\circ

本資料のうち、枠囲みの内容は防 護上の観点から公開できません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0161_改 1
提出年月日	2021年 9月 8日

VI-2-2-9 第3号機海水ポンプ室の地震応答計算書

2021年9月

東北電力株式会社

目 次

1.	概要	
2.	基本方	針 2
2	2.1 位置	登 2
2	2.2 構造	造概要3
2	2.3 解机	斤方針 5
2	2.4 適月	月基準 7
3.	解析方	法8
3	8.1 地震	§時荷重算出断面
3	8.2 解机	斤方法 11
	3. 2. 1	構造部材 11
	3. 2. 2	地盤物性及び材料物性のばらつき12
	3. 2. 3	減衰定数 13
	3. 2. 4	地震応答解析の解析ケースの選定14
3	8.3 荷重	重及び荷重の組合せ21
	3. 3. 1	耐震評価上考慮する状態21
	3. 3. 2	荷重 21
	3. 3. 3	荷重の組合せ22
3	8.4 入力	り地震動 23
3	8.5 解机	fモデル及び諸元 56
	3. 5. 1	解析モデル 56
	3. 5. 2	使用材料及び材料の物性値59
	3. 5. 3	地盤の物性値
	3. 5. 4	地下水位60
4.	解析結果	艮62
4	1.1 全点	<mark>公力解析による解析結果</mark> 62
	4. 1. 1	南北方向 (スクリーンエリア) の解析結果62
	4. 1. 2	南北方向(循環水ポンプエリア)の解析結果91
_	4. 1. 3	東西方向の解析結果112
4	1.2 有效	<mark>効応力解析による解析結果</mark> 121
	4. 2. 1	南北方向(スクリーンエリア)の解析結果121
	4. 2. 2	南北方向(循環水ポンプエリア)の解析結果144
	4. 2. 3	東西方向の解析結果 165

1. 概要

本資料は、添付書類「VI-2-1-6 地震応答解析の基本方針」に基づき実施する第3号機海水ポンプ室の地震応答解析について説明するものである。

本地震応答解析は、第3号機海水ポンプ室が耐震性に関する技術基準へ適合することを確認するために用いる応答値を抽出するものである。

第3号機海水ポンプ室は、面部材として加振方向に平行に配置される妻壁や隔壁を有する箱形構造物であることから、二次元地震応答解析により地震時荷重を算定し、その荷重を三次元構造解析モデルに作用させて耐震評価を実施するものである。よって、地震応答解析により抽出する応答値は、三次元構造解析モデルに作用させる地震時土圧、慣性力及び基礎地盤に発生する接地圧である。

また、機器・配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2. 基本方針

2.1 位置

第3号機海水ポンプ室の位置を図2-1に示す。

図 2-1 第3号機海水ポンプ室の位置図

2.2 構造概要

第3号機海水ポンプ室の平面図を図2-2に、断面図を図2-3~図2-5に示す。

第3号機海水ポンプ室は、耐震重要施設である防潮壁等を間接支持する支持機能及び浸水防止のための止水機能が要求される。

第3号機海水ポンプ室は、地下2階または地下3階構造となっており、上部はスクリーンエリア、循環水ポンプエリアの2エリアに分かれている。下部は水路となっており、スクリーンエリアの下部は四連のボックスカルバート構造、循環水ポンプエリアの下部は二連のボックスカルバート構造となっている。また、上部は各エリアが隔壁により仕切られ、各エリアによって開口部の存在や中床版の設置レベルが異なる等、複雑な構造となっている。

第3号機海水ポンプ室は、加振方向に平行に配置される妻壁や隔壁等の面部材を耐震部材と して考慮する箱形構造物である。

図 2-2 第 3 号機海水ポンプ室平面図

図 2-3 第 3 号機海水ポンプ室断面図 (A-A 断面)

図 2-4 第 3 号機海水ポンプ室断面図 (B-B 断面)

図 2-5 第 3 号機海水ポンプ室断面図 (C-C 断面)

枠囲みの内容は防護上の観点から公開できません。

2.3 解析方針

第3号機海水ポンプ室は,添付書類「VI-2-1-6 地震応答解析の基本方針」に基づき,基準 地震動Ss及び弾性設計用地震動Sdに対して地震応答解析を実施する。

図2-6に第3号機海水ポンプ室の地震応答解析フローを示す。

地震応答解析は、「2. 基本方針」に基づき、「3.1 地震時荷重算出断面」に示す断面に おいて、「3.2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素 法を用いた時刻歴応答解析により行うこととし、地盤物性及び材料物性のばらつきを適切に考 慮する。

