| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

基本設計方針に関する説明資料

【第73条 計装設備】

- 先行審査プラントの記載との比較表
- 要求事項との対比表
（設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－7）
－各条文の設計の考え方
（設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－6）

2021年9月

東北電力株式会社

赤字 ：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） －前回提出時からの変更箇所
【番号 ：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（核燃料物質の取扱施設及び貯蔵施設の基本設計方針）

3．計測装置等

設計の差異

（女川の使用済燃料プール監視カメラの泠却装置はカメラ一体構造であるため， 69 条 に記載。）

重大事故等が発生し，当該重大事故等に対処するた めに監視することが必要なパラメータとして，使用済燃料プールの監視に必要なパラメータを計測する装置 を設ける設計とする。
【73条2】

重大事故等が発生し，計測機器（非常用のものを含 む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定する ために必要なパラメータを計測する設備を設置する設計とする。
【73条1】

重大事故等に対処するために監視することが必要な パラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炬施設 の状態を把握するためのパラメータとし，計測する装置は「表1核然料物質の取扱施設及び貯蔵施設の主要設備リスト」の「使用済燃料貯蔵槽の温度，水位及 び漏えいを監視する装置」に示す重大事故等対処設備 の他，使用済燃料プール監視カメラ（個数 1）とする。【73条3】

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） －前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（核燃料物質の取扱施設及び貯蔵施設の基本設計方針）

《参考》柏崎刈羽原子力発電所第 7 号機

炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするととも
に, 重大事故等が発生し, 当該重大事故等に対処する
ために監視することが必要なパラメータの計測が困難
となった場合に, 代替パラメータにより推定ができる
設計とする。
【73条8】

また，重大事故等時に設計基準を超える状態におけ る発電用原子炬施設の状態を把握するための能力（計測可能範囲）を明確にするとともに，パラメータの計測が困難となった場合の代替パラメータによる推定等，複数のパラメータの中から確からしさを考慮した
優先順位を保安規定に定めて管理する。
【73条7】【73条9】

使用済燃料プールの監視で想定される重大事故等の対応に必要となるパラメータは，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とする。
【73条12】

重大事故等の対応に必要となるパラメータは，安全 パラメータ表示システム（SPDS）のらち SPDS 伝送装置 にて電磁的に記録，保存し，電源喪失により保存した記録が失われないとともに帳票が出力できる設計とす る。また，記録は必要な容量を保存できる設計とする。【73条13】

表現の相違
（使用斎燃料プールの監視装置の計測值を中央制御室に指示又は表示し記録するため， その設計方針について記載している。）

表現の相違
（使用済燃料プールの監視装置の計測結果 をSPDS にて記録，保存するため，その設計方針について記載している。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） －前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表
（核燃料物質の取扱施設及び貯蔵施設の基本設計方針）

《参考》柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第 2 号機	備考
		炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等によ り計器電源が霛失した場合において，代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とす る。 【73条10】 また，代替電源設備が喪失し計測に必要な計器電源 が喪失した場合，特に重要なパラメータとして，炉心損傷防止対策及び格納容器破損防止対策等を成功させ るために必要な発電用原子炉施設の状態を把握するた めのパラメータを計測する装置については，温度及び水位に係るものについて，乾電池を電源とした可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障を想定した予備 1 個を含む 1 セット 26 個（予備 26 個（緊急時対策建屋に保管）））（計測制御系統施設 のらち「2．4 電源喪失時の計測」の設備を核燃料物質 の取扱施設及び貯蔵施設のらち「3．計測装置等」の設備として兼用）により計測できる設計とし，これら を保管する設計とする。 なお，可搬型計測器による計測においては，計測対象の設定を行ら際の考え方として，同一の物理量につ いて，複数のパラメータがある場合は，いずれか 1 つ の適切なパラメータを選定し計測又は監視するものと する。 【73条11】	設備名称の相違 設計の差異 （代替電源設備が喪失した場合にもパラメ ータを計測できるよう可搬型計測器を用い る設計としている。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（計測制御系統施設の基本設計方針）

2．計測装置等
2． 1 計測装置
2．1．1 通常運転時，運転時の異常な過渡変化時及び重大事故等時における計測
重大事故等が発生し，計測機器（非常用のものを含 む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定する ために必要なパラメータを計測する設備を設置又は保管する設計とする。
【73条1】

重大事故等が発生し，当該重大事故等に対処するた めに監視することが必要なパラメータとして，原子炉圧力容器内の温度，圧力及び水位，原子炉圧力容器及 び原子炉格納容器への注水量，原子炉格納容器内の温度，圧力，水位，水素濃度及び酸素濃度，原子炬建屋原子炬棟内の水素濃度，未臨界の維持又は監視，最終し ートシンクの確保，格納容器バイパスの監視並びに水源の碓保に必要なパラメータを計測する装置を設ける設計とする。

【73条2】

重大事故等に対処するために監視することが必要な パラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炬施設 の状態を把握するためのパラメータとし，計測する装置は「表1 計測制御系統施設の主要設備リスト」の「計測装置」に示す重大事故等対処設備の他，原子炬圧力容器温度（個数 5 ，計測範囲 $0 \sim 500^{\circ} \mathrm{C}$ ），フィルタ装置入口圧力（広帯域）（個数 1 ，計測䈭囲 $-0.1 \sim 1 \mathrm{MPa}$ ），フ

設計の差異
（設備名称及び設備仕様の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） －前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（計測制御系統施設の基本設計方針）
ものを 1 個) , 原子炉補機冷却水系系統流量 (個数 2 , 計
測範囲 $\left.0 \sim 4000 \mathrm{~m}^{3} / \mathrm{h}\right)$, 残留熱除去系熱交換器泠却水入
口流量 (個数 2 , 計測範囲 $0 \sim 1500 \mathrm{~m}^{3} / \mathrm{h}$) 及び静的触媒式
水素再結合装置動作監視装置 (個数8, 計測範囲 $0 \sim$
$500^{\circ} \mathrm{C}$) とする。
【73条3】

発電用原子炬施設の状態を直接監視することはでき ないが，電源設備の受電状態，重大事故等対処設備の運転状態及びその他の設備の運転状態により発電用原子炉施設の状態を補助的に監視するパラメータを補助 パラメータとし，その補助パラメータのうち重大事故等対処設備を活用する手順等の着手の判断基準として用いる6－2F－1母線電圧，6－2F－2母線電圧，6－2C母線電

表現の相違
設備名称の相違

圧，6－2D母線電圧，6－2H母線電圧，4－2C母線電圧，4－2D
母線電圧， 125 V直流主母線 2 A 電圧， 125 V直流主母線 $2 B$
電圧， 125 V 直流主母線 $2 \mathrm{~A}-1$ 電圧， 125 V 直流主母線 $2 \mathrm{~B}-1$電圧，250V直流主母線電圧，HPCS125V直流主母線電圧，高圧窒素ガス供給系ADS入口圧力及び代替高圧窒素ガ ス供給系窒素がス供給止め弁入口圧力を計測する装置
は，重大事故等対処設備としての設計を行う。
【73条6】

赤字：設備，運用又は体制の相違点（設計方針の相違）
赤子：設佣，運触字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（計測制御系統施設の基本設計方針）

女川原子力発電所第2号機	備考
2．1．2 原子炉格納容器内の水素濃度及び酸素濃度の計測 格納容器内水素濃度（D／W）及び格納容器内水素濃度 （S／C）は，原子炉格納容器内の水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視でき る設計とする。 【73条4】 【67 条 28】	設計の差異 （原子炉格納容器内に設置する方式の水素濃度監視設備の監視に関する記載であり，女川固有の設備）
格納容器内雰囲気水素浱度及び格納容器内雰囲気酸素濃度は，格納容器内雰囲気ガスサンプリング装置（吸引ポンプ（個数 2 ，容量 \square / min／個以上，吐出圧力 $\square \mathrm{MPa}$ ），排気ポンプ（個数 2 ，容量 $\square \mathrm{L} / \mathrm{min} /$ 個以上，吐出圧力 IPa以上），サンプル椧却器（個数 2 ，伝熱面積 \square 2／個以上），酸素検出器冷却装置 （個数 2））により原子炉格納容器内の雰囲気ガスを原子炉建屋原子炉棟内へ導き，検出器で測定することで，原子炬格納容器内の水素濃度及び酸素濃度を中央制御室より監視できる設計とする。 また，格納容器内雾囲気酸素濃度は，酸素倹出器泠却装置により検出器を椧却することで，耐環境性向上 を図る設計とする。 【73条5】 【67条30】	設備名称の相違 設計の差異 （格納容器内雰囲気ガスサンプリング装置 の構成及び仕様の相違。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） －前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（計測制御系統施設の基本設計方針）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） －前回提出時からの変更箇所
【番号 ：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（計測制御系統施設の基本設計方針）

女川原子力発電所第 2 号機	備考
2.4 電源喪失時の計測 炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等によ り計器電源が喪失した場合において，代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とす る。 【73 条 10】	設備名称の相違
また，代替電源設備が霛失し計測に必要な計器電源 が喪失した場合，特に重要なパラメータとして，灲心損傷防止対策及び格納容器破損防止対策等を成功させ るために必要な発電用原子炉施設の状態を把握するた めのパラメータを計測する装置については，温度，圧力，水位及び流量に係るものについて，乾電池を電源 とした可搬型計測器（原子炬圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用と して測定時の故障を想定した予備 1 個を含む 1 セット 26 個（予備 26 個（緊急時対策建屋に保管）））（核燃料物質の取扱施設及び貯蔵施設のらち「3．計測装置等」 の設備と兼用）により計測できる設計とし，これらを保管する設計とする。 なお，可搬型計測器による計測においては，計測対象の設定を行ら際の考え方として，同一パラメータに チャンネルが複数ある場合は，いずれか 1 つの適切な チャンネルを選定し計測又は監視するものとする。同一の物理量について，複数のパラメータがある場合は，いずれか 1 つの適切なパラメータを選定し計測又は監視するものとする。 【73条11】	設計の差異 （設備仕様の相違及び計測するパラメータ数の相違による個数の相違。） 表現の相違 （計測するパラメータの選定方法について記載している。）
資料のらち枠囲みの内容は，他社の機密事項を含む	性があるため公開できません。－5－

赤字：設備，運用又は体制の相違点（設計方針の相違）

[^0]先行審査プラントの記載との比較表（計測制御系統施設の基本設計方針）
《参考》柏崎刈羽原子力発電所第 7 号機
東海第二発電所

備考
$<$ 柏崎刈羽 7 号との比較＞
設計の差異
（柏崎刈羽 7 号固有の設備に関する記載。）
$<$ 柏崎刈羽 7 号との比較＞
設計の差異
（柏崎刈羽 7 号固有の設備に関する記載。）

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） －前回提出時からの変更箇所
【番号 ：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（放射線管理施設の基本設計方針）

1 放射線管理用計測装置

重大事故等が発生し，当該重大事故等に対処するた めに監視することが必要なパラメータとして，原子炉
格納容器内の放射線量率，最終ヒートシンクの確保及
び使用済燃料プールの監視に必要なパラメータを計測
する装置を設ける設計とする。
【73条2】
重大事故等が発生し，計測機器（非常用のものを含 む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定する ために必要なパラメータを計測する設備を設置する設
計とする。
【73条1】

重大事故等に対処するために監視することが必要な パラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設 の状態を把握するためのパラメータとし，計測する装置は「表1放射線管理施設の主要設備リスト」のプ ロセスモニタリング設備に示す重大事故等対処設備， エリアモニタリング設備のらち使用済燃料プール上部空間放射線モニ夕（低線量）及び使用済燃料プール上部空間放射線モニタ（高線量）とする。
【73条3】
炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするととも に，重大事故等が発生し，当該重大事故等に対処する ために監視することが必要な原子炉格納容器の線量当量率等のパラメータの計測が困難となった場合に，代
替パラメータにより推定ができる設計とする。
【73条8】

赤字：設備，運用又は体制の相違点（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
【】番号：様式 -7 との紐づけを示す番号であり，本比較表において追記したもの（比較対象外）

