```
本資料のらち，枠囲みの内容 は商業機密の観点から公開で
きません。
```

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

補足－620－3 【原子炉建屋の地震応答計算書に関する補足説明資料】

1．工事計画添付書類に係る補足説明資料
添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」の記載内容を補足するための資料を以下に示す。なお，他建物•構築物の地震応答計算書の記載内容を共通的に補足す る内容についても，本資料で代表し説明する。

別紙1 原子炉建屋の地震応答解析における既工認と今回工認の解析モデル及び手法の比較

別紙 1－1 原子炉建屋の地震応答解析モデルの各種ばねの算定について
別紙 1－2 地震応答解析モデルの諸元の比較
(既工認, シミュレーション解析, 今回工認)

別紙2 原子炉建屋の地震応答解析における耐震壁のスケルトンカーブの設定
別紙3 原子炉建屋の地震応答解析における材料物性の不確かさに関する検討
別紙3－1 材料物性の不確かさを考慮した検討に用いる地震動の選定について
別紙 3－2 材料物性の不確かさを考慮した地震応答解析結果
別紙4 地震応答解析モデルに用いる鉄筋コンクリート部の減衰定数に関する検討
別紙 4－1 原子炉建屋の基準地震動 S s 及び弹性設計用地震動S d に対する最大応答せ
ん断ひずみ
別紙 4－2 各建屋の図面集
1別紙5 地震応答解析における原子炉建屋の重大事故等時の高温による影響
別紙 5－1 重大事故時等の環境を考慮した大型機器系の地震応答解析モデルの設定
別紙 $\overline{6}$－原手炉建屋におおほる改造工事に伴亏重量増加を映した地震応答解析
別紙 6－1 原子炉建屋改造工事に伴ら重量増加を反映した検討
別紙 6－2 建屋一機器連成地震応答解析結果に与える影響

本日の説明範囲

別紙5 地震応答解析における原子炉建屋の重大事故等時の高温による影響
目 次
1．概要 1
2．原子炉建屋の構造概要 2
3．重大事故等時の温度による影響について 11
3.1 検討方針 11
3.2 重大事故等時の高温による影響を考慮した原子炉建屋の地震応答解析 12
3．2．1 解析条件 12
3．2．2 地震応答解析結果 29
3.3 原子炉建屋の地震応答解析による評価に与える影響 67
3．3．1 検討方法 67
3．3．2 検討結果 67
4．機器•配管系の評価に与える影響 84
4.1 原子炉建屋の地震応答解析結果による影響 85
4．1．1 検討方針 85
4．1．2 検討結果 87 I
4． 2 大型機器系の地震応答解析結果による影響 100 I
4．2．1 検討方針 100
4．2．2「SA 時環境考慮連成モデル」のモデル化 103
4．2．3 検討結果 111
I 5．まとめ 161
5．1 「原子炉建屋の地震応答解析による評価」に与える影響 161
I－$\overline{5} .2$ 「 「機器•一配管系の評価」に与える影響 161
I 1 別紙 $5-1$ 重大事故等時の環境を考慮した大型機器系の地震応答解析モデルの設定

4．機器•配管系の評価に与える影響
重大事故等時の高温による影響に対して設備の評価に与える影響確認を行う。影響確認は添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す地震応答解析モデルで ある「工認モデル」の地震応答解析結果，又は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す原子炉圧力容器，原子炉しゃへい壁及び原子炉本体の基礎等（以下「大型機器系」という。）の地震応答解析モデル（以下「大型機器系の地震応答解析モデル」と いう。）の地震応答解析結果を耐震評価に用いる常設耐震重要重大事故防止設備及び常設重大事故緩和設備に対して行う。

4.1 原子炉建屋の地震応答解析結果による影響

4．1．1 検討方針

原子炉建屋に設置した機器•配管系への重大事故等時の高温による影響に対す る影響確認フローを図 4－1に示し，以下の通り，重大事故等時の高温による影響確認を行う。
（1）検討対象設備
重大事故等時の高温による影響を確認する設備は，原子炉建屋に設置した以下の設備とする。

- 常設耐震重要重大事故防止設備
- 常設重大事故緩和設備
（2）影響確認用耐震条件の作成
「3．2．1 解析条件」に示す「SA 時環境考慮モデル」を用いて地震応答解析を行い，その結果から影響確認用耐震条件（影響確認用最大応答加速度及び影響確認用床応答曲線）を作成する。

影響確認用耐震条件の作成に考慮する地震動は，基準地震動S s（7波）とし，水平方向の影響確認用耐震条件は，NS 及び EW 方向の地震応答解析結果を包絡 （以下，「NS／EW 包絡」という。）する。
（3）簡易評価
（1）の検討対象設備に対する裕度（許容応力／算出応力）を整理する。
また，影響確認用耐震条件と「工認モデル」の応答から作成した耐震計算に用 いる耐震条件との応答比率を作成する。

検討対象設備の裕度と応答比率を比較し，検討対象設備の裕度が応答比率以上となることを確認する。確認の結果，検討対象設備の裕度が応答比率を下回る場合は，詳細評価を行う。
（4）詳細評価
詳細評価が必要となった設備は，影響確認用耐震条件を用いた耐震評価を行 い，算出応力が許容応力以下となることを確認する。確認の結果，算出応力が許容応力を上回る場合は，追加検討を行う。
（5）追加検討
追加検討が必要となった設備は，設備の評価結果等に応じて個別に設備対策 または評価の精緻化を行うものとする。

図 4－1 重大事故等時の高温による影響確認フロー

4．1．2 検討結果

（1）地震応答解析結果
最大応答加速度の比較結果（水平方向（NS／EW 包絡）及び鉛直方向）を表 4－1 に，床応答スペクトルの比較結果（水平方向（NS／EW 包絡）及び鉛直方向）を図 4－2 に示 す。なお，床応答スペクトルの減衰定数は，耐震裕度の比較的小さい配管系の主要 な減衰定数である 2.0% を代表としている。

最大応答加速度の応答比率は，水平方向の加速度としてNS 方向と EW 方向の包絡値を用い，水平方向及び鉛直方向で標高ごとに算出する。

また，床応答スペクトルの応答比率は，水平方向の応答スペクトルとしてNS 方向と EW 方向の包絡値を用い，標高，減衰定数及び設備の固有周期に応じた応答比率を算定する（保守的に，設備の 1 次固有周期以下の周期における応答比率の最大値を用いる場合もある）。応答比率の算定例を，図 4－3 に示す。

「SA 時環境考慮モデル」の一部の応答が「工認モデル」の応答を上回ることを確認した。
表 4－1 最大応答加速度の比較（基準地震動 S s，1．2ZPA，水平方向（NS／EW 包絡））
（1／2）

構造物名	標高 0．P． （m）	最大応答加速度（1．2ZPA）		応答比率 （1）／（2）
		① S A 時環境考慮モデル	（2）工認モデル	
原子炉 建屋	50.500	6.13	7.28	0.85
	41.200	3.16	3.43	0.93
	33.200	2.62	2.65	0.99
	22.500	2.11	2． 12	1． 00
	15.000	2.05	1． 97	1.05
	6.000	1.51	1． 57	0.97
	1． 150	1． 37	1． 46	0.94
	－0．800	1． 22	1． 34	0.92
	－8．100	0.96	0.99	0.97

表 4－1 最大応答加速度の比較（基準地震動 S s，1．2ZPA，鉛直方向）（2／2）

構造物名	標高 0．P． （m）	最大応答加速度（1．2ZPA）		応答比率 （1）／（2）
		（1）SA時環境考慮モデル	②工認モデル	
原子炉建屋	48.725	2.02	2.09	0.97
	41.200	1.84	1.89	0.98
	33.200	1． 76	1． 77	1.00
	22.500	1． 52	1． 56	0.98
	15.000	1． 34	1． 37	0.98
	6.000	1.07	1.09	0.99
	－0． 800	0.85	0.88	0.97
	－8． 100	0.65	0.69	0.95

図 4－2 床応答スペクトルの比較（ $1 / 8$ ）
（原子炉建屋，O．P．41． 200 m ，基準地震動 S s，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－2 床応答スペクトルの比較（2／8）
（原子炉建屋，O．P．33． 200 m ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－2 床応答スペクトルの比較（3／8）
（原子炉建屋，0．P． 22.500 m ，基準地震動 S s ，
減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－2 床応答スペクトルの比較（4／8）
（原子炉建屋，O．P． 15.000 m ，基準地震動 S s，
減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－2 床応答スペクトルの比較（5／8）
（原子炉建屋，0．P．6．000m，基準地震動 S s，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－2 床応答スペクトルの比較（6／8）
（原子炉建屋，O．P．1． 150 m ，基準地震動 S s，減衰 2.0% ，水平（NS／EW 包絡））

図 4－2 床応答スペクトルの比較（7／8）
（原子炉建屋，0．P．-0.800 m ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－2 床応答スペクトルの比較（8／8）
（原子炉建屋，O．P．-8.100 m ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－3 床応答スペクトルにおける応答比率の算定例
（水平方向（NS／EW 包絡），原子炉建屋 0．P．1．150m，基準地震動 S s ，減衰 2.0% ，固有周期： $0.073 \mathrm{~s}, ~ 0.12 \mathrm{~s}, ~ 0.14 \mathrm{~s})$
（2）影響確認結果
「4．1．1 検討方針」に示す影響確認フローに従った検討で詳細評価が必要とな つた機器•配管系の簡易評価結果を表4－3に，詳細評価結果を表4－4に示す。

なお，配管の詳細評価対象は，評価に用いる各標高（質点）で応力評価結果の裕度が最小となる配管及び疲労累積係数が最大となる配管を代表としている。

簡易評価で許容値を満足しなかった 6 設備に対して，影響確認用耐震条件によ る耐震計算を行い，算出応力が許容応力以下となることを確認した。

表 4－3 「SA 時環境考慮モデル」による応答の影響確認結果（簡易評価）

対象設備＊${ }^{1}$	評価部位	応力分類	今回工認の耐震評価（基準地震動 S s ）			応答 比率	確認 結果
			$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度		
燃料プール冷却浄化系熱交換器	胴板	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	$675 * 2$	420	0.62	1． 05	\times
		疲労	0.31	1	－		
残留熱除去系 熱交換器	胴板	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	783＊2	497	0.63	1． 05	\times
		疲労	0.38	1	－		
SAクラス 2 配管 （原子炉補機冷却水系 $(\mathrm{KRCW}-205)$ ）	配管 本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	440	458	1． 04	1． 28	\times
SAクラス 2 配管 （原子炉補機冷却海水系 （RSW－004））	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	481	482	1． 00	1． 26	\times
SAクラス2配管 （非常用ディーゼル発電	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	439＊2	398	0.90	1． 11	\times
$\begin{gathered} \text { 設備 } \\ \text { (DGD0-B008)) } \end{gathered}$		疲労	0． 4004	1	－		
SAクラス2配管 （残留熱除去系 （RHR－010））	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \\ \hline \text { 应 } \end{gathered}$	422＊2	414	0.98	1． 28	\times
		疲労	0.7118	1	－		

注記 $* 1$ ：大型機器系の地震応答解析による応答を用いる設備は，4．2項で評価する。 ＊ $2:$ 一次 + 二次応力の算出応力が許容応力を上回った場合は，疲労評価を実施する。

表 4－4 「SA 時環境考慮モデル」による応答の影響確認結果（詳細評価）

対象設備＊${ }^{1}$	評価部位	応力分類	影響確認用耐震条件を用いた耐震計算 （基準地震動 S s ）				確認結果
			最大応答加速度 （1．2ZPA）	床応答曲線	$\substack{\text { 算出応力 } \\(\mathrm{MPa})}$	許容応力 （MPa）	
燃料プール泠却浄化系熱交換器	胴板	一次＋二次応力	$\text { 水平: } 2.05$$\text { 鉛直: } 1.34$	－	692	420	\bigcirc
		疲労			0．34	1	
残留熱除去系熱交換器	胴板	一次＋二次応力	水平： 2.07 鉛直： 1.38	－	800	497	\bigcirc
		疲労			0． 41	1	
SAクラス 2 配管 （原子炉補機冷却水系（KRCW－205））	配管本体	一次＋二次応力	水平： 3.16 鉛直：1．51	$\begin{gathered} \text { 0.P. } 41.2, \quad 33.2, \quad 22.5, \\ 15.0,6.0,1.15, \\ -0.8,-8.1 \mathrm{~m} \\ (2 \% \text { 減衰 }) \\ \hline \end{gathered}$	336	458	\bigcirc
SAクラス 2 配管 （原子炉補機冷却海水系（RSW－004））	配管本体	一次＋二次応力	水平： 2.11 鉛直： 1.52	$\begin{gathered} 0 . \text { P. } 22.5, \quad 15.0, \quad 6.0, \\ 1.15,-0.8,-8.1 \mathrm{~m} \\ (2 \% \text { 減衰 }) \end{gathered}$	372	482	\bigcirc
$\begin{gathered} \text { SAクラス2配管 } \\ \text { (非常用ディーゼル発電設備 } \\ \text { (DGD0-B008)) } \end{gathered}$	配管本体	一次＋二次応力	水平： 2.05 鉛直： 1.34	原子炉建屋 0．P．15．0， 6.0 m軽油タンク連絡ダクト $0 . \text { P. 12. 1, } 10.5, \quad 9.5 \mathrm{~m}$ （ 2% 減衰）	435	398	\bigcirc
		疲労			0． 3005	1． 000	
SAクラス2配管 （残留熱除去系 （RHR－010））	配管本体	一次＋二次応力	水平： 1.51 鉛直： 1.07	$\begin{gathered} \hline 0 . \text { P. } 6.0, \quad 1.15, \quad-0.8, \\ -8.1 \mathrm{~m} \\ (2 \% \text { 減衰 }) \end{gathered}$	382	414	\bigcirc

注記＊ 1 ：大型機器系の地震応答解析による応答を用いる設備は，4．2項で評価する。

4． 2 大型機器系の地震応答解析結果による影響

4．2．1 検討方針

大型機器系の地震応答解析モデルの応答を用いる機器•配管系への重大事故等時の高温による影響確認フローを図 $4-4$ に示し，以下の通り，重大事故等時の高温 による設備の評価に与える影響確認を行う。

なお，重大事故等時の有効性評価で対象とする事故シナリオのうち，原子炉格納容器内の高温状態が長期間続く事故シナリオ（格納容器破損モード）では，事象発生後に炉心が損傷に至り炉内構造物の機能が喪失することから，炉内構造物は本検討の対象外とする。
（1）検討対象設備
重大事故等時の高温による影響を確認する設備は，大型機器系の地震応答解析モデルの応答を用いる以下の設備とする。

- 常設耐震重要重大事故防止設備
- 常設重大事故緩和設備
（2）影響確認用耐震条件の作成
「3．2．1 解析条件」に示す「SA時環境考慮モデル」の温度条件及び重大事故等時の水位条件を考慮した大型機器系の地震応答解析モデル（以下「SA 時環境考慮連成モデル」という。）を用いて地震応答解析を行い，その結果から影響確認用耐震条件（影響確認用最大応答加速度，影響確認用床応答曲線及び影響確認用地震力）を作成する。「SA時環境考慮連成モデル」のモデル化の詳細は，4．2．2項に示す。

影響確認用耐震条件の作成に考慮する地震動は，機器•配管系への重大事故等時の高温の影響を確認する観点から「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 の結果より，基本ケースの各質点で耐震条件が最大となる地震動（水平方向は S $\mathrm{s}-\mathrm{D} 1$ ， $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ， $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ， $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ 及び $\mathrm{s} \mathrm{s}-\mathrm{N} 1$ ，鉛直方向は $\mathrm{S} \mathrm{s}-\mathrm{D}$ 2 ）とする。水平方向の影響確認用耐震条件は，NS 及び EW 方向の地震応答解析結果を包絡する。
（3）簡易評価
（1）の検討対象設備に対する裕度（許容応力／算出応力）を整理する。
また，影響確認用耐震条件と「大型機器系の地震応答解析モデル」の応答から作成した耐震計算に用いる耐震条件との応答比率を作成する。

検討対象設備の裕度と応答比率を比較し，検討対象設備の裕度が応答比率以

上となることを確認する。確認の結果，検討対象設備の裕度が応答比率を下回る場合は，詳細評価を行う。
（4）詳細評価
詳細評価が必要となつた設備は，影響確認用耐震条件を用いた耐震評価を行 い，算出応力が許容応力以下となることを確認する。確認の結果，算出応力が許容応力を上回る場合は，追加検討を行う。
（5）追加検討
追加検討が必要となった設備は，設備の評価結果等に応じて個別に設備対策 または評価の精緻化を行うものとする。

図 4－4 大型機器系の地震応答解析モデルの応答を用いる機器•配管系への重大事故等時の高温による影響確認フロー

4．2．2「SA 時環境考慮連成モデル」のモデル化
（1）原子炉圧力容器及び原子炉格納容器内の環境条件
基準地震動S s と組み合わせるSA時環境条件等を以下に示す。
原子炉格納容器内のSA時環境条件は， 2×10^{-1} 年後の原子炉格納容器内温度を包絡し設定した値とし添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」等の原子炉格納施設の評価条件と同じ値を適用した。

重大事故等時の温度条件，原子炉圧力容器及び原子炉格納容器内の水位及び燃料状態等の炉内環境は重大事故等の進展に伴い変化する。一方，重大事故等時の原子炉圧力容器のモデル化は，耐震評価では重心位置が高いほうが地震時の応答が大きくなる傾向があることを踏まえ，「SA時環境考慮連成モデル」における炉内水位及び燃料状態等は燃料破損や冷却材喪失等の状態を考慮せず「大型機器系の地震応答解析モデル」の諸元及びそれに対応する温度条件を適用して解析を実施す る（事故シナリオを踏まえた設定の妥当性については，別紙5－1（1）を参照）。

原子炉圧力容器，原子炉格納容器等の「SA 時環境考慮連成モデル」に適用する解析条件を表4－5に，解析条件を踏まえ変更した解析諸元を表4－6及び表4－7に，解析モデル図を図4－5に示す。

なお，コンクリート剛性低下率の考え方については，4．2．2（2）に詳細を示す。ま た，「SA時環境考慮連成モデル」の原子炉本体の基礎のスケルトンカーブの設定の詳細を別紙5－1（2）に示す。