二次元有限要素法による時刻歴応答解析は、「3.3 荷重及び荷重の組合せ」及び「3.5 解析モデル及び諸元」に示す条件を基に、「3.4 入力地震動」により設定する入力地震動を用いて実施する。

地震応答解析による応答加速度は、機器・配管系の設計用床応答曲線の作成に用い、地震時 土圧、慣性力及び基礎地盤の接地圧は、第3号機海水ポンプ室の耐震評価に用いる。

注記*:耐震評価に用いる応答値を算定する。

図2-6 第3号機海水ポンプ室の地震応答解析フロー

 \circ

2.4 適用基準

適用する規格, 基準等を以下に示す。

- ・土木学会 2002年 コンクリート標準示方書[構造性能照査編]
- ・土木学会 2005年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- ・原子力発電所耐震設計技術指針(JEAG4601-1987)

3. 解析方法

3.1 地震時荷重算出断面

第3号機海水ポンプ室の地震時荷重算出断面位置を図3-1に示す。地震時荷重算出断面は、構造的特徴や周辺地質状況を踏まえ、南北方向では妻壁や隔壁の配置が異なることによる剛性差を考慮して、スクリーンエリア(A-A 断面)及び循環水ポンプエリア(B-B 断面)の各エリアの構造モデルを使用して地震時応答解析を行う。各エリアで周辺状況に大きさ差異はないが、土圧を大きく評価できるよう、比較的盛土が広く分布している補機ポンプエリアの中心を通る地質断面を各エリアの地盤モデルとして、地震時荷重算出用地質断面とする。

また、東西方向については、構造的特徴や周辺地盤状況を踏まえ、構造物中心を通る断面(C-C) 断面)を地震時荷重算出用地質断面とする。地震時荷重算出用地質断面図を図3-2~図3-4に示す。

なお、加振方向に平行に配置され耐震上見込むことができる面部材の配置から、南北方向(A-A 断面及び B-B 断面)が弱軸方向となり、東西方向(C-C 断面)が強軸方向となる。よって、構造物の耐震評価に用いる応答値の抽出は、弱軸方向に対して実施し、機器・配管系の耐震評価に用いる応答値の抽出は、弱軸方向及び強軸方向に対して実施する。

図 3-1 第 3 号機海水ポンプ室の地震時荷重算出断面位置図

図 3-2 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図 (A-A 断面,南北 (スクリーンエリア))

図 3-3 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図 (B-B 断面,南北 (循環水ポンプエリア))

図3-4 第3号機海水ポンプ室 地震時荷重算出用地質断面図 (C-C 断面, 東西)

3.2 解析方法

第3号機海水ポンプ室の地震応答解析は、添付書類「VI-2-1-6 地震応答解析の基本方針」 のうち、「2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析は、構造物と地盤の相互作用を考慮できる二次元有限要素法により、基準地震動Ss及び弾性設計用地震動Sdに基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行うことする。第3号機海水ポンプの南北・東西方向は、地下水位が構造物底版より低いものの、構造物から遠ざかるにつれ地下水位が上昇することから解析手法は、全応力解析及び有効応力解析とする。

第3号機海水ポンプ室の東側には<mark>第3号機取水路とMMRが隣接しているが、荷重伝達は発生しない構造となっていることから、第3号機取水路及びMMRは</mark>保守的な評価になるよう盛土としてモデル化する。

構造部材については、中床版、底版及び地震時荷重算出断面に垂直な壁部材は線形はり要素、 断面に平行な壁部材は平面応力要素とし、構造物の奥行方向の長さと各部材の奥行方向の長さ の比率や三次元構造解析モデルとの変位を整合させるためのヤング係数の調整を行い、三次元 構造モデルと等価な剛性となるようモデル化する。また、地盤については地盤のひずみ依存性 を適切に考慮できるようモデル化する。

地震応答解析については、解析コード「Soil Plus Dynamic 2015 Build3」 及び「FLIP Ver. $7.3.0_2$ 」を使用する。なお解析コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

3.2.1 構造部材

鉄筋コンクリート部材は、線形はり要素及び平面応力要素でモデル化する。

3.2.2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため、表 3-1 に示す解析ケースを設定する。

