女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-20-0036_改 2
提出年月日	2021年9月14日

VI-3-2-8 重大事故等クラス2容器の強度計算方法

2021年9月

東北電力株式会社

1. —	般事項 · · · · · · · · · · · · · · · · · · ·	1
1.1	般事項 · · · · · · · · · · · · · · · · · · ·	1
1.2	適用規格及び基準との適合性・・・・・	1
1.3	強度計算書の構成とその見方・・・・・	1
1.4	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1.5	材料の表示方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2. 重	大事故等クラス2容器(クラス1容器又は原子炉格納容器を除く)の強度計算方法・・・・・	8
2.1	共通記号 ·····	8
2.2	円筒形の胴の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.0
2.3	円すい形の胴の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 1
2.4	容器の胴の補強を要しない穴の最大径の計算・・・・・・・・・・・・・・・・・・・・・・・1	.3
2.5	全半球形鏡板の計算	
2.6	半だ円形鏡板の計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	.8
2.7	容器の鏡板の補強を要しない穴の最大径の計算・・・・・・・・・・・・・・・・・・2	
2.8	円形平板の計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
2.9	だ円形マンホール平板の計算・・・・・ 3	
2.10		
2.11	容器の管台の計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.12	容器の管台の補強を要しない穴の最大径の計算・・・・・・・・・・・・・・・・・・・・ 4	.1
2.13	内面に圧力を受ける円すい形の胴と円筒形の胴との接続による強め輪の計算・・・・・ 4	.1
2.14	開放タンクの胴の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
2.15	開放タンクの底板の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.16	開放タンクの管台の計算 ・・・・・ 4	
2.17	熱交換器の伝熱管の計算 ・・・・・ 5	
3. 穴	の補強計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.1	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.2	容器の穴の補強計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5	
3.3	開放タンクの胴の穴の補強計算・・・・・ 8	
3.4	2つ以上の穴が接近しているときの補強計算・・・・・・・・・・・・・・・・・・・・・	
4. フラ	ランジの強度計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.1	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.2	算式	0

5.		既	T認における評価結果の確認による強度評価方法·····	140
	5.	1	確認内容	140
	5.	2	強度評価方法 ·····	140
6.		重	大事故等クラス2容器であってクラス1容器の強度計算方法・・・・・・・・・・・・	<mark>141</mark>
7.		重	大事故等クラス2容器であって原子炉格納容器の強度計算方法・・・・・・・・・・・・	<mark>141</mark>

別紙 容器の強度計算書のフォーマット

- 1. 一般事項
- 1.1 概要

本書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物 の強度計算の基本方針」に基づき、重大事故等クラス2容器が十分な強度を有することを確認 するための方法を説明するものである。

- 1.2 適用規格及び基準との適合性
 - (1) 強度計算は、昭和 55 年通商産業省告示第501号「発電用原子力設備に関する構造等の 技術基準」(以下「告示第501号」という。)又は発電用原子力設備規格(設計・建設規格 (2005 年版(2007 年追補版含む。)) JSME S NC1-2005/2007)(日本機械学会) (以下「設計・建設規格」という。)により行う。

告示第501号と設計・建設規格の比較に基づく,告示第501号各条項又は設計・建設 規格各規格番号と強度計算書との対応は,表1-1に示すとおりである。

- (2) 両規格に計算式の規定がないものについては他の規格及び基準を適用して行う。 日本産業規格(以下「JIS」という。)と強度計算書との対応は表 1-2 に示すとおりで ある。
- (3) 重大事故等クラス2容器であってクラス1容器の評価は、施設時の適用規格である告示第 501号による評価を実施する。
- (4) 重大事故等クラス2機器であって原子炉格納容器の評価は、告示第501号に基づき評価 を実施する。ただし、改造箇所で適用規格が設計・建設規格の場合は設計・建設規格と告示 第501号の比較を行い、いずれか安全側の規格による評価を実施する。
- (5) 強度計算書で計算するもの以外のフランジは、以下に掲げる規格(材料に関する部分を除く。)又は設計・建設規格 別表2に掲げるものを使用する。(設計・建設規格 PVC-3700)
 a. IIS B 2238 (1996)「鋼製管フランジ通則」

 - b. J I S B 2239 (1996)「鋳鉄製管フランジ通則」
- 1.3 強度計算書の構成とその見方
 - (1) 強度計算書は、本書と各容器の強度計算書からなる。
 - (2) 各容器の強度計算書では、記号の説明及び計算式を省略しているので、本書によるものとする。

 \mathfrak{S}

表 1-1 告示第501号各条項及び設計・建設規格各規格番号と強度計算書との対応

	シノハム 谷船/	
告示第501号 条項	強度計算書の計算式	備考
設計・建設規格 規格番号	(章節番号)	
PVC-3100 (容器の胴の規定)		
PVC-3121	2.2	円筒形の胴の計算
PVC-3122(1)		
PVC-3111	2.3	円すい形の胴の計算
PVC-3121		
PVC-3124.1(1)		
PVC-3150(2)	2.4	容器の胴の補強を要しな
		い穴の最大径の計算
	2.12	容器の管台の補強を要し
		ない穴の最大径の計算
PVC-3160	3.2	容器の穴の補強計算
PVC-3162	3.4	2つ以上の穴が接近してい
	0.1	るときの補強計算
PVC-3171	2.13	内面に圧力を受ける円す
PVC-3171 PVC-3172	2.10	い形の胴と円筒形の胴と
PVC-3173(1)		の接続による強め輪の計
PVC-3173(3)		算
PVC-3174		
PVC-3175(1)		
PVC-3175(3)		
PVC-3200(容器の鏡板についての規定)		
PVC-3210(2)	2.5	全半球形鏡板の計算
PVC-3220		
PVC-3223 (1)		
PVC-3210(3)	2.6	半だ円形鏡板の計算
PVC-3220	2.0	
PVC-3225		
Г VU=3220		
	0.7	
PVC-3230(2)	2.7	容器の鏡板の補強を要し
		ない穴の最大径の計算
PVC-3240	3.2	容器の穴の補強計算

⁽重大事故等クラス2容器)

表 1-1 告示第501号各条項及び設計・建設規格各規格番号と強度計算書との対応

告示第501号 条項 設計・建設規格 規格番号	強度計算書の計算式 (章節番号)	備考
第34条(容器の平板についての規定) 第1項 第2項	2.8	円形平板の計算
PVC-3300(容器の平板についての規定) PVC-3310 PVC-3320	2.8	円形平板の計算
PVC-3320(2)	3. 2	容器の穴の補強計算
PVC-3500(容器の管板についての規定) PVC-3510	2. 10	容器の管板の計算
PVC-3600(管台についての規定) PVC-3610 PVC-3610(1) PVC-3610(2)	2. 11 2. 17	容器の管台の計算 熱交換器の伝熱管の計算
PVC-3900 (開放タンクについての規定) PVC-3920	2.14	開放タンクの胴の計算
PVC-3940 PVC-3950	3. 3	開放タンクの胴の穴の補 強計算
PVC-3960 PVC-3970	2. 15	開放タンクの底板の計算
PVC-3980	2.16	開放タンクの管台の計算

(重大事故等クラス2容器)

JIS		強度計算書の計算式	備考
No.	項	(章節番号)	
JIS B 8201 (2005)	6.6.8	2.9	だ円形マンホール平板
「陸用鋼製ボイラー構造」			の計算*1
JIS B 8265 (2003)	3	4	フランジの強度計算*2
「圧力容器の構造-一般事項」附	4		
属書 3 (規定)「圧力容器のボルト	5		
締めフランジ」			

表 1-2 J I S と 強度計算書との対応

 注記 *1: JIS B 8201 (2005)「陸用鋼製ボイラー構造」(以下「JIS B 82 01」という。)を用いて計算を行う。

*2:設計・建設規格 PVC-3710 によりJIS B 8265 (2003)「圧力容器の構造–
 一般事項」(以下「JIS B 8265」という。)の附属書3(規定)「圧力容器のボルト締めフランジ」を用いて計算を行う。

1.4 計算精度と数値の丸め方

計算の精度は、6桁以上を確保する。

表示する数値の丸め方は、表 1-3 に示すとおりとする。

		表 1-3 君	長示する数値の丸め方		
	数値の種類	単位	処理桁	処理方法	表示桁
	最高使用圧力 (開放タンクを除く)	MPa	_	—	小数点以下第2位
圧力	最高使用圧力 (開放タンク)	MPa	小数点以下第3位	四捨五入	小数点以下第2位
	外面に受ける 最高の圧力	MPa	_	_	小数点以下第2位
	温度	$^{\circ}\mathrm{C}$	_	_	整数位
	許容応力*1	MPa	小数点以下第1位	切捨て	整数位
	降伏点*1	MPa	小数点以下第1位	切捨て	整数位
	算出応力	MPa	小数点以下第1位	切上げ	整数位
	下記以外の長さ	mm m ^{*2}	小数点以下第3位	四捨五入	小数点以下第2位
	計算上必要な厚さ	mm	小数点以下第3位	切上げ	小数点以下第2位
長	最小厚さ	mm	小数点以下第3位	切捨て	小数点以下第2位
さ	ボルト谷径	mm	_	—	小数点以下第3位
	開放タンクの水頭及び 管台の内径	m	小数点以下第5位	四捨五入	小数点以下第4位
	ガスケット厚さ	mm	_	_	小数点以下第1位
面積		mm^2	有効数字5桁目	四捨五入	有効数字4桁*3
力		Ν	有効数字5桁目	四捨五入	有効数字4桁*3
モーメント		N•mm	有効数字5桁目	四捨五入	有効数字4桁*3
角度		0	小数点以下第2位	四捨五入	小数点以下第1位
比重		_	小数点以下第3位	四捨五入	小数点以下第2位
慣性モーメント		mm^4	有効数字5桁目	四捨五入	有効数字4桁

表 1-3 表示する数値の丸め方

- 注記 *1:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力及び 設計降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位ま での値とする。ただし、許容引張応力及び設計降伏点が設計・建設規格 付録材料 図表に定められた値のa倍である場合は、次のようにして定める。
 - (1) 比例法により補間した値の小数点以下第2位を切り捨て,小数点以下第1位ま での値をa倍する。
 - (2) (1)で得られた値の小数点以下第1位を切り捨て,整数位までの値とする。また,告示別表に記載された許容引張応力及び設計降伏点は,各温度の値をSI単位に換算し,SI単位に換算した値の小数点第1位を四捨五入して,整数位までの値とする。その後,設計・建設規格と同様の換算と桁処理を行う。
 - *2:開放タンクの胴内径
 - *3:絶対値が1,000以上のときは、べき数表示とする。

1.5 材料の表示方法

材料は次に従い表示するものとする。

(1) 設計・建設規格に定める材料記号を原則とする。

設計・建設規格に記載されていないが設計・建設規格に相当材が記載されている場合は次 のように表示する。

	相当材記号	相当	(当該材記号)
(例1)	SM400A	相当	(SMA400AP)
(例 2)	SCMV3-1	相当	(ASME SA387 Gr. 11C1.1)

- (2) 管材の許容引張応力の値は継目無管,電気抵抗溶接管及び鍛接管等,製造方法により異なる場合があるため材料記号の後に"-"を入れ,その製法による記号を付記して表示する。 (例) STPT410-S(継目無管の場合)
- (3) 強度区分により許容引張応力が異なる場合,材料記号の後にJISで定める強度区分を付 記して表示する。

(例)

	設計・建設規格の表示	計算書の表示
SCMV3	(付録材料図表 Part5 表 5 の許容引張応力の上段)	SCMV3-1
SCMV3	(付録材料図表 Part5 表 5 の許容引張応力の下段)	SCMV3-2

(4) 使用する厚さ又は径等によって許容引張応力の値が異なる場合,材料記号の後に該当する 厚さ又は径等の範囲を付記して表示する。

(例) S45C (直径 40 mm 以下)

(5) 熱処理によって許容引張応力の値が異なる場合,材料記号の後にJISに定める熱処理記 号を付記して表示する。

(例) SUS630 H1075 (固溶化熱処理後 570~590 ℃空冷の場合)

(6) ガスケット材料で非石綿の場合の表示は以下とする。

(例) 非石綿ジョイントシート

渦巻形金属ガスケット(非石綿)(ステンレス鋼)

平形金属被覆ガスケット(非石綿板)(ステンレス鋼)

なお,この場合のガスケット係数(m)及びガスケットの最小設計締付圧力(y)は,

JIS B 8265 附属書3 表2 備考3より、ガスケットメーカ推奨値を適用する。

- 2. 重大事故等クラス2容器(クラス1容器又は原子炉格納容器を除く)の強度計算方法
 - 2.1 共通記号

重大事故等クラス2容器の強度計算において、特定の計算に限定せず、一般的に使用する記 号を共通記号として次に掲げる。

告示第501号 又は 設計・建設 規格の記号	計算書の表示	表示内容	単位
Р	Р	最高使用圧力	MPa
P _e	P _e	外面に受ける最高の圧力	MPa
S _y	S y	材料の設計降伏点 設計・建設規格 付録材料図表 Part5 表 8 によ る。	MPa
η	η	継手の効率 設計・建設規格 PVC-3130 に規定している継手の 種類に応じた効率を使用する。設計・建設規格 PVC-3140 に規定している連続した穴がある場合 における当該部分の効率については該当するも のがないので強度計算書には記載しない。	_
	継手の種類		_
	継手無し	同左	_
	突合せ両側溶接	同左	_
	裏当金(取り除く。)を使用した突合せ片側溶接	裏当金を使用した突合せ片側溶接(溶接後裏当 金を取り除いたものに限る。)及びこれと同等以 上の効果が得られる方法による溶接	_
	裏当金(取り除 かず。)を使用 した突合せ片側 溶接	裏当金を使用した突合せ片側溶接(溶接後裏当金 を取り除いたものを除く。)	_
	裏当金を使用し ない突合せ片側 溶接	同左	_
	両側全厚すみ肉 重ね溶接	同左	—
	プラグ溶接を行 う片側全厚すみ 肉重ね溶接	同左	—
	プラグ溶接を行 わない片側全厚 すみ肉重ね溶接	同左	_

なお、以下に示す記号のうち、各計算において説明しているものはそれに従う。

告示第501号 又は 設計・建設 規格の記号	計算書の表示	表示内容	単位
	放射線検査の有無有り新し	発電用原子力設備規格(溶接規格 JSME S NB1-2001)(日本機械学会 2001年) N-3140及びN-4140(N-1100(1)a準用)の規定に 準じて放射線透過試験を行い,同規格の規定に 適合するもの その他のもの	_

2.2 円筒形の胴の計算

重大事故等クラス2容器については,設計・建設規格 PVC-3121, PVC-3122(1)を適用する。 容器の形状は設計・建設規格 PVC-3111 に適合する円筒形とする。また,容器の継手は,設 計・建設規格 PVC-3112 に適合する溶接継手又は,フランジ継手を使用する。

(1)	記号の説明
(1)	

設計・建設 規格の記号	計算書の表示	表示内容	単位
D _i	D _i	胴の内径	mm
S	S	最高使用温度における材料の許容引張応力 設計・建設規格 付録材料図表 Part5 表 5 又は表 6 による。	MPa
	t	胴に必要な厚さ	mm
	t 1	胴の規格上必要な最小厚さ	mm
t	t ₂	胴の計算上必要な厚さ	mm
	t s	胴の最小厚さ	mm
	t _{so}	胴の呼び厚さ	mm

(2) 算式

円筒形の胴に必要な厚さは次に掲げる値のうちいずれか大きい値とする。

a. 規格上必要な最小厚さ: t₁

炭素鋼鋼板又は低合金鋼鋼板で作られたものにあっては 3 mm, その他の材料で作られ たものにあっては 1.5 mm とする。

b. 内面に圧力を受ける胴:t₂

$$t_{2} = \frac{P \cdot D_{i}}{2 \cdot S \cdot \eta - 1.2 \cdot P}$$

(3) 評価

2.3 円すい形の胴の計算

重大事故等クラス2容器については設計・建設規格 PVC-3111, PVC-3121 及びPVC-3124.1(1)を適用する。

設計・建設 規格の記号	計算書の表示	表示内容	単位
D o	Dо	胴の大径端側の内径	mm
D s	D s	胴の小径端側の内径	mm
S	S	最高使用温度における材料の許容引張応力	MPa
		設計・建設規格 付録材料図表 Part5 表 5	
		又は表6による。	
	t	胴に必要な厚さ	mm
	t 1	胴の規格上必要な最小厚さ	mm
t	t 2	胴の計算上必要な厚さ	mm
	t s	胴の最小厚さ	mm
	t s o	胴の呼び厚さ	mm
θ	heta	円すいの頂角の2分の1	0

(1) 記号の説明

(設計・建設規格 図 PVC-3111-1(d))

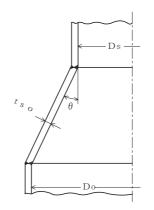


図 2-1 円すい形の胴の形状

設計・建設規格 図 PVC-3111-1(d)の形状にあっては $\theta \leq 30^{\circ}$ であること。

- (3) 算式 円すい形の胴に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。
 - a. 規格上必要な最小厚さ:t1 炭素鋼鋼板又は低合金鋼鋼板で作られたものにあっては3mm,その他の材料で作られた ものにあっては1.5mmとする。
 - b. 内面に圧力を受ける胴
 (a) 設計・建設規格 図 PVC-3111-1(d)の形状にあっては、次の式による値とする。

イ. 円すい部:t2

$$t_{2} = \frac{P \cdot D \circ}{2 \cdot \cos \theta \cdot (S \cdot \eta - 0.6 \cdot P)}$$

(4) 評価

胴の最小厚さ(ts) ≧胴に必要な厚さ(t) ならば十分である。

2.4 容器の胴の補強を要しない穴の最大径の計算 重大事故等クラス2容器については,設計・建設規格 PVC-3150(2)を適用する。

	-		
設計・建設 規格の記号	計算書の表示	表示内容	単位
D	D	穴の中心における胴の外径	mm
	d _{r 1}	補強を要しない穴の最大径(だ円穴の場合は 長径)	mm
d	d r 2	補強を要しない穴の最大径(だ円穴の場合は 長径)	mm
K	К	係数 ただしK≦0.99	—
S	S	内圧時の最高使用温度における材料の許容引 張応力 設計・建設規格 付録材料図表 Part5 表5 又は表6による。	MPa
t s	t s	胴の最小厚さ	mm
η	η	穴が長手継手を通る場合はその継手の効率, その他の場合は1.00	—

(1) 記号の説明

(2) 算式

胴の補強を要しない穴の最大径は,次の a 項及び b 項で計算した値のうちいずれか大きい 方の値とする。

a. 穴の径が 61 mm 以下で,かつ,次の式により計算した値以下の穴

$$d_{r 1} = \frac{D - 2 \cdot t_{s}}{4}$$

b. 穴の径が 200 mm 以下で,かつ,クラス 2 容器は設計・建設規格 図 PVC-3150-1 及び PVC-3150-2 により求めた値以下の穴

d_{r2}=8.05 ·
$$\sqrt[3]{D \cdot t_{s} \cdot (1-K)}$$

Kは、次の式により計算した値で、K>0.99のときは、K=0.99とする。

(a) 円筒形の場合

$$\mathbf{K} = \frac{\mathbf{P} \cdot \mathbf{D}}{\mathbf{1.82} \cdot \mathbf{S} \cdot \boldsymbol{\eta} \cdot \mathbf{t}}$$

(3) 評価

穴の径>補強を要しない穴の最大径となる穴を判別する。 穴の補強が不要な場合は,穴の補強計算を行わない。 2.5 全半球形鏡板の計算

重大事故等クラス2容器については設計・建設規格 PVC-3210(2), PVC-3220及び PVC-3223(1)を適用する。

(1) フランジ部を有する場合

設計・建設 規格の記号	計算書の表示	表示内容	単位
D _i	D _i	鏡板が取り付けられる胴の内径	mm
R	R	鏡板の内半径	mm
S	S	内圧時(中低面に圧力を受けるとき)の最高 使用温度における材料の許容引張応力 設計・建設規格 付録材料図表 Part5 表5 又は表6による。	MPa
	t	鏡板に必要な厚さ	mm
t	t 1	鏡板のフランジ部の計算上必要な厚さ	mm
t	t 2	鏡板の計算上必要な厚さ	mm
	t c	鏡板の最小厚さ	mm
	t _{c o}	鏡板の呼び厚さ	mm

a. 記号の説明

b. 形状

全半球形であること。

R

図 2-2 全半球形鏡板の形状

c. 算式

全半球形鏡板に必要な厚さは,次に掲げる値のうちいずれか大きい値とする。 (a) 中低面に圧力を受ける鏡板: t₁, t₂

イ. フランジ部:t₁

$$t_{1} = \frac{P \cdot D_{i}}{2 \cdot S \cdot \eta - 1.2 \cdot P}$$

口. 鏡板:t2

$$t_{2} = \frac{P \cdot R}{2 \cdot S \cdot \eta - 0.2 \cdot P}$$

d. 評価

鏡板の最小厚さ(t。)≧鏡板に必要な厚さ(t)ならば十分である。

(2) フランジ部を有しない場合

a. 記号の説明

設計・建設 規格の記号	計算書の表示	表示内容	単位
R	R	鏡板の内半径	mm
S	S	内圧時(中低面に圧力を受けるとき)の最高 使用温度における材料の許容引張応力 設計・建設規格 付録材料図表 Part5 表5 又は表6による。	MPa
	t	鏡板に必要な厚さ	mm
t	t 1	鏡板の計算上必要な厚さ	mm
	t _c	鏡板の最小厚さ	mm
	t _{c o}	鏡板の呼び厚さ	mm

b. 形状

全半球形であること。

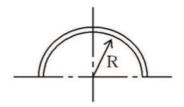


図 2-3 全半球形鏡板の形状

c. 算式

中低面に圧力を受ける全半球形鏡板に必要な厚さ t₁は,次に掲げる値とする。

$$t_{1} = \frac{P \cdot R}{2 \cdot S \cdot \eta - 0.2 \cdot P}$$

d. 評価

鏡板の最小厚さ(t。)≧鏡板に必要な厚さ(t)ならば十分である。

2.6 半だ円形鏡板の計算

重大事故等クラス2容器については設計・建設規格 PVC-3210(3), PVC-3220及びPVC-3225 を適用する。

設計・建設規格の記号	計算書の表示	表示内容	単位
D _i	D _i	鏡板が取り付けられる胴の内径	mm
D	D _{iL}	鏡板の内面における長径	mm
h	h	鏡板の内面における短径の2分の1	mm
K	K	半だ円形鏡板の形状による係数	—
S	S	内圧時(中低面に圧力を受けるとき)の最高 使用温度における材料の許容引張応力 設計・建設規格 付録材料図表 Part5 表5 又は表6による。	MPa
	t	鏡板に必要な厚さ	mm
t	t 1	鏡板のフランジ部の計算上必要な厚さ	mm
t	t ₂	鏡板の計算上必要な厚さ	mm
	t c	鏡板の最小厚さ	mm
	t _{c o}	鏡板の呼び厚さ	mm

(2) 形状

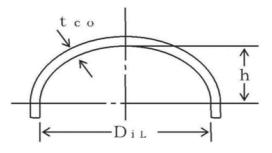


図 2-4 半だ円形鏡板の形状

- (3) 算式半だ円形鏡板に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。
 - a. 中低面に圧力を受ける鏡板: t₁, t₂
 - (a) フランジ部:t₁

$$t_{1} = \frac{P \cdot D_{i}}{2 \cdot S \cdot \eta - 1.2 \cdot P}$$

(b) 鏡板:t₂

$$t_{2} = \frac{P \cdot D_{iL} \cdot K}{2 \cdot S \cdot \eta - 0.2 \cdot P}$$
$$\hbar \pi \mathcal{E} \cup, \quad K = \frac{1}{6} \cdot \left\{ 2 + \left(\frac{D_{iL}}{2 \cdot h} \right)^{2} \right\}$$

(4) 評価

鏡板の最小厚さ(t_c)≧鏡板に必要な厚さ(t)ならば十分である。

2.7 容器の鏡板の補強を要しない穴の最大径の計算
 重大事故等クラス2容器については設計・建設規格 PVC-3230(2)を適用する。

	•		
設計・建設規格の記号	計算書の表示	表示内容	単位
D	D	鏡板のフランジ部の外径。ただし円すい形鏡板にあ	mm
		っては、円すいの部分がすその丸みの部分に接続す	
		る部分の軸に垂直な断面の外径	
d	d _{r1}	補強を要しない穴の最大径(だ円穴の場合は長径)	mm
	d _{r 2}	補強を要しない穴の最大径(だ円穴の場合は長径)	mm
K	K	係数 ただしK≦0.99	—
S	S	内圧時(中低面に圧力を受けるとき)の最高使用温	MPa
		度における材料の許容引張応力	
		設計・建設規格 付録材料図表 Part5 表5又は表	
		6による。	
t s	t c	鏡板の最小厚さ	mm
η	η	穴が継手を通る場合はその継手の効率。その他の場	—
		合は 1.00	

(1) 記号の説明

(2) 算式

鏡板の補強を要しない穴の最大径は、次の a 項及び b 項で計算した値のうちいずれか大きい方の値とする。

a. 穴の径が 61 mm 以下で,かつ,次の式により計算した値以下の穴

$$d_{r 1} = \frac{D - 2 \cdot t_{c}}{4}$$

b. 穴の径が 200 mm 以下で,かつ,設計・建設規格 図 PVC-3150-1 及び図 PVC-3150-2 に より求めた値以下の穴

$$d_{r_2} = 8.05 \cdot \sqrt[3]{D \cdot t_c} \cdot (1-K)$$

Kは、次の式により計算した値で、K>0.99のときは、K=0.99とする。

(a) さら形鏡板及び半だ円形鏡板の場合

$$K = \frac{P \cdot D}{1.82 \cdot S \cdot \eta \cdot t_{c}}$$

(b) 全半球鏡板の場合

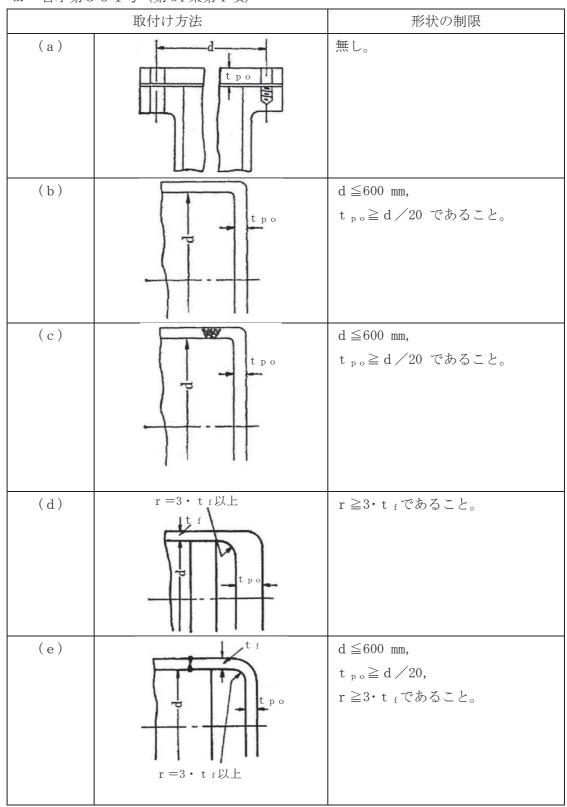
$$K = \frac{P \cdot D}{3.64 \cdot S \cdot \eta \cdot t_{c}}$$

