ロ．水位評価における設備の運転状態を仮定したドレーン範囲の設定浸透流解析においては，ドレーンの集水範囲の設定に応じた解析水位が評価されるが，この設定に影響を与える要因として，揚水ポンプ故障等に よる排水機能の喪失を考慮した。

地下水位低下設備の排水機能に着目し，揚水ポンプの運転状態と浸透流解析条件を整理した結果を表3．3－11に示す。

表 3．3－11（1）のとおり，エリア内における揚水ポンプの運転状態（1）～ （8）は，井戸の排水機能に着目すると（i）～（iv）の 4 通りに整理され， このらち地下水位を保持可能な（i）～（iii）を浸透流解析において考慮 する。エリア内の全ての揚水ポンプが機能喪失した（iv）の状態（運転状態（8）では，水位を設計用地下水位以下に保持できず復旧措置が必要とな るが，この状態は浸透流解析においては考慮しない。（地下水位低下設備 の設備構成や復旧措置に係る検討については，「VI－2－1－1－別添 1 地下水位低下設備の設計方針」に示す。）

表 3．3－11（2）は， 2 つのエリアでの同時発生を仮定し組合せを整理した ものであるが，地下水位の保持が可能な組合せは 7 通りである。設計用地下水位は，3．3．2（1）に示したとおり，液状化影響検討対象施設を幅広く抽出する観点から高めに設定する方針であることから，この 7 通りの組合せ から解析水位が相対的に高く算出されるケースとして，両方のエリアで片側の揚水井戸が機能を喪失する組合せを浸透流解析ケース $\mathrm{A} ~ \mathrm{D}$ として抽出した。

この整理を踏まえ，ケース $\mathrm{A} \sim \mathrm{D}$ の 4 ケースにて解析水位を評価し，得 られた解析水位を高めに包絡するよう設計用地下水位を設定した。

各ケースにおけるドレーン範囲の設定を図3．3－30に示す。
なお，排水機能の喪失要因としてドレーンの部分閉塞も考慮しているが，揚水ポンプ故障等を想定し設定した浸透流解析ケース $\mathrm{A} \sim \mathrm{D}$ にて包絡され る。（次項にて詳述）

表3．3－11 設備の運転状態と浸透流解析における取扱い
（1）設備状態と排水機能•地下水位保持の関係（原子炉建屋•制御建屋エリアの例）

■設備の運転状態と排水機能•地下水位の保持状況の関係
－揚水ポンプの状態（1）～8）に対応し，排水機能と地下水位の保持の可否を整理。

	No．1揚水井戸			No．2揚水井戸			地下水位 の保持
	ポンプA	ポンプB	排水機能	ポンプA	ポンプB	排水機能	
（1）	\times	\bigcirc	保持	\bigcirc	\bigcirc	保持	可能
（2）	\bigcirc	\bigcirc	保持	\times	\bigcirc	保持	可能
（3）	\times	\bigcirc	保持	\times	\bigcirc	保持	可能
（4）	\times	\times	喪失	\bigcirc	\bigcirc	保持	可能
（5）	\bigcirc	\bigcirc	保持	\times	\times	喪失	可能
（6）	\times	\times	喪失	\times	\bigcirc	保持	可能
（7）	\bigcirc	\times	保持	\times	\times	喪失	可能
（8）	\times	\times	喪失	\times	\times	喪失	不可能

■揚水井戸単位での排水機能に着目したパターン整理

- 左記 1 ）～8 は は井戸の排水機能に着目すると（ i ）～（iv ）に集約され，
- 地下水位を保持可能な（i）～（iii）を浸透流解析において考慮。

	No． 1 揚水井戸 の排水機能	No．2揚水井戸 の排水機能	地下水位の保持	備考
（ i ）	保持	保持	可能	（1）～3）が該当
（ ii ）	喪失	保持		（4），6 が該当
（iii）	保持	喪失		（5），（7）が該当
（iv）	喪失	喪失	不可能＊1	8）が該当

＊ 1 設備の復旧措置が必要な状態であり，浸透流解析上は考慮しない。

注）ポンプ容量はエリアへの最大流入量を上回るため，エリア内の1個のポンプが動作する場合は
そのポンプを設置する揚水井戸の排水機能は保持され，当該エリアの地下水位は設計揚圧力以下に保持される。
（2）エリア毎の組合せを考慮した浸透流解析ケース
■エリアの組合せを考慮したパターン整理
$\cdot 2$ つのエリアでの同時発生を仮定すると，下表の組合せが生じる。（このうち地下水位の保持が可能な組合せは7通り）

	原子炉建屋•制御建屋エリア		第3号機海水熱交換器建屋エリア		地下水位の保持	浸透流解析に おける取扱い
	No． 1 揚水井戸 の排水機能	No． 2 揚水井戸 の排水機能	No． 3 揚水井戸 の排水機能	No． 4 揚水井戸 の排水機能		
（ i ）	保持	保持	保持	保持	可能	考慮する
（ ii ）	喪失	保持	保持	保持		
	喪失	保持	喪失	保持		
	喪失	保持	保持	喪失		
	喪失	保持	喪失	喪失	不可能	考慮しない
（ iii）	保持	喪失	保持	保持	可能	考慮する
	保持	喪失	喪失	保持		
	保持	喪失	保持	喪失		
	保持	喪失	喪失	喪失	不可能	考慮しない
（iv）	喪失	喪失	喪失	喪失		

$\sqrt{7}$
■浸透流解析ケースの設定（水位が高めに評価されるケースの選定）
－地下水位の保持が可能な7通りの組合せから，解析水位が相対的に高く算出されるケースとして，両方のエリアで片側の揚水井戸が機能を喪失する組合せを浸透流解析ケースA～Dとして抽出。

	原子炉建屋•制御建屋エリア		第3号機海水熱交換器建屋エリア		解析水位 （（ i ）に対し て）＊2	浸透流解析 ケース
	No． 1 揚水井戸 の排水機能	No． 2 揚水井戸 の排水機能	No． 3 揚水井戸 の排水機能	No． 4 揚水井戸 の排水機能		
（ i ）	保持	保持	保持	保持	－	－
（ ii ）	喪失	保持	保持	保持	やや高い	－
	喪失	保持	喪失	保持	高い	ケースA
	喪失	保持	保持	喪失	高い	ケースB
（ iii）	保持	喪失	保持	保持	やや高い	－
	保持	喪失	喪失	保持	高い	ケースC
	保持	喪失	保持	喪失	高い	ケースD

[^0]

ハ．ドレーンの部分閉塞の取扱い
ドレーンは，イ項で示したとおり，耐久性，耐震性並びに保守管理性の 3 つの観点に加えて，土砂等によるドレーンの部分閉塞を仮定しても集水機能に影響がない範囲を考慮している。
（補足）ドレーンの部分閉塞時のイメージ
（1）ヒューム管（ $\phi 500 \sim 1050 \mathrm{~mm}$ ）
－既往の点検実績や設置環境から土砂の供給が少ない状況であり，部分閉塞の可能性は極めて小さい（参考資料1－1）。
－ヒューム管自体は多重化されていないが，どの位置で部分閉塞してもエリア内のいず れかの揚水井戸へ地下水を流下可能な範囲に限定し，管路としての効果を期待してい る。（参考資料7）。

（通常運転状態）

（部分閉塞を仮定）

（ポンプ故障を仮定）
※模式図であり実際の配置と異なる。
（2）鋼管（ $\phi 142.5 \mathrm{~mm}$ ）

- 岩盤中に設置されるため土砂の供給がない。
- 1方向に流下する構造であり，部分閉塞時は当該鋼管からの集水は期待できないが，揚水ポンプ故障時には当該ポンプへ集水される全ての鋼管が無効となるため，当該ド レーンの部分閉塞事象は「揚水ポンプ故障」に包含される。

（通常運転状態）

（ポンプ故障を仮定）
※模式図であり実際の配置と異なる。

ニ．ドレーンの集水機能保持の前提について
ドレーンによる集水機能が保持されるための前提条件として，施工，保守管理，構内排水路の機能保持の観点から整理した。
（イ）新設するドレーンの施工
新設するドレーンの施工成立性を確認するため，施工手順を検討する とともに，試験施工を実施した。試験施工により，ドレーン設置に必要 な所定の距離の掘進及び鋼管挿入•設置が可能であることを確認した （参考資料 8）。
（ロ）保守管理
既設のヒューム管内部への土砂等の流入は非常に少なく＊1，ドレーン内への土砂堆積は非常に緩速に進行する（新設する鋼管は岩盤内に設置 するため，土砂等が流入する可能性は非常に小さい）。

浸透流解析において考慮するドレーンは，既設•新設のらち耐久性•耐震性•保守管理性が確保できる範囲として設定。土砂による閉塞以外 の要因も含め，集水機能を喪失しらる要因を網羅的に抽出した上で，設計（耐久性•耐震性の確保）並びに保守管理により機能を維持すること が可能と整理している。また，実機を用いた試験施工により，カメラ等 によるドレーン内部の確認や高圧洗浄による土砂の除去など，保守管理方法の成立性を確認している。（参考資料9）

更に，地下水位低下設備は「予防保全」の対象と位置付け管理する方針＊2としており，排水機能を担らドレーンについても保全計画を定め，定期的な点検•土砂排除により機能維持を図ることから，管の閉塞に至 るリスクはなく，有孔部からの流入土砂に起因するドレーン機能の喪失 は保守的な想定である。

注記＊1：2017～2018 年に既設ヒューム管内部の目視確認を実施。既設ドレーンは事後保全対象としていたため，設備供用開始以降，ドレーン内部の土砂排除等の手入れは実施していないが，管底部に僅かに堆積が確認される程度 （堆積土砂はシルト相当）であることを確認。また，有孔部の閉塞も生じ ていないこと，設備の著しい損傷等が無いことを確認。（第 2 号機の供用開始は1995年7月であり，目視確認時点で約 23 年が経過。第 3 号機の供用開始は2002年1月であり，目視確認時点で約 16 年が経過）

注記＊2：VI－2－1－1－別添1 地下水位低下設備の設計方針 7．運用管理•保守管理 を参照
（八）構内排水路
ドレーンで集水された地下水は，揚水ポンプ・配管により揚水井戸の構内排水路へ排水される。

構内排水路へ構内排水路のうち幹線排水路は岩盤又は改良地盤等に支持されており，地震後に閉塞等が生じる可能性は低いが，排水機能が喪失した状況も考慮し，揚水井戸内の配管上部に設置する分岐管に仮設ホ ースを接続可能な設計としており，仮設ホースにて構内排水路の健全部分へ地下水を流す運用とすることにより，排水機能を保持する設計とす る（構内排水路の概要については参考資料1－2に示す）。
（f）浸透流解析条件まとめ（（2）水位評価モデル）
表3．3－12に，（2）水位評価モデルの解析条件一覧を示す。

