrm{s}^{\prime} \cdot \mathrm{L}_{4} \cdot 10^{-3}$
：受桁に作用する最大せん断力（kN）
W s s ，：受桁に作用する単位長さ当りの鉛直方向の等分布荷重（kN／m）
L_{4} ：受桁全長（mm）
（4）受桁に作用する最大曲げ応力度 σ

$$
\begin{aligned}
& \sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z} \\
& \sigma: \text { 受桁に作用する最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{M}: \text { 受桁に作用する最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& \mathrm{Z}: \text { 受桁の断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \text { ここで, } \mathrm{M}=1 / 8 \cdot \mathrm{~W} \mathrm{~s} \mathrm{~s}, \quad\left(\mathrm{~L}_{4} \cdot 10^{-3}\right)^{2} \\
& \mathrm{M} \quad: \text { 受桁に作用する最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& \mathrm{W} \text { s s }, ~: ~ \text { 受桁に作用する単位長さ当りの鉛直方向の等分布荷重 }(\mathrm{kN} / \mathrm{m}) \\
& \mathrm{L}_{4} \text { : 受桁全長 }(\mathrm{mm})
\end{aligned}
$$

（5）受桁に作用する組合せ応力度
主桁に作用する曲げ応力度，せん断応力度を算定し，主桁の短期許容応力度以下である ことを確認する。また，主桁に生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \mathrm{x} \text { : 組合せ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \sigma \text { : 曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \tau \text { : せん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

図 5－2 評価の対象とする受桁

5．5．3 固定ボルト

図 5－3 に固定ボルトの納まりを示す。
（1）基準地震動 S s による水平方向の地震荷重 S s

$$
\begin{aligned}
& \mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}} \\
& \text { ここで, } \mathrm{S} \text { s : 基準地震動 S s による水平方向の地震荷重 (kN) } \\
& \text { G : 浸水防止蓋の固定荷重 (kN) } \\
& \text { P s : 積雪荷重 (kN) } \\
& \mathrm{k}_{\mathrm{H}} \quad \text { : 基準地震動 S s の水平方向の設計震度 }
\end{aligned}
$$

（2）基準地震動 S s による鉛直方向の地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k} \mathrm{v}$
ここで，$\quad \mathrm{S} \mathrm{s}$ ：基準地震動 S s による鉛直方向の地震荷重（kN）
G ：浸水防止蓋の固定荷重（kN）
P s ：積雪荷重（kN）
k v ：基準地震動 S s の鉛直方向の設計震度
（3）固定ボルト 1 本当たりに生じる引張応力度 $\sigma \mathrm{t}$

$$
\begin{aligned}
& \sigma_{\mathrm{t}}=\mathrm{T} \mathrm{~s} \cdot 10^{3} / \mathrm{A}{ }^{\prime} \\
& \text { ここで, } \quad \mathrm{T} \mathrm{~s}=\mathrm{S} \mathrm{~s} / \mathrm{N} \\
& \sigma_{\mathrm{t}} \text { : 固定ボルト } 1 \text { 本当りに生じる引張応力度 }(\mathrm{N} / \mathrm{mm}) \\
& \text { T s : 固定ボルト } 1 \text { 本当りに生じる引張応力度 (} \mathrm{kN} \text {) } \\
& \text { S s : 基準地震動 S s による鉛直方向の地震荷重 (kN) } \\
& \text { N: 浸水防止蓋に取り付く固定ボルトの本数 } \\
& \text { A } \quad \text { : 固定ボルトの有効断面積 (} \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

（4）固定ボルト 1 本当たりに生じるせん断応力度 $\tau \mathrm{s}$

$$
\begin{aligned}
& \tau_{\mathrm{s}}=\mathrm{q}_{\mathrm{s}} \cdot 10^{3} / \mathrm{A}^{\prime} \\
& \text { ここで, } \mathrm{q}_{\mathrm{s}}=\mathrm{S} \mathrm{~s} / \mathrm{N} \\
& \tau_{\mathrm{s}} \\
& \text { : 固定ボルト } 1 \text { 本当りに作用するせん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \text { : 固定ボルト } 1 \text { 本当りに作用するせん断力 }(\mathrm{kN}) \\
& \mathrm{S} \mathrm{~s} \\
& \text { : 基準地震動 } \mathrm{S} \mathrm{~s} \text { による水平方向の地震荷重 }(\mathrm{kN}) \\
& \mathrm{N} \\
& \text { : 浸水防止蓋に取り付く固定ボルトの本数 } \\
& \text { A } \quad \text { 固定ボルトの有効断面積 }\left(\mathrm{mm}^{2}\right)
\end{aligned}
$$

図 5－3 固定ボルトの納まり

5．5．4 ハッチ固定部

ハッチのヒンジ部及び締付部の構造概要を図 5－4に，荷重算定式を図 5－5に示す。ヒ ンジ部及び締付部の評価は，荷重の作用方向及び伝達過程を考慮する。ヒンジ部について はヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン，ヒンジ固定ボルト及び エンドプレートについて評価を行う。締付部については，スイングボルト，スイングボル トピン，ナット受部及びスイングボルトピン受部について評価を行う。なお，ハッチ開放時におけるヒンジ部の評価については，「別紙1 ハッチ開放時におけるヒンジ部の評価」 に示す。

図 5－4（1）ヒンジ部の構造概要

図 5－4（2）締付部の構造概要

$$
\begin{aligned}
\mathrm{W}_{\mathrm{HR}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}} \\
\mathrm{~W}_{\mathrm{HP}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{H}} \\
\mathrm{~W}_{\mathrm{V}}= & (\mathrm{G}+\mathrm{P} \mathrm{~s}) \\
& +(\mathrm{G}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{k}_{\mathrm{V}} \\
\mathrm{~F}_{\mathrm{HR}}= & \alpha_{1} \cdot \mathrm{~W}_{\mathrm{HR}}+\mathrm{W}_{\mathrm{R}} \\
\mathrm{~F}_{\mathrm{HP}}= & \alpha_{2} \cdot \mathrm{~W}_{\mathrm{HP}} \\
\mathrm{~F}_{\mathrm{v} 1 \mathrm{I}}= & \alpha{ }_{3} \cdot \mathrm{~W}_{\mathrm{V}} \\
\mathrm{~F}_{\mathrm{v} 2}= & \beta \cdot \mathrm{W}_{\mathrm{V}}
\end{aligned}
$$

ここで，
$\mathrm{W}_{\mathrm{R}}=\mathrm{W}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{h}}$
W_{HR} ：水平荷重（回転軸直角方向）（kN）
W_{HP} ：水平荷重（回転軸平行方向）（kN）
W_{V} ：鉛直荷重（kN）
$\mathrm{W}_{\mathrm{R}} \quad$ ：水平荷重（回転軸水平方向）による偶力（kN）
$L_{\text {c }}$ ：ハッチ中心から回転軸までの水平距離（mm）
$\mathrm{L}_{\mathrm{h}} \quad$ ：ヒンジ支点間水平距離（mm）
G ：ハッチの固定荷重（kN）
Ps ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad$ ：基準地震動 S S の水平方向の設計震度
$\mathrm{k}_{\mathrm{v}} \quad$ ：基準地震動 S s の鉛直方向の設計震度
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
F ${ }_{\mathrm{v} 1}$ ：ヒンジ部に作用する鉛直荷重（kN）
F v 2 ：締付部に作用する鉛直荷重（kN）
$\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta:$ 分担率

$$
\left(\alpha_{1}=0.5, \quad \alpha_{2}=0.5, \quad \alpha_{3}=0.1, \quad \beta=0.1\right)
$$

図 5－5 ハッチの構造概要及び荷重算定式

5．5．4．1 ヒンジプレート（ハッチ側）
ヒンジプレート（ハッチ側）の中間部及びハッチ接合部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（ハッチ側） のモデル図及び応力算定式を図5－6に示す。

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）中間部
$\sum \sigma=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bP}}+\sigma_{\mathrm{bVV}}$ ここで，
$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}_{1} \quad \sigma_{\mathrm{N}}$ ：軸方向引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{h}} / \mathrm{Z}_{2} \quad \sigma_{\mathrm{bP}} \quad:$ 回転軸平行方向荷重の曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\sigma_{\mathrm{bV} 1}=\mathrm{F}_{\mathrm{V} 1} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{1}$
$\Sigma \tau=\tau_{\mathrm{P}}+\tau_{\mathrm{v}}$
$\tau_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A}$
$\tau_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}_{1}} / \mathrm{A}$
$\sigma_{\mathrm{b} V 1}$ ：鉛直方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{P} ：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ v ：鉛直方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
x ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$F_{H R}$ ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
F v 1 ：ヒンジ部に作用する鉛直荷重（kN）
$\mathrm{L}_{\mathrm{h}} \quad$ ：ヒンジ支点間水平距離（mm）
Z_{1} ：回転軸平行方向回りの断面係数（中間部）（mm $\left.{ }^{3}\right)$
Z_{2} ：回転軸直角方向回りの断面係数（中間部）（ mm^{3} ）
A_{1} ：ヒンジプレート（ハッチ側）の断面積（mm²）

図 5－6（1）ヒンジプレート（ハッチ側）のモデル図及び中間部の応力算定式

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）ハッチ接合部

図 5－6（2）ヒンジプレート（ハッチ側）のモデル図及びハッチ接合部の応力算定式

5．5．4．2 ヒンジプレート（スキンプレート側）
ヒンジプレート（スキンプレート側）のエンドプレート接合部に発生する曲げ応力度， せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（スキ ンプレート側）のモデル図及び応力算定式を図 5－7に示す。

$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{V}_{1}} / \mathrm{A}$	$\sigma \mathrm{N}$	：軸方向引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bR}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{Z}_{1}$	σ b R	：回転軸直角方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{Z}_{2}$	$\sigma \mathrm{b} \mathrm{P}$	：回転軸平行方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
	$\tau \mathrm{R}$	：回転軸直角方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\Sigma \tau^{\prime}=\tau_{\mathrm{R}}+\tau_{\mathrm{P}}$	τ_{P}	：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}$	x	：合成応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A}$	F_{HR}	ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
	F_{HP}	ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
2	L	：ヒンジ基部からピン穴間距離（mm）
$\mathrm{x}=\sqrt{\sigma}{ }^{2}+3 \cdot \tau^{2}$	Z_{1}	：回転軸平行方向回りの断面係数（ mm^{3} ）
	Z_{2}	：回転軸直角方向回りの断面係数（ mm^{3} ）
	A	：ヒンジプレート（スキンプレート側）の断面積 （mm ${ }^{2}$ ）
	B	：ヒンジプレート幅（mm）
	t	：ヒンジプレート板厚（mm）

図 5－7 ヒンジプレート（スキンプレート側）のモデル図及び応力算定式

5．5．4．3 ヒンジピン

ヒンジピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であるこ とを確認する。ヒンジピンのモデル図及び応力算定式を図5－8に示す。

$$
\begin{aligned}
& \sigma=\mathrm{F} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} \text { ここで, } \\
& \mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{HR}}{ }^{2}+\mathrm{F}_{\mathrm{V} 1}{ }^{2}} \\
& \tau=\mathrm{F} / 2 / \mathrm{A} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { F v } 1 \text { : ヒンジ部に作用する鉛直荷重 (kN) } \\
& \text { B : 荷重の載荷長 (mm) } \\
& \text { Z : 断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \text { A : ヒンジピンの断面積 (} \mathrm{mm}^{2} \text {) } \\
& \text { D : ヒンジピンの直径 }\left(\mathrm{mm}^{2}\right)
\end{aligned}
$$

図5－8 ヒンジピンのモデル図及び応力算定式

5．5．4．4 ヒンジ固定ボルト
ヒンジ固定ボルトに発生する引張応力度，せん断応力度，合成応力度が許容限界以下で あることを確認する。ヒンジ固定ボルトのモデル図及び応力算定式を図 5－9に示す。

$\sigma=\mathrm{P} / \mathrm{A}_{4}$
$\mathrm{P}=\mathrm{P}_{\mathrm{R}}+\mathrm{P}_{\mathrm{P}}+\mathrm{P}_{\mathrm{V}}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}}$
$\mathrm{P}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{H}} / \mathrm{N}_{\mathrm{V}}$ $\mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{v}}\right)$
$\tau=\mathrm{Q} / \mathrm{A}_{4}$
$\mathrm{Q}=\sqrt{\mathrm{Q}_{\mathrm{R}}{ }^{2}+\mathrm{Q}_{\mathrm{P}}{ }^{2}}$
$\mathrm{Q}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{Q}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma \quad$ ：引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau \quad:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P ：ボルト引張力（kN）
P_{R} ：回転軸直角方向荷重による引張力（ $k N$ ）
P_{P} ：回転軸平行方向荷重による引張力（ kN ）
P_{V} ：鉛直方向荷重による引張力（kN）
Q ：ボルトせん断力（kN）
Q_{R} ：回転軸直角方向によるせん断力（kN）
Q_{P} ：回転軸平行方向によるせん断力（kN）
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
$\mathrm{F}_{\mathrm{V} 1}$ ：ヒンジ部に作用する鉛直荷重（kN）
L：ヒンジ基部一ピン穴間距離（mm）
L v ：回転軸平行方向のボルトピッチ（mm）
$\mathrm{L}_{\mathrm{H}} \quad$ ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V} ：回転軸直角方向のボルト本数

図 5－9 ヒンジ固定ボルトのモデル図及び応力算定式

5．5．4．5 エンドプレート

ヒンジプレート（スキンプレート側）に接合されヒンジ部固定ボルトにより支持される エンドプレートに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下である ことを確認する。エンドプレートのモデル図及び応力算定式を図 5－10に示す。

$\sigma=\mathrm{P} \cdot \mathrm{L} / \mathrm{Z}$
$\mathrm{P}=\mathrm{P}_{\mathrm{R}}+\mathrm{P}_{\mathrm{P}}+\mathrm{P}_{\mathrm{V}}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}}$
$P_{P}=F_{H P} \cdot L / L_{H} / N_{V}$
$\mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{v}}\right)$
$\mathrm{Z}=\mathrm{B} \cdot \mathrm{t}^{2} / 6$
$\tau=\mathrm{P} / \mathrm{A}$
$\mathrm{A}=\mathrm{B} \cdot \mathrm{t}$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma \quad$ ：曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau \quad:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P ：ボルト引張力（kN）
P_{R} ：回転軸直角方向荷重による引張力（kN）
P_{P} ：回転軸平行方向荷重による引張力（kN）
P_{V} ：鉛直方向荷重による引張力（kN）
Z ：断面係数 $\left(\mathrm{mm}^{3}\right)$
B ：有効断面幅（mm）
A ：エンドプレートの有効断面積（ mm^{2} ）
L ：ヒンジ板表面からボルト穴までの距離（mm）
t ：エンドプレートの板厚（mm）
L_{V} ：回転軸平行方向のボルトピッチ（mm）
$\mathrm{L}_{\mathrm{H}} \quad$ ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V}

図 5－10 エンドプレートのモデル図及び応力算定式

5．5．4．6 スイングボルト

スイングボルトに発生する引張応力度が許容限界以下であることを確認する。スイング ボルトのモデル図及び応力算定式を図 5－11に示す

図 5－11 スイングボルトのモデル図及び応力算定式

5．5．4．7 スイングボルトピン
スイングボルトピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下 であることを確認する。スイングボルトピンのモデル図及び応力算定式を図 5－12 に示す。

$$
\begin{aligned}
& \sigma=\mathrm{F}_{\mathrm{V}_{2}} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} \\
& \tau=\mathrm{F}_{\mathrm{V} 2} / 2 / \mathrm{A} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
\end{aligned}
$$

ここで,

$$
\sigma \quad \text { : 曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
$$

$$
\tau=\mathrm{F}_{\mathrm{v} 2} / 2 / \mathrm{A} \quad \tau \quad: \text { せん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
$$

$$
\mathrm{x} \quad \text { : 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{F}_{\mathrm{v} 2} \text { : 締付部に作用する鉛直荷重 (kN) }
$$

$$
\mathrm{L} \quad: \text { ヒンジ支点間距離 (mm) }
$$

B : 荷重の載荷長 (mm)

$$
\mathrm{Z} \quad \text { : 断面係数 }\left(\mathrm{mm}^{3}\right)
$$

A : スイングボルトピンの断面積 (mm²)

図 $5-12$

5．5．4．8 ナット受部

スイングボルトのナットから荷重を伝達するナット受部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ナット受部のモデル図及び応力算定式を図5－13に示す

$$
\begin{aligned}
& \sigma=\mathrm{F}_{\mathrm{v}_{2}} \cdot \mathrm{~L} / \mathrm{Z} \\
& \mathrm{Z}=\mathrm{B} \cdot \mathrm{t}^{2} / 6 \\
& \tau=\mathrm{F}_{\mathrm{v}_{2}} / \mathrm{A} \\
& \mathrm{~A}=\mathrm{B} \cdot \mathrm{t} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
\end{aligned}
$$

ここで,

$$
\sigma \quad \text { : 曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
$$

$$
\tau \quad: \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{x} \quad: \text { 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
F_{\mathrm{v} 2} \text { : 締付部に作用する鉛直荷重 (kN) }
$$

$$
\mathrm{L} \quad: \text { 腕長さ (mm) }
$$

$$
\mathrm{Z} \quad \text { : 断面係数 }\left(\mathrm{mm}^{3}\right)
$$

B ：有効断面幅（mm）
A ：ナット受部の有効断面積（ mm^{2} ）
t ：ナット受部の板厚（mm）

図 5－13 ナット受部のモデル図及び応力算定式

5．5．4．9 スイングボルトピン受部
スイングボルトピンを支持し，ハッチ部（スキンプレート側）に荷重を伝達するスイン グボルトピン受部に発生する引張応力度が許容限界以下であることを確認する。スイング ボルトピン受部のモデル図及び応力算定式を図 5－14に示す

$\sigma=\mathrm{R}_{\mathrm{V}_{2}} / \mathrm{A}$
$\mathrm{R}_{\mathrm{V}_{2}}=\mathrm{F}_{\mathrm{V}_{2}} / 2$
ここで，
$\sigma \quad$ ：引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
R v 2 ：スイングボルトピン受部が負担する締付部に作用する鉛直荷重（kN）

F v 2 ：締付部に作用する鉛直荷重（kN）
A ：スイングボルトピン受部断面積（ mm^{2} ）

図 5－14 スイングボルトピン受部のモデル図及び応力算定式
5.6 評価条件

浸水防止蓋の耐震評価に用いる入力値を表5－6に示す。

表5－6（1）浸水防止蓋の耐震評価に用いる入力値（スキンプレート，受桁，固定ボルト）

評価 対象 部位	記号	単位	定義	数値
$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	G	kN	スキンプレートの固定荷重	4． 94
	P s	kN	積雪荷重	0． 72
	A	m^{2}	浸水防止蓋の面積	2． 39
	L_{1}	mm	スキンプレートの支持短辺長さ	770
	L_{2}	mm	スキンプレートの支持長辺長さ	927
	β_{2}	－	スキンプレートの辺長比に応じた係数	0.4
	t	mm	スキンプレートの厚さ	16
受桁	G	kN	スキンプレートと受桁の固定荷重	6． 14
	P s	kN	積雪荷重	0． 72
	L_{3}	mm	受桁の負担幅	822
	L_{4}	mm	受桁全長	1485
	A	m^{2}	受桁のせん断断面積	910
	Z	mm^{4}	受桁の断面係数	2.13×10^{5}
固定 ボルト	G	kN	スキンプレートの固定荷重	4.94
	P s	kN	積雪荷重	0． 72
	N	本	浸水防止蓋に取り付く固定ボルトの本数	24
	A＇	mm^{2}	固定ボルトの有効断面積	157

表 5－6（2）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸直角方向）（1／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 02
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	0． 92
	$L_{\text {h }}$	mm	ヒンジ支点間水平距離	135
	$L_{\text {V }}$	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 02
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3． 60×10^{4}
	A	mm^{2}	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 02
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	0.92
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 02
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	0.92
	L	mm	ヒンジ基部ーピン穴間距離	50
	$L_{\text {V }}$	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表 5－6（3）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸直角方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { エンド } \\ \text { プレート } \end{gathered}$	P_{R}	kN	回転軸直角方向荷重による引張力	0． 26
	P_{P}	kN	回転軸平行方向荷重による引張力	0
	P_{V}	kN	鉛直方向荷重による引張力	0． 23
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0． 92
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0.92
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0． 92
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120
スイング ボルト ピン受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0.92
	A	mm^{2}	断面積	121.50

表5－6（4）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸平行方向）（ $1 / 2$ ）

$\begin{aligned} & \hline \text { 評価 } \\ & \text { 対象 } \end{aligned}$ 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 78
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	1． 02
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	0． 92
	L_{h}	mm	ヒンジ支点間水平距離	135
	L v	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm ${ }^{3}$	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5． 50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 78
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	1． 02
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3． 60×10^{4}
	A	mm ${ }^{2}$	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 78
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	0.92
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm ${ }^{3}$	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	1． 78
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	1． 02
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	0． 92
	L	mm	ヒンジ基部ーピン穴間距離	50
	L_{V}	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表 5－6（5）浸水防止蓋の耐震評価に用いる入力値（荷重：回転軸平行方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { エンド } \\ \text { プレート } \end{gathered}$	P_{R}	kN	回転軸直角方向荷重による引張力	0． 45
	P_{P}	kN	回転軸平行方向荷重による引張力	0． 18
	P_{V}	kN	鉛直方向荷重による引張力	0． 23
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0.92
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0.92
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0.919
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120.0
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	0． 92
	A	mm^{2}	断面積	121.50

6．評価結果
浸水防止蓋の耐震評価結果を表 6－1 に示す。各部材の断面検定を行った結果，すべての部材 において発生応力又は応力度が許容限界以下であることを確認した。

表6－1（1）浸水防止蓋の耐震評価結果（スキンプレート，受桁，固定ボルト）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
スキンプレート	曲げ	6	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	7	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
受桁	曲げ	5	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	0． $02<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	10	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
固定ボルト	引張	3	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$

表 6－1（2）浸水防止蓋の耐震評価結果（荷重：回転軸直角方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	2	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	2	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	1	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	1	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
ヒンジピン	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	3	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
ヒンジ固定ボルト	引張	2	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	3	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
エンドプレート	曲げ	2	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	2	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
スイングボルト	引張	6	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $03<1.0$
スイングボルト ピン	曲げ	13	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	13	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
ナット受部	曲げ	11	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	11	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	4	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$

表 6－1（3）浸水防止蓋の耐震評価結果（荷重：回転軸平行方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	6	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	6	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0．02＜1．0
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	6	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	3	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0． $02<1.0$
ヒンジピン	曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	5	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
ヒンジ固定ボルト	引張	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	6	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
エンドプレート	曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
スイングボルト	引張	6	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
スイングボルト ピン	曲げ	13	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	13	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
ナット受部	曲げ	11	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	11	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	4	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$

7．揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）の耐震評価
7.1 概要

揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）（以下，「揚水井戸」という。）は，鋼製 シャフトからなる構造物であり，マンメイドロック（以下「MMR」という。）を介し CM 級岩盤 に設置する。揚水井戸の頂部開口部に浸水防止蓋を設置する。

揚水井戸に要求される機能の維持を確認するに当たつては，地震応答解析に基づく構造部材 の健全性評価及び基礎地盤の支持性能評価により行う。

7.2 評価方針

揚水井戸の耐震評価は地震応答解析に基づき実施し，表 7－1 に示すとおり，構造部材の健全性及び基礎地盤の支持性能評価を行う。
構造部材の健全性評価については，添付書類「VI－2－1－9 機能維持の基本方針」に基づき発生する応力が許容限界以下であることを確認する。

基礎地盤の支持性能評価においては，添付書類「VI－2－1－9 機能維持の基本方針」に基づき発生する応力（接地圧）が許容限界以下であることを確認する。
構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ とを確認する。なお，構造部材のうち地表面の浸水防止蓋接合部の健全性評価については，「別紙2 地震時における浸水防止機能に係る評価」に示す。
揚水井戸の耐震評価フローを図 7－1 に示す。

表 7－1 揚水井戸の評価項目

評価方針	評価項目	部位	評価方法	許容限界
構造強度 を有する こと	構造部材の 健全性	鋼製シャフト	発生する応力（曲げ軸力，せん断力）が許容限界以下である ことを確認	短期許容応力度
	基礎地盤の 支持性能	基礎地盤	発生する応力（接地圧）が許容限界以下 であることを確認	極限支持力＊