表 4－5 「SA 時環境考慮連成モデル」に適用する解析条件

項目		大型機器系 の地震応答解析モデル	SA 時環境考慮連成モデル	SA時環境考慮連成 モデル設定の考え方
原子炉圧力容器	炉内環境 （水位，燃料状態）	通常運転水位，燃料健全	大型機器系の地震応答解析モデルの条件を適用	重心位置が高く地震応答が大きくなる「大型機器系の地震応答解析モデル」の炉内環境を適用する。
	温度（ ${ }^{\circ} \mathrm{C}$ ）	286		
原子炉格納容器	温度 $\left({ }^{\circ} \mathrm{C}\right)$	57	$111 * 2$	重大事故等時に原子炉格納容器バウンダリと基準地震動 S s との組み合わせを行 う 2×10^{-1} 年後の原子炉格納容器温度 $110^{\circ} \mathrm{C}{ }^{* 1}$ より設定した。
$\begin{gathered} \text { サプレッション } \\ \text { プール } \end{gathered}$	水位 （m）	$\begin{gathered} 3.6 \\ (0 . \text { P. }-3.800 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 5.886 \\ (0 . \mathrm{P} .-1.514 \mathrm{~m}) \end{gathered}$	耐震評価用重大事故等時水位＊2を設定した。
ドライウェル	水位 (m)	0.0	$\begin{gathered} 0.458 \\ (0 . \mathrm{P} .1 .6076 \mathrm{~m}) \end{gathered}$	耐震評価用重大事故等時水位＊ 2 を設定した。

注記 $~ * ~ 1 ~: ~$ 補足説明資料「重大事故等対処施設の耐震設計における重大事故と地震の組合 せについて」（補足 600－19）
＊ 2 ：添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」

表 4－6 解析条件を踏まえ変更した解析諸元（縦弾性係数，ばね定数）

項 目	対象設備	材質	SA 時環境考慮連成 モデル	【参考】大型機器系の地震応答解析 モデル
縦 弾 性 係 数	原子炉しやへい壁	鋼材		
	原子炉本体の基礎	鋼材		
		$\begin{aligned} & \text { コンク } \\ & \text { リート } \end{aligned}$		
ば ね 定 数	原子炉格納容器シヤラグ （ K_{1} ）	鋼材		
	原子炉格納容器スタビライザ （ K_{2} ）	鋼材		
	原子炉圧力容器スタビライザ （ K_{3} ）	鋼材		
	燃料交換ベローズ $\left(K_{4}\right)$	鋼材		
	所員用エアロック （ K_{5} ）	鋼材		
	ベント管 （ K_{6} ）	鋼材		

表 4－7（1／2）解析条件を踏まえ変更した解析諸元（原子炉本体基礎の初期剛性）

地震応答解析モデル諸元（NS 方向）						
	SA 時環境考慮連成モデル			大型機器系の地震応答解析モデル		
質点番号	質量 （ t ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	質量 （ t ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
7						
6						
5						
4						
3						

表 4－7（2／2）解析条件を踏まえ変更した解析諸元（原子炉本体基礎の初期剛性）

地震応答解析モデル諸元（EW 方向）						
質点番号	SA 時環境考慮連成モデル			大型機器系の地震応答解析モデル		
	質量 (t)	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	質量 （ t ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
7						
6						
5						
4						
3						

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

$\begin{aligned} & \text { 原子炉格納容器 } \text { 原子炉圧力容器及び } \\ & \text { 原子炉本体の基礎 }\end{aligned}$

0．P． 41.200

0．P．-0.800

単位：m）

図4－5 SA 時環境考慮連成モデル（鉛直方向）（3／3）
（2）コンクリート剛性低下率
原子炉本体の基礎のコンクリートは鋼板に覆われている構造である。また，既往の文献＊ によって，コンクリートを鋼板で密封した試験体を加熱した場合 $175^{\circ} \mathrm{C}$ までの範囲において コンクリート剛性の低下が見られないことが確認されている。以上のことから，原子炉本体 の基礎は，重大事故等時の熱によるコンクリート部材の剛性低下は小さいと考えられるが，念のため，「SA 時環境考慮連成モデル」において重大事故等時の熱による剛性低下を考慮す る。

「SA 時環境考慮連成モデル」にてコンクリート部材としてモデル化している原子炉本体 の基礎のコンクリート部材の解析条件は，「3．2．1 解析条件」と同様に剛性低下を見込ん で設定する。表 4－8に「SA 時環境考慮連成モデル」に用いたコンクリート部材の剛性低下率を示す。

「SA 時環境考慮連成モデル」の諸元設定においては，高温状態を経験したコンクリート部材の剛性がその後元に戻らないと仮定し，コンクリート部材の剛性低下率の検討に用い る温度は，「3．2．1 解析条件」と同様に，原子炉格納容器の限界温度である $200^{\circ} \mathrm{C}$ とす る。また，コンクリート部材の剛性低下率は原子炉建屋の「SA 時環境考慮モデル」と同様 に「構造材料の耐火性ガイドブック（2017 年 日本建築学会）」に基づき設定する。 なお，原子炉しやへい壁は円筒形の内外の鋼板及びその内部に充てんされたモルタルで構成されているが，建設時及び今回工認の建屋一機器連成地震応答解析モデルにおいて， モルタル部材の剛性を考慮せず鋼材の剛性のみ考慮している。このため「SA 時環境考慮連成モデル」でも同様に，原子炉しやへい壁は鋼材の剛性のみを考慮する（別紙5－1（4）参照）。

鋼材の剛性は高温状態を経験した後においても温度に応じて変化するため，原子炉本体 の基礎と原子炉しゃへい壁の鋼材の剛性は表 4－5 の原子炉格納容器内雰囲気温度（ $111^{\circ} \mathrm{C}$ ）に基づき設定する。

注記＊：長尾 他：高温履歴を受けるコンクリートの物性に関する実験的研究：日本建築学会構造系論文集 第 457 号 1994

表 4－8 「SA 時環境考慮連成モデル」に用いたコンクリート部材の剛性低下率

		検討に用いた温度 $\left({ }^{\circ} \mathrm{C}\right)$	剛性低下率
原子炉	コンクリート	200	0.68
本体の基礎	（鋼材）	111	-

4．2．3 検討結果

（1）地震応答解析結果
「SA 時環境考慮連成モデル」による固有値解析結果を表 4－9に，振動モード図 を図4－7に示す。なお，刺激係数は，モードごとに固有ベクトルの最大値を 1 に基準化して得られる値を示している。

「大型機器系の地震応答解析モデル」と「SA 時環境考慮連成モデル」による耐震条件の比較結果を表4－10に，最大応答加速度の比較結果を表 4－11に，床応答ス ペクトルの比較結果（水平方向（NS，EW 包絡）及び鉛直方向）を図 4－8 に示す。 なお，床応答スペクトルの減衰定数は，耐震裕度の比較的小さい配管系の主要な減衰定数である 2.0% を代表としている。

最大応答加速度の応答比率は，水平方向の加速度としてNS 方向と EW 方向の包絡値を用い，水平方向及び鉛直方向で標高ごとに算出する。

また，床応答スペクトルの応答比率は，水平方向の応答スペクトルとしてNS 方向とEW方向の包絡値を用い，標高，減衰定数及び設備の固有周期に応じた応答比率を算定する。

表 4－9からSA 時環境考慮連成モデルは，大型機器系の地震応答解析モデルより もやや長周期化しており，剛性低下を考慮したこととの整合性がある。また，表 4－ 10，表 4－11，図 4－8より，に対する「SA時環境考慮連成モデル」の応答が「大型機器系の地震応答解析モデル」の応答を上回ることを確認した。

表 4－9 固有値解析結果 $*^{1}$（NS 方向）（ $1 / 3$ ）

次数		固有周期（s）		刺激係数＊2	
大型機器系 の地震応答解析モデル	SA時環境考慮連成 モデル	大型機器系 の地震応答解析モデル	SA 時環境考 慮連成 モデル	大型機器系 の地震応答解析モデル	SA 時環境考慮連成 モデル
1	1	0． 236	0． 245	2． 222	2． 149
2	2	0． 123	0.126	－2． 741	－2．543
3	3	0.116	0． 120	－1． 113	－1． 244
4	4	0.097	0． 102	2． 048	1． 705
5	5	0.093	0.097	－1．037	0． 290
6	6	0.090	0.094	－1． 774	－0． 447
7	7	0.089	0.092	－0．033	－0． 548
8	8	0.082	0.083	－0． 001	－0． 196
9	9	0． 074	0.078	－0．614	0.806
10	10	0.071	0.073	0． 445	0.558
11	11	0.068	0． 069	－0．374	－0．179
12	12	0.065	0.067	－0． 596	－0．933
13	13	0． 063	0.065	－0．668	－0．079
14	14	0.060	0.062	0.047	－0． 556
15	15	0． 058	0． 060	0． 475	－0． 575
16	16	0.055	0.059	－0． 590	1． 366
17	17	0． 052	0． 054	1． 558	－1．016
18	18	0.051	0． 054	0． 438	－0． 271
19	19	0． 050	0.051	0． 173	－1．543
－	20	－	0.051	－	0.500

注記 $~ * ~ 1: ~$ 固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルを正規化し，質量マトリックスとの積から算出し た値を示す。

表 4－9 固有値解析結果 ${ }^{* 1}$（EW 方向）（2／3）

次数		固有周期（s）		刺激係数＊2	
大型機器系 の地震応答解析モデル	SA 時環境考 慮連成 モデル	大型機器系 の地震応答解析モデル	SA 時環境考 慮連成 モデル	大型機器系 の地震応答解析モデル	SA時環境考慮連成 モデル
1	1	0． 228	0． 238	2． 197	2.135
2	2	0． 125	0． 129	1． 928	1． 763
3	3	0.116	0.121	0.066	0.083
4	4	0.098	0． 103	0.619	0.586
5	5	0.091	0.095	－0．782	2． 120
6	6	0.090	0.093	－1．793	－0． 105
7	7	0.086	0.089	2． 182	1． 843
8	8	0.077	0.079	1． 023	1． 179
9	9	0． 074	0.076	0． 369	0.020
10	10	0.070	0． 073	－0．244	－0． 420
11	11	0.067	0.070	－0． 521	0.333
12	12	0.064	0.069	0.549	－0．345
13	13	0． 062	0.064	－0．256	0． 408
14	14	0.060	0.063	1． 549	－2． 185
15	15	0.059	0.059	0． 109	0．366
16	16	0.055	0.058	－0．329	－1．331
17	17	0.055	0.057	0.558	0． 239
18	18	0． 052	0． 054	－2． 456	1． 422
－	19	－	0.051	－	0.195
－	20	－	0.051	－	0． 087

注記 $* 1$ ：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルを正規化し，質量マトリックスとの積から算出し た値を示す。

表 4－9 固有値解析結果 ${ }^{* 1}$（鉛直方向）$(3 / 3)$

次数		固有周期（s）		刺激係数＊2	
大型機器系 の地震応答 解析モデル	SA 時環境考 慮連成 モデル	大型機器系 の地震応答 解析モデル	SA 時環境考 慮連成 モデル	大型機器系 の地震応答 解析モデル	SA 時環境考 慮連成 モデル
1	1	0.339	0.339	1.458	1.467
2	2	0.100	0.103	1.584	1.518
3	3	0.079	0.079	1.360	1.266
4	4	0.051	0.051	-0.381	-0.448

注記 $* 1$ ：固有周期 0.050 s 以上の次数について記載した。
＊2：刺激係数は，固有ベクトルを正規化し，質量マトリックスとの積から算出し た値を示す。

図 4－7（1） 1 次振動モード（NS 方向）（1／20）

図 4－7（1） 2 次振動モード（NS 方向）（2／20）

図 4－7（1） 3 次振動モード（NS 方向）（3／20）

図 4－7（1） 4 次振動モード（NS 方向）（4／20）

図 4－7（1） 5 次振動モード（NS 方向）（5／20）

図 4－7（1） 6 次振動モード（NS 方向）（6／20）

図 4－7（1） 7 次振動モード（NS 方向）（7／20）

図 4－7（1） 8 次振動モード（NS 方向）（8／20）

図 4－7（1） 9 次振動モード（NS 方向）（9／20）

図 4－7（1） 10 次振動モード（NS 方向）（10／20）

図 4－7（1） 11 次振動モード（NS 方向）（11／20）

図 4－7（1） 12 次振動モード（NS 方向）（12／20）

図 4－7（1） 13 次振動モード（NS 方向）（13／20）

図 4－7（1） 14 次振動モード（NS 方向）（14／20）

図 4－7（1） 15 次振動モード（NS 方向）（ $15 / 20$ ）

図4－7（1） 16 次振動モード（NS 方向）（16／20）

図 4－7（1） 17 次振動モード（NS 方向）（17／20）

図4－7（1） 18 次振動モード（NS 方向）（18／20）

図4－7（1） 19 次振動モード（NS 方向）（19／20）

図 4－7（1） 20 次振動モード（NS 方向）（20／20）

図 4－7（2） 1 次振動モード（EW 方向）（1／20）

図 4－7（2） 2 次振動モード（EW 方向）（2／20）

図 4－7（2） 3 次振動モード（EW 方向）（3／20）

図 4－7（2） 4 次振動モード（EW 方向）（4／20）

図 4－7（2） 5 次振動モード（EW 方向）（5／20）

図 4－7（2） 6 次振動モード（EW 方向）（6／20）

図4－7（2） 7 次振動モード（EW 方向）（7／20）

図 4－7（2） 8 次振動モード（EW 方向）（8／19）

図 4－7（2） 9 次振動モード（EW 方向）（9／20）

図4－7（2） 10 次振動モード（EW 方向）（10／20）

図4－7（2） 11 次振動モード（EW 方向）（ $11 / 20$ ）

図 4－7（2） 12 次振動モード（EW 方向）（12／20）

図 4－7（2） 13 次振動モード（EW 方向）（13／20）

図4－7（2） 14 次振動モード（EW 方向）（14／20）

図4－7（2） 15 次振動モード（EW 方向）（ $15 / 20$ ）

図4－7（2） 16 次振動モード（EW 方向）（16／20）

図4－7（2） 17 次振動モード（EW 方向）（ $17 / 20$ ）

図4－7（2） 18 次振動モード（EW 方向）（18／20）

図4－7（2） 19 次振動モード（EW 方向）（19／20）

図4－7（2） 20 次振動モード（EW 方向）（20／20）

原子䧕建屋

図 4－7（3） 1 次振動モード（UD 方向）（1／4）

図 4－7（3） 2 次振動モード（UD 方向）（2／4）

固有周期（s）： 0.079
制激係数 ： 1.266

図 4－7（3） 3 次振動モード（UD 方向）（3／4）

原子炻建屋

固有周期（s）：0．051
刺激係数：： 0.448

図 4－7（3） 4 次振動モード（EW 方向）（4／4）

表 4－10 「SA 時環境考慮連成モデル」応答と「大型機器系の地震応答解析モデル」応答 との比較（基準地震動 S s ，せん断力（NS／EW 包絡））（1／4）

構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	せん断力（kN）		
		（1）S A 時環境考慮連成モデル	（2）大型機器系の地震応答解析モデル	応答比率 （1）／（2）
原子炉圧力容器		607	559	1.09
		2.45×10^{3}	2.22×10^{3}	1． 11
		4.79×10^{3}	4． 40×10^{3}	1． 09
		3． 46×10^{3}	3.69×10^{3}	0． 94
		3.71×10^{3}	3.90×10^{3}	0.96
		6.69×10^{3}	6． 74×10^{3}	1.00
		8． 73×10^{3}	9． 30×10^{3}	0.94
		1． 09×10^{4}	1． 15×10^{4}	0.95
原子炉本体の基礎		3.02×10^{4}	3.06×10^{4}	0.99
		3.28×10^{4}	3.33×10^{4}	0.99
		3.52×10^{4}	3.64×10^{4}	0.97
		3.76×10^{4}	3.93×10^{4}	0.96
原子炉しやへい壁		7.38×10^{3}	7． 41×10^{3}	1.00
		7． 37×10^{3}	7.84×10^{3}	0.95
		8.85×10^{3}	1． 02×10^{4}	0.87
		1． 19×10^{4}	1． 35×10^{4}	0.89
		1． 70×10^{4}	1． 75×10^{4}	0.98
原子炉格納容器		336	312	1.08
		654	609	1.08
		3． 74×10^{3}	3． 46×10^{3}	1.09
		4． 44×10^{3}	4． 17×10^{3}	1． 07
		3.13×10^{4}	3.45×10^{4}	0.91
		3.25×10^{4}	3.57×10^{4}	0.92
		3.34×10^{4}	3.65×10^{4}	0.92
		3． 49×10^{4}	3.79×10^{4}	0.93
		3.56×10^{4}	3.85×10^{4}	0.93
		3.69×10^{4}	3.99×10^{4}	0． 93

表 4－10 「SA 時環境考慮連成モデル」応答と「大型機器系の地震応答解析モデル」応答 との比較（基準地震動 S s ，モーメント（NS／EW 包絡））（2／4）

構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	モーメント $(\mathrm{kN} \cdot \mathrm{mm})$		
		（1）S A 時環境考慮連成モデル	（2）大型機器系の地震応答解析モデル	応答比率 （1）／（2）
原子炉圧力容器		0	0	－
		1． 67×10^{6}	1． 54×10^{6}	1.09
		6.96×10^{6}	6.38×10^{6}	1． 10
		1． 59×10^{7}	1． 48×10^{7}	1.08
		2.01×10^{7}	1． 97×10^{7}	1.03
		3． 31×10^{7}	3． 26×10^{7}	1． 02
		5． 14×10^{7}	5． 21×10^{7}	0.99
		6.23×10^{7}	6.59×10^{7}	0.95
		8.26×10^{7}	8.91×10^{7}	0.93
原子炉本体の基礎		2.01×10^{8}	2.34×10^{8}	0.86
		2.21×10^{8}	2.57×10^{8}	0.86
		2． 57×10^{8}	2.96×10^{8}	0.87
		3.19×10^{8}	3.60×10^{8}	0.89
		3.87×10^{8}	4． 28×10^{8}	0.91
原子炉しやへい壁		0	0	－
		2.04×10^{7}	2． 05×10^{7}	1.00
		3． 74×10^{7}	4． 16×10^{7}	0.90
		5.91×10^{7}	6． 37×10^{7}	0.93
		8.46×10^{7}	9． 11×10^{7}	0.93
		1． 25×10^{8}	1． 45×10^{8}	0.87
原子炉格納容器		0	0	－
		7.75×10^{5}	7． 20×10^{5}	1.08
		2． 17×10^{6}	2． 02×10^{6}	1.08
		6.97×10^{6}	6． 57×10^{6}	1.07
		1． 98×10^{7}	1． 87×10^{7}	1.06
		1． 49×10^{8}	1． 64×10^{8}	0.91
		2.41×10^{8}	2.65×10^{8}	0.91
		4.02×10^{8}	4． 42×10^{8}	0.91
		5.71×10^{8}	6． 25×10^{8}	0.92
		6.42×10^{8}	7.02×10^{8}	0． 92
		6.95×10^{8}	7.59×10^{8}	0.92