表 3．3－12（2）水位評価モデルの概要

項目		（2）水位評価モデル
1．目的	a．目的	－工事完了後に想定される地下水位を評価すること （液状化影響検討対象施設を幅広く抽出するため高めに評価）
	b．アウトプ ットの活用	－耐震設計（各施設）
2．解析コード		－GETFLOWS Ver．6．64．0．2
3．領域の設定	a．解析領域	－0．P．＋14．8m 盤及び 0. P．+14.8 m 周辺の法面
	b．格子数	- 平面格子数：約 16.7 万 - 総格子数：約 770 万 - 格子寸法： $0.5 \sim 2 \mathrm{~m}$ 程度（構造物近傍は最小 0.5 m 程度）
4．解析種別		－定常解析
5．気象•蒸発散等		－（降雨条件を考慮しない）
6．モデル化 する状態	a．地形	－工事完了段階に対応した状態
	b．地盤	－工事完了段階に対応した状態（施設周辺の地盤改良を考慮）
	c．構造物	－工事完了段階に対応した状態 （地中連壁の影響は保守的に考慮しない）
	d．ドレーン	－集水に寄与する範囲を限定 （既設•新設のらち耐久性•耐震性•保守管理性等の確保された範囲を管路として扱う。それ以外の範囲については，耐震性等の確保状況に応じて透水層または周辺地盤として扱う）
7．境界条件		- 水位が高めに評価されるよう設定 - 山側：地表面（法肩）に水位固定 - 海側：朔望平均満潮位に水位固定 ードレーン：ドレーン計画高に水位固定
8．透水係数		- 水位が高めに評価されるよう設定 - 岩盤I を試験結果等の平均値－1 σ
9．有効間隙率		－
10．粗度係数		－

b．アウトプット
（a）建物•構築物及び土木構造物
図3．3－30に示すドレーン状態に応じたケースA～ケースDの予測解析の結果として，地下水位コンター図及び流線図（平面図，断面図）を図3．3－31 ～図3．3－34に示す。
（地下水位コンター図について）
－原子炉建屋及び第3号機海水熱交換器建屋周辺の地下水位は地下水位低下設備の効果により大きく下がっている。また，解析水位は連続的に分布し ており，ドレーンへ向かって地下水が流れる状況に対応する。
－一方，敷地の西側などドレーンから離れた位置では解析水位が高く，山側 の解析境界に向かって地表面に近づいており，距離が離れるにつれて地下水位低下設備の効果が小さくなっている。
－また，防潮堤東側（海側）においては地下水位が解析境界水位（朔望平均満潮位）に向かつて高くなる一方，防潮堤西側（敷地側）では地下水位低下設備の効果により地下水位が大きく下がっている。

（流線図について）

－地盤中をドレーンへ向かう流線が形成されており，水理ポテンシャルはド レーンからの距離が離れるにつれて地下水位低下設備の効果が小さくなる ことに対応している。これは地下水位コンター図とも整合的である。
－また，三方（北側，南側及び西側）からの流入が卓越しているが，防潮堤 の沈下対策により海側（東側）からの流入経路が限定されたことに対応し ている。

（a）地下水位コンター図

（b）流線図（平面図）

図3．3－31（1）予測解析結果（ケースA）

図3．3－31（2）予測解析結果（ケース A）

（a）地下水位コンター図

（b）流線図（平面図）

図3．3－32（1）予測解析結果（ケースB）

（c）流線図及びモデル図（ $\mathrm{A}-\mathrm{A}$ ’断面）

（d）流線図及びモデル図（B－B’断面）

図 3．3－32（2）予測解析結果（ケース B ）

（a）地下水位コンター図

（b）流線図（平面図）

図3．3－33（1）予測解析結果（ケースC）

（c）流線図及びモデル図（A－A’断面）

（d）流線図及びモデル図（B－B’断面）

図3．3－33（2）予測解析結果（ケースC）

（a）地下水位コンター図

（b）流線図（平面図）

図3．3－34（1）予測解析結果（ケースD）

（c）流線図及びモデル図（A－A’断面）

（d）流線図及びモデル図（B－B’断面）

図3．3－34（2）予測解析結果（ケース D）

図3．3－31～図3．3－34に示す4ケースの解析水位を包絡させるように作成した，設計用地下水位の設定において参照する地下水位分布を図3．3－35に示す。

図3．3－35 設計用地下水位の設定において参照する敷地の地下水位分布 （ケース $\mathrm{A} \sim \mathrm{D}$ の予測解析により求めた地下水位の包絡水位）
（6）予測解析（4）水位上昇評価モデルを用いた非定常解析）
a．（4）水位上昇評価モデルの作成
（4）水位上昇評価モデルは，地下水位低下設備の機能喪失時における到達時間の評価や，機能喪失が一定期間経過した後の水位上昇量の評価を目的とし，前者は可搬ポンプニニットにおける復旧措置の評価，後者は可搬型重大事故等対処設備の保管場所及びアクセスルートのらち，0．P．＋14．8m 盤のアクセ スルートの評価における地中構造物の浮上り評価に用いる。
（4）水位上昇評価モデルにおけるモデル化範囲，格子サイズ，地盤•構造物 のモデル化や透水係数係数，境界条件等は，（2）水位評価モデルと同様である。 （④）水位上昇評価モデルの概要は補足 600－25－1 地下水位低下設備の設計方針に係る補足説明資料を参照）
b．アウトプット
（a）到達時間の評価
各建屋における揚圧力に着目した到達時間の評価結果を図 3．3－36 及び表 3．3－13に示す。

解析より得られた平均揚圧力に対応する水位は経時的に䡛増する傾向が確認 され，設計用揚圧力に対応する水位を上回るまでの到達時間は原子炬建屋にお いて約 25 時間と最も短く，第 3 号機海水熱交換器建屋において約 67 時間であ った。また，制御建屋は 96 時間後も設計用揚圧力を超過しないとの結果が得 られた。

原子炉建屋•制御建屋エリアにおいては，制御建屋は原子炉建屋に対し相対的に設置レベルが高いため，原子炉建屋に対して相対的に長い到達時間が確保 されている。

a．原子炉建屋

b．制御建屋

注記＊：基礎版下端は O．P．－12．5m から O．P－16．25m の平均高さ
c．第 3 号機海水熱交換器建屋
図 3．3－36 機能喪失を仮定した到達時間の評価結果

表 3．3－13 機能喪失を仮定した到達時間の評価結果

エリア	建屋	到達時間
原子炉建屋•制御	原子炉建屋	約25時間
屋エリア	制御建屋	96 時間後も設計用揚圧力を超過しない
第 3 号機海水熱交	第 3 号機海建屋エリア 熱交 換 器 建 約 67 時間 屋	

（b）一定時間経過後の水位上昇量
地下水位低下設備の機能喪失を仮定し，2ヵ月後の予測解析結果を図3．3－ 37に示す。
上りに対する影響評価）においては，この予測解析結果を参照する。

図 3．3－37 アクセスルート（0．P．＋ 14.8 m 盤）の評価において参照する地下水位分布
（7）設計用地下水位の設定
予測解析に基づく設計用地下水位の設定結果を以下に示す。
a．建物•構築物の揚圧力
予測解析により得られた建物•構築物における地下水位•揚圧力並びにこれ を参照した設計用地下水位•揚圧力について表 3．3－14 に示す。また，浸透流解析結果を参照し設計用地下水位•揚圧力を設定している原子炉建屋，制御建屋，第 3 号機海水熱交換器建屋及び排気筒について周辺の予測解析による地下水位分布を図 3．3－38～図3．3－42に示す。

表3．3－14 建物•構築物における設計用地下水位の設定一覧

施設名称	建設時工事計画 認可時の設計用地下水位 －揚圧力	予測解析による地下水位 －揚圧力	設計用地下水位 －揚圧力	備考
原子炉建屋 （基礎底面0．P．-14.1 m ）	29． $4 \mathrm{kN} / \mathrm{m}^{2 * 1}$	8． $4 \mathrm{kN} / \mathrm{m}^{2 * 1}$	29． $4 \mathrm{kN} / \mathrm{m}^{2 * 1}$	
制御建屋 （基礎底面 0. P．-1.5 m ）	$0.0 \mathrm{kN} / \mathrm{m}^{2}{ }^{1}$	4． $6 \mathrm{kN} / \mathrm{m}^{2 * 1}$	4． $9 \mathrm{kN} / \mathrm{m}^{2 * 1}$	
第 3 号機 海水熱交換器建屋 （基礎底面0．P．$-12.5 \mathrm{~m} \sim$ $0 . \text { P. }-16.25 \mathrm{~m})$	$14.7 \mathrm{kN} / \mathrm{m}^{2 * 1}$	4． $3 \mathrm{kN} / \mathrm{m}^{2 * 1}$	$14.7 \mathrm{kN} / \mathrm{m}^{2 * 1}$	
排気筒 （基礎底面0．P．-4.0 m ）	0．P．+5.0 m	0．P．+13.8 m	0．P．+14.8 m	地表面
緊急時対策建屋 （基礎底面 0. P．+45.5 m ）	－＊2	（解析領域外）	0．P．＋62．0m	地表面
緊急用電気品建屋 （基礎底面 0. P．+52.9 m ）	－＊2	（解析領域外）	0．P．+62.3 m	地表面

注記 $* 1$ ：建屋基礎底面に作用する平均揚圧力
注記 $* 2$ ：建設時の工事計画認可申請対象外
（補足）建屋平均揚圧力の算定方法について
建屋全体での平均揚圧力は，格子単位で基礎底面に作用する揚圧力を算出し，各格子の面積の重みを付けた下記式を用いて加重平均により算出する。

$$
L P_{a v e}=\frac{\sum\left(L P_{i j} \times S_{i j}\right)}{\sum S_{i j}}
$$

ここに，
$L P_{\text {ave }}$ ：建屋に作用する平均揚圧力［ m ］
$L P_{i j} \quad$ ：格子の建屋基礎底面に作用する揚圧力［m］
$S_{i j} \quad:$ 格子の格子面積 $\left[\mathrm{m}^{2}\right]$

図 3．3－38 原子炉建屋周辺の地下水位分布（東西）

図 3．3－39 原子炉建屋周辺の地下水位分布（南北）

図 3．3－40 制御建屋周辺の地下水位分布

図 3．3－41 第3号機海水熱交換器建屋周辺の地下水位分布

予測解析による地下水位

図 3．3－42 排気筒周辺の地下水位分布
b．土木構造物の地下水位
予測解析により得られた土木構造物周辺における地下水位（解析領域外の施設を除く）並びにこれを参照した設計用地下水位及び建設時工事計画認可時の設計用地下水位（建設時工事計画認可申請対象外の施設を除く）について表 3．3－15及び図3．3－43～図3．3－58に示す。

設計用地下水位の設定にあたっては，耐震評価における設計用地下水位の設定方針（参考資料 10）に基づき，気象条件（降雨条件等）の変動要因や観測水位の不確かさ等を考慮して，解析水位に対し概ね $1 \mathrm{~m} \sim 2 \mathrm{~m}$ 程度の余裕を考慮 し設定している。