注記＊：妥当な安全余裕を考慮する。

注記＊：一次元地震応答解析にて算出された最大加速度による設計震度を設定する。
図7－1 揚水井戸の耐震評価フロー

7.3 適用基準

適用する規格，基準類を以下に示す。また，各項目で適用する規格•基準類を表 7－2 に示 す。
（1）日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編
（2）日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）

表 7－2 各項目で適用する規格•基準類

項目	適用する規格，基準類	備考（参照先）
使用材料及び材料定数	日本道路協会平成 14 年 3 月道路橋示方書•同解説 I 共通編•II鋼橋編	－
一次元地震応答解析	－原子力発電所耐震設計技術指針（J E A G $4601 \text {-1987) }$	地盤モデルの節点間隔の設定
許容限界	－日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編	－
応答変位法解析	－日本道路協会平成 14 年 3 月 道路橋示方 書•同解説 I 共通編•IV下部構造編	－応答変位法解析 に用いる地盤ば ねの設定

8． 1 位置

揚水井戸の設置位置を図 8－1 に示す。

図 8－1 揚水井戸の設置位置

8．2 構造概要

揚水井戸は，防潮壁（第 3 号機海水ポンプ室）内に設置し，浸水防止蓋の間接支持構造物と なる。

揚水井戸は，全長 29.0 m ，内径 1500 mm ，厚さ 30 mm ，材質 SM 570 の鋼製構造とする。
構造概要を図 8－2 に，揚水井戸設置位置の地質断面図及び地質状況を図 8－3，図8－4に示す。

（概略平面図）
（概略断面図）（単位：m）
図 8－2 揚水井戸 構造概要図

図 8－3（1）揚水井戸周辺の地質断面図（南北）

図 8－3（2）揚水井戸周辺の地質断面図（東西）

図 8－4 揚水井戸設置位置の地質状況

8．3 評価方針

揚水井戸設置位置の地盤の応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動 S s 及び弾性設計用地震動 S d－D 2 に対して実施する。

地盤の応答解析は，「8．3 地盤の応答解析モデル」において設定した地盤モデルに基づき「8．4 地盤応答」を評価する。

地盤モデルには，地盤物性の不確かさを考慮し，地盤応答として地盤の地表面最大応答加速度を算出する。

8.4 地盤の応答解析モデル

地盤の応答解析は，基準地震動 S s を用いて添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「6．1 入力地震動の設定に用いる地下構造モデル」を踏まえて算定する。設計用震度は，入力地震動を地震応答解析モデルに入力して評価用地震動から算定する。

地震応答解析の概念を図 8－5に，入力地震動の加速度時刻歴波形及び加速度応答スペクト ルを図 8－6に示す。揚水井戸は液状化の影響が及ばないよう設計用地下水位 +1 m 以深を地盤改良し，改良幅は地盤改良高さの 2 倍を確保するため，解析手法は図 8－7に示す解析手法の選定フローに基づき全応力解析とする＊。また，地盤については，地盤のひずみ依存性を適切 に考慮できるようモデル化し，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。

地盤の応答解析では地盤物性のばらつきを考慮する。地盤物性のばらつき考慮ケースを表 8 -1 に解析ケースを表8－2に示す。
解析コードには，引戻し解析に「SHAKE Ver1．6」を使用し，地盤の応答解析による設計震度及び地盤変位の算定には「TDAPIII Ver3．11」を使用する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
注記＊解析手法の妥当性については，「6．3防潮壁に関する補足説明（参考資料2）杭基礎構造防潮壁に用いる地震応答解析手法の妥当性について」に示す。

地下構造モデル

図 8－5 地震応答解析の概念

表 8－1 解析ケース（揚水井戸）

解析ケース	地盤物性
	平均値
ケース（2）	平均値 $+1 \sigma$
ケース（3）	平均値 -1σ

表 8－2 設計震度算定における解析ケース

解析ケース		ケース（1）	ケース（2）	ケース③
		基本ケース	地盤物性のばらつ き（ $+1 \sigma$ ）を考慮 した解析ケース	地盤物性のばらつ き（－1 σ ）を考慮 した解析ケース
地盤物性		平均値	平均値 $+1 \sigma$	平均値－1 σ
$\begin{aligned} & \text { 地 } \\ & \text { 霣 } \end{aligned}$	S s－D 1	\bigcirc	\bigcirc	\bigcirc
	S s－D 2	\bigcirc	\bigcirc	\bigcirc
	S s－D 3	\bigcirc	\bigcirc	\bigcirc
	S s－F 1	\bigcirc	\bigcirc	\bigcirc
	S s－F 2	\bigcirc	\bigcirc	\bigcirc
	S s－F 3	\bigcirc	\bigcirc	\bigcirc
	S s -N 1	\bigcirc	\bigcirc	\bigcirc
	S d－D 2	\bigcirc	\bigcirc	\bigcirc

（b）加速度応答スペクトル
図 8－6（1）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向：S s－D 1）

（b）加速度応答スペクトル
図 8－6（2）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直方向：S s－D 1）

（b）加速度応答スペクトル
図 8－6（3）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向：S s－D 2）

（b）加速度応答スペクトル
図 8－6（4）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直方向：S s－D 2）

（b）加速度応答スペクトル
図 8－6（5）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）


```
（a）加速度時刻歴波形
```


（b）加速度応答スペクトル
図 8－6（6）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直方向：S s－D 3）

（b）加速度応答スペクトル
図 8－6（7）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向：S s－F 1）

（b）加速度応答スペクトル
図 8－6（8）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直方向：S s－F 1）

（b）加速度応答スペクトル
図 8－6（9）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向：S s－F 2）

（b）加速度応答スペクトル
図 8－6（10）入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直方向：S s－F 2）

（b）加速度応答スペクトル
図 8－6（11）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（b）加速度応答スペクトル
図 8－6（12）入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直方向：S s－F 3）

（b）加速度応答スペクトル
図 8－6（13）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向：S s－N1）

（b）加速度応答スペクトル
図 8－6（14）入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直方向：S s－N 1）

（b）加速度応答スペクトル
図 8－6（15）入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平方向：S d－D 2）

（b）加速度応答スペクトル
図 8－6（16）入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直方向：S d－D 2）

図 8－7 解析手法の選定フロー

8.5 地盤応答

解析結果のうち，すべての基準地震動 S s 及び弾性設計用地震動 S d－D 2 に対する地盤の地表面最大加速度を表 8－3 に示す。なお，弾性設計用地震動 S d－D 2 の応答加速度につい ては，浸水防止蓋の強度評価における余震荷重の算定に用いる。

表 8－3（1）地盤の最大応答加速度（ケース（1）

	$\left(\mathrm{cm} / \mathrm{s}^{2}\right)$							
方向	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$	$\mathrm{~S} \mathrm{~d}-\mathrm{D} 2$
水平	371.3	371.3	345.1	-341.2	382.3	350.2	-477.2	265.3
鉛直	-1170.2	1308.9	1007.2	532.3	-747.5	-812.4	848.9	759.8

表 8－3（2）地盤の最大応答加速度（ケース（2））

方向	S s－D 1	S s－D 2	S s－D 3	S s－F 1	S s－F 2	S s－F 3	S s－N 1	S d－D 2
水平	364.5	365.5	340.9	－335．9	377.9	353.6	－460．2	265.6
鉛直	－1158． 3	1298.2	－1059． 2	537.3	－702．9	－780． 6	809.6	752.1

表 8－3（3）地盤の最大応答加速度（ケース（3））

方向	S s－D 1	S s－D 2	S s－D 3	S s－F 1	S s－F 2	S s－F 3	S s－N 1	S d－D 2
水平	374.8	375.9	354.4	－348． 3	394.8	344.9	－505． 5	262.9
鉛直	－1182． 7	1260.8	954.2	541.7	－792．5	－886． 3	882.0	733.7

9 耐震評価

9．1 評価方針

揚水井戸の評価は，添付書類「VI－2－6 耐震設計の基本方針」に基づき，応力解析による断面の評価を行うことで，構造部材の健全性評価及び基礎地盤の支持性能の確認を行う。
9.2 荷重及び荷重の組合せ

耐震評価に用いる荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

9．2．1 耐震評価上考慮する状態
耐震評価において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪の影響を考慮する。なお，埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の状態の影響を受けないことから考慮しない。

9．2．2 荷重
耐震評価において考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重を考慮する。
（2）積載荷重（P）
積載荷重として積雪荷重を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（P s ）
積雪荷重については，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測 された月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮した値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（S s ）
地震荷重については，「8．地震応答解析」で得られる基準地震動 S s 及び弾性設計用地震動 S d－D 2 に対する地盤の地表面相対変位最大時における変位を考慮する。

9．2．3 荷重の組合せ

耐震評価における荷重の組合せを表9－1 に，考慮する荷重の詳細を表9－2 に示す。表 9－1 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G：固定荷重
P：積載荷重（積雪荷重 P s を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s：地震荷重

表9－2 考慮する荷重

種別		荷重		算定方法
永 久 荷 重	固定 荷重	躯体自重	\bigcirc	－設計図書に基づいて，対象構造物の体積に材料の密度を乗じて設定する。
		機器•配管自重	－	－対象構造物に作用する機器•配管はないた め考慮しない。
		土被り荷重	\bigcirc	－上載盛土による土压を考慮する。
		積載荷重	\bigcirc	－積雪荷重を含めて 4.9 （ $\left.\mathrm{kN} / \mathrm{m}^{2}\right)$ を考慮する。
		静止土圧	\bigcirc	－水平•鉛直土圧を考慮する。
		外水圧	－	－地下水位はないため考慮しない。
		内水圧	－	－内水はないため考慮しない。
		積雪荷重	\bigcirc	－積載荷重に含めて考慮する。
		風荷重	－	－埋設構造物であることから考慮しない。
偶発荷重		水平地震動	\bigcirc	－基準地震動 S s による水平及び鉛直同時加振を考慮する。
		鋁直地震動	\bigcirc	

9.3 地下水位

地下水位はMMR 上限面とし，盛土，改良地盤については地下水以浅の物性を使用する。揚水井戸周辺の設計用地下水位を図 8－4 に示す。

9． 4 許容限界

9．4．1 構造部材の健全性に対する許容限界
許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。
鋼製シャフトの許容限界は，「日本道路協会 平成 14 年 3 月 道路橋示方書•同解説
I 共通編•II 鋼橋編」に基づき，表 9－3 示す短期許容応力度とする。

表9－3 鋼製シャフトの許容応力度及び短期許容応力度

鋼材	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容 応力度＊ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
	許容引張応力度及び 許容圧縮応力度 σ_{sa}	255	382
	許容せん断応力度 τ_{sa}	145	217

注記＊：「日本道路協会 平成14年3月 道路橋示方書•同解説 I 共通編•I鋼橋編」に より鋼材の許容応力度に対して 1.5 倍の割り増しを考慮する。

9．4．2 基礎地盤の支持性能に対する許容限界

基礎地盤に発生する接地圧に対する許容限界は，添付書類「V－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤の支持性能に対する許容限界を表 9－4 に示す。

表 9－4 基礎地盤の許容限界

評価項目	基礎地盤	許容限界（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
極限支持力	牧の浜部層	11.4

9.5 評価方法

9．5．1 構造部材の健全性評価

（1）解析方法及びモデル化方法
鋼製シャフトの応力解析は，「8．地震応答解析」で得られる地盤変位を用いた応答変位法を用いる。鋼製シャフトは曲げ及びせん断剛性を考慮した線形はり要素としてモデル化し，地盤は「道路橋示方書（I 共通編•IV下部構造編）」に基づき，受動土圧を上限値 としたバイリニア型の地盤ばねでモデル化する。地盤モデルの節点間隔は「原子力発電所耐震設計技術指針 J E A G 4 6 0 1 」に基づき，設定する。

解析モデルを図 9－1 に，地盤ばねの設定概要を図 9－2 に示す。

図 9－1 応答変位法解析モデル

地盤ばねの設定

地盤ばねは，以下の式に基づき水平地盤反力係数 k_{H} を考慮する。

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{H}}=\alpha_{\mathrm{K}} \cdot \mathrm{k}_{\mathrm{H} 0}\left(\mathrm{~B}_{\mathrm{H}} / 0.3\right)^{-3 / 4} \\
& \text { ここで, }
\end{aligned}
$$

k_{H} ：水平地盤反力係数 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
$\alpha_{\text {K }}$ ：地盤反力係数の換算係数 $(=1.0)$
$\mathrm{k}_{\mathrm{H} 0}$ ：水平方向地盤反力係数（kN／m ${ }^{3}$ ）
$\mathrm{k}_{\mathrm{H} 0}=(1 / 0.3) \cdot \mathrm{E}_{\mathrm{D}}$
$\mathrm{E}_{\mathrm{D}}=2 \cdot\left(1+v_{\mathrm{D}}\right) \cdot \mathrm{G}_{\mathrm{D}}$
$\mathrm{E}_{\mathrm{D}} \quad:$ 地盤の変形係数（kN／m²）
v_{D} ：動ポアソン比
$\mathrm{G}_{\mathrm{D}} \quad:$ 地盤の等価せん断剛性 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
地盤の等価せん断剛性は収束剛性 $G_{\text {eq }}$ を用いる。 $G_{e q}$ は図 8 -5 に示した入力地震動を図 8－3 の 1 次元地盤モデルに入力し， 1 次元波動論に基づく地盤応答解析により設定 する。地震応答解析には解析コードは「microSHAKE／3D ver2．3．1」を用いる。解析コードの検証及び妥当性碓認 の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。
B_{H} ：荷重作用方向に直交する基礎の換算載荷幅（m）

$$
B_{H}=(D / \beta)^{1 / 2}
$$

D ：鋼製シャフト外径（m）
β ：杭の特性値（ m^{-1} ）（ $\left.=\mathrm{k}_{\mathrm{H}} \cdot \mathrm{D} /(4 \cdot \mathrm{E} \cdot \mathrm{I})^{1 / 4}\right)$
E ：鋼製シャフトのヤング係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
I ：鋼製シャワトの断面 2 次モーメント（ m^{4} ）

地盤モデルの節点間隔は，以下の式に基づき設定する。

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}} / 20(\mathrm{~Hz}) \times 1 / 5 \\
& \text { ここで, } \quad \mathrm{V}_{\mathrm{S}} \quad: \text { せん断波速度 (初期剛性時) } \quad(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

図 9－2 地盤ばねの設定概要
（2）照査方法
応答変位法に用いる地盤変位は，解析ケース（1）の水平方向の地盤ばねを介して地表面の相対変位が最大となる時刻の変位分布を用いて照査を実施する。また，解析ケース（2），（3） の地表面相対変位が解析ケース（1）を上回る場合は，その変位分布を用いた照査も実施す る。曲げ・軸力系の破壊に対する照査式およびせん断破壊に対する照査式を以下に示す。 また，鋼製シャフトの断面性能を表9－5 に物性値を表9－6に示す。

曲げ・軸力系の破壊に対する照查
$\sigma_{\mathrm{s}}=\mathrm{N} / \mathrm{A}+\mathrm{M} / \mathrm{Z}$
ここで，$\quad \sigma_{\mathrm{s}}$ ：曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
N ：軸力（kN）
A ：断面積（腐食代 2 mm （内側： 1 mm ，外側： 1 mm ）考慮）（ mm ）
M ：曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
Z ：断面係数（腐食代 2 mm （内側： 1 mm ，外側： 1 mm ）考慮）（ mm^{3} ）

せん断破壊に対する照查
$\tau_{\mathrm{s}}=\kappa \cdot \mathrm{Q} / \mathrm{A}$
ここで，τ_{s} ：せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
κ ：形状係数（＝2（円筒形））
Q ：せん断力（kN）
A ：断面積（腐食代 2 mm （内側： 1 mm ，外側： 1 mm ）考慮）（ mm^{2} ）

表9－5 揚水井戸 鋼製シャフトの断面性能

標高 0．P．(m)	内径 (mm)	厚さ＊ (mm)	断面 2 次 モーメント $\left(\mathrm{mm}^{4}\right)$	断面係数 $\left(\mathrm{mm}^{3}\right)$	せん断断面積 $\left(\mathrm{mm}^{2}\right)$
$13.8 \sim-15.0$	1500	30	4.22×10^{10}	5.06×10^{7}	1.35×10^{5}

注記 $*: ~$ 鋼製シャフトの外面が土中に接し内面が湿潤状態となるため，各応力度の算定に当たっては，日本道路協会 平成 14 年 3 月道路橋示方書•同解説 I 共通編•IV下部構造編に基づき，内側及び外側に 1 mm の腐食代を考慮する。

表 9－6 揚水井戸 鋼製シャフトの材料物性

材料		単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	ヤング係数 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比
鋼材	SM570	77.0	2.0×10^{5}	0.3

9．5．2 基礎地盤の支持性能評価

鋼製シャフトの基礎地盤の支持性能評価は，「8．地震応答解析」で得られる地表面 の最大鉛直加速度を用いた鉛直震度と自重による地盤反力から接地圧を算定する。 なお，鉛直震度は保守的に深さによらず一律とし，以下の照査により評価を実施する。
$\mathrm{R} u=\mathrm{R} / \mathrm{A}$
ここで， Ru ：最大接地圧（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
R ：地盤反力（常時＋地震時）（kN）
A ：断面積（腐食代 2 mm （内側： 1 mm ，外側： 1 mm ）考慮）（ mm^{2} ）

9.6 評価結果

9．6．1 構造部材の健全性評価結果

（1）評価に用いる地盤変位
「8．地震応答解析」で得られる基準地震動 S s の解析ケース（1）の地表面の最大相対変位の比較を表 9－7 に，地表面の地盤変位が最大となる時刻の変位分布図を図 9－3 に示 す。鋼製シャフトは土中構造物であり周辺地盤の特徴から地盤改良と盛土との境界部にお いて曲げ・軸力系の応力が最大となり，当該部における曲率に比例的であると考えられる。各地震動では，変形モードの特徴から1次モードにおいて境界部の曲率が大きくなってお り，地表面の変形量に比例している。以上から，地表面の変位が最大となるS s－N 1 の地盤変位分布を用いて健全性評価を行う。

また，S s－N 1 を対象に，地盤物性のばらつきを考慮した解析ケース（2）及び解析ケー ス③の地表面の最大相対変位の比較を表 9－7に示す。これから，解析ケース③の最大相対変位は解析ケース①の最大相対変位を上回ることから，解析ケース③）の地盤変位を用い た検討も実施する。 S s－N 1（解析ケース（3）の地表面の地盤変位が最大となる時刻の変位分図を図 9－3 に示す。

表 9－7 地表面の最大相対変位の比較

解析ケース		地表面の最大相対変位（m）		
		ケース①	ケース②）	ケース③）
		基本ケース	地盤物性のばら つき（ $+1 \sigma$ ）を考慮した解析 ケース	地盤物性のばら つき（－1 $=$ ）を考慮した解析 ケース
地盤物性		平均値	平均値 $+1 \sigma$	平均値－1 σ
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \end{aligned}$	S s－D 1	0.115	－	－
	S s－D 2	0． 092	－	－
	S s－D 3	0． 101	－	－
	S s－F 1	0.096	－	－
	$\mathrm{St}-\mathrm{F} 2$	0． 107	－	－
	S s－F 3	0． 050	－	－
	$\mathrm{St}-\mathrm{N} 1$	0． 197	0． 189	0． 203

図 9－3（1）地表面の地盤変位最大時の変位分布図 （S s－D 1，解析ケース（1）

図 9－3（2）地表面の地盤変位最大時の変位分布図 （ S s－D 2 ，解析ケース（1）

図 9－3（3）地表面の地盤変位最大時の変位分布図 （ S s－D 3 ，解析ケース（1）

図 9－3（4）地表面の地盤変位最大時の変位分布図 （S s－F 1，解析ケース（1）

図 9－3（5）地表面の地盤変位最大時の変位分布図 （ S s－F 2 ，解析ケース（1）

図 9－3（6）地表面の地盤変位最大時の変位分布図
（ S s－F 3 ，解析ケース（1）

図 9－3（7）地表面の地盤変位最大時の変位分布図 （S s－N 1，解析ケース（1）

図 9－3（8）地表面の地盤変位最大時の変位分布図 （S s－N 1，解析ケース（2）

図 9－3（9）地表面の地盤変位最大時の変位分布図 （S s－N 1，解析ケース（3）
（2）評価結果
鋼製シャワトの応力解析から得られるS s—N 1（解析ケース（1）及びS s－N 1（解析ケース（3））の断面力分布図を図 9－4 に示す。また，鋼製シャフトの評価結果を表9－8 に示す。

図 9－4（1）断面力分布図（S s－N 1，解析ケース（1）
注記 $~: ~+引$ 張，一圧縮として示す

図 9－4（2）断面力分布図（S s－N 1，解析ケース（3））
注記 $*:+引$ 張，一圧縮として示す
6．5．3．9－92

表 9－8（1）鋼製シャフトの評価結果 曲げ・軸力系の破壊に対する照査

地震動	解析ケース	発生断面力		曲げ応力度$\sigma_{s}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
		$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
S s－N 1	（1）	11515	292	230	382	0.61
	（3）	11424	292	229	382	0． 60

表 9－8（2）鋼製シャフトの評価結果 せん断破壊に対する照査

地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
		せん断力 （kN）			
S s－N 1	（1）	5120	77	217	0.36
	（3）	5077	76	217	0． 36

9．6．2 基礎地盤の支持性能照査結果

（1）評価に用いる鉛直震度
「8．地震応答解析」で得られる基準地震動 S s 及び弾性設計用地震動 S d－D 2 の地表面における最大応答加速度から算定した鉛直震度の比較を表 9－9 に示す。これから，基礎地盤の支持性能照査は，S s－D 2 の鉛直震度を用いる。また，地盤物性のばらつき を考慮したS s－D 2 の解析ケース（2）及び解析ケース（3）の鉛直震度も表9－9に示す。

表 9－9 地表面における最大応答加速度から算定した鉛直震度の比較

解析ケース		鋁直震度		
		ケース①	ケース（2）	ケース（3）
		基本ケース	地盤物性のばら つき（＋1 of を考慮した解析 ケース	地盤物性のばら つき（－1o）を考慮した解析 ケース
	盤物性	平均値	平均値＋1 σ	平均値－1 σ
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \end{aligned}$	S s－D 1	1． 20	－	－
	S s -D 2	1．34	1． 33	1． 29
	Ss - D 3	1． 03	－	－
	S s－F 1	0． 55	－	－
	S s－F 2	0.77	－	－
	S s－F 3	0.83	－	－
	S s -N 1	0.87	－	－

（2）評価結果
鋼製シャフトの基礎地盤の支持性能照査結果を表 9－10に示す。

表 9－10 基礎地盤の支持性能評価結果

地震動	解析ケース	最大接地圧 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{ua}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{u}} / \mathrm{R}_{\text {ua }}$
$\mathrm{S} \mathrm{s} \mathrm{-D} 2$	(1)	5.5	11.4	0.49

（別紙1）ハッチ開放時におけるヒンジ部の評価

1．概要

ハッチ開放時におけるヒンジ部（ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピ ン，ヒンジ固定ボルト及びエンドプレート）について評価を行う。ハッチ開放時の荷重算定式を図 1 に示す。なお，各部材のモデル及び応力算定式については，本文「5．5．4 ハッチ」に示す とおりである。

