

図 11－3 制御建屋における仮想豪雨を与えた水位分布

図 11－4 第3号機海水熱交換器建屋における仮想豪雨を与えた水位分布
2.2 土木構造物

土木構造物（地表面に設計用地下水位を設定しているガスタービン発電設備軽油タンク室，防潮堤（鋼管式鉛直壁）のうちRC壁部及び取放水路流路縮小工は除く）の設計用地下水位と仮想豪雨を与えた解析水位の比較を図11－5～図11－18に示す。

図 11－5 原子炉機器冷却海水配管ダクトにおける設計用地下水位と仮想豪雨を与えた水位の比較
（横断）

図 11－6（1）排気筒連絡ダクトにおける
設計用地下水位と仮想豪雨を与えた水位の比較
（縦断）

図 11－6（2）排気筒連絡ダクトにおける
設計用地下水位と仮想豪雨を与えた水位の比較（横断（断面（1））

図 11－6（3）排気筒連絡ダクトにおける
設計用地下水位と仮想豪雨を与えた水位の比較（横断（断面（2）））
（参考）11－6
枠囲みの内容は防護上の観点から公開できません。

図 11－6（4）排気筒連絡ダクトにおける
設計用地下水位と仮想豪雨を与えた水位の比較（横断（断面（3）））

仮想豪雨を与えた地下水位の一部が設計用地下水位を上回っているが，岩盤内の構造物のため耐震評価上，影響なし
－－－－仮想豪雨を与えた地下水位
設計用地下水位
図 11－6（5）排気筒連絡ダクトにおける
設計用地下水位と仮想豪雨を与えた水位の比較（横断（断面（5）））

図 11－6（6）排気筒連絡ダクトにおける
設計用地下水位と仮想豪雨を与えた水位の比較（横断（断面（7）））

図 11－7 軽油タンク連絡ダクトにおける
設計用地下水位と仮想豪雨を与えた水位の比較（東西）
（復水貯蔵タンク基礎の東西方向断面の設計用地下水位含む）

設計用地下水位は仮想豪雨を与えた地下水位を概ね包絡している。
ーーーーー 仮想豪雨を与えた地下水位設計用地下水位

図 11－8（1）取水路における
設計用地下水位と仮想豪雨を与えた水位の比較
（縦断）

図 11－8（2）取水路における
設計用地下水位と仮想豪雨を与えた水位の比較
（横断（標準部（1）））
（改良地盤に囲まれる箇所）

図 11－8（3）取水路における
設計用地下水位と仮想豪雨を与えた水位の比較
(横断 (標準部②))
（改良地盤に囲まれる箇所以外）

図 11－8（4）取水路における
設計用地下水位と仮想豪雨を与えた水位の比較
（横断（標準部③））
（防潮堤を横断する箇所（1））

凡 例

図 11－8（5）取水路における
設計用地下水位と仮想豪雨を与えた水位の比較
（横断（標準部（4））
（防潮堤を横断する箇所（2））

図 11－8（6）取水路における
設計用地下水位と仮想豪雨を与えた水位の比較
（曲がり部）（南北）
（参考）11－11

仮想豪雨を与えた地下水位

設計用地下水位

> 図 11-8 (7) 取水路における

設計用地下水位と仮想豪雨を与えた水位の比較
（曲がり部）（東西）

図 11－8（8）取水路における
設計用地下水位と仮想豪雨を与えた水位の比較
（漸拡部）（東西）

図 11－9（1）海水ポンプ室における
設計用地下水位と仮想豪雨を与えた水位の比較
（縦断）

図 11－9（2）海水ポンプ室における
設計用地下水位と仮想豪雨を与えた水位の比較
（横断）

ーーーー 仮想豪雨を与えた地下水位設計用地下水位

図 11－10 軽油タンク室における
設計用地下水位と仮想豪雨を与えた水位の比較
（南北）
（復水貯蔵タンク基礎の南北方向断面の設計用地下水位を含む）

図 11－11（1）軽油タンク室，軽油タンク室（H）における
設計用地下水位と仮想豪雨を与えた水位の比較
（東西）
（参考）11－14

凡 例

図 11－11（2）軽油タンク室（H）における設計用地下水位と仮想豪雨を与えた水位の比較
（南北）

図 11－12（1）取水口（標準部）における
設計用地下水位と仮想豪雨を与えた水位の比較
（南北）

図 11－12（2）取水口（漸縮部）における設計用地下水位と仮想豪雨を与えた水位の比較
（南北）

図 11－13（1）防潮堤（鋼管式鉛直壁）における設計用地下水位と仮想豪雨を与えた水位の比較

$$
\begin{aligned}
& \text { (岩盤部①) } \\
& \text { (参考) 11-16 }
\end{aligned}
$$

仮想豪雨を与えた地下水位
設計用地下水位
図 11－13（2）防潮堤（鋼管式鉛直壁）における
設計用地下水位と仮想豪雨を与えた水位の比較
（岩盤部（2））
（参考）11－17

ーーーー 仮想豪雨を与えた地下水位
設計用地下水位
図 11－13（3）防潮堤（鋼管式鉛直壁）における
設計用地下水位と仮想豪雨を与えた水位の比較
（一般部（1））