表 4－10 「SA 時環境考慮連成モデル」応答と「大型機器系の地震応答解析モデル」応答 との比較（基準地震動 S s，軸力）（3／4）

表 4－10 「SA 時環境考慮連成モデル」応答と「大型機器系の地震応答解析モデル」応答
との比較（基準地震動 S s ，ばね反力（NS／EW 包絡））（4／4）

名称	ばね反力（kN）		
	（1）SA時環境考慮 連成モデル	（2）大型機器系の 地震応答解析モデル	応答比率 $(1) / 2)$
原子炉圧力容器スタビライザ	8.53×10^{3}	8.25×10^{3}	1.04
原子炉格納容器スタビライザ	1.58×10^{4}	1.58×10^{4}	1.00
原子炉格納容器シヤラグ	3.19×10^{4}	3.41×10^{4}	0.94
ベント管	2.12×10^{3}	2.06×10^{3}	1.03
燃料交換ベローズ	1.96×10^{3}	1.71×10^{3}	1.15
所員用エアロック	295	304	0.98

表 4－11 最大応答加速度（基準地震動 S s，1．2ZPA）の比較（水平方向（NS／EW 包絡））
（1／2）

構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	最大応答加速度（1．2ZPA）		
		（1）S A 時環境考慮連成モデル	（2）大型機器系の地震応答解析モデル	応答比率 （1）／（2）
原子炉圧力容器		4.34	4.03	1.08
		3.81	3.35	1． 14
		3.38	3.04	1． 12
		3.00	2.78	1.08
		2． 48	2.42	1.03
		2． 02	2． 07	0.98
		1.93	1.98	0.98
		1.89	1.88	1.01
原子炉本体 の基礎		1． 70	1． 64	1.04
		1． 66	1． 60	1． 04
		1． 53	1． 59	0.97
		1． 42	1． 43	1.00
		1． 32	1.38	0.96
原子炉遮蔽壁		2． 41	2.33	1.04
		2.08	2.05	1.02
		1.96	1.99	0.99
		1.96	1.89	1.04
		1.88	1.82	1． 04
原子炉格納容器		2． 75	2.56	1.08
		2.59	2． 43	1． 07
		2． 44	2.30	1． 07
		2.33	2.21	1.06
		2． 09	2.01	1． 04
		1． 63	1． 64	1.00
		1． 41	1． 40	1.01
		1． 29	1． 26	1.03
		1． 21	1． 30	0． 94
		1． 27	1.35	0.95
$\begin{gathered} \text { 所員用 } \\ \text { エアロック } \end{gathered}$		1． 72	1． 77	0.98
ベント管		2.30	2.20	1.05

表 4－11 最大応答加速度（基準地震動 S s，1．2ZPA）の比較（鉛直方向）（2／2）

構造物	標高0.P. (m)	最大応答加速度（1．2ZPA）		
		（1）S A 時環境考慮連成モデル	（2）大型機器系の地震応答解析モデル	応答比率 （1）／（2）
原子炉圧力容器		1． 53	1． 44	1． 07
		1.53	1． 44	1． 07
		1.51	1． 43	1.06
		1． 49	1． 41	1.06
		1． 43	1.36	1.06
		1． 36	1.31	1． 04
		1． 28	1． 26	1.02
		1． 24	1． 22	1． 02
原子炉本体 の基礎		0.98	0.95	1.04
		0.93	0.91	1． 03
		0． 82	0.83	0.99
		0.73	0.76	0.97
		0.67	0.70	0.96
原子炉遮蔽壁		1． 94	1． 93	1.01
		1.89	1.89	1． 00
		1.78	1． 78	1.00
		1． 60	1.59	1.01
		1． 34	1.33	1.01
原子炉格納容器		1． 12	1． 18	0.95
		1． 11	1． 16	0.96
		1． 10	1． 14	0.97
		1.08	1． 13	0.96
		1.04	1． 09	0.96
		0.97	1． 02	0.96
		0.92	0.97	0.95
		0.84	0.89	0.95
		0． 76	0.80	0.95
		0． 72	0． 75	0.96

図 4－8 床応答スペクトルの比較（1／15）
（原子炉しやへい壁，O．P．$\square \mathrm{m}$ ，基準地震動 S s，減衰 2.0% ，
上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（2／15）
（原子炉しやへい壁，O．P． \square m，基準地震動 S s，減衰 2.0% ，上：水平（ $\mathrm{NS} / \mathrm{EW}$ 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（3／15）
（原子炉しやへい壁，O．P． \square m ，基準地震動 S s，減衰 2.0% ，

上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（4／15）
（原子炉しやへい壁，O．P． \square m ，基準地震動 S s，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（5／15）
（原子炉本体の基礎，O．P．$\square \mathrm{m}$ ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（6／15）
（原子炉本体の基礎，0．P．
 m ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

固 有 周 期［ S ］

図 4－8 床応答スペクトルの比較（7／15）
（原子炉本体の基礎，0．P \square m ，基準地震動 S s，減衰 2． 0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（8／15）
（原子炉本体の基礎，O．P．
 m，基準地震動 S s，減衰 2．0\％，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（9／15）
（原子炉格納容器，0．P． \square m，基準地震動 S s，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（10／15）
（原子炉格納容器，0．P \square m ，基準地震動 S s ，減衰 2.0% ，

上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（11／15）
（原子炉格納容器，0．P \qquad m，基準地震動 S s，減衰 2.0% ，

上：水平（NS／EW 包絡），下：鉛直）

固 有 周 期［s］

図 4－8 床応答スペクトルの比較（12／15）
（原子炉格納容器，0．P．$\square \mathrm{m}$ ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（13／15）
（原子炉格納容器，0．P．$\square \mathrm{m}$ ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（14／15）
（原子炉格納容器，O．P．$\square \mathrm{m}$ ，基準地震動 S s ，減衰 2.0% ，上：水平（NS／EW 包絡），下：鉛直）

図 4－8 床応答スペクトルの比較（15／15）
（原子炉圧力容器，O．P． \square m ，基準地震動 S s，減衰 2.0% ，上：水平（ $\mathrm{NS} / \mathrm{EW}$ 包絡），下：鉛直）
（2）影響確認結果
「4．2．1 検討方針」に示す影響確認フローに従つた検討で詳細評価が必要とな った機器•配管系の簡易評価結果を表4－12に，詳細評価結果を表4－13に示す。な お，配管の詳細評価は，評価に用いる各標高（質点）で応力評価結果の裕度が最小 となる配管及び疲労累積係数が最大となる配管を代表としている。

簡易評価で許容値を満足しなかった 8 設備に対して，影響確認用耐震条件によ る耐震計算を行い，算出応力が許容応力以下となることを確認した。

表 4－12 「SA 時環境考慮連成モデル」による応答の影響確認結果（簡易評価）

対象設備	評価部位	応力分類	今回工認の耐震評価（基準地震動 S s ）			SA 時環境考慮連成モ	確認 結果
			$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	応答比率	
原子炉格納容器 シヤラグ	原子炉格納容器シ ヤラグ取付部	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	416	393	0.94	1． 06	\times
		疲労	0.467	1	－		
$\begin{aligned} & \text { ドライウェル } \\ & \text { ベント開口部 } \end{aligned}$	$\begin{aligned} & \text { ドライウ } \\ & \text { ェルベン } \\ & \text { ト開口部 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	460	501	1． 08	1． 33	\times
ダウンカマ	$\begin{gathered} \text { エンドプ } \\ \text { レート } \\ \text { (上側) } \end{gathered}$	一次応力	247	264	1． 06	1． 33	\times
	$\begin{aligned} & \text { ベントへ } \\ & \text { ッダ (一 } \end{aligned}$ 般部以外）	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	592	473	0.79	1． 33	\times
		疲労	0.547	1	－	1． 33	\times
ベント管	ベント管 （一般部以外）	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	418	393	0.94	1． 33	\times
		疲労	0.489	1	－		
SAクラス 2 配管 （主蒸気系（MS－004））	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	468	386	0． 82	1． 08	\times
		疲労	0． 8529	1	－		
SAクラス 2 配管 （ほう酸水注入系 （SLC－003））	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	211	206	0.97	1． 28	\times
		疲労	0.0001	1	－		
SAクラス 2 配管 （ほう酸水注入系 （SLC－004））	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	175	206	1． 17	1． 32	\times
SAクラス2配管 （制御棒駆動水圧系 （CRD－005－1））	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	292	318	1.08	1． 28	\times
		疲労	0． 2729	1	－		

表 4－13 「SA 時環境考慮連成モデル」による応答の影響確認結果（詳細評価）

注記 $* 1$ ：原子炉格納容器のせん断力及び曲げモーメントを考慮。
＊2：ベント系設備の反力を考慮しているため，ベント系設備の評価に用いる床応答曲線を記載。

5．まとめ
各施設に対する確認結果を以下に示す。
5.1 「原子炉建屋の地震応答解析による評価」に与える影響

重大事故等時における熱の影響を考慮し，「SA 時環境考慮モデル」を用いて，基準地震動 S s－D 2 に対する地震応答解析を実施し，「工認モデル」を用いた結果と比較 した。

その結果，「SA 時環境考慮モデル」の固有周期はコンクリートの剛性を低減させた影響により「工認モデル」に比べて僅かに大きくなるものの，ほぼ同程度となること を確認し，最大応答値及び最大接地圧については「工認モデル」の結果とおおむね整合することを確認した。更に，「原子炉建屋の地震応答解析による評価」に与える影響 についても確認を行った。

原子炉建屋に生じる最大応答せん断ひずみ及び最大接地圧（材料物性の不確かさを考慮した基準地震動 S s－D $1 \sim$ S s－N 1 に対する包絡値）に，基準地震動 S s－ D 2 に対する「SA時環境考慮モデル」と「工認モデル」の応答比（「SA時環境考慮モ デル」／「工認モデル」）を乗じた値が許容限界を超えないことを確認した。また，床応答スペクトルが「工認モデル」と「SA時環境考慮モデル」でほぼ同程度になること を確認した。
5.2 「機器•配管系の評価」に与える影響

「機器•配管系の評価」に与える影響は，「SA時環境考慮モデル」及び「SA時環境考慮連成モデル」を用いて，基準地震動 S s（S s－D 1～S s－N 1（7 波））に対する地震応答解析を実施し，応答結果を包絡して作成した「影響確認用耐震条件」 と「工認モデル」及び「大型機器系の地震応答解析モデル」によって作成した「耐震計算に用いる耐震条件」との応答比率を用いて簡易評価を行った。簡易評価の結果，許容値を満足しなかった設備に対して，影響確認用耐震条件による耐震計算を行い，算出応力が許容応力以下となることを確認した。確認結果は以下の通り。

（1）原子炉建屋に設置した機器•配管系に対する確認結果

簡易評価の結果で許容値を満足しなかった 6 設備に対して，影響確認用耐震条件に よる耐震計算を行い，算出応力が許容応力以下となること確認した。
（2）大型機器系の地震応答解析モデルの応答を用いる機器•配管系に対する確認結果簡易評価の結果で許容値を満足しなかつた8設備に対して，影響確認用耐震条件に よる耐震計算を行い，算出応力が許容応力以下となることを確認した。

別紙5－1 重大事故等時の環境を考慮した大型機器系の地震応答解析モデルの設定

目 次

（1）原子炉圧力容器の諸元設定の考え方
（2）原子炉本体の基礎のスケルトンカーブの設定
（3）原子炉しやへい壁と原子炉本体の基礎の剛性の設定
（1）原子炉圧力容器の条件設定の考え方
重大事故等時の原子炉圧力容器の条件設定においては，重心位置が高いほうが地震時の応答が大きくなる傾向があることから「大型機器系の地震応答解析モデル」と同 じ条件を適用する。

重大事故等時の「格納容器過圧•過温破損（代替循環冷却系を使用する場合）」の原子炉水位の水位を図1－1 に示す。図1－1 より原子炉水位は，通常運転水位より低く なる。このため，通常運転水位を考慮している「大型機器系の地震応答解析モデル」 より，重大事故等時の原子炉圧力容器内の水の重量が小さくなる。また，炉心の燃料 は，炉心損傷により落下するため，炉心の燃料体が健全であることを想定している「大型機器系の地震応答解析モデル」より炉心の重心は，低い位置となる。

第3．1．2．5図 原子炉水位（シュラウド内外水位）の推移

図 1－1 「格納容器過圧•過温破損（代替循環冷却系を使用する場合）」における原子炉水位（シュラウド内外水位）の推移＊

注記 $*: ~$ 設置変更許可申請書 まとめ資料「重大事故等対策の有効性評価について」 第 3．1．2．5図に加筆

なお，重大事故等時の「格納容器過圧，過温破損（代替循環冷却系を使用する場合）」の原子炉圧力容器内の保有水量は，図1－2の通り，通常運転時保有水量よりも少なくなって いることを確認している。

第3．1．2．7図 原子炉圧力容器内保有水量の推移

図 1－2 「格納容器過圧•過温破損（代替循環冷却系を使用する場合）」における原子炉圧力容器内の保有水量の推移＊

注記 ：設置変更許可申請書 まとめ資料「重大事故等対策の有効性評価について」第 3．1．2．7図に加筆
（2）原子炉本体の基礎のスケルトンカーブの設定
（a）原子炉本体の基礎のスケルトンカーブの設定方法
原子炉本体の基礎のスケルトンカーブは，補足説明資料「補足 600－8－3 建屋－機器連成解析モデルにおける原子炉本体の基礎の非線形復元力特性等の設定に関 する補足説明資料」の「4．RPVペデスタルのスケルトンカーブの設定方法」と同じ評価式と重大事故等時の熱による剛性低下を考慮したコンクリートの物性値 を用いて評価を行い，設定する。
重大事故等時の熱による剛性低下を考慮したコンクリートの物性値は，高温状態 を経験したコンクリート部材の剛性がその後元に戻らないと仮定し，コンクリート部材の剛性低下率の検討に用いる温度は，「3．2．1 解析条件」と同様に，原子炉格納容器の限界温度である $200^{\circ} \mathrm{C}$ とする。また，コンクリート部材の剛性低下率は原子炉建屋の「SA 時環境考慮モデル」と同様に「構造材料の耐火性ガイドブック（2017 年日本建築学会）」に基づき設定する。

「SA時環境考慮連成モデル」に用いたコンクリート部材の剛性低下率を表2－1に，剛性低下を考慮したコンクリートの物性値を表 2－2 に，重大事故等時の熱による剛性低下を考慮したスケルトンカーブの設定方法（イメージ）を図 2－1 に示す。剛性低下を考慮したコンクリートの物性値以外のスケルトンカーブの評価に必要な値は，今回工認と同じ値としている。

なお，評価に用いるスケルトンカーブは，今回工認に用いたスケルトンカーブの設定と同様に，曲線近似のスケルトンカーブを包絡するように設定した折れ線のスケ ルトンカーブ（曲線包絡スケルトンカーブ）を設定する。

表 2－1 「SA 時環境考慮連成モデル」に用いたコンクリート部材の剛性低下率

		検討に用いた温度 $\left({ }^{\circ} \mathrm{C}\right)$	剛性低下率
原子炉 本体の基礎	コンクリート	200	0.68
	（鋼材）	111	－

表 2－1 剛性低下を考慮したコンクリートの物性値

スケルトンカーブ	圧縮強度 σ B $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	縦弾性係数 Ec $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断弾性係数 $\mathrm{Gc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
今回工認	32.3	2.65×10^{4}	1.14×10^{4}
重大事故等時の熱によ る剛性低下を考慮	32.3	1.80×10^{4}	7.71×10^{3}

図2－1 重大事故等時の熱による剛性低下を考慮したスケルトンカーブの設定方法
(イメージ)
（b）せん断力のスケルトンカーブの設定
「SA 時環境考慮連成モデル」の各要素におけるせん断力のスケルトンカーブの諸数値を表2－2に，「SA時環境考慮連成モデル」と「大型機器系の地震応答解析モデル」 のスケルトンカーブを図 2－2 に示す。

表 2－2（1／2）せん断力のスケルトンカーブ（NS 方向）

質点番号	要素 番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4} \mathrm{rad}\right) \end{gathered}$	$\begin{gathered} Q_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4} \mathrm{rad}\right) \end{gathered}$
7	6	5． 604	2.586	30． 74	30.25
6					
	5	3． 167	2． 698	21.48	26.82
	4	5.896	2． 632	26． 27	30.69
3	3	5.983	2.671	26.27	30.69

表2－2（2／2）せん断力のスケルトンカーブ（EW 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4} \mathrm{rad}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4} \mathrm{rad}\right) \end{gathered}$
7	6	5.604	2． 586	30． 74	30.25
6					
	5	5.965	2.698	34． 20	29． 50
	4	5.896	2． 632	26.27	30.69
3	3	5.547	2.671	24.59	30.68

注記 $*$ ：各図上に記載の要素番号は表 $2-2$ に対応

図2－2（1／2）せん断力のスケルトンカーブ（NS 方向）

注記＊：各図上に記載の要素番号は表 3－1 に対応

図2－2（2／2）せん断力のスケルトンカーブ（EW 方向）
（c）曲げモーメントのスケルトンカーブ
「SA時環境考慮連成モデル」の各要素における曲げモーメントのスケルトンカーブの諸数値を表2－3に，「SA時環境考慮連成モデル」と「大型機器系の地震応答解析モデル」のス ケルトンカーブを図 $2-3$ に示す。