先行審査プラントの記載との比較表（放射線管理施設の基本設計方針）

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	$\begin{array}{c}\text { 設置許可申請書 } \\ \text { 添付書類八 }\end{array}$	設置許可，技術基準規則及び基本設計方針との対比	備考
（計装設備）		口 発電用原子炉施設の一般構造 （3）その他の主要な構造 （i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加 え，以下の基本的方針のもとに安全設計を行う。 b．重大事故等対処施設（発電用原子炉施設への人の不法な侵入等の防止，中央制御室，監視測定設備，緊急時対策所及び通信連絡 を行うために必要な設備は，a．設計基準対象施設に記載） （ r ）計装設備	第五十八条 計装設備適合のための設計方針 重大事故等が発生し，計測機器 （非常用のものを含む。）の故障 により，当該重大事故等に対処す るために監視することが必要な パラメータを計測することが困難となった場合において，当該パ ラメータを推定するために必要		
第七十三条 発電用原子炉施設	重大事故等が発生し，計測機器	重大事故等が発生し，計測機器	なパラメータを計測する設備を	同趣旨の記載であるが，表現の違	核燃料物質の取扱施設及び貯蔵
には，重大事故等が発生し，計測	（非常用のものを含む。）の故障	$\frac{\text {（非常用のものを含む。）の故障 }}{\text { 年 }}$	設置又は保管する。1（1）（1a） 1 b 重	いによる差異あり	施設
機器（非常用のものを含を。）の	により，当該重大事故等に対処す	により，当該重大事故等に対処す	複）		3．計測装置等
故障により当該重大事故等に対	るために監視することが必要な	るために監視することが必要な	当該重大事故等に対処するた		計測制御系統施設
処するために監視することが必	パラメータを計測することが困	パラメータを計測することが困	めに監視することが必要なパラ		2．1．1 通常運転時，運転時の異常
要なパラメータ（設置許可基準規	難となった場合において，当該パ	難となった場合において，当該パ	メータ（炬心損傷防止対策及び格		な過渡変化時及び重大事故等時
則第十六条第三項第二号に規定	ラメータを推定するために必要	ラメータを推定するために必要	納容器破損防止対策等を成功を		における計測
するパラメータをいら。）を計測	なパラメータを計測する設備を	なパラメータを計測する設備を	せるために必要な発電用原子炉		放射線管理施設
することが困難となった場合に	設置又は保管する設計とする。	設置又は保管する。（1）a（1）${ }^{\text {a }}$	施設の状態を把握するためのパ		1．放射線管理用計測装置
おいて当該パラメータを推定す	（1）【73条1】		ラメータ）は，添付書類十の「第		
るために有効な情報を把握でき る設備を施設しなければならな			5．1－1 表 重大事故等対策にお ける手順書の概要」のらち，「1．15		
い。（1）			事故時の計装に関する手順等」の パラメータの選定で分類された		
【解粎】		へ 計測制御系統施設の構造及び	主要パラメータ（重要監視パラメ		
1 第73条に規定する「当該重	重大事故等が発生し，当該重大	設備	ータ及び有効監視パラメータ）と	同趣旨の記載であるが，表現の違	同上
大事故等に対処するために監視	事故等に対処するために監視す	（1）計装		いによる差異あり	
することが必要なパラメータを	ることが必要なパラメータとし	（ii）その他の主要な計装の種類	h（1）i（1）${ }^{\text {（1）}} \mathrm{k}$（2） a 重複）		
計測することが困難となった場	て，原子炉圧力容器内の温度，圧	発電用原子炉施設のプロセス	当該パラメータを推定するた		
合において当該パラメータを推	力及び水位，原子炉圧力容器及び	計測制御のため，原子炉水位，原	めに必要なパラメータは，添付書		
定するために有効な情報を把握 できる設備しょは，以下に揭げる	原子炉格納容器への注水量，原子怇格納容器内の温度 圧力，水位	子炉圧力，原子炉再循環流量，給	類十の「第 5．1－1表 重大事故等対策における手順書の概要1の		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第 73 条 計装設備】
要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
措置又はこれらと同等以上の効果を有する措置を行らための設備をいう。なお，「当該重大事故等に対処するために監視するこ とが必要なパラメータ」とは，事業者が検討すべき炬心損傷防止対策及び格納容器破損防止対策等を成功させるために把握する ことが必要な発電用原子炉施設 の状態を意味する。（2）	水素宸度，酸素濃度及び放射線量率，原子炉建屋原子炉棟内の水素濃度，未臨界の維持又は監視，最終ヒートシンクの確保，格納容器 バイパスの監視，水源の確保並び に使用済燃料プールの監視に必要なパラメータを計測する装置 を設ける設計とする。 （1）b（1）c（1）d（1）e（1）f（1）g（1）h（1）i（1）j（1） k【73条2】 重大事故等に対処するために監視することが必要なパラメー夕は，灲心損傷防止対策及び格納容器破損防止対策等を成功させ るために必要な発電用原子炉施設の状態を把握するためのパラ メータとし，計測する装置は「表 1 計測制御系統施設の主要設備 リスト」の「計測装置」，「表1核燃料物質の取扱施設及び貯蔵施設の主要設備リスト」の「使用済燃料貯蔵槽の温度，水位及び漏え いを監視する装置」，「表1放射線管理施設の主要設備リスト」の プロセスモニタリング設備に示 す重大事故等対処設備，エリアモ ニタリング設備のらち使用済燃料プール上部空間放射線モニタ （低線量）及び使用済燃料プール上部空間放射線モニタ（高線量） の他，原子炉圧力容器温度（個数 5 ，計測範囲 $\left.0 \sim 500^{\circ} \mathrm{C}\right)$ ，フィルタ装置入口圧力（広帯域）（個数 1 ，計測範囲 $-0.1 \sim 1 \mathrm{MPa}$ ），フィルタ装置出口圧力（広帯域）（個数 1 ，計測範囲 $-0.1 \sim 1 \mathrm{MPa}$ ），フィルタ	 重大事故等が発生し，計測機器 （非常用のものを含む。）の故障 により，当該重大事故等に対処す るために監視することが必要な パラメータを計測することが困難となった場合において，当該パ ラメータを推定するために必要 なパラメータを計測する設備を設置又は保管する。回（1）a（1）b 重複） 当該重大事故等に対処するた めに監視することが必要なパラ メータ（炬心損傷防止対策及び格納容器破損防止対策等を成功を せるために必要な発電用原子炉施設の状態を把握するためのパ ラメータ）（2）aは，「十 ハ（1）第 10－1 表 重大事故等対策におけ る手順書の概要」のらち，「1．15事故時の計装に関する手順等」の パラメータの選定で分類された主要パラメータ（重要監視パラメ ータ及び有効監視パラメータ）と する。（1）（1）（1）c（1）d（1）e（1）f（1）g（1） h（1）i（1）j（1）k 重複） 当該パラメータを推定するた めに必要なパラメータは，「十 （1）第 10－1 表 重大事故等対策における手順書の概要」のう ち，「1．15事故時の計装に関する手順等」のパラメータの選定で分類された代替パラメータ（重要代替監視パラメータ及び有効監視 パラメータ）とする。四（1）b（1）c （1）d（1）e（1）f（1）g（1）hi（1）j（1）k（4）重複）	らち，「1．15 事故時の計装に関す る手順等」のパラメータの選定で分類された代替パラメータ（重要代替監視パラメータ及び有効監視パラメータ）とする。①（1）b（1） c（1）d（1）e（1）f（1）g（1）h（1）i（1）j（1）k（4）重複） 重要監視パラメータ及び重要代替監視パラメータを計測する設備（重大事故等対処設備）につ いて，設計基準を超える状態にお ける発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大值等）） を明確にする。①（3）a 重複） （1）監視機能喪失時に使用する設備 発電用原子炬施設の状態の把握能力を超えた場合に発電用原子炬施設の状態を推定する手段 を有する設計とする。①（4）重複） 重要監視パラメータ又は有効監視パラメータ（原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炉格納容器への注水量等）の計測が困難と なった場合又は計測範囲を超え た場合は，添付書類十の「第5．1 -1 表 重大事故等対策における手順書の概要」のらち，「1．15 事故時の計装に関する手順等」の計器故障時の代替パラメータによ る推定又は計器の計測範囲を超 えた場合の代替パラメータによ る推定の対応手段等により推定	設備設計の明碓化 （パラメータの明碓化）	（1）b 引用元：P1 （1）c 引用元：P36 （1）d 引用元：P37 （1）e引用元：P38 （1）f引用元：P39 （1）g 引用元：P40 （1）h 引用元：P41 （1）i引用元：P43 （1） j 引用元：P44 （1）k引用元：P45 核燃料物質の取扱施設及び貯蔵施設 3．計測装置等 計測制御系統施設 2．1．1 通常運転時，運転時の異常 な過渡変化時及び重大事故等時 における計測 放射線管理施設 1．放射線管理用計測装置

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	装置水位（広帯域）（個数 3，計測範囲 $0 \sim 3650 \mathrm{~mm}$ ），フィルタ装置水温度（個数 3 ，計測範囲 $0 \sim$ $200^{\circ} \mathrm{C}$ ），フィルタ装置出口水素濃度（個数 2 ，計測範囲 $0 \sim 30 \mathrm{vol} \%$ のものを 1 個，計測範囲 $0 \sim$ $100 \mathrm{vo} 1 \%$ のものを 1 個），原子炉補機冷却水系系統流量（個数 2 ，計測範囲 $0 \sim 4000 \mathrm{~m}^{3} / \mathrm{h}$ ），残留熱除去系熱交換器冷却水入口流量（個数 2 ，計測範囲 $0 \sim 1500 \mathrm{~m}^{3} / \mathrm{h}$ ），静的触媒式水素再結合装置動作監視装置（個数 8，計測範囲 $0 \sim$ $500^{\circ} \mathrm{C}$ ）及び使用済燃料プール監視カメラ（個数1）とする。 （2）a（2）b（2）c（2）d（2）e（2）f（2）g（2）h条31 炉心の著しい損傷が発生した場合において水素爆発による原子炉格納容器の破損を防止する ための設備のらち，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，原子炉格納容器内の水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視できる設計とす る。 （2）【73 条 4】 格納容器内雰囲気水素濃度及 び格納容器内雰囲気酸素濃度は，格納容器内雰囲気ガスサンプリ ング装置（吸引ポンプ（容量 $\mathrm{L} / \mathrm{min} /$ 個以上，吐出圧力 MPa，個数 2 個），排気ポン \square		ができる設計とする。（1）（1）b（1）c （1）d（1）e（1）f（1）g（1）h（1）i（1）j（1）k（4）重複） 計器故障時に，当該パラメータ の他チャンネルの計器がある場合，他チャンネルの計器により計測するとともに，重要代替監視パ ラメータが複数ある場合は，推定 する重要監視パラメータとの関係性がより直接的なパラメータ，検出器の種類及び使用環境条件 を踏まえた計測される値の確か らしさを考慮し，優先順位を定め る。（1）（5）重複） （2）計器電源䨤失時に使用する設備 非常用交流電源設備又は非常用直流電源設備の喪失等により計器電源が喪失した場合におい て，計装設備への代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用する。①（11）1 重複） また，代替電源設備が震失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとし て，重要監視パラメータ及び重要代替監視パラメータを計測する設備については，温度，圧力，水位及び流量に係るものについて，乾電池等を電源とした可搬型計測器により計測できる設計とす る。 （1）（1）m 重複）	同趣旨の記載であるが，表現の違 いによる差異あり 設備設計の明確化 （設備名称を工認名称とした。ま た，基本設計方針のみに記載され る設備のため，仕様を明確化し た。）	（2）a 引用元：P2 （2）b引用元：P26 （2）c 引用元：P31 （2）d（2）e引用元：P32 （2）f引用元：P34 （2） g （2） h 引用元：P36 計測制御系統施設 2．1．2 原子炉格納容器内の水素濃度及び酸素濃度の測定 （2） 1 引用元：P12 同上
				枠囲みの内容は商業機密の観点から公開できません。 第73 条	

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	\square m^{2} 個以上），酸素検出		なお，可搬型計測器による計測 においては，計測対象の選定を行 ら際の考え方として，同一パラメ ータにチャンネルが複数ある場合は，いずれか 1 つの適切なチャ ンネルを選定し計測又は監視す るものとする。同一の物理量につ いて，複数のパラメータがある場合は，いずれか 1 つの適切なパラ メータを選定し計測又は監視す るものとする。② （3）パラメータ記録時に使用す る設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応 に必要となる重要監視パラメー タ及び重要代替監視パラメータ は計測又は監視及び記録ができ る設計とする。 －（6）a 重複） 6． 4 計装設備（重大事故等対処設備） 6． 4.1 概要 重大事故等が発生し，計測機器 （非常用のものを含む。）の故障 により，当該重大事故等に対処す るために監視することが必要な パラメータを計測することが困難となった場合において，当該パ ラメータを推定するために必要		（2） 引用元：P13