設計用地下水位は仮想豪雨を与えた地下水位を概ね包絡している。

ーーーー 仮想豪雨を与えた地下水位
設計用地下水位
図 11－13（4）防潮堤（鋼管式鉛直壁）における
設計用地下水位と仮想豪雨を与えた水位の比較（一般部（2））

ーーーー 仮想豪雨を与えた地下水位設計用地下水位

図 11－13（5）防潮堤（鋼管式鉛直壁）における
設計用地下水位と仮想豪雨を与えた水位の比較（一般部（3））

＊：鋼管杭下方の C_{L} 級岩盤部は MMR により置換

ーーーー 仮想豪雨を与えた地下水位
設計用地下水位
図 11－13（6）防潮堤（鋼管式鉛直壁）における
設計用地下水位と仮想豪雨を与えた水位の比較（一般部（4））

ーーーー 仮想豪雨を与えた地下水位
設計用地下水位

図 11－13（7）防潮堤（盛土堤防）における
設計用地下水位と仮想豪雨を与えた水位の比較（横断（1）

図 11－14（1）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （2号機海水ポンプ室）（ $1 / 3$ ）

ーーーーー 仮想豪雨を与えた地下水位設計用地下水位

図 11－14（2）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （2号機海水ポンプ室）（2号機海水ポンプ室横断方向の地下水位分布（東西）（1）－①）（2／3）

図 11－14（3）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （2号機海水ポンプ室）（2号機海水ポンプ室横断方向の地下水位分布（南北）（2）－（2））（3／3）

図 11－14（4）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （2号機放水立坑）（ $1 / 3$ ）

＊：鋼管杭下方の C C 彞岩盤部は M MR により置換
ーーーー 仮想豪雨を与えた地下水位
設計用地下水位
図11－14（5）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （2号機放水立坑）（2号機放水立坑横断方向の地下水位分布（東西）（3）－（3））（2／3）


```
ーーーー 仮想豪雨を与えた地下水位
設計用地下水位
```

図 11－14（6）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （2号機放水立坑）（2 号機放水立坑横断方向の地下水位分布（南北）（4）－4）（3／3）

図 11－14（7）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較
（3号機海水ポンプ室）（1／2）

＊：铜管杭下方の回維岩盤部は MMRにより置換

ーーーー	仮想豪雨を与えた地下水位 設計用地下水位

図 11－14（8）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較
（3号機海水ポンプ室）（3号機海水ポンプ室横断方向の地下水位分布（南北（5）－（5）））（2／2）

＊：鋼管杭下方の Cl級岩盤部は MMR により置換
ーーーーー 仮想豪雨を与えた地下水位設計用地下水位

図 11－14（9）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （3号機放水立坑）（ $1 / 3$ ）

＊：鋼管杭下方の C_{L} 級岩盤部はMMR により置換
ーーーーー 仮想豪雨を与えた地下水位
設計用地下水位
図 11－14（10）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （3号機放水立坑）（3号機放水立坑横断方向の地下水位分布（東西）（5）－5）（2／3）

図 11－14（11）防潮壁における設計用地下水位と仮想豪雨を与えた水位の比較 （3号機放水立坑）（3号機放水立坑横断方向の地下水位分布（南北））（3／3）

図 11－15（1）第3号機海水ポンプ室における設計用地下水位と仮想豪雨を与えた水位の比較
（縦断）

図 11－15（2）第3号機海水ポンプ室における設計用地下水位と仮想豪雨を与えた水位の比較
（横断）

ーーーー 仮想豪雨を与えた地下水位設計用地下水位

図 11－16（1）揚水井戸における設計用地下水位と仮想豪雨を与えた水位の比較（南北）

ーーーーー 仮想豪雨を与えた地下水位
設計用地下水位
図 11－16（2）揚水井戸における設計用地下水位と仮想豪雨を与えた水位の比較（東西）

$\begin{array}{ll}\text { ーーーー } & \begin{array}{l}\text { 仮想豪雨を与えた地下水位 } \\ \text { 設計用地下水位 }\end{array}\end{array}$
図 11－17 第 3 号機補機冷却海水系放水ピットにおける
設計用地下水位と仮想豪雨を与えた水位の比較

第4速度層

ーーーーー 仮想豪雨を与えた地下水位設計用地下水位

図 11－18 屋外排水路逆流防止設備（防潮堤南側）における設計用地下水位と仮想豪雨を与えた水位の比較
（参考資料 12）3次元浸透流解析による防潮堤沈下対策の影響確認結果

1．概要

3 次元浸透流解析を用いた予測解析結果を参照し設定する設計用地下水位について，防潮堤沈下対策完了後も地下水位観測を継続し，設計用地下水位の妥当性を検証する方針としている。

この水位観測計画を検討するにあたり，防潮堤沈下対策が地下水位分布へ与える影響を確認 した。
なお，本解析は概略的なモデルによるものであり，得られた地下水位分布は，設計用地下水の設定において直接参照するものではない。

2．解析条件等

2.1 解析領域•境界条件等

解析領域は（2）水位評価モデルと同様（0．P．＋ 14.8 m 盤及び周辺の法面）として，領域内の構造物をモデル化し，敷地造成時における掘削•埋戻しを反映する。

地下水位低下設備は，既設の全てのドレーンをモデル化し，新設するドレーン，ポンプ は考慮しない。また，防潮堤下部は，沈下対策前の状態（防潮堤下に盛土•旧表土が存在）及び沈下対策後の状態（防潮堤下の地盤改良•前面の置換コンクリートは有）の 2 ケ ースを実施し，防潮堤沈下対策の影響確認を行う。