表2－3（1／2）曲げモーメントのスケルトンカーブ（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-5} \mathrm{l} / \mathrm{m}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-5} \mathrm{l} / \mathrm{m}\right) \\ \hline \end{gathered}$
7	6	0． 4716	0． 6093	14.84	37.12
6					
	5	0． 6369	0.8536	14.13	37.1
	4	1． 795	2． 298	14.67	37.02
3	3	1． 780	2.383	14.11	37.15

表 2－3（2／2）曲げモーメントのスケルトンカーブ（EW 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$
7	6	0.4716	0． 6093	14.84	37.12
	5	0． 4127	0.8536	9． 366	37.60
	4	1． 795	2． 298	14.67	37.02
3	3	1． 814	2． 384	14． 36	37． 14

注記 $*$ ：各図上に記載の要素番号は表3－2に対応

図 2－3（1／2）曲げモーメントのスケルトンカーブ（NS 方向）

注記＊：各図上に記載の要素番号は表3－2に対応

図2－3（2／2）曲げモーメントのスケルトンカーブ（EW方向）
（3）原子炉しやへい壁と原子炉本体の基礎の剛性の設定
建設時及び今回工認の大型機器系の地震応答解析モデルにおける原子炉しやへい壁 と原子炉本体の基礎における剛性の扱いを表3－1に，原子炉しやへい壁と原子炉本体 の基礎の構造図を図 3－1 及び図 3－2 に示す。

原子炉しやへい壁は，原子炉圧力容器からの放射線を遮蔽するための構造物であ る。主体構造は，原子炉圧力容器を取り囲む円筒形の壁であり，内外の鋼板及びその内部に充てんされたモルタルより構成される。地震応答解析における原子炉しやへい壁の剛性は，モルタルは遮蔽を目的としており構造部材として期待しないこととし て，鋼板を考慮している。

原子炉本体の基礎は，耐震重要度分類Sクラスである原子炉圧力容器の間接支持構造物であり，主体構造は鋼板とコンクリートで構成される円筒形の構造物である。地震応答解析における原子炉本体の基礎の剛性は，鋼板とコンクリートをともに考慮し ている。

重大事故等時の環境を考慮した「SA時環境考慮連成モデル」においても，建設時及 び今回工認と同様に，原子炉しやへい壁は鋼板の剛性のみを考慮し，原子炉本体の基礎はコンクリートと鋼板の剛性を考慮している。

表3－1 地震応答解析における原子炉しやへい壁と原子炉本体の基礎の剛性

	原子炉しゃへい璧	原子炉本体の基礎
剛性の考慮	鋼板	鋼板とコンクリート

図 3－1 原子炉しやへい壁の構造図

注＊：「補足－600－8－3 建屋－機器連成解析モデルにおける原子炉本体の基礎の非線形復元力特性等の設定に関する補足説明資料」より引用

図 3－2 原子炉本体の基礎の構造図

別紙 6－1 改造工事に伴う重量増加を反映した検討

目 次
1．概要 別紙 6－1－1
2．検討方針 別紙6－1－2
3．重量増加を考慮した地震応答解析結果を踏まえた各施設の評価結果への
影響検討 別紙 6－1－3
3.1 建物•構築物 別紙6－1－3
3．1．1 使用済燃料プール及びキャスクピット 別紙6－1－3
3．1．2 原子炉建屋原子炉棟（二次格納施設） 別紙6－1－8
3．1．3 原子炉建屋ブローアウトパネル 別紙 6－1－17
3．1．4 原子炉建屋エアロック 別紙 6－1－20
3．1．5 原子炉建屋基礎版 別紙 6－1－23
3．1．6 水密扉 別紙 6－1－26
－ 3.2 機器•配管系 別紙 $\overline{6}-1-30$
3．2．1 検討方針 別紙 6－1－30
3．2．2 検討内容 別紙6－1－33
3．2．3 検討結果 別紙 6－1－57
4．検討結果 別紙 6－1－75

3.2 機器•配管系

3．2．1 検討方針
設備の補強や追加等の改造工事に伴う重量増加による影響確認フローを図3－2－ 1 に示し，以下の通り，改造工事に伴う重量増加による影響確認を行う。影響確認 は，以下に示す「工認モデル」及び「補強反映モデル」の地震応答解析結果を用い て応答比率を作成し，それを考慮した耐震条件（以下「補強反映耐震条件」という。） を用いて行う。

【工認モデル】

－添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す地震応答解析モ デル
－添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す原子炉圧力容器，原子炉しゃへい壁及び原子炉本体の基礎等（以下「大型機器系」とい う。）の地震応答解析モデル
【補強反映モデル】
－改造工事に伴う重量増加を反映した別紙 6「原子炉建屋における改造工事に伴う重量増加を反映した地震応答解析 3.2 地震応答解析モデル」に示す原子炬建屋の地震応答解析モデル（基本ケース）
－改造工事に伴う重量増加を反映した別紙 $6-2$ 「建屋一機器連成地震応答解析結果に与える影響 3.2 解析モデル」に示す大型機器系の地震応答解析 モデル（基本ケース）
（1）検討対象
原子炉建屋に設置される以下の機器•配管系を影響検討の対象とする。

- 設計基準対象施設のらち，耐震重要度分類のSクラスに属する機器•配管系
- 重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）及び常設重大事故緩和設備（設計基準拡張）に属する機器•配管系
－波及的影響防止のために耐震評価を実施する機器•配管系
（2）影響検討における耐震条件の考え方
改造工事に伴う重量増加の影響検討における耐震条件は，「工認モデル（基本ケ ース）」，「補強反映モデル」及び基準地震動 S s－D 2 を用いた地震応答解析を行 い，「工認モデル（基本ケース）」による応答と「補強反映モデル」による応答の比 から応答比率を算定し，算定した応答比率を「工認モデル（不確かさケースを含む）」

及び基準地震動 S s（7波）を用いた地震応答解析結果に乗じることで「補強反映耐震条件」を作成する。応答比率の算定結果を「3．2．2（1）応答比率算定」に，詳細な「補強反映耐震条件」の作成方法を「3．2．2（2）補強反映耐震条件作成」に示 す。

なお，「2．1 解析方針」に示すとおり，影響検討は応答比率を用いた手法により行うことから，応答比率の算出のための「補強反映モデル」を用いた地震応答解析 は，位相特性の偏りがなく，全周期帯において安定した応答を生じさせる基準地震動 S s－D 2 に対して実施し，「補強反映耐震条件」の作成では，基準地震動 S s
（7波）に対する応答を考慮する。
（3）簡易評価
（1）の検討対象設備に対する裕度（許容応力／算出応力）を整理する。
また，「補強反映耐震条件」と「工認モデル」の応答から作成した耐震計算に用 いる耐震条件との条件比率を作成する。

ただし，耐震計算において非線形要素を用いた時刻歴応答解析により発生値を算定している原子炉建屋クレーンについては，固有周期の変動等の不確かさを考慮して $0.05 \sim 1.00 \mathrm{~s}$ の周期帯での補強反映床応答曲線と設計用床応答曲線の比率 の最大値を用いた比較を行う。

検討対象設備の裕度と条件比率を比較し，検討対象設備の裕度が条件比率以上 となることを確認する。確認の結果，検討対象設備の裕度が条件比率を下回る場合 は，詳細評価を行う。
（4）詳細評価
詳細評価が必要となった検討対象設備は，補強反映耐震条件を用いた耐震評価 を行い，算出応力が許容応力以下となることを確認する。確認の結果，算出応力が許容応力を上回る場合は，追加検討を行う。
（5）追加検討
追加検討が必要となった検討対象設備は，設備の評価結果等に応じて個別に設備対策，評価の精緻化等を行うものとする。

検討対象設備

原子炬建屋に設置した以下の設備

- 耐震重要度分類のSクラス設備
- 常設耐震重要重大事故防止設備
- 常設重大事故緩和設備
- 常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの） －常設重大事故緩和設備（設計基準拡張）
波及的影響防止のために耐震評価を実施する機器•配管系

「－․․ 添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」，「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI －2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」の検討範囲
注記 $* 1$ ：補強反映モデルの応答（ S s－D 2 ）／工認モデルの応答（ S s－D 2 ）
＊2：床応答曲線の条件比率は，設備の固有周期に応じた比を用いる（保守的に，設備の 1 次固有周期以下の周期に おける比率の最大値を用いる場合もある。）。

詳細評価（3．2．3 項）

3．2．2 検討内容

（1）応答比率算定
機器•配管系の耐震計算に用いる条件の応答比率の算定方法及び応答比率を以下 に示す（建屋一機器連成地震応答解析結果を踏まえた応答比率は，「別紙 $6-2$建屋一機器連成地震応答解析結果に与える影響」参照）。
a．最大応答加速度
各標高について，基準地震動 S s－D 2 による工認モデル（基本ケース）と補強反映モデル（基本ケース）の最大応答加速度を比較し，補強反映モデルの最大応答加速度／工認モデルの最大応答加速度により応答比率を算定する。なお，水平方向の最大応答加速度の応答比率算定にあたつては，NS 方向とEW方向の包絡値（以下，「NS／EW 包絡」という。）を用いる。

原子炉建屋の最大応答加速度の応答比率を表3－2－1～表3－2－4 に示す

表 3－2－1 最大応答加速度の応答比率
（基準地震動 S s－D 2，1．0ZPA，水平方向（NS／EW 包絡）：原子炉建屋）

標高0. P. (m)	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		応答比率 （2）／（1）
	（1）工認モデル	（2）補強反映モデル	
50.500	4.71	4.37	0.93
41.200	2.56	2.48	0.97
33.200	2． 03	1． 98	0.98
22.500	1． 74	1． 76	1． 02
15.000	1． 39	1． 35	0.98
6． 000	1． 30	1． 28	0.99
1． 150	1． 00	1． 02	1． 02
－0．800	0.99	1.00	1.02
－8．100	0.66	0.65	0.99

表 3－2－2 最大応答加速度の応答比率
（基準地震動 S s－D 2，1．0ZPA，鉛直方向：原子炉建屋）

標高 $0 . P .(m)$	最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		応答比率 $($（2）／（1）$)$
	（1）工認モデル	（2）補強反映モデル	
48.725	1.58	1.61	1.02
41.200	1.46	1.46	1.00
33.200	1.38	1.22	1.40
22.500	0.99	1.00	1.02
15.000	0.75	0.75	1.01
6.000	0.62	0.61	1.02
-0.800	0.55	0.55	0.99
-8.100			1.00

表 3－2－3 最大応答加速度の応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，1．2ZPA，水平方向（NS／EW 包絡）：原子炉建屋）

標高 $0 . \mathrm{P} .(\mathrm{m})$	最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		応答比率 （（2）／（1））
	（1）工認モデル	（2補強反映モデル	
50.500	5.66	5.24	0.93
41.200	3.07	2.98	0.98
33.200	2.44	2.38	0.98
22.500	2.09	2.11	1.01
15.000	1.67	1.62	0.98
6.000	1.55	1.54	1.00
1.150	1.20	1.22	1.02
-0.800	1.18	1.19	1.01
-8.100	0.79	0.78	0.99

表 3－2－4 最大応答加速度の応答比率
（基準地震動 S s－D 2，1．2ZPA，鉛直方向：原子炉建屋）

標高 $0 . \mathrm{P} .(\mathrm{m})$	最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		応答比率 （2）
	（1）工認モデル	（2）補強反映モデル	
48.725	1.90	1.94	1.03
41.200	1.75	1.75	1.00
33.200	1.66	1.68	1.02
22.500	1.46	1.47	1.01
15.000	1.19	1.20	1.01
6.000	0.90	0.90	1.00
-0.800	0.74	0.73	0.99
-8.100	0.66	0.66	1.00

b．床応答スペクトル
工認モデルと補強反映モデルにおける基準地震動S s－D 2 による床応答スペ クトルを比較し，各標高•各減裹について，補強反映モデルの震度／工認モデルの震度により周期毎の応答比率を算定する。なお，水平方向の床応答スペクトルの応答比率算定にあたつては，NS 方向とEW方向の包絡値を用いる。応答比率の算定例 を図3－2－2に示す。

原子炉建屋の各標高•減衰定数 2.0% の工認モデルと補強反映モデルの床応答ス ペクトルを図 3－2－3 及び図 3－2－4に，周期毎の応答比率を図 3－2－5 及び図 3－2－6 に示す。なお，床応答スペクトルの減衰定数は，耐震裕度の比較的小さい配管系 の主要な減衰定数である 2.0% を代表として，設備評価に用いたものを記載してい る。

図 3－2－2 床応答スペクトルにおける応答比率の算定例 （水平方向（NS／EW 包絡）：原子炉建屋 0．P． 15.0 m ，固有周期 0.247 s ）

図 3－2－3（1／8）工認モデルと補強反映モデルの床応答スペクトル基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．41．2m）

図 3－2－3（2／8）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．33．2m）

図 3－2－3（3／8）工認モデルと補強反映モデルの床応答スペクトル基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．22．5m）

図 3－2－3（4／8）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向（ $\mathrm{NS} / \mathrm{EW}$ 包絡）：原子炉建屋 0. P．15．0m）

図 3－2－3（5／8）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．6．0m）

図 3－2－3（6／8）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向（ $\mathrm{NS} / \mathrm{EW}$ 包絡）：原子炉建屋 $0 . \mathrm{P} .1 .15 \mathrm{~m}$ ）

図 3－2－3（7／8）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．－0．8m）

図 3－2－3（8／8）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向（NS／EW 包絡）：原子炉建屋 0．P．－8．1m）

図 3－2－4（1／7）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．41．2m）

図 3－2－4（2／7）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．33．2m）

図 3－2－4（3／7）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．22．5m）

図 3－2－4（4／7）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．15．0m）

図 3－2－4（5／7）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．6．0m）

図 3－2－4（6／7）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．－0．8m）

図 3－2－4（7／7）工認モデルと補強反映モデルの床応答スペクトル （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．－8．1m）

図 3－2－5（1／8）床応答スペクトルの応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．41．2m）

図 3－2－5（2／8）床応答スペクトルの応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．33．2m）

図 3－2－5（3／8）床応答スペクトルの応答比率 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．22．5m）

図 3－2－5（4／8）床応答スペクトルの応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．15．0m）

図 3－2－5（5／8）床応答スペクトルの応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．6．0m）

図 3－2－5（6／8）床応答スペクトルの応答比率
（基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．1．15m）

図 3－2－5（7／8）床応答スペクトルの応答比率 （基準地震動 S s－D 2，水平方向（NS／EW 包絡）：原子炉建屋 0．P．－ 0.8 m ）

図 3－2－5（8／8）床応答スペクトルの応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向（ $\mathrm{NS} / \mathrm{EW}$ 包絡）：原子炉建屋 $0 . \mathrm{P} .-8.1 \mathrm{~m}$ ）

固 有 周 期［s ］
図 3－2－6（1／7）床応答スペクトルの応答比率
（基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．41．2m）

固 有 周 期［ s ］

図 3－2－6（2／7）床応答スペクトルの応答比率
（基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．33．2m）

図 3－2－6（3／7）床応答スペクトルの応答比率
（基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．22．5m）

固 有 周 期［ s ］
図 3－2－6（4／7）床応答スペクトルの応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 O．P．15．0m）

図 3－2－6（5／7）床応答スペクトルの応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．6．0m）

図 3－2－6（6／7）床応答スペクトルの応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向：原子炉建屋 0．P．－ 0.8 m ）

図 3－2－6（7／7）床応答スペクトルの応答比率
（基準地震動 S s－D 2，鉛直方向：原子炉建屋 0．P．－8．1m）
c．地震力
建屋一機器連成地震応答解析モデルの各標高•要素について，工認モデルと補強反映モデルにおける基準地震動 S s－D 2 による地震力（せん断力，モーメン ト，軸力等）を比較し，補強反映モデルの地震力／工認モデルの地震力により応答比率を算定する。なお，水平方向の応答比率算定にあたっては，NS 方向と EW方向の地震力の包絡値を用いる。
（2）補強反映耐震条件作成
補強反映耐震条件は，最大加速度，床応答曲線及び地震力についてそれぞれ以下 の通り応答比率を用いて作成する。なお，影響評価の観点から，応答比率が 1 を下回る場合においても，応答比率の算出値をそのまま用いる。

a．補強反映最大応答加速度

各標高について，地震応答解析（基本ケース）から得られる応答波の最大応答加速度と，地震応答解析（不確かさケース）から得られる応答波の最大応答加速度を包絡させ設定した設計用地震力に（1）で算定した応答比率を乗じて作成す る。

補強反映最大応答加速度の作成フローを図 3－2－7 に示す。
b．補強反映床応答曲線
各標高•各減衰について，地震応答解析（基本ケース）から得られる応答波を用いて作成した床応答スペクトルに（1）で算定した周期毎の応答比率を乗じ $\pm 10 \%$拡幅したものと，地震応答解析（不碓かさケース）から得られる応答波を用いて作成した床応答スペクトルに（1）で算定した周期ごとの応答比率を乗じたものを包絡させて作成する。

補強反映床応答曲線の作成フローを図 3－2－8 に示す。
c．補強反映地震力
建屋一機器連成地震応答解析モデルの各標高•要素について，地震応答解析 （基本ケース）から得られる地震地震力と，地震応答解析（不確かさケース）か ら得られる地震力を包絡させ設定した設計用地震力に（1）で算定した応答比率を乗じて作成する。

補強反映地震力の作成フローを図3－2－9に示す。

注記：破線範囲は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」
における設計用最大応答加速度作成の実施事項を示す。
図 3－2－7 補強反映最大応答加速度の作成フロー

注記：破線範囲は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 における設計用床応答曲線作成の実施事項を示す。

図 3－2－8 補強反映床応答曲線の作成フロー

注記：破線範囲は，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」及び「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」における設計用地震力作成の実施事項を示す。

図 3－2－9 補強反映地震力の作成フロー

3．2．3 検討結果

（1）簡易評価結果及び詳細評価結果
「3．2．1 検討方針」に示す影響検討フローに従つた検討を行い，詳細評価が必要となった機器•配管系の簡易評価結果を表3－2－5に，詳細評価結果を表 3－2－6 に示す。