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			なパラメータを計測する設備を設置又は保管する。（1）（1）a（1）b 重複） 当該重大事故等に対処するた めに監視することが必要なパラ メータ（炬心損傷防止対策及び格納容器破損防止対策等を成功を せるために必要な発電用原子炉施設の状態を把握するためのパ ラメータ）は，添付書類十の「第 5．1－1 表 重大事故等対策にお ける手順書の概要」のうち，「1．15事故時の計装に関する手順等」の パラメータの選定で分類された主要パラメータ（重要監視パラメ ータ及び有効監視パラメータ）と する。（1）（1） b （1） C （1）d（1）e（1）f（1）g $h(1) i(1) j(1) k(2) a$ 重複） 当該パラメータを推定するた めに必要なパラメータは，添付書類十の「第5．1－1 表 重大事故等対策における手順書の概要」の らち，「1．15 事故時の計装に関す る手順等」のパラメータの選定で分類された代替パラメータ（重要代替監視パラメータ及び有効監視パラメータ）とする。（1）（11b（1） c（1）d（1）e（1）f（1）g（1）h（1）i（1）j（1）k（4）重複） 重要監視パラメータ及び重要代替監視パラメータを計測する設備（重大事故等対処設備）につ いて，設計基準を超える状態にお ける発電用原子炬施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等）） を明碓にする。（1（3）a 重複）		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (後) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \\ \hline \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	発電用原子炉施設の状態を直接監視することはできないが，電源設備の受電状態，重大事故等対処設備の運転状態及びその他の設備の運転状態により発電用原子炉施設の状態を補助的に監視 するパラメータを補助パラメー夕とし，その補助パラメータのう ち重大事故等対処設備を活用す る手順等の着手の判断基準とし て用いる 6－2F－1 母線電圧，6－2F－ 2 母線電圧，6－2C 母線電圧，6－2D母線電圧， $6-2 \mathrm{H}$ 母線電圧， $4-2 \mathrm{C}$ 母線電圧， $4-2 \mathrm{D}$ 母線電圧， 125 V 直流主母線 2 A 電圧， 125 V 直流主母線 2 B 電圧， 125 V 直流主母線 $2 \mathrm{~A}-$ 1 電圧， 125 V 直流主母線 $2 B-1$ 電圧， 250 V 直流主母線電圧， HPCS125V 直流主母線電圧，高圧窒素ガス供給系 ADS 入口圧力及 び代替高圧窒素ガス供給系窒素 ガス供給止め弁入口圧力を計測 する装置は，重大事故等対処設備 としての設計を行ら。 （2） j （2） k 【 73 条6】		計測篚囲を第6．4－1 表に，設計基準最大値等を第6．4－2 表 に示す。 計装設備（重大事故等対処設備）の系統概要図を第6．4－1図 から第6．4－5 図に示す。 また，電源設備の受電状態，重大事故等対処設備の運転状態及 びその他の設備の運転状態によ り発電用原子炉施設の状態を補助的に監視するパラメータを補助パラメータとする。なお，補助 パラメータのらち，重大事故等対処設備を活用する手順等の着手 の判断基準として用いるパラメ ータについては，重大事故等対処設備とする。（2）j 重大事故等対処設備の補助パ ラメータの対象を第6．4－4 表 に示す。	同趣旨の記載であるが，表現の違 いによる差異あり	計測制御系統施設 2．1． 1 通常運転時，運転時の異常 な過渡変化時及び重大事故等時 における計測
a）設計基準を超える状態におけ る発電用原子炉施設の状態の把握能力を明碓にすること。（最高計測可能温度等）（3）	重大事故等時に設計基準を超 える状態における発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基	重要監視パラメータ及び重要代替監視パラメータを計測する設備（重大事故等対処設備）につ いて，設計基準を超える状態にお		同趣旨の記載であるが，表現の違 いによる差異あり	核燃料物質の取扱施設及び貯蔵施設 3．計測装置等 計測制御系統施設

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書頪八	設置許可，技術基準規則及び基本設計方針との対比	備考
	準最大値等），計測可能笙囲）を明碓にする。 （3）【73条7】	ける発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等）） を明確にする。（3）a a．監視機能喪失時に使用する設備	6．4．2 設計方針 （1）監視機能喪失時に使用する設備		2.3 計測結果の表示，記録及び保存 放射線管理施設 1．放射線管理用計測装置
b）発電用原子炬施設の状態の把握能力（最高計測可能温度等）を	炬心損傷防止対策及び格納容器破損防止対策等を成功させる	発電用原子炉施設の状態の把握能力を超えた場合に発電用原	発電用原子灲施設の状態の把握能力を超えた場合に発電用原	設備設計の明碓化 （設置する計測器は，発電用原子	核燃料物質の取扱施設及び貯蔵施設
超えた場合の発電用原子炬施設	ために必要な発電用原子炉施設	子炉施設の状態を推定する手段	子炬施設の状態を推定する手段	炉の監視能力について，＋分な能	3．計測装置等
の状態の推定手段を整備するこ	の状態を把握するためのパラメ	を有する設計とする。①（4）重	を有する設計とする。（1）（4）⿳㇒⿻⿱一⿱日一丨一亍刂灬	力を有することを明記してい	計測制御系統施設
と。（4）	ータを計測する装置は，設計基準事故等に想定される変動範囲の	複）重要監視パラメータ又は有効	複） 重要監視パラメータ又は有効	る。）	2.3 計測結果の表示，記録及び保存
i）原子炬圧力容器内の温度，圧	最大値を考慮し，適切に対応する	監視パラメータ（原子炉圧力容器	監視パラメータ（原子炉圧力容器		放射線管理施設
力及び水位が推定できる手段を	ための計測範囲を有する設計と	内の温度，圧力及び水位並びに原	内の温度，圧力及び水位並びに原		1．放射線管理用計測装置
整備すること。（4）	するとともに，重大事故等が発生	子炉圧力容器及び原子炉格納容	子炉圧力容器及び原子炬格納容		
	し，当該重大事故等に対処するた	器への注水量等）の計測が困難と	器への注水量等）の計測が困難と		
ii）原子炉圧力容器及び原子炉格納容器への注水量が推定できる手段を整備すること。	めに監視することが必要な原子	なった場合又は計測範囲を超え	なった場合又は計測範囲を超え		
	炬圧力容器内の温度，圧力及び水	た場合は，「十 ハ（1）第 10－1	た場合は，添付書類十の「第5．1		
	位並びに原子炬圧力容器及び原 子炉格納容器への注水量等のパ	表 重大事故等対策における手順書の概要」のらち，「 1.15 事故時	-1 表 重大事故等対策における手順書の概要」のらち，「1．15 事		
	ラメータの計測が困難となった	の計装に関する手順等」の計器故	故時の計装に関する手順等」の計		
	場合又は計測範囲を超えた場合	障時の代替パラメータ4 によ	器故障時の代替パラメータによ		
	に，代替パラメータにより推定が	る推定又は計器の計測範囲を超	る推定又は計器の計測範囲を超		
	できる設計とする。	えた場合の代替パラメータによ	えた場合の代替パラメータによ		
	（3）44 【73 条8】	る推定の対応手段等により推定 ができる設計とする（4）	る推定の対応手段等により推定 ができる設計とする。 1（4）重		
		がくさる諒妇とする。④	複）		
iii）推定するために必要なパラメ ータは，複数のパラメータの中か ら碓からしさを考慮し，優先順位 を定めておくこと。（5）	パラメータの計測が困難とな	計器故障時に，当該パラメータ	計器故障時に，当該パラメータ	設備設計の明確化 （代替パラメータによる推定を行う際の考慮事項について，保安規定に定める旨を記載してい る。）	同上
	つた場合の代替パラメータによ	の他チャンネルの計器がある場	の他チャンネルの計器がある場		
	る推定等，複数のパラメータの中	合，他チャンネルの計器により計	合，他チャンネルの計器により計		
	から確からしさを考慮した優先	測するとともに，重要代替監視パ	測するとともに，重要代替監視パ		
	順位を保安規定に定めて管理す	ラメータが複数ある場合は，推定	ラメータが複数ある場合は，推定		
	る。	する重要監視パラメータとの閔	する重要監視パラメータとの関		
	（5）【73 条9】	係性がより直接的なパラメータ，検出器の種類及び使用環境条件	係性がより直接的なパラメータ，検出器の種類及び使用環境条件		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	炬心損傷队方止対策及び格納容器破損防止対策等を成功させる ために必要な発電用原子炉施設 の状態を把握するためのパラメ ータを計測する装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等により計器電源が喪失した場合において，代替電源設備として常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用で きる設計とする。 （1）【73条10】	を踏まえた計測される値の確か らしさを考慮し，優先順位を定め る。（5） b．計器電源喪失時に使用する設備 非常用交流電源設備又は非常用直流電源設備の喪失等により計器電源が喪失した場合におい て，計装設備への代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用する。（1）1 常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備	を踏まえた計測される値の確か らしさを考慮し，優先順位を定め る。（1）（5）重複） 推定手段及び優先順位を第 6．4－3 表に示す。 （2）計器電源喪失時に使用する設備 非常用交流電源設備又は非常用直流電源設備の喪失等により計器電源が震失した場合におい て，計装設備への代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用する。①（111重複） 主要な設備は，以下のとおりと する。 －常設代替交流電源設備（10．2代替電源設備） －可搬型代替交流電源設備（10．2代替電源設備） －所内常設蓄電式直流電源設備 （10．2 代替電源設備） －常設代替直流電源設備（ 10.2 代替電源設備） －可搬型代替直流電源設備（10．2代替電源設備） －代替所内電気設備（ 10.2 代替電源設備） （4） 常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備，可搬型代替直流電源設備	同趣旨の記載であるが，表現の違 いによる差異あり	核燃料物質の取扱施設及び貯蔵施設 3．計測装置等計測制御系統施設 2．4 電源喪失時の計測放射線管理施設 1．放射線管理用計測装置

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
	また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとし て，炬心損傷防止対策及び格納容器破損防止対策等を成功させる ために必要な発電用原子炉施設 の状態を把握するためのパラメ ータを計測する設備については，温度，圧力，水位及び流量に係る ものについて，乾電池を電源とし た可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障を想定し た予備 1 個を含む 1 セット 26 個 （予備 26 個（緊急時対策建屋に保管）））（核燃料物質の取扱施設及び貯蔵施設のらち「3．計測装置等」の設備と兼用又は計測制御系統施設のらち「2．4 電源震失時の計測」の設備を核燃料物質の取扱施設及び貯蔵施設のらち「3．計測装置等」の設備として兼用） により計測できる設計とし，これ らを保管する設計とする。 なお，可搬型計測器による計測 においては，計測対象の設定を行 ら際の考え方として，同一パラメ ータにチャンネルが複数ある場合はいずれか 1 つの適切なチャ ンネルを選定し計測又は監視す るものとする。 同一の物理量について，複数の	及び代替所内電気設備について は，「又（2）（iv）代替電源設備」 に記載する。 4 また，代替電源設備が震失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとし て，重要監視パラメータ及び重要代替監視パラメータを計測する設備については，温度，圧力，水位及び流量に係るものについて，乾電池等を電源とした可搬型計測器により計測できる設計とす る。（1） なお，可搬型計測器による計測 においては，計測対象の選定を行 ら際の考え方として，同一パラメ ータにチャンネルが複数ある場合は，いずれか 1 つの適切なチャ ンネルを選定し計測又は監視す るものとする。同一の物理量につ いて，複数のパラメータがある場合は，いずれか 1 つの適切なパラ メータを選定し計測又は監視す るものとする。（1）	及び代替所内電気設備について は，「10．2 代替電源設備」に記載 する。 ${ }^{3}$ また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとし て，重要監視パラメータ及び重要代替監視パラメータを計測する設備については，温度，圧力，水位及び流量に係るものについて，乾電池等を電源とした可搬型計測器により計測できる設計とす る。 ①（1）m 重複） なお，可搬型計測器による計測 においては，計測対象の選定を行 ら際の考え方として，同一パラメ ータにチャンネルが複数ある場合は，いずれか 1 つの適切なチャ ンネルを選定し計測又は監視す るものとする。同一の物理量につ いて，複数のパラメータがある場合は，いずれか 1 つの適切なパラ メータを選定し計測又は監視す るものとする。 主要な設備は，以下のとおりと する。 －可搬型計測器 ①（1）m 重複） （3）パラメータ記録時に使用す る設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応 に必要となる重要監視パラメー	同趣旨の記載であるが，表現の違 いによる差異あり	計測制御系統施設 2.4 電源喪失時の計測