表3．3－15（1）土木構造物における地下水位の設定一覧

施設名称		建設時工事計画認可時の設計用地下水位	予測解析によ る地下水位	設計用地下水位	備考
原子炉機器泠却海水配管ダクト	横断	0．P．-14.20 m	$\begin{gathered} \text { 0. P. }-14.15 \mathrm{~m} \sim \\ \text { 0. P. }-5.67 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-10.50 \mathrm{~m} \sim \\ \text { 0. P. }-3.50 \mathrm{~m} \end{gathered}$	
排気筒連絡 ダクト	縱断	$\begin{gathered} \hline \text { 0. P. }-8.00 \mathrm{~m} \sim \\ \text { 0. P. }+4.50 \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { 0. P. }-7.14 \mathrm{~m} \sim \\ & 0 . \text { P. }+13.44 \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 0. P. }+5.73 \mathrm{~m} \sim \\ & 0 . \text { P. }+14.80 \mathrm{~m} \\ & \hline \end{aligned}$	
	$\begin{aligned} & \text { 横断 } \\ & \text { (断面(1)) } \end{aligned}$	0．P．-8.00 m	$\begin{gathered} \text { 0. P. }-7.17 \mathrm{~m} \sim \\ \text { 0. P. }-3.98 \mathrm{~m} \end{gathered}$	0．P．+5.73 m	
	$\begin{aligned} & \text { 横断 } \\ & \text { (断面(2) } \end{aligned}$	0．P．-8.00 m	$\begin{gathered} \text { 0. P. }-3.28 \mathrm{~m} \sim \\ \text { 0. P. }-1.49 \mathrm{~m} \end{gathered}$	0．P．+5.80 m	
	$\begin{aligned} & \text { 横断 } \\ & \text { (断面(3)) } \end{aligned}$	0．P．-8.00 m	$\begin{gathered} \text { 0. P. }-2.50 \mathrm{~m} \sim \\ \text { 0. P. }-0.53 \mathrm{~m} \end{gathered}$	0．P．+5.80 m	
	$\begin{gathered} \text { 横断 } \\ \text { (断面(5) } \end{gathered}$	0．P．－1．69m	$\begin{gathered} \hline \text { 0. P. }+1.10 \mathrm{~m} \sim \\ 0 . \text { P. }+7.97 \mathrm{~m} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 0. P. }+8.19 \mathrm{~m} \sim \\ \text { 0. P. }+9.00 \mathrm{~m} \\ \hline \end{gathered}$	
	$\begin{gathered} \text { 横断 } \\ \text { (断面(7) } \end{gathered}$	0．P．+0.22 m	$\begin{gathered} \text { 0. P. }+5.36 \mathrm{~m} \sim \\ 0 . \text { P. }+10.74 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }+10.10 \mathrm{~m} \sim \\ 0 . \text { P. }+12.00 \mathrm{~m} \end{gathered}$	
軽油タンク連絡ダクト		－＊1	$\begin{gathered} \text { 0. P. }-5.82 \mathrm{~m} \sim \\ \text { 0. P. }+2.17 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ \text { 0. P. }+3.00 \mathrm{~m} \end{gathered}$	
取水路＊2	縦断	$\begin{gathered} \text { 0. P. }-14.10 \mathrm{~m} \sim \\ \text { 0. P. }+2.43 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-11.60 \mathrm{~m} \sim \\ \text { 0. P. }+2.43 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-4.53 \mathrm{~m} \sim \\ \text { 0. P. }+2.43 \mathrm{~m} \end{gathered}$	
	横断 （標準部（1））	0．P．+2.43 m	0．P．+1.93 m	0．P．+2.43 m	朔望平 均満潮 位
	横断 （標準部（2）	0．P．+2.43 m	$\begin{gathered} \text { 0. P. }+0.30 \mathrm{~m} \sim \\ \text { 0. P. }+2.16 \mathrm{~m} \end{gathered}$	0．P．+2.43 m	朔望平 均満潮 位
	横断 （標準部（3） （防潮堤横断部））	0．P．+2.43 m	$\begin{gathered} \text { 0. P. }-4.89 \mathrm{~m} \sim \\ \text { 0. P. }-2.26 \mathrm{~m} \end{gathered}$	0．P．+2.43 m	朔望平 均満潮 位
	横断 （標準部 4 ） （防潮堤横断部））	0．P．+2.43 m	$\begin{gathered} \text { 0. P. }-6.22 \mathrm{~m} \sim \\ \text { 0. P. }-3.17 \mathrm{~m} \end{gathered}$	0．P．-1.00 m	
	曲がり部南北	0．P．+2.43 m	$\begin{gathered} \text { 0. P. }-9.57 \mathrm{~m} \sim \\ \text { 0. P. }-3.89 \mathrm{~m} \\ \hline \end{gathered}$	0．P．-1.01 m	

注記 $* 1$ ：建設時工事計画認可申請対象外
＊ 2 ：建設時工事計画認可申請時は朔望平均満潮位に地下水位を設定。予測解析（境界条件は朔望平均満潮位）では地下水位低下設備の効果により陸側の地下水位 は低下。

表3．3－15（2）土木構造物における地下水位の設定一覧

施設名称		建設時工事計画認可時の設計用地下水位	予測解析による地下水位	設計用地下水位	備考
取水路	曲がり部東西	－＊	$\begin{gathered} \text { 0. P. }-7.32 \mathrm{~m} \sim \\ 0 . \text { P. }+2.26 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-1.03 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	
	漸拡部東西	$\begin{gathered} \text { 0. P. }-14.10 \mathrm{~m} \sim \\ \text { 0. P. }+2.43 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-14.13 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+2.17 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-4.53 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	
海水 ポンプ室	縦断	$\begin{gathered} \text { 0.P. }-14.10 \mathrm{~m} \sim \\ \text { 0. P. }+8.83 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-12.64 \mathrm{~m} \sim \\ \text { 0. P. }+12.82 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0.P. }-8.50 \mathrm{~m} \sim \\ \text { O. P. }+14.00 \mathrm{~m} \end{gathered}$	
	横断	$\begin{gathered} \hline \text { 0. P. }-14.10 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-14.13 \mathrm{~m} \sim \\ 0 . \text { P. }+2.24 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-8.50 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	
$\begin{gathered} \text { 軽油 } \\ \text { タンク室 } \end{gathered}$	南北	－＊	$\begin{gathered} \text { 0. P. }-14.29 \mathrm{~m} \sim \\ \text { 0. P. }-3.72 \mathrm{~m} \end{gathered}$	0．P．-3.00 m	
	東西	－＊	$\begin{gathered} \text { 0. P. }-5.82 \mathrm{~m} \sim \\ 0 . \text { P. }+5.20 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ 0 . \text { P. }+6.50 \mathrm{~m} \end{gathered}$	
軽油 タンク室 （H）	南北	－＊	$\begin{gathered} \text { 0. P. }-12.80 \mathrm{~m} \sim \\ \text { 0. P. }-3.72 \mathrm{~m} \end{gathered}$	0．P．-3.00 m	
	東西	－＊	$\begin{gathered} \text { 0. P. }-5.82 \mathrm{~m} \sim \\ 0 . \text { P. }+5.20 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ 0 . \text { P. }+6.50 \mathrm{~m} \end{gathered}$	
取水口 （貯留堰）	南北 （標準部）	0．P．+2.43 m	0．P．+2.43 m	0．P．+2.43 m	朔望平均満潮位
	南北 （漸縮部）	0．P．+2.43 m	0．P．+2.31 m	0．P．+2.43 m	朔望平均満潮位
復水貯蔵 タンク基礎	南北	$\begin{aligned} & 0 . \mathrm{P} .+2.00 \mathrm{~m} \sim \\ & 0 . \mathrm{P} .+9.50 \mathrm{~m} \end{aligned}$	$\begin{gathered} \text { 0. P. }-14.29 \mathrm{~m} \sim \\ \text { 0. P. }-3.72 \mathrm{~m} \end{gathered}$	0．P．-3.00 m	
	東西	0．P．-6.00 m	$\begin{gathered} \text { 0. P. }-5.82 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+2.17 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \\ \sim 0 . \text { P. }+3.00 \mathrm{~m} \end{gathered}$	
ガスタービン 発電設備軽油タンク室	南北	－＊	（解析領域外）	0．P．+62.30 m	地表面
	東西	－＊	（解析領域外）	0．P．+62.30 m	地表面

注記 $*$ ：建設時工事計画認可申請対象外

表3．3－15（3）土木構造物における地下水位の設定一覧

施設名称		建設時工事計 画認可時の設計用地下水位	予測解析による地下水位	設計用地下水位	備考
防潮堤 （鋼管式 鉛直壁）	横断 （岩盤部（1））	－＊	0．P．+14.80 m	$\begin{gathered} 0 . \text { P. }+3.50 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+19.50 \mathrm{~m} \end{gathered}$	
	横断 （岩盤部（2））	－＊	$\begin{gathered} 0 . \text { P. }+5.88 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+9.65 \mathrm{~m} \end{gathered}$	$\begin{gathered} 0 . \text { P. }+6.00 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+18.00 \mathrm{~m} \end{gathered}$	
	$\begin{gathered} \text { 横断 } \\ \text { (一般部①) } \end{gathered}$	－＊	$\begin{gathered} \text { 0. P. }-14.20 \mathrm{~m} \sim \\ \text { O. P. }+2.43 \mathrm{~m} \end{gathered}$	0．P．+2.43 m	朔望平 均満潮 位
	$\begin{gathered} \text { 横断 } \\ \text { (一般部(2)) } \end{gathered}$	－＊	$\begin{gathered} \text { 0. P. }-8.21 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	0．P．+2.43 m	朔望平 均満潮 位
	$\begin{gathered} \text { 横断 } \\ \text { (一般部③) } \end{gathered}$	－＊	$\begin{gathered} \text { 0. P. }-15.34 \mathrm{~m} \sim \\ \text { O. P. }+2.43 \mathrm{~m} \end{gathered}$	0．P．+2.43 m	朔望平 均満潮 位
	$\begin{gathered} \hline \text { 横断 } \\ \text { (一般部(4) } \end{gathered}$	－＊	$\begin{gathered} \hline \text { 0. P. }-11.13 \mathrm{~m} \sim \\ \text { 0. P. }+2.43 \mathrm{~m} \end{gathered}$	$\begin{gathered} 0 . \text { P. }+2.43 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+14.80 \mathrm{~m} \end{gathered}$	
	RC 遮水壁	－＊	（解析領域外）	0．P．+30.0 m	地表 面
防潮堤 （盛土堤防）	横断（1）	－＊	$\begin{gathered} \text { 0.P. }-2.47 \mathrm{~m} \sim \\ 0 . \text { P. }+2.54 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0.P. }+2.43 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+14.80 \mathrm{~m} \end{gathered}$	
防潮壁	第2号機海水ポンプ室	－＊	$\begin{gathered} \text { 0.P. }-14.00 \mathrm{~m} \sim \\ \text { O. P. }-4.25 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-11.50 \mathrm{~m} \sim \\ \text { 0.P. }-3.00 \mathrm{~m} \end{gathered}$	
	第 2 号機放水立坑	－＊	$\begin{gathered} 0 . \text { P. }+1.22 \mathrm{~m} \sim \\ 0 . \text { P. }+11.14 \mathrm{~m} \end{gathered}$	$\begin{gathered} 0 . \text { P. }+4.50 \mathrm{~m} \sim \\ 0 . \text { P. }+12.50 \mathrm{~m} \end{gathered}$	
	第 3 号機海水ポンプ室	－＊	$\begin{gathered} \text { 0. P. }-15.59 \mathrm{~m} \sim \\ \text { O. P. }-8.51 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0.P. }-10.00 \mathrm{~m} \sim \\ \text { 0. P. }-6.50 \mathrm{~m} \end{gathered}$	
	第 3 号機放水立坑	－＊	$\begin{gathered} \hline \text { 0. P. }-10.15 \mathrm{~m} \sim \\ \text { O. P. }-4.34 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-9.00 \mathrm{~m} \sim \\ \text { 0. P. }+5.00 \mathrm{~m} \end{gathered}$	
取放水路流路縮小工	第1号機取水路	－＊	$\begin{gathered} 0 . \mathrm{P} .+11.54 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+17.18 \mathrm{~m} \end{gathered}$	$\begin{gathered} 0 . \text { P. }+14.80 \mathrm{~m} \sim \\ 0 . \text { P. }+19.50 \mathrm{~m} \end{gathered}$	地表 面
	第1号機放水路	－＊	$\begin{gathered} \text { 0.P. }+13.75 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+14.80 \mathrm{~m} \end{gathered}$	0．P．＋14．80m	地表面