初期条件は淡水飽和状態とし，境界条件として陸域は地表面に静水圧固定境界，海域は H．W．L．（ 0. P．+2.43 m ）に静水圧固定境界を設定する。降水量条件は入力なし（定常解析） とする。 3 次元浸透流解析の範囲等を図 12－1 に示す。

（a）断面

（b）平面
図 12－1 3 次元浸透流解析の範囲等
2.2 透水係数
（2）水位評価モデルと同様に設定する。透水係数の一覧を表 12－1に示す。

表 12－1 透水係数一覧

		透水係数（m／sec）
改良地盤・セメント改良土		2×10^{-7}
盛土•旧表土		3×10^{-5}
第2号機周辺以南	岩盤 I	7×10^{-7}
	岩盤II	5×10^{-7}
第 3 号機周辺以北	岩盤 I	2×10^{-7}
	岩盤II	1×10^{-7}
構造物（MMR 含む）		－（不透水）

2.3 解析モデル

防潮堤の沈下対策による影響を確認するモデルの概要を図 12－2 に示す。両モデルの違い は防潮堤の沈下対策の有無のみであり，他の条件は同一である。表 12－2 に解析条件一覧を示す。

図 12－2 防潮堤沈下対策の有無とモデルの設定

表 12－2 解析条件一覧

項目	【参考】（2）水位評価モデル	防潮堤沈下対策による影響確認
1．目的	- 設計用地下水位の設定において参照 - 保守的な条件設定により設計裕度確保	－防潮堤沈下対策による 0．P．＋14．8m 盤の地下水位分布への影響を確認
2．解析コード	GETFLOWS Ver．6．64．0．2	
3a．解析領域	0．P．+14.8 m 盤及び 0．P．+14.8 m 周辺の法面	－同左（防潮堤沈下対策の有無を考慮） （沈下対策無） （沈下対策有）
3b．格子数	- 平面格子数：約 16.7 万 - 総格子数：約 770 万 - 格子寸法：$\square 0.5 \sim 2 \mathrm{~m}$ 程度 （構造物近傍は最小 $\square 0.5 \mathrm{~m}$ 程度）	
4．解析種別	－定常解析	－定常解析
6a．モデル（地形）	－安全対策工事完了段階に対応した状態	
6b．／1（地盤）	－安全対策工事完了段階に対応した状態（施設周辺の地盤改良を考慮）	
6c．／（構造物）	－安全対策工事完了段階に対応した状態	
6d．\quad（ドレーン）	－既設•新設のうち信頼性が確保された範囲を管路扱い - 信頼性の確保状況に応じ透水層扱い - 機能喪失モードを仮定	－既設の全範囲を管路として考慮 （新設ドレーンは非考慮）
7．境界条件	- 地下水位を保守的に算出するよう設定 - 山側：地表面に水位固定 - 海側：H．W．L に水位固定（地中連壁の影響は保守的に考慮しない） ードレーン：ドレーン計画高	
8．透水係数	水位が保守的に算出されるよう設定（岩盤I を－1o）	
9．有効間隙率	－文献値＊${ }^{1}$	
10．粗度係数	－	

[^0]3．解析結果

3.1 定常状態（現況）

現況（防潮堤の沈下対策前であり，防潮堤下に盛土•旧表土が存在）に対応した自由地下水位の等高線図を図 $12-3$ に示す。

解析領域境界より建屋周辺に向かつて地下水位は緩やかに下降しており，既設の地下水位低下設備による水位低下効果が確認できる。また，防潮堤海側から防潮堤山側に向かつ て地下水位は緩やかに下降しており，防潮堤下部の地盤を通じて敷地側へ地下水が移動し ている状況が確認できる。

図 12－3 3 次元浸透流解析結果（定常状態，現況）
3.2 定常状態（沈下対策後）

防潮堤下部の沈下対策後（防潮堤下の地盤改良•前面の置換コンクリート有）に対応し た自由地下水位の等高線図を図 12－4に示す。

防潮堤海側より防潮堤山側に向から地下水位は，防潮堤付近で不連続となっていること から，防潮堤の沈下対策により海側から敷地内への地下水の移動が抑制されている状況が確認できる。

図 12－4 3 次元浸透流解析結果（定常状態，沈下対策後）

3.3 定常状態（沈下対策前後の差分）

防潮堤下部の沈下対策前後における自由地下水位の差分を図 12－5 に示す。
防潮堤の沈下対策による地下水の遮断効果により，防潮堤海側の地下水位は地下水位低下設備の影響を受けなくなることから，対策前より相対的に上昇する。また，防潮堤山側 については，沈下対策による影響範囲は海寄りの範囲に限定される。
また，比較的地下水位低下設備が近い鋼管式鉛直壁（一般部）周辺では，海側からの海水供給が減ることにより，対策前より地下水位は下降する。一方，比較的地下水位低下設備が遠い盛土堤防周辺では対策前より地下水位が上昇する。このことは，防潮堤山側の設計用地下水位として鋼管式鉛直壁（一般部）をH．W．L．，盛土堤防を地表面としていること と整合的な結果となっている。