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	$\underset{\substack{\text { 設置許可申請書 } \\ \text { 本文 }}}{ }$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
c）原子炬格納容器内の温度，圧力，水位，水素源度及び放射線量率など想定される重大事故等の対応に必要となるパラメータが計測又は監視及び記録ができる こと。（6）	パラメータがある場合は，いずれ か 1 つの適切なパラメータを選定し計測又は監視するものとす る。 （1）m（1）n（1）o（1）p【73条11】 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率，使用済燃料プールの監視等想定 される重大事故等の対応に必要 となるパラメータは，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とする。 （6）【73条12】 重大事故等の対応に必要とな るパラメータは，安全パラメータ表示システム（SPDS）のうち SPDS伝送装置にて電磁的に記録，保存 し，電源喪失により保存した記録 が失われないとともに帳票が出力できる設計とする。また，記録 は必要な容量を保存できる設計 とする。 （6）【 73 条 13】	c．パラメータ記録時に使用する設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応 に必要となる重要監視パラメー夕及び重要代替監視パラメータ は計測又は監視及び記録ができ る設計とする。（6）a 第 10－1 表 重大事故等対策にお ける手順書の概要（15／19）3	夕及び重要代替監視パラメータ は計測又は監視及び記録ができ る設計とする。 －1（6） 重複） 重大事故等の対応に必要とな るパラメータは，電磁的に記録，保存し，電源哀失により保存した記録が失われないとともに，帳票 が出力できる設計とする。 また，記録は必要な容量を保存 できる設計とする。 主要な設備については，以下の とおりとする。 －安全パラメータ表示システム （S PDS）（データ収集装置， SPDS伝送装置及びS PDS表示装置） （6） 6．4．2．1 多様性，位置的分散基本方針については，「1．1．7． 1 多様性，位置的分散，悪影響防止等」に示す。 重要代替監視パラメータを計測する設備は，重要監視パラメー夕を計測する設備と異なる物理量の計測又は測定原理とするこ とで，重要監視パラメータを計測 する設備に対して可能な限り多樣性を持った計測方法により計測できる設計とする。 重要代替監視パラメータは重	同趣旨の記載であるが，表現の違 いによる差異あり 同趣旨の記載であるが，表現の違 いによる差異あり	（1） n 引用元：P16 （1） p 引用元：P21 核燃料物質の取扱施設及び貯蔵施設 3．計測装置等 計測制御系統施設 2.3 計測結果の表示，記録及び保 存 放射線管理施設 1．放射線管理用計測装置 （6）引引用元：P9 同上

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書 添付書頪八	設置許可，技術基準規則及び基本設計方針との対比	備考
			要監視パラメータと可能な限り位置的分散を図る設計とする。 補助パラメータを計測する設備は，代替する機能を有する設計基準事故対処設備と可能な限り多様性及び独立性を有し，位置的分散を図る設計とする。なお，補助パラメータを計測する設備の うち，想定される重大事故等時に設計基準対象施設としての機能 を期待する重大事故等対処設備 は，「1．1．7重大事故等対処設備 に関する基本方針」のらち，多様性，位置的分散を除く設計方針を適用して設計を行う。 重要監視パラメータを計測す る設備及び重要代替監視パラメ ータ並びに重大事故等対処設備 の補助パラメータを計測する設備の電源は，共通要因によって同時に機能を損なわないよう，非常用交流電源設備に対して多様性 を有する常設代替交流電源設備又は可搬型代替交流電源設備か ら給電が可能な設計とする。 電源設備の多様性，位置的分散 については「10．2 代替電源設備」 にて記載する。 6．4．2．2 悪影響防止 基本方針については，「1．1．7． 1 多様性，位置的分散，悪影響防止等」に示す。 重要監視パラメータ及び重要代替監視パラメータを計測する設備のらち，多重性を有するパラ		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7【第 73 条 計装設備】

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
		リ 原子炉格納施設の構造及び設 （3）非常用格納容器保護設備の構造 （ii）重大事故等対処設備 d．水素爆発による原子炉格納容器の破損を防止するための設備 （b）原子炉格納容器内の水素濃度監視及び酸素濃度監視 （b－1）格納容器内水素濃度（D／ W）及び格納容器内水素濃度（S ／C）による原子炉格納容器内の水素濃度監視 原子炉格納容器内の水素濃度監視を行うための重大事故等対処設備として，格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，炉心の著しい損傷 が発生した場合に，水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視でき る設計とする。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備 から給電が可能な設計とする。（2） （b－2）原子炉格納容器内雰囲気計装による原子炉格納容器内の水素濃度監視及び酸素濃度監視 原子炉格納容器内の水素濃度監視及び酸素濃度監視を行うた めの重大事故等対処設備として，	メータの計測装置は，チャンネル相互を物理的，電気的に分離し， チャンネル間の独立を図る設計 とする。また，重要監視パラメー夕及び重要代替監視パラメータ の計測装置の間においてもパラ メータ相互をヒューズにより電気的に分離することで，他の設備 に悪影響を及ぼさない設計とす る。 重大事故等対処設備の補助パ ラメータは，電気的に分離するこ とで，他の設備に悪影響を及ぼさ ない設計とする。 安全パラメータ表示システム （SPDS）は，設計基準対象施設として使用する場合と同じ系統構成で重大事故等対処設備と して使用することで，他の設備に悪影響を及ぼさない設計とする。 可搬型計測器は，通常時に接続先の系統と分離された状態であ ること及び重大事故等時は重大事故等対処設備として系統構成 をすることにより，他の設備に悪影響を及ぼさない設計とする。 （b） 6．4． 2.3 容量等 基本方針については，「1．1．7． 2 容量等」に示す。 常設の重大事故等対処設備の らち以下のパラメータを計測す る設備は，設計基準対象施設の計測機能と兼用しており，設計基準事故時に使用する場合の計測範囲が，計器の不確かさを考慮して		