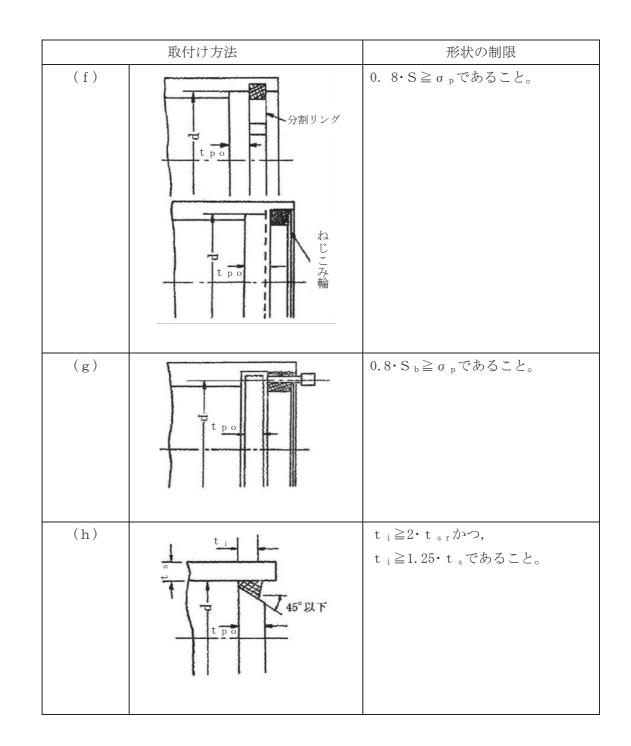
(3) 評価

穴の径>補強を要しない穴の最大径となる穴を判別する。 穴の補強が不要な場合は,穴の補強計算を行わない。

2.8 円形平板の計算

重大事故等クラス2容器については告示第501号第34条第1項及び第2項又は設計・建 設規格 PVC-3310及び PVC-3320を適用する。

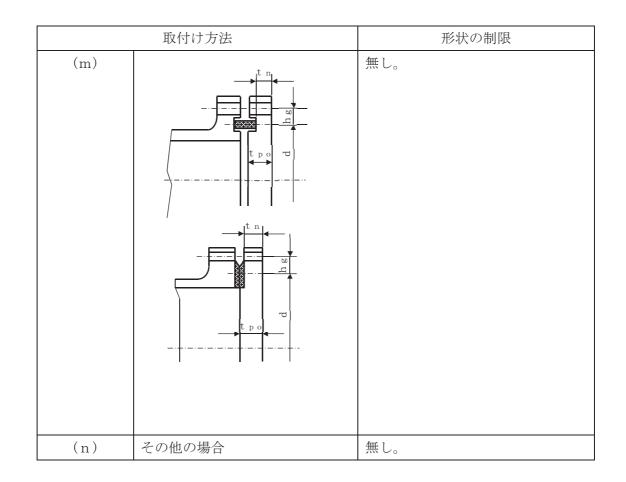

(1)	記号の説明


告示第501号, 設計・建設規格, JISの記号	計算書の 表示	表示内容	単位
A _b	A_{b}	実際に使用するボルトの総有効断面積	mm^2
Am	A_{m}	ボルトの総有効断面積	mm^2
A_{m1}	A_{m1}	使用状態でのボルトの総有効断面積	mm^2
A_{m2}	A_{m2}	ガスケット締付時のボルトの総有効断面積	mm^2
b	b	ガスケット座の有効幅	mm
b o	b o	ガスケット座の基本幅(JIS B 8243 附	mm
		属書2 表1又はJIS B 8265 附属書3	
		表3による。)	
С	С	ボルト穴の中心円の直径	mm
d, G	d	クラス2容器は告示第501号第34条第1項に記	mm
		載される表,設計・建設規格 表 PVC-3310-1 に規	
		定する方法によって測った平板の径又は最小内のり	
		(ガスケットの場合 d = G)	
d _b	d _b	ボルトのねじ部の谷の径と軸部の径の最小部のいず	mm
		れか小さい方の径	
	d h	平板の断面に現れる穴の径	mm
		(だ円穴の場合は長径)	
D _g	D _g	セルフシールガスケットの外径	mm
F	F	全体のボルトに作用する力	Ν
G	G	ガスケット反力円の直径	mm
	G s	ガスケット接触面の外径	mm
Н	Н	内圧によってフランジに加わる全荷重	Ν
h _G	h _G	ボルト穴の中心円からHg作用点までの半径方向の	mm
		距離	
h _g	h g	モーメントアームでボルトのピッチ円の直径とdと	mm
		の差の2分の1	
К	Κ	平板の厚さ計算における取付け方法による係数	—
l	Q	フランジ部の長さ	mm

告示第501号, 設計・建設規格, JISの記号	計算書の 表示	表示内容	単位
m	m	ガスケット係数(JIS B 8243 附属書2 表2又はJIS B 8265 附属書3 表2 による。)	_
Ν	Ν	 ガスケットの接触面の幅(JIS B 8243) 附属書2 表1又はJIS B 8265 附属 書3 表3による。) 	mm
n	n	ボルトの本数	—
Р	Р	最高使用圧力又は外面に受ける最高の圧力	MPa
r	r	すみの丸みの内半径	mm
S	S	内圧時の最高使用温度における材料の許容引張応力 告示第501号 別表第6又は別表第7又は設計・ 建設規格 付録材料図表 Part5 表5又は表6に よる。	MPa
σa	S _a	常温におけるボルト材料の許容引張応力 告示第501号 別表第8又は設計・建設規格 付 録材料図表 Part5 表7による。	MPa
σь	S _b	最高使用温度におけるボルト材料の許容引張応力 告示第501号 別表第8又は設計・建設規格 付 録材料図表 Part5 表7による。	MPa
t	t	平板の計算上必要な厚さ	mm
t c	t c	平板のすみ肉ののど厚	mm
t f	t f	平板のフランジ部の厚さ	mm
t n	t n	ガスケット溝を考慮した平板の厚さ	mm
	t p	平板の最小厚さ	mm
	t po	平板の呼び厚さ	mm
t s	t s	胴又は管の最小厚さ	mm
t r	t sr	胴又は管の継目がない場合の計算上必要な厚さ	mm
t i	t i	平板ののど厚。告示第501号第34条第1項の表 による。	mm
t w	t w	告示第501号第34条第1項の表又は設計・建設 規格 表 PVC-3310-1による。	mm
t _{w 1}	t _{w1}	設計・建設規格 表 PVC-3310-1 による。	mm
t _{w2}	t _{w2}	設計・建設規格 表 PVC-3310-1 による。	mm

告示第501号, 設計・建設規格, JISの記号	計算書の 表示	表示内容	単位
W	W	パッキンの外径又は平板の接触面の外径内の面積に	Ν
		作用する全圧力	
Wg	Wg	ガスケット締付時のボルト荷重	Ν
$W_{m \ 1}$	W_{m1}	使用状態での必要な最小ボルト荷重	Ν
W_{m2}	W_{m2}	ガスケット締付時に必要な最小ボルト荷重	Ν
W o	W o	使用状態でのボルト荷重	Ν
У	У	ガスケットの最小設計締付圧力(JIS B 82	N/mm^2
		43 附属書2 表2又はJIS B 8265	
		附属書3 表2による。)	
π	π	円周率	—
	$\sigma_{\rm p}$	平板に作用する力によって生じる応力	MPa
	ガスケット	ガスケット座面の形状(JIS B 8243 附	—
	座面の形状	属書2 表1又はJIS B 8265 附属書3	
		表3による。)	

- (2) 形状の制限
 - a. 告示第501号 (第34条第1項)


	取付け方法	形状の制限
(i)	p t t t t p o	t i≧2・t s r かつ, t i≧1.25・t sであること。
(j)	t c t p o t p o t p o t p o	t _w ≥2・t _{sr} かつ, t _w ≥1.25・t _s であること。 かつ, t _c ≧Min(0.7・t _s ,6mm)であるこ と。
(k)		無し。
(0)	その他の場合	無し。

b. 設計・建設規格 (PVC-3310)

	取付け方法	形状の制限
(a)	d t p o t p o t p o t p o t p o t t p o t t t p o t t t p o t t t t p o t t t t	無し。 無し。
(b)	$r \ge 0.25 \cdot t f$	d \leq 600mm, d /4> t po \geq d /20 かつ, r \geq t f /4 であること。
(c)	t f $\geq 2 \cdot t s$ t s t f t $p \geq 3 \cdot t f$	t _f ≧2· t _s かつ, r ≧3· t _f であること。
(d)	t f \geq t s t s t f r \geq 1.5 · t f	t f ≧ t sかつ, r ≧1.5·t fであること。
(e)	溶接部中心 t s ℓ t f r ≥3・t f	r ≧3・t _f であること。

	取付け方法	形状の制限
(f)	マート マート マート マート マート マート マート マート	0.8·S≧σ pであること。
(g)		0.8·S b≧σ pであること。
(h)	* * * * * * * * * * * * * * * * * * *	t w≧2・t srかつ, t w≧1.25・t sであること。
(i)	$t w_1 + t w_2 \ge 2 \cdot t s$ $t w_1 \ge t s$	t w1 + t w2 $\geq 2 \cdot t$ s, t w1 \geq t sかつ, t s $\geq 1.25 \cdot t$ srであること。

	取付け方法	形状の制限
(j) (1)		t w ≧ Min(0.5・t s, 0.25・t p o) かつ, t c ≧ Min(0.7・t s, 6mm)であ ること。
(j) (2)		t _w ≧Min(1.0・t _s , 0.5・t _{po}) か つ, t _c ≧Min(0.7・t _s ,6mm)である こと。
	t c t c t c t c t c t c	
(k)		t _c ≧Min(0.7・t _s ,6mm) であるこ と。
	t w2 t w2 t w2 t w1+t w2≧2・t s (t w2=0を含む。)	t _{w1} +t _{w2} ≧2・t _s , (t _{w2} =0を含む ₀)

(3) 算式

平板の計算上必要な厚さは、次の式による値とする。

- a. 告示第501号
- (a) 平板に穴がない場合

$$t = d \cdot \sqrt{\frac{K \cdot P}{S}}$$

Kの値は以下による。

取付け方法	Kの値	
第34条第1項	K () 但	
(a)		
(b)	0. 20	
(c)		
(d)	0. 25	
(e)	0.25	
(f)	0.30	
(g)		
(h)		
(i)	0.50	
(j)		
(k)	$0.30 + \frac{1.4 \cdot F \cdot h_g}{W \cdot d} *$	
(ϱ)	0.75	

注記 *:4項「フランジの強度計算」における記号との対応は次のとおり。

FはW。とWgのいずれか大きい方、hgはhG、WはH、dはG(セルフシール ガスケットを用いる場合はDg)とする。 (b) 平板に穴を設ける場合であって、穴の径(d_h)がdの2分の1以下で容器の胴の 穴の補強に準じて補強するものの計算上必要な厚さは、次の式による値とする。

$$t = d \cdot \sqrt{\frac{K \cdot P}{S}}$$

この場合において、平板の補強に用いる必要厚さ(t_{pr})はtとし、かつ、補強に 有効な面積は、補強に必要な面積の2分の1以上とする。

(c) 平板に穴を設ける場合であって、穴の径(d_h) がd o 2 分 o 1 以下で(b) 項以外のも のの計算上必要な厚さは、次の式による値とする。

$$t = d \cdot \sqrt{\frac{2 \cdot K \cdot P}{S}}$$

ただし、平板の取付け方法が、(k)の場合を除き、Kの値が 0.375 を超えるときは その値を 0.375 とする。

(d) 平板に穴を設ける場合であって、穴の径 (d_h) が d o 2 分 o 1 を 超えるものの計算上必要な厚さは、次の式による値とする。

$$t = d \cdot \sqrt{\frac{2.25 \cdot K \cdot P}{S}}$$

b. 設計·建設規格

(a) 平板に穴がない場合

$$t = d \cdot \sqrt{\frac{K \cdot P}{S}}$$

Kの値は以下による。

	Tree of
取付け方法	Kの値
(a)	0.17
(b)	0.13
(c)	0.17
(d)	Max(0.2, 0.33・m) ここで, m=t _{sr} /t _s
(e)	0. 17 0. 10 ^{*1}
(f)	0.20
(g)	0.20
(h)	$Max(0.2, 0.33 \cdot m)$ $\Box \Box \overline{\heartsuit}, m = t_{sr} / t_{s}$
(i)	0. 33
(j) (1)	
(j)(2)	Max(0.2, 0.33·m)
(k)	ここで, m=t _{sr} /t _s
(ℓ)	
(m)	$0.20 + \frac{1.0 \cdot F \cdot h_g}{W \cdot d}$
(n)	ただし, t _n の厚さにあっては <u>g</u> *2 0.50

注記 *1:取付け方法(e)において t_fから t_sへ移行するテーパが1対4又はそれより 緩やかであり、かつ、以下の①又は②いずれかの場合、K=0.10とする。

①
$$\ell \ge (1.1 - 0.8 \cdot \frac{ts^2}{tt^2}) \cdot \sqrt{d \cdot t_f}$$
の場合
② $t_s \vec{D} \ge \sqrt{d \cdot t_s}$ 以上の長さにわたって
 $t_s \ge 1.12 \cdot t_f \cdot \sqrt{1.1 - \ell/\sqrt{d \cdot t_f}}$ の場合

*2:4項「フランジの強度計算」における記号との対応は次のとおり。

FはW_oとW_gのいずれか大きい方、h_gはh_G、WはH、dはG(セルフシー ルガスケットを用いる場合はD_g)とする。 (b) 平板に穴を設ける場合であって、穴の径(d_h)がdの2分の1以下で容器の胴の穴の補強に準じて補強するものの計算上必要な厚さは、次の式による値とする。

$$t = d \cdot \sqrt{\frac{K \cdot P}{S}}$$

この場合において、平板の補強に用いる必要厚さ(t_{pr})はtとし、かつ、補強に 有効な面積は、補強に必要な面積の2分の1以上とする。

(c) 平板に穴を設ける場合であって、穴の径(d_h) がd o 2 分 o 1 以下で(b) 項以外のも のの計算上必要な厚さは、次の式による値とする。

$$t = d \cdot \sqrt{\frac{2 \cdot K \cdot P}{S}}$$

ただし、平板の取付け方法が、(m)の場合を除き、Kの値が 0.375 を超えるときは その値を 0.375 とする。

(d) 平板に穴を設ける場合であって、穴の径 (d_h) が d o 2 分 o 1 を超えるものの計算 上必要な厚さは、次の式による値とする。

$$t = d \cdot \sqrt{\frac{2.25 \cdot K \cdot P}{S}}$$

(4) 評価

平板の最小厚さ(t_p) ≧平板の計算上必要な厚さ(t) ならば十分である。

2.9 だ円形マンホール平板の計算

重大事故等クラス2容器についてはJIS B 8201 6.6.8項 マンホールカバーの 最小厚さを適用する。

(1) 記号の説明

J I Sの記号	計算書の表示	表示内容	単位
а	а	穴の長径	mm
b	b	穴の短径	mm
с	С	穴の短径と長径との比によって定まる係数	—
		(JIS B 8201図6.20による。)	
	t	マンホール平板に必要な厚さ	mm
t	t 1	マンホール平板の計算上必要な厚さ	mm
	t ₂	マンホール平板の中央部の規格上必要な最小	mm
		厚さ	
	t p	マンホール平板の最小厚さ	mm
	t po	マンホール平板の呼び厚さ	mm
α	α	付け代で,1mm以上とする。ただし,取替え	mm
		のできるマンホール平板にあっては,0とす	
		る。	
σa	σa	材料の許容引張応力	MPa
		設計・建設規格 付録材料図表 Part5 表	
		5又は表6による。	

(2) 算式

だ円形マンホール平板の計算上必要な厚さは次に掲げる値のうちいずれか大きい値とする。

a. 平板の計算上必要な厚さ: t₁

$$t_{1} = \frac{5 \cdot b}{c} \cdot \sqrt{\frac{P}{\sigma_{a}}} + \alpha$$

r—

b. 規格上必要な最小厚さ:t₂
 平板の中央部の厚さは14 mm以下としてはならない。

(3) 評価

マンホール平板の最小厚さ(t_p) \geq マンホール平板に必要な厚さ(t) ならば十分である。

က

2.10 容器の管板の計算

重大事故等クラス2容器については設計・建設規格 PVC-3510を適用する。

(1) 記号の説明

(1) 記方の記	.01		ı
設計・建設規格の記号	計算書の表示	表示内容	単位
А	А	管板に取り付けられる任意の管の中心が囲む面積	mm^2
D	D	パッキンの中心円の径(胴と一体となった管板にあ っては,胴の内径)	mm
	d t	管の外径	mm
F	F	管及び管板の支え方による係数	_
L	L	面積Aの周のうち穴の径以外の部分の長さ	mm
Р	Р	計算上必要な厚さが大きい値の方の最高使用圧力	MPa
	P _t	管穴の中心間の距離	mm
S	S	最高使用温度における材料の許容引張応力 設計・建設規格 付録材料図表 Part5 表5又は表 6による。	MPa
	t	管板に必要な厚さ	mm
t	t 1	管板の計算上必要な厚さ	mm
t	t 2	管板の計算上必要な厚さ	mm
	tь	管板の最小厚さ	mm
	tьo	管板の呼び厚さ	mm
	t s	胴と管板が一体となっている場合の胴の最小厚さ	mm
	Z	管穴の中心間に必要な距離	mm
	伝熱管の形式		
	直管	同左	—
	U字管	同左	—
	管板の支え方		
	管側胴と一	同左	—
	体でない。 管側胴と一	同左	
	官側加こ体である。		
	胴側胴と一	同左	_
	体でない。 胴側胴と一	同左	_
	体である。		

(2) 形状の制限

 $P_t \ge z$, $z = d_t + 0.25 \cdot d_t$ であること。

(3) 算式

管板の計算上必要な厚さは、次の式により計算したいずれか大きい方の値(10 mm 未満の 場合は10 mm)とする。

$$t_{1} = \frac{F \cdot D}{2} \cdot \sqrt{\frac{P}{S}}$$
$$t_{2} = \frac{P}{0.85 \cdot S} \cdot \left(\frac{A}{L}\right)_{Max}$$

ここで $\left(\frac{A}{L}\right)_{Max}$ は $\left(\frac{A}{L}\right)$ の最大値であり,通常一番外側の管穴の中心を順次結んで得られる多

角形が最大値となる。

以下にA及びLの取り方の例を示す。

Aは、一番外側の管穴の中心を順次結んで得られる多角形の面積(図 2-5 参照)

Lは、一番外側の管穴の中心を順次結んで得られる多角形の外周の長さから外周上の管 穴の直径の合計を差し引いた長さ

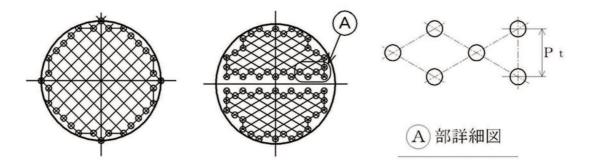


図 2-5 管板の計算に用いる多角形

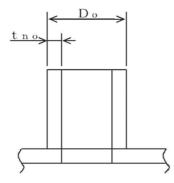
なお,計算は管側と胴側各々の条件に対して行い,計算上必要な厚さが大きい側の結果 を強度計算書に記載する。

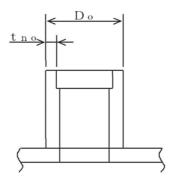
(4) 評価

管板の最小厚さ(t_b) \geq 管板に必要な厚さ(t) ならば十分である。

2.11 容器の管台の計算

重大事故等クラス2容器については設計・建設規格 PVC-3610を適用する。


(1) 記号の説	明	
設計・建設 規格の記号	計算書の表示	
В	В	設計・建設規


設計・建設 規格の記号	計算書の表示	表示内容	単位
В	В	設計・建設規格 付録材料図表 Part7 図 1~20 よ	—
		り求めた値(Bを求める際に使用した板の厚さは繰	
		返し計算により最終的に t ₂ となる。)	
D _o	D _o	管台の外径*2	mm
S	S[S ₁]*1	内圧時の最高使用温度における材料の許容引張応力	MPa
		 設計・建設規格 付録材料図表 Part5 表5又は表 6による。 	
S	S ₂	外圧時の最高使用温度における材料の許容引張応力	MPa
		設計・建設規格 付録材料図表 Part5 表 5 又は表	
		6による。	
	t	管台に必要な厚さ	mm
t	t 1	管台の計算上必要な厚さ	mm
t	t 2	管台の計算上必要な厚さ	mm
	t ₃	管台の規格上必要な最小厚さ	mm
	t n	管台の最小厚さ	mm
	t no	管台の呼び厚さ*2	mm

注記 *1:S [S₁] は内圧時の計算のみの場合はSを,内圧時及び外圧時の計算の場

合はS₁を用いる。

なお、 $S_1 = S_2$ の場合は、 $S_2 \in S_1$ と置き換える *2:管台の外径及び呼び厚さは、下図参照。

注:本図は,管台の外径及び呼び厚さの寸法を 説明するものであり, 管台の取付け形式を 示すものではない。

(2) 算式

管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 内面に圧力を受ける管台: t₁

$$t_{1} = \frac{P \cdot D_{o}}{2 \cdot S \cdot \eta + 0.8 \cdot P}$$

b. 外面に圧力を受ける管台:t₂

設計・建設規格 図 PVC-3610-1 より P_e, S₂に対して求めた厚さ。ただし, 図より求められない場合は次の式による値とする。

$$t_2 = \frac{3 \cdot P \cdot D_o}{4 \cdot B}$$

 c. 規格上必要な最小厚さ:t₃
 炭素鋼鋼管を使用する管台にあっては,管台の外径に応じて設計・建設規格 表 PVC-3610-1より求めた管台の厚さとする。

(3) 評価

管台の最小厚さ $(t_n) \ge$ 管台に必要な厚さ (t) ならば十分である。

- 2.12 容器の管台の補強を要しない穴の最大径の計算管台を胴と見なし、2.4項「容器の胴の補強を要しない穴の最大径の計算」を使用する。
- 2.13 内面に圧力を受ける円すい形の胴と円筒形の胴との接続による強め輪の計算
 - (1) 大径端側について
 重大事故等クラス2容器については設計・建設規格 PVC-3171, PVC-3172, PVC-3173(1)
 及び PVC-3173(3)を適用する。

設計・建設 規格の記号	計算書の表示	表示内容	単位
			0
А	А	強め輪に必要な断面積	mm^2
а	а	円すい形の胴と円筒形の胴との接続部からそれ	mm
		ぞれの胴の厚さの中心に沿った距離	
A e	A e	実際の強め輪の断面積	mm^2
	b e	強め輪の接続部から端部までの距離	mm
	b e d	強め輪の有効な長さで b e と a の小さい値	mm
D o	Dо	円すい形の胴の大径端に接続する円筒形の胴の	mm
		内径	
S	S	最高使用温度における円すい形の胴材料の許容	MPa
		引張応力	
		設計・建設規格 付録材料図表 Part5 表5又	
		は表6による。	
t	t	円すい形の胴の厚さ	mm
t ′	t ′	円すい形の胴と円筒形の胴との接続部における	mm
		円筒形の胴の計算上必要な厚さ	
t e	t e	teı, te2のいずれか小さい値	mm
t e	t e 1	円筒形の胴の余肉厚さ	mm
t e	t e 2	円すい形の胴の余肉厚さ	mm
	t i	強め輪の厚さ	mm
t o	t o	円すい形の胴の大径端に接続する円筒形の胴の	mm
		厚さ	
η	η	円すい形の胴の継手効率	_
θ	θ	円すいの頂角の2分の1	0
θ_{1}	heta 1	設計・建設規格 表 PVC-3172-1 より求めた角度	0

a. 記号の説明

- b. 算式
- (a) 強め輪の要否の計算

 $\theta_1 \ge \theta$ であれば強め輪は不要である。

 $\theta_1 < \theta$ であればb項の強め輪の計算を行う。

- (b) 強め輪の計算
 - イ. 強め輪に必要な断面積

$$A = \frac{P \cdot D_0^2}{8 \cdot S \cdot \eta} \cdot \left(1 - \frac{\theta_1}{\theta}\right) \cdot \tan \theta$$

ロ. 実際の強め輪の断面積

$$A = 4 \cdot t = \sqrt{\frac{D \circ \cdot t \circ}{2}} + 2 \cdot b = d \cdot t i$$