注記 $*: ~$ 建設時工事計画認可申請対象外

表3．3－15（4）土木構造物における地下水位の設定一覧

施設名称		建設時工事計画認可時の設計用地下水位	予測解析によ る地下水位	設計用地下水位	備考
第 3 号機海水ポンプ室	縦断	$\begin{gathered} \text { 0. P. }-12.53 \mathrm{~m} \sim \\ 0 . \text { P. }+1.24 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-13.77 \mathrm{~m} \sim \\ \text { 0. P. }+2.43 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { O. P. }-12.00 \mathrm{~m} \sim \\ \text { O. P. }+2.43 \mathrm{~m} \end{gathered}$	
	横断	$\begin{gathered} \hline \text { 0. P. }-12.79 \mathrm{~m} \sim \\ \text { 0. P. }+1.60 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0.P. }-13.14 \mathrm{~m} \sim \\ \text { 0.P. }-4.77 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0.P. }-12.00 \mathrm{~m} \sim \\ \text { 0.P. }-2.51 \mathrm{~m} \end{gathered}$	
揚水井戸（第 3 号機海水ポ ンプ室防潮壁区画内）	南北	－＊	$\begin{gathered} \text { 0. P. }-14.50 \mathrm{~m} \sim \\ \text { 0. P. }-8.86 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-12.50 \mathrm{~m} \sim \\ \text { 0. P. }-7.00 \mathrm{~m} \end{gathered}$	
	東西	－＊	$\begin{gathered} \text { 0. P. }-13.58 \mathrm{~m} \sim \\ \text { 0. P. }-7.77 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-12.50 \mathrm{~m} \sim \\ \text { O. P. }-4.50 \mathrm{~m} \end{gathered}$	
第 3 号機補機冷却海水系放水ピット		－＊	$\begin{gathered} \text { 0. P. }-14.86 \mathrm{~m} \sim \\ \text { 0. P. }-5.06 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { 0. P. }-14.00 \mathrm{~m} \sim \\ \text { O. P. }-5.00 \mathrm{~m} \end{gathered}$	
屋外排水路逆流防止設備 （防潮堤南側）		－＊	$\begin{gathered} 0 . \text { P. }+5.84 \mathrm{~m} \sim \\ 0 . \text { P. }+7.65 \mathrm{~m} \end{gathered}$	$\begin{gathered} 0 . \mathrm{P} .+6.00 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+18.00 \mathrm{~m} \end{gathered}$	

注記 $*$ ：建設時工事計画認可申請対象外

図 3．3－43 原子炉機器冷却海水配管ダクトの設計用地下水位（横断）

図 3．3－44（1）排気筒連絡ダクトの設計用地下水位（縦断）

図 3．3－44（2）排気筒連絡ダクトの設計用地下水位（横断（断面（1）））

図 3．3－44（3）排気筒連絡ダクトの設計用地下水位（横断（断面（2）））

図 3．3－44（4）排気筒連絡ダクトの設計用地下水位（横断（断面（3）））

[^1]図 3．3－44（5）排気筒連絡ダクトの設計用地下水位（横断（断面（5）））

枠囲みの内容は防護上の観点から公開できません。

図3．3－44（6）排気筒連絡ダクトの設計用地下水位（横断（断面（7）））

[^2]図 3．3－45 軽油タンク連絡ダクトの設計用地下水位（東西）
（復水貯蔵タンク基礎の東西方向断面の設計用地下水位含む）

図 3．3－46（1）取水路の設計用地下水位（縦断）

図 3．3－46（2）取水路の設計用地下水位（横断（標準部（1）））
（改良地盤に囲まれる箇所）

図 3．3－46（3）取水路の設計用地下水位（横断（標準部（2）））
（改良地盤に囲まれる箇所以外）

第4速度層
\square
建設時工事計画認可時の地下水位
予測解析による地下水位
設計用地下水位
図 3．3－46（4）取水路の設計用地下水位（横断（標準部（3）））
（防潮堤を横断する箇所（1））

図 3．3－46（5）取水路の設計用地下水位（横断（標準部（4）））
（防潮堤を横断する箇所（2））

図 3．3－46（6）取水路の設計用地下水位（曲がり部）（南北）

図 3．3－46（7）取水路の設計用地下水位（曲がり部）（東西）

図 3．3－46（8）取水路の設計用地下水位（漸拡部）（東西）

図 3．3－47（1）海水ポンプ室の設計用地下水位（縦断）

図 3．3－47（2）海水ポンプ室の設計用地下水位（横断）

建設時工事計画認可時の地下水位
予測解析による地下水位
設計用地下水位
図 3．3－48 軽油タンク室の設計用地下水位（南北）
（復水貯蔵タンク基礎の南北方向断面の設計用地下水位を含む）

図 3．3－49（1）軽油タンク室，軽油タンク室（H）の設計用地下水位（東西）

図 3．3－49（2）軽油タンク室（H）の設計用地下水位（南北）

図 3．3－50（1）取水口（標準部）の設計用地下水位（南北）

図 3．3－50（2）取水口（漸縮部）の設計用地下水位（南北）

図 3．3－51（1）ガスタービン発電設備軽油タンク室の設計用地下水位（南北）

図 3．3－51（2）ガスタービン発電設備軽油タンク室の設計用地下水位（東西）
予測解析による地下水位
設計用地下水位
（防潮堤における地下水位は，設置変更許可段階 の検討（浸透流解析実施前）を踏まえ，岩盤部で は保守的に岩盤表面とする。）

図 3．3－52（1）防潮堤（鋼管式鉛直壁）の設計用地下水位（岩盤部（1））

（防潮堤における地下水位は，設置変更許可段階 の検討（浸透流解析実施前）を踏まえ，岩盤部で は保守的に岩盤表面とする。）

図 3．3－52（2）防潮堤（鋼管式鉛直壁）の設計用地下水位（岩盤部（2））

（防潮堤における地下水位は，設置変更許可段階 の検討（浸透流解析実施前）を踏まえ，一般部で は保守的に朔望平均満潮位とする。）

図 3．3－52（3）防潮堤（鋼管式鉛直壁）の設計用地下水位（一般部（1））

—予測解析による地下水位設計用地下水位
（防潮堤における地下水位は，設置変更許可段階 の検討（浸透流解析実施前）を踏まえ，一般部で は保守的に朔望平均満潮位とする。）

図 3．3－52（4）防潮堤（鋼管式鉛直壁）の設計用地下水位（一般部（2））

予測解析による地下水位設計用地下水位
（防潮堤における地下水位は，設置変更許可段階
の検討（浸透流解析実施前）を踏まえ，一般部で は保守的に朔望平均満潮位とする。）

図 3．3－52（5）防潮堤（鋼管式鉛直壁）の設計用地下水位（一般部（3））

＊：鋼管杭下方の C_{L} 級岩盤部はMMRにより置換
（防潮堤における地下水位は，設置変更許可段階
の検討（浸透流解析実施前）を踏まえ，盛土堤防
との境界部である一般部（4）は保守的に海側は朔望平均満潮位，山側は地表面とする。）

図 3．3－52（6）防潮堤（鋼管式鉛直壁）の設計用地下水位（一般部（4）

図 3．3－52（7）防潮堤（鋼管式鉛直壁）の設計用地下水位（ RC 遮水壁）

（防潮堤における地下水位は，設置変更許可段階 の検討（浸透流解析実施前）を踏まえ，盛土堤防 では保守的に海側は朔望平均満潮位，山側は地表面とする。）

＊：鋼管杭下方の C_{L} 級岩盤部はMMRにより置換

設計用地下水位

図 3．3－53（1）防潮壁の設計用地下水位 （2号機海水ポンプ室）（1／3）

＊：鋼管杭下方の C_{L} 級岩盤部はMMRにより置換
予測解析による地下水位
設計用地下水位

図 3．3－53（2）防潮壁の設計用地下水位（2号機海水ポンプ室）
（2号機海水ポンプ室横断方向の地下水位分布（東西）（1）－（1））（2／3）

＊：鋼管杭下方の C_{L} 級岩盤部はMMR により置換

予測解析による地下水位設計用地下水位

図 3．3－53（3）防潮壁の設計用地下水位（2号機海水ポンプ室）
（2号機海水ポンプ室横断方向の地下水位分布（南北）（2）－（2））（3／3）

図 3．3－53（4）防潮壁の設計用地下水位
（2号機放水立坑）$(1 / 3)$

凡 例

＊：鋼管杭下方の C_{L} 級岩盤部はMMRにより置換

[^3]
＊：鋼管杭下方の C_{L} 級岩盤部はMMRにより置換

予測解析による地下水位設計用地下水位

図 3．3－53（6）防潮壁の設計用地下水位（2号機放水立坑）
（2号機放水立坑横断方向の地下水位分布（南北）（4）－（4））（3／3）

予測解析による地下水位設計用地下水位

図 3．3－53（7）防潮壁の設計用地下水位
（3号機海水ポンプ室）（1／2）

＊：鋼管杭下方の CL 級岩盤部はMMRにより置換

予測解析による地下水位設計用地下水位

図 3．3－53（8）防潮壁の設計用地下水位（3号機海水ポンプ室）
（3号機海水ポンプ室横断方向の地下水位分布（南北）（5）－⑤）（2／2）

？予測解析による地下水位
図 3．3－53（9）防潮壁の設計用地下水位
（3号機放水立坑）（ $1 / 3$ ）

＊：鋼管杭下方の C_{L} 級岩盤部はMMRにより置換

図 3．3－53（10）防潮壁の設計用地下水位（3号機放水立坑）
（3号機放水立坑横断方向の地下水位分布（東西）（6）－⑥）（2／3）

＊：鋼管杭下方の C_{1} 級岩盤部はMMR により置換

図 3．3－53（11）防潮壁の設計用地下水位（3号機放水立坑）
(3号機放水立坑横断方向の地下水位分布 (南北) (7)-(7)) (3/3)