図 12－5 防潮堤下部の沈下対策前後における自由地下水位差分
（参考資料13）地盤改良における補足

1．地盤改良の概要
1.1 地盤改良工法の種類と適用地盤

地盤改良工法については，文献（陸上工事における深層混合処理工法設計•施工 マニュアル改訂版，（財）土木研究センター，平成 16 年 3 月）では，以下の項目に より分類づけられる。
（1）対策工法を必要とする理由，目的，期待する効果
（2）地盤の性状
（3）構造物の性質
（4）現場条件，周辺環境

地盤改良工法の種類と適用地盤•効果を表1－1に示す。
表 1－1 地盤改良工法の種類と適用地盤•効果

	工法					工法の効果					
		榬性土	刮質士	結珄土䟞質士 の互㗕	有蟃 賈士	汰下対萝		安定対第			
						$\begin{array}{\|l\|l\|} \hline \text { 踩注 } \\ \text { F层淮 } \end{array}$	$\begin{aligned} & \text { 法下量 } \\ & \text { 浗少 } \end{aligned}$		㟋度㙼加促准		
	表庿渄水工法 サントマット工法制設材工法浅層煺合処理工法	0			0			0	0	0	
榾愌工法	弦相荿澳工法	\bigcirc		0	0		\bigcirc	0		0	
押文䓵土土法	押文熟士工法轎针面工法	0		0	0			0		0	
	潄增峨倩工法段階載書工法	0		0	0			0			
城荷重工法	蓝土荷重秿茶工法大気压䤦荷工法地下水栠下工法	\bigcirc		\bigcirc	0	0			0		
$\begin{aligned} & \text { K-チカル } \\ & \text { Fレーンエ涬 } \end{aligned}$	$\begin{aligned} & \text { HンFFVRーン工法 } \\ & \text { ボート系FLーン工法 } \end{aligned}$	\bigcirc		0	\bigcirc	0		\bigcirc	\bigcirc		
$\begin{aligned} & \text { サントコンス } \\ & \text { クション工法 } \end{aligned}$	$\begin{aligned} & \text { サントコンパタンョ } \\ & \text { ンハイルエ法 } \end{aligned}$	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc		\bigcirc	\bigcirc
楮園め工法			0				0			0	\bigcirc
國暂工法		0	0	\bigcirc	0		\bigcirc	0	0	\bigcirc	0
锞造物による 工法	矢板工陆打敖夕イエ法 スラプエ法 カルハートエ法	\bigcirc	\bigcirc	\bigcirc	0		0	0		\bigcirc	

（时）土木研究センター，平成16年3月）

表1－1に示す工法のらち，女川原子力発電所で適用している地盤改良工法として は，適用地盤や工法の効果とも幅広い「固結工法」を基本としている。固結工法のう ち，主に採用した工法は深層混合処理工法（高圧噴射撹汼工法）である。

この他，置換工法として，取水口脇については，捨石層を置換するためにMMR＊置換工法を採用した。

注記＊：マンメイドロック

1．2 地盤改良の施工方法
女川原子力発電所で適用している地盤改良の施工方法の概要を表1－2 に示す。

表 1－2 施工方法の概要

工 法	概 要
高圧噴射撹拌 工法	高圧でセメントミルクを吐出し，原地盤を切削•撹拌することで改良体 を造成する工法。地上構造物及び埋設構造物がある，開削が困難な箇所に て採用。
MM R 置換工法＊	原地盤を開削後に MMR を構築することで改良体を造成する工法。構造物周辺に捨石層が存在する等，高圧噴射撹抖工法では改良が困難な箇所にて採用。 （1）取水口脇に捨石層が存在 （3）掘削箇所にコンクリートを打設

注記 $*: ~$ 取水口脇の捨石層を置換するために実施。

2．各施設における地盤改良体の概要
地盤改良体を設置する施設の平面配置図を図2－1に，地盤改良の目的を表2－1に示す。表2－1に示すとおり，地盤改良の主な目的は，構造物の支持又は変形抑制に区別される。各施設の地盤改良体の平面配置図及び配置図を図2－2～図2－14に示す。

図 2－1 地盤改良体を設置する施設の平面配置図

表 2－1 地盤改良の概要

対象施設		地盤改良	
		工法	目的
土 構 造 物 津 波 防 護 施 設	取水口	MMR置換工法	変形抑制
	取水路	高圧噴射撹汼工法	変形抑制
	海水ポンプ室		変形抑制
	原子炉機器冷却海水配管ダクト		変形抑制
	防潮堤（鋼管式鉛直壁）		支持地盤•変形抑制
	防潮堤（盛土堤防）		支持地盤
	防潮堤（第 3 号機取水路横断部）		変形抑制（第 3 号機取水路）
	防潮壁（第 2 号機海水ポンプ室）		変形抑制
	防潮壁（第 2 号機放水立坑）		変形抑制
	防潮壁（第3号機海水ポンプ室）		変形抑制
	防潮壁（第 3 号機放水立坑）		変形抑制