軘禺里

平面図

$\mathrm{W}_{\mathrm{HR}}=\left(\mathrm{G}+\mathrm{P}_{\mathrm{s}}\right) \cdot \mathrm{k}_{\mathrm{H}}$
ここで，
$\mathrm{W}_{\mathrm{HP}}=(\mathrm{G}+\mathrm{P} \mathrm{s}) \cdot \mathrm{k}_{\mathrm{H}}$
$\mathrm{W}_{\mathrm{R}}=\mathrm{W}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{c}} / \mathrm{L}_{\mathrm{h}}$
$W_{v}=(G+P s)$
$+\left(\mathrm{G}+\mathrm{P}_{\mathrm{s}}\right) \cdot \mathrm{k}_{\mathrm{v}}$
$\mathrm{F}_{\mathrm{HR}}=\alpha_{1} \cdot \mathrm{~W}_{\mathrm{HR}}+\mathrm{W}_{\mathrm{R}}$
$\mathrm{F}_{\mathrm{HP}}=\alpha_{2} \cdot \mathrm{~W}_{\mathrm{HP}}$
$\mathrm{F}_{\mathrm{v} 1}=\alpha_{3} \cdot \mathrm{~W}_{\mathrm{V}}$
$\mathrm{F}_{\mathrm{v} 2}=\beta \cdot \mathrm{W}_{\mathrm{V}}$
W_{V} ：鉛直荷重（kN）
$\mathrm{W}_{\mathrm{HR}}:$ 水平荷重（回転軸直角方向）（kN）
W_{HP} ：水平荷重（回転軸平行方向）（kN）
W_{R} ：水平荷重（回転軸水平方向）による偶力（kN）
L_{c} ：ハッチ中心から回転軸までの水平距離（mm）
L_{h} ：ヒンジ支点間水平距離（mm）
G ：ハッチの固定荷重（kN）
P s ：積雪荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad:$ 基準地震動 S s の水平方向の設計震度
$\mathrm{k}_{\mathrm{V}} \quad$ ：基準地震動 S s の鉛直方向の設計震度
$F_{H R}$ ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
$F_{\text {HP }}$ ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
F ${ }_{\text {v } 1}$ ：ヒンジ部に作用する鉛直荷重（kN）
$\mathrm{F}_{\mathrm{v} 2}$ ：締付部に作用する鉛直荷重（kN）
$\alpha_{1}, \alpha_{2}, \alpha_{3}$ ：分担率 $\left(\alpha_{1}=0.5, \alpha_{2}=0.5, \alpha_{3}=0.1\right)$

図1 ハッチ開放時の構造概要及び荷重算定式

2．各部材の評価
ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン，ヒンジ固定ボルト及びエンド プレート）のモデル及び応力算定式については，本文「5．5．4 ハッチ」に示すとおりである。

3．評価条件
各部材の耐震評価に用いる入力値を表1に示す。

表1（1）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸直角方向）（1／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0.52
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	2． 34
	$L_{\text {h }}$	mm	ヒンジ支点間水平距離	135
	$L_{\text {V }}$	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4.08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9.25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0． 52
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3.60×10^{4}
	A	mm^{2}	断面積	5400
ヒンジ ピン	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0． 52
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	2． 34
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257

表1（2）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸直角方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0.52
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	2． 34
	L	mm	ヒンジ基部—ピン穴間距離	50
	$L_{\text {v }}$	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	P_{R}	kN	回転軸直角方向荷重による引張力	0． 13
	P_{P}	kN	回転軸平行方向荷重による引張力	0
	P_{v}	kN	鉛直方向荷重による引張力	0.59
	Z	mm^{3}	断面係数	1.15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160

表1（3）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸平行方向）（ $1 / 2$ ）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義	数值
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0.91
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0.52
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	2． 34
	L_{h}	mm	ヒンジ支点間水平距離	135
	L v	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm ${ }^{3}$	回転軸直角方向回りの断面係数（中間部）	9.25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm ${ }^{3}$	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5． 50×10^{4}
	A_{1}	mm ${ }^{2}$	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \end{gathered}$ 側）	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0.91
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0.52
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm ${ }^{3}$	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z 2	mm^{3}	回転軸直角方向回りの断面係数	3． 60×10^{4}
	A	mm^{2}	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0.98
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	2.34
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257

表1（4）ヒンジ部の耐震評価に用いる入力値（荷重：回転軸平行方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	0.91
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0.52
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	2． 34
	L	mm	ヒンジ基部—ピン穴間距離	50
	$L_{\text {v }}$	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	P_{R}	kN	回転軸直角方向荷重による引張力	0． 28
	P_{P}	kN	回転軸平行方向荷重による引張力	0.10
	P_{V}	kN	鉛直方向荷重による引張力	0.59
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160

4．評価結果
各部材の耐震評価結果を表2に示す。各部材の断面検定を行った結果，すべての部材において発生応力又は応力度が許容限界以下であることを確認した。

表2（1）ヒンジ部の耐震評価結果（荷重：回転軸直角方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	8	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	8	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
ヒンジプレート （スキンプレート側）	曲げ	1	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	1	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
ヒンジピン	曲げ	5	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	5	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
ヒンジ固定ボルト	引張	3	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	0． $02<1.0$
エンドプレート	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	0． $02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	3	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$

表2（2）ヒンジ部の耐震評価結果（荷重：回転軸平行方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$中間部	曲げ	9	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	9	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	5	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	2	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	2	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
ヒンジピン	曲げ	5	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	6	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
ヒンジ固定ボルト	引張	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	5	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
エンドプレート	曲げ	4	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$

（別紙2）地震時における浸水防止機能に係る評価

1．概要

浸水防止蓋は，鋼製シャフトからなる揚水井戸上部に固定ボルトで固定される構造であるが，地震時に鋼製シャフトの変形により浸水防止蓋接合部が損傷し，浸水防止機能を損なら可能性が ある。この接合部については，主要部材である鋼製シャフトの地震時における周方向の発生応力度が許容応力度以内に収まっていることで弾性変形内に抑えられ健全性が維持されるものと考え られることから，以下のとおり評価を行い浸水防止機能に問題がないか確認する。

浸水防止蓋接合部における鋼製シャフトの応力解析（周方向の検討）は，「9．5．1 構造部材 の健全性評価」の検討（応答変位法）より得られた地盤ばね反力に対し，地盤ばねの支配面積で除した地震時増分土圧を設定した静的解析とする。構造部材は円形状にモデル化した線形はり要素とし，「道路橋示方書（IV下部構造編）」のケーソン基礎の設計における地震時の荷重状態に做って地震時土圧を静的に作用させて，地震時の最大曲げモーメント及び軸力を算出する。荷重 を作用させる際，地盤ばねを取り付けることで，地盤による拘束効果を考慮する。荷重の作用方向について，評価断面は地表面の浸水防止蓋接合部であることを考慮し，片側から作用させた検討（片押し時）を行う。解析モデルを図 1 に示す。

静的解析の解析コードは「FRAME（面内）Ver5．0．7」を用いる。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 1 周方向断面の応力解析モデル

2．照査方法
照査は，基本ケースであるS s－N 1（解析ケース（1）を対象に照査を実施する。照査式を以下に示す。また，鋼製シャフトの断面性能を表1に示す。

```
\sigma c}=\textrm{N}/\textrm{A
    ここで, 杖 : 圧縮応力度 (N/mm
    N : 軸力 (kN)
    A : 断面積(腐食代 2 mm(内側: 1mm, 外側: 1 mm) 考慮) (mm2)
\sigma b}=\textrm{M}/\textrm{Z
    ここで, 汸 :曲げ応力度 (N/mm2)
    M : 曲げモーメント (kN•m)
    Z : 断面係数(腐食代 2 mm(内側: 1mm,外側: 1 mm) 考慮) (mm)
```

表1 揚水井戸 鋼製シャフト（浸水防止蓋接合部）の断面性能

位置	内径 (mm)	厚さ＊ (mm)	断面係数 $\left(\mathrm{mm}^{3}\right)$	断面積 $\left(\mathrm{mm}^{2}\right)$
地表面	1500	30	1.31×10^{5}	2.80×10^{4}

日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編に基づき，内側及び外側に 1 mm の腐食代を考慮する。

3．評価結果
応力解析から得られる断面力分布図を図 2 に，評価結果を表 2 に示す。
浸水防止蓋接合部の鋼製シャフトに発生する曲げ最大位置における発生応力度及び圧縮最大位置における発生応力度は許容応力度を下回ることから，地震時に対して浸水防止機能を損なわな いことを確認した。なお，揚水井戸と浸水防止蓋接合部のシール構造は，地震時の変位に追従で きるシール材を使用する。

図 2 断面力分布図（S s－N 1，解析ケース（1））

表2 鋼製シャフト（浸水防止蓋接合部）の評価結果
（S s－N 1，解析ケース（1）

		曲げ最大位置	圧縮最大位置
発生断面力	曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$	28	18
	軸力 (kN)	257	780
許容限界	圧縮応力度 $\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	10	28
	曲げ応力度 $\sigma_{\mathrm{b}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	215	138
照査値	軸圧縮許容応力度 $\sigma_{\mathrm{ca}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	382	382
	曲げ許容応力度 $\sigma_{\mathrm{ba}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	382	382

6．浸水防護施設に関する補足説明
6.5 浸水防止設備に関する補足説明
6．5．3 浸水防止蓋に関する補足説明
6．5．3． 10 浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））の強度計算書に関する 補足説明
目 次
1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 4
2.3 評価方針 5
2.4 適用基準 6
2.5 記号の説明 7
3．評価対象部位 12
4．構造強度評価 14
4.1 構造強度評価方法 14
4.2 荷重及び荷重の組合せ 14
4．3 許容限界 17
4． 4 評価方法 19
4.5 評価条件 37
5．評価結果 42

1．概要

本資料は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定 している構造強度に基づき，浸水防止設備のうち浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））（以下「浸水防止蓋」という。）が地震後の繰返しの襲来を想定した津波荷重及び余震を考慮した荷重に対して，主要な構造部材が十分な構造強度を有していることを説明す るものである。

なお，浸水防止蓋の強度評価においては，平成23年3月11日に発生した東北地方太平洋沖地震 による地殻変動に伴い，牡鹿半島全体で約1mの地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）上部から浸水を防止するた めに設置する。

浸水防止蓋の設置位置図を図 2－1 に，流入対策図を図2－2 に示す。

（平面図）

（断面図（揚水井戸（第3号機海水ポンプ室防潮壁区画内），南北方向））
図 2－1 浸水防止蓋の設置位置図

図2－2（1）第3号機 海水ポンプ室 流入対策配置図（平面図）

図2－2（2）第3号機海水ポンプ室 流入対策配置図（A－A 断面図）

2.2 構造計画

浸水防止蓋の構造は，円形のスキンプレートに受桁（H 型鋼）を組み合わせた浸水防止蓋と， メンテンナンス等のため開閉を行うハッチを組み合わせた構造とする。ハッチ部の開閉運用の詳細については，「6．5．3 浸水防止蓋に関する補足説明 参考資料1浸水防止蓋の開閉運用 について」に示す。

浸水防止蓋は，揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）上部に固定ボルトにて固定 する。浸水防止蓋の構造計画を表2－1に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		構造概略図
基礎• 支持構造	主体構造	
揚 水 井 戸 （第 3 号機海水ポンプ室防潮壁区画内）上部 に固定ボル トで固定す る。 受桁は揚水井戸に溶接 で固定す る。	浸 水 防 止蓋，受桁， ハッチ及び固定ボルト により構成 する。	

2．3 評価方針

浸水防止蓋の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」 に示す浸水防止蓋の構造を踏まえ，「3．評価対象部位」にて設定する評価部位において，「4．4 評価方法」で算出した応力等が許容限界内に収まることを，「4．構造強度評価」に示す方法にて確認する。強度評価の確認結果を「5．評価結果」にて確認する。

強度評価フローを図2－3に示す。

図 2－3 強度評価フロー

2.4 適用基準

適用する規格，基準等を以下に示す。
（1）日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—
（2）機械工学便覧（日本機械学会）
（3）ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）（基準解説編設備計画マニュ アル編）

2.5 記号の説明

浸水防止蓋の強度評価に用いる記号を表2－2にそれぞれ示す。

表2－2（1）浸水防止蓋の強度評価に用いる記号（スキンプレート，受桁，固定ボルト）

記号	単位	定義
S d	kN	弾性設計用地震動 S d－D 2 による余震荷重
α_{H}	－	弾性設計用地震動 S d－D 2 の水平方向の余震震度
α v	－	弾性設計用地震動 S d－D 2 の鉛直方向の余震震度
G	kN	固定荷重
Ph	kN	浸水津波荷重
ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	水の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
h_{1}	0．P．m	設計津波水位
h_{2}	0．P．m	浸水防止蓋の設置高さ
A	m^{2}	浸水防止蓋の面積
P s	kN	積雪荷重
W s	$\mathrm{N} / \mathrm{m}^{2}$	1 cm 当りの積雪荷重
d s	cm	積雪高さ
W s s	$\mathrm{kN} / \mathrm{m}^{2}$	単位面積当りの等分布荷重
W s s ${ }^{\text {，}}$	kN / m	単位長さ当りの等分布荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	kN • m	最大曲げモーメント
x	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度
L_{1}	mm	スキンプレートの支持短辺長さ
L_{2}	mm	スキンプレートの支持長辺長さ
L_{3}	mm	受桁の負担幅
L_{4}	mm	受桁全長
t	mm	スキンプレートの厚さ
N	本	浸水防止蓋に取り付く固定ボルトの本数
A＇	mm^{2}	固定ボルトの有効断面積
$\sigma{ }_{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト 1 本当りに作用する引張応力度
τ s	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト 1 本当りに作用するせん断応力度

表2－2（2）浸水防止蓋の強度評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義
共通	W_{HR}	kN	水平荷重（回転軸直角方向）
	W_{HP}	kN	水平荷重（回転軸平行方向）
	W_{V}	kN	鉛直荷重
	W_{R}	kN	水平荷重（回転軸水平方向）による偶力
	k_{H}	－	基準地震動S s の水平方向の設計震度
	k v	－	基準地震動S s の鉛直方向の設計震度
	G	kN	ハッチの固定荷重
	P s	kN	積雪荷重
	L ${ }_{\text {c }}$	mm	ハッチ中心から回転軸までの水平距離
	L_{h}	mm	ヒンジ支点間水平距離
	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	σ N	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	σ br	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	σ b P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	$\sigma \mathrm{bv} 1$	$\mathrm{N} / \mathrm{mm}^{2}$	鉛直方向荷重の曲げ応力度
	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のねじりせん断応力度
	$\tau \mathrm{Px}$	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	Z_{1}	mm ${ }^{3}$	回転軸平行方向回りの断面係数（中間部）
	Z_{2}	mm ${ }^{3}$	回転軸直角方向回りの断面係数（中間部）
	Z ${ }_{\text {p }}$	mm^{3}	極断面係数
	A	mm ${ }^{2}$	断面積

表2－2（3）浸水防止蓋の強度評価に用いる記号（ハッチ部）

評価 対象 部位	記号	単位	定義
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \end{gathered}$ 側）	σ N	$\mathrm{N} / \mathrm{mm}^{2}$	軸方向引張応力度
	$\sigma \mathrm{br}$	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重の曲げ応力度
	$\sigma \mathrm{b}$ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重の曲げ応力度
	$\tau \mathrm{R}$	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸直角方向荷重のせん断応力度
	τ P	$\mathrm{N} / \mathrm{mm}^{2}$	回転軸平行方向荷重のせん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ基部からピン穴間距離
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）
	A	mm^{2}	断面積
	B	mm	ヒンジプレート幅
	t	mm	ヒンジプレート板厚
ヒンジ ピン	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm^{3}	断面係数
	A	mm^{2}	ヒンジピンの断面積
	D	mm	ヒンジピンの直径

表2－2（4）浸水防止蓋の強度評価に用いる記号（ハッチ部）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義
ヒンジ 固定 ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	$P_{\text {R }}$	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{V}	kN	鉛直方向荷重による引張力
	Q	kN	ボルトせん断力
	Q_{R}	kN	回転軸直角方向によるせん断力
	Q_{P}	kN	回転軸平行方向によるせん断力
	L	mm	ヒンジ基部ーピン穴間距離
	L V	mm	回転軸平行方向のボルトピッチ
	L_{H}	mm	回転軸直角方向のボルトピッチ
	N_{H}	本	回転軸平行方向のボルト本数
	N_{V}	本	回転軸直角方向のボルト本数
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	P	kN	ボルト引張力
	P_{R}	kN	回転軸直角方向荷重による引張力
	P_{P}	kN	回転軸平行方向荷重による引張力
	P_{v}	kN	鉛直方向荷重による引張力
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm ${ }^{2}$	エンドプレートの有効断面積
	L	mm	ヒンジ板表面からボルト穴までの距離
	t	mm	エンドプレートの板厚

表2－2（5）浸水防止蓋の強度評価に用いる記号（ハッチ部）

$\begin{aligned} & \hline \text { 評価 } \\ & \text { 対象 } \end{aligned}$ 部位	記号	単位	定義
スイング ボルト	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	A	mm ${ }^{2}$	断面積
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	L	mm	ヒンジ支点間距離
	B	mm	荷重の載荷長
	Z	mm ${ }^{3}$	断面係数
	A	mm ${ }^{2}$	スイングボルトピンの断面積
	D	mm	スイングボルトピンの直径
$\begin{gathered} \text { ナット } \\ \text { 受部 } \end{gathered}$	σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
	τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
	x	$\mathrm{N} / \mathrm{mm}^{2}$	合成応力度
	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重
	L	mm	腕長さ
	Z	mm ${ }^{3}$	断面係数
	B	mm	有効断面幅
	A	mm ${ }^{2}$	ナット受部の有効断面積
	t	mm	ナット受部の板厚
スイング ボルト ピン受部	σ	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
	$\mathrm{R}_{\mathrm{v} 2}$	kN	スイングボルトピン受金具が負担する締付部に作用する鉛直荷重
	A	mm ${ }^{2}$	スイングボルトピン受部の断面積
	B	mm	スイングボルトピン受部の幅
	t	mm	スイングボルトピン受部の板厚

3．評価対象部位
浸水防止蓋の評価対象部位は，「2．2 構造計画」に設定している構造を踏まえて，津波荷重及び余震荷重の作用方向及び伝達過程を考慮し設定する。

浸水防止蓋の本体（ハッチ部以外）については，津波荷重及び余震に伴う慣性力がスキンプレ ートに伝わり，受桁及び固定ボルトを介して躯体に伝達されることから，スキンプレート，受桁及び固定ボルトを評価対象部位として設定する。

浸水防止蓋のハッチ部の運用について，原則閉止運用とするとともに，定期点検時等により開状態となる場合においても速やかに閉操作できる人員を，ハッチ付近に待機させる運用とするこ とから（詳細は，「6．5．3 浸水防止蓋に関する補足説明 参考資料1 浸水防止蓋の開閉運用に ついて」に示す。），閉止時を基本とした荷重の作用方向及び伝達過程を考慮する。ハッチ部に作用する慣性力は，ヒンジ部（ヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン， ヒンジ固定ボルト及びエンドプレート）及び締付部（スイングボルト，スイングボルトピン，ナ ット受部及びスイングボルトピン受部）を介して受桁に伝達されることから，ヒンジ部及び締付部の各部位を評価対象部位として設定する。

浸水防止蓋の評価対象部位を，図 $3-1$ に示す。

図 3－1（1）評価対象部位（スキンプレート，受桁及び固定ボルト）

（ハッチ部の構造概要）

（ヒンジ部の評価対象部位）

図 3－1（2）評価対象部位（ハッチ部）

4．構造強度評価

4.1 構造強度評価方法

浸水防止蓋の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「4．3 許容限界」にて示す許容限界以下であることを確認する。

4．2 荷重及び荷重の組合せ

4．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを下記に示す。

$$
\begin{aligned}
& \mathrm{G}+\mathrm{P} \mathrm{~h}+\mathrm{S} \mathrm{~d}+\mathrm{P} \mathrm{~s} \\
& \text { ここで, } \mathrm{G} \\
& \mathrm{P} \text { h } \text { : 固定荷重 }(\mathrm{kN}) \\
& \mathrm{S} \text { d } \text { : 余震荷重 }(\mathrm{kN}) \\
& \mathrm{P} \text { s } \text { : 積雪荷重 }(\mathrm{kN})
\end{aligned}
$$

4．2．2 荷重の設定

強度評価に用いる荷重は以下のとおりとする。
（1）固定荷重（G）
固定荷重として，浸水防止蓋を構成する部材の自重を考慮する。
（2）浸水津波荷重（P h ）
浸水津波荷重は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，津波高さ及び浸水防止蓋の設置高さを考慮した静水圧を次式により算出する。

```
\(\mathrm{P} \mathrm{h}=\rho_{\circ} \cdot \mathrm{g} \cdot\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) \cdot \mathrm{A}\)
    ここで, \(\quad \rho_{0}\) : 水の密度 \(1.03\left(\mathrm{t} / \mathrm{m}^{3}\right)\)
            g : 重力加速度 \(9.80665\left(\mathrm{~m} / \mathrm{s}^{2}\right)\)
            \(h_{1}\) : 設計津波水位 (0.P. m)
            \(\mathrm{h}_{2}\) : 浸水防止蓋の設置高さ (0. P. m)
            A : 浸水防止蓋の面積 \(\left(\mathrm{m}^{2}\right)\)
```

（3）積雪荷重（P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付書類「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

積雪荷重による質量は以下に式より算出する。
$\mathrm{P} \mathrm{s}=0.35 \cdot \mathrm{~W} \mathrm{~s} \cdot \mathrm{~d} \mathrm{~s} \cdot \mathrm{~A} \cdot 10^{-3}$
ここで， P s ：積雪荷重（kN）
W s ：1cm 当りの積雪荷重 $20 ~(~(~ / ~ m ~ m ~) ~$
d s ：積雪高さ 43 （ cm）
A ：浸水防止蓋の面積（ m^{2} ）
（4）余震荷重（ S d ）
余震荷重として，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力及び動水圧荷重を考慮す るものとし，水平方向については，弾性設計用地震動 S d－D 2 に伴う地震力を考慮する。鉛直方向については，弾性設計用地震動 S d－D 2 に伴う地震力と動水圧荷重を考慮する。 なお，浸水防止蓋の強度評価に用いる余震震度は，地盤物性の不確かさを考慮したもの として添付書類「VI－2－10－2－8－3 浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））の耐震性についての計算書」の地震応答解析結果を用いる。

強度評価で用いる揚水井戸（第3号機海水ポンプ室防潮壁区画内）の最大加速度を表 4 － 1 に，余震震度を表4－2に示す。

地震力は，浸水防止蓋の固定荷重，浸水津波荷重及び積雪荷重に余震震度を乗じた次式 により算出する。
$\mathrm{S} d=(\mathrm{G}+\mathrm{Ph}+\mathrm{Ps}) \cdot \alpha_{\mathrm{H}}$
$\mathrm{S} \mathrm{d}=(\mathrm{G}+\mathrm{Ph}+\mathrm{Ps}) \cdot \alpha_{\mathrm{v}}$

ここで，$\quad \mathrm{Sd}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による余震荷重（kN）
G ：固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による水平方向の余震震度
α_{V} ：弾性設計用地震動 S d－D 2 による鉛直方向の余震震度

表 4－1（1）地盤の地表面最大加速度（水平方向）

地震動	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
$\mathrm{S} \mathrm{d}-\mathrm{D} 2$	ケース（2）	265.6

表 4－1（2）地盤の地表面最大加速度（鉛直方向）

地震動	解析ケース	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
$\mathrm{S} \mathrm{d}-\mathrm{D} 2$	ケース（1）	759.8

表 4－2 余震震度

設置場所	床面高さ（m）	弾性設計用地震動S d－D 2 の余震震度	
		水平方向 α_{H}	鉛直方向 $\alpha_{\text {v }}$
揚水井戸 （第3号機海水ポン プ室防潮壁区画内）	0．P．14．0	0． 28	0． 78

4．3 許容限界

浸水防止蓋の許容限界は，「3．評価対象部位」にて設定した部位に対し，添付書類「VI－ 3 －別添 3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏ま えて設定する。

4．3．1 使用材料

浸水防止蓋を構成する各部材の使用材料を表4－3に示す。

表 4－3 使用材料

評価対象部位	材質	仕様
スキンプレート	SM490Y	$\mathrm{t}=16(\mathrm{~mm})$
ハッチ	SM490Y	$\mathrm{t}=16(\mathrm{~mm})$
受桁	SM490Y	$\mathrm{H}-150 \times 150 \times 7 \times 10$（mm）
固定ボルト	SM490Y	M16
ヒンジプレート	SM490Y	ハッチ側 $\mathrm{t}=25$（mm） スキンプレート側 $\quad \mathrm{t}=40(\mathrm{~mm})$
ヒンジピン	SM490Y	径 40 （mm）
ヒンジ固定ボルト	SM490Y	M20
エンドプレート	SM490Y	$\mathrm{t}=32(\mathrm{~mm})$
スイングボルト	SM490Y	M16
スイングボルトピン	SM490Y	径 16 （mm）
ナット受部	SM490Y	$\mathrm{t}=16(\mathrm{~mm})$
スイングボルトピン受部	SM490Y	$\mathrm{t}=9(\mathrm{~mm})$

4．3．2 許容限界

（1）スキンプレート，受桁，固定ボルト
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—」 を踏まえて表4－4の値とする。