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書 添付書頪八	設置許可，技術基準規則及び基本設計方針との対比	備考
		格納容器内雾囲気水素濃度及び格納容器内雰囲気酸素濃度は，灯心の著しい損傷が発生した場合 に，サンプリング装置により原子炬格納容器内の雰囲気ガスを原子炉建屋原子炉棟内へ導き，検出器で測定することで，原子炉格納容器内の水素濃度及び酸素濃度 を中央制御室より監視できる設計とする。②i 格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度は，常設代替交流電源設備又は可搬型代替交流電源設備 から給電が可能な設計とする。 2． なお，原子炉補機代替泠却水系 から泠却水を供給することによ り，サンプリングガスを泠却でき る設計とする。	も設計基準を超える状態におい て発電用原子炉施設の状態を推定できるため，設計基準対象施設 と同仕様の設計とする。 - 原子炉圧力 - 原子炉水位（広帯域） - 原子炉水位（燃料域） - 原子炉隔離時冷却系ポンプ出口流量 －高圧炉心スプレイ系ポンプ出口流量 - 残留熱除去系ポンプ出口流量 - 低圧炉心スプレイ系ポンプ出口流量 - 格納容器内雰囲気水素濃度 - 格納容器内雰囲気放射線モニ夕（D／W） －格納容器内雰囲気放射線モニ 夕（S／C） - 起動領域モニタ - 平均出力領域モニタ - 残留熱除去系熱交換器入口温度 －残留熱除去系熱交換器出口温度 - 原子炉補機冷却水系系統流量 - 残留熱除去系熱交換器冷却水入口流量 －原子炉隔離時冷却系ポンプ出口圧力 －高圧炬心スプレイ系ポンプ出口圧力 - 残留熱除去系ポンプ出口圧力 - 低圧炉心スプレイ系ポンプ出口圧力 - 格納容器内雰囲気酸素濃度 - 使用済燃料プール水位／温度		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書 添付書頪八	設置許可，技術基準規則及び基本設計方針との対比	備考
			（ガイドパルス式） 常設の重大事故等対処設備の らち以下のパラメータを計測す る設備は，計器の不確かさを考慮 しても設計基準を超える状態に おいて発電用原子炉施設の状態 を推定できる設計とする。 - 原子炬圧力容器温度 - 原子炬圧力（SA） - 原子炉水位（SA広带域） - 原子炉水位（SA燃料域） - 高圧代替注水系ポンプ出口流量 －残留熱除去系洗浄ライン流量 （残留熱除去系ヘッドスプレイ ライン洗浄流量） －残留熱除去系洗浄ライン流量 （残留熱除去系B系格納容器泠却ライン洗浄流量） －直流駆動低圧注水系ポンプ出口流量 - 代替循環冷却ポンプ出口流量 - 原子炬格納容器代替スプレイ流量 - 原子炉格納容器下部注水流量 - ドライウェル温度 - 压力抑制室内空気温度 - サプレッションプール水温度 - 原子炬格納容器下部温度 - ドライウェル圧力 - 圧力抑制室圧力 - 圧力抑制室水位 - 原子炬格納容器下部水位 - ドライウェル水位 - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - フィルタ装置水位（広帯域）		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (} \text { (後) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \\ \hline \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			－フィルタ装置入口圧力（広帯 域） －フィルタ装置出口圧力（広帯 域） - フィルタ装置水温度 - フィルタ装置出口放射線モニ夕 - フィルタ装置出口水素濃度 - 耐圧強化ベント系放射線モニ夕 - 復水貯蔵タンク水位 - 高圧代替注水系ポンプ出口圧力 －直流駆動低圧注水系ポンプ出口圧力 - 代替循睘冷却ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 原子炉建屋内水素濃度 - 静的触媒式水素再結合装置動作監視装置 －使用斎燃料プール水位／温度 （ヒートサーモ式） －使用済燃料プール上部空間放射線モニタ（高線量，低線量） －使用済燃料プール監視カメラ重大事故等対処設備の補助パ ラメータは，重大事故等対処設備 を活用する手順等の着手の判断 ができ，系統の目的に応じて必要 となる計測範囲を有する設計と する。 安全パラメータ表示システム （SPDS）は，想定される重大事故等時に発電所内の通信連絡 をする必要のある場所に必要な データ量を伝送することができ る設計とする。		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \hline \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書 添付書頪八	設置許可，技術基準規則及び基本設計方針との対比	備考
			可搬型計測器は，原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位及び流量（注水量）の計測用として 26 個（測定時の故障を想定した予備 1 個含む。）使用する。保有数は，故障時及び保守点検による待機除外時のバッ クアップ用として 26 個を含めて合計 52 個を分散して保管する。 （1） n 6．4．2．4 環境条件等 基本方針については，「1．1．7． 3 環境条件等」に示す。 重要監視パラメータ及び重要代替監視パラメータのらち以下 のパラメータを計測する設備は，原子炉格納容器内に設置し，想定 される重大事故等時における環境条件を考慮した設計とする。 - 原子炬圧力容器温度 - ドライウェル温度 - 圧力抑制室内空気温度 - サプレッションプール水温度 - 原子炉格納容器下部温度 - 原子炉格納容器下部水位 - ドライウェル水位 - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - 起動領域モニタ - 平均出力領域モニタ なお，起動領域モニタ及び平均 出力領域モニタについては，想定 される重大事故等時初期におけ る原子炉格納容器内の環境条件 を考慮した設計とする。		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			重要監視パラメータ及び重要代替監視パラメータ並びに重大事故等対処設備の補助パラメー夕のらち以下のパラメータを計測する設備は，原子炉建屋原子炉棟内に設置し，想定される重大事故等時における環境条件を考慮 した設計とする。 - 原子炉圧力 - 原子炬圧力（S A） - 原子炉水位（広帯域） - 原子炉水位（然料域） - 原子炉水位（SA広帯域） - 原子炉水位（SA燃料域） - 高圧代替注水系ポンプ出口流量 －残留熱除去系洗浄ライン流量 （残留熱除去系へッドスプレイ ライン洗浄流量） －残留熱除去系洗浄ライン流量 （残留熱除去系B系格納容器冷却ライン洗浄流量） －原子炬隔離時冷却系ポンプ出口流量 －高圧炉心スプレイ系ポンプ出口流量 - 残留熱除去系ポンプ出口流量 - 低圧炉心スプレイ系ポンプ出口流量 －原子炉格納容器代替スプレイ流量 - 原子炉格納容器下部注水流量 - ドライウェル圧力 - 圧力抑制室圧力 - 圧力抑制室水位 - 格納容器内雾囲気水素濃度 - 格納容器内雰囲気放射線モニ		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			夕（D／W） －格納容器内雰囲気放射線モニ 夕（S／C） - フィルタ装置水位（広帯域） - フィルタ装置出口圧力（広帯 域） - フィルタ装置水温度 - フィルタ装置出口水素濃度 - 残留熱除去系熱交換器入口温度 －残留熱除去系熱交換器出口温度 －残留熱除去系熱交換器冷却水入口流量 －高圧代替注水系ポンプ出口圧力 －原子炬隔離時冷却系ポンプ出口圧力 －高圧炬心スプレイ系ポンプ出口圧力 - 残留熱除去系ポンプ出口圧力 - 低圧炬心スプレイ系ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 原子炉建屋内水素濃度 - 静的触媒式水素再結合装置動作監視装置 - 格納容器内雾囲気酸素浱度 - 使用済燃料プール水位／温度 （ヒートサーモ式） －使用济燃料プール水位／温度 （ガイドパルス式） －使用済燃料プール上部空間放射線モニタ（高線量，低線量） - 使用済燃料プール監視カメラ - 高圧窒素ガス供給系 ADS入口圧力		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			重要監視パラメータ及び重要代替監視パラメータ並びに重大事故等対処設備の補助パラメー夕のらち以下のパラメータを計測する設備は，原子炉建屋付属棟内に設置し，想定される重大事故等時における環境条件を考慮し た設計とする。 －直流駆動低圧注水系ポンプ出口流量 －代替循澴泠却ポンプ出口流量 －フィルタ装置入口圧力（広帯域） －フィルタ装置出口放射線モニ - 耐圧強化ベント系放射線モニ - 原子炉補機冷却水系系統流量 - 直流駆動低圧注水系ポンプ出口圧力 - 代替循環冷却ポンプ出口圧力 - 代替高圧窒素ガス供給系窒素 ガス供給止め弁入口圧力 重要監視パラメータ及び重要代替監視パラメータのらち以下 のパラメータを計測する設備は，屋外（C S T 連絡トレンチ／バル ブ室）に設置し，想定される重大事故等時における環境条件を考慮した設計とする。 －復水貯蔵タンク水位 重要監視パラメータ及び重要代替監視パラメータ並びに重大事故等対処設備の補助パラメー夕のらち以下のパラメータを計測する設備は，制御建屋内に設置 し，想定される重大事故等時にお		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			ける環境条件を考慮した設計と する。 - 6－2F－1 母線電圧 - 6－2F－2 母線電圧 - 6－2C 母線電圧 - 6－2D 母線電圧 - 6－2H 母線電圧 - 4－2C 母線電圧 - 4－2D 母線電圧 - 125 V 直流主母線 2 A 電圧 - 125 V 直流主母線 2 B 電圧 - 125 V 直流主母線 $2 \mathrm{~A}-1$ 電圧 - 125 V 直流主母線 $2 \mathrm{~B}-1$ 電圧 - 250 V 直流主母線電圧 - HPCS 125 V 直流主母線電圧安全パラメータ表示システム （S P D S）のらちデータ収集装置は，制御建屋内に設置し，想定 される重大事故等時における環境条件を考慮した設計とする。デ ータ収集装置は，想定される重大事故等時に操作を行う必要がな い設計とする。 安全パラメータ表示システム （S P D S ）のうち S P D S 伝送装置は，緊急時対策建屋緊急時対策所内に設置し，想定される重大事故等時における環境条件を考慮した設計とする。安全パラメー タ表示システム（ S P D S ）のら ちS P D S 伝送装置は，想定され る重大事故等時に操作を行う必要がない設計とする。 安全パラメータ表示システム （S P D S ）の ちち S P D S 表示装置は，緊急時対策建屋緊急時対策所内に設置し，想定される重大		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			事故等時における環境条件を考慮した設計とする。安全パラメー タ表示システム（S P D S ）のう ちS P D S 表示装置の操作は，想定される重大事故等時において，設置場所で可能な設計とする。 可搬型計測器は，制御建屋内及 び緊急時対策建屋緊急時対策所内に保管し，想定される重大事故等時における環境条件を考慮し た設計とする。可搬型計測器の操作は，想定される重大事故等時に おいて，設置場所で可能な設計と する。（1pp 6．4．2．5 操作性の確保 基本方針については，「1．1．7．4操作性及び試験•検査性」に示す。常設の重大事故等対処設備の うち，以下のパラメータを計測す る設備は設計基準対象施設とし て使用する場合と同じ構成で使用できる設計とする。 - 原子炉圧力 - 原子炉水位（広帯域） - 原子炉水位（燃料域） - 原子炉隔離時冷却系ポンプ出口流量 －高圧炉心スプレイ系ポンプ出口流量 - 残留熱除去系ポンプ出口流量 - 低圧炉心スプレイ系ポンプ出口流量 - 格納容器内雰囲気水素濃度 - 格納容器内雰囲気放射線モニ夕（D／W）		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \hline \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書 添付書頪八	設置許可，技術基準規則及び基本設計方針との対比	備考
			－格納容器内雰囲気放射線モニ夕（S／C） - 起動領域モニタ - 平均出力領域モニタ - 残留熱除去系熱交換器入口温度 －残留熱除去系熱交換器出口温度 - 原子炬補機泠却水系系統流量 - 残留熱除去系熱交換器冷却水入口流量 －原子炉隔離時冷却系ポンプ出口圧力 －高圧炉心スプレイ系ポンプ出口圧力 - 残留熱除去系ポンプ出口圧力 - 低圧炉心スプレイ系ポンプ出口圧力 - 格納容器内雾囲気酸素濃度 - 使用済燃料プール水位／温度 （ガイドパルス式） - 6－2C 母線電圧 - 6－2D 母線電圧 - 6－2H 母線電圧 - 4－2C 母線電圧 - 4－2D 母線電圧 - 125 V 直流主母線 2 A 電圧 - 125 V 直流主母線 2 B 電圧 - 250 V 直流主母線電圧 - H P C S 125 V 直流主母線電圧 - 高圧窒素ガス供給系 ADS入口圧力 格納容器内雾囲気水素濃度及 び格納容器内雰囲気酸素濃度は，設計基準対象施設として使用す る場合と同じ構成で，重大事故等対処設備として使用できる設計		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基潐規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 } \left.{ }^{(\text {後 }}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			とする。格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を計測するためのサンプリン グ装置は中央制御室の操作スイ ッチにより操作が可能な設計と する。 常設の重大事故等対処設備の らち，以下のパラメータを計測す る設備は設計基準対象施設と兼用せず，他の系統と切り替えるこ となく使用できる設計とする。 - 原子炉圧力容器温度 - 原子炉圧力（S A） - 原子炉水位（SA広帯域） - 原子炉水位（SA燃料域） - 高圧代替注水系ポンプ出口流量 －残留熱除去系洗浄ライン流量 （残留熱除去系ヘッドスプレイ ライン洗浄流量） －残留熱除去系洗浄ライン流量 （残留熱除去系B系格納容器冷却ライン洗浄流量） －直流駆動低圧注水系ポンプ出口流量 - 代替循環泠却ポンプ出口流量 - 原子炉格納容器代替スプレイ流量 - 原子炉格納容器下部注水流量 - ドライウェル温度 - 圧力抑制室内空気温度 - サプレッションプール水温度 - 原子炉格納容器下部温度 - ドライウェル圧力 - 圧力抑制室圧力 - 圧力抑制室水位 - 原子炉格納容器下部水位		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基潐規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 } \left.{ }^{(\text {後 }}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			- ドライウェル水位 - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - フィルタ装置水位（広帯域） - フィルタ装置入口圧力（広帯 域） －フィルタ装置出口圧力（広帯 域） - フィルタ装置水温度 - フィルタ装置出口放射線モニ 夕 - フィルタ装置出口水素濃度 - 耐圧強化ベント系放射線モニ夕 - 復水貯蔵タンク水位 - 高圧代替注水系ポンプ出口圧 力 －直流駆動低圧注水系ポンプ出口圧力 - 代替循環冷却ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 原子炉建屋内水素浱度 - 静的触媒式水素再結合装置動作監視装置 －使用斎燃料プール水位／温度 （ヒートサーモ式） －使用済燃料プール上部空間放射線モニ夕（高線量，低線量） - 使用済燃料プール監視カメラ - 6－2F－1 母線電圧 - 6－2F－2 母線電圧 - 125 V 直流主母線 2A－1 電圧 - 125 V 直流主母線2B－1 電圧 - 代替高圧窒素ガス供給系窒素 ガス供給止め弁入口圧力 フィルタ装置出口水素濃度を計測するためのサンプリング装		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			置は，想定される重大事故等時に切り替えることなく使用できる設計とする。フィルタ装置出口水素濃度を計測するためのサンプ リング装置は，中央制御室の操作 スイッチ及び原子炉建屋付属棟 の亣を遠隔で手動操作が可能な設計とする。 安全パラメータ表示システム （SPDS）は，想定される重大事故等時において，設計基準対象施設として使用する場合と同じ系統構成で重大事故等対処設備 として使用する設計とする。安全 パラメータ表示システム（S P D S）のうちデータ収集装置及びS PDS伝送装置は，常時伝送を行 らため，通常操作を必要としない設計とする。安全パラメータ表示 システム（SPDS）のちちS P D S 表示装置は，付属の操作スイ ッチにより緊急時対策建屋緊急時対策所内で操作が可能な設計 とする。 可搬型計測器は，設計基準対象施設とは兼用しないため，想定さ れる重大事故等時に切り替える ことなく使用できる設計とする。可搬型計測器の計装ケーブルの接続は，ボルト・ネジ接続とし，接続規格を統一することにより，一般的に使用される工具を用い て確実に接続できる設計とし，付属の操作スイッチにより設置場所で操作が可能な設計とする。 （9）		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基潐規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 } \left.{ }^{(\text {後 }}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			6．4．3 主要設備及び仕様 計装設備（重大事故等対処設 備）の主要機器仕様並びに重要監視パラメータ及び重要代替監視 パラメータを第6．4－1 表及び第6．4－2 表に，代替パラメータ による主要パラメータの推定を第6．4－3表に示す。また，重大事故等対処設備を活用する手順等の着手の判断基準として用い る補助パラメータを第6．4－4表に示す。 6． 4.4 試験検査 基本方針については，「1．1．7．4操作性及び試験•検査性」に示す。 重要監視パラメータ及び重要代替監視パラメータ並びに重大事故等対処設備の補助パラメー夕を計測する設備は，発電用原子炉の運転中又は停止中に，模擬入力による機能•性能の確認（特性 の確認）及び校正が可能な設計と する。 安全パラメータ表示システム （S P D S）は，発電用原子炉の運転中又は停止中に機能•性能の確認及び外観の確認が可能な設計とする。 可搬型計測器は，発電用原子炉 の運転中又は停止中に，模擬入力 による性能の確認が可能な設計 とする。 （1） 第6．4－1 表 計装設備（重大事故等対処設備）の主要機器仕様		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	$\underset{\text { 設置許可申請書 }}{\text { 本文 }}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			（1）原子炉圧力容器温度 個 数 5 計測範囲 $0 \sim 500^{\circ} \mathrm{C}(2) \mathrm{b}$ （2）原子炉圧力 4 4 兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 2 計測範囲 $0 \sim 10 \mathrm{MPa}$［gage］ （3）原子炉圧力（ S A）〈4 個 数 2 計測範囲 $0 \sim 11 \mathrm{MPa}$［gage］ （4）原子炉水位（広帯域）4 ${ }^{4}$ 兼用する設備は以下のとおり。 －原子炬プラント・プロセス計装 個 数 2 計測範囲 $\quad-3,800 \mathrm{~mm} \sim$ $1,500 \mathrm{~mm}^{* 1}$ （5）原子炉水位（燃料域）〈 4兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 2 計測範囲 $\quad-3,800 \mathrm{~mm} \sim$ $1,300 \mathrm{~mm}{ }^{*}{ }^{2}$ （6）原子炉水位（S A 広帯域）〈 4 個 数 1 計測範囲 $\quad-3,800 \mathrm{~mm} \sim$ $1,500 \mathrm{~mm}{ }^{* 1}$ （7）原子炉水位（S A 燃料域）〈 4個 数 1 計測範囲 $\quad-3,800 \mathrm{~mm} \sim$ $1,300 \mathrm{~mm}^{* 2}$ （8）高圧代替注水系ポンプ出口流量 $\left.{ }^{\wedge}\right\rangle$ 個 数 1 計測範囲 $0 \sim 120 \mathrm{~m}^{3} / \mathrm{h}$ （9）残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイ		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書 本文	設置許可申請書 添付書頪八	設置許可，技術基準規則及び基本設計方針との対比	備考
			ライン洗浄流量）4〉 個 数 1 計測範囲 $0 \sim 220 \mathrm{~m}^{3} / \mathrm{h}$ （10）残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器冷却ライン洗浄流量）〈4 個 数 1 計測範囲 $0 \sim 220 \mathrm{~m}^{3} / \mathrm{h}$ （11）直流駆動低圧注水系ポンプ出口流量 4 個 数 1 計測範囲 $0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$ （12）代替循環冷却ポンプ出口流量（4） 個 数 1 計測範囲 $0 \sim 200 \mathrm{~m}^{3} / \mathrm{h}$ （13）原子炉隔離時冷却系ポンプ出口流量（4） 兼用する設備は以下のとおり。 －原子炬プラント・プロセス計装 個 数 1 計測範囲 $\quad 0 \sim 150 \mathrm{~m}^{3} / \mathrm{h}$ （14）高圧炉心スプレイ系ポンプ出口流量（4） 兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 1 計測範囲 $0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$ （15）残留熱除去系ポンプ出口流量（4） 兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 3 計測範囲 $0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$ （16）低圧炉心スプレイ系ポンプ出口流量（4） 兼用する設備は以下のとおり。		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解积	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			－原子炉プラント・プロセス計装 個 数 1 計測範囲 $\quad 0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$ （17）原子炉格納容器代替スプレ イ流量 ${ }^{\text {4 }}$ 〉 個 数 2 計測範囲 $\quad 0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$ （18）原子炉格納容器下部注水流 量（4） 個 数 1 計測範囲 $\quad 0 \sim 110 \mathrm{~m}^{3} / \mathrm{h}$ （19）ドライウェル温度〈4 個 数 11 計測範囲 $0 \sim 300^{\circ} \mathrm{C}$ （20）圧力抑制室内空気温度 〈 $\left.{ }^{4}\right\rangle$ 個 数 4 計測範囲 $0 \sim 300^{\circ} \mathrm{C}$ （21）サプレッションプール水温度（4） 個 数 16 計測範囲 $0 \sim 200^{\circ} \mathrm{C}$ （22）原子炉格納容器下部温度〈4 個 数 12 計測範囲 $0 \sim 700^{\circ} \mathrm{C}$ （23）ドライウェル圧力 〈 4 個 数 1 計測範囲 $0 \sim 1 \mathrm{MPa}[$ abs $]$ （24）圧力抑制室圧力（4） 個 数 1 計測範囲 $0 \sim 1 \mathrm{MPa}[\mathrm{abs}]$ （25）圧力抑制室水位（4） 個 数 2 計測範囲 $0 \sim 5 \mathrm{~m}$（ 0 ．P．－ $3900 \mathrm{~mm} \sim 1100 \mathrm{~mm}$ ） ＊3 （26）原子炉格納容器下部水位 （4）		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	設置許可申請書本文	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			個 数 12 計測䇼囲 $0.5 \mathrm{~m}, ~ 1.0 \mathrm{~m}, ~ 1.5 \mathrm{~m}$ ， 2． $0 \mathrm{~m}, 2.5 \mathrm{~m}, 2.8 \mathrm{~m}(0$. P．-2000 mm ， $-1500 \mathrm{~mm},-1000 \mathrm{~mm},-500 \mathrm{~mm}$ ， $0 \mathrm{~mm}, 300 \mathrm{~mm}$ ）＊3 （27）ドライウェル水位 〈4 個 数 6 計測範囲 $0.02 \mathrm{~m}, 0.23 \mathrm{~m}, 0.34 \mathrm{~m}$ （0．P． $1170 \mathrm{~mm}, 1380 \mathrm{~mm}, 1490 \mathrm{~mm}$ ） ＊3 （28）格納容器内水素濃度（D／ W）〈4 兼用する設備は以下のとおり。 －水素爆発による原子炉格納容器の破損を防止するための設備 個 数 2 計測範囲 $0 \sim 100 \mathrm{vol} \%$ （29）格納容器内水素濃度（S／ C）〈4 兼用する設備は以下のとおり。 －水素爆発による原子炉格納容器の破損を防止するための設備 個 数 2 計測範囲 $0 \sim 100 \mathrm{vol} \%$ （30）格納容器内雰囲気水素濃度 兼用する設備は以下のとおり。 - 原子炉プラント・プロセス計装 - 水素爆発による原子炉格納容器の破損を防止するための設備 個 数 4 計測範囲 $0 \sim 30 \mathrm{vol} \% / 0 \sim$ 100vol\％ （31）格納容器内雾囲気放射線モ二夕（ $\mathrm{D} / \mathrm{W})^{4}$ ） 第 8．1－2 表 放射線管理設備 （重大事故等時）の主要機器仕樣		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			に記載する。 （32）格納容器内雰囲気放射線モ二夕 $(S / C) ~ 4$ 第 8．1－2 表 放射線管理設備 （重大事故等時）の主要機器仕様 に記載する。 （33）起動領域モニタ 4〉兼用する設備は以下のとおり。 －原子炬核計装 個 数 8 計測範囲 $10^{-1} \mathrm{cps} \sim 10^{6} \mathrm{cps}(1$ $\left.\times 10^{3} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \sim 1 \times 10^{9} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}\right)$ $0 \sim 40 \%$ 又は $0 \sim 125 \% ~(1 \times$ $\left.10^{8} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \sim 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}\right)$ （34）平均出力領域モニ夕 \＆ 4 兼用する設備は以下のとおり。 －原子炬核計装 個 数 6 䉼 計測範囲 $0 \sim 125 \% ~(1.2 \times$ $\left.10^{12} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \sim 2.8 \times 10^{14} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}\right)$ （35）フィルタ装置水位（広帯域） 個 数 3 計測範囲 $0 \sim 3,650 \mathrm{~mm}$ （36）フィルタ装置入口圧力（広 帯域） 個 数 1 計測範囲 $-0.1 \sim 1$ MPa［gage］ （37）フィルタ装置出口圧力（広 帯域） 個 数 1 計測範囲 $-0.1 \sim 1$ MPa［gage］ （38）フィルタ装置水温度 個 数 3 計測範囲 $0 \sim 200^{\circ} \mathrm{C}$（2）c （39）フィルタ装置出口放射線モ		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (後) } \end{gathered}$	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			ニタ〈4 第 $8.1-2$ 表 放射線管理設備 （重大事故等時）の主要機器仕様 に記載する。 （40）フィルタ装置出口水素濃度兼用する設備は以下のとおり。 －水素爆発による原子炉格納容器の破損を防止するための設備 個 数 2 計測範囲 $0 \sim 30 \mathrm{vol} \% / 0 \sim$ $100 \mathrm{vol} \%$（2）d （41）耐圧強化ベント系放射線モ二タ 4 4 第 8．1－2 表 放射線管理設備 （重大事故等時）の主要機器仕様 に記載する。 （42）残留熱除去系熱交換器入口温度〈 兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 2 計測範囲 $0 \sim 300^{\circ} \mathrm{C}$ （43）残留熱除去系熱交換器出口温度 ${ }^{4}$ 〉 兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 2 計測範囲 $0 \sim 300^{\circ} \mathrm{C}$ （44）原子炉補機冷却水系系統流量 兼用する設備は以下のとおり。 －原子灲プラント・プロセス計装 個 数 2 計測範囲 $\quad 0 \sim 4,000 \mathrm{~m}^{3} / \mathrm{h}$ （45）残留熱除去系熱交換器冷却水入口流量 兼用する設備は以下のとおり。		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 }(\text { (後) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 設置許可申請書 } \\ \text { 本文 } \\ \hline \end{gathered}$	設置許可中請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			－原子炉プラント・プロセス計装個 数 2 計測範囲 $0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$（2） e （46）復水貯蔵タンク水位 4 個 数 1 計測範囲 $0 \sim 3,200 \mathrm{~m}^{3}$ （47）高圧代替注水系ポンプ出口 圧力 個 数 1 計測範囲 $0 \sim 15 \mathrm{MPa}$［gage］ （48）直流駆動低圧注水系ポンプ出口圧力（4） 個 数 1 計測範囲 $0 \sim 2 \mathrm{MPa}[\mathrm{gage}]$ （49）代替循環泠却ポンプ出口圧力（4） 個 数 1 計測範囲 $0 \sim 4 \mathrm{MPa}$［gage］ （50）原子炬隔離時冷却系ポンプ出口圧力（4） 兼用する設備は以下のとおり。 －原子炬プラント・プロセス計装 個 数 1 計測範囲 $0 \sim 15 \mathrm{MPa}$［gage］ （51）高圧灲心スプレイ系ポンプ出口圧力（4） 兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 1 計測範囲 $0 \sim 12 \mathrm{MPa}$［gage］ （52）残留熱除去系ポンプ出口圧力（4） 兼用する設備は以下のとおり。 －原子炬プラント・プロセス計装 個 数 3		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	$\begin{gathered} \text { 設工認申請書 } \\ \text { 基本設計方針 (後) } \\ \hline \end{gathered}$	設置許可申請書 本文	設置許可申請書 添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			（53）低圧炉心スプレイ系ポンプ出口圧力 4 兼用する設備は以下のとおり。 －原子炉プラント・プロセス計装 個 数 1 計測範囲 $0 \sim 5 \mathrm{MPa}[\mathrm{gage}]$ （54）復水移送ポンプ出口圧力 （4） 個 数 1 計測範囲 $0 \sim 1.5 \mathrm{XPa}[\mathrm{gage}]$ （55）原子炉建屋内水素濃度 4兼用する設備は以下のとおり。 －水素爆発による原子炉建屋等 の損傷を防止するための設備 個 数 7 計測範囲 $0 \sim 10 \mathrm{vol} \%$ （56）静的触媒式水素再結合装置動作監視装置 兼用する設備は以下のとおり。 －水素爆発による原子炉建屋等 の損傷を防止するための設備 個 数 8 計測範囲 $0 \sim 500^{\circ} \mathrm{C}$（2） f （57）格納容器内雰囲気酸素濃度 （4） 兼用する設備は以下のとおり。 - 原子炉プラント・プロセス計装 - 水素爆発による原子炬格納容器の損傷を防止するための設備個 数 2 計測範囲 $0 \sim 30 \mathrm{vo} 1 \%$ （58）使用済燃料プール水位 $/$ 温度（ヒートサーモ式）〈 第 4．3－1 表 使用済燃料プール の冷却等のための設備の主要機器仕様に記載する。		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表