図 2－2 地盤改良体の配置図（取水口，取水路，海水ポンプ室，原子炉機器冷却海水配管ダクト）

図 2－3 地盤改良体の配置図（取水口，A－A 断面）

図 2－4 地盤改良体の配置図（取水路，B－B 断面）

図 2－5 地盤改良体の配置図（海水ポンプ室横断，C－C 断面）

図2－6 地盤改良体の配置図（海水ポンプ室縦断，D－D 断面）

図 2－7 地盤改良体の配置図（原子炉機器冷却海水配管ダクト，E－E 断面）

図 2－8 地盤改良体の平面配置図（防潮堤，防潮壁，防潮堤（第3号機取水路横断部））

図 2－9 地盤改良体の配置図（防潮堤（鋼管式鉛直壁）一般部，F－F 断面）

図 2－10 地盤改良体の配置図（防潮堤（盛土堤防），G－G 断面）

図 2－11 地盤改良体の配置図（防潮壁（第2号機海水ポンプ室），H－H 断面）

図 2－12 地盤改良体の配置図（防潮壁（第 2 号機放水立坑），I－I 断面）

図 2－13 地盤改良体の配置図
（防潮壁（第 3 号機海水ポンプ室），防潮堤（第 3 号機取水路横断部），J－J 断面）

図 2－14 地盤改良体の配置図（防潮壁（第 3 号機放水立坑），K－K 断面）

3．地盤改良体の品質確認方針
3.1 品質確認項目

地盤改良体の品質確認項目を表3－1に示す。
防潮堤（鋼管式鉛直壁）及び防潮堤（盛土堤防）に設置する改良地盤（高圧噴射撹拌工法）は，支持地盤としての役割を有することから強度及び剛性を品質確認項目とする。その他の箇所に設置する改良地盤（高圧噴射撹抖工法）は，変形抑制と しての役割を有するため，剛性を品質確認項目とする。改良地盤（高圧噴射撹拌工法）の目的及び構造形式に係る分類を表3－2に示す。

なお，MMR置換工法については，開削及びコンクリートによる置換であり，構造物同様，コンクリート標準示方書に基づいた品質管理を行うことで所定の品質を確保する。

表 3－1 地盤改良体の品質確認項目

対象施設		目的	品質確認項目
$\begin{aligned} & \text { 土 } \\ & \text { 木 } \\ & \text { 㮒 } \\ & \text { 造 } \\ & \text { 物 } \\ & \text { 津 } \\ & \text { 波 } \\ & \text { 防 } \\ & \text { 謢 } \\ & \text { 設 } \end{aligned}$	取水口	変形抑制	剛性
	取水路	変形抑制	剛性
	海水ポンプ室	変形抑制	剛性
	原子炉機器冷却海水配管ダクト	変形抑制	剛性
	防潮堤（鋼管式鉛直壁）	支持地盤•変形抑制	強度及び剛性
	防潮堤（盛土堤防）	支持地盤	強度及び剛性
	防潮堤（第 3 号機取水路横断部）	変形抑制（第 3 号機取水路）	剛性
	防潮壁（第 2 号機海水ポンプ室）	変形抑制	剛性
	防潮壁（第 2 号機放水立坑）	変形抑制	剛性
	防潮壁（第 3 号機海水ポンプ室）	変形抑制	剛性
	防潮壁（第 3 号機放水立坑）	変形抑制	剛性

表 3－2（1）改良地盤（高圧噴射撹抖工法）の目的及び構造形式に係る分類（1／2）

表 3－2（2）改良地盤（高圧噴射撹抖工法）の目的及び構造形式に係る分類（2／2）

目的	変形抑制	
構造 形式		
対象 施設	取水口，取水路，海水ポンプ室，原子炉機器椧却海水配管ダクト，防潮堤 （第3号機取水路横断部）	防潮堤（鋼管式鉛直壁），防潮壁（第 2 号機海水ポンプ室，第2号機放水立坑，第 3 号機海水ポンプ室，第 3 号機放水立坑）

3.2 品質確認準拠基準について

地盤改良工法，設置箇所及び構造物の支持機能の有無に応じて適切な基準•指針 を適用する。

深層混合処理工法の基準•指針として一般的な文献を表3－3に示す。
女川原子力発電所における深層混合処理工法は，表 3－2 に示す支持地盤及び変形抑制を目的とした地盤改良のいずれも高圧噴射撹拌工法であり，本工法の品質管理 に係る詳細な記載がされている建築センター指針を適用する。

なお，他基準•指針における考え方も参考にして品質確認を行う。

表 3－3 地盤改良工法の基準•指針（深層混合処理工法）

基準•指針名	基準略称
2018 年版 建築物のための改良地盤の設計及び品質管理指針 —セメント系固化材を用いた深層•浅層混合処理工法一，日本 建築センター	建築センター指針

3.3 品質確認試験

3．3．1 試験頻度

深層混合処理工法に対する諸基準•指針における必要調査箇所数を表3－4に示 す。改良地盤（高圧噴射撹抖工法）における品質確認試験の頻度は，表3－4に示 す建築センター指針の必要調査箇所数を満足するように，各構造物の改良地盤の施工数量に応じて設定する。

表 3－4 諸基準•指針における必要調査箇所数（深層混合処理工法）

基準略称	試験頻度の目安
建築センター指針	検査対象層（改良範囲内の各土質）に対して，100本の改良コラ ムに 1 箇所以上かつ 1 検査対象群に 1 箇所以上。
（以下参考）	
建築基礎指針	改良体 100 本ごとに 1 本以上。
J E A C 4616	改良柱 300 本ごとに 1 本以上。
陸上工事マニュアル	設計強度ごとに改良体 500 本未満は 3 本 $\times 3$ 深度， 500 本以上は 250 本ごとに 1 本追加。
港湾•空港マニュアル	改良土量 $10000 \mathrm{~m}^{3}$ ごとに 1 本程度。