予測解析による地下水位
設計用地下水位
図 3．3－54（1）取放水路流路縮小工の設計用地下水位 （1号機取水路）

設計用地下水位
図 3．3－54（2）取放水路流路縮小工の設計用地下水位 （1号機放水路）

枠囲みの内容は防護上の観点から公開できません。

図 3．3－55（1）第3号機海水ポンプ室の設計用地下水位（縦断）

図 3．3－55（2）第3号機海水ポンプ室の設計用地下水位（横断）

凡 例

図 3．3－56（1）揚水井戸（第3号機海水ポンプ室防潮壁区画内）
の設計用地下水位（南北）

図3．3－56（2）揚水井戸（第3号機海水ポンプ室防潮壁区画内）
の設計用地下水位（東西）

予測解析による地下水位
設計用地下水位
図 3．3－57 第 3 号機補機冷却海水系放水ピットの設計用地下水位

—予測解析による地下水位
設計用地下水位
図 3．3－58 屋外排水路逆流防止設備（防潮堤南側）の設計用地下水位
c．保管場所及びアクセスルートの地下水位
保管場所及びアクセスルートの評価に用いる設計用地下水位の設定方法一覧 を表3．3－16に示す。

同表に示すとおり，地下水位低下設備の効果が及ぶ 0. P．+14.8 m 盤の保管場所及びアクセスルートについては，地下水位低下設備の機能喪失から2 カ月後 の水位上昇を考慮することとしており，（6）b．（c）に示す予測解析結果を参照し，図 3．3－59のとおり保守的に（高めに）設計用地下水位を設定している。

また，アクセスルート斜面のうち，近傍の観測水位にて妥当性の検証が可能 な斜面 B •斜面Fにおいては，各斜面及び周辺領域をモデル化した予測解析モ デル（ 7 ）斜面 B モデル，（8）斜面 Fモデル）を作成し，浸透流解析により自然水位より保守的に設計用地下水位を設定している。（図3．3－60，61）

各予測解析モデルの解析条件等は「参考資料 1－3 浸透流解析モデル概要及 びアウトプットと設備設計への反映事項」を参照。また，保管場所及びアクセ スルートの設計用地下水位の設定に係る詳細については「VI－1－1－6－別添1可搬型重大事故等対処設備の保管場所及びアクセスルート」を参照。

表 3．3－16 保管場所及びアクセスルートの設計用地下水位の設定方法

設定対象		設計用地下水位の設定方法		備 考
		設置変更許可	工事計画認可	
$\begin{aligned} & \text { 保 } \\ & \text { 管 } \\ & \text { 場 } \\ & \text { 所 } \end{aligned}$	0．P．14．8m 盤	一律 0．P．5．0m＊ 工事計画認可段階で行う浸透流解析結果を反映す る	－浸透流解析により設定 （地下水位低下設備の機能喪失から 2 力月後の水位上昇 を考慮）	- 第 3 保管エリア - 岩盤上に設置
	0．P． 62 m 盤	－地表面	－設置変更許可を踏襲	－第 1，2，4保管エリア
$\begin{gathered} \text { ア } \\ \text { ク } \\ \text { セ } \\ \text { ス } \\ \text { ル } \\ \text { ト } \end{gathered}$	0．P．3．5m 盤	－敷地の沈下を考慮した朔望平均満潮位 $\text { (0.P.2. } 43 \mathrm{~m} \text {) }$	－設置変更許可を踏襲	
	0．P．14．8m 盤	- 一律 0．P． $5.0 \mathrm{~m}^{* 1}$ - 工事計画認可段階で行う浸透流解析結果を反映す る	－浸透流解析により設定 （地下水位低下設備の機能喪失から 2 力月後の水位上昇 を考慮） －解析水位分布に応じてエリ ア分割し，エリア毎に設定	
	0．P． 62 m 盤	－地表面	－設置変更許可を踏襲	
斜	近傍に観測水位 あり	－自然水位より保守的に設定（浸透流解析による）	－設置変更許可を踏襲 （浸透流解析による）	－斜面安定性評価におい て参照
	近傍に観測水位 なし	－地表面	－設置変更許可を踏襲	

（■：地下水位低下設備の効果が及ぶ範囲）
注記＊：設置変更許可段階において，アクセスルート（0．P．14．8m 盤）の設計用地下水位は建設時工認段階で評価対象となっている構造物の耐震設計における地下水位を参考に一律 0．P．5．0mと設定しており，工事計画認可段階で行ら浸透流解析結果を反映する方針としていた。

図 3．3－59 浸透流解析を参照するエリア（0．P．14．8m 盤）における設計用地下水位

図3．3－60 アクセスルート斜面 B •斜面Fのモデル範囲

解析モデル範囲

解析モデル
（予測解析モデル（77斜面Bモデル））

（斜面 B の設計用地下水位）

図3．3－61（1）斜面Bにおける予測解析モデルと設計用地下水位

（予測解析モデル（8）斜面Fモデル））

（斜面 F の設計用地下水位）

図3．3－61（2）斜面Fにおける予測解析モデルと設計用地下水位
（8）設計用地下水位の余裕の検証
設計用地下水位は，今後安全対策工事として実施する防潮堤沈下対策やドレー ン新設等を考慮した予測解析結果を参照し設定することから，工事完了前の段階 においては観測水位を用いた直接的な検証を行うことができない。

設計用地下水位は高めに設定する方針としているが，仮に地下水位が施設の設計用地下水位を超過する場合は，耐震安全性へ影響が生じる可能性があることを踏まえ，下記 a．及び b．の検討により，設計用地下水位の余裕を検証する。

なお，本章における検証は（2）水位評価モデルによる予測解析結果を参照し設定 した設計用地下水位を対象としたものであり，アクセスルート斜面B•Fにて浸透流解析に基づき設定した設計用地下水位の余裕の検証は「VI－1－1－6－別添1可搬型重大事故等対処設備の保管場所及びアクセスルート」を参照。
a．観測水位と解析水位（予測解析）の比較
（a）検討の目的
予測解析により得られた解析水位は，安全対策工事完了段階の施設配置に て高めの水位設定となるよう評価しており，設計用地下水位はその解析水位 に対して更に上側に包絡するよう設定している。観測水位取得段階の施設配置は，予測解析の前提とは異なるものであるが，以下の要因により，安全対策工事完了後は工事実施前より地下水位が下がることが想定される。

（0．P．+14.8 m 盤の観測水位が今後下がる要因）

- 防潮堤沈下対策により，海側からの地下水の供給が減少する
- ドレーン新設により，地下水の集水範囲が拡大する

このため，本項目における比較にて予測解析水位の余裕が確認された場合， その余裕は安全対策工事完了後も維持されるとの考え方から，観測水位と予測解析結果の比較を行ったものである。
（b）観測水位と予測解析水位の比較結果
予測解析により得られた解析水位と観測記録との比較による検証結果を示 す。

検証に用いた観測井位置の平面図を図 3．3－62 に，観測水位と解析水位の関係を表 3．3－17に示す。連続観測データとの比較については巻末に示す。

この結果，観測井（1）を除く全ての観測井において，予測解析により得られ た解析水位が観測最高地下水位を上回っており，余裕を有していることを確認した。

なお，観測井（1）については，降雨量が多かった2019年10月に観測水位が

予測解析水位を僅かに上回っているが，観測水位は降雨に対する感度が非常 に小さく，定常的に岩盤表面付近に固定されていることから，岩盤上面を流下した地下水が観測孔内に流れ込むことで水位が上昇したものと考えられる。 よって，解析水位は定常的に岩盤内の地下水位分布を包絡できていることか ら，観測井（1）においても解析結果は妥当と判断できる。

図 3．3－62 観測水位と解析水位（予測解析）の比較において参照する観測井位置図

表 3．3－17 観測水位と解析水位（予測解析）の関係

観測井	（A）観測水位(0. P. m)		（B）解析水位 (0. P. m)	差分＊${ }^{1}$（m） （B）$-(\mathrm{A})$	備考
観測井 （1）	最高	＋2．93	＋1．68	$\begin{aligned} & -1.25 \\ & (0.64) \end{aligned}$	差分の理由は前述のとおり
	平均	＋1．04			
観測井 （2）	最高	＋21．33	＋22．07	$\begin{gathered} 0.74 \\ (7.14) \end{gathered}$	
	平均	＋14．93			
観測井 （3）	最高	－3．16	＋0． 10	$\begin{gathered} 3.26 \\ (11.09) \end{gathered}$	
	平均	－7． 83			
観測井 （4）	最高	－6．41	－1．82	$\begin{gathered} 4.59 \\ (7.33) \end{gathered}$	
	平均	－9．15			
観測井 （5）	最高	－0．02	＋0．47	$\begin{gathered} 0.49 \\ (2.60) \end{gathered}$	
	平均	－2．13			
観測井 （6）	最高	＋21．39	＋25．01	$\begin{gathered} 3.62 \\ (5.68) \end{gathered}$	
	平均	＋19．33			
観測井 （7）	最高	＋12．12	＋13．68	$\begin{gathered} 1.56 \\ (3.65) \end{gathered}$	
	平均	＋10．03			
観測井 （8）	最高	＋12．30	＋16． 65	$\begin{gathered} 4.35 \\ (10.04) \end{gathered}$	
	平均	＋6．61			
観測井	最高	＋11．92	＋27． 24	$\begin{gathered} 15.32 \\ (21.43) \\ \hline \end{gathered}$	
	平均	＋5．81			
観測井 （12）	最高	＋12．84	＋25．68	$\begin{gathered} 12.84 \\ (15.04) \end{gathered}$	
	平均	＋10．64			
観測井 （13）	最高	＋10．34	＋12．38	$\begin{gathered} 2.04 \\ (6.27) \end{gathered}$	
	平均	＋6． 11			

（c）観測水位に係る補足
前項にて解析水位との比較において参照した観測水位が，平年値と比較し特異性がないことについて以下に補足する。

観測水位の気象庁アメダスの観測記録に基づき，石巻地点における平年値 （1990 年～2019 年の 30 年間の平均値）と敷地内の地下水位の観測期間 （期間（1）：2006 年～2007 年，期間（2）：2013 年～2014年，期間（3）：2016年～ 2017年，期間（4）：2018年～2019年）との降雨量を比較した結果を図3．3－63 に示す。

図 3．3－63より，敷地内の地下水位観測期間は平年値と比較して，7～11月頃にかけて，降水量のばらつきが見られ，50～100mm／月程度少ない期間及び多い期間があるものの，表 3．3－18 に示すとおり，月降水量（年間平均）は いずれの観測期間においても平年並みであり，いずれの観測期間も特異性は ないと判断できる。