ただし, 胴の余肉のみで強め輪とする場合は,

$$A_e = 4 \cdot t_e \cdot \sqrt{\frac{D_o \cdot t_o}{2}}$$

ここで,

bed=Min (a, be)

$$a = \sqrt{\frac{D \circ \cdot t \circ}{2}}$$
te=Min (te1, te2)
te1=to-t'
te2=t-\frac{t'}{\cos \theta}

c. 評価

強め輪の断面積(Ae) ≧強め輪に必要な断面積(A) ならば十分である。

(2) 小径端側

重大事故等クラス2容器については設計・建設規格 PVC-3171, PVC-3174, PVC-3175(1) 及び PVC-3175(3)を適用する。

設計・建設規格の記号	計算書の表示	表示内容	単位
风俗の記ち	A	強め輪に必要な断面積	mm ²
		四の軸に必要な時面積 円すい形の胴と円筒形の胴との接続部からそれぞ	
a	а	れの胴の厚さの中心に沿った距離	mm
			0
A e	A e	実際の強め輪の断面積	mm^2
	b e	強め輪の接続部から端部までの距離	mm
	b e d	強め輪の有効な長さで b e と a の小さい値	mm
D s	D s	円すい形の胴の小径端に接続する円筒形の胴の内	mm
		径	
m	m	m1, m2のいずれか小さい値	—
m	m_{1}	円筒形の胴の余肉の割合	_
m	m 2	円すい形の胴の余肉の割合	_
S	S	最高使用温度における円すい形の胴材料の許容引	MPa
		張応力	
		設計・建設規格 付録材料図表 Part5 表5又は	
		表6による。	
t	t	円すい形の胴の厚さ	mm
ť	ť	円すい形の胴と円筒形の胴との接続部における円	mm
t	L	筒形の胴の計算上必要な厚さ	111111
	t i		mm
t s	t s	円すい形の胴の小径端に接続する円筒形の胴の厚	mm
		5	
η	η	円すい形の胴の継手効率	—
heta	θ	円すいの頂角の2分の1	0
$ heta$ $_2$	$ heta$ $_2$	設計・建設規格 表 PVC-3174-1 より求めた角度	0

a. 記号の説明

- b. 算式
 - (a) 強め輪の要否の計算

 $\theta_2 \ge \theta$ であれば強め輪は不要である。

- $\theta_2 < \theta$ であればb項の強め輪の計算を行う。
- (b) 強め輪の計算
 - イ. 強め輪に必要な断面積

$$\mathbf{A} = \frac{\mathbf{P} \cdot \mathbf{D} \, \mathbf{s}^2}{\mathbf{8} \cdot \mathbf{S} \cdot \boldsymbol{\eta}} \cdot \left(1 - \frac{\theta_2}{\theta}\right) \cdot \, \tan \theta$$

ロ. 実際の強め輪の断面積

$$A = m \cdot \sqrt{\frac{D \cdot t \cdot t}{2}} \cdot \left\{ \left(t - \frac{t'}{\cos \theta} \right) + \left(t \cdot s - t' \right) \right\} + 2 \cdot b \cdot t$$

ただし, 胴の余肉のみで強め輪とする場合は,

$$A = m \cdot \sqrt{\frac{D \cdot t \cdot t}{2}} \cdot \left\{ \left(t - \frac{t'}{\cos \theta} \right) + \left(t \cdot t - t' \right) \right\}$$

ここで,

b e d = Min (a, b e)

$$a = \sqrt{\frac{D \cdot t \cdot s}{2}}$$

$$m = Min(m_1, m_2)$$

$$m_1 = t_s \cdot \frac{\cos(\theta - \theta_2)}{t'}$$

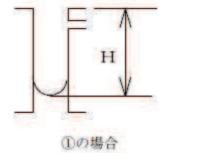
$$m_2 = t \cdot \frac{\cos\theta \cdot \cos(\theta - \theta_2)}{t'}$$

c. 評価

強め輪の断面積(Ae) ≧強め輪に必要な断面積(A) ならば十分である。

2.14 開放タンクの胴の計算

重大事故等クラス2容器については設計・建設規格 PVC-3920を適用する。


(1) 記号の説明

	. / .		
設計・建設 規格の記号	計算書の表示	表示内容	単位
D _i	D _i	胴の内径	m
Н	Н	水頭*	m
S	S	最高使用温度における材料の許容引張応力 設計・建設規格 付録材料図表 Part5 表5又は表	MPa
		取引・建設規格 竹跡材料因衣 Parts 衣 5 文は衣 6 による。	
	t	胴に必要な厚さ	mm
	t 1	胴の規格上必要な最小厚さ	mm
t	t 2	胴の計算上必要な厚さ	mm
	t ₃	胴の内径に応じた必要厚さ	mm
	t s	胴の最小厚さ	mm
	t so	胴の呼び厚さ	mm
ρ	ρ	液体の比重。ただし, 1.00 未満の場合は 1.00 とす	—
		る。	

注記 *:開放タンクの水頭の取り方は、強度評価上は次のいずれかとする。

① タンク上部フランジ上端又はタンク胴板上端より底板内側まで

② 底板に管台が取り付く場合は、第1溶接継手まで

なお、この水頭の取り方は、底板及び管台の計算で用いる水頭も同じである。

- (2) 算式 開放タンクの胴に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。
 - a. 規格上必要な最小厚さ:t₁
 炭素鋼鋼板又は低合金鋼鋼板で作られた場合は3 mm, その他の材料で作られた場合は
 1.5 mm とする。
 - b. 胴の計算上必要な厚さ:t₂

$$t_{2} = \frac{D_{i} \cdot H \cdot \rho}{0.204 \cdot S \cdot \eta}$$

- c. 胴の内径に応じた必要厚さ:t₃
 胴の内径が5mを超えるものについては,胴の内径の区分に応じ設計・建設規格 表
 PVC-3920-1より求めた胴の厚さとする。
- (3) 評価

胴の最小厚さ(t_s) ≧胴に必要な厚さ(t) ならば十分である。

- 2.15 開放タンクの底板の計算 重大事故等クラス2容器については設計・建設規格 PVC-3960及び PVC-3970を適用する。
 - (1) 記号の説明

設計・建設 規格の記号	計算書の表示	表示内容	単位
Н	Н	水頭	m
Р	Р	最高使用圧力	MPa
	t	底板の規格上必要な厚さ	mm
	t _b	底板の最小厚さ	mm
	t bo	底板の呼び厚さ	mm
ρ	ρ	液体の比重。ただし, 1.00 未満の場合は 1.00 とす	—
		る。	

下記(3)b項の場合の記号の説明で上記以外の記号については、鏡板又は平板の項を参照のこと。ただし、鏡板の計算にあっては、tbをtc, tboをtcoに読み替える。

(2) 形状の制限

次のいずれかであること。

- a. 平板
- b. 設計・建設規格 PVC-3210 に規定されている鏡板

- (3) 算式開放タンクの底板に必要な厚さは次によるものとする。
 - a. 地面,基礎等に直接接触するものの厚さ:t
 設計・建設規格 PVC-3970(1)により6 mm以上とする。
 - b. 上記以外のものの底板に必要な厚さ:t
 設計・建設規格 PVC-3970(2)を適用する。
 ここで,最高使用圧力Pは次の式による値とする。
 P=9.80665×10⁻³・H・ρ
 - (a) 鏡板

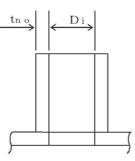
設計・建設規格 PVC-3970(2)より,設計・建設規格 PVC-3220 を準用する。 全半球形鏡板にあっては,2.5項「全半球形鏡板の計算」による厚さとする。 半だ円形鏡板にあっては,2.6項「半だ円形鏡板の計算」による厚さとする。

(b) 平板

設計・建設規格 PVC-3970(2)より,設計・建設規格 PVC-3310 を準用する。 2.8項「円形平板の計算」による厚さとする。

(4) 評価

底板の最小厚さ(t_b) \geq 底板に必要な厚さ(t) ならば十分である。


2.16 開放タンクの管台の計算

重大事故等クラス2容器については設計・建設規格 PVC-3980を適用する。

(1) 記号の説明

設計・建設 規格の記号	計算書の表示	表示内容	単位
D _i	D _i	管台の内径*	m
Н	Н	水頭	m
S	S	最高使用温度における材料の許容引張応力	MPa
		設計・建設規格 付録材料図書 Part5 表5又は表	
		6による。	
	t	管台に必要な厚さ	mm
t	t 1	管台の計算上必要な厚さ	mm
	t ₂	管台の規格上必要な最小厚さ	mm
	t n	管台の最小厚さ	mm
	t no	管台の呼び厚さ*	mm
Q	ρ	液体の比重。ただし, 1.00 未満の場合は 1.00 とす	—
		る。	

注記 *: 管台の内径及び呼び厚さは,下図参照。

注:本図は,管台の内径及び呼び厚さの寸法を 説明するものであり,管台の取付け形式を 示すものではない。

(2) 算式

開放タンクの管台に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。 a. 管台の計算上必要な厚さ: t₁

$$t_{1} = \frac{D_{i} \cdot H \cdot \rho}{0.204 \cdot S \cdot \eta}$$

- b. 規格上必要な最小厚さ:t₂
 管台の外径に応じ設計・建設規格 表 PVC-3980-1 より求めた管台の厚さとする。
- (3) 評価

管台の最小厚さ(t_n) \geq 管台に必要な厚さ(t) ならば十分である。

က

2.17 熱交換器の伝熱管の計算

重大事故等クラス2容器の熱交換器の伝熱管については設計・建設規格 PVC-3610(1)及び PVC-3610(2)を適用する。

(1)	記号の説明
(1)	

設計・建設 規格の記号	計算書の表示	表示内容	単位
В	В	設計・建設規格 付属材料図表 Part7 図1~図20 より求めた値(Bを求める際に使用した板の厚さは 繰返し計算により最終的にt2となる。)	_
D _o	D _o	伝熱管の外径	mm
P _e	P _e	外面に受ける最高の圧力	MPa
S	S	最高使用温度における材料の許容引張応力 設計・建設規格 付録材料図表 Part5 表5又は表 6による。	MPa
	t	伝熱管に必要な厚さ	mm
t	t 1	内圧時の伝熱管の計算上必要な厚さ	mm
t	t 2	外圧時の伝熱管の計算上必要な厚さ	mm
	t t	伝熱管の最小厚さ	mm
	t _{t o}	伝熱管の呼び厚さ	mm

(2) 算式

伝熱管に必要な厚さは、次に掲げる値のうちいずれか大きい値とする。

a. 内面に圧力を受ける伝熱管: t₁

$$t_{1} = \frac{P \cdot D_{o}}{2 \cdot S \cdot \eta + 0.8 \cdot P}$$

b. 外面に圧力を受ける伝熱管: t₂

設計・建設規格 図 PVC-3610-1 より P_e及び S に対応して求めた厚さ。ただし、図より求められない場合は、次の式により計算した値とする。

$$t_{2} = \frac{3 \cdot P_{e} \cdot D_{o}}{4 \cdot B}$$

(3) 評価

伝熱管の最小厚さ(t_t) \geq 伝熱管に必要な厚さ(t) ならば十分である。

3. 穴の補強計算

3.1 記号の説明

5.]	設計・建設	計算書の表示	表示内容	単位
ŀ	規格の記号	A ₀	 補強に有効な総面積	mm ²
	А	A 1	胴,鏡板又は平板の部分の補強に有効な面積	mm ²
	11	A_2	管台の部分の補強に有効な面積	mm^2
		A 3	すみ肉溶接の部分の補強に有効な面積	mm^2
		A 3 A 4	強め板の部分の補強に有効な面積	mm^2
		A_4 A_{0D}	$X_1 \neq X_2$ の場合の片側断面についての補強に有効な	mm ²
		1100	総面積	
		A 1 d	X ₁ ≠ X ₂ の場合の片側断面についての胴, 鏡板又は 平板の部分の補強に有効な面積	mm^2
		A_{2D}	X ₁ ≠ X ₂ の場合の片側断面についての管台の部分の 補強に有効な面積	mm^2
		A_{3D}	X ₁ ≠ X ₂ の場合の片側断面についてのすみ肉溶接の 部分の補強に有効な面積	mm^2
		A_{4D}	X ₁ ≠X ₂ の場合の片側断面についての強め板の部分	mm^2
			の補強に有効な面積	
		Аjo	大きい穴の補強に有効な総面積	mm^2
		A j 1	大きい穴の胴,鏡板又は平板の部分の補強に有効な 面積	mm^2
		A _{j 2}	大きい穴の管台の部分の補強に有効な面積	mm^2
		A _{j 3}	大きい穴のすみ肉溶接の部分の補強に有効な面積	mm^2
		A _{j 4}	大きい穴の強め板の部分の補強に有効な面積	mm^2
		A j r	大きい穴の補強に必要な面積	mm^2
	A _r	A r	穴の補強に必要な面積	mm^2
		A r D	片側断面についての穴の補強に必要な面積	mm^2
	В	В	設計・建設規格 付録材料図表 Part7 図 1~図 20	_
			より求めた値(Bを求める際に使用した板の厚さは	
			繰返し計算により最終的に t n r となる。)	
		B _e	強め板の外径	mm
	d	d	胴又は鏡板の断面に現われる穴の径	mm
			平板の場合は設計・建設規格の表中に規定する方法によって測った平板の径又は、最小内のり断面に現	
			われる穴の径	
		d _h	平板の断面に現われる穴の径	mm
		d j	大きい穴の補強を要する限界径	mm
		d _w	管台の取り付く穴の径(完全溶込み溶接により溶接 された管台については、 $d_w = D_{on} + \alpha$ (α はルート 間隔の2倍),それ以外の管台については、 $d_w =$	mm
			D _{on})	

設計・建設 規格の記号	計算書の表示	表示内容	単位
D i	D i	円筒胴にあっては胴の内径。さら形鏡板及び半だ円 形鏡板にあっては鏡板のフランジ部の内径。全半球 形鏡板にあっては鏡板の内径	mm
D	D _{iL}	半だ円形鏡板の内面における長径	mm
	D _{i s}	半だ円形鏡板の内面における短径	mm
	D _{o n}	管台の外径	mm
F	F	係数	_
	F $_1$	すみ肉溶接の許容せん断応力の係数	_
	F $_2$	突合せ溶接の許容せん断応力の係数	_
	F ₃	突合せ溶接の許容引張応力の係数	_
	F $_4$	管台壁の許容せん断応力の係数	_
К 1	К 1	半だ円形鏡板の長径と短径との比による係数	_
	L ₁	溶接の脚長*1	mm
	L ₂	溶接の脚長*1	mm
	L ₃	溶接の脚長*1	mm
	L ₄	溶接の脚長*1	mm
	L ₅	溶接の脚長*1	mm
	Р	最高使用圧力又は外面に受ける最高の圧力	MPa
	РLАТЕ—	管台のない平板形式(図 3-20 参照)	—
	R	さら形鏡板にあっては鏡板の中央部における内面の 半径。半だ円形鏡板にあってはD _{il} ・K _i 。全半球形鏡 板にあっては鏡板の内半径。	mm
	S _c	鏡板材の許容引張応力 設計・建設規格 付録材料図表 Part5 表5又は表 6による。	MPa
	S _e	強め板材の許容引張応力 設計・建設規格 付録材料図表 Part5 表5又は表 6による。	MPa
S	S _n	管台材の許容引張応力 設計・建設規格 付録材料図表 Part5 表5又は表 6による。	MPa
	S _p	平板材の許容引張応力 設計・建設規格 付録材料図表 Part5 表 5 又は表	MPa
S	S _s	6 による。 胴板材の許容引張応力 設計・建設規格 付録材料図表 Part5 表 5 又は表 6 による。	MPa
	$S_{w 1}$	すみ肉溶接部の許容せん断応力	MPa
	S_{w2}	突合せ溶接部の許容せん断応力	MPa

設計・建設 規格の記号	計算書の表示	表示内容	単位
	S _{w 3}	突合せ溶接部の許容引張応力	MPa
	S_{w4}	管台壁の許容せん断応力	MPa
t s	t c	鏡板の最小厚さ	mm
t _{s r}	t _{cr}	穴の補強計算に用いる鏡板の計算上必要な厚さ	mm
	t e	強め板の最小厚さ	mm
t n	t n	管台の最小厚さ	mm
	t _{no}	管台の呼び厚さ	mm
t nr	t n r	管台の計算上必要な厚さ	mm
t s	t p	平板の最小厚さ	mm
t _{s r}	t _{pr}	平板の計算上必要な厚さ	mm
t s	t s	胴の最小厚さ	mm
t _{s r}	t _{s r}	胴の継目がない場合の計算上必要な厚さ	mm
	W	溶接部の負うべき荷重	Ν
	${ m W}_{1}{}^{*2}$	$W_1 = (A_2 + A_3 + A_4) \cdot S_s$	Ν
	${ m W}_{2}{ m *}^{2}$	$W_2 = (d \cdot t_{s r} - A_1) \cdot S_s \mathbf{X} l \mathbf{I}$	Ν
	W _e 1	W ₂ =(d _w ・t _{sr} -A ₁)・S _s すみ肉溶接部のせん断力(管台取付部:胴,鏡板又 は平板の外側)	Ν
	W _{e2}	すみ肉溶接部のせん断力(管台取付部:胴,鏡板又 は平板の内側)	Ν
	W _{e3}	すみ肉溶接部のせん断力 (強め板取付部)	Ν
	W _{e4}	突合せ溶接部のせん断力(胴,鏡板又は平板と強め 板との突合せ部)	Ν
	W _e 5	突合せ溶接部のせん断力(管台取付部)	Ν
	W _e 5D	突合せ溶接部のせん断力(管台取付部)	Ν
	W _{e6}	突合せ溶接部の引張力(胴,鏡板又は平板の部分径	Ν
	W _{e7}	D _{on} において) 突合せ溶接部の引張力(胴,鏡板又は平板の部分径 d _w において)	Ν
	W e 8	突合せ溶接部の引張力(強め板の部分径D _{on} において)	Ν
	W e 9	突合せ溶接部の引張力(強め板の部分径dwにおいて)	Ν
	W _{e 1 0}	管台のせん断力	Ν
	W _{e 1 1}	すみ肉溶接部のせん断力(管台取付部の胴,鏡板又 は平板の部分径 d wより外側)	Ν

設計・建設 規格の記号	計算書の表示	表示内容	単位
	W _{ebp1}	予想される破断箇所の強さ	Ν
	W _{ebp2}	予想される破断箇所の強さ	Ν
	W _{ebp3}	予想される破断箇所の強さ	Ν
	W _{ebp4}	予想される破断箇所の強さ	Ν
	W _{ebp5}	予想される破断箇所の強さ	Ν
	W _{ebp6}	予想される破断箇所の強さ	Ν
	WELD-	管台溶接形式(図 3-1~図 3-19 を参照)	_
	Х	補強の有効範囲(胴,鏡板又は平板の面に沿った方 向)	mm
	X 1	補強の有効範囲	mm
	X 2	補強の有効範囲	mm
	Х ј	大きい穴の補強に有効な範囲	mm
	X _{j 1}	大きい穴の補強に有効な範囲	mm
	Х ј 2	大きい穴の補強に有効な範囲	mm
	Y 1	補強の有効範囲(胴、鏡板又は平板より外側)	mm
	Y 2	補強の有効範囲(胴,鏡板又は平板より内側)	mm
η	η	穴が長手継手又は胴と全半球形鏡板との接合部の周 継手を通る場合はその継手の効率。その他の場合は 1.00	_
	π	円周率	_
	応力除去の 有無		
	有り	同左	—
	無し	同左	—

注記 *1: 重大事故等クラス2容器については設計・建設規格 図 PVC-4212-3 による。

*2:本記号の表示内容は胴の場合を示す。

なお,鏡板の場合はS_sをS_c, t_{sr}をt_{cr}に読み替える。平板の場合は, S_sを S_p, dをd_h, t_{sr}をt_{pr}に読み替える。 3.2 容器の穴の補強計算

「補強は,穴の中心を含み,かつ,胴板の面に垂直な任意の平面に現れる断面について,補 強に有効な範囲内にある補強に有効な面積が補強に必要な面積より大きい」ことを確認する。 また,破断が想定される溶接部の強さが溶接部の負うべき荷重より大きいことを確認する。

なお,穴の補強計算上必要のない強め板を取り付けるものもあるが,その場合は強め板があ るものとして計算する。

(1) 胴の場合

重大事故等クラス2容器については、設計・建設規格 PVC-3160を適用する。

a. 管台の形式

図 3-1~図 3-19 に管台の形式,補強に有効な面積,補強に必要な面積,破断形式等を示す。

ただし、すみ肉溶接部分の破断箇所については、両方の脚長が等しいため、片側の脚 長の破断形式のみを図示する。

- b. 穴の補強
- (a) 補強に必要な面積設計・建設規格 PVC-3161.3 を適用する。
 - イ. 円筒形の胴の場合
 - (イ) 管台の一部分が胴の部分となっていない場合及びWELD-8, 22の場合 $A_r = d \cdot t_{sr} \cdot F$
 - (ロ) 管台の一部分が胴の部分となっている場合

 $A_{r} = d \cdot t_{s r} \cdot F + 2 \cdot (1 - S_{n} / S_{s}) \cdot t_{s r} \cdot F \cdot t_{n}$

 $(S_n/S_s > 1$ の場合は $S_n/S_s = 1$ とする。以下, 胴の場合において同じ。)

(b) 補強に有効な範囲

設計・建設規格 PVC-3161.1を適用する。

 $X = X_{1} + X_{2}$ $X_{1} = X_{2} = Max (d, d/2 + t_{s} + t_{n})$ $Y_{1} = Min (2.5 \cdot t_{s}, 2.5 \cdot t_{n} + t_{e})$ $Y_{2} = Min (2.5 \cdot t_{s}, 2.5 \cdot t_{n})$

ただし、構造上計算した有効範囲が取れない場合は、構造上取り得る範囲とする。 また、強め板がない場合には t_e=0 とする。

(c) 補強に有効な面積

設計・建設規格 PVC-3161.2 を適用する。

- イ. 胴の部分の補強に有効な面積
- (イ) 管台の一部分が胴の部分となっていない場合及びWELD-8, 22の場合 $A_1 = (\eta \cdot t_s - F \cdot t_{sr}) \cdot (X - d)$

- ロ. 管台の部分の補強に有効な面積
- (イ) 管台が胴の内側に突出していない場合及びWELD-8, 22の場合
 A₂=2・(t_n-t_{nr})・Y₁・S_n/S_s
- (ロ) 管台が胴の内側に突出している場合

$$A_2 = 2 \cdot \{(t_n - t_{n_r}) \cdot Y_1 + t_n \cdot Y_2\} \cdot S_n / S_s$$

 $k \neq l$

$$t_{nr} = \frac{P \cdot (D_{on} - 2 \cdot t_n)}{2 \cdot S_n - 1.2 \cdot P} \quad \dots \quad (\textbf{PE})$$

外面に圧力を受ける場合は,設計・建設規格 図 PVC-3610-1 を適用する。 ただし,図より求められない場合は次の式による値とする。

ハ. すみ肉溶接部の部分の補強に有効な面積

 $A_3 = L_1 \cdot L_1 + L_2 \cdot L_2 + L_3 \cdot L_3$

ただし、補強の有効範囲にないすみ肉溶接の部分は除く。

ニ. 強め板の部分の補強に有効な面積

 $A_4 = {Min(B_e, X) - D_{on}} \cdot t_e \cdot S_e / S_s$ ($S_e / S_s > 1$ の場合は $S_e / S_s = 1$ とする。以下, 胴の場合において同じ。)

ホ. 補強に有効な総面積

 $A_0 = A_1 + A_2 + A_3 + A_4$

(d) 補強に有効な範囲X₁ ≠ X₂の場合の補強に有効な面積の確認
 設計・建設規格 PVC-3165を適用する。
 補強に必要な面積の2分の1以上の補強に有効な面積は穴の中心線の両側にある必要

がある。

ただし、補強に有効な範囲 $X_1 = X_2$ の場合は上記条件を満足することが明らかであり、以下の計算は行わない。

イ. 補強に必要な面積の2分の1

$$A_{rD} = A_{r}/2$$

- ロ. X1又はX2のいずれか小さい方の断面における補強に有効な面積
- (イ) 胴の部分の補強に有効な面積
 - ・管台の一部分が胴の部分となっていない場合及びWELD-8, 22の場合 $A_{1D} = (\eta \cdot t_s - F \cdot t_{sr}) \cdot \{Min(X_1, X_2) - d/2\}$
 - ・管台の一部分が胴の部分となっている場合

$$A_{1D} = (\eta \cdot t_s - F \cdot t_{sr}) \cdot \{Min(X_1, X_2) - d/2\}$$
$$-(1 - S_n/S_s) \cdot (\eta \cdot t_s - F \cdot t_{sr}) \cdot t_n$$

- (ロ) 管台の部分の補強に有効な面積A_{2D}=A₂/2
- (ハ) すみ肉溶接の部分の補強に有効な面積A_{3D}=A₃/2
- (ニ) 強め板の部分の補強に有効な面積A_{4D}=A₄/2
- (ホ) 補強に有効な総面積

 $A_{0D} = A_{1D} + A_{2D} + A_{3D} + A_{4D}$

- c. 大きい穴の補強設計・建設規格 PVC-3164 を適用する。
 - (a) 大きい穴の補強を要する限界径
 - イ. D_iが1500 mm以下の場合

 $d_j = D_i/2$

ただし、500 mm を超える場合は 500 mm とする。

ロ. D_iが1500 mmを超える場合

 $d_{j} = D_{i}/3$

ただし, 1000 mm を超える場合は 1000 mm とする。

ここで、 $d \leq d_j$ の場合は大きい穴の補強計算は必要ない。

一方, d > d_jの場合は補強に必要な面積の3分の2以上が穴の周囲から穴の
 径の4分の1の範囲内にある必要がある。

- (b) 大きい穴の補強における管台の形式図 3-21~図 3-39 に大きい穴の補強における管台の形式を示す。
- (c) 大きい穴の補強に必要な面積

$$A_{jr} = \frac{2}{3} \cdot A_r$$

(d) 大きい穴の補強に有効な範囲

$$\mathbf{X}_{\mathbf{j}} = \mathbf{X}_{\mathbf{j} \mathbf{1}} + \mathbf{X}_{\mathbf{j} \mathbf{2}}$$

$$X_{j1} = X_{j2} = \frac{d}{2} + \frac{d}{4}$$

ただし、構造上計算した有効範囲がとれない場合は、構造上取り得る範囲とする。

(e) 大きい穴の補強に有効な面積

イ. 胴の部分の補強に有効な面積

(イ) 管台の一部分が胴の部分となっていない場合及びWELD-8, 22の場合 $A_{j,1} = (\eta \cdot t_s - F \cdot t_{s,r}) \cdot (X_j - d)$

- ロ. 管台の部分の補強に有効な面積
- (イ) 管台が胴の内側に突出していない場合及びWELD-8, 22の場合

$$A_{j2} = 2 \cdot \left\{ \frac{\operatorname{Min} \left(X_{j}, D_{on} \right) - d}{2} - t_{nr} \right\} \cdot Y_{1} \cdot \frac{S_{n}}{S_{s}}$$