簡易評価で許容値を満足しなかつた 25 設備に対して，詳細評価として補強反映耐震条件による耐震計算を行い，制御棒挿入性評価を除き，算出応力が許容応力以下となることを確認した。

詳細評価の結果，許容値を満足しなかつた制御棒挿入性評価に対する追加検討を行う

表 3－2－5 簡易評価結果（ $1 / 3$ ）

設備名称	評価部位	応力分類	耐震評価計算書 （基準地震動 S s ）			条件比率	確認 結果
			$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ (\mathrm{MPa}) \end{gathered}$	裕度		
燃料プール冷却浄化系熱交換器	胴板	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	675	420	0.62	1． 01	\times
		疲労	0.31	1	－		
残留熱除去系熱交換器	胴板	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	783	497	0.63	1． 01	\times
		疲労	0.38	1	－		
$\begin{gathered} \hline \text { ドライウェルベント } \\ \text { 開口部 (DB) } \end{gathered}$	$\begin{gathered} \hline \text { ドライウェルベ } \\ \text { ント開口部 } \end{gathered}$	$\begin{gathered} \hline \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	432	501	1． 15	$\begin{gathered} 1.26 \\ \text { 図 } 3-2-10 \end{gathered}$	\times
$\begin{gathered} \hline \text { ドライウェルベント } \\ \text { 開口部 (SA) } \end{gathered}$	$\begin{gathered} \text { ドライウェルベ } \\ \text { ント開ロ部 } \end{gathered}$	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	460	501	1． 08	$\begin{gathered} 1.25 \\ \text { 図 } 3-2-11 \end{gathered}$	\times
ダウンカマ（DB）	$\begin{gathered} \text { エンドプレート } \\ \text { (上側) } \end{gathered}$	一次応力 （組合せ）	248	264	1.06	$\begin{gathered} 1.26 \\ \text { 図 } 3-2-10 \end{gathered}$	\times
	$\begin{aligned} & \text { ベントヘッダ } \\ & \text { (一般部以外) } \end{aligned}$	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	516	458	0.88		
		疲労	0． 284	1	－		
ダウンカマ（SA）	$\begin{gathered} \text { エンドプレート } \\ \text { (上側) } \end{gathered}$	一次応力 （組合せ）	247	264	1.06	1． 25 図 3－2－11	\times
	ベントヘッダ （一般部以外）	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	592	473	0.79		
		疲労	0． 547	1	－		
ベント管（DB）	ベント管（一般部以外）	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	371	393	1.05	$\begin{gathered} 1.26 \\ \text { 図 } 3-2-10 \end{gathered}$	
ベント管（SA）	ベント管（一般部以外）	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	418	393	0.94	$\begin{gathered} 1.25 \\ \text { 図 } 3-2-11 \end{gathered}$	\times
		疲労	0． 489	1	－		
シュラウドサポート	レグ	軸圧縮	189	209	1.10	1． 12	\times
制御棒	－	相対変位	54.2	60	1． 10	1． 11	\times
燃料プール浄化冷却系 配管 (FPC-002)	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	436	376	0.86	1． 07 図 3－2－12	\times
		疲労	0． 0034	1	－		
可燃性ガス処理系配管(FCS-006 DB)	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	200	150	0.75	1.02図 $3-2-13$	\times
		疲労	0． 5717	1	－		
原子炉補機冷却系配管 （KRCW－205）	配管本体	$\begin{gathered} \hline \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	440	458	1． 04	$\begin{gathered} 1.16 \\ \text { 図 } 3-2-14 \end{gathered}$	\times
ほう酸水注入系配管 （SLC－003 SA）	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	211	206	0.97	1． 08 図 $3-2-15$	\times
		疲労	0.0001	1	－		
燃料移送系配管(DGD0-B008)	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { 応力 } \end{gathered}$	439	398	0.90	$\begin{gathered} 1.08 \\ \text { 図 } 3-2-16 \end{gathered}$	\times
		疲労	0． 4004	1	－		

表 3－2－5 簡易評価結果（2／3）

設備名称	評価部位	応力分類	耐震評価計算書 （基準地震動 S s ）			条件比率	確認 結果
			$\begin{gathered} \hline \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	許容応力 （MPa）	裕度		
残留熱除去系配管 （RHR－010）（SA）	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	422	414	0.98	$\begin{gathered} 1.09 \\ \text { 図 } 3-2-17 \end{gathered}$	\times
		疲労	0.7118	1	－		
フィルタベント系配管 （FCVS－003）（SA）	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	302	240	0.79	$\begin{gathered} 1.05 \\ \text { 図 } 3-2-18 \end{gathered}$	\times
		疲労	0． 3849	1	－		
フィルタベント系配管 （FCVS－004）（SA）	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	274	240	0.87	$\begin{gathered} 1.08 \\ \text { 図 } 3-2-19 \end{gathered}$	\times
		疲労	0.3833	1	－		
制御棒駆動水圧系配管(CRD-017-3)	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	434	318	0.73	$\begin{gathered} 1.02 \\ \text { 図 } 3-2-20 \end{gathered}$	\times
		疲労	0． 8674	1	－		
主蒸気系配管 $\text { (MS-001 クラス } 1 \text {) }$ （DB）	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	684	375	0.54	$\begin{gathered} 1.10 \\ \text { 図 } 3-2-21 \end{gathered}$	\times
		疲労	0.614	1	－		
主蒸気系配管$\text { (MS-003 クラス } 1 \text { DB) }$	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	630	375	0.59	$\begin{gathered} 1.10 \\ \text { 図 } 3-2-22 \end{gathered}$	\times
		疲労	0． 3706	1	－		
主蒸気系配管(MS-004) (SA)	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	468	386	0.82	$\begin{gathered} 1.07 \\ \text { 図 } 3-2-23 \end{gathered}$	\times
		疲労	0.8529	1	－		
制御棒駆動水圧系配管(CRD-005-1)	配管本体	$\begin{gathered} \hline \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	292	318	1.08	1． 11 図 $3-2-24$	\times
		疲労	0． 2729	1	－		
原子炉再循環配管 （PLR－001）	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	663	354	0.53	$\begin{gathered} 1.06 \\ \text { 図 } 3-2-25 \end{gathered}$	\times
		疲労	0． 2091	1	－		
原子炉再循環配管 （PLR－002）	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	657	354	0.53	$\begin{gathered} 1.05 \\ \text { 図 } 3-2-26 \end{gathered}$	\times
		疲労	0.3181	1	－		
残留熱除去系配管(RHR-003)	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \\ \hline \end{gathered}$	680	366	0.53	1． 03 図 $3-2-27$	\times
		疲労	0． 5620	1	－		

表 3－2－5 簡易評価結果（3／3）

設備名称	評価部位	応力分類	耐震評価計算書 （基準地震動 S s ）			条件比率	確認 結果
			$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ (\mathrm{MPa}) \end{gathered}$	裕度		
残留熱除去系配管(RHR-004)	配管本体	$\begin{gathered} \text { 一次 }+ \text { 二次 } \\ \text { 応力 } \end{gathered}$	370	366	0.98	$\begin{aligned} & 1.05 \\ & \text { 図 } 3-2-28 \end{aligned}$	\times
		疲労	0． 0887	1	－		
残留熱除去系配管(RHR-005)	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { 応力 } \end{gathered}$	675	366	0.54	$\begin{gathered} 1.04 \\ \text { 図 } 3-2-29 \end{gathered}$	\times
		疲労	0.6667	1	－		

表 3－2－6 詳細評価結果（ $1 / 3$ ）

設備名称	評価部位	応力分類	詳細評価条件		補強反映耐震条件を用いた評価 （基準地震動 S s ）		確認結果
			最大応答加速度	床応答曲線	$\begin{gathered} \hline \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	許容応力 （MPa）	
燃料プール泠却浄化系熱交換器	胴板	一次＋二次応力	水平： 1.93	－	667	420	\bigcirc
		疲労			0.30	1	
残留熱除去系熱交換器熱交換器	胴板	一次＋二次応力	$\begin{aligned} & \text { 水平: } 1.97 \\ & \text { 鉛直: } 1.42 \\ & \hline \end{aligned}$	－	776	497	0
		疲労			0.36	1	
$\begin{gathered} \text { ドライウェルベント } \\ \text { 開口部(DB) } \end{gathered}$	$\begin{gathered} \text { ドライウェルベ } \\ \text { ント開ロ部 } \end{gathered}$	一次＋二次応力	$\begin{aligned} & \text { 水平: - } \\ & \text { 鉿直: }: 0.97 \end{aligned}$	原子炉格納容器 0．P． 2.6 m （ 1% 減衰）	445	501	0
$\begin{gathered} \text { ドライウェルバント } \\ \text { 開口部 (SA) } \end{gathered}$	$\begin{gathered} \text { ドライウェルベ } \\ \text { ント開ロ部 } \end{gathered}$	一次＋二次応力	$\begin{gathered} \text { 水平:- } \\ \text { 鉛直: } 0.97 \end{gathered}$	原子炬格納容器 0．P． 2.6 m （ 1% 減衰）	488	501	0
ダウンカマ（DB）	$\begin{gathered} \text { エンドプレート } \\ \text { (上側) } \end{gathered}$	一次応力（組合せ）	－	原子炉格納容器 0．P． 2.6 m （ 1 \％減衰）	255	264	\bigcirc
	ベントヘッダ （一般部以外）	一次＋二次応力			530	458	
		疲労			0.317	1	
ダウンカマ（SA）	$\begin{gathered} \hline \text { エンドプレート } \\ (\text { 上側 }) \end{gathered}$	一次応力（組合せ）	－	$\begin{gathered} \text { 原子炉格納容器 } \\ \text { 0. P. } 2.6 \mathrm{~m} \\ (1 \% \text { 減衰 }) \end{gathered}$	261	264	\bigcirc
	ベントヘッダ （一般部以外）	一次＋二次応力			628	473	
		疲労			0.771	1	
ベント管（DB）	ベント管 （一般部以外）	一次＋二次応力	－	原子炉格納容器 0．P． 2.6 m （1\％減衰）	382	393	\bigcirc
ベント管（SA）	ベント管 （一般部以外）	一次＋二次応力	－	原子炉格納容器 0．P． 2.6 m （1\％減裏）	444	393	\bigcirc
		疲労			0.635	1	
シュラウドサポート	レグ	軸圧縮	－		204	209	\bigcirc
制御棒	－	相対変位	－	－	60.2	60	\times
燃料プール浄化冷却系配管 （FPC－002）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.60 \\ & \text { 鉛直: } 1.81 \end{aligned}$	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \mathrm{P} .33 .2,22.5,15.0 \mathrm{~m} \\ (0.5 \% \text { 減衰 }) \\ \hline \end{gathered}$	426	376	\bigcirc
		疲労			0.0025	1	

[^0][^1]表 3－2－6 詳細評価結果（2／3）

設備名称	評価部位	応力分類	詳細評価条件		補強反映耐震条件を用いた評価 （基準地震動 S s ）		確認結果
			最大応答加速度	床応答曲線	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ (\mathrm{MPa}) \end{gathered}$	
可燃性ガス処理系 （FCS－006）（DB）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.15 \\ & \text { 鉛直: } 1.58 \end{aligned}$	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .22 .5 \mathrm{~m} \\ & \text { (1.0\% 減衰) } \end{aligned}$	204＊	150	0
		疲労			0．6142＊	1	
原子炉補機冷却系 （KRCW－205）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 3.37 \\ & \text { 鉛直: } 1.89 \end{aligned}$	原子炬建屋 0．P． $41.2, \quad 3.2,22.5,15.0$, 6． $0,1.15,-0.8,-8.1 \mathrm{~m}$ $(2 \%$ 減衰 $)$	442	458	\bigcirc
ほら酸水注入系配管 （SLC－003）（SA）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.15 \\ & \text { 鉛直: } 1.59 \end{aligned}$		195	206	\bigcirc
燃料移送系配管 （DGD0－B008）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 1.93 \\ & \text { 鉛直: } 1.39 \end{aligned}$	軽油連絡ダクトO．P． $12.100,10.500,9.500 \mathrm{~m}$原子炉建屋0．P． $15.0, \quad .0 \mathrm{~m}$$(2 \%$ 減衰）	439	398	0
		疲労			0． 3983	1	
残留熱除去系配管 （RHR－010）（SA）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 1.57 \\ & \text { 鉛直: } 1.09 \end{aligned}$	$\begin{aligned} & \text { 原子灯建屋 } \\ & 1.15,-0.8,-8.1 \mathrm{~m} \\ & 0 . \text { P. } 6.0 \% \text { 減哀 }) \end{aligned}$	406	414	\bigcirc
$\begin{gathered} \text { フィルタベント系配管 } \\ \text { (FCVS-003) (SA) } \end{gathered}$	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.60 \\ & \text { 鉛直: } 1.81 \end{aligned}$	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.2,22.5,15.0 \mathrm{~m} \\ (3.0 \% \text { 減哀 }) \\ \hline \end{gathered}$	294	240	\bigcirc
		疲労			0． 3510	1	
フィルタベント系配管 （FCVS－004）（SA）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 6.78 \\ & \text { 鉛直: } 2.16 \end{aligned}$	原子炉建屋$0 . \mathrm{P}^{2}$ ． $50.5($ 水平 $)$,$48.725\left(\begin{array}{l}\text { 鈖直 }), 333.2,22.5 \mathrm{~m} \\ (3.0 \% \text { 減衰）}\end{array}\right.$	278	240	0
		疲労			0． 4072	1	
制御棒駆動水圧系配管 （CRD－017－3）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 1.66 \\ & \text { 鉛直: } 1.32 \end{aligned}$	原子炬本体の基礎0．P． $7.040 .6 .240,4.950 \mathrm{~m}$制御棒駆動ハウウジング0． 3.258 m（ 0.5% 減衰）	420	318	\bigcirc
		疲労			0.7312	1	

注記＊：設備の固有周期に対応する応答比率の包絡値を耐震計算書の値（一次＋二次応力）に乗じた値を適用。

表 3－2－6 詳細評価結果 $(3 / 3)$

設備名称	評価部位	応力分類	詳細評価条件		補強反映耐震条件を用いた評価（基準地震動 S s ）		確認結果
			最大応答加速度	床応答曲線	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ (\mathrm{MPa}) \end{gathered}$	
主蒸気系配管	配管本体	一次＋次応力	水平： 1.93	$\begin{gathered} \text { 原子炉しゃへい壁 } \\ \text { 0.P. } 10.6 \mathrm{~m} \\ \text { (2.0\% 減衰) } \end{gathered}$	633	375	\bigcirc
（MS－001 クラス1）（DB）		疲労			0． 4641	1	
主蒸気系配管	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.01 \\ & \text { 鉛直: } 1.59 \end{aligned}$	$\begin{gathered} \text { 原子炉しゃへい壁 } \\ \text { O.P. } 13.4 \mathrm{~m} \\ \text { (2.0\%減衰) } \\ \hline \end{gathered}$	596	375	\bigcirc
（MS－003 クラス 1）（DB）		疲労			0.2885	1	
主蒸気系配管 （MS－004）（SA）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.01 \\ & \text { 鉛直: } 1.59 \end{aligned}$	$\begin{gathered} \text { 原子炉しやへい壁 } \\ \text { 0.P. } 13.4 \mathrm{~m} \\ \text { (2.0\%減衰) } \end{gathered}$	484	386	0
		疲労			0．9135＊	1	
制御棒駆動水圧系配管 （CRD－005－1）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 1.93 \\ & \text { 鉛直: } 1.39 \end{aligned}$	原子炬建屋 0． $15.0,6.0 \mathrm{~m}$ 原子炉格納容器 0．P． $14.295,9.448 \mathrm{~m}$ （2．0\％減衰）	292	318	0
原子炉再循睘配管 （PLR－001）	配管本体	一次＋二次応力	水平： 1.62鉛直： 0.91	原子炉本体の基硙 0．P． 6.24 m （ 2.5% 減衰）	626	354	\bigcirc
		疲労			0． 1868	1	
原子炉再循環配管 （PLR－002）	配管本体	一次＋二次応力	水平： 1.62	$\begin{gathered} \text { 原子炉本体の基䃈 } \\ \text { 0.P. } 6.24 \mathrm{~m} \\ \text { (2.5\% 減衰) } \end{gathered}$	629	354	\bigcirc
		疲労			0.2701	1	
残留熱除去系配管 （RHR－003）	配管本体	一次＋二次応力	$\begin{aligned} & \text { 水平: } 2.09 \\ & \text { 鉛直: } 1.78 \end{aligned}$	$\begin{gathered} \text { 原子炉しゃへい壁 } \\ \text { 0. P. } 15.95 \mathrm{~m} \end{gathered}$ （2．5\％減衰）	664	366	0
		疲労			0.5066	1	
残留熱除去系配管 （RHR－004）	配管本体	一次＋二次応力	水平： 2.33		338	366	0
		疲労			0． 0647	1	
残留熱除去系配管 （RHR－005）	配管本体	一次＋二次応力	水平： 3.75 鉛直： 1.47	$\begin{gathered} \text { 原子炉圧力容器 } \\ 0 . P .28 .6 \mathrm{~m} \\ \text { 原子炉格納容器 } \\ \text { O. P. } 25.858 \mathrm{~m} \\ \text { (2.5\%減衰) } \end{gathered}$	623	366	\bigcirc
		疲労			0.5037	1	

注記＊：設備の全固有周期に応じた等価繰返し回数の包絡値として，個別に設定する等価繰返し回数 181 回を適用。

固 有 周 期［s］
図 3－2－10 ドライウェルベント開口部，ダウンカマ，ベント管（DB）の条件比率
（基準地震動 S s ，水平方向：原子炉格納容器
0．P．

m）

固 有 周 期［s］
図 3－2－11 ドライウェルベント開口部，ダウンカマ，ベント管（SA）の条件比率 （基準地震動 S s，水平方向：原子炉格納容器

0．P．

別紙 6－1－64 枠囲みの内容は商業機密の観点から公開できません。

図 3－2－12 燃料プール浄化冷却系配管（FPC－002）（DB）の条件比率 （基準地震動 S s，水平方向：原子炉建屋 $0 . \mathrm{P} . \square \mathrm{m}$ ）