3．3．2 試験方法

（1）品質確認試験及び基準値
各構造物において実施する改良地盤（高圧噴射撹抖工法）の品質確認試験及び基準値を表 3－5に示す。

剛性については，解析上主たる物性値である動せん断弾性係数 G を を，PS 検層 により確認する $\left(G_{0}=\rho V S^{2}\right)$ こととし，$P S$ 検層から得られる G_{0} の平均値を確認す る。 G_{0} の基準値については，耐震評価の中で実施する動的解析においてばらつき を考慮することを踏まえ，PS 検層から得られる G_{0} の平均値が解析用物性値（平均）－σ 以上であることを確認する。

なお，剛性の品質確認試験は，改良地盤を設置する全ての構造物において実施 する。

防潮堤の改良地盤については，支持地盤としての役割を有し，設置変更許可段階において改良地盤の強度を使用した地盤の安定性評価を実施していることを踏 まえ，強度の確認も行うこととし，試験結果から得られる強度が解析用物性値以上であることを確認する。

強度の確認においては，建築センター指針及び他基準•指針において一軸圧縮強度を指標としていることから，その考え方に基づき一軸圧縮強度を確認するこ ととする。

ただし，女川原子力発電所においては，改良地盤の強度特性としてせん断強度 $\tau 0$ 及び内部摩擦角 ϕ を設定していることから，せん断強度 $\tau 0$ 及び内部摩擦角 ϕ と一軸圧縮強度の相関関係を使用し，試験から求めた一軸圧縮強度 q_{u} より確認 する。

せん断強度（ $\left.\tau_{0}, \quad \phi\right)$ と一軸圧縮強度 q_{u} の相関関係については『（2）せん断強度と一軸圧縮強度の相関について』に示す。

また，防潮堤の改良地盤においては，設置変更許可申請時に物性ばらつき（平均－σ 強度）を考慮した地盤の安定性評価も実施していることから，平均－σ 強度 についても確認する。

引張強度 σ_{t} については，岩石の引張強さ試験により確認することとし，岩石 の引張強さ試験から得られる引張強度 σ_{t} が，解析用物性値以上であることを確認する。

また，引張強度 σ_{t} についても，せん断強度同様，平均 $-\sigma$ 強度について確認す る。

表 3－5 改良地盤（高圧噴射撹汼工法）の品質確認項目及び品質確認試験

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{品質確認項目} \& \multicolumn{2}{|r|}{解析用物性値} \& 品質確認試験 \& 基準値 \\
\hline \multirow{2}{*}{\begin{tabular}{l}
剛性 \\
（共通）
\end{tabular}} \& \multirow{2}{*}{動せん断弾性係数 \(G_{0}\)} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
1840 \mathrm{~N} / \mathrm{mm}^{2}
\] \\
（地下水位以浅）
\end{tabular}} \& \multirow{2}{*}{PS 検層 （JGS 1122）} \& \begin{tabular}{l}
\(\mathrm{G}_{0}\) の平均値 \(\geqq 1150 \mathrm{~N} / \mathrm{mm}^{2}\) \\
（解析用物性値（平均）－\(\sigma\) ）
\end{tabular} \\
\hline \& \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
1940 \mathrm{~N} / \mathrm{mm}^{2}
\] \\
（地下水位以深）
\end{tabular}} \& \& \begin{tabular}{l}
\(\mathrm{G}_{0}\) の平均値 \(\geqq 1210 \mathrm{~N} / \mathrm{mm}^{2}\) \\
（解析用物性値（平均）\(-\sigma\) ）
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
強度 \\
（防潮堤）
\end{tabular}} \& せん 断 強 度 \(\left(\tau_{0}, \phi\right)\) \& \begin{tabular}{c}
\(\tau_{0} 0\) \\
\hline
\end{tabular} \& \(1.39 \mathrm{~N} / \mathrm{mm}^{2}\)

22.11° \& | 一軸圧縮試験 |
| :--- |
| （JIS A 1216） | \& | q_{u} の平均値 $\geqq 4.1 \mathrm{~N} / \mathrm{mm}^{2}$ |
| :--- |
| （解析用物性値 $\tau_{0}=1.39 \mathrm{~N} / \mathrm{mm}^{2}$ に相当する一軸圧縮強度） |
| ＊：q_{u}（平均 $-\sigma$ ）$\geqq 4.1 \mathrm{~N} / \mathrm{mm}^{2}$（解析用物性値（平均）$-\sigma=1.38 \mathrm{~N} / \mathrm{mm}^{2}$ に相当する一軸圧縮強度）も確認 |

\hline \& 引張強度 $\sigma_{\text {t }}$ \& \multicolumn{2}{|l|}{$0.65 \mathrm{~N} / \mathrm{mm}^{2}$} \& | 岩石の引張強さ試験方法 |
| :--- |
| （JIS M 0303） | \& | σ_{t} の平均値 $\geqq 0.65 \mathrm{~N} / \mathrm{mm}^{2}$ |
| :--- |
| （解析用物性値） $\begin{gathered} \text { *: } \sigma \mathrm{t} \text { (平均 }-\sigma) \geqq 0.45 \mathrm{~N} / \mathrm{mm}^{2} \text { (解 } \\ \text { 析用物性値 (平均) }-\sigma \text {) も確認 } \\ \hline \end{gathered}$ |