(ロ) 管台が胴の内側に突出している場合

$$A_{j2} = 2 \cdot \left[\left\{ \frac{\operatorname{Min} \left(\begin{array}{c} X_{j}, \begin{array}{c} D_{on} \end{array} \right) - d}{2} - t_{nr} \right\} \cdot Y_{1} + \frac{\operatorname{Min} \left(\begin{array}{c} X_{j}, \begin{array}{c} D_{on} \end{array} \right) - d}{2} \cdot Y_{2} \right] \cdot \frac{S_{n}}{S_{s}} \right]$$

ハ. すみ肉溶接の部分の補強に有効な面積

 $A_{j 3} = L_1 \cdot L_1 + L_2 \cdot L_2 + L_3 \cdot L_3$

ただし、大きい穴の補強の有効範囲にないすみ肉溶接の部分は除く。

ニ. 強め板の部分の補強に有効な面積

 $A_{j4} = \{Min \cdot (B_e, X_j) - D_{on}\} \cdot t_e \cdot S_e / S_s$

ホ. 大きい穴の補強に有効な総面積

 $A_{j 0} = A_{j 1} + A_{j 2} + A_{j 3} + A_{j 4}$

d. 溶接部の強度

設計・建設規格 PVC-3168 及び PVC-3169 を適用する。

- (a) 溶接部の負うべき荷重 次の2つの計算式(W₁及びW₂)により求めた荷重のうちいずれか小さい方。 W₁=(A₂+A₃+A₄)・S_s
 管台の一部分が胴の部分となっていない場合及びWELD-8,22の場合 W₂=(d・t_{sr}-A₁)・S_s
 管台の一部分が胴の一部となっている場合 W₂=(d_w・t_{sr}-A₁)・S_s
 よって,W=Min(W₁,W₂)
 ここで,W<0の場合は、溶接部の強度計算は必要ない。
 一方,W≥0の場合は以下の溶接部の強度計算を行う。
- (b) 溶接部の単位面積当たりの強さ

 $S_{w1} = S_{s} \cdot F_{1}$ $S_{w2} = S_{s} \cdot F_{2}$ $S_{w3} = S_{s} \cdot F_{3}$ $S_{w4} = Min(S_{s}, S_{n}) \cdot F_{4}$

(c) 継手部の強さ

$$W_{e4} = \pi \cdot D_{on} \cdot \left(\frac{d_w - D_{on}}{2}\right) \cdot S_{w2}/2$$

$$W_{e5} = \pi \cdot \left(\frac{D_{on} + d}{2} \right) \cdot t_n \cdot S_{w2}/2$$

$$\begin{split} W_{e\,6} &= \pi \cdot D_{o\,n} \cdot t_{s} \cdot S_{w3}/2 \cdots \cdots (WE L D - 5, 6, 14 以外の場合) \\ W_{e\,6} &= \pi \cdot D_{o\,n} \cdot L_{4} \cdot S_{w3}/2 \cdots (WE L D - 5, 6, 14 の場合) \\ W_{e\,7} &= \pi \cdot d_{w} \cdot t_{s} \cdot S_{w3}/2 \cdots (WE L D - 6 以外の場合) \\ W_{e\,7} &= \pi \cdot d_{w} \cdot L_{4} \cdot S_{w3}/2 \cdots (WE L D - 6 0) \\ W_{e\,8} &= \pi \cdot D_{o\,n} \cdot t_{e} \cdot S_{w3}/2 \cdots (WE L D - 14) \\ W_{e\,8} &= \pi \cdot D_{o\,n} \cdot L_{5} \cdot S_{w3}/2 \cdots (WE L D - 14) \\ W_{e\,9} &= \pi \cdot d_{w} \cdot t_{e} \cdot S_{w3}/2 \end{split}$$

$$W_{e 1 0} = \pi \cdot \left(\frac{D_{o n} + d}{2} \right) \cdot t_{n} \cdot S_{w 4}/2$$

$$W_{e 1 1} = \pi \cdot d_{w} \cdot \left(\frac{D_{o n} - d_{w}}{2} + L_{1} \right) \cdot S_{w 1}/2$$

(d) 予想される破断箇所の強さ

イ. WELD-1の場合

$$W_{ebp1} = W_{e1} W_{e5} \cdots$$
を通る強さ= $W_{e1} + W_{e5}$
 $W_{ebp2} = W_{e5D} \cdots$ を通る強さ= W_{e5}

ロ. WELD-2の場合

WELD-3の場合

$$W_{ebp1} = W_{e1} W_{e6} \cdots \delta a a a a b a a b a a b a a b a a b a a b a b a a b a b a a b a$$

ニ. WELD-4の場合

$$W_{ebp1} = W_{e1} W_{e6} \cdots$$
を通る強さ= $W_{e1} + W_{e6}$
 $W_{ebp2} = W_{e1} W_{e10} \cdots$ を通る強さ= $W_{e1} + W_{e10}$
 $W_{ebp3} = W_{e11} W_{e7} \cdots$ を通る強さ= $W_{e11} + W_{e7}$
ただし、 $D_{on} = d_w$ の場合は $W_{ebp1} = W_{ebp3}$ となるため W_{ebp3} を省略する。

ホ. WELD-5の場合

$$W_{ebp1} = W_{e1} W_{e6}$$
 …… を通る強さ= $W_{e1} + W_{e6}$
 $W_{ebp2} = W_{e1} W_{e10}$ …… を通る強さ= $W_{e1} + W_{e10}$

ヘ. WELD-6の場合

$$W_{ebp1} = W_{e1} W_{e6} W_{e2} \cdots$$
を通る強さ= $W_{e1} + W_{e6} + W_{e2}$ $W_{ebp2} = W_{e1} W_{e10} \cdots$ を通る強さ= $W_{e1} + W_{e10}$ $W_{ebp3} = W_{e1} W_{e7} \cdots$ を通る強さ= $W_{e1} + W_{e7}$

ト. WELD-8の場合

$$W_{ebp1} = W_{e1} W_{e2} \cdots$$
を通る強さ= $W_{e1}+W_{e2}$
 $W_{ebp2} = W_{e1} W_{e10} \cdots$ を通る強さ= $W_{e1}+W_{e10}$

チ. WELD-9の場合

$$W_{ebp1} = W_{e1} W_{e6} W_{e2} \cdots$$
を通る強さ= $W_{e1} + W_{e6} + W_{e2}$
 $W_{ebp2} = W_{e1} W_{e10} \cdots$ を通る強さ= $W_{e1} + W_{e10}$
 $W_{ebp3} = W_{e7} \cdots$ を通る強さ= W_{e7}

リ. WELD-11の場合

$$W_{ebp1} = W_{e3}W_{e4}W_{e2}$$
を通る強さ= $W_{e3}+W_{e4}+W_{e2}$ $W_{ebp2} = W_{e1}W_{e8}W_{e2}$ を通る強さ= $W_{e1}+W_{e8}+W_{e2}$ $W_{ebp3} = W_{e9}W_{e4}W_{e2}$ を通る強さ= $W_{e9}+W_{e4}+W_{e2}$ $W_{ebp4} = W_{e3}W_{e4}W_{e10}$ を通る強さ= $W_{e3}+W_{e4}+W_{e10}$ $W_{ebp5} = W_{e1}W_{e10}$ を通る強さ= $W_{e1}+W_{e10}$

ヌ. WELD-12の場合

ル. WELD-13の場合

$$W_{ebp1} = W_{e1} W_{e5D} \cdots$$
を通る強さ= $W_{e1} + W_{e5}$
 $W_{ebp2} = W_{e3} W_{e4} W_{e5} \cdots$ を通る強さ= $W_{e3} + W_{e4} + W_{e5}$

ヲ. WELD-14の場合

ワ. WELD-15, 16, 22の場合

$$W_{ebp1} = W_{e1} W_{e8} W_{e6}$$
を通る強さ= $W_{e1} + W_{e8} + W_{e6}$ $W_{ebp2} = W_{e3} W_{e7}$ を通る強さ= $W_{e3} + W_{e7}$ $W_{ebp3} = W_{e3} W_{e4} W_{e6}$ を通る強さ= $W_{e3} + W_{e4} + W_{e6}$ $W_{ebp4} = W_{e3} W_{e4} W_{e10}$ を通る強さ= $W_{e3} + W_{e4} + W_{e10}$ $W_{ebp5} = W_{e9} W_{e7}$ を通る強さ= $W_{e9} + W_{e7}$ $W_{ebp6} = W_{e1} W_{e10}$ を通る強さ= $W_{e1} + W_{e10}$

カ. WELD-17の場合

$$W_{ebp1} = W_{e1} W_{e2} \cdots$$
を通る強さ= $W_{e1} + W_{e2}$

$$W_{ebp1} = W_{e1} W_{e6} W_{e2} \cdots$$
 を通る強さ= $W_{e1} + W_{e6} + W_{e2}$
 $W_{ebp2} = W_{e3} W_{e7} \cdots$
 を通る強さ= $W_{e3} + W_{e7}$
 $W_{ebp3} = W_{e3} W_{e4} W_{e6} W_{e2}$

 $W_{ebp4} = W_{e3} W_{e4} W_{e10} \cdots$
 を通る強さ= $W_{e3} + W_{e4} + W_{e6} + W_{e2}$
 $W_{ebp4} = W_{e3} W_{e4} W_{e10} \cdots$
 を通る強さ= $W_{e3} + W_{e4} + W_{e10}$
 $W_{ebp5} = W_{e1} W_{e10} \cdots$
 を通る強さ= $W_{e1} + W_{e10}$

e. 評価

胴の穴の補強は、下記の条件を満足すれば十分である。

 $A_0 > A_r$

 $A_{0D} \ge A_{rD}$ (ただし, $X_1 \neq X_2$ の場合のみ) $A_{j0} \ge A_{jr}$ (ただし,大きい穴の補強を要する場合のみ) すべての破断箇所の強さ \ge W (ただし,Wが正の場合のみ)

(2) 鏡板の場合

重大事故等クラス2容器については設計・建設規格 PVC-3240を適用する。

a. 管台の形式

図 3-1~図 3-19 に管台の形式,補強に有効な面積,補強に必要な面積,破断形式等を示す。

ただし、すみ肉溶接部分の破断箇所については、両方の脚長が等しいため、片側の脚長 の破断形式のみを図示する。

- b. 穴の補強
 - (a) 補強に必要な面積
 設計・建設規格 PVC-3241(設計・建設規格 PVC-3161.3準用)を適用する。
 - イ. 半だ円形鏡板及び全半球形鏡板の場合
 - (イ) 管台の一部分が鏡板の部分となっていない場合及びWELD-38の場合
 A_r = d・t_{or}・F
 (F=1とする。以下,鏡板の場合において同じ。)

(ロ) 管台の一部分が鏡板の部分となっている場合

 $A_r = d \cdot t_{cr} \cdot F + 2 \cdot (1 - S_n / S_c) \cdot t_{cr} \cdot F \cdot t_n$ ($S_n / S_c > 1$ の場合は $S_n / S_c = 1$ とする。以下鏡板の場合において同じ。)

ただし、t_{or}は次による。 半だ円形鏡板であって、中低面に圧力を受けるものは

$$t_{cr} = \frac{P \cdot R}{2 \cdot S_{c} \cdot \eta - 0.2 \cdot P}$$

全半球形鏡板にあって(厚さが内半径の0.356倍以下のもの),中低面に圧力を 受けるものは

$$t_{cr} = \frac{P \cdot R}{2 \cdot S_{c} \cdot \eta - 0.2 \cdot P}$$

(b) 補強に有効な範囲

設計・建設規格 PVC-3241 (設計・建設規格 PVC-3161.1 準用)を適用する。 X=X₁+X₂ X₁=X₂=Max (d, d/2+t_c+t_n) Y₁=Min (2.5・t_c, 2.5・t_n+t_e) Y₂=Min (2.5・t_c, 2.5・t_n) ただし,構造上計算した有効範囲が取れない場合は,構造上取り得る範囲とする。 また,強め板がない場合にはt_e=0とする。

(c) 補強に有効な面積

設計・建設規格 PVC-3241(設計・建設規格 PVC-3161.2準用)を適用する。

- イ. 鏡板の部分の補強に有効な面積
- (イ) 管台の一部分が鏡板の部分となっていない場合及びWELD-38の場合
 A₁=(η・t_c-F・t_{cr})・(X-d)
- (ロ) 管台の一部分が鏡板の部分となっている場合
 A₁=(η・t_c-F・t_{cr})・(X-d)
 -(1-S_n/S_c)・(η・t_c-F・t_{cr})・2・t_n
- ロ. 管台の部分の補強に有効な面積
- (イ) 管台が鏡板の内側に突出していない場合及びWELD-38の場合
 A₂=2・(t_n-t_{nr})・Y₁・S_n/S_c
- (ロ) 管台が鏡板の内側に突出している場合
 A₂=2・{(t_n-t_{nr})・Y₁+t_n・Y₂}・S_n/S_c
 ただし,

$$t_{n r} = \frac{P \cdot (D_{o n} - 2 \cdot t_{n})}{2 \cdot S_{n} - 1.2 \cdot P}$$

ハ. すみ肉溶接の部分の補強に有効な面積

 $A_3 = L_1 \cdot L_1 + L_2 \cdot L_2 + L_3 \cdot L_3$

ただし、補強の有効範囲にないすみ肉溶接の部分は除く。

ニ. 強め板の部分の補強に有効な面積

 $A_4 = \{Min(B_e, X) - D_{on}\} \cdot t_e \cdot S_e / S_c$

(S_e/S_c>1 の場合はS_e/S_c=1 とする。以下,鏡板の場合において同じ。)

ホ. 補強に有効な総面積

$$A_0 = A_1 + A_2 + A_3 + A_4$$

(d) 補強に有効な範囲X₁≠X₂の場合の補強に有効な面積の確認
 設計・建設規格 PVC-3241(設計・建設規格 PVC-3165準用)を適用する。
 補強に必要な面積の2分の1以上の補強に有効な面積は、穴の中心線の両側にある必要がある。

ただし、補強に有効な範囲 $X_1 = X_2$ の場合は上記条件を満足することが明らかであり、以下の計算は行わない。

イ. 補強に必要な面積の2分の1

$$A_{r D} = A_{r}/2$$

- ロ. X₁又はX₂のいずれか小さい方の断面における補強に有効な面積
- (イ) 鏡板の部分の補強に有効な面積
 - ・管台の一部分が鏡板の部分となっていない場合及びWELD-38の場合
 A_{1D}=(η・t_c-F・t_{cr})・{Min(X₁, X₂)-d/2}
 - ・管台の一部分が鏡板の部分となっている場合 $A_{1D} = (\eta \cdot t_{c} - F \cdot t_{cr}) \cdot \{Min(X_{1}, X_{2}) - d/2\}$

$$-(1-S_n/S_c)\cdot(\eta \cdot t_c - F \cdot t_{cr})\cdot t_n$$

- (ロ) 管台の部分の補強に有効な面積A_{2D}=A₂/2
- (ハ) すみ肉溶接の部分の補強に有効な面積A_{3D}=A₃/2
- (ニ) 強め板の部分の補強に有効な面積A_{4D}=A₄/2
- (ホ) 補強に有効な総面積

 $A_{0D} = A_{1D} + A_{2D} + A_{3D} + A_{4D}$

- c. 大きい穴の補強
 設計・建設規格 PVC-3241(設計・建設規格 PVC-3164 準用)を適用する。
 - (a) 大きい穴の補強を要する限界径
 - イ. D_iが1500 mm以下の場合

 $d_{j} = D_{i}/2$

ただし、500 mmを超える場合は500 mmとする。

ロ. D_iが1500 mmを超える場合

 $d_{j} = D_{i}/3$

ただし, 1000 mm を超える場合は 1000 mm とする。

- ここで、 $d \leq d_i$ の場合は大きい穴の補強計算は必要ない。
- 一方、 $d > d_j$ の場合は、補強に必要な面積の3分の2以上が穴の周囲から穴の径の4分の1の範囲内にある必要がある。
- (b) 大きい穴の補強における管台の形式図 3-21~図 3-39 に大きい穴の補強における管台の形式を示す。
- (c) 大きい穴の補強に必要な面積

$$A_{jr} = \frac{2}{3} \cdot A_r$$

(d) 大きい穴の補強に有効な範囲

$$X_{j} = X_{j1} + X_{j2}$$
$$X_{j1} = X_{j2} = \frac{d}{2} + \frac{d}{4}$$

ただし、構造上計算した有効範囲がとれない場合は、構造上取り得る範囲とする。

- (e) 大きい穴の補強に有効な面積
 - イ. 鏡板の部分の補強に有効な面積
 - (イ) 管台の一部分が鏡板の部分となっていない場合及びWELD-38の場合
 A_{j1}=(η・t_c-F・t_{cr})・(X_j-d)

- ロ. 管台の部分の補強に有効な面積
- (イ) 管台が鏡板の内側に突出していない場合及びWELD-38の場合

$$A_{j2} = 2 \cdot \left\{ \frac{\operatorname{Min} \left(X_{j}, D_{on} \right) - d}{2} - t_{nr} \right\} \cdot Y_{1} \cdot \frac{S_{n}}{S_{c}}$$

(ロ) 管台が鏡板の内側に突出している場合

$$A_{j2} = 2 \cdot \left[\left\{ \frac{\operatorname{Min} \left(X_{j}, D_{on} \right) - d}{2} - t_{nr} \right\} \cdot Y_{1} + \frac{\operatorname{Min} \left(X_{j}, D_{on} \right) - d}{2} \cdot Y_{2} \right] \cdot \frac{S_{n}}{S_{s}}$$

ハ. すみ肉溶接の部分の補強に有効な面積

 $A_{j3} = L_1 \cdot L_1 + L_2 \cdot L_2 + L_3 \cdot L_3$ ただし、大きい穴の補強の有効範囲にないすみ肉溶接の部分は除く。

ニ. 強め板の部分の補強に有効な面積

 $A_{j4} = \{Min(B_e, X_j) - D_{on}\} \cdot t_e \cdot S_e / S_c$

ホ. 大きい穴の補強に有効な総面積

 $A_{j 0} = A_{j 1} + A_{j 2} + A_{j 3} + A_{j 4}$

d. 溶接部の強度

設計・建設規格 PVC-3241 (設計・建設規格 PVC-3168 及び PVC-3169 準用)を適用する。

(a) 溶接部の負うべき荷重 次の2つの計算式(W₁及びW₂)により求めた荷重のうちいずれか小さい方。 W₁=(A₂+A₃+A₄)・S。 管台の一部分が鏡板の部分となっていない場合及びWELD-38の場合 W₂=(d・t_{cr}-A₁)・S。 管台の一部分が鏡板の部分となっている場合 W₂=(d_w・t_{cr}-A₁)・S。 よって,W=Min(W₁,W₂) ここで,W<0の場合は溶接部の強度計算は必要ない。 一方,W≥0の場合は以下の溶接部の強度計算を行う。
(b) 溶接部の単位面積当たりの強さ

 $S_{w1} = S_c \cdot F_1$ $S_{w2} = S_c \cdot F_2$ $S_{w3} = S_c \cdot F_3$ $S_{w4} = Min(S_c, S_n) \cdot F_4$

(c) 継手部の強さ

 $W_{e 1} = \pi \cdot D_{o n} \cdot L_{1} \cdot S_{w 1}/2$ $W_{e 2} = \pi \cdot D_{o n} \cdot L_{3} \cdot S_{w 1}/2$ $W_{e 3} = \pi \cdot B_{e} \cdot L_{2} \cdot S_{w 1}/2$

$$W_{e4} = \pi \cdot D_{on} \cdot \left(\frac{d_w - D_{on}}{2}\right) \cdot S_{w2}/2$$

$$W_{e5} = \pi \cdot \left(\frac{D_{on} + d}{2} \right) \cdot t_n \cdot S_{w2}/2$$

$$\begin{split} W_{e\,6} &= \pi \cdot D_{o\,n} \cdot t_{c} \cdot S_{w3}/2 \cdots (WE L D - 35, 36, 44 以外の場合) \\ W_{e\,6} &= \pi \cdot D_{o\,n} \cdot L_{4} \cdot S_{w3}/2 \cdots (WE L D - 35, 36, 44 の場合) \\ W_{e\,7} &= \pi \cdot d_{w} \cdot t_{c} \cdot S_{w3}/2 \cdots (WE L D - 36 以外の場合) \\ W_{e\,7} &= \pi \cdot d_{w} \cdot L_{4} \cdot S_{w3}/2 \cdots (WE L D - 36 0 G G G) \\ W_{e\,8} &= \pi \cdot D_{o\,n} \cdot t_{e} \cdot S_{w3}/2 \cdots (WE L D - 44 U A O G G) \\ W_{e\,8} &= \pi \cdot D_{o\,n} \cdot L_{5} \cdot S_{w3}/2 \cdots (WE L D - 44 U A O G G) \\ W_{e\,9} &= \pi \cdot d_{w} \cdot t_{e} \cdot S_{w3}/2 \end{split}$$

$$W_{e 1 0} = \pi \cdot \left(\frac{D_{o n} + d}{2} \right) \cdot t_{n} \cdot S_{w 4}/2$$

$$W_{e 1 1} = \pi \cdot d_{w} \cdot \left(\frac{D_{o n} - d_{w}}{2} + L_{1} \right) \cdot S_{w 1}/2$$

(d) 予想される破断箇所の強さ

(4)	1.0004004	
イ.	WELD-	-31の場合
	$W_{e\ b\ p\ 1}$	$=$ W_{e_1} W_{e_5} を通る強さ= $W_{e_1}+W_{e_5}$
	$W_{e\ b\ p\ 2}$	= (W _{e5D}) ·····・ を通る強さ=W _{e5}
□.	WELD	-32の場合
	$W_{e \ b \ p \ 1}$	$=$ W_{e1} W_{e2} を通る強さ= W_{e1} + W_{e2}
	$W_{e\ b\ p\ 2}$	$=$ W_{e1} W_{e10} を通る強さ= $W_{e1}+W_{e10}$
ハ.	WELD	-33の場合
	$W_{e \ b \ p \ 1}$	$=$ W_{e1} W_{e6} を通る強さ= W_{e1} + W_{e6}
	$W_{e \ b \ p \ 2}$	$=$ W_{e1} W_{e10} を通る強さ= $W_{e1}+W_{e10}$
	$W_{e\ b\ p\ 3}$	= (W _{eプ}) を通る強さ=W _{e7}
二.	WELD	-34の場合
	$W_{e \ b \ p \ 1}$	$=$ W_{e_1} W_{e_6} を通る強さ= $W_{e_1} + W_{e_6}$
	$W_{e\ b\ p\ 2}$	$=$ W_{e1} W_{e10} を通る強さ= $W_{e1}+W_{e10}$
	$\mathrm{W}_{\mathrm{e}\mathrm{b}\mathrm{p}3}$	= W_{e11} W_{e7} を通る強さ= $W_{e11}+W_{e7}$
	ただし,	D _{on} =d _w の場合はW _{ebp1} =W _{ebp3} となるためW _{ebp3} を省略する。
朩.	WELD	-35の場合
	$W_{e \ b \ p \ 1}$	$=$ W_{e1} W_{e6} を通る強さ= W_{e1} + W_{e6}
	W _{ebp2}	= W_{e1} W_{e10} を通る強さ= W_{e1} + W_{e10}
\sim .	WELD	-36の場合
	$W_{e \ b \ p \ 1}$	$= \underbrace{W_{e1}}_{W_{e6}} \underbrace{W_{e2}}_{W_{e2}} \cdots \cdots $ を通る強さ= $W_{e1} + W_{e6} + W_{e2}$
	W _{ebp2}	= W_{e1} W_{e10} を通る強さ= W_{e1} + W_{e10}
	$W_{e\ b\ p\ 3}$	= W_{e1} W_{e7} を通る強さ= W_{e1} + W_{e7}
ト.	WELD	-38の場合
	W _{ebp1}	= W_{e_1} W_{e_2} を通る強さ= W_{e_1} + W_{e_2}
	$W_{e\ b\ p\ 2}$	= W_{e1} W_{e10} を通る強さ= W_{e1} + W_{e10}

チ.	WELD	-39の場合	
	$W_{e \ b \ p \ 1}$	$= \underbrace{W_{e 1}}_{W_{e 6}} \underbrace{W_{e 2}}_{W_{e 2}} \cdots \cdots$	を通る強さ=W _{e1} +W _{e6} +W _{e2}
	$W_{e\ b\ p\ 2}$	$= (W_{e 1}) (W_{e 1 0}) \cdots \cdots$	を通る強さ=W _{e1} +W _{e10}
	$W_{e\ b\ p\ 3}$	$=$ $\overline{W_{e 7}}$ \cdots	を通る強さ=W _{e7}
IJ.	WELD	-41の場合	
	$W_{e \ b \ p \ 1}$	$= \underbrace{W_{e 3}}_{W_{e 4}} \underbrace{W_{e 2}}_{W_{e 2}} \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e2}
	$W_{e \ b \ p \ 2}$	$= \underbrace{W_{e 1}}_{W_{e 8}} \underbrace{W_{e 2}}_{W_{e 2}} \cdots \cdots$	を通る強さ=W _{e1} +W _{e8} +W _{e2}
	W _{ebp3}	$= \underbrace{W_{e 9}}_{W_{e 4}} \underbrace{W_{e 2}}_{W_{e 2}} \cdots \cdots$	を通る強さ=W _{e9} +W _{e4} +W _{e2}
	$W_{e \ b \ p \ 4}$	$= \underbrace{W_{e3}}_{W_{e4}} \underbrace{W_{e10}}_{W_{e10}} \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e10}
	W _{ebp5}	$= \underbrace{\mathbb{W}_{e1}}_{e10} \underbrace{\mathbb{W}_{e10}}_{e10} \cdots \cdots$	を通る強さ=W _{e1} +W _{e10}
ヌ.	WELD	-42の場合	
	$W_{e \ b \ p \ 1}$	$= \underbrace{W_{e 1}}_{W_{e 6}} \underbrace{W_{e 6}}_{\cdots} \underbrace{W_{e 6}}_{\cdots}$	を通る強さ=W _{e1} +W _{e6}
	$W_{e\ b\ p\ 2}$	$= (W_{e3}) (W_{e7}) \cdots \cdots$	を通る強さ=W _{e3} +W _{e7}
	W _{ebp3}	$= \underbrace{W_{e 3}}_{W_{e 4}} \underbrace{W_{e 6}}_{W_{e 6}} \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e6}
	W_{ebp4}	$= \underbrace{W_{e3}}_{W_{e4}} \underbrace{W_{e10}}_{W_{e10}} \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e10}
	W _{ebp5}	$= (W_{e 1}) (W_{e 1 0}) \cdots \cdots$	を通る強さ=W _{e1} +W _{e10}
ル.	WELD	-43 の場合	
	W _{ebp1}	$= \underbrace{\mathbb{W}_{e \ 1}}_{e \ 5 \ D} \cdots \cdots \cdots \cdots$	を通る強さ=W _{e1} +W _{e5}
	$W_{e\ b\ p\ 2}$	$= (W_{e3}) (W_{e4}) (W_{e5}) \cdots \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e5}
ヲ.	WELD	-44の場合	
	W _{ebp1}	$= \underbrace{W_{e 3}}_{W_{e 6}} \underbrace{W_{e 6}}_{W_{e 6}} \cdots \cdots$	を通る強さ=W _{e3} +W _{e6}
	$W_{e\ b\ p\ 2}$	$= (W_{e 1}) (W_{e 8}) (W_{e 6}) \cdots \cdots \cdots$	を通る強さ=W _{e1} +W _{e8} +W _{e6}
	W _{ebp3}	$= \underbrace{\mathbb{W}_{e 3}}_{e 1 0} \underbrace{\mathbb{W}_{e 1 0}}_{e 1 0} \cdots $	を通る強さ=W _{e3} +W _{e10}
	$W_{e\ b\ p\ 4}$	$= (W_{e1}) (W_{e10}) \cdots \cdots$	を通る強さ=W _{e1} +W _{e10}