図 3－2－16 可燃性ガス処理系（FCS－006 DB）の条件比率 （基準地震動 S s，鉛直方向：原子炉建屋 0．P．

図 3－2－14 原子炉補機冷却系（KRCW－205）の条件比率
（基準地震動 S s，水平方向：原子炉建屋 O．P． \square m）

固 有 周 期［ S ］
図 3－2－15 ほう酸水注入系配管（SLC－003）（SA）の条件比率 （基準地震動 S s，水平方向：原子炉格納容器 O．P．

図 3－2－16 燃料移送系配管（DGD0－B008）の条件比率 （基準地震動 S s ，水平方向：原子炉建屋 0．P．$\square \mathrm{m}$ ）

図 3－2－17 残留熱除去系配管（RHR－010）（SA）の条件比率 （基準地震動 S s ，水平方向：原子炉建屋 $0 . \mathrm{P}$ 。 \square m）

図 3－2－18 フィルタベント系配管（FCVS－003）（SA）の条件比率 （基準地震動 S s ，水平方向：原子炉建屋 O．P．$\square \mathrm{m}$

固 有 周 期［s］
図 3－2－19 フィルタベント系配管（FCVS－004）（SA）の条件比率 （基準地震動 S s，水平方向：原子炉建屋 $0 . \mathrm{P} . \square \mathrm{m}$ ）

図 3－2－20 制御棒駆動水圧系配管（CRD－017－3）の条件比率 （基準地震動 S s ，鉛直方向：制御棒駆動機構ハウジング 0．P．$\square \mathrm{m}$ ）

固 有 周 期［s］
図 3－2－21 主蒸気系配管（MS－001 クラス1）（DB）の条件比率
（基準地震動 S s，水平方向：原子炉しやへい壁
0．P．

図 3－2－22 主蒸気系配管（MS－003 クラス1）（DB）の条件比率
（基準地震動 S s ，水平方向：原子炉しやへい壁

固 有 周 期［s］
図 3－2－23 主蒸気系配管（MS－004）（SA）の条件比率
（基準地震動 S S ，水平方向：原子炉しやへい壁 O．P．$\square \mathrm{m}$ ）

図 3－2－24 制御棒駆動水圧系配管（CRD－005－1）の条件比率 （基準地震動 S S ，水平方向：原子炉格納容器 O．P．$\square \mathrm{m}$ ）

図 3－2－25 原子炉再循環配管（PLR－001）の条件比率
（基準地震動 S s ，水平方向：原子炉本体の基礎 0．P．
 m）

図 3－2－26 原子炉再循環配管（PLR－002）の条件比率 （基準地震動 S s ，水平方向：原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

固 有 周 期［ s ］
図 3－2－27 残留熱除去系配管（RHR－003）の条件比率
（基準地震動 S s，鉛直方向：原子炉しやへい壁 0．P．$\square \mathrm{m}$ ）

図 3－2－28 残留熱除去系配管（RHR－004）の条件比率 （基準地震動 S s ，水平方向：原子炉しやへい壁

0．P． \square

固 有 周 期［ s ］
図 3－2－29 残留熱除去系配管（RHR－005）の条件比率
（基準地震動 S s ，水平方向：原子炉格納容器 O．P．
 m）
（2）追加検討結果
「3．2．3 検討結果」の結果を踏まえ，補強反映耐震条件による耐震評価で許容値を上回った制御棒挿入性評価について，より詳細な追加検討を行う。

追加検討は，「工認モデル」による材料物性の不確かさを考慮する検討ケース ＊ごとに応答を確認し，許容値を上回る検討ケースを対象とする。対象とした検討ケースの地震応答解析モデルに改造工事に伴う重量増加を反映した地震応答解析モデルを作成する。作成した地震応答解析モデルを用いて地震応答解析を行 い，応答が許容値を下回ることを確認する。検討に用いる地震動は，燃料集合体相対変位が最大となる基準地震動S s－D 2 を用いる。

対象の確認結果を表3－2－7に，追加検討結果を表3－2－8に示す。
検討結果から，許容相対変位 60 mm に対して燃料集合体相対変位算出値が 55.2 mm であり，許容値を満足することを確認した。

注記 $⿻ 丷 木 斤$ ：添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す検討ケース

表 3－2－7 各検討ケースにおける制御棒挿入性評価

検討ケース	燃料集合体相対変位（mm） （NS／EW 包絡）	応答比率を考慮 （燃料相対変位 \times 応答比率 （1．11））	許容相対変位 （mm）	追加検討対象 ケース＊
$\begin{gathered} \text { ケース } 1 \\ (\text { 基本ケース) } \end{gathered}$	47． 7	53.0	60	－
ケース 2	50.5	56.1		－
ケース 3	54.2	60.2		\bigcirc
ケース 4	39.9	44.3		－
ケース 5	40.6	45.1		－
ケース 6	39.0	43.3		－
ケース 7	48.0	53.3		－

注記＊：応答比率を考慮した燃料集合体相対変位が許容値 60 mm を上回るケースを追加検討ケースとする。

表 3－2－8 追加検討結果

検討ケース	入力地震動	燃料集合体 相対変位 (mm)	許容 相対変位 (mm)	影響検討結 果
ケース 3	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	55.2	60	\bigcirc

4．検討結果
改造工事に伴う重量増加の影響確認について，影響検討フローに従った検討を行い，以下の内容を確認した。
－改造工事に伴う重量増加を反映して作成した補強反映モデルを作成し，基準地震動 S s－D 2 に対する「補強反映モデル」の応答及び「工認モデル」の応答の比から応答比率を算定した。また，算定した応答比率を基準地震動 S s に対する「工認モ デル」の応答に乗じることで「補強反映耐震条件」を作成した。「補強反映耐震条件」 と「工認モデル」の応答から作成した耐震計算に用いる耐震条件との条件比率を作成した。
－検討対象設備の裕度と条件比率を用いた簡易評価の結果で許容値を満足しなかった 25 設備に対して，詳細評価として補強反映耐震条件による耐震計算を行い，制御棒挿入性評価を除き，算出応力が許容応力以下となることを確認した。
－「補強反映耐震条件」を用いた詳細評価の結果で許容値を満足しなかった制御棒挿入性評価に対する追加検討を行った。追加検討の結果，改造工事に伴う重量増加を反映して作成した地震応答解析モデルを用いて地震応答解析を行い，応答が許容値以下となることを確認した。
以上の結果から，改造工事に伴ら重量増加の影響を考慮しても機器•配管系の耐震性 が確保されることを確認した。

別紙 6－2 建屋一機器連成地震応答解析結果に与える影響
1．概要 別紙6－2－1
2．検討方針 別紙6－2－1
3．検討条件 別紙6－2－1
3.1 補強等に伴う重量増加 別紙6－2－1
3.2 解析モデル 別紙6－2－9
4．解析結果 別紙 6－2－16

1．概要

本資料は，建屋一機器連成地震応答解析モデルにおいて，補強等の改造工事に伴う質量の増加分を考慮した地震応答解析を実施し，「建屋一機器連成地震応答解析結果」に与える影響について確認するものである。

2．検討方針
添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す工認評価に用いている質点系モデ ル（以下，「工認モデル」という。）では，原子炉建屋の地震応答計算書に関する補足説明資料の別紙 6 「原子炉建屋における改造工事に伴う重量増加を反映した地震応答解析」の3．2．1項の表3－5に示す通り，既工認＊の質点系モデルからオペフロ耐震補強等，応答性状に影響を与える質量の変更を考慮している。

本検討では，上述した補強等の質量変更に加え，平成18年耐震設計審査指針改定及 び平成 25 年新規制基準施行に伴う安全対策工事等による質量の増加分を考慮したモデ ル（以下，「補強反映モデル」という。）と工認モデルの応答値を比較することにより，質量変更による建屋一機器連成地震応答解析モデルの応答への影響を確認する。

なお，影響検討は別紙 $6-1$ 「原子炉建屋における改造工事に伴う重量増加を反映し た地震応答解析」と同様に基準地震動 S s－D 2 に対して実施することとする。

注記 $*$ ：女川原子力発電所 2 号機
『既工事計画認可申請書 添付資料IV－2－3「原子炉本体の基礎の地震応答計算書」 （元資庁第 2015 号平成元年 6 月 8 日認可）』
『既工事計画認可申請書 添付資料IV－2－2－1「炉心，原子炉圧力容器及び圧力容器内部構造物の地震応答計算書」（3資庁第10518号平成4年1月13日認可）』

3．検討条件
3.1 補強等に伴ら増加質量

補強等に伴う増加質量の総質量は約 4,570 t であり，そのうち建物•構築物の増加質量は約 770 t ，機器•配管系の増加質量は約 3800 t である。原子炉建屋の重量増加 の内訳を表 3－1に示す。なお，地震応答解析モデルの諸元の変更箇所は原子炉建屋の質点質量及び回転慣性質量並びにと原子炉格納容器，ベント管，原子炉しやへい壁及 び原子炉本体基礎の質点質量のみである。

補強等に伴う増加質量と補強後の変更となる補強反映モデルの原子炉建屋及び大型機器（原子炉本体の基礎等）の振動諸元を表3－2～表3－4に示す。

表 3－1 原子炉建屋の重量増加の内訳

	項目	合計重量
$\begin{aligned} & \text { 建 } \\ & \text { 物 } \\ & \text { 構 } \\ & \text { 䥼 } \\ & \text { 物 } \end{aligned}$	屋上水素ベント飛来物防護対策	774
	屋根トラス補強（サブトラス・母屋）	
	竜巻防護フード	
	フィルタ装置設置に伴ら建屋改造	
	各部の防護扉	
	3 時間耐火要求扉	
$\begin{aligned} & \text { 機 } \\ & \text { 器 } \\ & \text { 配 } \\ & \text { 管 } \end{aligned}$	サプレッションチェンバの耐震補強	200
	フィルタ装置設置	182
	原子炉格納容器ベント系の耐震補強	85
	原子炉建屋ブローアウトパネル閉止装置設置	51
	燃料交換機の耐震補強	22
	代替循環冷却ポンプ設置	14
	直流駆動低圧注水系ポンプ設置	11
	高圧代替注水系タービンポンプ設置	4
	静的触媒式水素再結合装置設置	3
	その他機器追加重量（電源盤設置等）	811
	その他配管追加重量（原子炉格納容器フィルタベ ント系，低圧代替注水系，高圧代替注水系，燃料 プール代替注水系，代替循環冷却系設置等）	2413

表 3－2（1／2）原子炉建屋の振動諸元（NS 方向）

質点番号＊	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	工認モデル		質量増加 （ t ）	補強反映モデル	
		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$
1 （1）	-14.100	46599	2306	0	46599	2306
2 （2）	－8． 100	76921	3816	490	77411	3841
3 （3）	1． 150	6957	92	0	6957	92
33 （61）	－0．800	6116	304	67	6183	307
34 （62）	6.000	5440	270	93	5533	274
35 （63）	15.000	4546	225	137	4683	232
36 （64）	22.500	2725	135	114	2839	140
37 （65）	33.200	1765	87	58	1823	90
38 （66）	－0．800	11380	714	99	11479	720
39 （67）	6.000	11993	787	195	12188	800
40 （68）	15.000	10817	710	311	11128	730
41 （69）	22.500	11237	684	294	11531	702
42 （70）	33.200	8368	509	179	8547	520
43 （71）	41.200	1788	31	13	1801	31
44 （72）	50.500	1055	14	81	1136	15
45 （73）	6.000	6311	76	23	6334	76
46 （75）	15.000	9533	115	83	9616	116
48 （76）	22.500	10722	93	72	10794	94
49 （77）	33.200	5964	41	66	6030	42
50 （78）	-0.800	17490	1061	66	17556	1065
51 （79）	6.000	15818	994	157	15975	1004
52 （80）	15.000	13661	858	707	14368	903
53 （81）	22.500	15965	943	538	16503	975
54 （82）	33.200	10365	612	214	10579	625
55 （83）	41.200	1459	25	13	1472	25
56 （84）	50.500	1055	14	75	1130	15
57 （85）	－0．800	7115	352	38	7153	354
58 （86）	6.000	6896	341	41	6937	343
59 （87）	15.000	5179	256	106	5285	261
60 （88）	22.500	5082	251	112	5194	257
61 （89）	33.200	2849	141	24	2873	142

注記 $*: ~$ 括弧内は，炉内構造物モデルの質点を表す。

表 3－2（2／2）大型機器（原子炉本体の基礎等）の振動諸元（NS 方向）

注記 $* 1$ ：本記載以外の構造物の重量変更はない。

＊2：炬内構造物モデルの場合。

＊3：炉内構造物モデルに対応する質点はない。

表 3－3（1／2）原子炉建屋の振動諸元（EW 方向）

質点番号＊	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	工認モデル		質量増加 （ t ）	補強反映モデル	
		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$		質量（t）	回転慣性質量 $\left(\times 10^{4} \mathrm{t} \cdot \mathrm{~m}\right)$
1 （1）	-14.100	46599	2744	0	46599	2744
2 （2）	－8． 100	76921	4539	490	77411	4568
3 （3）	1． 150	6957	92	0	6957	92
33 （61）	－0．800	5304	312	38	5342	315
34 （62）	6.000	5225	308	50	5275	311
35 （63）	15.000	4389	258	168	4557	268
36 （64）	22.500	4855	286	132	4987	294
37 （65）	33.200	4404	259	161	4565	269
38 （66）	－0．800	15438	1115	81	15519	1121
39 （67）	6.000	15231	1143	147	15378	1154
40 （68）	15.000	13186	989	330	13516	1014
41 （69）	22.500	6633	390	186	6819	401
42 （70）	15.000	819	10	7	826	10
43 （71）	22.500	8090	583	140	8230	594
44 （72）	33.200	8250	561	128	8378	570
45 （73）	41.200	2030	48	26	2056	48
46 （74）	50.500	1055	25	78	1133	27
47 （75）	6.000	6311	76	23	6334	76
48 （76）	15.000	8714	105	76	8790	106
50 （78）	22.500	10722	161	72	10794	162
51 （79）	33.200	5964	72	66	6030	73
52 （80）	-0.800	14985	1091	102	15087	1098
53 （81）	6.000	13359	1012	188	13547	1026
54 （82）	15.000	11897	901	345	12242	927
55 （83）	22.500	12203	924	315	12518	948
56 （84）	33.200	8768	664	157	8925	676
57 （85）	41.200	1217	29	0	1217	29
58 （86）	50.500	1055	25	78	1133	27
59 （87）	－0．800	6374	376	49	6423	379
60 （88）	6.000	6332	374	101	6433	380
61 （89）	15.000	4731	279	418	5149	303
62 （90）	22.500	3228	190	285	3513	207
63 （91）	33.200	1925	113	29	1954	115

注記 $~: ~$ 括弧内は，炉内構造物モデルの質点を表す。

表 3－3（2／2）大型機器（原子炉本体の基礎等）の振動諸元（EW 方向）

注記 $* 1$ ：本記載以外の構造物の重量変更はない。
＊2：炉内構造物モデルの場合。
＊3：炉内構造物モデルに対応する質点はない。

表 3－4（1／2）原子炉建屋の振動諸元（UD 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ 0 . \text { P. (m) } \end{gathered}$	$\begin{gathered} \text { 工認 } \\ \text { モデル } \\ \hline \end{gathered}$	質量増加（ t ）	補強反映 モデル
		質量（t）		質量（t）
1	48.725	1288	45	1333
2	41.200	3247	26	3273
3	33.200	29311	541	29852
4	22.500	48186	1139	49325
5	15.000	43736	1344	45080
6	6． 000	46458	509	46967
7	－0．800	51662	280	51942
8	－8． 100	71863.9	471.2	72335.1
9	－14．100	46599	0	46599
10	48.725	333	42	375
11	48． 725	326	46	372
12	48． 725	163	23	186

表 3－4（2／2）大型機器（原子炉本体の基礎等）の振動諸元（UD 方向）

構造物＊${ }^{\text {P }}$	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 工認 } \\ \text { モデル } \\ \hline \end{gathered}$	質量増加（t）	$\begin{gathered} \text { 補強反映 } \\ \text { モデル } \\ \hline \end{gathered}$
			質量（t）		質量（t）
原子炉本体の基礎	14（14）			1.57	
	$\frac{14(14)}{* 2}$			1． 57	
	15（15）			2． 09	
	16（16）			1． 82	
	17 （17）			1.34	
	18（18）			1.2	
原子炉しゃへい壁	19（19）			2	
	20 （20）			1.75	
	21 （21）			2.46	
	22 （22）			1． 83	
	23 （23）			2.65	
原子炉格納容器＊3	32			87.51	
	33			0	
	34			0.01	
	35			0	
	36			0.01	
	37			0	
	38			0	
	39			0	
	40			0	
	41			0	

注記 $* 1$ ：本記載以外の構造物の重量変更はない。
＊ 2 ：炉内構造物モデルの場合。
＊3：炉内構造物モデルに対応する質点はない。

3.2 解析モデル

大型機器系の地震応答解析モデルを図 3－1に，炉内構造物系の地震応答解析モデ ルを図 3－2に示す。地盤ばね定数は別紙6－1 「原子炉建屋における改造工事に伴 う重量増加を反映した地震応答解析」に記載の値を使用する。

また，重量増分に伴うせん断及び曲げスケルトンへの影響は軽微であるため「工認 モデル」の諸元を用いる。

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

記号	内容
－	質点
I	はり
－	水平ばね
（2）	回転ばね

原子炉格納容器
R

回転ばね

原子炉圧力容器及び原子炉本体の基礎

0．P． 50.500

0．P．-0.800
0．P．

0．P．-8.100

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒䮺動機構ハウジング K_{4} シュュラウウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	炉心シュラウド支持ロッド

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒駆動機構ハウジング
K_{4}	シュラウドームポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	炉心シュラウド支持ロッド

記号	内容
\bullet	質点（ピン結合以外）
\bigcirc	質点（ピン結合）
1	はり
－4n－	水平ばね
ϕ－${ }^{\circ}$	回転ばね

0．P．-8.10
0．P．-14.100

K_{θ}	トラス端部回転拘束ばね
記号	内容
\bullet	質点
1	軸ばね（構造物）
-	はり（屋根トラス部）
\varnothing	回転ばね
而	鉛直ばね（地盤）