表 4－4 鋼材の短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
	曲げ	せん断
SM490Y	325	188

（2）ハッチ部
ハッチを構成する各部材の許容値は，「ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）（基準解説編設備計画マニュアル編）」を踏まえて表4－5の値とする。

表 4－5 ハッチを構成する各部材の許容限界

評価対象部位	材質	短期許容応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）		
		曲げ	せん断	引張
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$	SM490Y	265	153	－
$\begin{gathered} \text { ヒンジプレート } \\ \text { (スキンプレート側) } \end{gathered}$	SM490Y	265	153	－
ヒンジピン	SM490Y	265	153	－
ヒンジ固定ボルト	SM490Y	265	153	－
エンドプレート	SM490Y	265	153	－
スイングボルト	SM490Y	－	－	265
スイングボルトピン	SM490Y	273	157	－
ナット受部	SM490Y	273	157	－
スイングボルトピン受部	SM490Y	－	－	273

4． 4 評価方法

浸水防止蓋を構成する各部材に発生する応力より算定する応力度が，許容限界以下であるこ とを確認する。

4．4．1 スキンプレート
スキンプレートの支持条件は四辺固定とし，図 4－1 に示すとおり，評価上最も厳しい条件となるよう評価を実施する。曲げ応力度及びせん断応力度は「機械工学便覧（日本機械学会）」より以下の式にて算出する。
（1）弾性設計用地震動 S d－D 2 による余震荷重 S d
$\mathrm{Sd}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha \mathrm{v}$ ここで，$\quad \mathrm{Sd}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による余震荷重（ kN ）

G ：スキンプレートの固定荷重（kN）
Ph ：浸水津波荷重（kN）
Ps ：積雪荷重（kN）
$\alpha_{V} \quad$ ：弾性設計用地震動 S d－D 2 の鉛直方向の余震震度
（2）スキンプレートに作用する単位面積当りの鉛直方向の荷重W s s

$$
\mathrm{W} \mathrm{~s} \mathrm{~s}=(\mathrm{G}+\mathrm{Ph}+\mathrm{Sd}+\mathrm{Ps}) / \mathrm{A}
$$

ここで，W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）

G ：スキンプレートの固定荷重（kN）
Ph ：浸水津波荷重（kN）
S d ：弾性設計用地震動 S d－D 2 による余震荷重（kN）
P s ：積雪荷重（kN）
A ：浸水防止蓋の面積 $\left(\mathrm{m}^{2}\right)$
（3）スキンプレートに作用する最大曲げ応力度 σ
スキンプレートに作用する曲げ応力度は「機械工学便覧（日本機械学会」に基づき次式 により算出する。

$$
\begin{aligned}
& \sigma=\beta_{2} \cdot \mathrm{~W} \text { s } \mathrm{s} \cdot \mathrm{~L}_{1}{ }^{2} \cdot 10^{-3} / \mathrm{t}^{2} \\
& \text { ここで, } \sigma \quad \text { : スキンプレートに作用する最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \beta_{2} \text { : スキンプレートの辺長比に応じた係数 } \\
& \text { Ws s : スキンプレートに作用する単位面積当りの鉛直方向の等分 } \\
& \text { 布荷重 (} \mathrm{kN} / \mathrm{m}^{2} \text {) } \\
& \mathrm{L}_{1} \text { : スキンプレートの支持短辺長さ (mm) } \\
& \mathrm{t} \text { : スキンプレートの厚さ (mm) }
\end{aligned}
$$

（4）スキンプレートに作用する最大せん断応力度 τ
スキンプレートに作用するせん断応力度は「機械工学便覧（日本機械学会）」に基づき次式により算出する。

$$
\tau=\mathrm{W} \text { s s } \cdot \mathrm{L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-3} /\left(\mathrm{t} \cdot\left(\mathrm{~L}_{1}+\mathrm{L}_{2}\right) \cdot 2\right)
$$

ここで，$\tau \quad$ ：スキンプレートに作用する最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
W s s ：スキンプレートに作用する単位面積当りの鉛直方向の等分布荷重（kN／m²）
L_{1} ：スキンプレートの支持短辺長さ (mm)
L_{2} ：スキンプレートの支持長辺長さ (mm)
t ：スキンプレートの厚さ（mm）
（5）スキンプレートに作用する組合せ応力度
スキンプレートに作用する曲げ応力度，せん断応力度を算定し，スキンプレートの短期許容応力度以下であることを確認する。また，スキンプレートに生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法—」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \quad \mathrm{x} \\
& \\
& \\
& \\
& \\
& \\
& \tau
\end{aligned} \quad \text { : 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

図 4－1 評価の対象とするスキンプレート

4．4．2 受桁

受桁の支持条件は両端を固定支持とし，受桁が負担する荷重は保守的にスキンプレート に上載される積雪荷重，スキンプレートの固定荷重の全重量及び地震荷重を受桁に作用さ せる。図4－2に評価の対象とする受桁を示す。
（1）弾性設計用地震動 S d－D 2 による余震荷重 S d

$$
\mathrm{S} d=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{~s}) \cdot \alpha_{\mathrm{v}}
$$

ここで，$\quad \mathrm{Sd}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による余震荷重（ kN ）
G：スキンプレートと受桁の固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{V} \quad$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ の鉛直方向の余震震度
（2）受桁に作用する単位長さ当りの鉛直方向の荷重W s s＇

$$
\mathrm{W} \mathrm{~s}_{\mathrm{s}}{ }^{\prime}=(\mathrm{G}+\mathrm{Ph}+\mathrm{S} \mathrm{~d}+\mathrm{P} \mathrm{~s}) \cdot \mathrm{L}_{1} \cdot 10^{-3} / \mathrm{A}
$$

ここで，W S s，：受桁に作用する単位長さ当りの鉛直方向の等分布荷重

$$
\left(\mathrm{kN} / \mathrm{m}^{2}\right)
$$

G ：スキンプレートと受桁の固定荷重（kN）
Ph ：浸水津波荷重（kN）
S d ：弾性設計用地震動 S d－D 2 による余震荷重（kN）
P s ：積雪荷重（kN）
L_{1} ：受桁の負担幅（mm）
A ：スキンプレートの面積（ m^{2} ）
（3）受桁に作用する最大せん断応力度 τ

$$
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A} \mathrm{~s}
$$

τ ：受桁に作用する最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：受桁に作用する最大せん断力（kN）
A s ：受桁のせん断断面積（ mm^{2} ）
ここで， $\mathrm{Q}=1 / 2 \cdot \mathrm{~W}$ s s ${ }^{\prime} \cdot \mathrm{L}_{2} \cdot 10^{-3}$
Q ：受桁に作用する最大せん断力（kN）
W s s ，：受桁に作用する単位長さ当りの鉛直方向の等分布荷重（ kN / m ）
L_{2} ：受桁全長（mm）
（4）受桁に作用する最大曲げ応力度 σ

$$
\begin{aligned}
& \sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z} \\
& \sigma \text { : 受桁に作用する最大曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \text { M : 受桁に作用する最大曲げモーメント (kN•m) } \\
& \mathrm{Z} \text { : 受桁の断面係数 (} \mathrm{mm}^{3} \text {) } \\
& \text { ここで, } \mathrm{M}=1 / 8 \cdot \mathrm{~W} \text { s s' • }\left(\mathrm{L}_{4} \cdot 10^{-3}\right)^{2} \\
& \text { M : 受桁に作用する最大曲げモーメント (kN•m) } \\
& \text { W s s , : 受桁に作用する単位長さ当りの鉛直方向の等分布荷重 (} \mathrm{kN} / \mathrm{m} \text {) } \\
& \mathrm{L}_{2} \text { : 受桁全長 (mm) }
\end{aligned}
$$

（5）受桁に作用する組合せ応力度
受桁に作用する曲げ応力度，せん断応力度を算定し，受桁の短期許容応力度以下である ことを確認する。また，受桁に生じる曲げ応力度とせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準一許容応力度設計法一」に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \mathrm{x} \text { : 組合せ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \sigma \text { : 曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \tau \text { : せん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

図 4－2 評価の対象とする受桁

4．4．3 固定ボルト

図 4－3 に固定ボルトの納まりを示す。
（1）弾性設計用地震動 S d－D 2 による水平方向の余震荷重 S d
$\mathrm{Sd}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{H}}$
ここで， Sd ：弾性設計用地震動 S d－D 2 による水平方向の余震荷重 （kN）

G ：浸水防止蓋の固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
$\alpha_{\mathrm{H}} \quad$ ：弾性設計用地震動 S d－D 2 の水平方向の余震震度
（2）弾性設計用地震動 S d－D 2 による鉛直方向の余震荷重 S d $\mathrm{S} d=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{v}}$

ここで，$\quad \mathrm{Sd}$ ：弾性設計用地震動 Sd －D 2 による鉛直方向の余震荷重 （kN）
G ：浸水防止蓋の固定荷重（kN）
Ph ：浸水津波荷重（kN）
P s ：積雪荷重（kN）
α V ：弾性設計用地震動 S d－D 2 の鉛直方向の余震震度
（3）固定ボルト 1 本当たりに生じる引張応力度 σ t

$$
\begin{aligned}
& \sigma_{\mathrm{t}}=\mathrm{T} \mathrm{~s} \cdot 10^{3} / \mathrm{A} \text {, } \\
& \text { ここで, } \quad \mathrm{Ts}=\mathrm{S} \mathrm{~s} / \mathrm{N} \\
& \sigma_{\mathrm{t}} \text { : 固定ボルト } 1 \text { 本当りに生じる引張応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \mathrm{T} \mathrm{~s} \text { : 固定ボルト } 1 \text { 本当りに生じる引張応力度 (} \mathrm{kN} \text {) }
\end{aligned}
$$

S d ：弾性設計用地震動 d d－D 2 による鉛直方向の余震荷重（kN）
N ：浸水防止蓋に取り付く固定ボルトの本数
A ：固定ボルトの有効断面積（ mm^{2} ）
（4）固定ボルト 1 本当たりに生じるせん断応力度 $\tau \mathrm{s}$
$\tau_{\mathrm{s}}=\mathrm{q}_{\mathrm{s}} \cdot 10^{3} / \mathrm{A}^{\prime}$
ここで，$\quad \mathrm{q}_{\mathrm{s}}=\mathrm{S} \mathrm{s} / \mathrm{N}$
τ s：固定ボルト1本当りに作用するせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
q ：固定ボルト 1 本当りに作用するせん断力（kN）
Sd ：弾性設計用地震動 S d－D 2 による水平方向の余震荷重（ kN ）
N ：浸水防止蓋に取り付く固定ボルトの本数
A ：固定ボルトの有効断面積（ mm^{2} ）

固定ボルト

図 4－3 固定ボルトの納まり

4． 4.4 ハッチ固定部

ハッチのヒンジ部及び締付部の構造概要を図 4－4に，荷重算定式を図 4－5 に示す。ヒ ンジ部及び締付部の評価は，荷重の作用方向及び伝達過程を考慮する。ヒンジ部について はヒンジプレート（ハッチ側，スキンプレート側），ヒンジピン，ヒンジ固定ボルト及び エンドプレートについて評価を行う。締付部については，スイングボルト，スイングボル トピン，ナット受部及びスイングボルトピン受部について評価を行う。

図4－4（1）ヒンジ部の構造概要

図4－4（2）締付部の構造概要

$\mathrm{W}_{\mathrm{HR}}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{H}}$
ここで，
$\mathrm{W}_{\mathrm{HP}}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{H}}$
$W_{\mathrm{V}}=(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s})$
$+(\mathrm{G}+\mathrm{Ph}+\mathrm{P} \mathrm{s}) \cdot \alpha_{\mathrm{v}}$
$\mathrm{F}_{\mathrm{HR}}=\alpha_{1} \cdot \mathrm{~W}_{\mathrm{HR}}+\mathrm{W}_{\mathrm{R}}$
$\mathrm{F}_{\mathrm{HP}}=\alpha_{2} \cdot \mathrm{~W}_{\mathrm{HP}}$
$\mathrm{F}_{\mathrm{v} 1}=\alpha_{3} \cdot \mathrm{~W}_{\mathrm{V}}$
$\mathrm{F}_{\mathrm{v} 2}=\beta \cdot \mathrm{W}_{\mathrm{v}}$

図 4－5 ハッチの構造概要及び荷重算定式

4．4．4．1 ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）の中間部及びハッチ接合部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（ハッチ側） のモデル図及び応力算定式を図4－6に示す。

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）中間部
$\sum \sigma=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bP}}+\sigma_{\mathrm{bV} 1}$ ここで
$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}_{1} \quad \sigma_{\mathrm{N}}$ ：軸方向引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{h}} / \mathrm{Z}_{2} \quad \sigma_{\mathrm{bP}} \quad:$ 回転軸平行方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bV} 1}=\mathrm{F}_{\mathrm{V} 1} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{1}$
$\sigma_{\mathrm{b} V 1}$ ：鉛直方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{P} ：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\Sigma \tau^{2}=\tau_{\mathrm{P}}+\tau_{\mathrm{v}} \quad \tau_{\mathrm{v}}$ ：鉛直方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{\mathrm{p}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A}$
x ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau_{\mathrm{v}}=\mathrm{F}_{\mathrm{v}_{1}} / \mathrm{A}$
$F_{\text {HR }}$ ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
F v 1 ：ヒンジ部に作用する鉛直荷重（kN）
$\mathrm{L}_{\mathrm{h}} \quad$ ：ヒンジ支点間水平距離（mm）
Z_{1} ：回転軸平行方向回りの断面係数（中間部）（mm $\left.{ }^{3}\right)$
Z_{2} ：回転軸直角方向回りの断面係数（中間部）（mm $\left.{ }^{3}\right)$
A_{1} ：ヒンジプレート（ハッチ側）の断面積（mm²）

図 4－6（1）ヒンジプレート（ハッチ側）のモデル図及び中間部の応力算定式

ヒンジプレート（ハッチ側）

ヒンジプレート（ハッチ側）ハッチ接合部
$\Sigma \sigma_{0}=\sigma_{\mathrm{N}}+\sigma_{\mathrm{bP}}+\sigma_{\mathrm{bVV}}$ ここで，
$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}_{1} \quad \sigma_{\mathrm{N}} \quad:$ 軸方向引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L}_{\mathrm{h}} / \mathrm{Z}_{2} \quad \sigma_{\mathrm{bP}} \quad$ ：回転軸平行方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bV} 1}=\mathrm{F}_{\mathrm{V} 1} \cdot \mathrm{~L}_{\mathrm{h}} / \mathrm{Z}_{1} \quad \sigma_{\mathrm{bV} 1}$ ：鉛直方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
τ_{P} ：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\Sigma \tau^{=} \tau_{\mathrm{p}}+\tau_{\mathrm{v}} \quad \tau_{\mathrm{v}} \quad$ ：鉛直方向荷重のせん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A} \quad \mathrm{x}$ ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau_{\mathrm{v}}=\mathrm{F}_{\mathrm{v} 1} / \mathrm{A}$
$F_{\text {HR }}$ ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
$F_{\text {HP }}$ ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
F v 1 ：ヒンジ部に作用する鉛直荷重（kN）
$\mathrm{L}_{\mathrm{h}} \quad$ ：ヒンジ支点間水平距離（mm）
Z_{1} ：回転軸平行方向回りの断面係数（中間部）（mm $\left.{ }^{3}\right)$
Z_{2} ：回転軸直角方向回りの断面係数（中間部）（mm $\left.{ }^{3}\right)$
A_{1} ：ヒンジプレート（ハッチ側）の断面積（ mm^{2} ）

図 4－6（2）ヒンジプレート（ハッチ側）のモデル図及びハッチ接合部の応力算定式

4．4．4．2 ヒンジプレート（スキンプレート側）

ヒンジプレート（スキンプレート側）のエンドプレート接合部に発生する曲げ応力度， せん断応力度，合成応力度が許容限界以下であることを確認する。ヒンジプレート（スキ ンプレート側）のモデル図及び応力算定式を図 4－7に示す。

$\sum \sigma^{\prime}=\sigma_{\mathrm{N}}+\sigma_{\mathrm{br}}+\sigma_{\mathrm{bP}}$		
$\sigma_{\mathrm{N}}=\mathrm{F}_{\mathrm{V} 1} / \mathrm{A}$	σ N	：軸方向引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bR}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{Z}_{1}$	$\sigma \mathrm{br}$	：回転軸直角方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\sigma_{\mathrm{bP}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{Z}_{2}$	$\sigma \mathrm{b}$ P	：回転軸平行方向荷重の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
	τ_{R}	：回転軸直角方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\Sigma \tau^{\prime}=\tau_{\mathrm{R}}+\tau_{\mathrm{P}}$	$\tau \mathrm{P}$	：回転軸平行方向荷重のせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} / \mathrm{A}$	x	：合成応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} / \mathrm{A}$	F_{HR}	：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
	F_{HP}	：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$	L	：ヒンジ基部からピン穴間距離（mm）
	Z_{1}	：回転軸平行方向回りの断面係数（ mm^{3} ）
	Z_{2}	：回転軸直角方向回りの断面係数 $\left(\mathrm{mm}^{3}\right)$
	A	：ヒンジプレート（スキンプレート側）の断面積 （mm ${ }^{2}$ ）
	B	：ヒンジプレート幅（mm）
	t	：ヒンジプレート板厚（mm）

図 4－7 ヒンジプレート（スキンプレート側）のモデル図及び応力算定式

4．4．4．3 ヒンジピン

ヒンジピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であるこ とを確認する。ヒンジピンのモデル図及び応力算定式を図4－8に示す。

$$
\begin{aligned}
& \sigma=\mathrm{F} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} \text { ここで, } \\
& \mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{HR}}{ }^{2}+\mathrm{F}_{\mathrm{V} 1}{ }^{2}} \\
& \tau=\mathrm{F} / 2 / \mathrm{A} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { F v } 1 \text { : ヒンジ部に作用する鉛直荷重 (kN) } \\
& \text { B : 荷重の載荷長 (mm) } \\
& \text { Z : 断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \text { A : ヒンジピンの断面積 (} \mathrm{mm}^{2} \text {) } \\
& \text { D : ヒンジピンの直径 }\left(\mathrm{mm}^{2}\right)
\end{aligned}
$$

図 4－8 ヒンジピンのモデル図及び応力算定式

4．4．4．4 ヒンジ固定ボルト
ヒンジ固定ボルトに発生する引張応力度，せん断応力度，合成応力度が許容限界以下で あることを確認する。ヒンジ固定ボルトのモデル図及び応力算定式を図4－9に示す。

$\sigma=\mathrm{P} / \mathrm{A}_{4}$
$\mathrm{P}=\mathrm{P}_{\mathrm{R}}+\mathrm{P}_{\mathrm{P}}+\mathrm{P}_{\mathrm{V}}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}}$
$\mathrm{P}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{H}} / \mathrm{N}_{\mathrm{V}}$ $\mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{v}}\right)$
$\tau=\mathrm{Q} / \mathrm{A}_{4}$
$\mathrm{Q}=\sqrt{\mathrm{Q}_{\mathrm{R}}{ }^{2}+\mathrm{Q}_{\mathrm{P}}{ }^{2}}$
$\mathrm{Q}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{Q}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma \quad$ ：引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau \quad:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P ：ボルト引張力（kN）
P_{R} ：回転軸直角方向荷重による引張力（ $k N$ ）
P_{P} ：回転軸平行方向荷重による引張力（kN）
P_{V} ：鉛直方向荷重による引張力（kN）
Q ：ボルトせん断力（kN）
Q_{R} ：回転軸直角方向によるせん断力（kN）
Q_{P} ：回転軸平行方向によるせん断力（kN）
F_{HR} ：ヒンジ部に作用する水平荷重（回転軸直角方向）（kN）
F_{HP} ：ヒンジ部に作用する水平荷重（回転軸平行方向）（kN）
F V1 ：ヒンジ部に作用する鉛直荷重（kN）
L：ヒンジ基部一ピン穴間距離（mm）
L v ：回転軸平行方向のボルトピッチ（mm）
$L_{\mathrm{H}} \quad$ ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V} ：回転軸直角方向のボルト本数

図 4－9 ヒンジ固定ボルトのモデル図及び応力算定式

4．4．4．5 エンドプレート

ヒンジプレート（スキンプレート側）に接合されヒンジ部固定ボルトにより支持される エンドプレートに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下である ことを確認する。エンドプレートのモデル図及び応力算定式を図4－10に示す。

$\sigma=\mathrm{P} \cdot \mathrm{L} / \mathrm{Z}$
$P=P_{R}+P_{P}+P_{V}$
$\mathrm{P}_{\mathrm{R}}=\mathrm{F}_{\mathrm{HR}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{V}} / \mathrm{N}_{\mathrm{H}}$
$\mathrm{P}_{\mathrm{P}}=\mathrm{F}_{\mathrm{HP}} \cdot \mathrm{L} / \mathrm{L}_{\mathrm{H}} / \mathrm{N}_{\mathrm{V}}$
$\mathrm{P}_{\mathrm{V}}=\mathrm{F}_{\mathrm{V} 1} /\left(\mathrm{N}_{\mathrm{H}} \cdot \mathrm{N}_{\mathrm{V}}\right)$
$\mathrm{Z}=\mathrm{B} \cdot \mathrm{t}^{2} / 6$
$\tau=\mathrm{P} / \mathrm{A}$
$\mathrm{A}=\mathrm{B} \cdot \mathrm{t}$
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma \quad$ ：曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau \quad:$ せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
x ：合成応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P ：ボルト引張力（kN）
P_{R} ：回転軸直角方向荷重による引張力（ kN ）
P_{P} ：回転軸平行方向荷重による引張力（kN）
P_{V} ：鋁直方向荷重による引張力（kN）
Z ：断面係数 $\left(\mathrm{mm}^{3}\right)$
B ：有効断面幅（mm）
A ：エンドプレートの有効断面積（ mm^{2} ）
L ：ヒンジ板表面からボルト穴までの距離（mm）
t ：エンドプレートの板厚（mm）
L_{V} ：回転軸平行方向のボルトピッチ（mm）
L_{H} ：回転軸直角方向のボルトピッチ（mm）
N_{H} ：回転軸平行方向のボルト本数
N_{V}
：回転軸直角方向のボルト本数

図 4－10 エンドプレートのモデル図及び応力算定式

4．4．4．6 スイングボルト

スイングボルトに発生する引張応力度が許容限界以下であることを確認する。スイング ボルトのモデル図及び応力算定式を図4－11 に示す

図 4－11 スイングボルトのモデル図及び応力算定式

4．4．4．7 スイングボルトピン

スイングボルトピンに発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下 であることを確認する。スイングボルトピンのモデル図及び応力算定式を図4－12に示す。

$$
\begin{aligned}
& \sigma=\mathrm{F}_{\mathrm{V}_{2}} \cdot(2 \cdot \mathrm{~L}-\mathrm{B}) / 8 / \mathrm{Z} \\
& \tau=\mathrm{F}_{\mathrm{V} 2} / 2 / \mathrm{A} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
\end{aligned}
$$

ここで,

$$
\sigma \quad \text { : 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\tau=\mathrm{F}_{\mathrm{v} 2} / 2 / \mathrm{A} \quad \tau \quad: \text { せん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
$$

$$
\mathrm{x} \quad: \text { 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{F}_{\mathrm{v} 2} \text { : 締付部に作用する鉛直荷重 (kN) }
$$

$$
\mathrm{L} \quad: \text { ヒンジ支点間距離 (mm) }
$$

B : 荷重の載荷長 (mm)

$$
\mathrm{Z} \quad \text { : 断面係数 }\left(\mathrm{mm}^{3}\right)
$$

A : スイングボルトピンの断面積 (mm²)

図 4－12 スイングボルトピンのモデル図及び応力算定式

4．4．4．8 ナット受部

スイングボルトのナットから荷重を伝達するナット受部に発生する曲げ応力度，せん断応力度，合成応力度が許容限界以下であることを確認する。ナット受部のモデル図及び応力算定式を図4－13に示す

$$
\begin{aligned}
& \sigma=\mathrm{F}_{\mathrm{v}_{2}} \cdot \mathrm{~L} / \mathrm{Z} \\
& \mathrm{Z}=\mathrm{B} \cdot \mathrm{t}^{2} / 6 \\
& \tau=\mathrm{F}_{\mathrm{v}_{2}} / \mathrm{A} \\
& \mathrm{~A}=\mathrm{B} \cdot \mathrm{t} \\
& \mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
\end{aligned}
$$