技術基準規則•解釈	設工認申請書基本設計方針（後）	$\begin{gathered} \hline \text { 設置許可申請書 } \\ \text { 本文 } \\ \hline \end{gathered}$	設置許可申請書添付書類八	設置許可，技術基準規則及び基本設計方針との対比	備考
			度（ガイドパルス式）〈4 第 4．3－1 表 使用済燃料プール の冷却等のための設備の主要機器仕様に記載する。 （60）使用済燃料プール上部空間放射線モニタ（高線量，低線量） （2）g 第 8．1－2 表 放射線管理設備 （重大事故等時）の主要機器仕様 に記載する。 （61）使用斎燃料プール監視カメ ミ（2）h 第 4．3－1 表 使用済燃料プール の泠却等のための設備の主要機器仕様に記載する。 （62）安全パラメータ表示システ ム（SPDS） 第 10．12－2 表 通信連絡を行う ために必要な設備（常設）の主要機器仕樣に記載する。 （63）可搬型計測器 個 数 26（予備 26） （1）（1） n 重複） ※ 1：基準点はドライヤスカート底部付近（原子炬圧力容器零しベ ルより $1,313 \mathrm{~cm}$ 上） ※2：基準点は有効燃料棒頂部付近（原子炉圧力容器零レベルより 900 cm 上） ※3：0．P．（女川原子力発電所工事用基準面）$=$ T．P．（東京湾平均海面）-0.74 m ※ 4 ：局部出力領域モニ夕の検出器は 124 個であり，平均出力領域 モニタの各チャンネルには，A系 17 個及びB系14個ずつの信号が入力される。		

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第 73 条 計装設備】
要求事項との対比表

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式一7
【第 73 条 計装設備】
要求事項との対比表

色：様式一6に関する跳載（付罪及で下
色：設置变更許可本文及な活付書粉へからの引風以外の

万資料
 ：前回提出時からの変更箇何

設置許可申請書
添付書類八
第 $6.4-2$ 表 重要監視パラメータ及び重要代替監視パラメータ（重大事故等対処設備）

分類	重要監視パラメータ重要代澘監視パラメータ	個数	計測範囲	設計基準	把握能力 （計测範囲の考え方）	可搬型 計測器個数	
	原子炉圧力容器温度	5	$0 \sim 500^{\circ} \mathrm{C}$	最大值：約 $297{ }^{\circ} \mathrm{C}$＊3		1	
	原子炬圧力＊1	「（2）原子炉圧力容器内の圧力」家監視するパラメータと同じ。					
	原子师圧力（ $\mathrm{SA} \mathrm{S}^{*}{ }^{1}$						
	原子炉水位（広带域）＊${ }^{\text {a }}$	「（3）原子炉圧力容器内の水位」を監視するパラメータと同じ。					
	原子炉水位（燃料域）＊1						
	原子炉水位（SA広帯域）＊1						
	原子炉水位（SA鿭料域）＊${ }^{\text {a }}$						
	残留熱除去系熱交換器入口温度＊1	「（12）最終ヒートシンタの確保（残留熱除去系）」を監視するパラメータと同じ。					
$\begin{array}{r} \text { (2) } \\ \text { 原 } \\ 子 \\ \text { の獁 } \\ \text { 庄压 } \\ \text { 力务 } \\ \text { 容 } \\ \text { 器 } \\ \text { 内 } \end{array}$	原子炉圧力＊2	2	$0 \sim 10 \mathrm{MPa}$［gage］	最大值：約8．11MPa［gage］	重大事故等時における原子紅圧力容器最高圧力（9．26MPa［gage］）を包絡する範囲として設定。	1	
	原子炬圧力（SA）＊2	2	$0 \sim 11 \mathrm{MPa}$［gage］	最大健：約8．11MPa［gage］	原子炉圧力容器最高使用圧力（8．62MPa［gage］）の1．2倍（ 10.34 MPa ［gage］）を監視可能。		
	原子炉水位（広带域）＊1	「（3）原子妒圧力容器内の水位」を監視するパラメータと同じ。					
	原子炉水位（燃料域）＊${ }^{\text {a }}$						
	原子炉水位（SA広军域）＊1						
	原子炉水位（SA㶼料域）＊${ }^{\text {a }}$						
	原子炉圧力容器温度 ${ }^{* 1}$	「（1）原子姖圧力容器内の温度」を監視するパラメータと同じ。					