0．P． 48.725

4．解析結果
基準地震動 S s－D 2 による最大応答値を表4－1～表4－7に，床応答スペクトルを表4－8に示す。

「補強反映モデル」の最大応答値は，「工認モデル」の結果と概ね整合すること を確認した。

表 4－1（1／5）最大応答加速度（基準地震動 S s－D 2，1．0ZPA，水平方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		応答比率 （2）／（1）
			（1）工認モデ	（2）補強反映 モデル	
原子炉本体 の基礎	62／64		0.89	0.89	1． 00
	4		0.95	0.95	1． 00
	5		0.99	1.00	1． 02
	6		1.02	1.03	1.01
	7		1.02	1.04	1.02
$\begin{gathered} \text { 原子炉圧力 } \\ \text { 容器 } \end{gathered}$	8		1． 08	1.08	1． 00
	15		3.23	3.00	0.93
原子炉本体 の基礎	16		1． 24	1． 30	1.05
	17		1． 42	1． 49	1.05
	18		1． 49	1． 56	1.05
	19		1． 58	1． 54	0.98
	20		1． 70	1． 63	0.96
原子炉格納容器	21		0.90	0.91	1． 02
	22		0.88	0.89	1． 02
	23		0.84	0． 87	1． 04
	24		1． 10	1． 06	0.97
	25		1． 26	1． 22	0.97
	26		1． 51	1． 52	1.01
	28		1． 73	1． 75	1． 02

注記：設備評価に用いる質点に対する応答比率を記載。

表 4－1（2／5）最大応答加速度（基準地震動 S s－D 2，1．0ZPA，水平方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 最大応答加速度 } \\ \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0 \end{gathered}$		応答比率 （2）／（1）
			（1）工認モデ ル	（2）補強反映 モデル	
気水分離器及びスタン ドパイプ	37		7． 73	7.03	0.91
	36		3.71	3.00	0.81
	35		2.31	2.19	0.95
	34		2.07	2.01	0.98
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	33		1． 93	1． 89	0.98
	32		1． 83	1． 79	0.98
	31		1． 71	1． 69	0.99
	30		1． 58	1.58	1.00
	29		1． 45	1． 50	1． 04
	28		1． 40	1． 44	1.03
	27		1． 37	1． 42	1． 04
	26		1． 33	1． 38	1． 04
	25		1． 22	1． 27	1.05
	51		1． 12	1． 14	1． 02
制御棒案内管	53		1.55	1.38	0.90
	45		1． 81	2.98	1． 65
	44		2.35	3.84	1． 64
	52		2.15	1.91	0.89
制御棒駆動機構ハウジ ング	43		1.98	1． 91	0.97
	38		1． 12	1． 19	1． 07
	39		1． 48	1． 56	1． 06
	40		2.30	2.22	0.97
	41		2.90	2.05	0.71
	42		1． 55	1． 27	0.82
燃料集合体	55		1.83	1． 79	0.98
	50		2.68	2.97	1． 11
	49		3.60	4.03	1． 12
	48		4.02	4.32	1.08
	47		3． 74	3.93	1.06
	46		2． 75	2.91	1.06
	54		1.33	1.38	1.04

注記：設備評価に用いる質点に対する応答比率を記載。

表 4－1（3／5）最大応答加速度（基準地震動 S s－D 2，1．2 ZPA，水平方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
原子炉本体 の基礎	62／64		1． 07	1． 07	1． 00
	4		1． 13	1． 14	1． 01
	5		1． 19	1． 20	1.01
	6		1． 22	1． 23	1.01
	7		1． 23	1． 24	1． 01
原子炉圧力容器	8		1． 29	1． 30	1． 01
	15		3.88	3.60	0.93
原子炉本体 の基礎	16		1． 48	1． 56	1． 06
	17		1． 70	1． 79	1． 06
	18		1． 79	1． 87	1． 05
	19		1.90	1． 84	0.97
	20		2.04	1． 95	0.96
原子炉格納容器	21		1.08	1． 09	1． 01
	22		1． 06	1． 06	1． 00
	23		1． 01	1． 05	1． 04
	24		1． 32	1． 27	0.97
	25		1． 51	1． 46	0.97
	26		1.81	1． 82	1． 01
	28		2.08	2． 09	1.01

注記：設備評価に用いる質点に対する応答比率を記載。

表 4－1（4／5）最大応答加速度（基準地震動 S s－D 2，1．2ZPA，水平方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} .(\mathrm{m}) \end{gathered}$	$\begin{array}{r} \text { 最大 } \\ \times \times 9.80 \end{array}$	加速度 $\left.\mathrm{m} / \mathrm{s}^{2}\right) \times 1.2$	応答比率 （2）／（1）
			（1）工認 モデル	（2）補強反映 モデル	
気水分離器$\begin{gathered} \text { 及びスタン } \\ \text { ドパイプ } \end{gathered}$	37		9.27	8． 44	0.92
	36		4.45	3.59	0.81
	35		2． 77	2． 62	0.95
	34		2． 49	2． 41	0.97
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	33		2.31	2． 27	0.99
	32		2． 19	2.15	0.99
	31		2.05	2.03	1． 00
	30		1． 90	1． 89	1． 00
	29		1． 74	1． 80	1． 04
	28		1.68	1． 73	1.03
	27		1． 64	1． 70	1． 04
	26		1． 60	1． 66	1． 04
	25		1． 46	1． 52	1.05
	51		1． 35	1． 37	1． 02
制御棒案内管	53		1.86	1． 66	0.90
	45		2.17	3.58	1． 65
	44		2.82	4.61	1． 64
	52		2.58	2． 29	0.89
制御棒駆動機構ハウジ ング	43		2.38	2． 29	0.97
	38		1． 34	1． 43	1． 07
	39		1． 78	1． 87	1.06
	40		2.75	2.67	0.98
	41		3.48	2． 46	0.71
	42		1． 86	1． 52	0.82
燃料集合体	55		2.19	2． 15	0.99
	50		3.21	3.56	1． 11
	49		4.32	4.83	1． 12
	48		4.82	5． 19	1.08
	47		4． 48	4． 72	1． 06
	46		3.29	3． 49	1． 07
	54		1． 60	1.66	1.04

注記：設備評価に用いる質点に対する応答比率を記載。

表 4－1（5／5）最大応答加速度（基準地震動 S s－D 2，1．2ZPA，水平方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
原子炉圧力容器	24		4.08	3.82	0.94
	23		3.36	3． 14	0.94
	22		2.85	2.75	0.97
	21		2． 47	2． 43	0.99
	20		2.25	2.23	1． 00
	19		2.02	2． 02	1.00
	18		1． 93	1． 91	0.99
	17		1． 88	1． 83	0.98
	16		1． 83	1． 74	0.96
	15		1.78	1.68	0.95
	14		1． 72	1． 62	0.95
	13		1． 66	1． 57	0.95
	12		1． 60	1． 51	0.95
	11		1． 53	1． 44	0.95
	10		1． 42	1． 40	0.99
	9		1． 35	1． 37	1． 02
	8		1． 29	1． 33	1． 04
	38		1．34	1． 43	1． 07

注記：設備評価に用いる質点に対する応答比率を記載。

表 4－2（1／2）せん断力（基準地震動 S s－D 2）

部位	質点番号	標高 0．P． （m）	せん断力（kN）						
			工認モデル			補強反映モデル			応答比率 （2）／（1）
			NS	EW	（1） 包絡値	NS	EW	（2）包絡値	
原子炉圧力容器	15	510		536	536	474	510	510	0.96
	14	1890		2130	2130	1930	2150	2150	1． 01
	13	3960		4210	4210	3900	4180	4180	1.00
	12								
				2550	3050	3390	2510	3390	1． 12
	11	3270		3200	3270	3340	3280	3340	1.03
	10	6150		6480	6480	6040	6460	6460	1． 00
	9	8260		8930	8930	8110	8860	8860	1． 00
	8	10200		11100	11100	9970	10900	10900	0.99
	7								
原子炉 本体の基礎	7		28300	27000	28300	27100	27100	27100	0.96
	6		30200	29100	30200	28900	29300	29300	0.98
	5		32200	31200	32200	30800	31500	31500	0.98
	4								
	3		34100	32800	34100	32500	33300	33300	0.98
原子炉 しゃへ い壁	20		6840	6040	6840	6370	5590	6370	0.94
	19		6190	6640	6640	6470	6360	6470	0.98
	18								1.01
	17		8560	8610	8610	8660	8540	8660	
	17		12500	11700	12500	12100	11600	12100	0.97
	16		16600	14900	16600	15800	15100	15800	0.96
	7								
	30		286	269	286	286	264	286	1.00
	29		556	522	556	556	512	556	1.00
	28			3220	3220	3120	3010	3120	0.97
	27		3100						0.99
	26		3920	3980	3980	3940	3750	3940	
原子炉 格㓜容	25		25100	26200	26200	25600	26100	26100	1.00
器	25		26500	27300	27300	27000	27200	27200	1.00
	24		27400	28100	28100	27900	28000	28000	1.00
	23		28700	29400	29400	29200	29400	29400	1． 00
	22		29200	29800	29800	29700	30000	30000	1.01
	21								
	3		30200	31400	31400	30700	32000	32000	1.02

別紙 6－2－22 枠囲みの内容は商業機密の観点から公開できません。

表 4－2（2／2）せん断力（基準地震動 S s－D 2）

部位	質点番号	標高 $0 . \mathrm{P}$ ． （m）	せん断力（kN）						
			工認モデル			補強反映モデル			$\begin{gathered} \text { 比率 } \\ \text { (①) /(2) } \end{gathered}$
			NS	EW	（1）包絡値	NS	EW	（2） 包絡値	
$\begin{gathered} \text { 炉心 } \\ \text { シュラウ } \\ \text { ド } \end{gathered}$	37	443		603	603	398	548	548	0.91
	36	909		1190	1190	842	1020	1020	0.86
	35	1350		1420	1420	1480	1170	1480	1.05
	34	1690		1820	1820	1910	1420	1910	1． 05
	33	2120			2350	2450	1780	2450	1.05
	3			2350					
	32	2990		2690	2990	2880	3520	3520	1． 18
	31	2790		2480	2790	2870	3210	3210	1． 16
	30	2520		2650	2650	2940	2660	2940	1． 11
	29	2850		3030	3030	3180	2850	3180	1.05
	28			3350	3350				1.02
	27	3110				3390	3060	3390	
		3330		3590	3590	3570	3220	3570	1． 00
	26	4810		4330	4810	4930	5150	5150	1.08
	25	4730		4480	4730	4820	5180	5180	1． 10
	51								
制御棒案内管	53		688	633	688	1050	693	1050	1． 53
	45		178	170	178	282	188	282	1． 59
	44								
	52		587	546	587	902	597	902	1.54
制御棒駆動機構 ハウジン グ	43		900	807	900	1320	888	1320	1． 47
	38		454		454		447	468	1.04
	39			437		468			1.05
	40		261	253	261	273	257	273	
	41		20.5	18.8	20.5	21.2	20.0	21.2	1.04
	42		255	236	255	264	241	264	1． 04
$\begin{aligned} & \text { 燃料 } \\ & \text { 集合体 } \end{aligned}$	55		3180	2750	3180	2820	3520	3520	1． 11
	50		2240			1990	2510		1． 13
	49			2020	2240			2510	
	48		809	783	809	711	885	885	1． 10
	47		832	736	832	745	966	966	1． 17
	46		2230	2020	2230	1990	2510	2510	1． 13
	54		3130	2840	3130	2770	3410	3410	1.09

表 4－3（1／2）曲げモーメント（基準地震動 S s－D 2 ）

部位	質点番号	標高 $0 . \mathrm{P}$. （m）	曲げモーメント（kN•m）						
			工認モデル			補強反映モデル			$\begin{gathered} \text { 比率 } \\ \text { (2) / (1) } \end{gathered}$
			NS	EW	(1)包絡値	NS	EW	（2）包絡値	
原子炉圧力容器	15		0	0	0	0	0	0	－
	14		1400	1470	1470	1300	1400	1400	0.96
	13		5400	6120	6120	5500	6090	6090	1.00
	12		12700	14100	14100	12900	14100	14100	1.00
	11		16100	16900	16900	16200	18200	18200	1.08
	10		27500	27900	27900	27700	30100	30100	1.08
	9		46700	45000	46700	47400	48300	48300	1.04
	8		59500	57500	59500	60600	59800	60600	1.02
	7		77800	77800	77800	77500	77100	77500	1.00
$\begin{gathered} \text { 原子炉 } \\ \text { 本体の基 } \\ \text { 礎 } \end{gathered}$	7		199000	195000	199000	197000	195000	197000	0． 99
	6		222000	214000	222000	219000	214000	219000	0． 99
	5		261000	246000	261000	256000	245000	256000	0.99
	4		321000	298000	321000	314000	298000	314000	0． 98
	3		385000	360000	385000	375000	362000	375000	0.98
$\begin{aligned} & \text { 原子炉 } \\ & \text { しゃへい } \end{aligned}$壁	20		0	0	0	0	0	0	－
	19		18900	16700	18900	17600	15500	17600	0.94
	18		32200	35300	35300	32200	33000	33000	0.94
	17		50900	53300	53300	52900	51600	52900	1.00
	16		76800	75300	76800	78100	75400	78100	1.02
	7		122000	121000	122000	121000	121000	121000	1.00
原子炉格納容器	30		0	0	0	0	0	0	－
	29		657	619	657	658	607	658	1.01
	28		1850	1740	1850	1850	1700	1850	1.00
	27		6160	6210	6210	6190	5890	6190	1.00
	26		17600	17800	17800	17700	16800	17700	1.00
	25		124000	129000	129000	126000	128000	128000	1． 00
	24		200000	207000	207000	203000	206000	206000	1． 00
	23		332000	343000	343000	338000	341000	341000	1． 00
	22		471000	484000	484000	479000	482000	482000	1.00
	21		529000	543000	543000	538000	541000	541000	1.00
	3		573000	587000	587000	580000	586000	586000	1.00

表 4－3（2／2）曲げモーメント（基準地震動 S s－D 2 ）

部位	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	曲げモーメント（kN•m）						
			工認モデル			補強反映モデル			$\begin{gathered} \text { 比率 } \\ \text { (2) /(1) } \end{gathered}$
			NS	EW	（1）包絡値	NS	EW	（2）包絡値	
$\begin{gathered} \text { 炉心 } \\ \text { シラウ } \\ \text { ド } \end{gathered}$	37		0	0	0	0	0	0	－
	36		567	773	773	510	702	702	0.91
	35		1740	2300	2300	1580	2010	2010	0.88
	34		3990	4660	4660	3930	3670	3930	0.85
	33		5380	5980	5980	5600	4620	5600	0.94
			4630	5460	5460	4680	4270	4680	0.86
	32		5870	6480	6480	6250	5090	6250	0.97
	31		7550	7120	7550	8030	6630	8030	1． 07
	30		9230	8660	9230	9970	8200	9970	1． 09
	29		10800	10300	10800	12000	9980	12000	1． 12
	28		12200	12000	12200	14000	11300	14000	1． 15
	27		13600	13600	13600	16100	12200	16100	1． 19
	26		15100	15700	15700	18100	14400	18100	1． 16
	25		19300	20800	20800	22400	19600	22400	1． 08
	51		23800	26000	26000	27200	24900	27200	1.05
制御棒案内管	53		0	0	0	0	0	0	－
	45		805	742	805	1230	811	1230	1． 53
	44		1020	941	1020	1560	1030	1560	1.53
	52		0	0	0	0	0	0	－
制御棒駆動機構 ハウジン グ	43		0	0	0	0	0	0	－
	38		989	886	989	1450	976	1450	1.47
			479	479	479	498	489	498	1.04
	39		59.1	59.8	59.8	59.5	61.0	61.0	1.03
	40		279	253	279	287	258	287	1.03
	41		271	251	271	281	256	281	1． 04
	42		0	0	0	0	0	0	－
燃料集合体	55		0	0	0	0	0	0	－
	50		2240	1930	2240	1980	2480	2480	1.11
	49		3810	3350	3810	3380	4230	4230	1．12
	48		4350	3900	4350	3860	4840	4840	1.12
	47		3770	3410	3770	3340	4160	4160	1.11
	46		2200	2000	2200	1950	2400	2400	1． 10
	54		0	0	0	0	0	0	－

表 4－4（1／5）最大加速度（基準地震動 S s－D 2，1．0ZPA，鉛直方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ 0 . \text { P. (m) } \end{gathered}$	$\begin{aligned} & \text { 最大応答加速度 } \\ & \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0 \end{aligned}$		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
原子炉本体 の基礎	14		0.57	0.56	0.99
	15		0.61	0.61	1． 00
	16		0.68	0.68	1． 00
	17		0． 74	0． 74	1． 00
	18		0.77	0． 77	1.00
$\begin{gathered} \text { 原子炉圧力 } \\ \text { 容器 } \end{gathered}$	24		0.98	0.98	1． 00
	25		1． 01	1． 01	1． 00
	31		1． 13	1． 15	1． 02
$\begin{gathered} \text { 原子炉 } \\ \text { しゃ~い壁 } \end{gathered}$	19		1.08	1． 07	1.00
	20		1． 28	1． 28	1.00
	21		1． 44	1． 44	1． 00
	22		1． 53	1． 53	1.00
	23		1． 56	1． 57	1． 01
原子炉格納容器	32		0.61	0.62	1． 02
	33		0.65	0.65	1． 00
	34		0． 72	0． 72	1． 00
	35		0.78	0.78	1． 00
	36		0.83	0.82	0.99
	37		0.88	0.89	1． 02
	39		0.93	0.93	1． 00
	41		0.96	0.94	0.98