第3号機海水ポンプ室は、MMR上に設置され、周囲が埋戻されており、主たる荷重は盛 土等の土圧となることから、盛土及び旧表土等の初期せん断係数のばらつきを考慮する。

初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース②, ③, ⑦及び⑧を実施することにより地盤物性のばらつきの影響を網羅的に考慮する。

また、材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース④又は ⑨を実施することにより、材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は、「3.2.4 地震応答解析の解析ケースの選定」に示す。

表 3-1 解析ケース

No. 1 MINING					
			地盤!	物性	
解析ケース*1	解析手法	材料物性 (コンクリート) (E ₀ :ヤング係数)	盛土,旧表土,D級岩盤, セメント改良土,改良地盤 (G ₀ :初期せん断弾性係 数)	C ₁ 級岩盤, C ₄ 級岩盤, C ₄ 級岩盤, B 級岩盤 (G _d :動せん断弾性係数)	
ケース① (基本ケース)	全応力解析	設計基準強度	平均値	平均値	
ケース②	全応力解析	設計基準強度	平均値+1σ	平均値	
ケース③	全応力解析	設計基準強度	平均値-1σ	平均値	
ケース④*2	ケース④* ² 全応力解析 実強度に基・ 圧縮強度 ²		平均値	平均値	
ケース⑥ (基本ケース)	有効応力解析 設計基準強度		平均値	平均値	
ケース⑦	有効応力解析	設計基準強度	平均値+1σ	平均値	
ケース⑧	有効応力解析	設計基準強度	平均値-1σ	平均値	
ケース⑨*2	有効応力解析	実強度に基づく 圧縮強度* ³	平均値	平均値	

注記*1: A-A 断面, B-B 断面及び C-C 断面は,全応力解析及び有効応力解析を実施する。

*2:基本ケース(ケース①及び⑥)を実施し、曲げ・軸力系の破壊、せん断破壊及び基礎地盤の支持力照査における照査値の最大値を比較し、最大照査値を示す解析手法において、 実強度を考慮した解析ケース(ケース④又はケース⑨)を実施する。

3.2.3 減衰定数

構造部材の減衰定数は、粘性減衰で考慮する。

粘性減衰は、固有値解析にて求められる固有周期と各材料の減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。なお、構造部材を線形でモデル化する場合は、Rayleigh 減衰のみを設定する

また、有効応力解析では、Rayleigh 減衰を考慮することとし、剛性比例型減衰($\alpha=0$ 、 $\beta=0.002$)とする。なお、係数 β の設定については、「FLIP 研究会 14 年間の検討成果のまとめ「理論編」」による。

固有値解析結果に基づき設定した α , β を表 3-2 に示す。

 $[c] = \alpha [m] + \beta [k]$

[c]:減衰係数マトリックス

[m] :質量マトリックス「k] : 剛性マトリックス

α, β:係数

表 3-2 Rayleigh 減衰における係数 α , β の設定結果

地震時荷重算出断面	解析手法	α	β
A-A 断面,南北方向	全応力解析	4.838×10^{-1}	6.200×10^{-4}
(スクリーンエリア)	有効応力解析	0.000	2.000×10^{-3}
B-B 断面,南北方向	全応力解析	4.913×10^{-1}	6. 110×10 ⁻⁴
(循環水ポンプエリア)	有効応力解析	0.000	2.000×10^{-3}
0.0 帐五	全応力解析	3.882×10^{-1}	7.730×10^{-4}
C-C 断面,東西方向	有効応力解析	0.000	2.000×10^{-3}

0

3.2.4 地震応答解析の解析ケースの選定

(1) 耐震評価における解析ケース

耐震評価においては、すべての基準地震動Ssに対し、基本ケース (全応力解析の場合はケース(),有効応力解析の場合はケース(6)) を実施する。解析ケースにおいて、曲げ・軸力系の破壊、せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 を超えるすべての照査項目に対して、最も厳しい地震動を用いて、全応力解析の場合は、表 3-1 に示す解析ケース(2)及び(3)を、有効応力解析の場合は、表 3-1 に示す解析ケース(7)及び(8)を実施する。また、上記のケース(1)、⑥において、曲げ・軸力系の破壊、せん断破壊及び基礎地盤の支持力照査における照査値の最大値を比較し、最大照査値を示す解析手法において、実強度を考慮した解析ケース(ケース(4)又はケース(5))を実施する。耐震評価における解析ケースを表 3-3 に示す。