\hline
\end{tabular}

（2）せん断強度と一軸圧縮強度の相関について
試験施工により得られた地盤改良体の三軸圧縮試験から算出したせん断強度 （ $\left.\tau_{0}, ~ \phi\right)$ と，一軸圧縮強度 q_{u} の関係を図3－1に示す。図3－1（a）より，せん断強度 $\tau 0$ と一軸圧縮強度 q_{u} は下式の関係となる。
$\tau_{0}=0.343 \times q_{u}$

また，図 3－1（b）より内部摩擦角 ϕ は一軸圧縮強度 q_{u} に依存しないことを確認 している。

以上より，改良地盤のせん断強度は，せん断強度 τ_{0} に相当する一軸圧縮強度 qu_{u} が，基準値を満足することを確認する。

図 3－1 せん断強度（ $\left.\tau_{0}, \quad \phi\right)$ と一軸圧縮強度 q_{u} の相関
（3）基準値を下回った場合の対応
品質確認試験の中で，設定した基準値を下回った場合の対応として，基準値を下回った原因の考察（局所的な地盤条件等）を行った上で，必要に応じて補修を行う。

4．新規に施工した改良地盤の品質確認結果
改良地盤を新規に施工する構造物のらち，データを一部取得できており，かつ支持地盤として役割があり，品質確認項目として強度及び剛性を確認する防潮堤（鋼管式鉛直壁）の品質確認結果を以下に示す。
4.1 品質確認位置

防潮堤（鋼管式鉛直壁）における改良地盤の品質確認位置を図 4－1 に，改良地盤 の施工数量と必要調査箇所数との比較を表 4－1 に示す。

防潮堤（鋼管式鉛直壁）の改良地盤の品質確認においては，図 4－1 に示すとおり，防潮堤の改良地盤範囲の中から構造物配置も踏まえた上で，おおむね汀線方向（南北方向）に均等な配置となるように，全 16 箇所（品質管理断面（1）～品質管理断面（16） での調査を実施する。

また，表 4－1 に示すとおり，防潮堤（鋼管式鉛直壁）の品質確認における調査箇所数は，建築センター指針による必要調查箇所数の目安を満足するように選定する。

図 4－1 防潮堤（鋼管式鉛直壁）における改良地盤の品質確認位置

表 4－1 防潮堤（鋼管式鉛直壁）における改良地盤の施工数量と必要調査箇所数

対象構造物		防潮堤
種別		高圧噴射摚拌工法
適用基準		建築センター指針
施工 数量	施工数量（ m^{3} ）	約 68，000
	施工本数（本）	320
（A）	調査箇所数（箇所）	16
（B）	必要調査箇所数（箇所）	4
判定（A）＞（B）		\bigcirc

4．2 品質確認結果

防潮堤（鋼管式鉛直壁）における改良地盤の調査箇所のうち，データを取得でき ている品質確認断面（4）について品質確認結果を示す。品質確認断面（4）の断面図及び試料採取位置の深度分布を図4－1 に示す。

品質確認結果を表 4－2 及び表 4－3 に示す。データを取得できている改良地盤につ いては，品質確認結果より基準値を満足していることを確認した。

また，改良地盤施工後のボーリングコア採取位置を図 4－2 に，ボーリングコア写真を図 4－3 に示す。図4－3 に示すとおり，改良地盤施工箇所は十分改良できており， また，既設改良地盤と追加改良地盤の境界についても密着していることが確認でき る。

なお，その他の品質確認断面については，改良地盤施工後に順次試験を実施し，品質確認を行う。

図 4－1 品質確認断面（4）の断面図及び試料採取位置の深度分布（一軸圧縮強度試験の例）

表 4－2（1）品質確認断面（4）における改良地盤の品質確認結果（一軸圧縮強度）

対象 構造物	種別	試料数 （本）	品質確認結果（ 一軸圧縮強度 q_{u} ）			基準値$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\text { 平均 }-\sigma>$ 基準値
			平均値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	標準偏差 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 平均 }-\sigma \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$		
防潮堤	高圧噴射撹抖工法	25	11.00	5.13	5.88	4． 1	OK

表 4－2（2）品質確認断面（4）における改良地盤の品質確認結果（引張強度）

対象 構造物	種別	試料数 （本）	品質確認結果（引張強度 σ_{t} ）			基準値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\text { 平均 }-\sigma>$ 基準値
			平均値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	標準偏差 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 平均 }-\sigma \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$		
防潮堤	高圧噴射撹抖工法	25	1． 14	0.51	0.63	0． 45	OK

表 4－3 品質確認断面（4）における改良地盤の品質確認結果（剛性）

対象	種別	試料数＊ （箇所）	品質確認結果 （動せん断弾性係数 G_{0} ）			基準値$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	平均値＞基準値
構造物			平均値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	標準偏差 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 平均 }-\sigma \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$		
防潮堤	高圧噴射撹抖工法	20	4025	－	－	1210	OK