表 4－4（2／5）最大加速度（基準地震動 S s－D 2，1．0ZPA，鉛直方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 最大応答加速度 } \\ \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0 \end{gathered}$		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①工認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
気水分離器及びスタン ドパイプ	55		1.33	1.32	1． 00
	54		1． 33	1． 32	1． 00
	53		1． 32	1． 32	1． 00
	52		1． 31	1． 30	1． 00
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	51		1． 20	1． 19	1． 00
	50		1． 19	1． 18	1.00
	49		1． 17	1． 16	1． 00
	48		1． 15	1． 14	1． 00
	47		1． 13	1． 12	1． 00
	46		1． 11	1． 10	1.00
	45		1． 09	1.08	1． 00
	44		1． 07	1.06	1． 00
	43		1． 04	1． 03	1． 00
	42		1． 00	0.99	0.99
	41		0.94	0.94	1． 00
制御棒案内 管	64		1． 32	1． 31	1． 00
	63		1． 24	1． 23	1． 00
	62		1． 17	1． 15	0.99
	61		1． 06	1． 05	1． 00
制御棒駆動機構ハウジ ング	61		1.06	1.05	1.00
	60		1． 03	1． 02	1． 00
	59		1． 04	1． 03	1． 00
	58		1． 04	1． 03	1． 00
	57		1． 05	1． 04	1． 00
	56		1． 06	1.05	1． 00

表 4－4（3／5）最大加速度（基準地震動 S s－D 2，1．2ZPA，鉛直方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ 0 . \text { P. (m) } \end{gathered}$	$\begin{gathered} \text { 最大応答加速度 } \\ \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2 \end{gathered}$		応答比率 （2）／（1）
			$\begin{aligned} & \text { (1)工認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
原子炉本体 の基礎	14		0.68	0.68	1.00
	15		0． 74	0.73	0.99
	16		0.81	0.81	1． 00
	17		0.89	0.88	0.99
	18		0.92	0.92	1.00
$\begin{gathered} \text { 原子炉圧力 } \\ \text { 容器 } \end{gathered}$	24		1． 18	1． 18	1． 00
	25		1． 21	1． 21	1． 00
	31		1． 36	1． 38	1． 02
$\begin{gathered} \text { 原子炉 } \\ \text { しゃへい壁 } \end{gathered}$	19		1． 29	1． 28	1.00
	20		1． 54	1． 53	1． 00
	21		1． 73	1． 73	1． 00
	22		1． 84	1． 84	1． 00
	23		1． 88	1． 88	1． 00
原子炉格納容器	32		0． 73	0． 74	1． 02
	33		0． 77	0.78	1． 02
	34		0.86	0.86	1． 00
	35		0.94	0.93	0.99
	36		0.99	0.99	1.00
	37		1． 06	1． 06	1． 00
	39		1． 12	1． 11	1． 00
	41		1． 15	1． 13	0.99

表 4－4（4／5）最大加速度（基準地震動 S s－D 2，1．2ZPA，鉛直方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{aligned} & \text { 最大応答加速度 } \\ & \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2 \\ & \hline \end{aligned}$		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①工認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
気水分離器及びスタン ドパイプ	55		1.60	1.59	1． 00
	54		1． 60	1． 59	1． 00
	53		1． 59	1． 58	1． 00
	52		1． 57	1． 56	1． 00
$\begin{gathered} \text { 炉心シュラ } \\ \text { ウド } \end{gathered}$	51		1． 44	1． 43	1． 00
	50		1． 42	1． 41	1.00
	49		1． 40	1． 39	1． 00
	48		1． 38	1． 37	1． 00
	47		1． 36	1． 34	0.99
	46		1． 33	1． 32	1.00
	45		1． 31	1． 30	1． 00
	44		1． 29	1． 28	1.00
	43		1． 24	1． 23	1． 00
	42		1． 20	1． 19	1.00
	41		1． 13	1． 12	1． 00
制御棒案内 管	64		1． 58	1． 57	1． 00
	63		1． 49	1． 48	1． 00
	62		1． 40	1.38	0.99
	61		1． 28	1． 26	0.99
制御棒駆動機構ハウジ ング	61		1． 28	1． 26	0.99
	60		1． 24	1． 23	1． 00
	59		1． 24	1． 23	1． 00
	58		1． 25	1． 24	1． 00
	57		1． 26	1． 25	1． 00
	56		1． 27	1． 26	1． 00

表 4－4（5／5）最大加速度（基準地震動 S s－D 2，1．2ZPA，鉛直方向）

構造物	質点＊	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	$\begin{gathered} \text { 最大応答加速度 } \\ \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2 \end{gathered}$		応答比率 （2）／（1）
			$\begin{aligned} & \text { ①認 } \\ & \text { モデル } \end{aligned}$	（2）補強反映 モデル	
$\begin{gathered} \text { 原子炉 } \\ \text { 圧力容器 } \end{gathered}$	40		1． 45	1． 44	1.00
	39		1． 45	1． 44	1． 00
	38		1． 43	1． 42	1.00
	37		1． 39	1． 38	1． 00
	36		1． 36	1.35	1.00
	35		1． 32	1.31	1.00
	34		1． 29	1． 29	1.00
	33		1． 28	1． 27	1． 00
	32		1． 27	1． 26	1． 00
	31		1． 25	1． 24	1． 00
	30		1． 23	1． 22	1． 00
	29		1． 22	1． 21	1． 00
	28		1． 20	1． 19	1.00
	27		1． 18	1． 18	1.00
	26		1． 16	1． 15	1． 00
	25		1． 13	1． 12	1． 00
	24		1． 11	1． 10	1． 00

表 4－5（1／2）軸力（基準地震動 S s－D 2）

部位	質点番号	標高 0．P． （m）	軸力（kN）		比率 （2）／（1）
			（1）工認モデル	（2）補強反映モデル	
原子炉圧力容器	31	193		193	1． 00
	30			1410	1.00
	29				
	28		2430	2440	1.01
	28		3100	3130	1.01
	27		4000	4040	1.01
	26		4810	4850	1.01
	25		5640	5670	1． 01
	24			11800	1.00
	18		11800		
原子炉本体の基礎	18		32200	32400	1.01
	17		34000	34200	1.01
	16			36000	1.01
	15		35800		
	14		37400	37600	1． 01
原子炉 しゃへ い壁	23		2580	2630	1.02
	22		5790	5880	1.02
	21				
	20		11300	11400	1.01
	19		15300	15400	1.01
	19		19100	19200	1.01
	18				
原子炉格納容器	41		140	138	0.99
	40		278	274	0.99
	39				
	38		1070	1070	1.00
	37		1510	1510	1.00
	37		2900	2890	1． 00
	36		3900	3880	1.00
			4640	4610	1.00
	34		5930	5890	1.00
	33		6500	6460	1.00
	32		7760	8220	1.06
	14				

表 4－5（2／2）軸力（基準地震動 S s－D 2）

表 4－6 ばね反力，せん断力及び軸力（基準地震動 S s－D 2）

部位	応答種別及び単位	ばね反力，せん断力及び軸力						
		工認モデル			補強反映モデル			応答比率(2) /(1))
		NS	EW	（1）包絡値	NS	EW	（2）包絡値	
原子炉圧力容器 スタビライザ	ばね反力 （kN）	7700	7350	7700	7300	7710	7710	1.01
原子炉格納容器 スタビライザ	ばね反力 （kN）	13300	12800	13300	14300	12300	14300	1.08
原子炉格納容器 シヤラグ	ばね反力 （kN）	24200	25800	25800	25000	25000	25000	0.97
ベント管	ばね反力 （kN）	1630	1820	1820	4600	5160	5160	2.84
燃料交換 ベローズ	ばね反力 （kN）	1660	1500	1660	1580	1380	1580	0.96
$\begin{gathered} \text { 所員用 } \\ \text { エアロック } \end{gathered}$	ばね反力 （kN）	261	281	281	260	281	281	1.00
制御棒駆動機構 $\begin{gathered} \text { ハウジング } \\ \text { レストレント } \\ \text { ビーム } \end{gathered}$	ばね反力 （kN）	350	327	350	360	337	360	1． 03
炉心シュラウド回転ばね	$\begin{gathered} \text { ばね反力 } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	23800	26000	26000	27200	24900	27200	1.05
上部格子板	せん断力 (kN)	3320	2900	3320	2960	3670	3670	1.11
炉心支持板	せん断力 （kN）	4110	3750	4110	4110	4410	4410	1.08
$\begin{gathered} \text { 上部 } \\ \text { レストレント } \end{gathered}$	$\begin{gathered} \hline \text { ばね反力 } \\ (\mathrm{kN}) \end{gathered}$	1680	1720	1720	1760	1540	1760	1． 03
$\begin{gathered} \text { 下部 } \\ \text { レストレント } \end{gathered}$	ばね反力 （kN）	453	441	453	446	428	446	0.99
$\begin{gathered} \text { タイロッド } \\ \text { (1体あたり) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 軸力 } \\ & \text { (kN) } \\ & \hline \end{aligned}$	164	168	168	187	158	187	1． 12

表 4－7 相対変位（基準地震動 S s－D 2）

部位	質点番号	$\begin{gathered} \text { 標高 } \\ 0 . \text { P. (m) } \end{gathered}$	相対変位（mm）						
			工認モデル			補強反映モデル			$\begin{gathered} \text { 比率 } \\ (\text { (2) / (1) }) \end{gathered}$
			NS	EW	（1）包絡値	NS	EW	（2）包絡値	
燃料集合体	55		0.0	0.0	0.0	0.0	0.0	0.0	－
	50		23.2	20.6	23.2	20.6	25.7	25.7	1． 11
	49		40.1	35.6	40.1	35.5	44.4	44.4	1． 11
	48		46． 2	41.2	46.2	40.9	51.2	51.2	1． 11
	47		40.0	35.8	40.0	35.4	44． 2	44.2	1． 11
	46		23.1	20.7	23.1	20.5	25.5	25.5	1． 11
	54		0.0	0.0	0.0	0.0	0.0	0.0	－

別紙 6－2－33 枠囲みの内容は商業機密の観点から公開できません。

表 4－8（1／2）応答スペクトル（基準地震動 S s－D 2）

方向		構造物	質点番号	標高 0 ．P． （m）	減裏定数	図番	
						床応答スペクトル	応答比率
水平	大型 機器 系	原子炉しゃんい璧	19		2.0	図 $4-1(1 / 18)$	図 4－2（ $1 / 18$ ）
			18			図 $4-1(2 / 18)$	図 4－2（ $2 / 18$ ）
			17			図 $4-1(3 / 18)$	図 $4-2(3 / 18)$
			16			図 $4-1(4 / 18)$	図4－2（4／18）
		原子炉本体の基礎	7			図 $4-1(5 / 18)$	図 4－2（ 5／18）
			6			図 $4-1(6 / 18)$	図 $4-2(6 / 18)$
			5			図 4－1（ 7／18）	図 4－2（ 7／18）
			4			図 $4-1(8 / 18)$	図 $4-2(8 / 18)$
			3			図 $4-1(9 / 18)$	図 $4-2(9 / 18)$
		原子炉格納容器	26			図 $4-1(10 / 18)$	図 4－2（10／18）
			25			図 $4-1(11 / 18)$	図 4－2（11／18）
			24			図 $4-1(12 / 18)$	図 $4-2(12 / 18)$
			23			図 $4-1(13 / 18)$	図 4－2（13／18）
			22			図 $4-1(14 / 18)$	図 $4-2(14 / 18)$
			21			図 $4-1(15 / 18)$	図 4－2（15／18）
		原子炉圧力容器	8			図 $4-1(16 / 18)$	図 4－2（16／18）
	炉内 構造 物系	炉心支持板	26			図 $4-1(17 / 18)$	図 $4-2(17 / 18)$
		原子炉圧力容器底部	38			図 $4-1(18 / 18)$	図 4－2（18／18）

表 4－8（2／2）応答スペクトル（基準地震動 S s－D 2）

図4－1（1／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉しゃへい璧 O．P．$\square \mathrm{m}$ ）

図 4－1（2／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉しゃへい璧 0．P．$\square \mathrm{m}$ ）

図 4－1（3／18）床応答スペクトル
（基準地震動 S s－D 2，水平方向，原子炉しゃへい璧
0．P． \square

図 4－1（4／18）床応答スペクトル
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 0．P．$\square \mathrm{m}$ ）

図4－1（5／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図 4－1（6／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 $0 . \mathrm{P} . \square \mathrm{m}$ ）

図4－1（7／18）床応答スペクトル
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎
0．P \square m）

固 有 周 期［ s ］
図 4－1（8／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基磘
0．P． \square

図 4－1（9／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎
0．P． \square

固 有 周 期［ s ］

図 4－1（10／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器 $0 . \mathrm{P} . \square \mathrm{m}$ ）

図 4－1（ $11 / 18$ ）床応答スペクトル
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，水平方向，原子炉格納容器
0．P． \square m）

固 有 周 期［ s ］
図 4－1（12／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器
0. P.
\square m）

図 4－1（13／18）床応答スペクトル
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，水平方向，原子炉格納容器

0．P．
 m）

固 有 周 期［ s ］

図 4－1（14／18）床応答スペクトル
（基準地震動 S s－D 2，水平方向，原子炉格納容器

0．P．

図 4－1（ $15 / 18$ ）床応答スペクトル
（基準地震動 S s－D 2，水平方向，原子炉格納容器
0．P．
 m）

固 有 周 期［s ］
図 4－1（16／18）床応答スペクトル
（基準地震動 S s－D 2，水平方向，原子炉圧力容器
0．P． \square m）

図 4－1（ $17 / 18$ ）床応答スペクトル （基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，炉心支持板 0．P． \square m）

図 4－1（18／18）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉圧力容器底部 $0 . \mathrm{P}$ 。 \square m）

固 有 周 期［ s ］
図 4－2（ $1 / 18$ ）応答比率
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 0．P．$\square \mathrm{m}$ ）

固 有 周 期［s］
図 4－2（2／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉しゃへい璧 O．P． \square

固 有 周 期［5］
図 4－2（3／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 O．P．$\square \mathrm{m}$ ）

固 有 周 期［5］
図 4－2（4／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉しやへい璧 0．P．

固 有 周 期［ s ］
図 4－2（5／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P．

固 有 周 期［s］
図 4－2（6／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

固 有 周 期［ s ］
図 4－2（7／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉本体の基礎 O．P．

固 有 周 期［5］
図 4－2（8／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

固 有 周 期［5］
図 4－2（9／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炬本体の基礎 0．P．

固 有 周 期［s］
図 4－2（ $10 / 18)$ 応答比率
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，水平方向，原子炉格納容器
0．P． \square m）

固 有 周 期［s］
図 4－2（ $11 / 18$ ）応答比率
（基準地震動 S s－D 2，水平方向，原子炬格納容器 0．P．$\square \mathrm{m}$ ）

固 有 周 期［s］
図 4－2（ $12 / 18$ ）応答比率
（基準地震動 S s－D 2 ，水平方向，原子炬格納容器 0．P． \square

固 有 周 期［s］
図 4－2（ $13 / 18$ ）応答比率
（基準地震動 S s－D 2，水平方向，原子炉格納容器 0．P．$\square \mathrm{m}$ ）

固 有 周 期［s］
図 4－2（ $14 / 18$ ）応答比率
（基準地震動 S s -D 2 ，水平方向，原子炉格納容器
0．P． \square

固 有 周 期［s］
図 4－2（15／18）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，水平方向，原子炉格納容器 $0 . \mathrm{P} . \square \mathrm{m}$ ）

固 有 周 期［s］
図 4－2 $(16 / 18)$ 応答比率
（基準地震動 S s－D 2 ，水平方向，原子炉圧力容器 0．P．$\square \mathrm{m}$ ）

図 4－2（ $17 / 18$ ）応答比率
（基準地震動 S s -D 2 ，水平方向，炉心支持板
0．P． \square m）

図 4－2（18／18）応答比率
（基準地震動 S s－D 2，水平方向，原子炉圧力容器底部 0．P． \qquad m）

図 4－3（1／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁
0．P．$\square \mathrm{m}$

図4－3（2／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 O．P．$\square \mathrm{m}$ ）

図 4－3（3／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉しゃへい壁
0．P． \square

図 4－3（4／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 O．P．$\square \mathrm{m}$ ）

図 4－3（5／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図4－3（6／16）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉本体の基礎 $0 . \mathrm{P} . \square \mathrm{m}$ ）

図 4－3（7／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図4－3（8／16）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉本体の基礎
0．P． \square

図 4－3（9／16）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉本体の基礎
0．P．

図 4－3（10／16）床応答スペクトル
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，鉛直方向，原子炉格納容器
0．P． \square
m）

図 4－3（11／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器
0．P．

図4－3（12／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器 O．P．$\square \mathrm{m}$ ）

図 4－3（13／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器
0．P． \square m）

図 4－3（14／16）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉格納容器
0．P． \square

図 4－3（15／16）床応答スペクトル
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉格納容器
0．P．

図 4－3（16／16）床応答スペクトル
（基準地震動 S s－D 2，鉛直方向，原子炉圧力容器
0．P． \square

図 4－4（1／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁
0．P． \square

図 4－4（2／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しゃへい壁
0．P．

m）

図 4－4（3／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しやへい壁 O．P．$\square \mathrm{m}$ ）

図 4－4（4／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉しや～い壁 0．P．$\square \mathrm{m}$ ）

図 4－4（5／16）応答比率
（基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ，鉛直方向，原子炉本体の基礎 0．P．

図 4－4（6／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P． \qquad m）

図 4－4（7／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P． \square

図 4－4（8／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．

図 4－4（9／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉本体の基礎 0．P．$\square \mathrm{m}$ ）

図 4－4（10／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器
0．P．

図 4－4（11／16）応答比率
（基準地震動 S s -D 2 ，鉛直方向，原子炉格納容器 $0 . \mathrm{P}$ 。 \square

図 4－4（12／16）応答比率
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，鉛直方向，原子炉格納容器
0．P．

図 4－4（13／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炬格納容器 0．P．$\square \mathrm{m}$ ）

図 4－4（14／16）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炉格納容器
0．P．
 m）

図 4－4（ $15 / 16$ ）応答比率
（基準地震動 S s－D 2，鉛直方向，原子炬格納容器
0．P．

図 4－4（16／16）応答比率
（基準地震動 $\mathrm{S} s-\mathrm{D} 2$ ，鉛直方向，原子炉圧力容器
0．P．

m）

[^0]: 注記 $* 1$ ：原子炉格納容器のせん断力及び曲げモーメントも使用。

[^1]: ＊2：補強反映耐震条件（震度，地震力（せん断力，モーメント，軸力）の算出位置を床応答曲線の欄に記載。