表 3-3(1) 耐震評価における解析ケース(全応力解析)

			ケース①	ケース②	ケース③	ケース④		
解析ケース		基本ケース	地盤物性のば らつき (+1 σ) を考慮し た解析ケース	地盤物性のば らつき (-1 σ) を考慮し た解析ケース	材料物性(コ ンクリート) に実強度を考 慮した解析ケ ース			
	地盤物性		平均値	平均値+1 σ	平均值-1 σ	平均値		
	材料物性 設計基準強度 設計基準強度 設計基準強度		実強度に基づ く圧縮強度* ²					
	$\begin{array}{c c} S & s - D & 1 & + + \\ \hline - + & - + \end{array}$		0	【追加解析ケースについて】 基準地震動Ss(7波)に水平動の位相反転を考 慮した地震動(7波)を加えた全14波に対し、				
			0					
	S = D 2	++*1	0		14 版に対し, 			
	03 D2	-+*1	0	行ったケース①及びケース⑥の結果から、曲げ・				
	地震 Ss-D3 ++*1 -+*1		\circ	軸力系の破壊, せん断破壊, 基礎地盤の支持力 照査の各照査項目に照査値が 0.5 を超える照査 項目に対して, 最も厳しい(許容限界に対する				
地震			\circ					
動	C a E 1	++*1	\circ	 一 裕度が最も小さい) 地震動を用いてケース②,○ ③, ⑦及び⑧を実施する。				
位	位 Ss-F1 -+*1		0	すべての照査項目の照査値がいずれも 0.5 以下 の場合は、照査値が最も厳しくなる地震動を用				
相	C - E 0	++*1	0		全値が取る厳しくな ③,⑦及び⑧を実			
	S s - F 2 $-+$		0	ケース①及びケース⑥の結果から、曲げ・軸力 系の破壊、せん断破壊、基礎地盤の支持力照査				
			0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	の関極場,基礎地質 の照査値が最大とな			
	Ss-F3	-+*1	0	· ·	ス④又はケース⑨を 近ケースの結果を踏			
	$S = N 1$ $++*1 \\ -+*1$		0		いる可能性がある場			
			0	析ケースを実施する。				

注記*1: 耐震評価にあたっては、原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル (土木学会 原子力土木委員会,2005 年 6 月)(以下「土木学会マニュアル」という。)に従い、水平方向の位相反転を考慮する。地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「一」は位相を反転させたケースを示す。

表 3-3(2) 耐震評価における解析ケース(有効応力解析)

			ケース⑥	ケー	-ス⑦	ケース⑧	ケージ	ス⑨
解析ケース		基本ケース	地盤物性のば らつき (+1 σ) を考慮し た解析ケース		地盤物性のば らつき (-1 σ) を考慮し た解析ケース	材料物性 ンクリー に実強度 慮した解 ース	-ト) を考	
	地盤物性		平均値	平均	值+1 σ	平均値-1σ	平均	値
	材料物性		設計基準強度	度 設計基準強度 設計基準強度 実強度に基 く圧縮強度				
	S s - D 1	++*1	0					
	03 D1	-+*1	0					
	S s - D 2	++*1	0					
		-+*1	0					
	S s - D 3	++*1	0					
地震動		-+*1	0					
動	$S_{s}-F_{1}$	++*1	0		表 3-3	(1)の【追加解析)の【追加解析ケースに	
位相		-+*1	0		ついて】による			
	$S_s - F_2$	++*1	0					
	0 3 1 2	-+*1	0					
	S s - F 3	++*1	0					
	22 1.9	-+*1	0					
	S s - N 1	++*1	0					
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0		<u> </u>			

注記*1:耐震評価にあたっては、原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル (土木学会 原子力土木委員会,2005 年 6 月)(以下「土木学会マニュアル」という。)に従い、水平方向の位相反転を考慮する。地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「一」は位相を反転させたケースを示す。

(2) 機器・配管系に対する応答加速度抽出のための解析ケース

機器・配管系に対する応答加速度抽出においては、床応答への保守的な配慮として解析ケース①に加え、表 3-1 に示す解析ケース②~④及び解析ケース⑧を実施する。機器・配管系の応答加速度抽出における解析ケースを表 3-4 に示す。

表 3-4(1) 機器・配管系に対する応答加速度抽出のための解析ケース(基準地震動 S s)