図 3．3－63 石巻地点における平年値と観測時期の降水量の比較結果

表 3．3－18 石巻地点における月降水量の年間平均値の比較

	平年値	期間（1）	期間（2）	期間（3）	期間（4）
降水量（mm／月）	92	104	104	89	96

b．降雨に対する余裕
（a）検討の目的
降雨に対する設計用地下水位の余裕に係る傍証として，降雨条件の不確実性も踏まえて，豪雨時に対応した降水を仮定した⑥仮想豪雨評価モデルに て非定常解析を実施し，得られた解析水位と設計用地下水位の比較を行う。

降雨条件として，国土交通省河川砂防技術基準（平成 30 年 3 月）におけ る，一級河川の主要区間での砂防計画における対象降雨の降雨量の超過確率年（200 年以上）を目安に，余裕をもつて設定する。
（b）解析条件
モデルの妥当性確認に用いた（1）広域モデルを解析領域とし，施設配置等は （2）水位評価モデルと同様，安全対策工事完了段階の状態を設定する。

また，設計用地下水位との比較を目的とすることから，ドレーンの有効範囲は予測解析に用いる（2）水位評価モデルと同条件（既設•新設を含めて信頼性が確保される範囲）とする。

境界条件として，モデル境界は閉境界とし，初期条件として過去の日平均降水量（3． $37 \mathrm{~mm} /$ 日）を定常的に与え続けた後，仮想豪雨をモデル全体に一律に与える。

仮想豪雨は，豪雨イベント当りの総雨量が地下水位に影響するとの考え方 のもと，設計基準降水量（ $91 \mathrm{~mm} /$ 日）を観測した 2014 年 9 月 11 日の日降水量 $158.5 \mathrm{~mm} /$ 日と同程度の雨が 3 日間継続することを仮定し， 72 時間降雨量 として $450 \mathrm{~mm} ~(150 \mathrm{~mm} /$ 日 $\times 3$ 日）を設定する。この仮想豪雨条件は，超過確率年 400 年に相当し，前項で示した目安に対しても十分な余裕を有する。

入力する降雨の条件を表3．3－19に示す。また，表3．3－20に，⑥仮想豪雨評価モデルの解析条件一覧を示す。

表 3．3－19 入力降雨条件

分類	降雨量	備考
初期条件 $($ 定常降雨）	$3.57 \mathrm{~mm} /$ 日	2001 年－2018 日年の平均値
降測降雨の力 $($ 仮想豪雨）	$150 \mathrm{~mm} /$ 日 $\times 3$ 日 $($ 総降水量 450 mm$)$$*$	再現確率 $: ~$ 約 400 年相当 （石巻特別地域気象観測所 $:$ 統計期間 1950 年－2019 年）

注記＊：設計基準降水量（ $91 \mathrm{~mm} / \mathrm{h}$ ）を観測した 2014 年 9 月 11 日を含む 72 時間降水量は158．5mm。2011年9月21日を含む 72 時間降水量は 306.5 mm 。 72 時間降水量としての最大は 306.5 mm （2011年9月21日～23日）であり，仮想豪雨 の総降水量はいずれも包絡する（いずれも石巻特別地域気象観測所による既往の観測記録）。

表 3．3－20（6）仮想豪雨評価モデルの概要

項目		（6）仮想豪雨評価モデル
1．目的	a．目的	－工事完了後に想定される豪雨時の水位を推定すること
	b．アウトプ ットの活用	－設計用地下水位との比較により余裕を確認
2．解析コード		－GETFLOWS Ver．6．64．0．2
3．領域の設定	a．解析領域	分水嶺を山側境界とし（2）水位評価モデルを包絡する範囲
	b．格子数	- 平面格子数：約 33.4 万 - 総格子数：約 1600 万 - 格子寸法： $0.5 \sim 6 \mathrm{~m}$ 程度 （構造物近傍は最小 0.5 m 程度，山側領域は $3 \sim 6 \mathrm{~m}$ 程度）
4．解析種別		－非定常解析
5．気象•蒸発散等	a．降雨条件	仮想の降雨条件を付与 - 初期状態： $3.57 \mathrm{~mm} /$ 日（観測降雨（2001－2018 年）の日平均） - 降雨時： $150 \mathrm{~mm} /$ 日 $\times 3$ 日（総降水量 450 mm ，年超過確率約 400 年相当）
	b．蒸発散	定常状態：ハーモン法＊ 1 非定常状態：考慮しない＊2
6.$\begin{aligned} & \text { モデル化 } \\ & \text { する状態 } \end{aligned}$	a．地形	－工事完了段階に対応した状態
	b．地盤	－工事完了段階に対応した状態（施設周辺の地盤改良を考慮）
	c．構造物	工事完了段階に対応した状態 （地中連壁の影響は保守的に考慮しない）
	d．ドレーン	－集水に寄与する範囲を限定 （既設•新設のらち耐久性•耐震性•保守管理性等の確保された範囲を管路として扱う。それ以外の範囲については，耐震性等 の確保状況に応じて透水層または周辺地盤として扱う）
7．境界条件		実態に則した設定 - 山側：閉境界 - 海側：平均潮位に水位固定 - ドレーン：ドレーン計画高に水位固定
8．透水係数		－試験結果等の平均値
9．有効間隙率		－文献値＊3
10．粗度係数		－文献値＊${ }^{\text {4 }}$

注記 $* 1$ ：平均気温•平均降水量は発電所内観測値，日照時間は地下水ハンドブックによる
注記 $* 2$ ：検証期間における敷地内の気温，風速，日射時間等を参照する
注記＊3：豪雨による水位上昇を保守的に評価するため，蒸発散分を差し引かず評価を実施
注記 $* 4$ ：地下水ハンドブック（建設産業調査会），水理公式集（土木学会）等を参照し設定
注記＊5：水理公式集（土木学会），河川砂防技術基準（国土交通省）等を参照し設定
（c）解析結果
設計用地下水位と降雨を考慮した解析水位の比較結果を 3.1 及び 3.2 に示 す。なお，降雨を考慮した解析水位は，非定常解析のため経時的な水位変動 があるが，ここでは保守的に全時刻を包絡した最大水位を示している。また，各施設における断面図は参考資料11に示す。

建物•構築物については，排気筒を除く原子炉建屋他においては仮想豪雨 を与えた解析水位が設計揚圧力設定高さに相当する建屋底面を下回り，排気筒においても同様に解析水位は設計用地下水位（地表面）を下回ることを確認した。

土木構造物については，いずれの断面でも概ね仮想豪雨を与えた解析水位 が設計用地下水位を下回っている。一部断面で局所的に解析水位が設計用地下水位を上回る箇所があるが，範囲か限定的かつ断面全体での差分としては全ての断面で下回っていること，定常的に上回るものではないこと（全時刻 を包絡した最大水位であり，実際の水位は経時的に変動）も踏まえると，降雨の不確実さを考慮した仮想の豪雨に対して，設計用地下水位の設定は降雨 に対して十分な余裕を有すると判断できる。

以上から，モデル境界に水位固定条件を与えた定常解析に基づき設定した設計用地下水位は，再現期間 400 年相当の仮想豪雨による解析水位を概权包絡できていることを確認した。

イ．建物•構築物

建物•構築物（地表面に設計用地下水位を設定している排気筒，緊急時対策建屋及び緊急用電機品建屋は除く）の，設計用揚圧力と仮想豪雨を与 えた解析水位の比較を表3．3－21に示す。

表3．3－21 建物•構築物における設計用地下水位と仮想豪雨を与えた解析水位の比較

施設名称	設計用揚圧力	設計用地下水位と仮想豪雨を与えた解析水位との比較＊${ }^{*}$（断面平均）
原子炉建屋 （基礎底面0．P．－ 14.1 m ）	29． $4 \mathrm{kN} / \mathrm{m}^{2}$	基礎版底面位置よりも水位が低い
制御建屋 （基礎底面 0. P．-1.5 m ）	4． $9 \mathrm{kN} / \mathrm{m}^{2}$	基礎版底面位置よりも水位が低い
第 3 号機 海水熱交換器建屋 （基礎底面0．P．$-12.5 \mathrm{~m} \sim$ $\text { 0. P. }-16.25 \mathrm{~m})$	$14.7 \mathrm{kN} / \mathrm{m}^{2}$	基礎版底面位置よりも水位が低い

注記 $* 1$ ：設計用地下水位－仮想豪雨を与えた解析水位

口．土木構造物
土木構造物（地表面に設計用地下水位を設定しているガスタービン発電設備軽油タンク室，防潮堤（鋼管式鉛直壁）のらちRC壁部及び取放水路流路縮小工は除く）の設計用地下水位と仮想豪雨を与えた解析水位の比較を表3．3－22に示す。

土木構造物においては，排気筒連絡ダクトにおいて，設計用地下水位と仮想豪雨を与えた解析水位との差分（断面平均）が相対的に大きくなって いる。これは，排気筒連絡ダクトは原子炬建屋付近から山側（西側）へ延長する線状構造物であり，原子炉建屋付近では盛土•旧表土が分布するこ とと原子炉建屋下に設置されるドレーン（鋼管）の効果により解析水位が大きく下がる一方，山側（西側）に向かっては岩盤が高くなり解析境界水位（地表面）に近づいていくが，設計用地下水位は縦断方向に階段状に設定していることによるものであり，原子炉建屋近傍の土砂部における横断面（1）～③）において設計用地下水位と仮想豪雨を与えた解析水位との差分が顕著となっている。

表3．3－22（1）土木構造物における設計用地下水位と仮想豪雨を与えた解析水位の比較

施設名称		設計用地下水位	設計用地下水位と仮想豪雨を与えた解析水位との差分＊ （断面平均）	備考
原子炉機器冷却海水配管ダクト	横断	$\begin{gathered} \text { 0.P. }-10.50 \mathrm{~m} \sim \\ \text { 0.P. }-3.50 \mathrm{~m} \end{gathered}$	－9．0m	
排気筒連絡 ダクト	縦断	$\begin{gathered} 0 . \text { P. }+5.73 \mathrm{~m} \sim \\ 0 . \text { P. }+14.80 \mathrm{~m} \end{gathered}$	$-10.9 \mathrm{~m}$	
	横断 （断面（1）	0．P．+5.73 m	$-25.9 \mathrm{~m}$	
	横断 （断面（2））	0．P．+5.80 m	$-24.7 \mathrm{~m}$	
	横断 （断面（3））	0．P．+5.80 m	－23．1m	
	横断 （断面（5））	$\begin{gathered} \text { 0. P. }+8.19 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+9.00 \mathrm{~m} \end{gathered}$	$-8.9 \mathrm{~m}$	
	横断 （断面（7）	$\begin{gathered} 0 . \text { P. }+10.10 \mathrm{~m} \sim \\ \text { 0.P. }+12.00 \mathrm{~m} \end{gathered}$	$-1.8 \mathrm{~m}$	
軽油タンク連絡ダクト		$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+3.00 \mathrm{~m} \end{gathered}$	－7．0m	
取水路	縦断	$\begin{gathered} \text { 0. P. }-4.53 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	$-2.1 \mathrm{~m}$	
	$\begin{gathered} \text { 横断 } \\ \text { (標準部①) } \end{gathered}$	0．P．+2.43 m	0． 2 m	朔望平均満潮位
	$\begin{gathered} \text { 横断 } \\ \text { (標準部(2)) } \\ \hline \end{gathered}$	0．P．+2.43 m	$-1.0 \mathrm{~m}$	朔望平均満潮位
	横断 （標準部③）（防潮堤横断部））	0．P．+2.43 m	$-5.5 \mathrm{~m}$	朔望平均満潮位
	横断 （標準部（4）（防潮堤横断部））	0．P．-1.00 m	$-2.5 \mathrm{~m}$	
	曲がり部南北	0．P．-1.01 m	$-4.4 \mathrm{~m}$	