※赤線部•（1）c

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第 73 条 計装設備】
要求事項との対比表

亦色：檥式－6 に関する記載（付番及び下總）

100条 001 ：䦎連する資料と基本設計方針を組かけるための付用連する資料〉
－栐式一1 への展開表（禣足説明資料）

設置許可申請書
添付書類八
（つづき）

[^1]設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－7
【第 73 条 計装設備】
要求事項との対比表
設置許可申請書
添付書類八
（つづき）

分類	$\begin{aligned} & \text { 重要監視パラメータ } \\ & \text { 重要代監視バラメーー } \end{aligned}$	㽢数	計湘笽囲	設計基推		可椒型計洞器
	高压式缹泩水采ポンブ出口流量	1	$0 \sim 120 \mathrm{~m}^{3} / \mathrm{h}$	－4	高圧代耆注水系ボンプの最大注水量（90．8m ${ }^{\text {3／}} \mathrm{h}$ ）を監钼可能。	1
		1	$0 \sim 150 \mathrm{~m}^{3} / \mathrm{h}$	$0 \sim 90.8 \mathrm{~m}^{3} / \mathrm{h}$		
	高圧炬心スプレイ采ボンブ出口流量	1	$0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$	（高圧側） $0 \sim 318 \mathrm{~m}^{3} / \mathrm{h}$ （低圧側） $0 \sim 1,050 \mathrm{~m}^{3} / \mathrm{h}$	高圧炬心スプレイ系ホンフの最大注水量（1，050 ${ }^{3 / \mathrm{l}} \mathrm{h}$ ）を監䧋可能。	
	残留㲈除去系流浄ライン流量（䛾留熱除去系 ～ッドスブレイライン洗浄流量）	1	$0 \sim 220 \mathrm{~m}^{3 /} \mathrm{h}$	－6	復水移送术ンプ又は大容量送水ポンプ（タイプI）を用いた原子炉注水時における最大注水量 （ $199 \mathrm{~m}^{3} / \mathrm{h}$ ）を監視可能。	1
	格納容器冾却ライン洗浄流量）	1	$0 \sim 220 \mathrm{~m}^{3 /} \mathrm{h}$	－6	復水移送ボンブ又は大容量送水ポンブ（タイプI）若しくは代替循謤椧却ポンプを用いた原子炉注水時における最大注水量（ $199 \mathrm{~m}^{3} / \mathrm{h}$ ）を監視可能。	
	直流倣動低圧注水系ポンブ出口流量	1	$0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$	－6	直流駩動低圧注水系ポンブを用いた原子炬注水時における最大注水量（80m ${ }^{3} / \mathrm{h}$ ）を監視可能。	
		1	$0 \sim 200 \mathrm{n}^{3} / \mathrm{h}$	－6		
	残留熱除去系ポンブ出口流量	3	$0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$	$0 \sim 1,136 \mathrm{~m}^{3} / \mathrm{h}$	残留煮除去系ポンプの最大注水量（1，136m／h）を監視可能。	
	低圧炉心スプレイ系ポンブ出口流量	1	$0 \sim 1,500 \mathrm{~m}^{3} / \mathrm{h}$	$0 \sim 1,050 \mathrm{~m}^{3 / \mathrm{h}}$	低压炬心スプレイ系ボンプ最大注水量（1， $\left.050 \mathrm{~m}^{3} / \mathrm{h}\right)$ を監視可能。	
	復水貯蔵夺ンク水位＊${ }^{\text {a }}$	「（1）水源の磪保」を監視するパラメータと同じ。				
	压力排制室水位 ${ }^{11}$	「（8）原子妒格納容器内の水位」を監䧋するパラメータと同じ。				
	原子炬水位（広带域）${ }^{\text {a }}$	「（3）原子炉圧力容器内の水位」を監視するパラメータと同じ。				
	原子炉水位（炇料域）${ }^{*}$					
	原子炉水位（SA広带域）＊					
	原子炉水位（SA然料域）＊${ }^{\text {a }}$					

[^2]要求事項との対比表

設置許可申請書添付書類八
（つづき）

分類	重要監祍バラメータ重要代替臨視パラメータ	图数	計測笙柬	設計基準	把㜊能力 （計測筢囲の考え方）	$\begin{aligned} & \text { 可㴰型 } \\ & \text { 計測器 } \end{aligned}$ 羃数		
	残的熱除去系洗浄ライン流量（残留熱除去系 －ッドスブレイライン洗唃	1	$0 \sim 220 \mathrm{~m}^{3} / \mathrm{h}$	－＊	復水移送ボンプを用いた原子炉格納容器スプレイ洔に打ける最大注水量（88m ${ }^{3} / \mathrm{h}$ ）家監視可能。			
	残留熱除去采洗浄ライン流量（残留熱除去系B采格納容器椧却ライン洗浄流量）	1	$0 \sim 220$ m $^{3 / h}$	－＊${ }^{\text {\％}}$	復水移送ボンブを用いた原子炬格納容器スブレイ洔に打ける最大注水量（88m ${ }^{3} / \mathrm{h}$ ）家監視可能。	1		
	原子柜格納容器代替スブレイ流量	2	$0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$	－＊	大容量送水ボンブ（タイブ I）を用いた原子炉格納容器スプレイ時による最大注水量（ $88 \mathrm{~m}^{3} / \mathrm{h}$ ）を監視可能。			
	代替御漂椧却ボンブ出口流量	1	$0 \sim 200 \mathrm{~m}^{3} / \mathrm{h}$	－＊		1		
	原子炬格的容器下部注水流量	1	$0 \sim 110 \mathrm{~m}^{3} / \mathrm{h}$	－＊	容器下部洋水時における最大注水量 $\left(80 \mathrm{~m}^{3} / \mathrm{h}\right)$ な監視可能。	1		
	復水眝蔵タンク求位 ${ }^{+1}$	「（1）水桫の碓保」を監視するパラメータと同じ。						
	原子炀格納容器下部水位＊1	「（8）原子炬格納容器内の水位」を監視するパラメータと同じ。						
	ドライウエル水位＊＊							
	ドライウエル温度＊1	「（6）原子炉格納容器内の沮度」を監視するバラメータと同じ。						
	ドライウエル压か＊	「（7）原子炬格納容器内の圧力」を監視するバラメータと同じ。						
	压力抑制室压力＊							
	ドライウェル温度	11	$0 \sim 300^{\circ} \mathrm{C}$	$146^{\circ} \mathrm{C}$ 以下	原子炉格納容器の限界温度（ $200{ }^{\circ} \mathrm{C}$ ）を監視可怯。	1		
	压力抑制室内空気温度＊2	4	$0 \sim 300{ }^{\circ} \mathrm{C}$	$97^{\circ} \mathrm{C}$ 以下		1		
	サブレッションプール水温度＊2	16	$0 \sim 200{ }^{\circ} \mathrm{C}$	$97^{\circ} \mathrm{C}$ 以下	原子炉格䋑容器の做界圧力（2Pd：854kPa［gage］）におけるサブレッションチェンバのブール水の能和温度（約 $178^{\circ} \mathrm{C}$ ）を監視可能。			
	原子炬格納容器下部温度	12	$0 \sim 700{ }^{\circ} \mathrm{C}$	－＊	原子妒格納容器下部に㳑属炬心加落下した場合における原子炉圧力容器の破損㛟知が可能。	1		
	ドライウェル圧力＊${ }^{*}$	「（7）原子妒格約容器内の圧力」を監視するパラメータと同じ。						
	压力抑制室圧力＊1							
	ドライウエル圧か＊${ }^{*}$	1	$0 \sim 1 \mathrm{MPa}$［abs］	330 kPa ［gage］以下	原子炉格納容器の限界压力（ $2 \mathrm{Pd}: 854 \mathrm{kPa}$［8age］）を監視可能。	1		
	压力柳制室圧力＊2	1	$0 \sim 1 \mathrm{MPa}$［abs］	210 kPa ［gage］以下				
	ドライウェル温度＊1	「（6）原子炉格納容器内の温度」を監視するバラメータと同じ。						
	压力抑制室内空気温度 ${ }^{* 1}$							

[^3]設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式一7
【第 73 条 計装設備】

紫色：基本設計訪针（前）と基本設計方針（後）との対比

10 O 条 OO ：䦎連する資料と基本設計方針を組かけるための付万資料〉
－様式－1～の展閧表（補足説明資料）

要求事項との対比表
設置許可申請書
添付書類八
（つづき）

分疑	重要監視パラメータ 重要代替監視パラメータ	佃数	計蔀穊困	設姑基準	$\begin{gathered} \text { 把握龍力 } \\ \text { (計湖範䎴の考え力) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 可溦型 } \\ & \text { 計測讙 } \\ & \text { 個数 } \end{aligned}$
	区止抑制室水位	2	$\left\lvert\, \begin{gathered} 0 \sim 5 \mathrm{~m} \\ (0 . \text { P. }-3900 \mathrm{~mm} \sim 100 \mathrm{~mm}) \end{gathered}\right.$	${ }_{(0 . \mathrm{P} .-3850 \mathrm{~mm})}^{0.05 \mathrm{~m}}$		1
	原子妒格絞容器下部水位	12	$0.5 \mathrm{~m}, 1.0 \mathrm{~m}, 1.5 \mathrm{~m}$ ， 2． $0 \mathrm{~m}, 2.5 \mathrm{~m}, 2.8 \mathrm{~m}^{* 7}$ （0．P．-2000 mm ， $-1500 \mathrm{~mm},-1000 \mathrm{~mm}$ ， $-500 \mathrm{~mm}, 0 \mathrm{~mm}, 300 \mathrm{~mm}$ ）	－＊		－
	ドライウェル水位	6	$\begin{gathered} 0.02 \mathrm{~m}, 0.23 \mathrm{~m}, 0.34 \mathrm{~m}^{\mathrm{mg}} \\ (0 . \mathrm{P} .11700 \mathrm{~mm}, 1380 \mathrm{~mm}, \\ 1490 \mathrm{~mm}) \end{gathered}$	－${ }^{5}$	原子炉格納容器下部に落下した溶融炉心の这却に必要な办深があることを監視可能。	－
	高压代椿注水蓀ボンブ出口流量＊${ }^{\text {a }}$					
	高压炉心スプレイ蓀ボンブ出口流严＊${ }^{\text {a }}$					
		「（4）原子炉圧力容器への注水量」を監視するパラメータと同じ。「（5）原子紬格納容器～の注水量」を監梘するパラメータと同じ。				
		「（5）原子知格納容器への注水量」を監視けるバラメータと同じ。				
	原子妒格絞容器下蔀注氷流量＊${ }^{*}$					
		（16）水源の硫保」を監祖けるバラメータと同じ。				
	格納容器内水素澴度（D／W）＊2	2	0～100vols	$0 \sim 1.9 \mathrm{vol}$ \％	 視可能。	－
	格納容器内水素浸度（ $\mathrm{S} / \mathrm{C}) * 2$	2	$0 \sim 100 \mathrm{vols}$	$0 \sim 1.0 \mathrm{vol} /{ }^{\text {a }}$		－
	格練容器内霉囲気水素港度＊2	2	0～30vol\％	$0 \sim 1.9 \mathrm{vol} \mathrm{\%}$		－
		2	0～100vols			－
	格納容器内雲囲気放射綵モニタ（D／w）	2	$10^{-2} \mathrm{~Sv} / \mathrm{h} \sim 10^{5} \mathrm{~S} v / \mathrm{h}$	10Sv／h末满4 ${ }^{\text {4 }}$	の判断値は原子如傍止後の䞨違特問とともに低くなる）	－
		2	$10^{-2} \mathrm{~Sv} / \mathrm{h} \sim 10^{5} \mathrm{~Sv} / \mathrm{h}$	103v／h末満 ${ }^{\text {\％}}$	 	－

[^4]要求事項との対比表

```
色:樣式一6に関する記載(付番及でN
色:設䕎変更誰可本文及な添付書類八加らの引用以外の三氺
```



```
100条OO1:閏連寸る資料と基本設計方伞を組がけるための付万資料
粎式一1への展開表（補足説明盗㖪
```