	, , ,	HE II //	全応力解析			
-			ケース①	ケース②	ケース③	ケース④
	解析ケース		基本ケース	地盤物性のばら つき (+1 σ) を考 慮した解析ケー ス	地盤物性のばら つき(-1 σ)を考 慮した解析ケース	材料物性 (コン クリート) に実 強度を考慮した 解析ケース
	地盤物性		平均值	平均値+1σ	平均値-1σ	平均値
	材料物性		設計基準強度	設計基準強度	設計基準強度	実強度に基づく 圧縮強度* ²
	S s - D 1	++*1	\circ	0	0	0
	S S - D 1	-+*1	0	0	0	0
	c Do	++*1	0	0	0	0
	S s - D 2	-+*1	0	0	0	0
	S s - D 3	++*1	0	0	0	0
地	5 s - D 3	-+*1	0	0	0	0
地震動	C - E1	++*1	0	0	0	0
位相	S s - F 1	-+*1	0	0	0	0
10	S s - F 2	++*1	0	0	0	0
	3 s - r 2	-+*1	0	0	0	0
	S s - F 3	++*1	0	0	0	0
	5 s - F 3	-+*1	0	0	0	0
	C - N1	++*1	0	0	0	0
	S s - N 1	-+*1	0	0	0	0

注記*1: 地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位相を反転 させたケースを示す。

0 2

表 3-4(2) 機器・配管系に対する応答加速度抽出のための解析ケース(基準地震動 S s)

		有効応力解析	
	解析ケース	ケース® 地盤物性のばらつ き (-1σ) を考慮し た解析ケース	
	地盤物性		平均値-1σ
	材料物性		設計基準強度
	C D1	++*	0
	S s - D 1	-+*	0
	0 0	++*	0
	S s - D 2	-+*	0
	0 0	++*	0
地震	S s - D 3	-+*	0
震動	0 51	++*	0
位相)	S s – F 1	-+*	0
11	0 50	++*	0
	S s - F 2	-+*	0
	0 00	++*	0
	S s - F 3	-+*	0
	C N1	++*	0
	S s - N 1	-+*	0

注記*:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「-」は位相を反転させたケースを示す。

表 3-4(3) 機器・配管系に対する応答加速度抽出のための解析ケース (弾性設計用地震動 S d)

				全応力解析				
		ケース①	ケース②	ケース③	ケース④			
	解析ケース		基本ケース	地盤物性のば らつき (+1σ) を考慮した解 析ケース	地盤物性の ばらつき (- 1σ) を考慮 した解析ケ ース	材料物性(コン クリート)に実 強度を考慮した 解析ケース		
地盤物性		平均値	平均値+1 σ	平均值-1σ	平均値			
材料物性		設計基準強度	設計基準強度	設計基準強 度	実強度に基づく 圧縮強度* ²			
	S d - D 1	++*1	0	0	0	0		
	Su Di	-+*1	0	0	0	0		
	S d - D 2	++*1	0	0	0	0		
	5 t D 2	-+*1	0	0	0	0		
+#1	S d - D 3	++*1	0	0	0	0		
地震動	5 d D 5	-+*1	0	0	0	0		
動	S d - F 1	++*1	0	0	0	0		
位	Su II	-+*1	0	0	0	0		
相	位 相 S d - F 2		0	0	0	0		
	S d - F 2		0	0	0	0		
S d - F 3		++*1 -+*1	0	0	0	0		
	S d - F 3		0	0	0	0		
	S d - N 1		0	0	0	0		
			\circ	\circ	\circ	0		

注記*1:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「一」は位相を反転させたケースを示す。

0 2

表 3-4(4) 機器・配管系に対する応答加速度抽出のための解析ケース(弾性設計用地震動 S d)

		有効応力解析	
		ケース⑧	
	解析ケース	地盤物性のばらつき	
		(-1σ)を考慮した解	
			析ケース
地盤物性			平均值-1σ
	材料物性	設計基準強度	
	ea Di	++*	0
	S d - D 1	-+*	0
	C J D O	++*	0
	S d - D 2	-+*	0
+441	S d - D 3	++*	0
地震動	S u - D s	-+*	0
動	S d - F 1	++*	0
位相	Su Fi	-+*	0
相	S d - F 2	++*	0
	Su r Z	-+*	0
	S d - F 3	++*	0
	Su-rs	-+*	0
	S d - N 1	++*	0
	Su -NI	-+*	0