ここで,

$$
\sigma \quad \text { : 曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) }
$$

$$
\tau \quad: \text { せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{x} \quad: \text { 合成応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
$$

$$
\mathrm{F}_{\mathrm{v} 2} \text { : 締付部に作用する鉛直荷重 (kN) }
$$

$$
\mathrm{L} \quad: \text { 腕長さ (mm) }
$$

$$
\mathrm{Z} \quad \text { : 断面係数 }\left(\mathrm{mm}^{3}\right)
$$

B ：有効断面幅（mm）
A ：ナット受部の有効断面積（ mm^{2} ）
t ：ナット受部の板厚（mm）

図 4－13 ナット受部のモデル図及び応力算定式

4．4．4．9 スイングボルトピン受部
スイングボルトピンを支持し，ハッチ部（スキンプレート側）に荷重を伝達するスイン グボルトピン受部に発生する引張応力度が許容限界以下であることを確認する。スイング ボルトピン受部のモデル図及び応力算定式を図 4－14に示す

$$
\begin{aligned}
& \sigma=\mathrm{R}_{\mathrm{V}_{2}} / \mathrm{A} \\
& \mathrm{R}_{\mathrm{V}_{2}}=\mathrm{F}_{\mathrm{V}_{2}} / 2
\end{aligned}
$$

ここで，
$\sigma \quad$ ：引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
R v 2 ：スイングボルトピン受部が負担する締付部に作用する鉛直荷重（kN）

F v 2 ：締付部に作用する鉛直荷重（kN）
A ：スイングボルトピン受部断面積（ mm^{2} ）

図 4－14 スイングボルトピン受部のモデル図及び応力算定式

4．5 評価条件

浸水防止蓋の強度評価に用いる入力値を表 4－6に示す。

表 4－6（1）浸水防止蓋の強度評価に用いる入力値（スキンプレート，受桁，固定ボルト）

評価対象部位	記号	単位	定義	数値
$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	G	kN	スキンプレートの固定荷重	4． 94
	P h	kN	浸水津波荷重	132.78
	h_{1}	0．P．m	設計津波水位	19． 5
	h_{2}	0．P．m	浸水防止蓋の設置高さ	14.0
	P s	kN	積雪荷重	0． 72
	A	m^{2}	スキンプレートの面積	2． 39
	L_{1}	mm	スキンプレートの支持短辺長さ	770
	L_{2}	mm	スキンプレートの支持長辺長さ	927
	β_{2}	－	スキンプレートの辺長比に応じた係数	0.4
	t	mm	スキンプレートの厚さ	16
受桁	G	kN	スキンプレートと受桁の固定荷重	6． 14
	P h	kN	浸水津波荷重	132.78
	h_{1}	0．P．m	設計津波水位	19． 5
	h_{2}	0．P．m	浸水防止蓋の設置高さ	14.0
	P s	kN	積雪荷重	0． 72
	L_{3}	mm	受桁の負担幅	822
	L_{4}	mm	受桁全長	1485
	A	m^{2}	受桁のせん断断面積	910
	Z	mm^{4}	受桁の断面係数	2.13×10^{5}
固定 ボルト	G	kN	スキンプレートの固定荷重	4.94
	P h	kN	浸水津波荷重	132.78
	h_{1}	0．P．m	設計津波水位	19． 5
	h_{2}	0．P．m	浸水防止蓋の設置高さ	14.0
	P s	kN	積雪荷重	0.72
	N	本	浸水防止蓋に取り付く固定ボルトの本数	24
	A ${ }^{\prime}$	mm2	固定ボルトの有効断面積	157

表 4－6（2）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸直角方向）（ $1 / 2$ ）

$\begin{aligned} & \hline \text { 評価 } \\ & \text { 対象 } \end{aligned}$ 部位	記号	単位	定義	数値
$\begin{gathered} \text { ヒンジ } \\ \text { プレート } \\ \text { (ハッチ } \\ \text { 側) } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4． 47
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.68
	L_{h}	mm	ヒンジ支点間水平距離	135
	L V	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{array}{\|c} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \\ \text { 側) } \end{array}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4． 47
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3． 60×10^{4}
	A	mm^{2}	断面積	5400
$\begin{gathered} \text { ヒンジ } \\ \text { ピン } \end{gathered}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4.47
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.68
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm ${ }^{3}$	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	4.47
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	0
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.68
	L	mm	ヒンジ基部ーピン穴間距離	50
	L V	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表 4－6（3）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸直角方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{aligned} & \text { エンド } \\ & \text { プレート } \end{aligned}$	P_{R}	kN	回転軸直角方向荷重による引張力	1． 12
	P_{P}	kN	回転軸平行方向荷重による引張力	0
	P_{V}	kN	鉛直方向荷重による引張力	1． 42
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.68
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.68
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5． 68
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5． 68
	A	mm^{2}	断面積	121.50

表 4－6（4）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸平行方向）（ $1 / 2$ ）

$\begin{aligned} & \text { 評価 } \\ & \text { 対象 } \\ & \text { 部位 } \end{aligned}$	記号	単位	定義	数値
$\begin{aligned} & \text { ヒンジ } \\ & \text { プレート } \\ & \text { (ハッチ } \\ & \text { 側) } \end{aligned}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	7.80
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	4.47
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.68
	L_{h}	mm	ヒンジ支点間水平距離	135
	L V	mm	ヒンジ支点間鉛直距離	35
	Z_{1}	mm^{3}	回転軸平行方向回りの断面係数（中間部）	4． 08×10^{4}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数（中間部）	9． 25×10^{4}
	Z_{3}	mm^{3}	回転軸平行方向回りの断面係数（接合部）	1． 02×10^{5}
	Z_{4}	mm^{3}	回転軸直角方向回りの断面係数（接合部）	1． 49×10^{5}
	Z_{p}	mm^{3}	極断面係数	5.50×10^{4}
	A_{1}	mm^{2}	断面積（中間部）	3500
	A_{2}	mm^{2}	断面積（接合部）	6600
$\begin{array}{\|c} \text { ヒンジ } \\ \text { プレート } \\ \text { (スキン } \\ \text { プレート } \\ \text { 側) } \end{array}$	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	7.80
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	4． 47
	L	mm	ヒンジ基部からピン穴間距離	50
	Z_{1}	mm ${ }^{3}$	回転軸平行方向回りの断面係数	1． 22×10^{5}
	Z_{2}	mm^{3}	回転軸直角方向回りの断面係数	3． 60×10^{4}
	A	mm ${ }^{2}$	断面積	5400
ヒンジ ピン	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	7.80
	$\mathrm{F}_{\mathrm{v} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.68
	L	mm	ヒンジ支点間距離	69
	B	mm	荷重の載荷長	40
	Z	mm^{3}	断面係数	6283
	A	mm^{2}	断面積	1257
ヒンジ 固定 ボルト	F_{HR}	kN	ヒンジ部に作用する水平荷重（回転軸直角方向）	7.80
	F_{HP}	kN	ヒンジ部に作用する水平荷重（回転軸平行方向）	4． 47
	$\mathrm{F}_{\mathrm{V} 1}$	kN	ヒンジ部に作用する鉛直荷重	5.68
	L	mm	ヒンジ基部ーピン穴間距離	50
	L_{V}	mm	回転軸平行方向のボルトピッチ	140
	L_{H}	mm	回転軸直角方向のボルトピッチ	100
	N_{H}	本	回転軸平行方向のボルト本数	2
	N_{V}	本	回転軸直角方向のボルト本数	2

表4－6（5）浸水防止蓋の強度評価に用いる入力値（荷重：回転軸平行方向）（2／2）

評価 対象 部位	記号	単位	定義	数値
$\begin{gathered} \text { エンド } \\ \text { プレート } \end{gathered}$	P_{R}	kN	回転軸直角方向荷重による引張力	1.95
	P_{P}	kN	回転軸平行方向荷重による引張力	0． 80
	P_{V}	kN	鉛直方向荷重による引張力	1． 42
	Z	mm^{3}	断面係数	1． 15×10^{4}
	B	mm	有効断面幅	67.5
	A	mm^{2}	有効断面積	2160
スイング ボルト	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.68
	A	mm^{2}	断面積	157
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5.68
	L	mm	ヒンジ支点間距離	30
	B	mm	荷重の載荷長	17
	Z	mm^{3}	断面係数	402
	A	mm^{2}	断面積	201
ナット 受部	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5． 68
	L	mm	腕長さ	35
	Z	mm^{3}	断面係数	2987
	B	mm	有効断面幅	70
	A	mm^{2}	有効断面積	1120.0
$\begin{gathered} \text { スイング } \\ \text { ボルト } \\ \text { ピン受部 } \end{gathered}$	$\mathrm{F}_{\mathrm{v} 2}$	kN	締付部に作用する鉛直荷重	5． 68
	A	mm^{2}	断面積	121.50

5．評価結果
浸水防止蓋の強度評価結果を表5－1に示す。各部材の断面検定を行った結果，全ての部材にお いて発生応力又は応力度が許容限界以下であることを確認した。

表 5－1（1）浸水防止蓋の強度評価結果（スキンプレート，受桁，固定ボルト）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
スキンプレート	曲げ	96	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	0． $30<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	97	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.30<1.0$
受桁	曲げ	111	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.35<1.0$
	せん断	70	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.38<1.0$
	組合せ	165	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.51<1.0$
固定ボルト	引張	29	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
	せん断	11	$\mathrm{N} / \mathrm{mm}^{2}$	188	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$

表 5－1（2）浸水防止蓋の強度評価結果（荷重：回転軸直角方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	21	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	21	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	10	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	10	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	3	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	せん断	1	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.01<1.0$
	組合せ	4	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
ヒンジピン	曲げ	15	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	15	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
ヒンジ固定ボルト	引張	11	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	5	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	14	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
エンドプレート	曲げ	10	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	11	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
スイングボルト	引張	37	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
スイングボルト ピン	曲げ	76	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.28<1.0$
	せん断	15	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.10<1.0$
	組合せ	80	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.27<1.0$
ナット受部	曲げ	67	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.25<1.0$
	せん断	6	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	68	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.23<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	24	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	0． $09<1.0$

表 5－1（3）浸水防止蓋の強度評価結果（荷重：回転軸平行方向）

評価対象部位		発生値 （応力度又は荷重）		許容限界		検定値
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \end{gathered}$ 中間部	曲げ	28	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.11<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	29	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.10<1.0$
$\begin{gathered} \text { ヒンジプレート } \\ \text { (ハッチ側) } \\ \text { ハッチ接合部 } \end{gathered}$	曲げ	13	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	13	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
	組合せ	26	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
$\begin{aligned} & \text { ヒンジプレート } \\ & \text { (スキンプレート側) } \end{aligned}$	曲げ	11	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
	せん断	3	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	12	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.05<1.0$
ヒンジピン	曲げ	19	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.08<1.0$
	せん断	4	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1.0$
	組合せ	20	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
ヒンジ固定ボルト	引張	18	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	せん断	10	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	組合せ	24	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$
エンドプレート	曲げ	17	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.07<1.0$
	せん断	2	$\mathrm{N} / \mathrm{mm}^{2}$	153	$\mathrm{N} / \mathrm{mm}^{2}$	$0.02<1.0$
	組合せ	17	$\mathrm{N} / \mathrm{mm}^{2}$	291	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1.0$
スイングボルト	引張	37	$\mathrm{N} / \mathrm{mm}^{2}$	265	$\mathrm{N} / \mathrm{mm}^{2}$	$0.14<1.0$
スイングボルト ピン	曲げ	76	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.28<1.0$
	せん断	15	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.10<1.0$
	組合せ	80	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	0． $27<1.0$
ナット受部	曲げ	67	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.25<1.0$
	せん断	6	$\mathrm{N} / \mathrm{mm}^{2}$	157	$\mathrm{N} / \mathrm{mm}^{2}$	$0.04<1.0$
	組合せ	68	$\mathrm{N} / \mathrm{mm}^{2}$	300	$\mathrm{N} / \mathrm{mm}^{2}$	$0.23<1.0$
$\begin{gathered} \text { スイングボルト } \\ \text { ピン受部 } \end{gathered}$	引張	24	$\mathrm{N} / \mathrm{mm}^{2}$	273	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1.0$

6．浸水防護施設に関する補足資料
6.5 浸水防止設備に関する補足説明

6．5．3 浸水防止蓋に関する補足説明
6．5．3．11 浸水防止蓋（第2号機軽油タンクエリア）の耐震性についての計算書に関する補足説明

目 次

1．概要 6．5．3．11－1
2．一般事項 6．5．3．11－2
2.1 配置概要 6．5．3．11－2
2．2 構造計画 6．5．3．11－3
2.3 評価方針 6．5．3．11－4
2.4 適用規格•基準等 6．5．3．11－5
2.5 記号の説明 6．5．3．11－6
3．評価対象部位 6．5．3．11－8
4．固有値解析 6．5．3．11－9
4． 1 固有振動数の計算方法 6．5．3．11－9
4．2 固有振動数の計算条件 6．5．3．11－10
4．3 固有振動数の計算結果 6．5．3．11－11
5．構造強度評価 6．5．3．11－12
5.1 構造強度評価方法 6．5．3．11－12
5.2 荷重及び荷重の組合せ 6．5．3．11－12
5.3 許容限界 6．5．3．11－14
5.4 設計用地震力 6．5．3．11－16
5.5 評価方法 6．5．3．11－17
5.6 評価条件 6．5．3．11－21
6．評価結果 6．5．3．11－23

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度に基づき，浸水防護施設のうち地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋
（No．1），（No．2）及び地下軽油タンク機器搬出入用浸水防止蓋（以下「浸水防止蓋」と いう。）が設計用地震力に対して，主要な構造部材が十分な構造健全性を有することを確認するものである。その耐震評価は，浸水防止蓋の固有値解析及び応力評価により行 う。

浸水防止蓋は，浸水防護施設としてSクラス施設に分類される。以下，浸水防護施設 としての構造強度評価を示す。

なお，浸水防止蓋の耐震評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，屋外タンク等の損傷による浸水及び補機泠却海水系放水路からの浸水を防止するために設置する。

浸水防止蓋の設置位置図を図2－1，浸水対策配置図を図2－2に示す。

図 2－1 浸水防止蓋の設置位置図（軽油タンクエリア上部）

図 2－2 軽油タンクエリア 浸水対策配置図

2.2 構造計画

浸水防止蓋は，軽油タンクエリア上部（開口部）に固定ボルトにて固定することで止水性を確保する構造とする。浸水防止蓋の構造計画を表2－1に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
軽油タンク エリア上部 （開口部） に固定ボル トで固定す る。	浸水防止蓋及び固定ボ ルトにより構成する。	地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋 （No．1），（No．2）

枠囲みの内容は商業機密の観点から公開できません。

6．5．3．11－3

2.3 評価方針

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定 した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」にて示す浸水防止蓋の構造を踏まえ「3．評価対象部位」にて設定する評価対象部位において，
「4．固有値解析」で算出した固有振動数に基づく設計用地震力により算出した応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認する。応力評価の確認結果を「6．評価結果」にて確認する。

耐震評価フローを図2－3に示す。

図 2－3 耐震評価フロー
2.4 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）発電用原子力設備規格 設計•建設規格（2005 年版（2007 年追補版含む）J S MES N C 1 －2005／2007（日本機械学会））（以下，設計•建設規格という。）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984（日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（4）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会）（以下「JEAGG601」と記載しているものは上記3指針を指す。）
（5）機械工学便覧（日本機械学会）
（6）日本産業規格（ J I S ）

2.5 記号の説明

浸水防止蓋の耐震評価に用いる記号を表 2－2に示す。

表 2－2 耐震評価に用いる記号（ $1 / 2$ ）

記号	単位	定義
a	mm	浸水防止蓋の幅（長辺）
b	mm	浸水防止蓋の長さ（短辺）
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
t	mm	浸水防止蓋の厚さ
m	kg	浸水防止蓋を構成する部材の重量
D	N	固定荷重
P s	Pa	積雪荷重
F	MPa	許容応力算定用基準値 設計•建設規格 SSB－3121．1（1）a．（b）に定める， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
f_{b}	MPa	許容曲げ応力 設計•建設規格 SSB－3121．1（4）に定める値とする。
f s	MPa	許容せん断応力 設計•建設規格 SSB－3121．1（2）に定める値とす る。
f t	MPa	許容引張応力 設計•建設規格 SSB－3121．1（1）に定める値とする。
$\mathrm{ff}_{\mathrm{ts}}$	MPa	せん断応力と引張応力を同時に受けるボルトの許容引張応力
$\mathrm{S}_{\text {y }}$	MPa	設計•建設規格の付録図表Part5 表 8 に規定される材料の設計降伏点
S u	MPa	設計•建設規格の付録図表Part5 表 9 に規定される材料の設計引張強さ
C_{H}	－	基準地震動 S s による水平方向の設計震度
C_{v}	－	基準地震動S s による鉛直方向の設計震度
$\mathrm{K}_{\mathrm{Hs} \mathrm{s}}$	N	基準地震動S s による水平方向の地震荷重
$\mathrm{K}_{\mathrm{V} \text { s s }}$	N	基準地震動 S s による鉛直方向の地震荷重
A	mm^{2}	浸水防止蓋の面積
ω	$\mathrm{Pa} / \mathrm{cm}$	積雪の単位荷重
$\beta 2$	－	浸水防止蓋の曲げ応力算定に用いる係数
$\sigma \mathrm{bss}$	MPa	浸水防止蓋に加わる曲げ応力
σ	MPa	浸水防止蓋に発生する曲げ応力とせん断応力の組合せ応力
τ s s	MPa	浸水防止蓋に加わるせん断応力
A_{b}	mm^{2}	ボルトの断面積
n	本	ボルトの本数

表 2－2 耐震評価に用いる記号（2／2）

記号	単位	定義
$\tau_{\mathrm{ks} \mathrm{s}}$	MPa	ボルト1本当たりに加わるせん断応力
$\mathrm{f}_{\mathrm{t} 0}$	MPa	ボルトに作用する許容引張応力（ f_{t} を 1.5 倍した値）$)$

3．評価対象部位

浸水防止蓋の評価対象部位は，「2．2 構造計画」にて設定している構造を踏まえて，地震に伴う荷重の作用方向及び伝達過程を考慮し設定する。

浸水防止蓋に対して積雪及び地震（S s ）による荷重が作用し，これらの荷重は鋼製 の浸水防止蓋から浸水防止蓋を固定している鋼製の固定ボルトに伝達することから，主要構成部材である浸水防止蓋及び固定ボルトを評価対象部位として設定する。

浸水防止蓋の耐震評価における評価対象部位について図3－1 及び図3－2 に示す。

図 3－1 評価対象部位（地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋
(No. 1) , (No. 2))

図 3－2 評価対象部位（地下軽油タンク機器搬出入用浸水防止蓋）

4．固有値解析

4． 1 固有振動数の計算方法
浸水防止蓋の構造に応じて解析モデルを設定し，固有振動数を算出する。

4．1．1 解析モデルの設定
浸水防止蓋は，全周囲を固定ボルトにて固定された構造であることから，荷重 がかかる浸水防止蓋は図 4－1に示す周辺固定の長方形板モデルとする。

図 4－1 浸水防止蓋の概略モデル

4．1．2 記号の説明
浸水防止蓋の固有振動数算出に用いる記号を表4－1 に示す。

表 4－1 固有振動数算出に用いる記号

記号	単位	定義
T	S	固有周期
f	Hz	一次固有振動数
b	mm	浸水防止蓋の長さ（短辺）
t	mm	浸水防止蓋の厚さ
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
λ	－	振動数係数（板モデルの固有振動数算出）
E	MPa	縦弾性係数 設計•建設規格の付録材料図表Part6 表1より温度 を考慮して求めた値
ρ	$\mathrm{kg} / \mathrm{m}^{3}$	材料の密度
v	－	ポアソン比

4．1．3 固有振動数の算出方法
固有周期T及び周辺固定の長方形板モデルの一次固有振動数 f は，「機械工学便覧（日本機械学会）」より，次式を用いて算出する。

$$
\mathrm{T}=\frac{1}{\mathrm{f}}
$$

$$
\mathrm{f}=\frac{\lambda \cdot \pi \cdot \frac{\mathrm{t}}{2}}{2 \cdot \mathrm{~b}^{2}} \sqrt{\frac{\mathrm{E} \cdot \mathrm{~g}}{3 \cdot\left(1-v^{2}\right) \cdot \rho}}
$$

4．2 固有振動数の計算条件

表 4－2 に固有振動数の計算条件を示す。

表 4－2 固有振動数の計算条件（ $1 / 2$ ）

設備名称	材質	浸水防止蓋の厚さ t（mm）	浸水防止蓋 の幅 a（mm）	浸水防止蓋 の長さ b（mm）	振動数係数 $\lambda * 1$
地下軽油タンク 燃料移送ポンプ室 アクセス用浸水防止蓋 （No．1），（No．2）	SUS304	16	1． 336×10^{3}	1． 070×10^{3}	2． 74
地下軽油タンク機器搬出入用浸水防止蓋	SUS304	16	1． 336×10^{3}	1． 030×10^{3}	2． 74

表 4－2 固有振動数の計算条件（2／2）

温度条件＊2 $\left({ }^{\circ} \mathrm{C}\right)$	縦弾性係数 $\mathrm{E}(\mathrm{MPa})$	重力加速度 $\mathrm{g}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	ポアソン比 v	材料の密度 ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
40	1.94×10^{5}	9.80665	0.3	7.93×10^{3}

注記 $* 1$ ：浸水防止蓋の振動数係数 λ は，いずれも $1<\mathrm{a} / \mathrm{b}<1.5$ のため，より小さな値 として算出される $\mathrm{a} / \mathrm{b}=1.5$ の場合の定数 $\lambda=2.74$ を用いた。
＊2：屋外設備としての環境条件を考慮する。

4．3 固有振動数の計算結果
固有振動数の計算結果を表 4－3に示す。固有振動数は 20 Hz 以上であることから，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数（Hz）
地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋 （No．1）（No．2）	90.03
地下軽油タンク機器搬出入用浸水防止蓋	97.16

5．構造強度評価

5.1 構造強度評価方法

浸水防止蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下 であることを確認する。

5.2 荷重及び荷重の組合せ

5．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを下記に示す。
$\mathrm{D}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{s}}$
ここで，D ：固定荷重
S s ：基準地震動 S s による地震荷重
Ps ：積雪荷重

5．2．2 荷重の設定
耐震評価に用いる荷重は以下のとおりとする。
（1）固定荷重（D）
常時作用する固定荷重として，浸水防止蓋を構成する部材の自重を考慮し，以下の式により算出する。

$$
\mathrm{D}=\mathrm{m} \cdot \mathrm{~g}
$$

ここで，D ：固定荷重（N）
m ：浸水防止蓋を構成する部材の重量（kg）
$\mathrm{g} \quad:$ 重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
（2）基準地震動 S s による地震荷重（ S s ）
地震荷重として，基準地震動 S s に伴う慣性力を考慮する。地震荷重は，浸水防止蓋の固定荷重及び積雪荷重に設計震度を乗じた次式により算出する。

地震荷重を以下の式より算出する。

$$
\begin{aligned}
& K_{\mathrm{Hs} \mathrm{~s}}=C_{\mathrm{H}} \cdot\left(\mathrm{D}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right) \\
& \mathrm{K}_{\mathrm{V} \mathrm{~s} \mathrm{~s}}=\mathrm{C}_{\mathrm{V}} \cdot\left(\mathrm{D}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right)
\end{aligned}
$$

ここで， $\mathrm{K}_{\mathrm{Hss}}$ ：基準地震動 S s による水平方向の地震荷重（N）
$K_{V \mathrm{~s}}$ ：基準地震動 S s による鉛直方向の地震荷重（N）
C_{H} ：基準地震動 S S による水平方向の設計震度
C_{V} ：基準地震動 S s による鉛直方向の設計震度
D ：固定荷重（N）

A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
（3）積雪荷重（ P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付資料「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。

積雪荷重による質量を以下の式より算出する。
$\mathrm{P}_{\mathrm{s}}=0.35 \cdot \omega \cdot 43$
ここで， P_{s} ：積雪荷重（ Pa ）
$\omega \quad$ ：積雪の単位荷重 20 （ $\mathrm{Pa} / \mathrm{cm}$ ）