設置許可申請書
添付書類八
（つづき）

[^5]設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式－7
【第 73 条 計装設備】

录色：技術垦淮規則と基本設計方鈝（後）との対比紫色：基本設計方㓌（前）と基本設計方釷（後）との対比

○○条OO1：開連する資料と基本設計方針を組がけるための付〈開連する資料＞様式－1～の展閧表（補足説明資料）
 ：前回提出時からの変更箇所

要求事項との対比表
設置許可申請書
添付書類八
（つづき）

分類		重要監視バラメータ重要代替監視パラメータ	值数	計涍範囲	設計基淮	把䐅能力 （計测链の考え力）	
		フィル多装蕞水位（広带域）	3	$0 \sim 3,650 \mathrm{~mm}$	－ 6	原子炉格納容器フィルタベント細フィルタ装直底部を計溂範囲の雲とし，フィルタ裴置機能維持のた めの上限水位及び下限水位を監視可能。	1
		フイルタ裂医入口圧力（広带域）	1	$-0.1 \mathrm{MPa} \sim 1 \mathrm{MPa}$［gage］	－＊5		1
		フイル多翌莫出口圧力（広帚域）	1	$-0.1 \mathrm{MPa} \sim 1 \mathrm{MPa}$［gage］	－${ }^{* 5}$	原子炉格納容器フィルタタハント杀フィルタ装䓥の最商使用圧力（ 854 kPa ［gage］）を監視可龍。	1
		フィル多装賟木温度	3	$0 \sim 200{ }^{\circ} \mathrm{C}$	－＊		1
			2	$10^{-2 \mathrm{mSv} / \mathrm{h} \sim 10^{5} \mathrm{mSV} / \mathrm{h}}$	－＊${ }^{\text {c }}$	口の最大放射袙量事 $\left(1.9 \times 10^{3} \mathrm{mSv} / \mathrm{h}\right)$ を監钼可能。	－
		フィル多裚運出口水素漟度	1	$0 \sim 30 \mathrm{vol}$ \％	－＊	原子妒格納容器フィルタバント䒺による原子炬格納容器ベント後に窒素による揞気を実施し，原子炉 可能。	－
			1	$0 \sim 100 \mathrm{vol}$ \％			－
		ドライウェル圧が ${ }^{\text {a }}$	「（7）原子砈格納容器内の圧力」を監視するバラメータと同じ。				
			「（9）原子炣格納容器内の水素韨度」を監梘するバラメータと同じ。				
		酎圧鮌化ベント系放射總モ二夕	2	$10^{-2 \mathrm{mSV} / \mathrm{h} \sim 10^{5} \mathrm{mSV} / \mathrm{h}}$	－＊6	－	－
		残留熱除去系釷交換器入口温度 ${ }^{\text {2 }}$	2	$0 \sim 300{ }^{\circ} \mathrm{C}$	最大値： $1866^{\circ} \mathrm{C}$		1
		㖪留熱除去采熹交換器出口涀度	2	$0 \sim 300{ }^{\circ} \mathrm{C}$	最大值： $1866^{\circ} \mathrm{C}$		1
		残留熱除去系ボンブ出口流量					
	致	原子妒㭪機冷却水血系䖻流量 ${ }^{\text {a }}$	2	$0 \sim 4,000 \mathrm{~m}^{3 / h}$	$0 \sim 2,800 \mathrm{~m}^{3} / \mathrm{h}$		
	$\begin{aligned} & \text { 留 } \\ & \text { 期 } \\ & \text { 去 } \end{aligned}$		2	$0 \sim 1,500 \mathrm{~m}^{3 / h}$	$0 \sim 950 \mathrm{~m}^{3 / h}$	 	1
	系	原子如圧力容器湦度＊${ }^{+1}$	「（1）原子妒圧力容器内の温度」を監視するパラメータと同じ				
		サプレッションプール水漊度•1	「66）原子妒格納容器内の温度」を監視するパラメータと同じ。				
		压力抑制室本位＊${ }^{*}$	「（8）原子刘格納容器内の术位」を監視するパラメータと同じ。				
		费留熱除玉采ボンブ出口压が ${ }^{\text {a }}$	「（10水港の碓保」を監钼するパラメータと同じ。				

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式一7
【第 73 条 計装設備】
要求事項との対比表

紫色：基本設計方針（前）と基本設計方針（後）との対比
 る資衼〉
－様式一1～の展開表（補足䂱明資料）

設置許可申請書
添付書類八

（つづき）

[^6]設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7
【第 73 条 計装設備】

色：䤤式－6に関する記載（付番及び下綵）

間連する資料＞
様式一1～の展閧表（補足説明資料）
 ：前回提出時からの変更箇所

要求事項との対比表
設置許可申請書
添付書類八
（つづき）

分類	重要監視バラメータ重要代替監視バラメータ	偡数		設㹁基推		$\begin{aligned} & \text { 可敵型 } \\ & \text { 計 } \\ & \text { 個数 } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { a } \\ & \text { 水 } \\ & \text { 源 } \\ & \text { 虧 } \\ & \text { 保 } \end{aligned}$	愎水館惐タンク水位	1	$0 \sim 3,200 \mathrm{~m}^{3}$	$0 \sim 3,173 \mathrm{~m}^{3}$		1
	压力扣制室水位					
	产压代茛注水系ポンブ出口流量＊					
	原子妒格納容器下部注水流量＊${ }^{\text {a }}$					
	残留熱除去系术ンプ出口流量＊1	「（4）原子炬压力容器への泩水量｣を鍳䧋するパラメータと同じ。				
	低圧如心スプレイ等ボンブ出口流量＊${ }^{\text {a }}$					
		1	$0 \sim 15 \mathrm{SPP}$［ $_{\text {cage }}$ ］	＊		1
		1	$0 \sim 15 \mathrm{MPa}$［gage］	最大值： 11.8 MPa ［gage］	監清可能。	
	商压如心スプレイ第ボンブ出口压か＊${ }^{\text {a }}$	1	$0 \sim 12 \mathrm{yPa}$［gage］	最大值： 10.8 MPa ［gage］	高圧炉心スプレイ亲の運転時に打ける高圧矨心スブレイ牢ポンプめ最高使用圧力（10．8MPa［gage］）を監視可能。	
		1	$0 \sim 2 \mathrm{MPa}$［gage］	－${ }^{6}$	直流駆動低压注水录ボンプの運転時における直流駆動低压注水業ボンフの最高使用圧力 （1．70MPa［gage］）を監視可能。	1
		1	$0 \sim 4 \times 1 \mathrm{~Pa}$［gage］	－＊		
	残留熱除去蓀ボンブ出口压が1	3	$0 \sim 4 \mathrm{MPa}$［gage］	最大伹：3． 73 MPa ［gage］		
	低压妒心スプレイ呿ボンプ出口圧が	1	0～5MPa［gage］	最大备：4．41MPa［gage］	低圧炉心スブレイ亲の運車時における低圧紬心スプレイ系ボンプの最高使用圧力（4．41 MPa［gage］）を監視可能。	
	澓本移送ボンブ出口圧が1	「（3）原子炉圧力容器内の水位」を監視するバラメータと同じ。				
	原子如水位（渗带城）＊	「（3）原子炉圧力容器内の水位」を監視するバラメータと同ビ。				
	原子妒水位（暩料域）＊					
	原子妒氷位（SA広带㙛）＊					
	原子妒水位（SA慗粐域）＊					

※赤線部：（1）j

要求事項との対比表

1 OO 条 O O ：関連する資料と基本設計方㻌を細かけするための付〈開連する資料〉

 －前回提出時からの変更箇

設置許可申請書
添付書類八
（つづき）

分頼	重要監視パラメー夕重要代替監視パラメータ	個数	計桷箽囲	設計基準	$\begin{gathered} \text { 把撣能力 } \\ \text { (計測觙囲の考え方) } \end{gathered}$	$\begin{gathered} \text { 可搬型 } \\ \text { 計測器 } \\ \text { 個数 } \end{gathered}$
	原子炉建屋内水素澋度	7	$0 \sim 10 \mathrm{vol}$ \％	－＊	原子炬建屋内の水素燃焼の可能性（水素濃度：4vol\％）を把握する上で監視可能（なお，静的触煤式水素再結合装㯰にて，原子如建屋内の水素濃度を可燃限界である4vol\＄末満に低減する）。	－
	静的触媒式水素再結合装㯰動作監視装㯰＊1	$8^{* 11}$	$0 \sim 500{ }^{\circ} \mathrm{C}$	－＊	解的触某式水素再結合装置作動時に想定される温度範囲を監視可能。	1
	格納容器内寄囲気酸素漟度	2	0～30vol\％	約4．3vol\％	原子妒格納容器内の酸素謍度が変動する可能性のある簐囲（ $0 \sim 4.3 \mathrm{vol}$ ））を籃視可能。	－
	格納容器内㟢囲気放射綵モ二多（ D / W ）＊	「（10）原子炉格納容器内の放射棌量事」を監視するパラメータと同じ。				
	格納容器内絭囲気放射綵モ二夕（ S / C ）＊					
	トライウェル压カ＊	「（7）原子如格納容器内の圧力」を監钼するパラメータと同じ。				
	压力抑制室圧力 ${ }^{*}$					
		$1^{* 12}$	$\begin{aligned} & 0 \sim 7,010 \mathrm{~mm}{ }^{* 13} \\ & (0 . \mathrm{P}, 25920 \mathrm{~mm} \sim \\ & 32930 \mathrm{~mm}) \end{aligned}$	－＊	料フーールの水位を監視可能。	1
			$0 \sim 150{ }^{\circ} \mathrm{C}$	－＊		
	使用済燎料ブールホ位／温度 （カイドバルス式）＊	1	$\begin{gathered} -4,300 \mathrm{~m} \sim 7,300 \mathrm{~mm}{ }^{* 13} \\ (0 . \mathrm{P} .21620 \mathrm{~mm} \sim \\ 33220 \mathrm{~mm}) \end{gathered}$	0．P． 32895 mm	可能。	－
		$1^{* 14}$	$0 \sim 120{ }^{\circ} \mathrm{C}$	最大值： $65^{\circ} \mathrm{C}$	変動する可能性のある範囲にわたり使用洨慗料ブールの温度を監視可能。	
	使用消糕料フール上部空間放射線も二夕 （高線量，低線量）＊2	1	$10^{1} \mathrm{mSv} / \mathrm{h} \sim 10^{8} \mathrm{mSv} / \mathrm{h}$	-*		－
		1	$10^{-2} \mathrm{mSv} / \mathrm{h} \sim 10^{5} \mathrm{mSv} / \mathrm{h}$			－
	使用斎燃料フール監視カメラ＊2	1	－	－${ }^{* 6}$	使用济燃料フールの状況を監視可能。	－

な示す。新視バラメータを示十

＊ 6 ：重大事故等時に使用する設備のため，設計基推事故等（運転時の異常な過渡变化時を含む）に関する値なし。
＊7 ：計测篻囲の奉は，原子炉格䋑容器下部（压力容器ベデスタル底部）のところとする。

しないことからこの値を下回る。

＊11：4图の静的触媒式水素再結合装置に対して，入口侧及び出口玳にそれぞれ1國設置。
＊12：検出点 15 陶所。

赤線部：（1）k

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—7

要求事項との対比表
設置許可申請書
添付書類八

第6．4－4表 重大事故等対処設備を活用する手順等の着手の判断基準として
用いる補助パラメータ

分類	補助パラメータ
電源	6－2F－1母線電圧
	6－2F－2 母線電圧
	6－2C 母線電圧
	6－2D 母線電圧
	6－2H 母線電圧
	4－2C 母線電圧
	4－2D 母線電圧
	125 V 直流主母線 2 A 電圧
	125 V 直流主母線 2 B 電圧
	125 V 直流主母線 $2 \mathrm{~A}-1$ 電圧
	125 V 直流主母線 $2 \mathrm{~B}-1$ 電圧
	250 V 直流主母線電圧
	HPCS 125 V 直流主母線電圧
その他	高圧窒素ガス供給系 ADS入口圧力
	代替高圧窒素ガス供給系窒素ガス供給止め弁入口圧力

※赤線部：（2）k

【第 73 条 計装設備】

$-:$ 該当なし
- 前回提出時からの変更箇所

様式－6
各条文の設計の考え方

設計及び工事に係る品質マネジメントシステムに関する説明書に係る様式—6
【第 73 条 計装設備】

様式－6

	詳細な検討が必要な事項
No．	書類名
a	要目表
b	単線結線図
c	設備別記載事項の設定根拠に関する説明書
d	安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書
e	使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置の構成に関する説明書，検出器の取付箇所を明示した図面並びに計測範囲及び警報動作範囲に関する説明書
f	計測装置の構成に関する説明書，計測制御系統図及び検出器の取付箇所を明示した図面並びに計測範囲及び警報動作範囲に関する説明書
g	放射線管理用計測装置の構成に関する説明書
h	放射線管理用計測装置の系統図及び検出器の取付箇所を明示した図面並びに計測範囲及び警報動作範囲に関する説明書
i	原子炉格納施設の水素濃度低減性能に関する説明書
j	発電用原子炉の設置の許可との整合性に関する説明書
k	設計及び工事に係る品質マネジメントシステムに関する説明書

[^0]: 录字：記載表現，設備名称の相違（実質的な相違なし） ：前回提出時からの変更箇所
 【】番号：様式一7との紐らけを示す番号であり，本比較表において追記したもの（比較対象外）

[^1]: ※赤線部：（1）d

[^2]: ※赤線部：（1）e

[^3]: ※赤線部：（1）f

[^4]: ※赤線部：（1）g

[^5]: ※赤線部：（1）h

[^6]: ※赤線部：（1）