ワ. WELD-45, 46の場合

$$W_{ebp1} = W_{e1} W_{e8} W_{e6} \cdots$$
を通る強さ= $W_{e1} + W_{e8} + W_{e6}$ $W_{ebp2} = W_{e3} W_{e7} \cdots$ を通る強さ= $W_{e3} + W_{e7}$ $W_{ebp3} = W_{e3} W_{e4} W_{e6} \cdots$ を通る強さ= $W_{e3} + W_{e4} + W_{e6}$ $W_{ebp4} = W_{e3} W_{e4} W_{e10} \cdots$ を通る強さ= $W_{e3} + W_{e4} + W_{e10}$ $W_{ebp5} = W_{e9} W_{e7} \cdots$ を通る強さ= $W_{e9} + W_{e7}$ $W_{ebp6} = W_{e1} W_{e10} \cdots$ を通る強さ= $W_{e1} + W_{e10}$

$$W_{ebp4} = (W_{e3})(W_{e4})(W_{e10}) \cdots$$
を通る強さ= $W_{e3} + W_{e4} + W_{e1}$
 $W_{ebp5} = (W_{e1})(W_{e10}) \cdots$ を通る強さ= $W_{e1} + W_{e10}$

e. 評価

鏡板の穴の補強は、下記の条件を満足すれば十分である。 $A_0 > A_r$ $A_{0D} \ge A_{rD}$ (ただし、 $X_1 \ne X_2$ の場合のみ) $A_{j0} \ge A_{jr}$ (ただし、大きい穴の補強を要する場合のみ) すべての破断箇所の強さ \ge W (ただし、Wが正の場合のみ)

(3) 平板の場合

重大事故等クラス2容器については設計・建設規格 PVC-3320(2)を適用する。

a. 管台の形式

図 3-1~図 3-10 及び図 3-20 に管台の形式,補強に有効な面積,補強に必要な面積,破 断形式等を示す。

ただし、すみ肉溶接部分の破断箇所については、両方の脚長が等しいため、片側の脚 長の破断形式のみを図示する。

- b. 穴の補強
 - (a) 補強に必要な面積
 設計・建設規格 PVC-3320(2)(設計・建設規格 PVC-3161.3準用)を適用する。
 - イ. 管台の一部分が平板の部分となっていない場合及びWELD-8, 22の場合
 A_r=d_h・t_{pr}
 - ロ. 管台の一部分が平板の部分となっている場合 $A_r = d_h \cdot t_{pr} + 2 \cdot (1 - S_n / S_p) \cdot t_{pr} \cdot t_n$ $(S_n / S_p > 1 の場合はS_n / S_p = 1 とする。以下、平板の場合において同じ。)$

(b) 補強に有効な範囲

設計・建設規格 PVC-3320(2)(設計・建設規格 PVC-3161.1準用)を適用する。 X=X₁+X₂ X₁=X₂=Max(d_h, d_h/2+t_p+t_n) Y₁=Min(2.5・t_p, 2.5・t_n+t_e) Y₂=Min(2.5・t_p, 2.5・t_n) ただし,構造上計算した有効範囲がとれない場合は,構造上取り得る範囲とする。

(c) 補強に有効な面積

設計・建設規格 PVC-3320(2)(設計・建設規格 PVC-3161.2準用)を適用する。

イ. 平板の部分の補強に有効な面積

また, 強め板がない場合は t 。=0 とする。

(イ) 管台の一部分が平板の部分となっていない場合及びWELD-8, 22の場合
 A₁=(t_p-t_{pr})・(X-d_h)

- ロ. 管台の部分の補強に有効な面積
- (イ) 管台が平板の内側に突出していない場合及びWELD-8, 22の場合
 A₂=2・(t_n-t_{nr})・Y₁・S_n/S_p
- (ロ) 管台が平板の内側に突出している場合

 $A_2 = 2 \cdot \{(t_n - t_{nr}) \cdot Y_1 + t_n \cdot Y_2\} \cdot S_n / S_p$ $k \in L$,

$$t_{n r} = \frac{P \cdot (D_{o n} - 2 \cdot t_{n})}{2 \cdot S_{n} - 1.2 \cdot P}$$

ハ. すみ肉溶接の部分の補強に有効な面積

 $A_3 = L_1 \cdot L_1 + L_2 \cdot L_2 + L_3 \cdot L_3$

ただし、補強の有効範囲にないすみ肉溶接の部分は除く。

ニ. 強め板の部分の補強に有効な面積

 $A_4 = {Min(B_e, X) - D_{on}} \cdot t_e \cdot S_e / S_p$

 $(S_{e}/S_{p} > 1$ の場合は $S_{e}/S_{p} = 1$ とする。以下,平板の場合において同じ。)

ホ. 補強に有効な総面積

 $A_0 = A_1 + A_2 + A_3 + A_4$

(d) 補強に有効な範囲X₁≠X₂の場合の補強に有効な面積の確認
 設計・建設規格 PVC-3320(2)(設計・建設規格 PVC-3165 準用)を適用する。
 補強に必要な面積の2分の1以上の補強に有効な面積は、穴の中心線の両側にある必要がある。

ただし、補強に有効な範囲 $X_1 = X_2$ の場合は上記条件を満足することが明らかであり以下の計算は行わない。

- イ. 補強に必要な面積の2分の1
 A_{rD}=A_r/2
- ロ. X₁又はX₂のいずれか小さい方の断面における補強に有効な面積
- (イ) 平板の部分の補強に有効な面積
 - ・管台の一部分が平板の部分となっていない場合及びWELD-8,22の場合 A_{1D}=(t_p-t_{pr})・{Min(X₁, X₂)-d_h/2}
 - ・管台の一部分が平板の部分となっている場合 A_{1D}=(t_p-t_{pr})・{Min(X₁, X₂)-d_h/2} -(1-S_n/S_p)・(t_p-t_{pr})・t_n

- (ロ) 管台の部分の補強に有効な面積
 A_{2D}=A₂/2
- (ハ) すみ肉溶接の部分の補強に有効な面積A_{3D}=A₃/2
- (ニ) 強め板の部分の補強に有効な面積A_{4D}=A₄/2
- (ホ) 補強に有効な総面積A_{0D}=A_{1D}+A_{2D}+A_{3D}+A_{4D}

c. 溶接部の強度

設計・建設規格 PVC-3320(2)(設計・建設規格 PVC-3168 及び PVC-3169 準用)を適 用する。

(a) 溶接部の負うべき荷重 次の2つの計算式(W₁及びW₂)により求めた荷重のうちいずれか小さい方 W₁=(A₂+A₃+A₄)・S_p 管台の一部分が平板の部分となっていない場合及びWELD-8,22の場合 W₂=(d_h・t_{pr}-A₁)・S_p 管台の一部分が平板の部分となっている場合 W₂=(d_w・t_{pr}-A₁)・S_p よって,W=Min(W₁,W₂) ここで,W<0の場合は溶接部の強度計算は必要ない。 一方,W≥0の場合は以下の溶接部の強度計算を行う。

(b) 溶接部の単位面積当たりの強さ

 $S_{w1} = S_{p} \cdot F_{1}$ $S_{w2} = S_{p} \cdot F_{2}$ $S_{w3} = S_{p} \cdot F_{3}$ $S_{w4} = Min(S_{p}, S_{n}) \cdot F_{4}$

(c) 継手部の強さ

 $W_{e1} = \pi \cdot D_{on} \cdot L_{1} \cdot S_{w1}/2$ $W_{e2} = \pi \cdot D_{on} \cdot L_{3} \cdot S_{w1}/2 \quad (W \in L D - 17 以外の場合)$ $W_{e2} = \pi \cdot (d_{h} - 2 \cdot L_{2}) \cdot L_{2} \cdot S_{w1}/2 \quad (W \in L D - 17 の場合)$ $W_{e3} = \pi \cdot B_{e} \cdot L_{2} \cdot S_{w1}/2$

$$W_{e4} = \pi \cdot D_{on} \cdot \left(\frac{d_w - D_{on}}{2} \right) \cdot S_{w2}/2$$

$$W_{e5} = \pi \cdot \left(\frac{D_{on} + d_h}{2} \right) \cdot t_n \cdot S_{w2}/2$$

$$\begin{split} W_{e\,6} &= \pi \cdot D_{o\,n} \cdot t_{p} \cdot S_{w3}/2 \cdots (WE L D - 5, 6, 14 以外の場合) \\ W_{e\,6} &= \pi \cdot D_{o\,n} \cdot L_{4} \cdot S_{w3}/2 \cdots (WE L D - 5, 6, 14 の場合) \\ W_{e\,7} &= \pi \cdot d_{w} \cdot t_{p} \cdot S_{w3}/2 \cdots (WE L D - 6 以外の場合) \\ W_{e\,7} &= \pi \cdot d_{w} \cdot L_{4} \cdot S_{w3}/2 \cdots (WE L D - 6 0 場合) \\ W_{e\,8} &= \pi \cdot D_{o\,n} \cdot t_{e} \cdot S_{w3}/2 \cdots (WE L D - 14 以外の場合) \\ W_{e\,8} &= \pi \cdot D_{o\,n} \cdot L_{5} \cdot S_{w3}/2 \cdots (WE L D - 14 以外の場合) \\ W_{e\,9} &= \pi \cdot d_{w} \cdot t_{e} \cdot S_{w3}/2 \end{split}$$

$$W_{e 1 0} = \pi \cdot \left(\frac{D_{o n} + d h}{2} \right) \cdot t_{n} \cdot S_{w 4}/2$$

$$W_{e 1 1} = \pi \cdot d_{w} \cdot \left(\frac{D_{o n} - d_{w}}{2} + L_{1} \right) \cdot S_{w 1}/2$$

(d) 予想される破断箇所の強さ

イ.	WELD-	-1の場合
	W _{ebp1}	= W_{e1} W_{e5} を通る強さ= W_{e1} + W_{e5}
	$W_{e\ b\ p\ 2}$	= (W _{e5D} ·····・ を通る強さ=W _{e5}
□.	WELD	-2の場合
	W_{ebp1}	$=$ W_{e1} W_{e2} を通る強さ= W_{e1} + W_{e2}
	$W_{e\ b\ p\ 2}$	$=$ W_{e1} W_{e10} を通る強さ= $W_{e1}+W_{e10}$
ハ.	WELD	-3の場合
	$W_{\mathrm{e}\mathrm{b}\mathrm{p}1}$	$=$ W_{e1} W_{e6} を通る強さ= W_{e1} + W_{e6}
	$W_{e\ b\ p\ 2}$	$=$ W_{e1} W_{e10} を通る強さ= $W_{e1}+W_{e10}$
	$W_{e\ b\ p\ 3}$	$=$ W_{e_7} ·····・ を通る強さ= W_{e_7}
二.	WELD	-4の場合
	$W_{\text{e b p 1}}$	$= \underbrace{W_{e1}} \underbrace{W_{e6}} \cdots \cdots \cdots \cdots $ を通る強さ= $W_{e1} + W_{e6}$
	$W_{e\ b\ p\ 2}$	= W_{e1} W_{e10} を通る強さ= W_{e1} + W_{e10}
	W _{ebp3}	= W_{e11} W_{e7} ····· を通る強さ= W_{e11} + W_{e7}
	ただし,	D _{on} =d _w の場合はW _{ebp1} =W _{ebp3} となるためW _{ebp3} を省略する。
朩.	WELD	-5の場合
	W $_{e\ b\ p\ 1}$	$=$ W_{e1} W_{e6} を通る強さ= W_{e1} + W_{e6}
	W_{ebp2}	$= \underbrace{W_{e1}}_{W_{e10}} \underbrace{W_{e10}}_{W_{e10}} \cdots \underbrace{FidS強さ=W_{e1}}_{W_{e10}}$
\sim .	WELD	-6の場合
	W_{ebp1}	$= \underbrace{W_{e1}}_{W_{e6}} \underbrace{W_{e2}}_{W_{e2}} \cdots \cdots $ を通る強さ= $W_{e1} + W_{e6} + W_{e2}$
	W_{ebp2}	$= \underbrace{W_{e1}}_{W_{e10}} \underbrace{W_{e10}}_{W_{e10}} \cdots \underbrace{FidS強さ=W_{e1}}_{W_{e10}}$
	W_{ebp3}	$=$ W_{e1} W_{e7} を通る強さ= W_{e1} + W_{e7}
ト.	WELD	-8の場合
	W_{ebp1}	$=$ W_{e1} W_{e2} を通る強さ= $W_{e1}+W_{e2}$
	$W_{e\ b\ p\ 2}$	$= \underbrace{W_{e1}} \underbrace{W_{e10}} \cdots \cdots \cdots \cdots $ を通る強さ= $W_{e1} + W_{e10}$

チ.	WELD-	-9の場合	
	$W_{e \ b \ p \ 1}$	$= \underbrace{W_{e 1}}_{W_{e 6}} \underbrace{W_{e 2}}_{W_{e 2}} \cdots \cdots$	を通る強さ=W _{e1} +W _{e6} +W _{e2}
	$W_{e \ b \ p \ 2}$	$= \underbrace{\mathbb{W}_{e1}}_{e10} \underbrace{\mathbb{W}_{e10}}_{e10} \mathbb{$	を通る強さ=W _{e1} +W _{e10}
	$W_{e \ b \ p \ 3}$	$=$ W_{e7} \cdots	を通る強さ=W _{e7}
<u>ש</u> .	WELD-	-11の場合	
	$W_{e \ b \ p \ 1}$	$= \underbrace{W_{e3}}_{W_{e4}} \underbrace{W_{e2}}_{W_{e2}} \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e2}
	$W_{e\ b\ p\ 2}$	$= \underbrace{W_{e 1}}_{W_{e 8}} \underbrace{W_{e 2}}_{W_{e 2}} \cdots \cdots$	を通る強さ=W _{e1} +W _{e8} +W _{e2}
	$W_{e\ b\ p\ 3}$	$= \underbrace{W_{e 9}}_{W_{e 4}} \underbrace{W_{e 2}}_{W_{e 2}} \cdots \cdots$	を通る強さ=W _{e9} +W _{e4} +W _{e2}
	W_{ebp4}	$= (W_{e3}) (W_{e4}) (W_{e10}) \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e10}
	$W_{e\ b\ p\ 5}$	$= (W_{e1}) (W_{e10}) \cdots \cdots$	を通る強さ=W _{e1} +W _{e10}
ヌ.	WELD-	-12の場合	
	$W_{\text{e b p 1}}$	$= \underbrace{W_{e 1}}_{W_{e 6}} \underbrace{W_{e 6}}_{\cdots \cdots $	を通る強さ=W _{e1} +W _{e6}
	W_{ebp2}	$= (W_{e3}) (W_{e7}) \cdots \cdots$	を通る強さ=W _{e3} +W _{e7}
	$W_{e\ b\ p\ 3}$	$= \underbrace{W_{e 3}}_{W_{e 4}} \underbrace{W_{e 6}}_{W_{e 6}} \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e6}
	W_{ebp4}	$= \underbrace{W_{e3}}_{W_{e4}} \underbrace{W_{e10}}_{W_{e10}} \cdots \cdots$	を通る強さ= $W_{e3}+W_{e4}+W_{e10}$
	W _{ebp5}	$= \underbrace{W_{e 1}}_{W_{e 1 0}} \underbrace{W_{e 1 0}}_{W_{e 1 0}} \underbrace{\cdots}_{W_{e 1 0}}$	を通る強さ=W _{e1} +W _{e10}
ル.	WELD-	-13の場合	
	W_{ebp1}	$= \underbrace{\mathbb{W}_{e \ 1}}_{e \ 5 \ D} \cdots \cdots \cdots \cdots$	を通る強さ=W _{e1} +W _{e5}
	W_{ebp2}	$= (W_{e3}) (W_{e4}) (W_{e5}) \cdots \cdots$	を通る強さ=W _{e3} +W _{e4} +W _{e5}
ヲ.	WELD-	-14の場合	
	W_{ebp1}	$= \underbrace{W_{e 3}}_{W_{e 6}} \underbrace{W_{e 6}}_{W_{e 6}} \cdots \cdots \cdots$	を通る強さ=W _{e3} +W _{e6}
	W_{ebp2}	$= (W_{e 1}) (W_{e 8}) (W_{e 6}) \cdots \cdots \cdots$	を通る強さ=W _{e1} +W _{e8} +W _{e6}
	W _{ebp3}	$= \underbrace{\mathbb{W}_{e 3}}_{e 1 0} \underbrace{\mathbb{W}_{e 1 0}}_{e 1 0} \cdots \cdots \cdots$	を通る強さ=W _{e3} +W _{e10}
	W $_{\rm e\ b\ p\ 4}$	$= (W_{e1}) (W_{e10}) \cdots \cdots$	を通る強さ=W _{e1} +W _{e10}

ワ. WELD-15, 16, 22の場合

$$W_{ebp1} = W_{e1} W_{e8} W_{e6} \cdots$$
を通る強さ= $W_{e1} + W_{e8} + W_{e6}$ $W_{ebp2} = W_{e3} W_{e7} \cdots$ を通る強さ= $W_{e3} + W_{e7}$ $W_{ebp3} = W_{e3} W_{e4} W_{e6} \cdots$ を通る強さ= $W_{e3} + W_{e4} + W_{e6}$ $W_{ebp4} = W_{e3} W_{e4} W_{e10} \cdots$ を通る強さ= $W_{e3} + W_{e4} + W_{e10}$ $W_{ebp5} = W_{e9} W_{e7} \cdots$ を通る強さ= $W_{e9} + W_{e7}$ $W_{ebp6} = W_{e1} W_{e10} \cdots$ を通る強さ= $W_{e1} + W_{e10}$

$$W_{ebp1} = W_{e1} W_{e2} \cdots$$
を通る強さ= $W_{e1} + W_{e2}$

$$W_{ebp1} = W_{e1} W_{e6} W_{e2} \cdots$$
を通る強さ= $W_{e1} + W_{e6} + W_{e2}$
 $W_{ebp2} = W_{e3} W_{e7} \cdots$ を通る強さ= $W_{e3} + W_{e7}$
 $W_{ebp3} = W_{e3} W_{e4} W_{e6} W_{e2}$
 \cdots を通る強さ= $W_{e3} + W_{e4} + W_{e6} + W_{e2}$

$$W_{ebp4} = W_{e3} W_{e4} W_{e10} \cdots$$
を通る強さ= $W_{e3} + W_{e4} + W_{e10}$
$$W_{ebp5} = W_{e1} W_{e10} \cdots$$
を通る強さ= $W_{e1} + W_{e10}$

d. 評価

平板の穴の補強は、下記の条件を満足すれば十分である。

 $A_0 > A_r/2$

 $A_{0D} \ge A_{rD}$ (ただし, $X_1 \neq X_2$ の場合のみ) すべての破断箇所の強さ \ge W (ただし, Wが正の場合のみ) 3.3 開放タンクの胴の穴の補強計算

重大事故等クラス2容器については設計・建設規格 PVC-3940及び PVC-3950を適用する。 ただし、穴の径が85 mm 以下の場合は計算を行わない。

ここで、最高使用圧力Pは、次の式による値とする。

 $P = 9.80665 \times 10^{-3} \cdot H \cdot \rho$

開放タンクの胴に穴を設ける場合は、3.2項「容器の穴の補強計算」を適用する。

- 3.4 2つ以上の穴が接近しているときの補強計算
 重大事故等クラス2容器については、設計・建設規格 PVC-3162を適用する。
 - (1) 記号の定義

設計・建設 規格の記号	計算書の表示	表示内容	単位
	A_1	2 つの穴の間及び強め板の断面積の和	mm^2
	A $_2$	2 つの穴の間の胴板内に溶着された管壁の断面積	mm^2
	A_{d}	$A_1 \ge A_2 の 和$	mm^2
	A r	A _{r1} とA _{r2} の和の1/2	mm^2
	A_{r1} , A_{r2}	2 つの穴のそれぞれの補強に必要な断面積	mm^2
	A _{rs}	2つの穴の間の強め材の断面積	mm^2
A s	A s	2 つの穴の間に必要な胴の断面積(胴板内に溶着され た管壁を含む。)	mm^2
	d	2 つの穴の中心間に必要な距離	mm
	d_1 , d_2	2 つの穴のそれぞれの直径	mm
F	F	係数	—
Q	Q	2 つの穴の中心間の距離	mm
	L _{1i} , L _{2i}	2 つの穴のそれぞれの内側溶け込み深さ	mm
	L_{1o} , L_{2o}	2 つの穴のそれぞれの外側溶け込み深さ	mm
	t ₁ , t ₂	2 つの穴のそれぞれの管壁の厚さ	mm
t sr	t sr	胴の継手がない場合の計算上必要な厚さ	mm
t sr	t _{c r}	鏡板の継手がない場合の計算上必要な厚さ	mm
t sr	t pr	平板の計算上必要な厚さ	mm

(2) 算式

2 つ以上の穴が接近しているためそれぞれの補強に有効な範囲が重なり合うときは次による。

$$d = 1.5 \cdot \left(\frac{d_{1} + d_{2}}{2}\right)$$

$$A_{r} = 0.5 \cdot (A_{r1} + A_{r2})$$

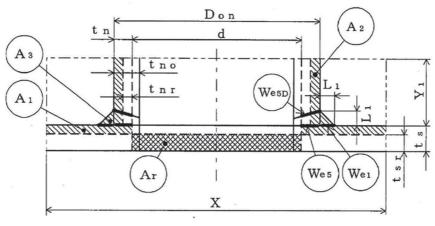
$$A_{s} = 0.7 \cdot \ell \cdot t_{sr} \cdot F \quad (胴の補強計算の場合)$$

$$A_{s} = 0.7 \cdot \ell \cdot t_{cr} \cdot F \quad (鏡板の補強計算の場合)$$

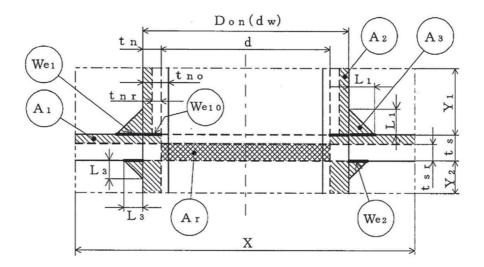
$$A_{s} = 0.7 \cdot \ell \cdot t_{pr} \cdot F \quad (平板の補強計算の場合)$$

$$A_{d} = A_{1} + A_{2}$$

က


(3) 評価

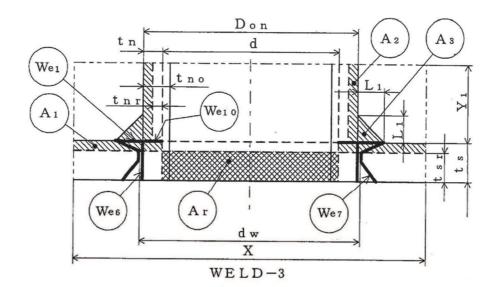
下記の条件を満足すれば十分である。

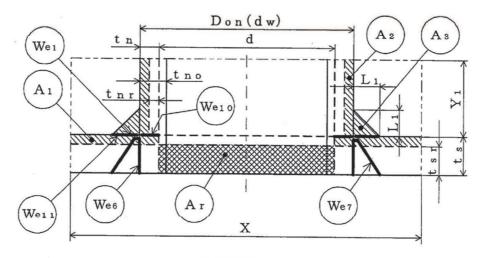

 $\ell \ge d$, $A_{rs} \ge A_r$, $A_d \ge A_s$

ここで、各形式図(図 3-1~図 3-39)において、胴、鏡板又は平板の最小厚さ及び穴の補 強計算に用いる計算上必要な厚さは、それぞれ胴の場合は t_s 、 t_{sr} 、鏡板の場合は t_c 、 t_{cr} 、平板の場合は t_p 、 t_{pr} と読替えを行う。

また,各形式図中のdは,平板の場合はd_hと読替えを行う。

WELD-1


WELD-2

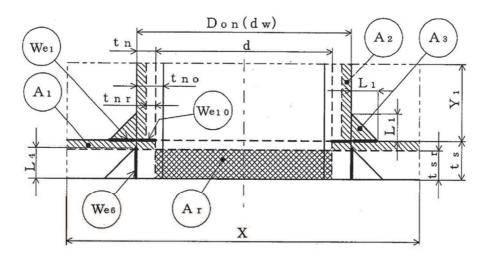


補強に有効な面積 補強に必要な面積

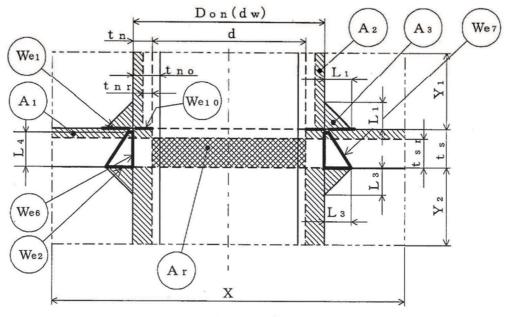
図 3-1

注: We1等で示される図中の太線は、予想される破断形式を示す。(以降、同様)