5．3 許容限界

許容限界は，添付資料「VI－2－1－9 機能維持の基本方針」にて設定している許容限界を踏まえて設定する。

5．3．1 使用材料

浸水防止蓋を構成する浸水防止蓋，固定ボルト①）固定ボルト（2）及び固定ボル ト③の使用材料を表5－1に示す。

表 5－1 使用材料

評価対象部位	材質	仕様
浸水防止蓋	SUS304	厚さ 16 mm
固定ボルト（1）（3）	SUS304	M16

5．3．2 許容限界

浸水防止蓋の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」の
「3．1 構造強度上の制限」にて設定している許容限界を踏まえ，設計•建設規格に準じた許容応力を用いる。

なお，浸水防止蓋の浮き上がりによるボルトの引張が起こらないため，発生応力においては引張を考慮しないことから，引張応力及び組合せ応力については許容限界を設定しない。

浸水防止蓋及び固定ボルトの許容限界を表5－2に，許容応力評価条件を表5－3 に，許容応力算出結果を表5－4にそれぞれ示す。

表 5－2 浸水防止蓋及び固定ボルトの許容限界（許容応力）

許容応 力状態	許容限界 $*^{1}$（ MPa ）					
	浸水防止蓋			固定ボルト（1）（2）（3）		
	一次応力			一次応力		
	曲げ＊3	せん断＊4	組合せ＊5	引張＊6	せん断＊7	組合せ＊8
$\mathrm{III}_{A} \mathrm{~S}^{* 2}$	$1.5 \cdot \mathrm{f}$ b	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{ff}_{\text {t }}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$	$\mathrm{f}_{\mathrm{t} \text { s }}$

注記＊1：曲げ及びせん断は，J E A G 4 6 O 1 を準用し，「その他の支持構造物」の許容限界を適用する。組合せは，設計•建設規格による。
＊2：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成 する材料が弾性域内に収まることを基本とする。
＊ 3 ：許容曲げ応力 1.5 • f bは，以下の式により算出する。

$$
1.5 \cdot \mathrm{f}_{\mathrm{b}}=1.5 \cdot(\mathrm{~F} / 1.5)
$$

＊4：許容せん断応力 1.5 • f sは，以下の式により算出する。

$$
1.5 \cdot \mathrm{f}_{\mathrm{s}}=1.5 \cdot(\mathrm{~F} / 1.5 \sqrt{ } 3)
$$

＊ 5 ：曲げ応力とせん断応力を同時に受ける浸水防止蓋の許容組合せ応力 1.5 • f_{t} は，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{t}}=1.5 \cdot(\mathrm{~F} /$
＊ 6 ：許容引張応力 $1.5 \cdot \mathrm{f}$ t は，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{t}}=1.5 \cdot(\mathrm{~F} / 2)$
＊7：許容せん断応力 1.5 • f s は，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{s}}=1.5 \cdot(\mathrm{~F} / 1.5 \sqrt{ } 3)$
＊8：せん断応力と引張応力を同時に受けるボルトの許容引張応力 $\mathrm{f} \mathrm{t}_{\mathrm{s}}$ は，次のい ずれか小さい方の値から算出する。
$\mathrm{f}_{\mathrm{ts}}=1.4 \cdot \mathrm{f}_{\mathrm{t}}{ }_{0}-1.6 \tau_{\mathrm{ks} \mathrm{s}}$
$\mathrm{f}_{\mathrm{ts}}=\mathrm{f}_{\mathrm{t}} \mathrm{o}$

表 5－3 許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} S_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
浸水防止蓋	SUS304	40	205	520	205
固定ボルト①					
固定ボルト（2）					
固定ボルト③					

注記＊： $\mathrm{F}=\mathrm{Min}\left[\mathrm{S}_{\mathrm{y}}, 0.7 \cdot \mathrm{~S}_{\mathrm{u}}\right]$ とする。

表 5－4 許容応力算出結果

許容応力状態	評価対象部位	許容限界 （ボルト以外）			許容限界 （ボルト）	
		一次応力			一次応力	
		曲げ （MPa）	せん断 （MPa）	組合せ （MPa）	引張 （MPa）	せん断 （MPa）
III ${ }_{\text {A }} \mathrm{S}$	浸水防止蓋	204	117	204	－	－
	固定ボルト①	－	－	－	－	117
	固定ボルト（2）	－	－	－	－	117
	固定ボルト（3）	－	－	－	－	117

5.4 設計用地震力

「4．固有値解析」に示したとおり，浸水防止蓋の固有振動数が 20 Hz 以上である ことを確認したため，浸水防止蓋の耐震評価に用いる設計震度は，添付書類「VI－2－ 1－7 設計用床応答曲線の作成方針」に示す軽油タンク室（ポンプ室）における最大応答加速度の 1.2 倍を考慮して設定する。

耐震評価で用いる設計震度を表5－5に示す。
なお，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき作成した，海水ポンプ室（補機ポンプエリア）の基準地震動 S s に対する設計用震度（強度評価用：1．2ZPA）を表5－6に示す。

表 5－5 設計震度

地震動	設置場所及び床面高さ (m)	水平方向設計震度 $\mathrm{C}_{\mathrm{H}}{ }^{*}$	鉛直方向設計震度 $\mathrm{C}_{\mathrm{V}}{ }^{*}$
基準地震動	軽油タンク室（ポンプ室） S s	0．P． 13.80	0.95

注記 $~: ~ 「 4 . ~$ 固有値解析」より，浸水防止蓋の固有振動数が 20 Hz 以上であることを確認 していること，また，機器•配管系として設計していることから，最大応答加速度の 1.2 倍を考慮した設計震度を設定した。

表 5－6 軽油タンク室（ポンプ室）内機器等の評価用震度
（強度評価用：1．2ZPA）（基準地震動 S s 7 波包絡，不確かさ包絡）

$\begin{gathered} \hline \text { 標高 }{ }^{* 1} \\ \text { O.P.(m) } \end{gathered}$	動的震度（1．2ZPA）		（単位：G）	
	NS（ポンプ室）	EW（ポンプ室）	水平包絡	鉛直
14.8	1.69	1.55	1.69	0.95
9.5	1.30	1.27	1.30	0.91

注記＊1：耐津波設計においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴う，牡鹿半島全体で約 1 m の地盤沈下を考慮するた め，表記 0．P．より－1mした値を記載する。

5.5 評価方法

浸水防止蓋，固定ボルト① ，固定ボルト（2）及び固定ボルト（3）に発生する応力より算出する応力度が，許容限界以下であることを確認する。図5－1，図5－2 に評価の対象 とする浸水防止蓋及び固定ボルトを示す。

5．5．1 浸水防止蓋

四辺を固定された長方形板に等分布荷重が作用した際に，浸水防止蓋に発生す る曲げ応力及びせん断応力は，「機械工学便覧（日本機械学会）」より以下の式に て算出する。
（1）最大曲げ応力
$\sigma_{\mathrm{bss}}=\frac{\beta_{2} \cdot\left(\frac{\mathrm{D}+\mathrm{K}_{\mathrm{Vs}}}{\mathrm{A}}+\mathrm{P}_{\mathrm{s}}\right) \cdot \mathrm{b}^{2}}{\mathrm{t}^{2}}$
ここで，$\quad \sigma \mathrm{bss}$ ：浸水防止蓋に加わる曲げ応力（ MPa ）
β_{2} ：浸水防止蓋の曲げ応力算定に用いる係数
D ：浸水防止蓋の固定荷重（ N ）
$K_{V \mathrm{~s}} \mathrm{~s}$ ：基準地震動 S s による鉛直方向の地震荷重（N）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
Ps ：積雪荷重（ Pa ）
b ：浸水防止蓋の長さ（短辺）（mm）
t ：浸水防止蓋の厚さ (mm)
（2）最大せん断応力

$$
\tau_{\mathrm{s} \mathrm{~s}}=\frac{\mathrm{D}+\mathrm{K}_{\mathrm{vs} \mathrm{~s}}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}}{\mathrm{t} \cdot(\mathrm{a}+\mathrm{b}) \cdot 2}
$$

ここで，$\tau \mathrm{s} \mathrm{s}$ ：浸水防止蓋に加わるせん断応力（MPa）
D ：浸水防止蓋の固定荷重（ N ）
$K_{V \mathrm{~s}}$ ：基準地震動 S s による鉛直方向の地震荷重（N）
Ps ：積雪荷重（ Pa ）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
t ：浸水防止蓋の厚さ（mm）
a ：浸水防止蓋の長さ（長辺）（mm）
b ：浸水防止蓋の長さ（短辺）（mm）
（3）組合せ応力評価
浸水防止蓋に発生する曲げ応力やせん断応力の組合せ応力を以下の式より算出 する。

$$
\sigma=\sqrt{\sigma \mathrm{bss}^{2}+3 \cdot \tau \mathrm{ss}}{ }^{2}
$$

注記＊：設計•建設規格 SSB－3121．1
ここで，σ ：浸水防止蓋に発生する曲げ応力とせん断応力の組合せ応力 （MPa）
$\sigma \mathrm{bss}$ ：浸水防止蓋に加わる曲げ応力（MPa）
$\tau \mathrm{s} \mathrm{s}$ ：浸水防止蓋に加わるせん断応力（ MPa ）

5．5．2 固定ボルト（1）

固定ボルト①に作用するせん断荷重は，浸水防止蓋の水平方向荷重をすべての固定ボルト①で負担するものとして評価する。固定ボルト①のせん断応力を以下 の式より算出する。

$$
\begin{aligned}
\tau_{\mathrm{kss}} & =\frac{\mathrm{K}_{\mathrm{Hs}}}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b} 1}} \\
\mathrm{~K}_{\mathrm{Hs} \mathrm{~s}} & =\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{D}_{1}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right)
\end{aligned}
$$

ここで，$\quad \mathrm{k}_{\mathrm{k} ~ \mathrm{~s}}$ ：ボルト 1 本当たりに加わるせん断応力（ MPa ）
$\mathrm{K}_{\mathrm{H} \mathrm{s} \mathrm{s}}$ ：基準地震動 S s による水平方向の地震荷重（N）
$\mathrm{C}_{\mathrm{H}} \quad$ ：基準地震動 S s による水平方向の設計震度
D_{1} ：浸水防止蓋の固定荷重（N）
Ps ：積雪荷重（ Pa ）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
n_{1} ：固定ボルト（1）の本数（本）
$\mathrm{A}_{\mathrm{b} 1}$ ：固定ボルト（1）の呼び径断面積 $\left(\mathrm{mm}^{2}\right)$

5．5．3 固定ボルト（2）

固定ボルト（2）に作用するせん断荷重は，浸水防止蓋，固定ボルト 1 及 び中間リ ングの水平方向荷重をすべての固定ボルト（2）で負担するものとして評価する。固定ボルト（2）のせん断応力を以下の式より算出する。

$$
\begin{aligned}
\tau_{\mathrm{kss}} & =\frac{\mathrm{K}_{\mathrm{Hss}}}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}} \\
\mathrm{~K}_{\mathrm{Hs} \mathrm{~s}} & =\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{D}_{2}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right)
\end{aligned}
$$

ここで，$\tau_{\mathrm{k} ~ \mathrm{~s}} \mathrm{~s}$ ：ボルト 1 本当たりに加わるせん断応力（ MPa ）
$\mathrm{K}_{\mathrm{H} \text { s s ：基準地震動 S s による水平方向の地震荷重（N）}}$
$\mathrm{C}_{\mathrm{H}} \quad$ ：基準地震動 S s による水平方向の設計震度
D_{2} ：浸水防止蓋，固定ボルト①及び中間リングの固定荷重（N）
Ps ：積雪荷重（Pa）

A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
n 2 ：固定ボルト（2）の本数（本）
$\mathrm{A}_{\mathrm{b} 2}$ ：固定ボルト（2）の呼び径断面積 $\left(\mathrm{mm}^{2}\right)$

5．5．4 固定ボルト（3）

固定ボルト（3）に作用するせん断荷重は，浸水防止蓋，固定ボルト（1）中間リン グ，固定ボルト（2）及び埋込リングの水平方向荷重をすべての固定ボルト（3）で負担 するものとして評価する。固定ボルト③のせん断応力を以下の式より算出する。

$$
\begin{aligned}
\tau_{\mathrm{ks} s} & =\frac{\mathrm{K}_{\mathrm{Hs}}}{\mathrm{n}_{3} \cdot \mathrm{~A}_{\mathrm{b} 3}} \\
\mathrm{~K}_{\mathrm{Hs} \mathrm{~s}} & =\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{D}_{3}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right)
\end{aligned}
$$

ここで，$\tau_{\mathrm{k} s \mathrm{~s}}$ ：ボルト 1 本当たりに加わるせん断応力 (MPa)
$\mathrm{K}_{\mathrm{H} s \mathrm{~s}}$ ：基準地震動 S s による水平方向の地震荷重（N）
$\mathrm{C}_{\mathrm{H}} \quad$ ：基準地震動 S s による水平方向の設計震度
D_{3} ：浸水防止蓋，固定ボルト（1）中間リング，固定ボルト（2）及 び埋込リングの固定荷重（ N ）
Ps：積雪荷重（ Pa ）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
n 3 ：固定ボルト（3）の本数（本）
Ab3：固定ボルト（3）の呼び径断面積 $\left(\mathrm{mm}^{2}\right)$

図 5－1 評価の対象とする浸水防止蓋及び固定ボルト
（地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1）（No．2））

図 5－2 評価の対象とする浸水防止蓋及び固定ボルト
（地下軽油タンク機器搬出入用浸水防止蓋）
6．5．3．11－20 枠囲みの内容は商業機密の観点から公開できません。

5.6 評価条件

浸水防止蓋の耐震評価に用いる入力値を表5－7及び表5－8に示す。

表5－7 浸水防止蓋（地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1）
（No．2））の耐震評価に用いる入力値

評価対象部位	記号	単位	定義	数値
共通	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	P s	Pa	積雪荷重	301.0
浸水防 止蓋	D	N	浸水防止蓋の固定荷重	3.040×10^{3}
	a	mm	浸水防止蓋の長さ（長辺）	1． 336×10^{3}
	b	mm	浸水防止蓋の幅（短辺）	1． 070×10^{3}
	A	mm^{2}	浸水防止蓋の面積	1． 430×10^{6}
	t	mm	浸水防止蓋の厚さ	16
固定ボ ルト（1）	D 1	N	浸水防止蓋の固定荷重	3.040×10^{3}
	n 1	本	固定ボルト①）の本数	8
	$\mathrm{A}_{\mathrm{b}} 1$	mm^{2}	固定ボルト①）の呼び径断面積	201.1
固定ボ ルト（2）	D 2	N	浸水防止蓋，固定ボルト①及び中間リングの固定荷重	4.590×10^{3}
	n 2	本	固定ボルト（2）の本数	12
	$\mathrm{A}_{\mathrm{b}} 2$	mm^{2}	固定ボルト（2）の呼び径断面積	201.1
固定ボ ルト（3）	D 3	N	浸水防止蓋，固定ボルト（1），中間リング，固定 ボルト（2）及び埋込リングの固定荷重	6． 472×10^{3}
	n 3	本	固定ボルト（3）の本数	16
	$\mathrm{A}_{\mathrm{b}} 3$	mm^{2}	固定ボルト③）の呼び径断面積	201.1

表 5－8 浸水防止蓋（地下軽油タンク機器搬出入用浸水防止蓋）の耐震評価に用いる入力値

評価対象部位	記号	単位	定義	数値
共通	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	P s	Pa	積雪荷重	301.0
浸水防止蓋	D	N	固定荷重	2.550×10^{3}
	a	mm	浸水防止蓋の長さ（長辺）	1． 336×10^{3}
	b	mm	浸水防止蓋の幅（短辺）	1． 070×10^{3}
	A	mm^{2}	浸水防止蓋の面積	1． 376×10^{6}
	t	mm	浸水防止蓋の厚さ	16
固定ボ ルト（1）	D 1	N	浸水防止蓋の固定荷重	2． 550×10^{3}
	n 1	本	固定ボルト（1）の本数	8
	$\mathrm{A}_{\mathrm{b} 1}$	mm^{2}	固定ボルト①）の呼び径断面積	201.1
固定ボ ルト（2）	D 2	N	浸水防止蓋，固定ボルト①及び中間リングの固定荷重	4． 295×10^{3}
	n 2	本	固定ボルト（2）の本数	12
	$\mathrm{A}_{\mathrm{b} 2}$	mm^{2}	固定ボルト（2）の呼び径断面積	201.1
固定ボ ルト（3）	D 3	N	浸水防止蓋，固定ボルト（1），中間リング，固定ボルト（2）及び埋込リングの固定荷重	6． 178×10^{3}
	n 3	本	固定ボルト（3）の本数	16
	A b 3	mm^{2}	固定ボルト③）の呼び径断面積	201.1

6．評価結果
浸水防止蓋の耐震評価結果を表6－1に示す。全ての部材において発生応力が許容応力以下であることを確認した。

表 6－1 耐震評価結果

評価対象部位		評価応力	発生応力 （MPa）	許容応力 （MPa）
地下軽油タンク燃料移送ポンプ室 アクセス用 浸水防止蓋 （No．1），（No．2）	浸水防止蓋	曲げ	10	204
		せん断	1	117
		組合せ＊	11	204
	固定ボルト①	せん断	4	117
	固定ボルト（2）	せん断	4	117
	固定ボルト③	せん断	4	117
地下軽油タンク機器搬出入用浸水防止蓋	浸水防止蓋	曲げ	8	204
		せん断	1	117
		組合せ＊	9	204
	固定ボルト①	せん断	4	117
	固定ボルト（2）	せん断	4	117
	固定ボルト③）	せん断	4	117

注記＊：浸水防止蓋の組合せ応力値は曲げとせん断の組合せである。

6．浸水防護施設に関する補足資料
6.5 浸水防止設備に関する補足説明

6．5．3 浸水防止蓋に関する補足説明
6．5．3．12 浸水防止蓋（第2号機軽油タンクエリア）の強度計算書に関する補足説明

目 次

1．概要 6．5．3．12－1
2．一般事項 6．5．3．12－2
2.1 配置概要 6．5．3．12－2
2.2 構造計画 6．5．3．12－3
2.3 評価方針 6．5．3．12－4
2.4 適用規格•基準等 6．5．3．12－5
2.5 記号の説明 6．5．3．12－6
3．評価対象部位 6．5．3．12－8
4．固有値解析 6．5．3．12－9
4． 1 固有振動数の計算方法 6．5．3．12－9
4．2 固有振動数の計算条件 6．5．3．12－10
4．3 固有振動数の計算結果 6．5．3．12－11
5．構造強度評価 6．5．3．12－12
5.1 構造強度評価方法 6．5．3．12－12
5．2 荷重及び荷重の組合せ 6．5．3．12－12
5.3 許容限界 6．5．3．12－15
5．4 評価方法 6．5．3．12－17
5.5 評価条件 6．5．3．12－21
6．評価結果 6．5．3．12－23

1．概要

本資料は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」 に基づき，浸水防護施設のらち地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋 （No．1），（No．2）及び地下軽油タンク機器搬出入用浸水防止蓋（以下「浸水防止蓋」と いう。）が地震による溢水に加えて津波の流入を考慮した浸水に伴ら津波荷重及び余震 を考慮した荷重に対して，主要な構造部材が構造健全性を有することを確認するもので ある。

なお，浸水防止蓋の強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．一般事項

2.1 配置概要

浸水防止蓋は，屋外タンク等の損傷による浸水及び補機冷却海水系放水路からの浸水を防止するために設置する。

浸水防止蓋の設置位置図を図2－1，浸水対策図を図2－2 に示す。

図 2－1 浸水防止蓋の設置位置図（軽油タンクエリア上部）

図 2－2 軽油タンクエリア 浸水対策配置図

2.2 構造計画

浸水防止蓋は，軽油タンクエリア上部（開口部）に固定ボルトにて固定することで止水性を確保する構造とする。浸水防止蓋の構造計画を表2－1に示す。

表 2－1 浸水防止蓋の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
軽油タンク エリア上部 （開口部） に固定ボル トで固定す る。	浸水防止蓋及び固定ボ ルトにより構成する。	地下軽油タンク燃料移送ポンプ室アクセス用浸水防止监（No．1），（No．2）

[^0]6．5．3．12－3

2． 3 評価方針

浸水防止蓋の強度評価は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設 の強度計算の方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，
「2．2 構造計画」に示す浸水防止蓋の構造を踏まえ，「3．評価対象部位」にて設定 する評価対象部位において，「4．固有値解析」で算出した固有振動数に基づく設計用地震力により算出した応力等が許容限界内に収まることを，「5．構造強度評価」 に示す方法にて確認する。応力評価の確認結果を「6．評価結果」にて確認する。強度評価フローを図2－3に示す。

図 2－3 強度評価フロー
2.4 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）発電用原子力設備規格 設計•建設規格（2005 年版（2007 年追補版含む）J S MES N C 1 －2005／2007（日本機械学会））（以下，設計•建設規格という。）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984（日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（4）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会）（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）機械工学便覧（日本機械学会）
（6）日本産業規格（ J I S ）

2.5 記号の説明

浸水防止蓋の強度評価に用いる記号を表2－2に示す。

表 2－2 強度評価に用いる記号（1／2）

記号	単位	定義
a	mm	浸水防止蓋の長さ（長辺）
b	mm	浸水防止蓋の幅（短辺）
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
t	mm	浸水防止蓋の板厚
m	kg	浸水防止蓋を構成する部材の重量
D	N	固定荷重
$\mathrm{P}_{\text {s }}$	N	積雪荷重
F	MPa	許容応力算定用基準値 設計•建設規格 SSB－3121．1（1）a．（b）に定める， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
f_{b}	MPa	許容曲げ応力 設計•建設規格 SSB－3121．1（4）に定める値とする。
f_{t}	MPa	許容引張応力 設計•建設規格 SSB－3121．1（1）に定める値とする。
f t s	MPa	せん断応力と引張応力を同時に受けるボルトの許容引張応力
f s	MPa	許容せん断応力 設計•建設規格 SSB—3121．1（2）に定める値とす る。
S_{y}	MPa	設計•建設規格の付録図表Part5 表 8 に規定される材料の設計降伏点
S u	MPa	設計•建設規格の付録図表Part5 表 9 に規定される材料の設計引張強さ
S d	N	弾性設計用地震動S d－D 2 による余震荷重
C_{H}	－	弾性設計用地震動 S d－D 2 による水平方向の設計震度
C_{v}	－	弾性設計用地震動 S d－D 2 による鉛直方向の設計震度
$\mathrm{K}_{\mathrm{H} \mathrm{s} \mathrm{d}}$	N	弾性設計用地震動S d－D 2 による水平方向の地震荷重
K $\mathrm{V} \mathrm{s} \mathrm{d}^{\text {d }}$	N	弾性設計用地震動S d－D 2 による鉛直方向の地震荷重
P_{h}	MPa	地震による溢水に加えて津波の流入を考慮した浸水に伴う静水圧荷重
$\beta 2$	－	浸水防止蓋の曲げ応力算定に用いる係数
$\rho 0$	$\mathrm{kg} / \mathrm{m}^{3}$	海水の密度
h	mm	地震による溢水に加えて津波の流入を考慮した浸水に伴う津波荷重水位
ω	$\mathrm{Pa} / \mathrm{cm}$	積雪の単位荷重

6．5．3．12－6

表 2－2 強度評価に用いる記号（2／2）

記号	単位	定義
A	mm^{2}	浸水防止蓋の面積
$\sigma \mathrm{b}$	MPa	浸水防止蓋に発生する最大曲げ応力
σ	MPa	浸水防止蓋に発生する曲げ応力とせん断応力の組合せ応力
τ	MPa	浸水防止蓋に発生する最大せん断応力
A_{b}	mm^{2}	ボルトの断面積
$\mathrm{f}_{\mathrm{t} 0}$	MPa	ボルトに作用する許容引張応力（ ft t を1．5 倍した値）
$\tau_{\mathrm{k} \mathrm{s} \mathrm{d}}$	MPa	ボルト1本当たりに加わるせん断応力
n	本	ボルトの本数

3．評価対象部位

浸水防止蓋の評価対象部位は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定している構造を踏まえて，津波及 び余震に伴う荷重の作用方向及び伝達過程を考慮し設定する。

浸水防止蓋に対して浸水津波及び積雪，余震による荷重が作用し，これらの荷重は鋼製の浸水防止蓋より浸水防止蓋を固定している鋼製の固定ボルトに伝達することから，主要構成部材である浸水防止蓋及び固定ボルトを評価対象部位として設定する。