注記＊：設計用地下水位一仮想豪雨を与えた解析水位

表3．3－22（2）土木構造物における設計用地下水位と仮想豪雨を与えた解析水位の比較

施設名称		設計用地下水位	設計用地下水位と仮想豪雨を与えた解析水位との差分＊ （断面平均）	備考
取水路	曲がり部東西	$\begin{gathered} \text { 0.P. }-1.03 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	$-4.7 \mathrm{~m}$	
	漸拡部東西	$\begin{gathered} \text { 0. P. }-4.53 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	$-5.7 \mathrm{~m}$	
海水 ポンプ室	縦断	$\begin{gathered} \text { 0.P. }-8.50 \mathrm{~m} \sim \\ 0 . \text { P. }+14.00 \mathrm{~m} \end{gathered}$	$-6.7 \mathrm{~m}$	
	横断	$\begin{gathered} \text { 0. P. }-8.50 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	$-3.9 \mathrm{~m}$	
$\begin{gathered} \text { 軽油 } \\ \text { タンク室 } \end{gathered}$	南北	0．P．-3.00 m	$-12.3 \mathrm{~m}$	
	東西	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ 0 . \text { P. }+6.50 \mathrm{~m} \end{gathered}$	$-4.6 \mathrm{~m}$	
軽油 タンク室 （H）	南北	0．P．-3.00 m	$-6.8 \mathrm{~m}$	
	東西	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+6.50 \mathrm{~m} \end{gathered}$	$-4.6 \mathrm{~m}$	
取水口 （貯留堰）	南北 （標準部）	0．P．+2.43 m	－0．8m	朔望平均満潮位
	南北 （漸縮部）	0．P．+2.43 m	－0．8m	朔望平均満潮位
復水貯蔵 タンク基礎	南北	0．P．-3.00 m	$-12.3 \mathrm{~m}$	
	東西	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \\ \sim 0 . \text { P. }+3.00 \mathrm{~m} \end{gathered}$	－7．0m	

注記 $*$ ：設計用地下水位－仮想豪雨を与えた解析水位

表3．3－22（3）土木構造物における設計用地下水位と仮想豪雨を与えた解析水位の比較

施設名称		設計用地下水位	設計用地下水位と仮想豪雨を与えた解析水位との差分＊ （断面平均）	備考
防潮堤 （鋼管式鉛直壁）	横断 （岩盤部（1））	$\begin{gathered} 0 . \text { P. }+3.50 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+19.50 \mathrm{~m} \end{gathered}$	0.8 m	
	$\begin{gathered} \text { 横断 } \\ \text { (岩盤部②) } \end{gathered}$	$\begin{gathered} 0 . \text { P. }+6.00 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+18.00 \mathrm{~m} \end{gathered}$	$-3.2 \mathrm{~m}$	
	$\begin{gathered} \hline \text { 横断 } \\ (一 \text { 般部(1)) } \\ \hline \end{gathered}$	0．P．+2.43 m	－13．4m	
	$\begin{gathered} \hline \text { 横断 } \\ \text { (一般部(2)) } \\ \hline \end{gathered}$	0．P．+2.43 m	$-4.7 \mathrm{~m}$	
	$\begin{gathered} \text { 横断 } \\ \text { (一般部③) } \end{gathered}$	0．P．+2.43 m	$-8.7 \mathrm{~m}$	
防潮堤 （盛土堤防）	横断（1）	$\begin{gathered} 0 . \text { P. }+2.43 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+14.80 \mathrm{~m} \end{gathered}$	－20．6m	
	横断（2）	$\begin{gathered} 0 . \mathrm{P} .+2.43 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+14.80 \mathrm{~m} \end{gathered}$	－17．6m	
防潮壁	第 2 号機海水ポンプ室	$\begin{gathered} \text { 0. P. }-11.50 \mathrm{~m} \sim \\ \text { 0. P. }-3.00 \mathrm{~m} \end{gathered}$	$-1.6 \mathrm{~m}$	
	第2号機放水立坑	$\begin{gathered} 0 . \text { P. }+4.50 \mathrm{~m} \sim \\ 0 . \text { P. }+12.50 \mathrm{~m} \end{gathered}$	$-8.3 \mathrm{~m}$	
	第 3 号機海水ポンプ室	$\begin{gathered} \text { 0. P. }-10.00 \mathrm{~m} \sim \\ \text { 0. P. }-6.50 \mathrm{~m} \end{gathered}$	$-2.2 \mathrm{~m}$	
	第 3 号機放水立坑	$\begin{gathered} 0 . \text { P. }-9.00 \mathrm{~m} \sim \\ \text { 0. P. }+5.00 \mathrm{~m} \end{gathered}$	$-2.8 \mathrm{~m}$	

注記＊：設計用地下水位－仮想豪雨を与えた解析水位

表3．3－22（4）土木構造物における設計用地下水位と仮想豪雨を与えた解析水位の比較

施設名称		設計用地下水位	設計用地下水位と 降雨を考慮した解析水位との差分＊ （断面平均）	備考
第 3 号機海水ポンプ室	縦断	$\begin{gathered} \text { 0.P. }-12.00 \mathrm{~m} \sim \\ \text { O. P. }+2.43 \mathrm{~m} \end{gathered}$	－4．1m	
	横断	$\begin{gathered} \text { 0.P. }-12.00 \mathrm{~m} \sim \\ \text { O.P. }-2.51 \mathrm{~m} \end{gathered}$	$-8.2 \mathrm{~m}$	
揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）	南北	$\begin{gathered} \text { 0. P. }-12.50 \mathrm{~m} \sim \\ \text { O. P. }-7.00 \mathrm{~m} \end{gathered}$	－1．1m	
	東西	$\begin{gathered} \text { 0. P. }-12.50 \mathrm{~m} \sim \\ \text { O.P. }-4.50 \mathrm{~m} \end{gathered}$	－2．2m	
第 3 号機補機冷却海水系放水ピット		$\begin{gathered} \hline \text { 0. P. }-14.00 \mathrm{~m} \sim \\ \text { 0. P. }-5.00 \mathrm{~m} \end{gathered}$	$-3.1 \mathrm{~m}$	
屋外排水路逆流防止設備 （防潮堤南側）		$\begin{gathered} 0 . \text { P. }+6.00 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+18.00 \mathrm{~m} \end{gathered}$	$-3.2 \mathrm{~m}$	

注記 $*$ ：設計用地下水位一降雨を考慮した解析水位
（9）水位が低い場合の影響確認

a．概要

防潮堤沈下対策等の影響を考慮した設計用地下水位は，液状化検討対象施設 を幅広く抽出するために，水位が高めに算出されるような解析条件のもと実施 する予測解析により，平常的な水位より高くなる。

設計用地下水位の設定方針に示したとおり，地下水位を高く設定することが保守的とならない可能性がある場合の耐震安全性への影響を確認するため，こ こでは三次元浸透流解析により将来の平常的な水位を予測し，設計用地下水位 との差を確認する。

解析は，観測水位との比較のために作成した①広域モデルをベースに，将来的な安全対策工事を踏まえた設備構成等を組込んだ「⑤平常水位予測モデル」 を作成し，既往の観測記録に基づく平均的な降雨条件を付与した定常解析によ り解析水位の分布を確認する。
b．解析条件
（5）平常水位予測モデルの概要を表3．3－23に示す。

表 3．3－23（5）平常水位予測モデルの概要

項目		（5）平常水位予測モデル
1．目的	a．目的	－工事完了後に想定される実際の水位（設計用地下水位より低い水位）を推定 すること
	b．アウトプ ットの活用	－耐震設計（水位が低い場合の影響検討）において参考情報として確認
2．解析コード		－GETFLOWS Ver．6．64．0．2
3．領域の設定	a．解析領域	－分水顗を山側境界とし（2）水位評価モデルを包絡する範囲
	b．格子数	- 平面格子数：約 33.4 万 - 総格子数：約 1600 万 - 格子寸法： $0.5 \sim 6 \mathrm{~m}$ 程度 （構造物近傍は最小 0.5 m 程度，山側領域は $3 \sim 6 \mathrm{~m}$ 程度）
4．解析種別		－定常解析
5．気象•蒸発散等	a．降雨条件	平均的な降雨条件を定常的に付与 $-3.57 \mathrm{~mm} /$ 日（観測降雨（2001－2018年）の日平均）
	b．蒸発散	定常状態：ハーモン法＊1 －非定常状態：熱収支法＊2
6.$\begin{aligned} & \text { モデル化 } \\ & \text { する状態 } \end{aligned}$	a．地形	－工事完了段階に対応した状態
	b．地盤	－工事完了段階に対応した状態（施設周辺の地盤改良を考慮）
	c．構造物	－工事完了段階に対応した状態
	d．ドレーン	－既設及び新設の全範囲を管路として考慮
7．境界条件		実態に則した設定 - 山側：閉境界 - 海側：平均潮位に水位固定 - ドレーン：ドレーン計画高に水位固定
8．透水係数		－試験結果等の平均値
9．有効間隙率		－文献値＊3
10．粗度係数		－文献値＊${ }^{4}$

注記 $* 1$ ：平均気温•平均降水量は発電所内観測値，日照時間は地下水ハンドブックによる
注記 $* 2$ ：検証期間における敷地内の気温，風速，日射時間等を参照する
注記 $* 3$ ：地下水ハンドブック（建設産業調査会），水理公式集（土木学会）等を参照し設定注記＊4：水理公式集（土木学会），河川砂防技術基準（国土交通省）等を参照し設定
c．解析結果
（a）建物•構築物
建物•構築物の設計用揚圧力と平常時水位の比較を，表3．3－24及び図3．3－ 64～図3．3－68に示す。

表3．3－24 建物•構築物＊1 における設計用地下水位と平常時水位の比較

施設名称	設計用 揚圧力	設計用地下水位と平 常時水位との比較＊2 （断面平均）	備考

注記 $* 1$ ：排気筒は設計用地下水位を地表面に設定することから本表には記載して いない。

注記 $* 2$ ：設計用揚圧力－平常時水位
注記 $* 3$ ：底面位置よりも平均揚圧力が小さいことから，水位が低い場合の影響評価においては基礎版に作用する揚圧力を考慮しない。