WELD-4



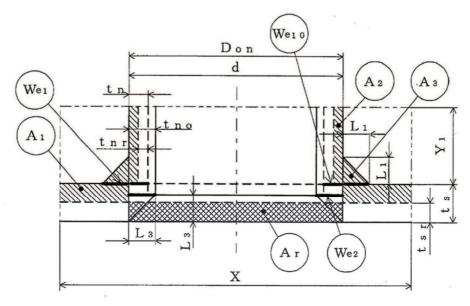
補強に有効な面積

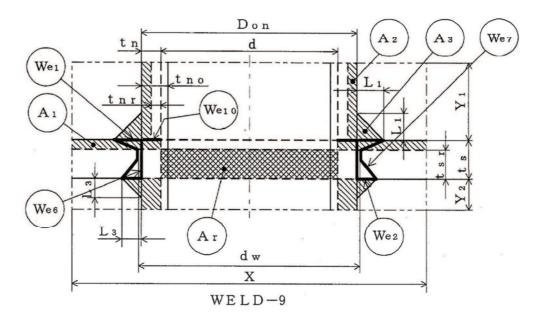


補強に必要な面積

図 3-2

WELD-5

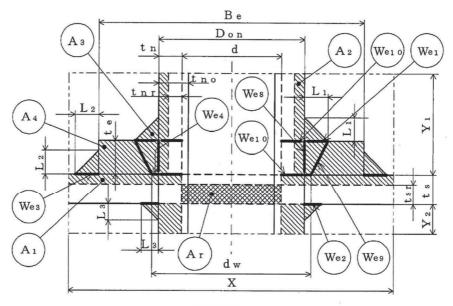

WELD-6


補強に有効な面積

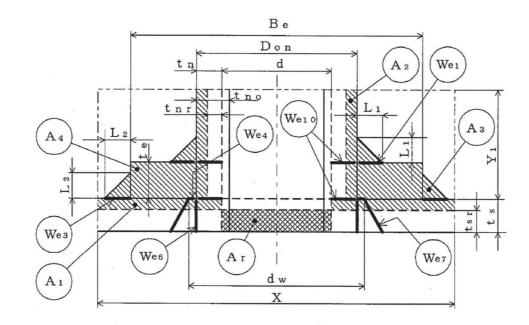
補強に必要な面積

図 3-3

WELD-8

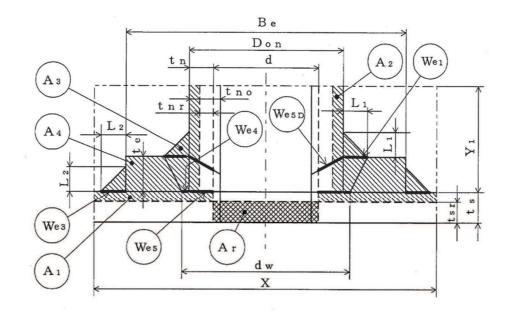


補強に有効な面積



補強に必要な面積

図 3-4


WELD-11

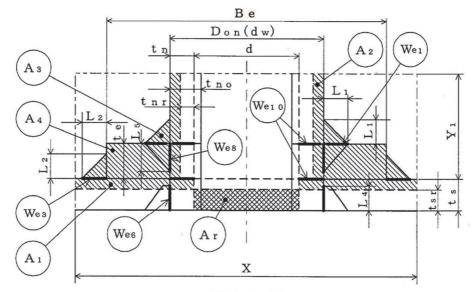

WELD-12

図 3-5

WELD-13

WELD-14

補強に有効な面積

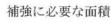
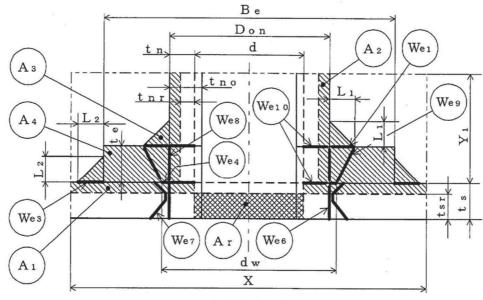
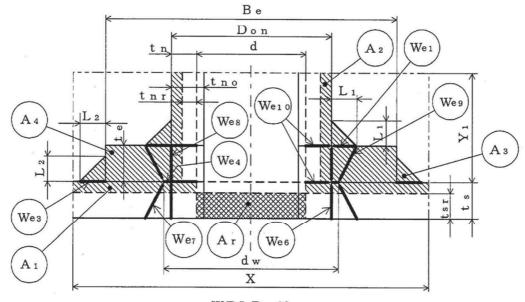
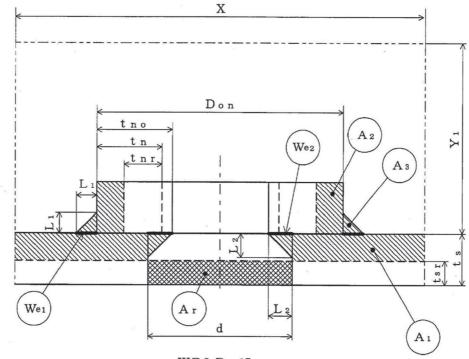
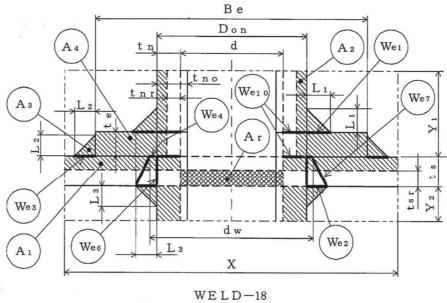




図 3-6

WELD-15


WELD-16


補強に有効な面積

補強に必要な面積

図 3-7

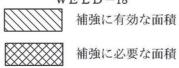
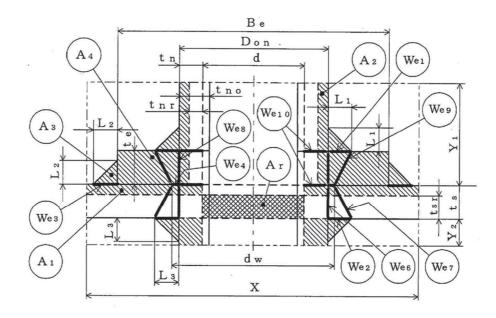
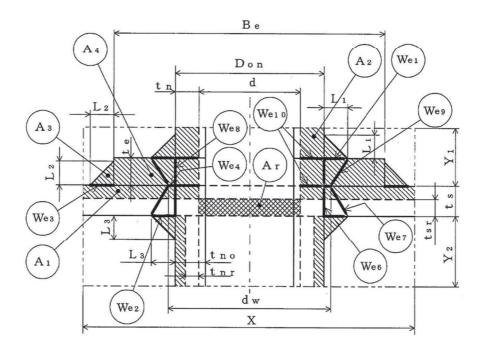
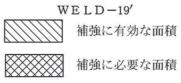
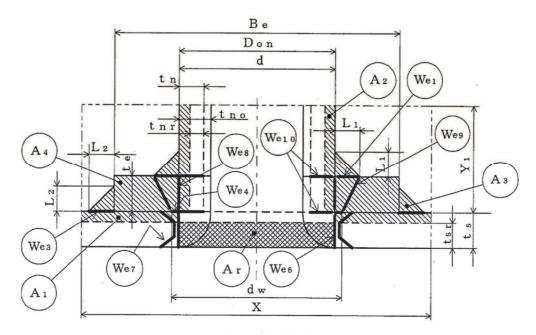
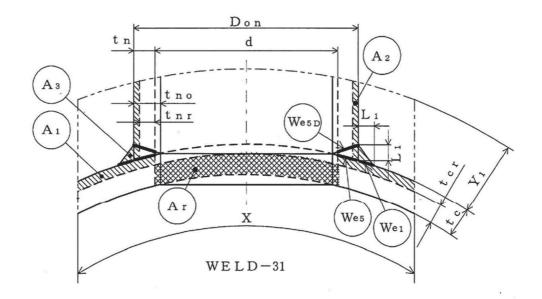
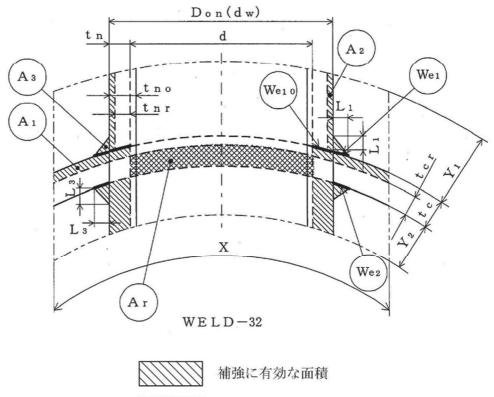




図 3-8

WELD-19


図 3-9



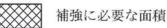
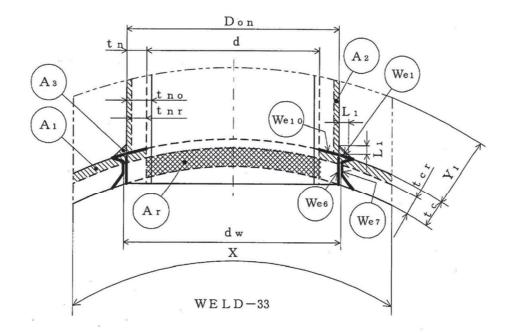
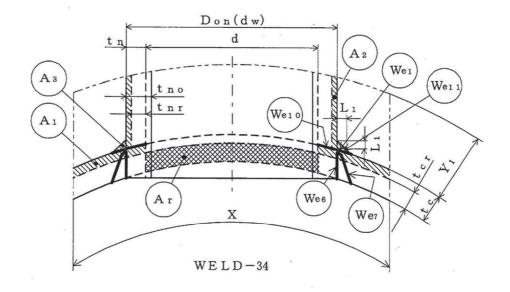

WELD-22

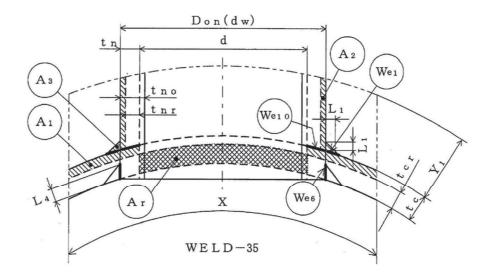
図 3-10

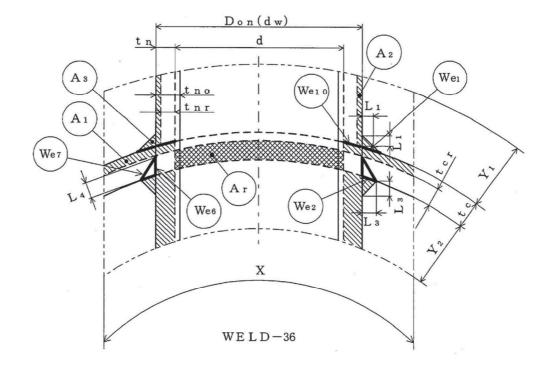




 \bigotimes

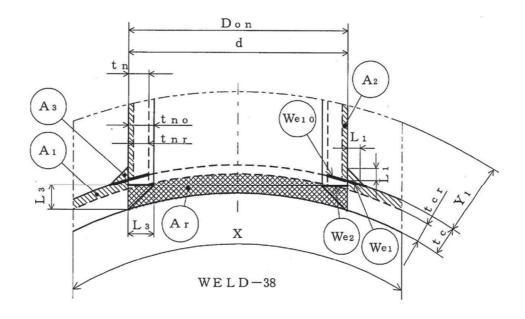
図 3-11

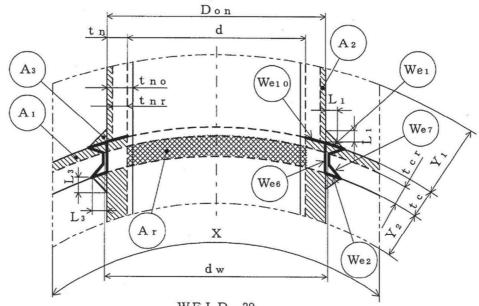




補強に有効な面積 補強に必要な面積

図 3-12





補強に有効な面積

補強に必要な面積

図 3-13

補強に有効な面積

補強に必要な面積

図 3-14

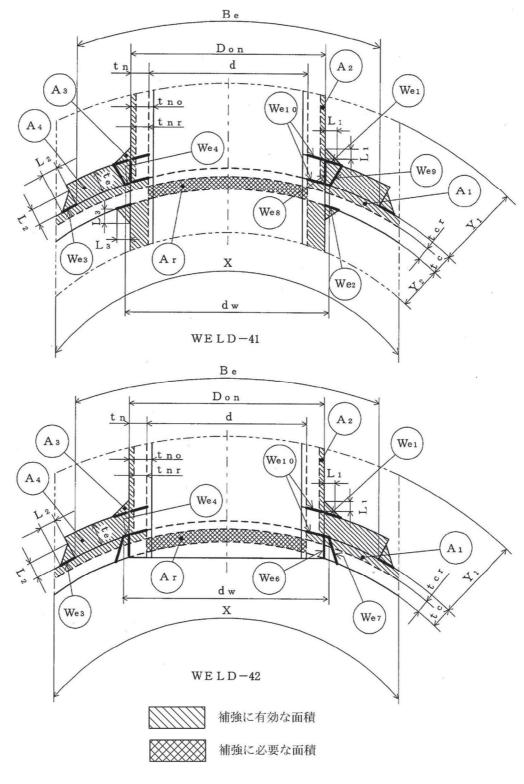


図 3-15

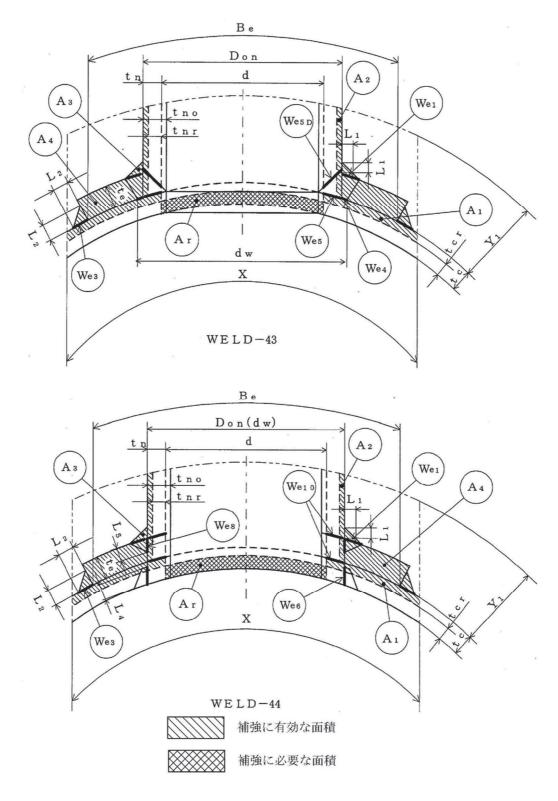
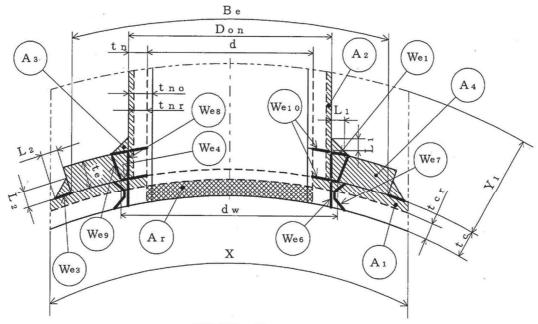
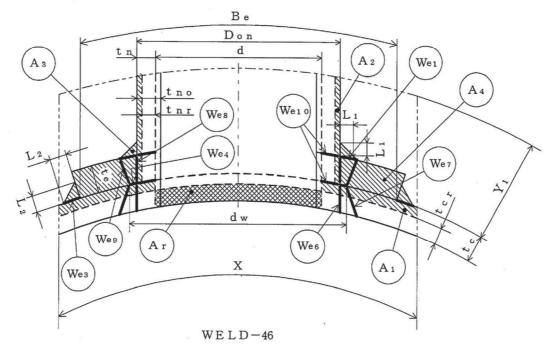
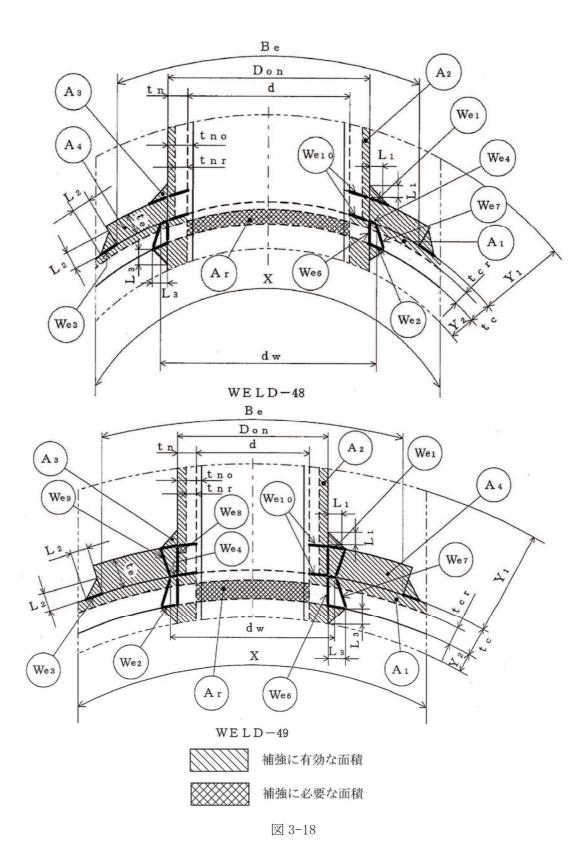
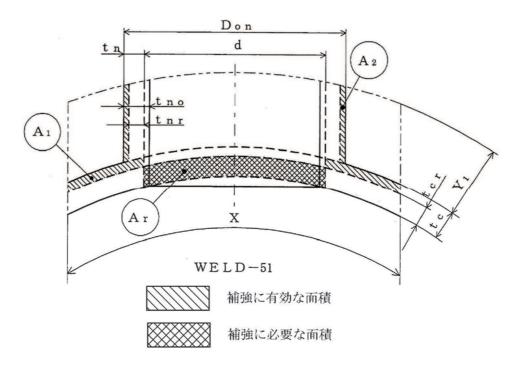




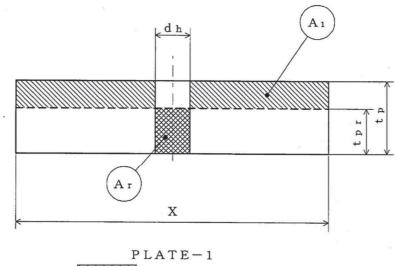
図 3-16

WELD-45

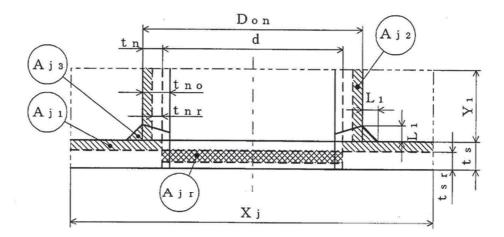


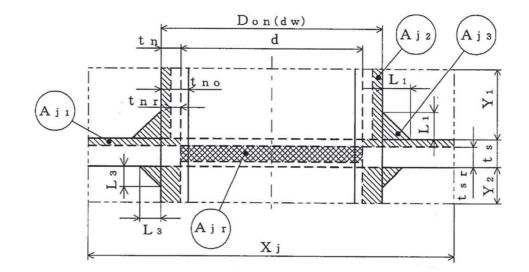

補強に有効な面積

補強に必要な面積

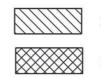

図 3-17

 \mathfrak{O}

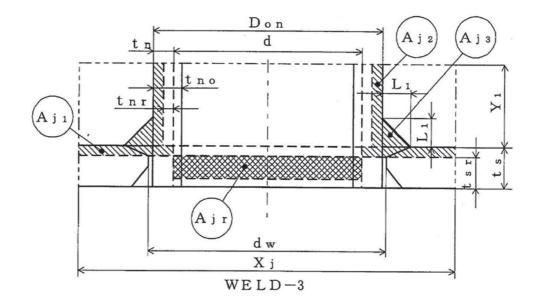


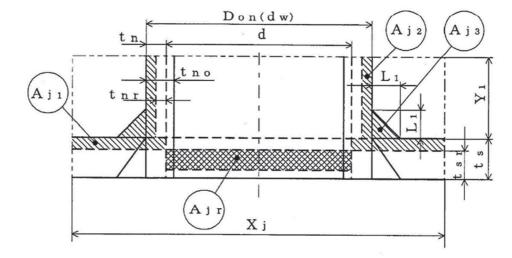

補強に有効な面積

補強に必要な面積


図 3-20

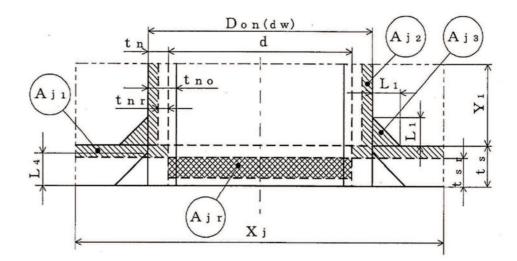
WELD-1



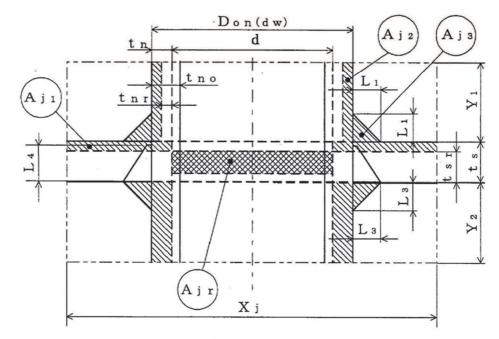

WELD-2

大きい穴の補強に必要な面積

図 3-21



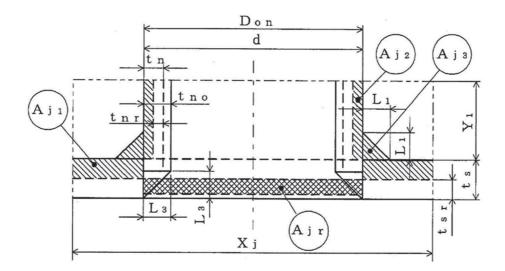
WELD-4



大きい穴の補強に必要な面積

図 3-22

WELD-5



WELD-6

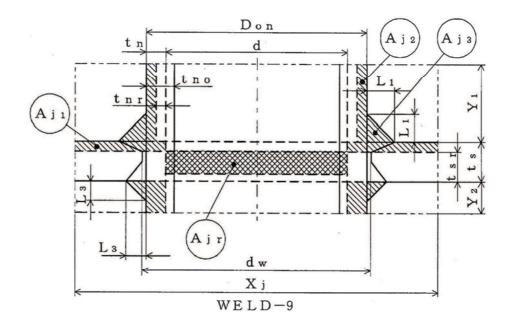
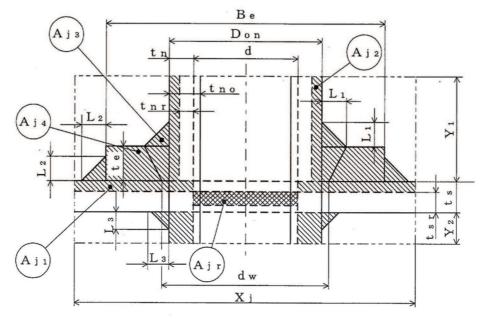
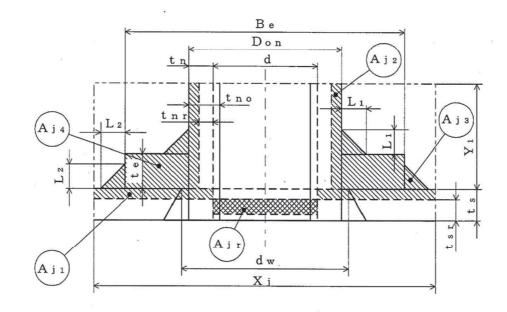


図 3-23

WELD-8





大きい穴の補強に必要な面積

図 3-24

WELD-11

WELD-12

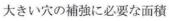
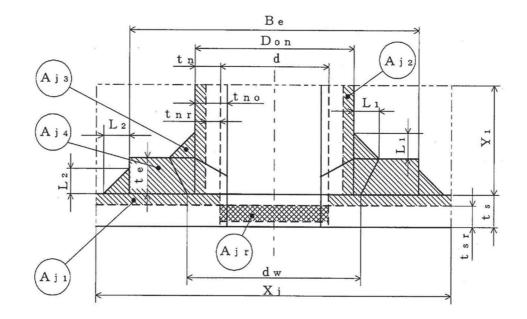
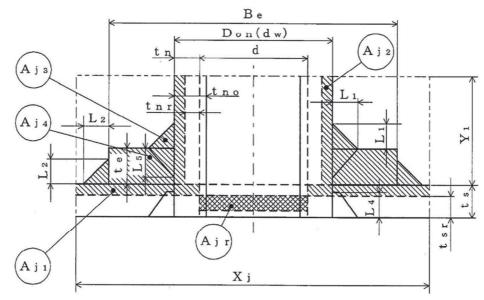
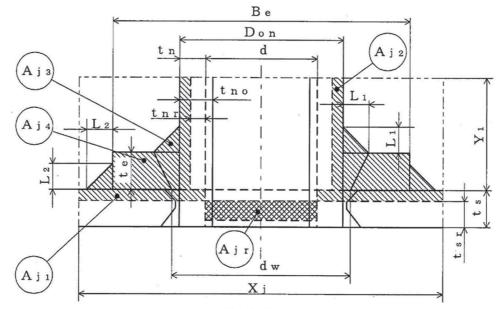
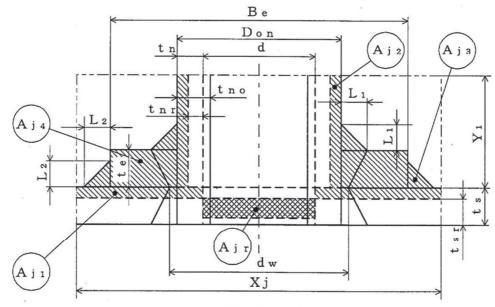