浸水防止蓋の強度評価における評価対象部位について図3－1 及び図3－2 に示す。

図 3－1 評価対象部位（地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋 （No．1），（No．2））

図 3－2 評価対象部位（地下軽油タンク機器搬出入用浸水防止蓋）

枠囲みの内容は商業機密の観点から公開できません。

6．5．3．12－8

4．固有値解析

4． 1 固有振動数の計算方法
浸水防止蓋の構造に応じて解析モデルを設定し，固有振動数を算出する。

4．1．1 解析モデルの設定
浸水防止蓋は，全周囲を固定ボルトにて固定された構造であることから，荷重 がかかる浸水防止蓋は図4－1に示す周辺固定の長方形板モデルとする。

図 4－1 浸水防止蓋の概略モデル

4．1．2 記号の説明
浸水防止蓋の固有振動数算出に用いる記号を表4－1に示す。

表 4－1 固有振動数算出に用いる記号

記号	単位	定義
T	S	固有周期
f	Hz	一次固有振動数
b	mm	解析モデルの幅
t	mm	解析モデルの厚さ
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
λ	－	振動数係数（板モデルの固有振動数算出）
E	MPa	縦弾性係数 設計•建設規格の付録材料図表Part6 表1より温度 を考慮して求めた値
ρ	$\mathrm{kg} / \mathrm{m}^{3}$	材料の密度
v	－	ポアソン比

4．1．3 固有振動数の算出方法
固有周期 T及び周辺固定の長方形板モデルの一次固有振動数 f は，「機械工学便覧（日本機械学会）」より，次式を用いて算出する。

$$
\mathrm{T}=\frac{1}{\mathrm{f}}
$$

$$
\mathrm{f}=\frac{\lambda \cdot \pi \cdot \frac{\mathrm{t}}{2}}{2 \cdot \mathrm{~b}^{2}} \sqrt{\frac{\mathrm{E} \cdot \mathrm{~g}}{3 \cdot\left(1-v^{2}\right) \cdot \rho}}
$$

4．2 固有振動数の計算条件

表 4－2 に固有振動数の計算条件を示す。

表 4－2 固有振動数の計算条件（ $1 / 2$ ）

設備名称	材質	浸水防止 蓋の厚さ t（mm）	浸水防止蓋 の幅 a（mm）	浸水防止蓋 の長さ b（mm）	振動数係数 $\lambda * 1$
地下軽油タンク 燃料移送ポンプ室 アクセス用浸水防止蓋 （No．1），（No．2）	SUS304	16	1． 336×10^{3}	1． 070×10^{3}	2． 74
地下軽油タンク機器搬出入用浸水防止蓋	SUS304	16	1． 336×10^{3}	1． 030×10^{3}	2． 74

表 4－2 固有振動数の計算条件（2／2）

温度条件＊2 $\left({ }^{\circ} \mathrm{C}\right)$	縦弾性係数 $\mathrm{E}(\mathrm{MPa})$	重力加速度 $\mathrm{g}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	ポアソン比 v	材料の密度 ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
40	1.94×10^{5}	9.80665	0.3	7.93×10^{3}

注記 $* 1$ ：浸水防止蓋の振動数係数入は，いずれも $1<\mathrm{a} / \mathrm{b}<1.5$ のため，より小さな値 として算出される $\mathrm{a} / \mathrm{b}=1.5$ の場合の定数 $\lambda=2.74$ を用いた。
＊ 2 ：屋外設備としての環境条件を考慮する。

4．3 固有振動数の計算結果

固有振動数の計算結果を表4－3に示す。固有振動数は 20 Hz 以上であることから，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数（Hz）
地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋 （No．1），（No．2）	90.03
地下軽油タンク機器搬出入用浸水防止蓋	97.16

5．構造強度評価

5.1 構造強度評価方法

浸水防止蓋の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設 の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえ て，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。

5.2 荷重及び荷重の組合せ

5．2．1 荷重の組合せ
浸水防止蓋の評価に用いる荷重の組合せを下記に示す。
$\mathrm{D}+\mathrm{P}_{\mathrm{h}}+\mathrm{Sd}+\mathrm{P}_{\mathrm{s}}$
ここで，D ：固定荷重
P_{h} ：地震による溢水に加えて津波の流入を考慮した浸水に伴 ら静水圧荷重
S d ：弾性設計用地震動 S d－D 2 による余震荷重
Ps ：積雪荷重

5．2．2 荷重の設定

強度評価に用いる荷重は以下のとおりとする。
（1）固定荷重（D）
常時作用する固定荷重として，浸水防止蓋を構成する部材の自重を考慮し，以下の式により算出する。
$\mathrm{D}=\mathrm{m} \cdot \mathrm{g}$
ここで， D ：固定荷重（N）
m ：浸水防止蓋を構成する部材の重量（kg）
g ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
（2）浸水津波荷重（ P_{h} ）
浸水津波荷重として，地震による溢水に加えて津波の流入を考慮した浸水に伴 ら津波荷重水位を考慮し，以下の式より算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h}
$$

ここで， P_{h} ：地震による溢水に加えて津波の流入を考慮した浸水に伴う静水圧荷重（MPa）
○o ：海水の密度 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{g} \quad:$ 重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
h ：地震による溢水に加えて津波の流入を考慮した浸水に伴う津波荷重水位（mm）
（3）余震荷重（ S d ）
余震荷重として，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」に示す弾性設計用地震動に伴ら地震力を考慮する。

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{Hsd}}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{D}+\left(\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{\mathrm{s}}\right) \cdot \mathrm{A}\right) \\
& \mathrm{K}_{\mathrm{Vsd}}=\mathrm{C}_{\mathrm{V}} \cdot\left(\mathrm{D}+\left(\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{\mathrm{s}}\right) \cdot \mathrm{A}\right)
\end{aligned}
$$

ここで， $\mathrm{K}_{\mathrm{H} s \mathrm{~d}}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による水平方向の地震荷重（N）
$K_{V \mathrm{sd}}$ ：弾性設計用地震動 S d－D 2 による鉛直方向の地震荷重（N）
C_{H} ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による水平方向の設計震度
C_{V} ：弾性設計用地震動 S d－D 2 による鉛直方向の設計震度
D ：固定荷重（N）
$\mathrm{P}_{\mathrm{h}} \quad$ ：地震による溢水に加えて津波の流入を考慮した浸水に伴う静水圧荷重（MPa）

Ps：積雪荷重（ Pa ）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
（4）積雪荷重（ P s ）
積雪荷重として，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうち，添付資料「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき 43 cm の積雪量を想定し，平均的な積雪荷重を与えるための係数 0.35 を考慮する。
積雪荷重による質量を以下の式より算出する。

$$
\mathrm{P}_{\mathrm{s}}=0.35 \cdot \omega \cdot 43
$$

ここで， P_{s} ：積雪荷重（ Pa ）
$\omega \quad$ ：積雪の単位荷重 20 （ $\mathrm{Pa} / \mathrm{cm}$ ）

5．2．3 設計用地震力

「4．固有値解析」に示したとおり，浸水防止蓋の固有振動数が 20 Hz 以上で あることを確認したため，浸水防止蓋の強度評価に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す軽油タンク室（ポンプ室）に おける最大応答加速度の 1.2 倍を考慮して設定する。

浸水防止蓋の強度評価に用いる設計震度を表5－1に示す。
なお，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき作成した，軽油タンク室（ポンプ室）の弾性設計用地震動S d－D 2 に対する設計用震度 （強度評価用：1．2ZPA）を表5－2に示す。

表 5－1 設計震度

地震動	設置場所及び床面高さ (m)	水平方向設計震度 $\mathrm{C}_{\mathrm{H}}{ }^{*}$	鉛直方向設計震度 $\mathrm{C}_{\mathrm{V}}{ }^{*}$
弾性設計用 地震動 $\mathrm{Sd}-\mathrm{D} \mathrm{2}$	軽油タンク室（ポンプ室） $0 . P .13 .80$	0.97	0.48

注記＊：「4．固有値解析」より，浸水防止蓋の固有振動数が 20 Hz 以上であることを確認 していること，また，機器•配管系として設計していることから，最大応答加速度の 1.2 倍を考慮した設計震度を設定した。

表 5－2 軽油タンク室（ポンプ室）内機器等の評価用震度（余震評価用）
（強度評価用：1．2ZPA）（弾性設計用地震動 S d -D 2 ，不確かさ包絡）

標高＊1 O．P．(m)	動的震度（1．2ZPA）			（単位：G）	
	NS （ポンプ室）	EW （ポンプ室）	水平包絡	鉛直	
14.8	0.97	0.82	0.97	0.48	
9.5	$\underline{0.77}$	0.76	$\underline{0.77}$	0.47	

注記＊1：耐津波設計においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴う，牡鹿半島全体で約 1 m の地盤沈下を考慮 するため，表記 0．P．より－1mした値を記載する。

5.3 許容限界

浸水防止蓋の許容限界は，「3．評価対象部位」にて設定した部位に対し，添付資料「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」にて設定してい る許容限界を踏まえ設定する。

5．3．1 使用材料

浸水防止蓋を構成する浸水防止蓋，固定ボルト①）固定ボルト（2）及び固定ボル ト③の使用材料を表5－2に示す。

表 5－2 使用材料

評価対象部位	材質	仕様
浸水防止蓋	SUS304	厚さ 16 mm
固定ボルト（1）（3）	SUS304	M16

5．3．2 許容限界

浸水防止蓋の許容限界は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定している許容限界を踏ま え，設計•建設規格に準じた許容応力を用いる。なお，浸水防止蓋の浮き上がり によるボルトの引張が起こらないため，固定ボルトの発生応力においては引張を考慮しないことから，引張応力及び組合せ応力については許容限界を設定しない。

浸水防止蓋及び固定ボルトの許容限界を表5－3に，許容応力評価条件を表5－4 に，許容応力算出結果を表5－5にそれぞれ示す。

表 5－3 浸水防止蓋及び固定ボルトの許容限界（許容応力）

許容応 力状態	許容限界 $*^{1}$（ MPa ）					
	浸水防止蓋			固定ボルト（1）（2）③		
	一次応力			一次応力		
	曲げ＊3	せん断＊4	組合せ＊5	引張＊6	せん断＊7	組合せ＊8
IIIA ${ }_{\text {S }}{ }^{* 2}$	$1.5 \cdot \mathrm{f} \mathrm{b}$	$1.5 \cdot \mathrm{f}_{\text {s }}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f} \mathrm{s}$	f_{ts}

注記＊1：曲げ及びせん断は，J E A G 4 6 0 1 を準用し，「その他の支持構造物」の許容限界を適用する。組合せは，設計•建設規格による。
＊2：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成 する材料が弾性域内に収まることを基本とする。
＊3：許容曲げ応力 1.5 • f ьは，以下の式により算出する。

$$
1.5 \cdot \mathrm{f}_{\mathrm{b}}=1.5 \cdot(\mathrm{~F} / 1.5)
$$

＊4：許容せん断応力 1.5 • f sは，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{s}}=1.5 \cdot(\mathrm{~F} / 1.5 \sqrt{ } 3)$
＊ 5 ：曲げ応力とせん断応力を同時に受ける浸水防止蓋の許容組合せ応力 1.5 • f は，以下の式により算出する。

$$
1.5 \cdot \mathrm{f}_{\mathrm{t}}=1.5 \cdot(\mathrm{~F} / 1.5)
$$

＊ 6 ：許容引張応力 $1.5 \cdot \mathrm{f}$ t は，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{t}}=1.5 \cdot(\mathrm{~F} / 2)$
＊7：許容せん断応力 1.5 • f s は，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{s}}=1.5 \cdot(\mathrm{~F} / 1.5 \sqrt{ } 3)$
＊8：せん断応力と引張応力を同時に受けるボルトの許容引張応力 $\mathrm{f} \mathrm{t}_{\mathrm{s}}$ は，次のい ずれか小さい方の値から算出する。
$\mathrm{f}_{\mathrm{ts}}=1.4 \cdot \mathrm{f}_{\mathrm{t}}{ }_{0}-1.6 \tau_{\mathrm{ks} \mathrm{s}}$
$\mathrm{f}_{\mathrm{ts}}=\mathrm{f}_{\mathrm{t}} \mathrm{o}$

表 5－4 許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
浸水防止蓋	SUS304	40	205	520	205
固定ボルト①					
固定ボルト（2）					
固定ボルト③					

注記 $*: ~ \mathrm{~F}=\operatorname{Min}\left[\mathrm{S}_{\mathrm{y}}, 0.7 \cdot \mathrm{~S}_{\mathrm{u}}\right]$ とする。

表 5－5 許容応力算出結果

許容応力状態	評価対象部位	許容限界 （ボルト以外）			許容限界 （ボルト）	
		一次応力			一次応力	
		曲げ （MPa）	せん断 （MPa）	組合せ （MPa）	引張 （MPa）	せん断 （MPa）
III ${ }_{\text {A }} \mathrm{S}$	浸水防止蓋	204	117	204	－	－
	固定ボルト①	－	－	－	－	117
	固定ボルト（2）	－	－	－	－	117
	固定ボルト③	－	－	－	－	117

5．4 評価方法

浸水防止蓋，固定ボルト① ，固定ボルト（2）及び固定ボルト（3）に発生する応力より算出する応力度が，許容限界以下であることを確認する。図5－1，図5－2 に評価の対象 とする浸水防止蓋及び固定ボルトを示す。
5．4．1 浸水防止蓋
四辺を固定された長方形板に等分布荷重が作用した際に，浸水防止蓋に発生す る曲げ応力及びせん断応力は，「機械工学便覧（日本機械学会）」より以下の式に て算出する。
（1）最大曲げ応力

ここで，σ_{b} ：浸水防止蓋に発生する最大曲げ応力 (MPa)
β_{2} ：浸水防止蓋の曲げ応力算定に用いる係数
D ：浸水防止蓋の固定荷重（N）
$K_{V \mathrm{sd}}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による鉛直方向の地震荷重（N）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
$\mathrm{P}_{\mathrm{h}} \quad$ ：地震による溢水に加えて津波の流入を考慮した浸水に伴う静水圧荷重（MPa）
Ps ：積雪荷重（Pa）
b ：浸水防止蓋の長さ（短辺）（mm）
t ：浸水防止蓋の厚さ（mm）
（2）最大せん断応力

$$
\tau=\frac{\mathrm{D}+\mathrm{K}_{\mathrm{Vs} \mathrm{~d}}+\left(\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{\mathrm{s}}\right) \cdot \mathrm{A}}{\mathrm{t} \cdot(\mathrm{a}+\mathrm{b}) \cdot 2}
$$

ここで，$\tau \quad:$ 浸水防止蓋に発生する最大せん断応力 (MPa)
D ：浸水防止蓋の固定荷重（N）
$K_{V \mathrm{~s} d}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による鉛直方向の地震荷重（N）
$\mathrm{P}_{\mathrm{h}} \quad$ ：地震による溢水に加えて津波の流入を考慮した浸水に伴う静水圧荷重（MPa）

Ps：積雪荷重（Pa）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
t ：浸水防止蓋の厚さ（mm）
a ：浸水防止蓋の長さ（長辺）（mm）
b ：浸水防止蓋の長さ（短辺）（mm）
（3）組合せ応力評価
浸水防止蓋に発生する曲げ応力やせん断応力の組合せ応力を以下の式より算出 する。

$$
\sigma={\sqrt{\sigma \mathrm{b}^{2}+3 \cdot \tau^{2}}}^{*}
$$

注記＊：設計•建設規格 SSB－3121．1
ここで，σ ：浸水防止蓋に発生する曲げ応力とせん断応力の組合せ応力 （MPa）
σ b ：浸水防止蓋に発生する最大曲げ応力（MPa）
$\tau \quad$ ：浸水防止蓋に発生する最大せん断応力（MPa）

5．4．2 固定ボルト（1）
固定ボルト①作用するせん断荷重は，浸水防止蓋の水平方向荷重をすべて の固定ボルト① で負担するものとして評価する。固定ボルト①のせん断応力を以下の式より算出する。

$$
\tau_{\mathrm{ksd}}=\frac{\mathrm{K}_{\mathrm{Hsd}}}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b} 1}}
$$

$$
\mathrm{K}_{\mathrm{H} s \mathrm{~d}}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{D}_{1}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right)
$$

ここで，τ_{ksd} ：ボルト 1 本当たりに加わるせん断応力 (MPa)
$\mathrm{K}_{\mathrm{H} s \mathrm{~d}}$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による水平方向の地震荷重（N）
$\mathrm{C}_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による水平方向の設計震度
D_{1} ：浸水防止蓋の固定荷重（N）
Ps ：積雪荷重（Pa）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
n_{1} ：固定ボルト（1）の本数（本）
$\mathrm{A}_{\mathrm{b} 1}$ ：固定ボルト（1）の呼び径断面積 $\left(\mathrm{mm}^{2}\right)$

5．4．3 固定ボルト（2）
固定ボルト（2）に作用するせん断荷重は，浸水防止蓋，固定ボルト①）及び中間リ ングの水平方向荷重をすべての固定ボルト（2）で負担するものとして評価する。固定ボルト（2）のせん断応力を以下の式より算出する。

$$
\begin{aligned}
\tau_{\mathrm{ksd}} & =\frac{\mathrm{K}_{\mathrm{H} \mathrm{sd}}^{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}}{\mathrm{~K}_{\mathrm{Hsd}}}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{D}_{2}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right)
\end{aligned}
$$

ここで，$\tau_{\mathrm{ks} \mathrm{d}}$ ：ボルト1本当たりに加わるせん断応力（ MPa ）
$\mathrm{K}_{\mathrm{H} \text { s d }}$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による水平方向の地震荷重（N）
$\mathrm{C}_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による水平方向の設計震度
D_{2} ：浸水防止蓋，固定ボルト（1）及び中間リングの固定荷重（ N ）
Ps：積雪荷重（Pa）
A ：浸水防止蓋の面積（ mm^{2} ）
n 2 ：固定ボルト（2）の本数（本）
$\mathrm{A}_{\mathrm{b} 2}$ ：固定ボルト（2）の呼び径断面積 $\left(\mathrm{mm}^{2}\right)$

5．4．4 固定ボルト（3）
固定ボルト（3）に作用するせん断荷重は，浸水防止蓋，固定ボルト（1），中間リン グ，固定ボルト（2）及び埋込リングの水平方向荷重をすべての固定ボルト（3）で負担するものとして評価する。固定ボルト③のせん断応力を以下の式より算出す る。

$$
\begin{gathered}
\tau_{\mathrm{ksd}}=\frac{\mathrm{K}_{\mathrm{Hsd}}}{\mathrm{n}_{3} \cdot \mathrm{~A}_{\mathrm{b} 3}} \\
\mathrm{~K}_{\mathrm{Hs} \mathrm{~d}}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{D}_{3}+\mathrm{P}_{\mathrm{s}} \cdot \mathrm{~A}\right) \\
\text { ここで, } \tau_{\mathrm{ksd}} \quad: \text { ボルト } 1 \text { 本当たりに加わるせん断応力 }(\mathrm{MPa})
\end{gathered}
$$

$\mathrm{K}_{\mathrm{H} \text { s d }}$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による水平方向の地震荷重（N）
$\mathrm{C}_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による水平方向の設計震度
D_{3} ：浸水防止蓋，固定ボルト（1）中間リング，固定ボルト（2）及 び埋込リングの固定荷重（N）
Ps：積雪荷重（Pa）
A ：浸水防止蓋の面積 $\left(\mathrm{mm}^{2}\right)$
n 3 ：固定ボルト（3）の本数（本）
$\mathrm{A}_{\mathrm{b} 3}$ ：固定ボルト（3）の呼び径断面積 $\left(\mathrm{mm}^{2}\right)$

図 5－1 評価の対象とする浸水防止蓋及び固定ボルト
（地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1）（No．2））

図 5－2 評価の対象とする浸水防止蓋及び固定ボルト
（地下軽油タンク機器搬出入用浸水防止蓋）

5.5 評価条件

浸水防止蓋の強度評価に用いる入力値を表 5－6及び表5－7に示す。

表5－6 浸水防止蓋（地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1）
（No．2））の強度評価に用いる入力値

評価対 象部位	記号	単位	定義	数値
共通	h	mm	地震による溢水に加えて津波の流入を考慮した浸水に伴ら津波荷重水位	180
	$\rho 0$	$\mathrm{kg} / \mathrm{m}^{3}$	海水の密度	1． 030×10^{3}
	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	P_{s}	Pa	積雪荷重	301.0
浸水防止蓋	D	N	浸水防止蓋の固定荷重	3． 040×10^{3}
	a	mm	浸水防止蓋の長さ（長辺）	1． 336×10^{3}
	b	mm	浸水防止蓋の幅（短辺）	1． 070×10^{3}
	A	mm^{2}	浸水防止蓋の面積	1． 430×10^{6}
	t	mm	浸水防止蓋の厚さ	16
固定ボ ルト（1）	D 1	N	浸水防止蓋の固定荷重	3． 040×10^{3}
	n 1	本	固定ボルト（1）の本数	8
	$\mathrm{A}_{\mathrm{b}} 1$	mm^{2}	固定ボルト①）の呼び径断面積	201.1
固定ボ ルト（2）	D_{2}	N	浸水防止蓋，固定ボルト①）び中間リングの固定荷重	4.590×10^{3}
	n 2	本	固定ボルト（2）の本数	12
	A b 2	mm^{2}	固定ボルト（2）の呼び径断面積	201.1
固定ボ ルト（3）	D 3	N	浸水防止蓋，固定ボルト①，中間リング，固定 ボルト（2）及び埋込リングの固定荷重	6． 472×10^{3}
	n 3	本	固定ボルト（3）の本数	16
	A b 3	mm^{2}	固定ボルト（3）の呼び径断面積	201.1

表 5－7 浸水防止蓋（地下軽油タンク機器搬出入用浸水防止蓋）の強度評価に用いる入力値

評価対象部位	記号	単位	定義	数値
共通	h	mm	地震による溢水に加えて津波の流入を考慮した浸水に伴ら津波荷重水位	180
	$\rho 0$	$\mathrm{kg} / \mathrm{m}^{3}$	海水の密度	1． 030×10^{3}
	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	$\mathrm{P}_{\text {s }}$	Pa	積雪荷重	301.0
浸水防止蓋	D	N	浸水防止蓋の固定荷重	2.550×10^{3}
	a	mm	浸水防止蓋の長さ（長辺）	1． 336×10^{3}
	b	mm	浸水防止蓋の幅（短辺）	1． 070×10^{3}
	A	mm^{2}	浸水防止蓋の面積	1． 376×10^{6}
	t	mm	浸水防止蓋の厚さ	16
固定ボ ルト（1）	D 1	N	浸水防止蓋の固定荷重	2.550×10^{3}
	n 1	本	固定ボルト①）の本数	8
	$\mathrm{A}_{\mathrm{b} 1}$	mm^{2}	固定ボルト①）の呼び径断面積	201.1
固定ボ ルト（2）	D 2	N	浸水防止蓋，固定ボルト及び中間リングの固定荷重	4． 295×10^{3}
	n 2	本	固定ボルト（2）の本数	12
	$A_{\text {b }} 2$	mm^{2}	固定ボルト（2）の呼び径断面積	201.1
固定ボ ルト（3）	D 3	N	浸水防止蓋，固定ボルト（1），中間リング，固定 ボルト（2）及び埋込リングの固定荷重	6． 178×10^{3}
	n 3	本	固定ボルト（3）の本数	16
	$\mathrm{A}_{\mathrm{b} 3}$	mm^{2}	固定ボルト③）の呼び径断面積	201.1

6．評価結果
浸水防止蓋の強度評価結果を表6－1に示す。全ての部材において発生応力が許容応力以下であることを確認した。

表 6－1 強度評価結果

評価対象部位		評価応力	発生応力 （MPa）	許容応力 （MPa）
地下軽油タンク燃料移送ポンプ室 アクセス用 浸水防止蓋 （No．1），（No．2）	浸水防止蓋	曲げ	13	204
		せん断	1	117
		組合せ＊	14	204
	固定ボルト（1）	せん断	4	117
	固定ボルト（2）	せん断	4	117
	固定ボルト（3）	せん断	3	117
地下軽油タンク機器搬出入用浸水防止蓋	浸水防止蓋	曲げ	11	204
		せん断	1	117
		組合せ＊	12	204
	固定ボルト（1）	せん断	4	117
	固定ボルト（2）	せん断	3	117
	固定ボルト（3）	せん断	3	117