予測解析による地下水位平常時水位

図 3．3－64 原子炉建屋における平常時水位分布（東西）

図 3．3－65 原子炉建屋における平常時水位分布（南北）

図 3．3－66 制御建屋における平常時水位分布

図 3．3－67 第 3 号機海水熱交換器建屋における平常時水位分布

図 3．3－68 排気筒周辺における平常時水位分布（参考）
（b）土木構造物
土木構造物の設計用地下水位と平常時水位の比較を表3．3－25及び図3．3－69 ～図3．3－81に示す。（地表面に設計用地下水位を設定しているガスタービン発電設備軽油タンク室，防潮堤（鋼管式鉛直壁）のらちRC壁部，取放水路流路縮小工，屋外排水路逆流防止設備（防潮堤南側）は除く。）

表3．3－25（1）土木構造物における設計用地下水位と平常時水位の比較

| $\begin{array}{c}\text { 施設名称 }\end{array}$ | | $\begin{array}{c}\text { 設計用 } \\ \text { 地下水位 }\end{array}$ | $\begin{array}{c}\text { 設計用地下水位と } \\ \text { 平常時水位との差分 } \\ \text {＊} \\ \text {（断面平均）}\end{array}$ | 備考 |
| :---: | :---: | :---: | :---: | :---: |$]$

注記＊：設計用地下水位－平常時水位

表3．3－25（2）土木構造物における設計用地下水位と平常時水位の比較

施設名称		設計用地下水位	設計用地下水位と平常時水位との差分	備考
			（断面平均）	
取水路	曲がり部東西	$\begin{gathered} \text { 0.P. }-1.03 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+2.43 \mathrm{~m} \end{gathered}$	$-8.3 \mathrm{~m}$	
	漸拡部東西	$\begin{gathered} \text { 0.P. }-4.53 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	－7．6m	
海水 ポンプ室	縦断	$\begin{aligned} & \text { 0. P. }-8.50 \mathrm{~m} \sim \\ & \text { 0. P. }+14.00 \mathrm{~m} \end{aligned}$	－11．2m	
	横断	$\begin{gathered} \text { 0. P. }-8.50 \mathrm{~m} \sim \\ 0 . \text { P. }+2.43 \mathrm{~m} \end{gathered}$	$-5.8 \mathrm{~m}$	
$\begin{gathered} \text { 軽油 } \\ \text { タンク室 } \end{gathered}$	南北	0．P．-3.00 m	$-15.1 \mathrm{~m}$	
	東西	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ 0 . \text { P. }+6.50 \mathrm{~m} \end{gathered}$	－11．0m	
軽油 タンク室 （H）	南北	0．P．-3.00 m	－12．2m	
	東西	$\begin{gathered} \text { 0. P. }-3.00 \mathrm{~m} \sim \\ 0 . \text { P. }+6.50 \mathrm{~m} \end{gathered}$	－11．0m	
取水口 （貯留堰）	南北 （標準部）	0．P．+2.43 m	$-1.0 \mathrm{~m}$	朔望平均満潮位
	南北 （漸縮部）	0．P．+2.43 m	$-1.4 \mathrm{~m}$	朔望平均満潮位
復水貯蔵 タンク基礎	南北	0．P．-3.00 m	$-15.1 \mathrm{~m}$	
	東西	$\begin{gathered} 0 . \text { P. }-3.00 \mathrm{~m} \\ \sim 0 . \text { P. }+3.00 \mathrm{~m} \end{gathered}$	－11．8m	

注記＊：設計用地下水位－平常時水位

表3．3－25（3）土木構造物における設計用地下水位と平常時水位の比較

施設名称		設計用地下水位	設計用地下水位と平常時水位との差分 （断面平均）	備考
防潮堤 （鋼管式鉛 直壁）	$\begin{gathered} \text { 横断 } \\ \text { (岩盤部①) } \\ \hline \end{gathered}$	$\begin{gathered} 0 . \text { P. }+3.50 \mathrm{~m} \sim \\ 0 . \text { P. }+19.50 \mathrm{~m} \end{gathered}$	$-7.2 \mathrm{~m}$	
	$\begin{gathered} \hline \text { 横断 } \\ \text { (岩盤部②) } \end{gathered}$	$\begin{gathered} 0 . \text { P. }+6.00 \mathrm{~m} \sim \\ 0 . \text { P. }+18.00 \mathrm{~m} \end{gathered}$	$-13.7 \mathrm{~m}$	
	$\begin{gathered} \hline \text { 横断 } \\ \text { (一般部①) } \end{gathered}$	0．P．+2.43 m	－15．0m	
	$\begin{gathered} \hline \text { 横断 } \\ \text { (一般部(2)) } \\ \hline \end{gathered}$	0．P．+2.43 m	－9．8m	
	$\begin{gathered} \hline \text { 横断 } \\ \text { (一般部(3) } \\ \hline \end{gathered}$	0．P．+2.43 m	－12．0m	
	$\begin{gathered} \hline \text { 横断 } \\ \text { (一般部(4)) } \\ \hline \end{gathered}$	$\begin{gathered} 0 . \text { P. }+2.43 \mathrm{~m} \sim \\ 0 . \text { P. }+14.80 \mathrm{~m} \end{gathered}$	－20．9m	
防潮堤 （盛土堤防）	横断（1）	$\begin{gathered} 0 . \text { P. }+2.43 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+14.80 \mathrm{~m} \end{gathered}$	－19．1m	
防潮壁	第2号機海水ポンプ室	$\begin{gathered} \text { 0.P. }-11.50 \mathrm{~m} \sim \\ \text { O. P. }-3.00 \mathrm{~m} \end{gathered}$	$-5.1 \mathrm{~m}$	
	第2号機放水立坑	$\begin{gathered} 0 . \text { P. }+4.50 \mathrm{~m} \sim \\ 0 . \mathrm{P} .+12.50 \mathrm{~m} \end{gathered}$	$-16.3 \mathrm{~m}$	
	第3号機海水ポンプ室	$\begin{gathered} \text { 0.P. }-10.00 \mathrm{~m} \sim \\ \text { 0. P. }-6.50 \mathrm{~m} \end{gathered}$	$-3.9 \mathrm{~m}$	
	第3号機放水立坑	$\begin{gathered} \text { 0. P. }-9.00 \mathrm{~m} \sim \\ 0 . \text { P. }+5.00 \mathrm{~m} \end{gathered}$	$-7.5 \mathrm{~m}$	

注記 $*$ ：設計用地下水位－平常時水位

表3．3－25（4）土木構造物における設計用地下水位と降雨を考慮した解析水位の比較

施設名称		設計用地下水位	設計用地下水位と平常時水位との差分 （断面平均）	備考
第 3 号機海水ポンプ室	縦断	$\begin{gathered} \text { 0. P. }-12.00 \mathrm{~m} \sim \\ \text { O. P. }+2.43 \mathrm{~m} \end{gathered}$	－6．6m	
	横断	$\begin{gathered} \text { 0. P. }-12.00 \mathrm{~m} \sim \\ \text { O. P. }-2.51 \mathrm{~m} \end{gathered}$	－10．6m	
揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）	南北	$\begin{gathered} \text { 0. P. }-12.50 \mathrm{~m} \sim \\ \text { O.P. }-7.00 \mathrm{~m} \end{gathered}$	－2．6m	
	東西	$\begin{gathered} \text { 0. P. }-12.50 \mathrm{~m} \sim \\ \text { O. P. }-4.50 \mathrm{~m} \end{gathered}$	－3．5m	
第 3 号機補機冷却海水系放水ピット		$\begin{gathered} \text { 0. P. }-14.00 \mathrm{~m} \sim \\ \text { O. P. }-5.00 \mathrm{~m} \end{gathered}$	$-7.6 \mathrm{~m}$	

注記 $*$ ：設計用地下水位 - 平常時水位

図 3．3－69 原子炉機器冷却海水配管ダクトにおける設計用地下水位と平常時水位の比較
（横断）

図3．3－70（1）排気筒連絡ダクトにおける設計用地下水位と平常時水位の比較
（縦断）

図3．3－70（2）排気筒連絡ダクトにおける設計用地下水位と平常時水位の比較（横断（断面（1）））

図 3．3－70（3）排気筒連絡ダクトにおける設計用地下水位と平常時水位の比較（横断（断面（2）））

図 3．3－70（4）排気筒連絡ダクトにおける
設計用地下水位と平常時水位の比較（横断（断面（3）））

図3．3－70（6）排気筒連絡ダクトにおける設計用地下水位と平常時水位の比較（横断（断面（7）））

図3．3－71 軽油タンク連絡ダクトにおける
設計用地下水位と平常時水位の比較（東西）
（復水貯蔵タンク基礎の東西方向断面の設計用地下水位含む）

図 3．3－72（1）取水路における
設計用地下水位と平常時水位の比較
（縦断）

図3．3－72（2）取水路における
設計用地下水位と平常時水位の比較
（横断（標準部（1）））
（改良地盤に囲まれる箇所）

図 3．3－72（3）取水路における
設計用地下水位と平常時水位の比較
（横断（標準部（2）））
（改良地盤に囲まれる箇所以外）

図 3．3－72（4）取水路における
設計用地下水位と平常時水位の比較
（横断（標準部（3）））
（防潮堤を横断する箇所（1））

図3．3－72（5）取水路における
設計用地下水位と平常時水位の比較
（横断（標準部（4）））
（防潮堤を横断する箇所（2））

図3．3－72（6）取水路における
設計用地下水位と平常時水位の比較
（曲がり部）（南北）

図 3．3－72（7）取水路における
設計用地下水位と平常時水位の比較
（曲がり部）（東西）

図 3．3－72（8）取水路における
設計用地下水位と平常時水位の比較
（漸拡部）（東西）

図3．3－73（1）海水ポンプ室における
設計用地下水位と平常時水位の比較
（縦断）

図3．3－73（2）海水ポンプ室における
設計用地下水位と平常時水位の比較
（横断）

図 3．3－74 軽油タンク室における
設計用地下水位と平常時水位の比較
（南北）
（復水貯蔵タンク基礎の南北方向断面の設計用地下水位を含む）

凡 例

\qquad岩盤分類境界
度 層 境 界
\triangle 盛
\pm
砂 岩
頁 岩

図 3．3－75（1）軽油タンク室，軽油タンク室（H）における設計用地下水位と平常時水位の比較
（東西）

[^0]: ＊2 解析水位は，各エリア2基の揚水井戸から排水される（i）をベースとし，いずれかのエリアで片側の揚水井戸が機能を
 喪失した状態を「やや高い」，両方のエリアで片側の揚水井戸が機能を喪失した状態を「高い」と記載。

[^1]: 建設時工事計画認可時の地下水位
 予測解析による地下水位
 設計用地下水位

[^2]: 建設時工事計画認可時の地下水位
 予測解析による地下水位
 設計用地下水位

[^3]: 予測解析による地下水位設計用地下水位

 図 3．3－53（5）防潮壁の設計用地下水位（2号機放水立坑）
 （2号機放水立坑横断方向の地下水位分布（東西）（3）－③）（2／3）