図 3-25

WELD-13



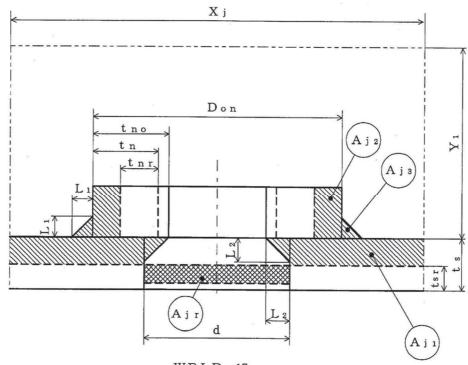
WELD-14

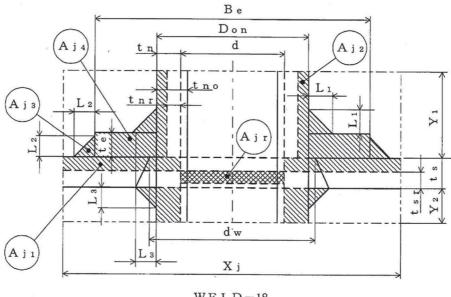


大きい穴の補強に必要な面積

図 3-26

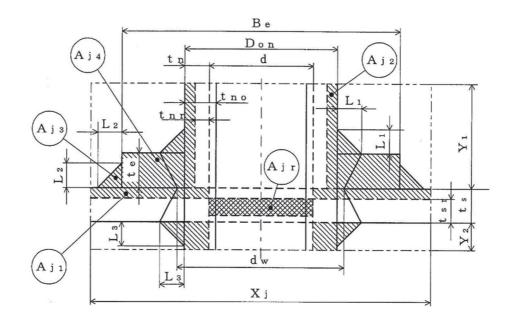
WELD-15

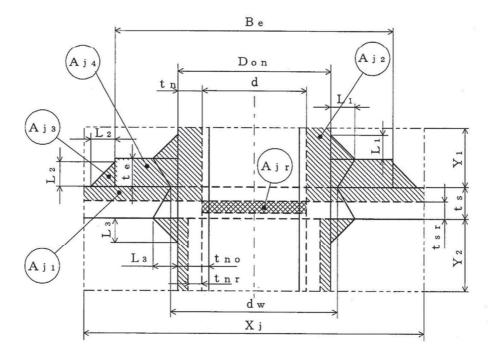

WELD-16



大きい穴の補強に必要な面積

図 3-27





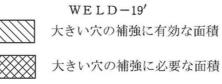
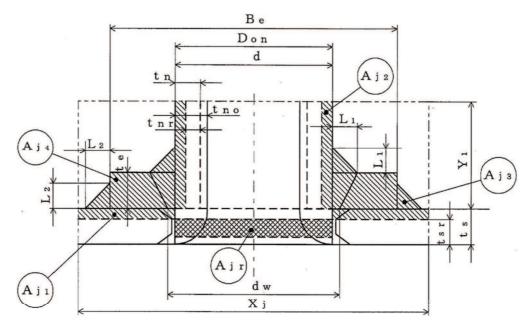
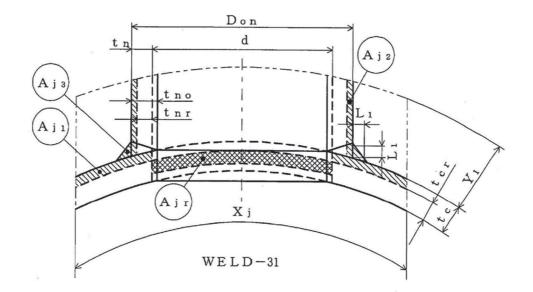

WELD-18 大きい穴の補強に有効な面積 大きい穴の補強に必要な面積

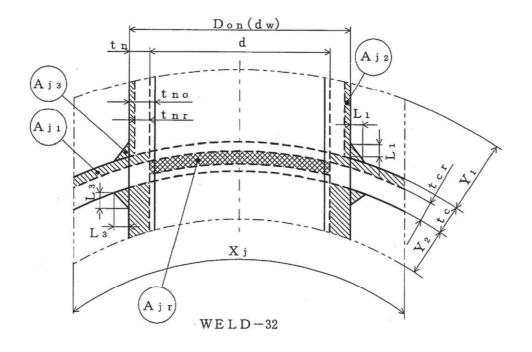
図 3-28

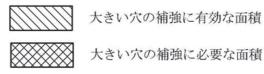

WELD-19

 \otimes

図 3-29

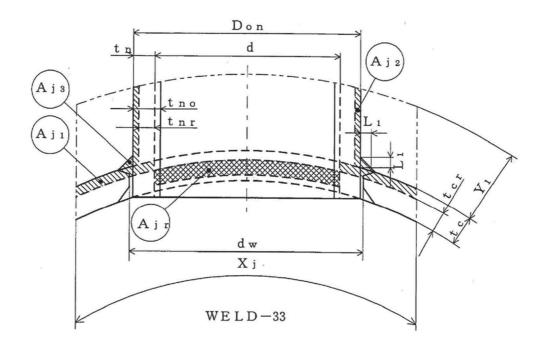


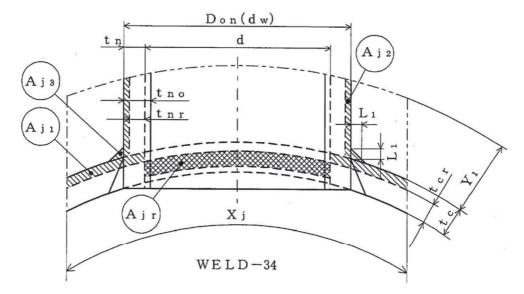

WELD-22



大きい穴の補強に有効な面積 大きい穴の補強に必要な面積

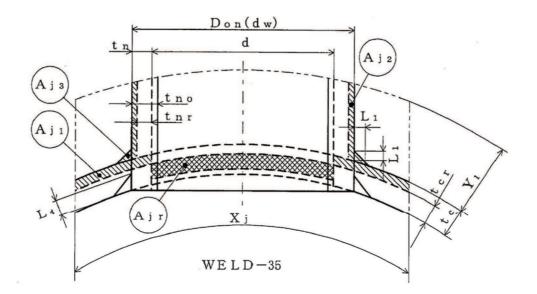
図 3-30





大きい穴の補強に必要な面積

図 3-31



大きい穴の補強に必要な面積

図 3-32

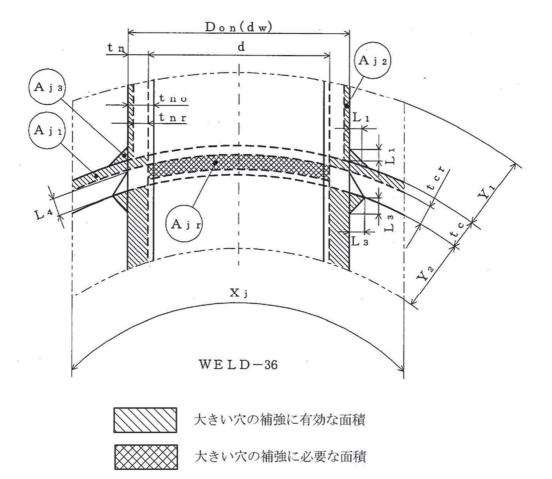
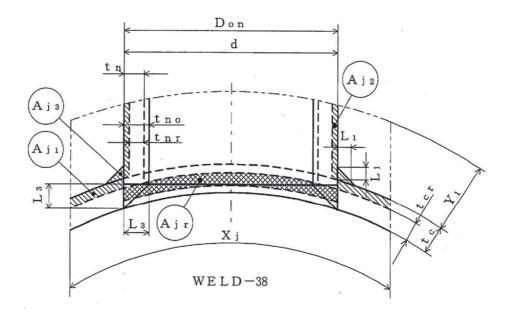
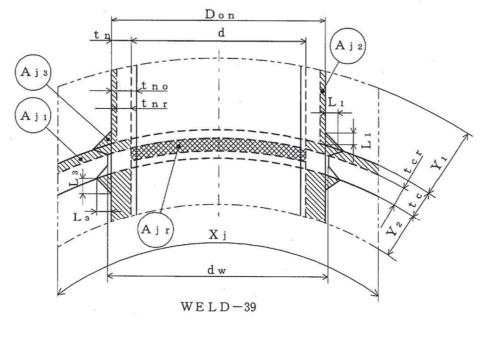




図 3-33

大きい穴の補強に有効な面積 大きい穴の補強に必要な面積

図 3-34

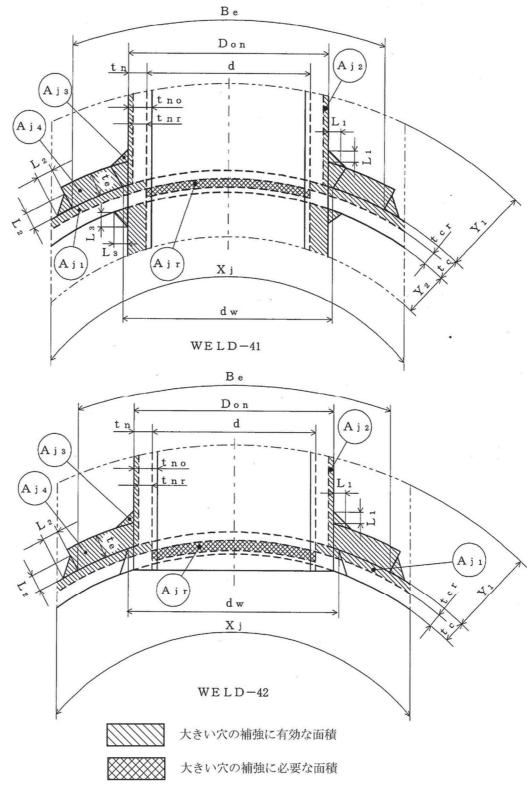


図 3-35

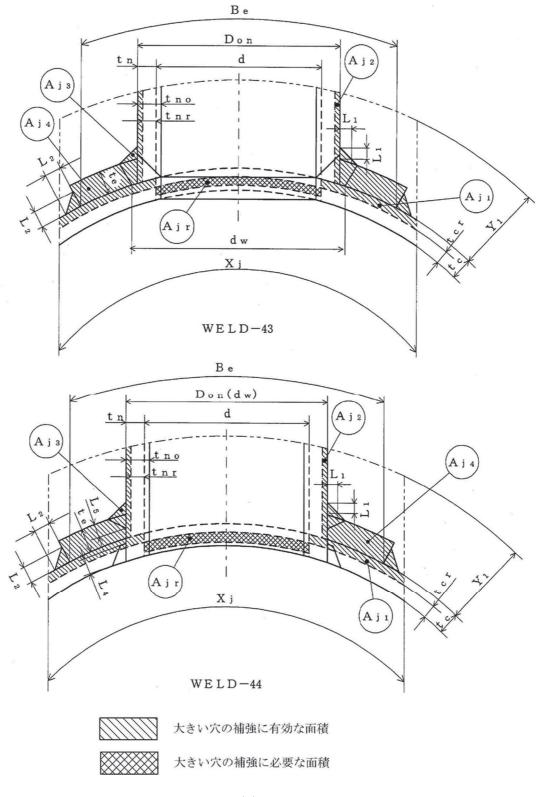


図 3-36

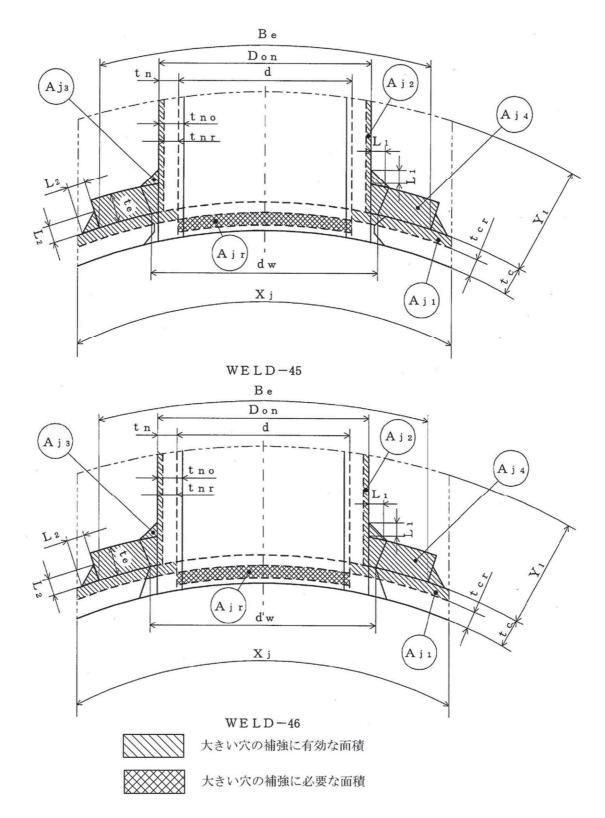
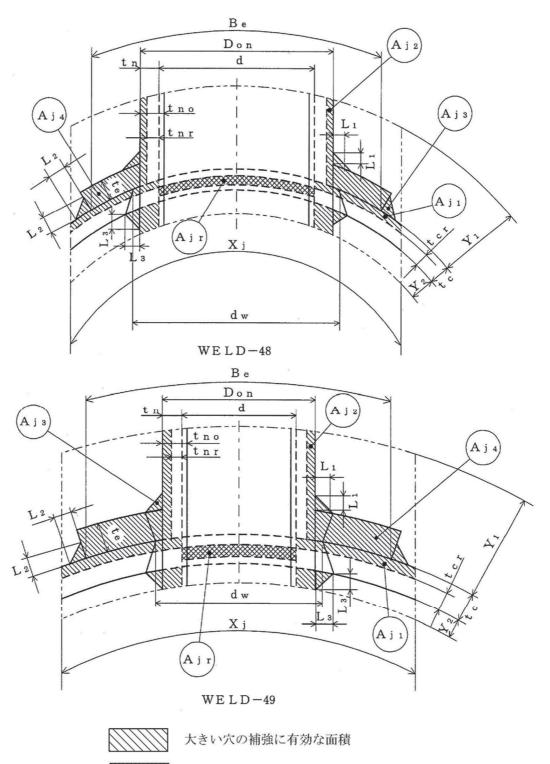



図 3-37

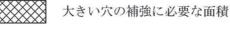
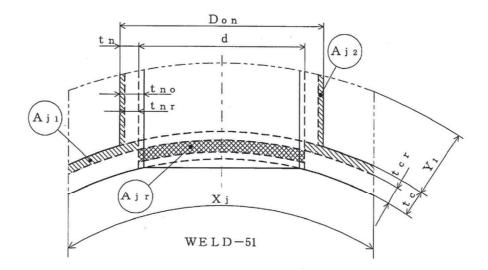



図 3-38

大きい穴の補強に有効な面積 大きい穴の補強に必要な面積

図 3-39

4. フランジの強度計算

重大事故等クラス2容器については設計・建設規格 PVC-3710 を適用する。 計算は、JIS B 8265を適用する。 フランジ形式及び各部の記号は図4-1~図4-3による。

4.1 記号の説明

JIS の記号	計算書の表示	表示内容	単位
А	А	フランジの外径	mm
A _b	A _b	実際に使用するボルトの総有効断面積	mm^2
Am	A_{m}	ボルトの総有効断面積	mm^2
A_{m1}	A_{m1}	使用状態でのボルトの総有効断面積	mm^2
A_{m2}	A_{m2}	ガスケット締付時のボルトの総有効断面積	mm^2
В	В	フランジの内径	mm
b	b	ガスケット座の有効幅	mm
b _o	b _o	ガスケット座の基本幅(JIS B 8265 附 属書3 表3による。)	mm
С	С	ボルト穴の中心円の直径	mm
d	d	$\left\{\begin{array}{c} \cdot - 4\pi \overline{V} \overline{V} \overline{V} \overline{V} \overline{V} \overline{V} \overline{V} \overline{V}$	mm ³
d _b	d _b	ボルトのねじ部の谷の径と軸部の径の最小部の小さ い方の径	mm
D _g	D _g	セルフシールガスケットの外径	mm
е	е	$ \left\{ \begin{array}{c} \cdot - \phi \mathbb{R} \mathbb{N} \mathbb{D} \mathbb{P} \mathcal{D} \mathbb{D} \mathbb{D} \mathbb{D} \mathbb{D} \mathbb{D} \mathbb{D} \mathbb{D} \mathbb$	mm ⁻¹

JIS の記号	計算書の表示	表示内容	単位
F	F	体形フランジ及び一体形フランジとして計算する	
F _L	F _L	任意形フランジの係数(JIS B 8265 附 属書3 図5又は附属書3 表4による。) ルーズ形フランジ及びルーズ形フランジとして計算 する任意形フランジの係数(JIS B 8265	_
f	f	附属書3 図6又は附属書3 表4による。) ハブ応力修正係数(JIS B 8265 附属書3 図4又は附属書3 表4による。)	_
	FLANGE-	フランジの形式(JIS B 8265による。図 4-1~図4-3参照)	—
G	G	ガスケット反力円の直径	mm
	G s	ガスケット接触面の外径	mm
g ₀	g o	ハブ先端の厚さ	mm
g i	g i	フランジ背面のハブの厚さ	mm
Н	Н	内圧によってフランジに加わる全荷重	Ν
h	h	ハブの長さ	mm
H_{D}	Η _D	圧力によってフランジの内径面に加わる荷重	Ν
h _D	h _D	ボルト穴の中心円からH _D 作用点までの半径方向の距離	mm
H_{G}	H _G	ガスケット荷重	Ν
h _G	h _G	ボルト穴の中心円からH _G 作用点までの半径方向の距 離	mm
h o	h o	$\sqrt{\mathbf{B} \cdot \mathbf{g}_0}$	mm
H _P	Н _Р	気密を十分に保つために,ガスケット又は継手接触 面に加える圧縮力	Ν
Η _T	Η _T	圧力によってフランジに加わる全荷重とフランジの 内径面に加わる荷重との差	Ν
h _T	h _T	ボルト穴の中心円からH _T 作用点までの半径方向の距離	mm
К	K	フランジの内外径の比(=A/B)	_
L	L	係数 $\left(=\frac{t \cdot e + 1}{T} + \frac{t^3}{d}\right)$	_
m	m	ガスケット係数(JIS B 8265 附属書3 表2による。)	_
M _D	$M_{\rm D}$	み 2 による。) 内圧によってフランジの内径面に加わる荷重による モーメント	N•mm
M_{G}	$M_{\rm G}$	ガスケット荷重によるモーメント	N•mm
Mg	${ m M}_{ m g}$	ガスケット締付時にフランジに作用するモーメント	N•mm
M_0	${ m M}_{0}$	使用状態でフランジに作用するモーメント	N•mm

JIS の記号	計算書の表示	表示内容	単位
M _T	MT	内圧によってフランジに加わる全荷重とフランジの	N•mm
Ν	N	内径面に加わる荷重との差によるモーメント ガスケットの接触面の幅(JIS B 8265 附属書3 表3による。)	mm
n	n	ボルトの本数	—
R	R	ボルトの中心円からハブとフランジ背面との交点ま での半径方向の距離	mm
Т	Т	K= A/Bの値によって定まる係数(JIS B 8265 附属書3 図7又は図中の算式による。)	_
t	t	フランジの厚さ	mm
U	U	K= A/Bの値によって定まる係数(JIS B 8265 附属書3 図7又は図中の算式による。)	—
V	V	 一体形フランジ及び一体形フランジとして計算する 任意形フランジの係数(JIS B 8265 附属書3 図8又は附属書3 表4による。) 	_
V L	V _L	ルーズ形フランジ及びルーズ形フランジとして計算 する任意形フランジの係数(JIS B 8265 附属書3 図9又は附属書3 表4による。)	_
Wg	W _g	ガスケット締付時のボルト荷重	Ν
$W_{m 1}$	$W_{m \ 1}$	使用状態での必要な最小ボルト荷重	Ν
W_{m2}	$W_{m 2}$	ガスケット締付時に必要な最小ボルト荷重	Ν
Wo	Wo	使用状態でのボルト荷重	Ν
Y	Y	 K= A/Bの値によって定まる係数(JIS B 8265 附属書3 図7又は図中の算式による。) 	—
У	У	ガスケットの最小設計締付圧力(JIS B 82 65 附属書3 表2による。)	N/mm^2
Z	Z	K= A/Bの値によって定まる係数(JIS B 8265 附属書3 図7又は図中の算式による。)	_
π	π	円周率	—
σ _a	σ _a	常温におけるボルト材料の許容引張応力 (設計・建設規格 付録材料図表 Part5 表7に	MPa
σь	σь	よる。) 最高使用温度におけるボルト材料の許容引張応力 (設計・建設規格 付録材料図表 Part5 表7に よる。)	MPa
σ _f	σ _{fa}	常温におけるフランジ材料の許容引張応力 (設計・建設規格 付録材料図表 Part5 表5又	MPa
σ _f	σ _f	は表6による。) 最高使用温度におけるフランジ材料の許容引張応力 (設計・建設規格 付録材料図表 Part5 表5又	MPa
σ _n	σ _{na}	は表6による。) 管台又は胴の材料の常温における許容引張応力 (設計・建設規格 付録材料図表 Part5 表5又	MPa
		(設計・建設規格 付録材料図表 Partb 表 b 乂 は表 6 による。)	

JIS の記号	計算書の表示	表示内容	単位
σ _n	σ _n	管台又は胴の材料の最高使用温度における許容引張	MPa
		応力(設計・建設規格 付録材料図表 Part5 表5	
		又は表6による。)	
σ _H	$\sigma_{ m H}$	ハブの軸方向応力	MPa*
σ _R	σ _R	フランジの径方向応力	MPa*
σт	στ	フランジの周方向応力	MPa*
	ガスケット	ガスケット座面の形状(JIS B 8265 附	—
	座面の形状	属書3 表3による。)	

注記 *: JIS B 8265は「N/mm²」を使用しているが、設計・建設規格に合わせ「MPa」 に読み替えるものとする。

4.2 算式

(1) フランジの内圧計算

任意形フランジは、一体形フランジとして計算する。

ただし,下記条件をすべて満足する場合には,ハブなしルーズ形フランジとして計算する。

- g ₀≦16 mm
- B/g₀≦300
- $P \leq 2 MPa$
- ・最高使用温度≦370 °C
- a. ガスケット座の有効幅及びガスケット反力円の直径

ガスケット座の有効幅 b 及びガスケット反力円の直径Gは,ガスケット座の基本幅 b 。 に従い以下のように求める。

ここで、 boはJIS B 8265 附属書3 表3による。

- ・b₀≦6.35 mmの場合
 - $b = b_0$
 - $G = G_s N$
- ・b₀>6.35 mmの場合

$$b = 2.52 \cdot \sqrt{b_0}$$
$$G = G_s - 2 \cdot b$$

- b. 計算上必要なボルト荷重
- (a) 使用状態で必要なボルト荷重

$$W_{m\,1} = H + H_p$$

$$H = \frac{\pi}{4} \cdot G^2 \cdot P$$
$$H_P = 2 \cdot \pi \cdot b \cdot G \cdot m \cdot P$$

(b) ガスケット締付時に必要なボルト荷重

$$W_{m\,2} = \pi \cdot b \cdot G \cdot y$$

熱交換器の管板を挟む一対のフランジのように、フランジ又はガスケットが同一でない場合は、W_{m1}及びW_{m2}の値は、それぞれのフランジ又はガスケットについて計算した値のうちの大きい方とし、その値を両方のフランジの計算に用いる。

また, セルフシールガスケットを用いる場合は,

W_{m1} (=H) =
$$\frac{\pi}{4}$$
・D_g²・P
W_{m2}=0
とする。

c. ボルトの総有効断面積及び実際に使用するボルトの総有効断面積

$$A_{m1} = W_{m1} / \sigma_{b} (使用状態)$$

$$A_{m2} = W_{m2} / \sigma_{a} (ガスケット締付時)$$

$$A_{m} = Max(A_{m1}, A_{m2})$$

$$A_{b} = \frac{\pi}{4} \cdot d_{b}^{2} \cdot n$$

d. フランジの計算に用いるボルト荷重 $W_{o} = W_{m1}$ (使用状態) $W_{g} = (A_{m} + A_{b}) \cdot \sigma_{a}/2$ (ガスケット締付時) e. 使用状態でフランジに加わる荷重

$$H_{D} = \frac{\pi}{4} \cdot B^{2} \cdot P$$
$$H_{G} = W_{0} - H$$
$$H_{T} = H - H_{D}$$

f. 使用状態でのフランジ荷重に対するモーメントアーム

フランジの形式	h _D	h _G	h r
一体形フランジ及び一			
体形フランジとして計	R + 0. 5 \cdot g ₁	$\frac{C-G}{2}$	$\frac{R + g_1 + h_G}{2}$
算する任意形フランジ		Z	2
差込み形フランジ及び			
ルーズ形フランジとし	C - B	C - G	$h_{D} + h_{G}$
て計算する任意形フラ	2	2	2
ンジ			
ラップジョイント形	C - B	C - G	C - G
フランジ	2	2	2

ただし,

$$R = \left(\frac{C - B}{2}\right) - g_{1}$$

また, セルフシールガスケットを用いる場合は, GはDgと読み替える。 (h. においても同じ。)

g. 使用状態でフランジに作用するモーメント

- $M_{D} = H_{D} \cdot h_{D}$ $M_{G} = H_{G} \cdot h_{G}$ $M_{T} = H_{T} \cdot h_{T}$ $M_{0} = M_{D} + M_{G} + M_{T}$
- h. ガスケット締付時にフランジに作用するモーメント

$$M_{g} = W_{g} \cdot \left(\frac{C-G}{2}\right)$$

- i. 一体形フランジ,一体形フランジとして計算する任意形フランジ及びルーズ形フラン ジでハブを考慮して計算するものの応力
 - (a) 使用状態でのフランジ応力

$$\sigma_{\rm H} = \frac{\mathbf{f} \cdot \mathbf{M}_0}{\mathbf{L} \cdot \mathbf{g}_1^2 \cdot \mathbf{B}}$$

$$\sigma_{\rm R} = \frac{(1.33 \cdot t \cdot e + 1) \cdot M_0}{L \cdot t^2 \cdot B}$$

$$\sigma_{\rm T} = \frac{{\rm Y} \cdot {\rm M}_0}{{\rm t}^2 \cdot {\rm B}} - {\rm Z} \cdot \sigma_{\rm R}$$