注記 $*: ~$ 浸水防止蓋の組合せ応力値は曲げとせん断の組合せである。
（参考資料 1）浸水防止蓋の開閉運用について

1．概要

表 $1-1$ に浸水防止蓋一覧，図 $1-1$ に浸水防止蓋の平面位置図，図 $1-2$ に各浸水防止蓋の構造図，図 $1-3$ に津波波形を示す。

浸水防止蓋は，原子炉機器冷却海水配管ダクト，第 3 号機補機冷却海水系放水ピット，第 3 号機海水熱交換器建屋海水ポンプ設置エリア，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内），揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）及び軽油タンクエリアに設置し，それら各場所におい てメンテナンス等のため開閉を行ら計画であり，蓋開放時，発電所を含む地域に大津波警報が発表 された場合等には津波防護機能維持のため速やかに閉止することとしている。

この浸水防止蓋について，浸水防止蓋又は浸水防止蓋に設けたハッチ部が確実に閉止できるよう計画した開閉構造，並びに開閉に要するタイムラインを評価した結果を示す。
評価を行ら浸水防止蓋は，浸水防止蓋全体を開閉するタイプとして第 3 号機海水熱交換器建屋海水ポンプ設置エリアの浸水防止蓋を，それ以外のハッチ並びにスライドタイプについて，スライド タイプは開閉作業が容易な構造であり，設置している軽油タンク室（燃料移送ポンプエリア）は深度が約 5 m と浅く作業員の退避時間が短いことから，メンテナンス等の作業を行う立坑深度が最も深く作業員の退避時間が最長となるハッチタイプの揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）の浸水防止蓋を代表として選定した。

タイムラインの評価にあたつては，地震後の敷地への津波到達が 30～40分程度であることを踏 まえ裕度をもって閉止できるよう防潮壁（鋼製扉）と同様に人力で 15 分以内に開閉できることを目標とした。

表 $1-1$ 浸水防止蓋一覧

No．	名 称	タイプ＊	代表選定	備考
1	浸水防止蓋（原子炉機器冷却海水配管ダクト）	ハッチ		
2	浸水防止蓋（第 3 号機補機冷却海水系放水ピット）	ハッチ		
3	浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）	蓋全体	\bigcirc	
4	浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）	蓋全体	\bigcirc	
5	浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））	ハッチ	\bigcirc	
6	浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））	ハッチ		
7	地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）	スライド		
8	地下軽油タンク機器搬出入用浸水防止蓋	スライド		

注記＊：「ハッチ」はハッチのみを開放するタイプ，「蓋全体」は蓋全体を開放するタイプ，「スラ イド」はスライド式の蓋により開閉するタイプを示す。

図 $1-1$ 浸水防止蓋の平面配置図 $(1 / 2)$

図 $1-1$ 浸水防止蓋の平面配置図 $(2 / 2)$

浸水防止蓋（原子炉機器冷却海水配管ダクト）

ハッチ

固定ボルト

ハッチ（1）（平面図）
ハッチ

ハッチ（2）（平面図）

浸水防止蓋（第 3 号機補機冷却海水系放水ピット）

図 1－2 浸水防止蓋の構造図（1／4）
\square
浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）

浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）

図1－2 浸水防止蓋の構造図（ $2 / 4$ ）

浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））

浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））

図 $1-2$ 浸水防止蓋の構造図（3／4）

地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1），（No．2）＊1

地下軽油タンク機器搬出入用浸水防止蓋＊1

図1－2 浸水防止蓋の構造図（4／4）

注記＊1 ：閉操作はキャスター付きの浸水防止蓋をスライドさせ，固定ボルト①（蝶ボルト：M16，8本）にて固定することにより実施。

（第2号機海水ポンプ室 上昇側）

（第3号機海水ポンプ室 上昇側）

（第3号機海水熱交換器建屋 上昇側）

図 1－3 入力津波の時刻歴波形（1／2）

（第3号機放水立坑 上昇側）

図 1－3 入力津波の時刻歴波形（2／2）

2．浸水防止蓋の運用方針
強風時の作業限界等を検討し，運用方針に係る基本的事項を以下のとおり維めた。
なお，詳細な運用内容の具体に関しては，後段の保安規定審査の中で説明する。

> 浸水防止蓋の運用に係る基本事項について (案)

1．概 要
浸水防止蓋は各場所においてメンテナンス等のため開閉操作を行うが，津波時に浸水防止蓋 が確実に閉止できるように，以下の構造•機構及び運用とする方針である。
（1）浸水防止蓋は原則閉止運用とする。
ただし，定期点検時等により，蓋が開状態となる場合は，緊急時（地震発生時等）に速や かに閉操作を行える人員を，蓋付近に待機させる運用とする。
（2）蓋の開閉操作は，チェーンブロック，トルクレンチ及びスパナなどの人力による工具，な らびにインパクトレンチなどの電動工具を用いた閉止操作が可能とし，ボルトを締め付け ることで水密性を確保する構造•機構とする。
（3）閉操作は人力の工具のみで， 15 分以内で操作できる構造•機構とする。
（4）強風•暴風等により，閉操作が困難となる可能性がある場合は，原則開操作は行わない運用とする。
なお，浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）及び浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）（No，2） の設置場所は周囲を建屋の壁に囲われた地下部であり，風の影響を直接受けない場所であ るが，同様の運用とする。

強風： 10 分間平均風速が毎秒 10 m 以上
暴風：瞬間風速が毎秒 30 m 以上

3．浸水防止蓋の開閉構造，閉止手順及び閉止時間の評価
（1）浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）及び浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1）（No．2）
a．開閉構造
浸水防止蓋の構造図を図 3－1に，各部位の名称と役割を表3－1に示す。
開放時は固定ボルトを緩めて蓋を開けた（吊り上げた）後，ロックピンで固定して開状態を維持する。閉止時はロックピンを外して蓋を閉めた（吊り下ろした）後，固定ボルトを締め付 けることで水密性を確保するとともに蓋を固定する構造とする。
\square

図 3－1 浸水防止蓋の構造図（平面図）（ $1 / 3$ ）［単位：mm］

図 3－1 浸水防止蓋の構造図（断面図）（ $2 / 3$ ）［単位：mm］

図 3－1 浸水防止蓋の構造図（断面図）（3／3）［単位：mm］

表 3－1 各部位の名称と役割

名 称	役割等
ロックピン	開状態を維持するために蓋を架台に固定するピン。＊
ロックピン用架台	ロックピンで蓋を固定する架台。＊
固定ボルト	蓋と枠を固定するとともに，止水ゴムパッキンを締め付けて水密性を 確保するボルト。＊
ヒンジ	浸水防止蓋開閉時に蓋と枠を固定している部材。＊
ローラー	蓋を水平移動させる部材。
ローラー受け板	蓋をローラー上に乗せる部材。

注記＊：設計用地震力に対して十分な構造健全性を有する構造とする。
b．開閉手順
運用方針に係る基本的事項を踏まえ，人力によるチェーンブロック，トルクレンチ，スパ ナ及び電動式インパクトレンチを用いて開閉操作する。

当該蓋の開閉が伴ら各種点検や作業のらち，监の閉止作業に最も時間を要する角落し作業 の全体フローを図3－2に示す。

角落し作業は，第 3 号機海水熱交換機建屋の隔壁に設けられた開口部に角落しを設置する ことで，水路内を区画分離し，抜水により区画内の設備を気中点検するため行うものである。 なお，角落し作業に伴ら浸水防止蓋の開閉は作業安全の確保のため，潮位が低いときに実施 する。

角落し作業の概要図を図3－3に示す。
角落し作業では蓋を開放している状態において緊急（地震発生等）で蓋を閉止する場合，蓋を閉止する前に必ず潜水士の退避，角の引き抜きまたは吊ワイヤーの巻取り作業を実施し なければならないため，蓋を閉止完了させるまでに手順が多くなり，蓋の閉止に最も時間を要する作業となる。緊急で蓋を閉止する場合の詳細フローを図3－4に示す。

浸水防止蓋の開放にあたっては，閉止作業に係る人員を確保，配置する。その後，浸水防止蓋の開放を行い，角落し作業が完了し，蓋を閉止するまでの間，常に閉止作業を実施でき るように閉止に係る人員は所定の操作位置付近で待機し，原則閉止運用とする基本方針に基 づき蓋を閉止時できる状態になったら速やかに閉止していく。なお，点検用開口部は No． 1 とNo． 2 の 2 箇所あるが，基本的に両方を同時に開閉することはない。角落し作業時の蓋の閉止作業に係る人員の配置状況を図 $3-5$ に示す。

注記＊：ハッチングの作業は蓋を閉止する前に必ず完了させなければならない作業を示す。
図 3－2 角落し作業の全体フロー

図 3－3 角落し作業概要図 $(2 / 2)$

浸水防止蓋の閉止作業開始前の作業手順	クレーンオペレータ				潜水士							
角の吊フック取り外し＊1	待 機				角に取り付けられた吊フックの取り外し							
\downarrow 沫												
巻取り	吊フック（ワイヤ）巻取り （クレーン操作）				退 避							
浸水防止蓋の閉止作業手順	角落し部				点検用開口部＊2							
閉止操作開始	作業員A	作業員B	作業員C	作業員D	作業員（1）	作業員（2）						
\downarrow	$\begin{gathered} \text { チェーン } \\ \text { ブロック操作 } \end{gathered}$	待 機			$\begin{gathered} \text { チェーン } \\ \text { ブロック操作 } \end{gathered}$	待 機						
チェーンブロック操作												
\downarrow	待 機		浸水防止蓋水平移動，閉止位置へセット		閉止位置へセット							
浸水防止蓋水平移動，閉止位置セット												
固定ボルト締付（締付トルク確認）	固定ボルト締付（M16－32 本，4人（8本／人）），締付トルク確認				固定ボルト締付（M30－8 本， 2 人（4本／人）），締付トルク確認							
終了	作業終了•解散						合は，呈つックの时り处しは ＊2：角落し作業においては 2 箇所ある点検用開口部の蓋のらちNo． 1 のみを開閉する。図3－4 緊急で浸水防止䒸を閉止する場合の詳細フロー					

（角落し込み完了後（完了に近い状態含む）に地震が発生し緊急で蓋を閉止する場合）

図 3－5 角落し作業時の蓋の閉止作業に係る人員の配置状況図（イメージ）
c．閉止時間の評価
ここでは，図 3－4に示す緊急時の閉止フローに従って，人力で所要の閉止時間である 15分を満足できるか，模擬試験を行い評価した結果を示す。

模擬試験にあたり，試験体の仕様や工具は実機に近い条件となるようにし，屋外で試験を実施した。また，電動の工具は使用せず，人力による工具のみを使用した。

閉止時間の評価結果を表3－2 に示す。閉止完了までの所要時間は9分であり15分以内で あることを確認した。
表3－2 浸水防止蓋の閉止時間の評価結果

所要時間	$\begin{aligned} & \text { クーン } \\ & \text { オペ } \end{aligned}$	潜水士		角落し部	水防止蓋		点検用開口	浸水防止蓋	根拠
（分）			作業員A	作業員B	作業員C	作業員D	作業員（1）	作業員（2）	
1	待機	$\begin{gathered} \text { 玉掛ワック } \\ \text { 取外 } \\ \hline \end{gathered}$	待機	待機	待機	待機	待機	待機	玉掛フック 2 箇所を取り外す作業 として 1 分間を想定＊。
2	$\begin{aligned} & \text { 玉掛ワック } \\ & \text { 巻取り } \end{aligned}$	$\stackrel{\text { 退避 }}{ }$	待機	待機	待機	待機	待機	待機	d．（a）潜水士の退避 参照。玉掛フックを約 10m巻取る作業と して 1 分間を想定＊。
3	余裕時間	余裕時間	チェーン フロック操作	待機	待機	待機	・チェーン フロック操作	待機	d．（b）チェーンブロックによる浸水防止蓋閉止の測定 参照。
4	\downarrow	\downarrow	待機	待機	浸水防止萻を水平移動させ た後，閉止位置にセット		閉止位置にセット		角落し部は約 30cm の水平移動 （車輪付き）が必要であり，閉止位置へのセットとあわせて 1 分間を想定＊
5	\downarrow	\downarrow	固定ボルト締付 M16×36本 （トルクレンチを使用） 36 本 $\div 4$ 人 $\times 30$ 秒／本 $=270$ 秒 $\fallingdotseq 5$ 分						d．（c）固定ボルト締付操作時間の測定 参照。
6	\downarrow	\downarrow							
7	\downarrow	\downarrow							
8	\downarrow	\downarrow					余裕時間	余裕時間	
9	\downarrow	\downarrow					\downarrow	\downarrow	
$1 \bigcirc$	\downarrow	\downarrow	余裕時間	余裕時間	余裕時間	余裕時間	\downarrow	\downarrow	
11	\downarrow								
12	\downarrow								
13	\downarrow								
14	\downarrow								
15	\downarrow								

[^1]d．模擬試験内容と結果
（a）潜水士の退避時間の測定
本模擬試験では，角落しの取り外し作業に従事する潜水士が浸水防止蓋設置レベルまで退避する時間を評価した。

試験は，第3号機海水熱交換器建屋の角落し部の昇降高さ 6.35 m （図3－6）よりも高い昇降高さ 10 m の昇降設備において実施し，潜水士の通常装備重量である約 20 kg の負荷を背負った状態で退避時間を測定した（図3－7）。測定結果を表3－3に示す。

図 3－6 退避時 昇降高さ

図 3－7 試験状況

表3－3 測定結果

測定項目	作業員 A	作業員 B	作業員 C	平均	最大
退避時間	18 秒	27 秒	24 秒	23 秒	27 秒

表 3－3 の測定結果から得られた最大 27 秒に対し，閉止時間の評価においては保守的に切 り上げた 1 分を評価値として採用する。

ここで，作業現場は水中であるが，静穏な環境であるとともに浮力によって装備品による付加は軽減されることから，移動性は気中よりも優れており，今回実施した模擬試験環境は実際と較べ厳しいものとなっていること，それに加えて，移動距離も加算し，より長くなっ ていることから保守性が確保されたものになっている。
（b）チェーンブロックによる浸水防止蓋吊下ろし時間の測定
本模擬試験では，開放状態の蓋を閉止位置まで下ろす時間を評価した。
試験場所は実機と同様に屋外において実施した。
また，模擬試験においては，実機で使用予定の人力のチェーンブロックと実機の浸水防止蓋と同じ重量の試験体を用いて，蓋のヒンジから一番遠い蓋の端部の軌跡の長さ（弧の長さ）を降下高さとして測定した。
試験状況を図 3－8に，測定結果を表3－4に示す。
なお，実機では蓋の片側がヒンジで固定されているため，蓋を吊り下ろす際にはチェー ンブロックに蓋の全荷重がかからないが，模擬試験ではチェーンブロックに蓋の全荷重を かけている。これに関しては，チェーンブロックのブレーキ機能により，吊荷荷重による荷下ろし時の速度は基本的に変化しないため，模擬試験の結果をそのまま閉止時間の評価 に用いることは問題ない。

同様に，ヒンジでの固定の有無による蓋を降下させる時間への影響として，ヒンジ部の摩擦抵抗が考えられる。これに関しては，ヒンジ部にグリースを施すなどの保守管理を行 うことで摩擦抵抗はほぼ無くなるものと想定されることから，模擬試験の結果をそのまま閉止時間の評価に用いることは問題ない。

図 3－8 試験状況

表3－4 測定結果

	作業員 A	作業員 B	作業員 C	平均	最大	備考
角落し部	20 秒	22 秒	19 秒	21 秒	22 秒	試験体重量：310kg 降下高さ： 800 mm
点検用開口部	45 秒	45 秒	44 秒	45 秒	45 秒	試験体重量：320kg 降下高さ：1700mm

表 3－4の測定結果から得られた最大 45 秒に対し，閉止時間の評価においては保守的に切り上げた 1 分を評価値として採用する。
降下高さは以下に示すとおり，浸水防止蓋の設計寸法から算出した値とした。設計寸法及び降下高さを図3－9に示す。
（1）角落し部用降下高さ： $510 \mathrm{~mm} \times 2 \pi / 4=801.1 \mathrm{~mm} \Rightarrow 800 \mathrm{~mm}$
（設計では 45 度開放であるが，保守的に 90 度開放として算定）
（2）点検用開口部用降下高さ： $1075 \mathrm{~mm} \times 2 \pi / 4=1688.6 \mathrm{~mm} \Rightarrow 1700 \mathrm{~mm}$（90度開放）

図 3－9 浸水防止蓋断面図
b．締付時間の測定
本模擬試験では，現地で使用予定の人力の工具と，実際に浸水防止蓋に使用する固定ボルト と同じ仕様のボルトを用いて，固定ボルト 1 本の締付時間を評価した。

また，点検用開口部のM30ボルトについては，実機では建屋の壁と近接する箇所があり，狭隘となるため締付作業に影響すると想定し，壁際を模擬した状態で試験を実施した。試験状況を図 3－10に，試験結果を表3－5に示す。

試験体写真

M30 締付状況（壁際）締付状況写真 （トルクレンチ使用時）

M16締付状況写真
（トルクレンチ使用時）

図 3－10 試験状況

表 3－5 測定結果

	作業員 A	作業員 B	作業員 C	平均	最大	備考
$\begin{gathered} \text { M30 } \\ \text { (点検用開口部) } \end{gathered}$	22 秒	20 秒	26 秒	23 秒	26 秒	使用工具： トルクレチ，スパナ
$\begin{gathered} \text { M16 } \\ \text { (角落し部) } \end{gathered}$	20 秒	18 秒	14 秒	18 秒	20 秒	使用工具： トルクレンチ

表3－5の試験結果により，最長時間である 26 秒を保守的に切り上げた 30 秒をボルト 1 本あ たりの締付時間とし，浸水防止蓋の閉止時間の評価に採用する。
（2）浸水防止蓋（原子炉機器冷却海水配管ダクト），揚水井戸（第 2 号機海水ポンプ室防潮壁区画内），揚水井戸（第3号機海水ポンプ室防潮壁区画内），第3号機補機冷却海水系放水ピット）
a．開閉構造
浸水防止蓋の構造図を図 3－11 に示す。同図は浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室エリア防潮壁区画内）の例であるが，他の浸水防止蓋も同様にヒンジ部を設けたハッチ構造 を有する設計とし，開放時はスキンプレートに取り付けたハッチ部のうち締付部のボルトを取 り外し，ハッチを開放する。閉止時はハッチ部のうち締付部のボルトを取り付け，ハッチを閉止する。なお，第 3 号機補機泠却海水系放水ピットは開口径が小さいことから（図 1－2），ヒン ジ部を設けない構造とする。

表 3－6にハッチ部の役割と名称を示す。

図 3－11 浸水防止蓋（揚水井戸（第2号機海水ポンプ室エリア防潮壁区画内）の構造図 （ $1 / 2$ ）（平面図）

図 3－11 浸水防止 ハッチ図詳細図
（2／2）（上：ハッチ部平面図，下：ハッチ部断面図）

表 3－6 各部位の名称と役割

名 称	役割等 ハッチ
	浸水防止蓋本体のスキンプレート部を覆うように設置し，立坑内への立 ち入りを容易にするもの ハッチ開放後，スキンプレート部に設けた直径 600 mm の開口部より，立 坑内に立ち入る
固定ボルト （ハッチ用）	ハッチを取り付けるために設置する固定ボルト。 浸水防止蓋の固定ボルトとは別に設ける。
ヒンジ	ハッチ開閉時にハッチと枠を固定している部材。

b．閉止手順
運用方針に係る基本的事項を踏まえ，人力によるチェーンブロック，トルクレンチ，スパ ナ及び電動式インパクトレンチを用いてハッチの開閉操作する。蓋の閉止時の全体フローを表3－7に示す。

なお，ハッチは複数人であれば人力での開放が可能であるが，ここではチェーンブロック を用いた作業フローを想定する。

チェーンブロックは蓋近傍に可搬式の組立架台を設置し，これに支持を取り操作する。全体フローに示すとおり，ハッチを開放し，蓋が取り付けられた立坑に直接作業員が立入，点検を実施する場合は，作業員の退避が完了するまでにはハッチの閉止ができないため，立坑深部から作業員が退避するケースが，蓋の閉止に最も時間を要する作業となる。

図 3－12 浸水防止蓋 ハッチ操作の全体フロー

図 3－13 緊急退避時の作業フロー

図 3－14 ハッチ開閉方法 概要図
c．閉止時間の評価
ここでは，表 3－7に示す全体フローに従って，作業員の退避開始からハッチを閉止し，防潮壁外まで退避する時間が所要の閉止時間である 15 分を満足できるか，評価した結果を示す。 ハッチの形状は 4 箇所の浸水防止蓋（原子炉機器泠却海水配管ダクト，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内），揚水井戸（第 3 号機海水ポンプ室防潮壁区画内），第 3 号機補機冷却海水系放水ピット）ともに概ね同様であるため，蓋の閉止時間も同様と考えられる。

このため，これらの浸水防止蓋のらち，対象とする蓋は退避時間に最も時間を要すると考 えられる蓋を取り付ける支持構造物の立坑またはピット深度が深い蓋とする。

立坑またはピットの深さは表 3－8 に示すとおり，揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）が最も大きいことから，これを閉止時間の評価対象とした。

模擬試験については，試験体の仕様や工具は実機に近い条件となるようにし，屋外で試験 を実施した。また，電動の工具は使用せず，人力による工具のみを使用した。

閉止時間の評価結果を表3－9示す。閉止完了までの所要時間は 12 分であり 15 分以内であ ることを確認した。

表3－8 浸水防止蓋を設置する立坑深度

取付箇所	立坑深度 (m)
原子炉機器椧却海水配管ダクト	22.9
揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）	$\underline{30.95}$
揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）	28.8
第3号機補機冷却海水系放水ピット	7.6

表 3－9 浸水防止蓋の閉止時間の評価結果

所要時間 （分）	作業員 A	作業員 B	作業員 C	根拠
1	待機	待機	待機	「（2）d．模擬試験内容と結果」より立坑最下部からの退避時間を 6 分と想定
2				
3				
4				
5				
6				
7	待機	待機	$\begin{aligned} & \text { チェーンブ } \\ & \text { ロック操作 } \end{aligned}$	「(1) d. (b)チェーンブロック による浸水防止蓋閉止」を参照し，チェーンブロックによ る蓋の降下時間として 1 分間 を想定
8	固定ボルト（ハッチ用）締付 $M 16 \times 36$ 本			「（1）d．（c）固定ボルト締付操作時間の測定」よりボルト 1本あたりの締付時間として 30秒を想定
9	9 本 $\div 3$	クレンチを $\times 30$ 秒／本 $=$	用） $\text { 秒 } \doteqdot 2 \text { 分 }$	
10	待機	チェーンブロ 仮 固定ボ M16 4 本 $\div 2$ 人 秒	ック取付用架台 卜取外 4本 0 秒／本 $=60$ 1 分	「（1）d．（c）固定ボルト締付操作時間の測定」を参照し，ボ ルト1本あたりの取外時間と して 30 秒を想定
11	チェーンブロック及びチェーンブロック 取付用架台の撤去			チェーンブロック等の後片付 けとして 1 分間を想定
12	退避			防潮壁車両進入路部のはしご （約 6 m ）を用いて退避する時間として 1 分間を想定
13	余裕時間			
14	\downarrow			
15	\downarrow			

（参考）1－34

d．模擬試験内容と結果

模擬試験は立坑最下部から作業員が退避する時間を測定する。
試験場所は，浸水防止蓋を設置する揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）の昇降高さ約 31 m よりも高い昇降高さ 33 m の既設揚水井戸において実施した（図 $3-13$ ）。

実施結果を表3－10に示す。
実施結果から得られた最大 5 分 9 秒に対し，閉止時間のタイムチャートでは保守的に 6 分を想定する。

図 3－13 昇降時間計測状況（既設揚水井戸）

表 3－10 測定結果と実機換算

測定項目	作業員 A	作業員 B	作業員 C	平均	最大値
退避時間	3 分 54 秒	3 分 28 秒	5 分 9 秒	4 分 10 秒	5 分 9 秒

5．まとめ
全ての浸水防止蓋において，複数人による模擬試験を通じ， 15 分以内で閉操作が可能であるこ とを確認した。

以上

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

[^1]: 注記＊：単純な作業の時間は想定により設定した。