注記＊：PS 検層の測定区間長1mを一つの試料数と見なす。

図4－2 ボーリングコア採取位置

図 4－3（1）ボーリングコア写真（No．249）

図 4－3（2）ボーリングコア写真（No．280）
（参考資料1 4）液状化強度試験の詳細について
1．盛土•旧表土のボーリング柱状図・コア写真

表 1－1 盛土•旧表土のボーリング一覧

Br孔名	盛土	旧表土	液状化強度試験 との対応
PB－1	\bigcirc	－	－
PB－2	\bigcirc	－	－
PB－3	\bigcirc	－	－
PB－4	\bigcirc	－	－
25BW－1	\bigcirc	－	－
25BW－4	\bigcirc	－	－
25BW－5	\bigcirc	－	－
25BW－6	\bigcirc	\bigcirc	－
25BW－7	\bigcirc	－	－
25BW－8	\bigcirc	\bigcirc	－
25BW－9	\bigcirc	\bigcirc	－
25BW－10	\bigcirc	\bigcirc	－
25BW－11	\bigcirc	\bigcirc	－
25BW－12	\bigcirc	\bigcirc	－
25BW－13	\bigcirc	\bigcirc	－
25BW－14	\bigcirc	\bigcirc	－
25BW－15	\bigcirc	－	－
25BW－16	\bigcirc	－	－
25BW－17	\bigcirc	－	－
25BW－18	\bigcirc	\bigcirc	－
25BW－19	\bigcirc	\bigcirc	－
25BW－20	\bigcirc	\bigcirc	－
25BW－21	\bigcirc	\bigcirc	－
25BW－22	\bigcirc	－	－
25BW－23	\bigcirc	－	－
25BW－24	\bigcirc	－	－

Br孔名	盛土	旧表土	液状化強度試験 との対応
28QB－1	\bigcirc	\bigcirc	A－2（旧表土）
28QB－2	\bigcirc	\bigcirc	A－3（旧表土）
28QB－3	\bigcirc	\bigcirc	－
28QB－4－1	\bigcirc	\bigcirc	A－4（旧表土）
28QB－4	\bigcirc	\bigcirc	－
28QB－5	\bigcirc	\bigcirc	B－1（盛土）
28QB－5－1	\bigcirc	\bigcirc	A－5（旧表土）
28QB－6	\bigcirc	\bigcirc	A－6（旧表土）
28QB－7	\bigcirc	\bigcirc	A－7（旧表土）
28QB－8	\bigcirc	\bigcirc	B－2（盛土）
P－3	\bigcirc	\bigcirc	－
P－6	\bigcirc	\bigcirc	－
SP－2	\bigcirc	\bigcirc	－
Fs－1	－	\bigcirc	－
Fs－2	－	\bigcirc	A－1（旧表土）
Fs－3	－	\bigcirc	－
D－1	\bigcirc	\bigcirc	－
No． 1	\bigcirc	\bigcirc	－
No． 2	\bigcirc	\bigcirc	－
23B－1	\bigcirc	\bigcirc	－
23B－4	\bigcirc	\bigcirc	－
23B－5	\bigcirc	\bigcirc	－
23B－6	\bigcirc	\bigcirc	－
23B－7	\bigcirc	\bigcirc	－
23B－9	\bigcirc	\bigcirc	－

図 1－1 盛土•旧表土のボーリング位置図

図 1－2（1）ボーリング柱状図（PB－1）（盛土：深度 $0 \sim 17.90 \mathrm{~m}$ ）

図 1－2（2）ボーリングコア写真（PB－1）（盛土：深度 $0 \sim 17.90 \mathrm{~m}$ ）

図 1－3（1）ボーリング柱状図（PB－2）（盛土：深度 0～22．38m）

図 1－3（2）ボーリングコア写真（PB－2）（盛土：深度 $0 \sim 22.38 \mathrm{~m}$ ）

図 1－4（1）ボーリング柱状図（PB－3）（盛土：深度 $0 \sim 19.95 \mathrm{~m}$ ）

図 1－4（2）ボーリングコア写真（PB－3）（盛土：深度 0～19．95m）

図 1－5（1）ボーリング柱状図（PB－4）（盛土：深度 $0 \sim 29.80 \mathrm{~m}$ ）

図 1－5（2）ボーリングコア写真（PB－4）（盛土：深度 $0 \sim 29.80 \mathrm{~m}$ ）

図 1－6（1）ボーリング柱状図（25BW－1）（盛土：深度 $0 \sim 4.90 \mathrm{~m}$ ）

図 1－6（2）ボーリングコア写真（25BW－1）（盛土：深度 $0 \sim 4.90 \mathrm{~m}$ ）

図 1－7（1）ボーリング柱状図（25BW－4）（盛土：深度 $0 \sim 19.57 \mathrm{~m}$ ）

図 1－7（1）ボーリングコア写真（25BW－4）（盛土：深度 0～19．57m）

図 1－8（1）ボーリング柱状図（25BW－5）（盛土：深度 $0 \sim 18.20 \mathrm{~m}$ ）

図 1－8（2）ボーリングコア写真（25BW－5）（盛土：深度 $0 \sim 18.20 \mathrm{~m}$ ）

[^0]: ＊ 1 ：地下水ハンドブック（建設産業調査会），水理公式集（土木学会）等を参照し設定