(b) ガスケット締付時のフランジの応力

$$\sigma_{\rm H} = \frac{{\rm f} \cdot {\rm M}_{\rm g}}{{\rm L} \cdot {\rm g}_{1}^{2} \cdot {\rm B}}$$
$$\sigma_{\rm R} = \frac{(1.33 \cdot {\rm t} \cdot {\rm e} + 1) \cdot {\rm M}_{\rm g}}{{\rm L} \cdot {\rm t}^{2} \cdot {\rm B}}$$

$$\sigma_{\rm T} = \frac{{\rm Y} \cdot {\rm M}_{\rm g}}{{\rm t}^2 \cdot {\rm B}} - {\rm Z} \cdot \sigma_{\rm R}$$

$$\begin{aligned} z \ge \overline{C}, \\ L = \frac{t \cdot e + 1}{T} + \frac{t^3}{d} \\ h_0 = \sqrt{B \cdot g_0} \end{aligned}$$

(一体形フランジ及び一体形フランジとして計算する任意形のフランジの場合) $d = \frac{U}{V} \cdot h_0 \cdot g_0^2$ (ルーズ形フランジ及びルーズ形フランジとして計算する任意形フランジの場合)

$$\mathbf{d} = \frac{\mathbf{U}}{\mathbf{V}_{\mathrm{L}}} \cdot \mathbf{h}_{0} \cdot \mathbf{g}_{0}^{2}$$

(一体形フランジ及び一体形フランジとして計算する任意形フランジの場合)

$$e = \frac{F}{h_0}$$

(ルーズ形フランジ及びルーズ形フランジとして計算する任意形フランジの場合)

$$e = \frac{F_L}{h_0}$$

- j. ルーズ形フランジでハブがないもの,ハブを無視して計算するもの及びハブなしルーズ 形フランジとして計算する任意形フランジの応力
 - (a) 使用状態でのフランジの応力

$$\sigma_{\rm H} = 0$$

$$\sigma_{\rm R} = 0$$

$$\sigma_{\rm T} = \frac{\mathbf{Y} \cdot \mathbf{M}_{0}}{\mathbf{t}^{2} \cdot \mathbf{B}}$$

(b) ガスケット締付時のフランジの応力

$$\sigma_{\rm H} = 0$$

$$\sigma_{\rm R} = 0$$

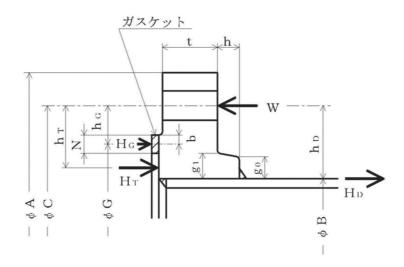
$$\sigma_{\rm T} = \frac{{\rm Y} \cdot {\rm M}_{\rm g}}{{\rm t}^2 \cdot {\rm B}}$$

k. 評価

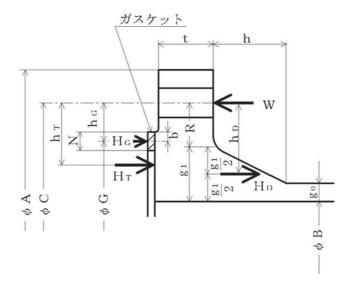
内圧を受けるフランジは、下記の条件を満足すれば十分である。

- (a) 一体形フランジ,一体形フランジとして計算する任意形フランジ及びルーズ形フラン ジでハブを考慮するもの
 - ボルトの総有効断面積
 A_b>A_m

- ロ. ハブの軸方向応力
 - ・一体形フランジとして計算するものの場合 使用状態にあっては $\sigma_{H} \leq Min(1.5 \cdot \sigma_{f}, 1.5 \cdot \sigma_{n})$ ガスケット締付時にあっては $\sigma_{H} \leq Min(1.5 \cdot \sigma_{fa}, 1.5 \cdot \sigma_{na})$
 - ・図 4-1 FLANGE-2に示すハブ付き一体形フランジの場合 使用状態にあっては $\sigma_{H} \leq Min(1.5 \cdot \sigma_{f}, 2.5 \cdot \sigma_{n})$ ガスケット締付時にあっては $\sigma_{H} \leq Min(1.5 \cdot \sigma_{fa}, 2.5 \cdot \sigma_{na})$
 - ・上記以外で鋳鉄以外の材料の場合 使用状態にあっては $\sigma_{H} \leq 1.5 \cdot \sigma_{f}$ ガスケット締付時にあっては $\sigma_{H} \leq 1.5 \cdot \sigma_{fa}$
- ハ. フランジの径方向応力 使用状態にあっては $\sigma_R \leq \sigma_f$ ガスケット締付時にあっては $\sigma_R \leq \sigma_{fa}$
- ニ. フランジの周方向応力 使用状態にあっては $\sigma_T \leq \sigma_f$ ガスケット締付時にあっては $\sigma_T \leq \sigma_{fa}$
- ホ. 軸方向と径方向応力の平均

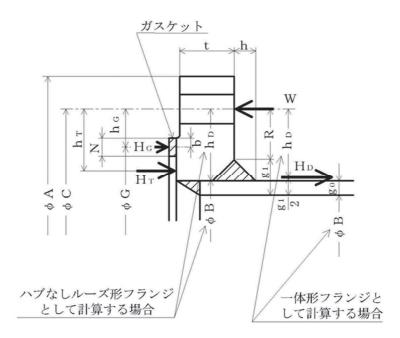

使用状態にあっては	$\frac{\sigma_{\rm H} + \sigma_{\rm R}}{2} \leq \sigma_{\rm f}$
ガスケット締付時にあっては	$\frac{\sigma_{\rm H} + \sigma_{\rm R}}{2} \leq \sigma_{\rm fa}$

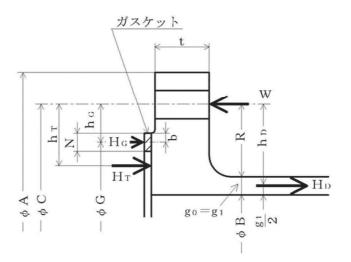
へ. 軸方向と周方向応力の平均


使用状態にあっては
$$\frac{\sigma_{H} + \sigma_{T}}{2} \leq \sigma_{f}$$

ガスケット締付時にあっては
$$\frac{\sigma_{H} + \sigma_{T}}{2} \leq \sigma_{fa}$$

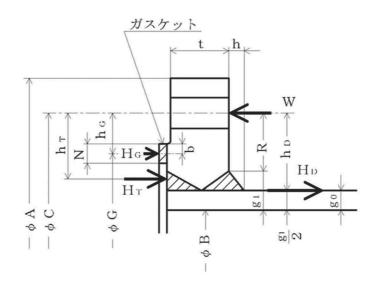
- (b) ルーズ形フランジでハブがないもの,ハブを無視して計算するもの及びハブなしルー ズ形フランジとして計算する任意形フランジ
 - ボルトの総有効断面積
 A_b>A_m
 - ロ. フランジの周方向応力 使用状態にあっては $\sigma_{T} \leq \sigma_{f}$ ガスケット締付時にあっては $\sigma_{T} \leq \sigma_{fa}$

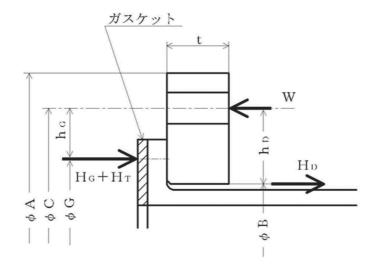

FLANGE-1 (JIS B 8265 附属書3 図23),4),5)) [ルーズ形フランジ (差込み形フランジ)]


FLANGE-2(JIS B 8265 附属書3 図27), 8), 9)) 〔一体形フランジ〕

注1:ここに示すフランジ形状は基本形式とする。 注2:Wは、Wg、Wm1、Wm2及びWoのボルト荷重を表す。

図 4-1


FLANGE-3 (JIS B 8265 附属書3 図211), 12), 13), 14), 15)) 〔任意形フランジ〕


FLANGE-4 (JIS B 8265 附属書3 図26)) [一体形フランジ]

注1:ここに示すフランジ形状は基本形式とする。 注2:Wは、Wg、Wm1、Wm2及びWoのボルト荷重を表す。

図 4-2

FLANGE-5 (JIS B 8265 附属書3 図210)) [一体形フランジ]

FLANGE-6(JIS B 8265 附属書3 図2 1)) 〔ルーズ形フランジ(ラップジョイント形フランジ)〕

注1:ここに示すフランジ形状は基本形式とする。 注2:Wは、Wg、Wm1、Wm2及びWoのボルト荷重を表す。

図 4-3

5. 既工認における評価結果の確認による強度評価方法

クラス2容器を重大事故等クラス2容器として兼用する容器の強度評価について、以下の確認 内容のとおり、クラス2容器の既に認可された工事計画(以下「既工認」という。)の添付書類 における評価結果を用いることにより、重大事故等クラス2容器の評価ができることから、クラ ス2容器の既工認の確認による評価を実施する。

- 5.1 確認内容
 - (1) 実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6月28日原子力 規制委員会規則第六号)第17条において、クラス2容器の材料、構造及び強度の要求は、 重大事故等クラス2容器に要求される適切な機械的強度及び化学的成分、延性破断防止等の 要求と同じである。
 - (2) 重大事故等時の使用圧力及び使用温度は設計基準の最高使用圧力及び最高使用温度に包絡 されている。
- 5.2 強度評価方法

クラス2容器の既工認における評価結果にてクラス2容器としての強度が十分であることを 確認することにより,重大事故等クラス2容器として要求される強度が十分であることを確認 する。 6. 重大事故等クラス2容器であってクラス1容器の強度計算方法

重大事故等クラス2容器であってクラス1容器については、添付書類「VI-2-3-4-1-1 原子炉 圧力容器の応力解析の方針」に記載する強度計算方法にて評価を実施する。

7. 重大事故等クラス2容器であって原子炉格納容器の強度計算方法

重大事故等クラス2容器であって原子炉格納容器の強度計算方法については、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」の 記載内容に基づき、告示第501号による評価を実施する。ただし、改造箇所で適用規格が設 計・建設規格の場合は設計・建設規格と告示第501号の比較を行い、いずれか安全側の規格に よる評価を実施する。

対象となる添付書類を以下に示す。これら添付書類については,評価の対象となる機器の形 状,設計条件により計算方法が異なることから,計算方法については各計算書に個別に示すこと とする。

VI-3-3-6-1-1-1 ドライウェルの基本板厚計算書

VI-3-3-6-1-1-2	ドライウェルの強度計算書
VI-3-3-6-1-1-3	ドライウェル主フランジの強度計算書
VI-3-3-6-1-1-4	ドライウェルベント開口部の強度計算書
VI-3-3-6-1-1-5	ジェットデフレクタの強度計算書

- VI-3-3-6-1-1-6 サプレッションチェンバの基本板厚計算書
- VI-3-3-6-1-1-7 サプレッションチェンバの強度計算書
- VI-3-3-6-1-1-8 ボックスサポートの強度計算書
- VI-3-3-6-1-1-9 ジェット力を考慮した強度計算書
- VI-3-3-6-1-2-1 機器搬出入用ハッチの基本板厚計算書
- VI-3-3-6-1-2-2 機器搬出入用ハッチの強度計算書
- VI-3-3-6-1-2-3 逃がし安全弁搬出入口の基本板厚計算書
- VI-3-3-6-1-2-4 逃がし安全弁搬出入口の強度計算書
- VI-3-3-6-1-2-5 制御棒駆動機構搬出入口の基本板厚計算書
- VI-3-3-6-1-2-6 制御棒駆動機構搬出入口の強度計算書
- VI-3-3-6-1-2-7 サプレッションチェンバ出入口の基本板厚計算書
- VI-3-3-6-1-2-8 サプレッションチェンバ出入口の強度計算書
- VI-3-3-6-1-3-1 所員用エアロックの基本板厚計算書
- VI-3-3-6-1-3-2 所員用エアロックの強度計算書
- VI-3-3-6-1-4-1 原子炉格納容器配管貫通部の基本板厚計算書
- VI-3-3-6-1-4-2 原子炉格納容器配管貫通部の強度計算書
- VI-3-3-6-1-4-3 原子炉格納容器配管貫通部ベローズの強度計算書
- VI-3-3-6-1-4-4 原子炉格納容器電気配線貫通部の基本板厚計算書
- VI-3-3-6-1-4-5 原子炉格納容器電気配線貫通部の強度計算書
- VI-3-3-6-2-1 ダウンカマ及びベントヘッダの基本板厚計算書

R 3

- VI-3-3-6-2-2 ダウンカマの強度計算書
- VI-3-3-6-2-3 ベントヘッダの強度計算書
- VI-3-3-6-2-4 ベント管の基本板厚計算書
- VI-3-3-6-2-5 ベント管の強度計算書
- VI-3-3-6-2-6 ベント管ベローズの強度計算書

別紙 容器の強度計算書のフォーマット

VI-3-*-*-* 0000000000の強度計算書

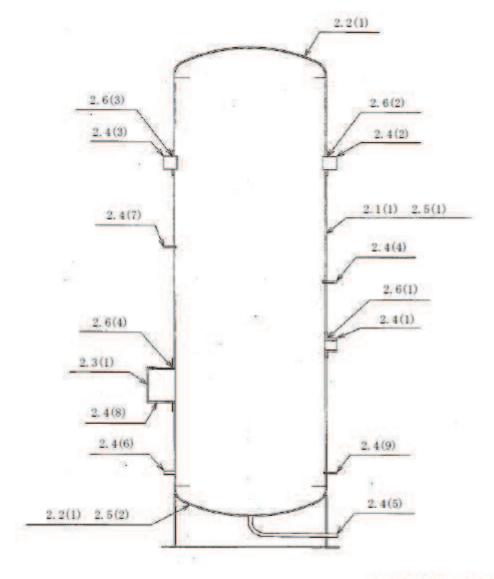
まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「VI-3-2-8 重大事故等クラス2容器の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

-							
	評価						
- 141-	同等性 評価 区分						
	施設時の	週用规格					
既工認に	おける	評価結米 の有熊					
	SA条件	圧力 温度 (MPa) (°C)					
条件アップするか	DB 条件	温度 ()()()					
条件	DB	圧力 (MPa)					
	条件	イッし しょう					
	Č	AG クラス					
いプするか	uvi	UD クラス					
クラスアッ	施設時	機器 クラス					
	クラス	イップ の 油熊					
施設時の 技術基準	-1× >	⁹ つ飑政 の規定が あるか					
14	究 UT						
	機器名						

·評価条件整理表


目次

1.	計算条件 · · · · · · · · · · · · · · · · · · ·	
1.1	計算部位 ·····	
1.2	2 設計条件 ·····	
2.	強度計算 ·····	
2.1	容器の胴の厚さの計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.2	2 容器の鏡板の厚さの計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.3	8 容器の平板の厚さの計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.4	容器の管台の厚さの計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.5	容器の補強を要しない穴の最大径の計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.6	5 容器の穴の補強計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.7	ご設計・建設規格における材料の規定によらない場合の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

1. 計算条件

1.1 計算部位

概要図に強度計算箇所を示す。

図中の番号は次ページ以降の 計算項目番号を示す。

図 1-1 概要図

1.2 設計条件

最高使用圧力	(MPa)	* * * *
最高使用温度	(°C)	* * * *

2. 強度計算

2.1 容器の胴の厚さの計算

設計・建設規格 PVC-3120

胴板名称			(1) 胴板
材料			SUS316L
最高使用圧力	Р	(MPa)	
最高使用温度		(°C)	
胴の内径	D _i	(mm)	
許容引張応力	S	(MPa)	107
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t 1	(mm)	
必要厚さ	t ₂	(mm)	
t 1, t 2の大きい値	t	(mm)	
呼び厚さ	t _{s o}	(mm)	
最小厚さ	t s	(mm)	
「評価: $t_s \ge t$, よって十分	分である。		

- 2.2 容器の鏡板の厚さの計算
 - (1) 設計・建設規格 PVC-3210

鏡板の形状

鏡板名称		(1) 鏡板	
鏡板の内面における長径	D _{iL} (mm)	1600.00	
鏡板の内面における短径の1/2	h (mm)	400.00	
長径と短径の比 D _{iL} /	(2 • h) (mm)	2.00	
評価:D _{iL} /(2・h)≦2, よって半だ円形鏡板である。			

(2) 設計・建設規格 PVC-3220

鏡板の厚さ

現版シーチー			
鏡板名称			(1) 鏡板
材料			SGV480
最高使用圧力	Р	(MPa)	
最高使用温度		(°C)	
胴の内径	D _i	(mm)	
半だ円形鏡板の形状による	系数 K		
許容引張応力	S	(MPa)	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
必要厚さ	t 1	(mm)	
必要厚さ	t ₂	(mm)	
t ₁ , t ₂ の大きい値	t	(mm)	
呼び厚さ	t _{c o}	(mm)	
最小厚さ	t _c	(mm)	
評価 : t 。≧ t , よって十分	うである。		

- 2.3 容器の平板の厚さの計算
 - (1) 告示第501号第34条第1項

取付け方法及び穴の有無

平板名称			(1) マンホール平板
平板の取付け方法			(i)
平板の穴の有無			無し
溶接部の寸法	t i	(mm)	
胴又は管の計算上必要な厚さ	t _{s r}	(mm)	
胴又は管の最小厚さ	t s	(mm)	
2 • t s		(mm)	
1.25 • t s		(mm)	
評価: $t_i \ge 2 \cdot t_{s_r}$, $t_i \ge 1.2$	25•t s	よって十分	うである。

⁽²⁾ 設計・建設規格 PVC-3310

取付け方法及び穴の有無

平板名称			(1) マンホール平板
平板の取付け方法			(i)
平板の穴の有無			無し
溶接部の寸法	t w 1	(mm)	
溶接部の寸法	t _{w2}	(mm)	
胴又は管の計算上必要な厚さ	t sr	(mm)	
胴又は管の最小厚さ	t s	(mm)	
$t_{w1} + t_{w2}$		(mm)	
2 • t s		(mm)	
1.25 • t _{s r}		(mm)	
評価: t _{w1} +t _{w2} ≧2・t _s , ·	$t_{w1} \ge t_s$,	t $_{s} \geq$	1.25・t _{sr} よって十分である。

(3) 設計·建設規格 PVC-3310 (告示第501号第34条第1項)

平板の厚さ

平板名称			(1) マンホール平板
材料			SUSF316L (厚さ 130 mm 未満)
最高使用圧力	Р	(MPa)	
最高使用温度		(°C)	
許容引張応力	S	(MPa)	107
取付け方法による係数	Κ		
平板の径	d	(mm)	
必要厚さ	t	(mm)	
呼び厚さ	t po	(mm)	
最小厚さ	t p	(mm)	
[評価:t _P ≧t,よって十分で	ぎある。		

2.4 容器の管台の厚さの計算 設計・建設規格 PVC-3610

管台名称			(1) 〇〇〇入口
材料			SUS316LTP-S
最高使用圧力	Р	(MPa)	
最高使用温度		(°C)	
管台の外径	D _o	(mm)	
許容引張応力	S	(MPa)	107
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			—
必要厚さ	t 1	(mm)	
必要厚さ	t ₃	(mm)	
tı, t₃の大きい値	t	(mm)	
呼び厚さ	t no	(mm)	
最小厚さ	t n	(mm)	
「評価: $t_n \ge t$, よって十分	である。		

2.5 容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称			(1) 胴板
材料			SUS316L
最高使用圧力	Р	(MPa)	
最高使用温度		(°C)	
胴の外径	D	(mm)	
許容引張応力	S	(MPa)	107
胴板の最小厚さ	t s	(mm)	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			—
$d_{r1} = (D - 2 \cdot t_s) / 4$		(mm)	
61, d _{r1} の小さい値		(mm)	61.00
К			
D•t _s		(mm^2)	
200, d _{r2} の小さい値		(mm)	200.00
補強を要しない穴の最大径		(mm)	200.00
評価:補強の計算を要する穴の)名称		$\bigcirc\bigcirc\bigcirc\land\land\Box(3.6(1))$
			○○○出口(3.6(2))
			○○○出口(3.6(3))
			マンホール(3.6(4))

容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3230(2)

鏡板名称			(2) 鏡板
材料			SUS316L
最高使用圧力	Р	(MPa)	
最高使用温度		$(^{\circ}C)$	
鏡板のフランジ部の外径	D	(mm)	
許容引張応力	S	(MPa)	107
鏡板の最小厚さ	t _c	(mm)	
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			_
$d_{r1} = (D - 2 \cdot t_c) / 4$		(mm)	
61, d _{r1} の小さい値		(mm)	61.00
К			
D•t _c		(mm^2)	
200, d _{r2} の小さい値		(mm)	
補強を要しない穴の最大径		(mm)	
評価:補強の計算を要する	穴の名称		無し

2.6 容器の穴の補強計算

設計・建設規格 PVC-3160

参照附図 WELD-11

部材名称			(1) 〇〇〇入口
胴板材料			SUS316L
管台材料			SUS316LTP-S
強め板材料			SUS316L
最高使用圧力	Р	(MPa)	
最高使用温度		(°C)	
胴板の許容引張応力	S _s	(MPa)	107
管台の許容引張応力	S _n	(MPa)	107
強め板の許容引張応力	S _e	(MPa)	107
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D _i	(mm)	
胴板の計算上必要な厚さ	t sr	(mm)	
管台の計算上必要な厚さ	t nr	(mm)	
穴の補強に必要な面積	A _r	(mm^2)	
補強の有効範囲	X $_1$	(mm)	
補強の有効範囲	X $_2$	(mm)	
補強の有効範囲	Х	(mm)	
補強の有効範囲	Y 1	(mm)	
補強の有効範囲	Y 2	(mm)	
強め板の最小厚さ	t _e	(mm)	
強め板の外径	B _e	(mm)	
管台の外径	D _{on}	(mm)	
溶接寸法	L ₁	(mm)	
溶接寸法	L ₂	(mm)	
溶接寸法	L ₃	(mm)	
胴板の有効補強面積	A_1	(mm^2)	
管台の有効補強面積	A_2	(mm^2)	
すみ肉溶接部の有効補強面積	A $_3$	(mm^2)	
		(0)	

強め板の有効補強面積	A_4	(mm^2)	
補強に有効な総面積	A_0	(mm^2)	
補強:A ₀ >A _r ,よって十分	である。		

部材名称			(1) 〇〇〇入口				
大きい穴の補強							
補強を要する穴の限界径	d j	(mm)					
評価:d≦d _j , よって大きい	穴の補強	計算は必	要ない。				
溶接部にかかる荷重	W_1	(N)					
溶接部にかかる荷重	W_2	(N)					
溶接部の負うべき荷重	W	(N)					
すみ肉溶接の許容せん断応力	S_{w1}	(MPa)					
突合せ溶接の許容せん断応力	S_{w2}	(MPa)					
突合せ溶接の許容引張応力	S_{w3}	(MPa)					
管台壁の許容せん断応力	S_{w4}	(MPa)					
応力除去の有無							
すみ肉溶接の許容せん断応力係	系数 F	1					
突合せ溶接の許容せん断応力係		2					
突合せ溶接の許容引張応力係数		3					
管台壁の許容せん断応力係数	F	4					
すみ肉溶接部のせん断力	W _{e1}	(N)					
すみ肉溶接部のせん断力	W _{e2}	(N)					
すみ肉溶接部のせん断力	W _{e3}	(N)					
突合せ溶接部のせん断力	W _{e4}	(N)					
突合せ溶接部の引張力	W _{e 8}	(N)					
突合せ溶接部の引張力	W _{e9}	(N)					
管台のせん断力	W $_{e\ 1\ 0}$	(N)					
予想される破断箇所の強さ	W_{ebp1}	(N)					
予想される破断箇所の強さ	$W_{e\ b\ p\ 2}$	(N)					
予想される破断箇所の強さ	$W_{e\ b\ p\ 3}$	(N)					
予想される破断箇所の強さ	$W_{e\ b\ p\ 4}$	(N)					
予想される破断箇所の強さ	W _{ebp5}	(N)					
評価: $W_{ebp1} \ge W$, $W_{ebp2} \ge W$, $W_{ebp3} \ge W$, $W_{ebp4} \ge W$, $W_{ebp5} \ge W$							
以上より十分である。							

設計・建設規格における材料の規定によらない場合の評価の評価結果例

2.7 設計・建設規格における材料の規定によらない場合の評価

 同側胴板(使用材料規格: J I S G ○○○○ △△△△)の評価結果

 (比較材料: J I S G ○○○○ △△△△)
 (材料記号を記載)
 ○○に使用している○○○は,材料の許容引張応力が設計・建設規格に記載されていない
 ことから,材料の許容引張応力が設計・建設規格に記載されている材料と機械的強度及び化
 学的成分を比較し,同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点又は耐力	比較結果			
使用材料	370 N/mm ² 以上	215 N/mm ² 以上	己進強さ及び際仕占け同葉である			
比較材料	370 N/mm ² 以上	215 N/mm ² 以上	引張強さ及び降伏点は同等である。			

(2) 化学的成分

	化学成分(%)										
	С	Si	Mn	Р	S	Cu	Ni	Cr	Mo	V	W
使用 材料	0.25 以下	0.35 以下	0.30 ~ 0.90	0.040 以下	0.040 以下	_	_	_	_	_	_
比較 材料	0.25 以下	$\begin{array}{c} 0.\ 10\\ \sim\\ 0.\ 35\end{array}$	0.30 ~ 0.90	0.035 以下	0.035 以下	_	_	_	_	_	_
比較結果	 以下 0.35 0.90 以下 以下 以下 Si, P, S の成分規定に差異があるが,以下により,本設備の環境下での使用は問題ないと考える。 Si: 一般的に機械的強度に影響を与える成分であるが,(1)の評価結果からも機械強度は同等以上であること。 P:冷間脆性に影響を与える成分であるが,本設備において使用される材料は,薄肉(16 mm 未満)であるため,脆性破壊が発生しがたい寸法の材料であること,さらには,設計・建設規格クラス2の規定でも破壊脆性試験が要求されない範囲であること。 S: 熱間脆性に影響を与える成分であるが,本設備において使用される材料は,薄肉(16 mm 未満)であるため,脆性破壊が発生しがたい寸法の材料であること,さらには,設計・建設規格クラス2の規定でも破壊脆性試験が要求されない範囲であること。 										

(3) 評価結果

(1)(2)の評価により,機械的強度,化学的成分,いずれにおいても比較材料と同等である ことを確認したため,本設備において,△△△△を重大事故等クラス2材料として使用する ことに問題ないと考える。

(材料記号を記載)