注記*:地震動の位相について、++の左側は水平動、右側は鉛直動を表し、「一」は位相を反転させたケースを示す。

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは、添付書類「VI-2-1-9 機能維持の基本方針」に基づき設定する。

3.3.1 耐震評価上考慮する状態

第3号機海水ポンプ室の地震応答解析において,地震以外に考慮する状態を以下に示す。

(1) 運転時の状態

発電用原子炉施設が運転状態にあり、通常の条件下におかれている状態。ただし、運転 時の異常な過渡変化時の影響を受けないことから考慮しない。

(2) 設計基準事故時の状態

設計基準事故時の影響を受けないことから考慮しない。

(3) 設計用自然条件

積雪を考慮する。第3号機海水ポンプ室は、埋設構造物であるため風の影響は考慮しない。なお、第3号機海水ポンプ室の隣接構造物としてモデル化される防潮堤(鋼管式鉛直壁)は、添付書類「VI-2-10-2-2-1 防潮堤(鋼管式鉛直壁)の耐震性について」に基づき、風の影響を考慮する。

(4) 重大事故等時の状態

重大事故等時の影響を受けないことから考慮しない。

3.3.2 荷重

第3号機海水ポンプ室の地震応答解析において、考慮する荷重を以下に示す。

(1) 固定荷重(G)

固定荷重として, 躯体自重, 機器・配管荷重を考慮する。

(2) 積載荷重 (P)

積載荷重として、積雪荷重Psを含めて地表面に4.9kN/m²を考慮する。

(3) 積雪荷重 (Ps)

積雪荷重として、発電所の最寄りの気象官署である石巻特別地域気象観測所で観測された月最深積雪の最大値である 43cm に平均的な積雪荷重を与えるための係数 0.35 を考慮した値を設定する。また、建築基準法施行令第 86 条第 2 項により、積雪量 1cm ごとに 20N/m²の積雪荷重が作用することを考慮する。

(4) 地震荷重(Ss)

基準地震動Ssによる荷重を考慮する。

(5) 地震荷重(Sd)

弾性設計用地震動Sdによる荷重を考慮する。

 \circ

3.3.3 荷重の組合せ

荷重の組合せを表3-5に示す。

表 3-5 荷重の組合せ

外力の状態	荷重の組合せ
地震時 (Ss)	G+P+S s
地震時 (Sd) *	G+P+S d

注記*:機器・配管系の耐震設計に用いる。

G:固定荷重

P:積載荷重 (積雪荷重Psを含めて 4.9kN/m²を地表面に考慮)

S s : 地震荷重 (基準地震動 S s)

Sd: 地震荷重 (弾性設計用地震動Sd)

3.4 入力地震動

入力地震動は、添付書類「VI-2-1-6 地震応答解析の基本方針」のうち「2.3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ss及び弾性設計用地震動Sdを一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお,入力地震動の設定に用いる地下構造モデルは,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」のうち「7.1 入力地震動の設定に用いる地下構造モデル」を用いる。

図3-5に入力地震動算定の概念図を、図3-6~図3-37に入力地震動の加速度時刻歴波形及び加速度応答スペクトルを示す。入力地震動の算定には、解析コード「Ark Quake Ver. 3.10」を使用する。解析コードの検証及び妥当性確認の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

図 3-5 入力地震動算定の概念図

(b) 加速度応答スペクトル

図3-6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-D1)

(b) 加速度応答スペクトル

図3-7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向, 鉛直成分: Ss-D1)

(b) 加速度応答スペクトル

図3-8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-D2)

(b) 加速度応答スペクトル

図3-9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向, 鉛直成分: Ss-D2)

(b) 加速度応答スペクトル

図3-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-D3)

(b) 加速度応答スペクトル

図3-11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向, 鉛直成分: Ss-D3)

(b) 加速度応答スペクトル

図3-12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-F1)

(b) 加速度応答スペクトル

図3-13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向, 鉛直成分: Ss-F1)

(b) 加速度応答スペクトル

図3-14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-F2)

(b) 加速度応答スペクトル

図3-15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,鉛直成分:Ss-F2)

(b) 加速度応答スペクトル

図3-16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-F3)

(b) 加速度応答スペクトル

図3-17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向, 鉛直成分: Ss-F3)

(b) 加速度応答スペクトル

図3-18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Ss-N1)

(b) 加速度応答スペクトル

図3-19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向, 鉛直成分: Ss-N1)

(b) 加速度応答スペクトル

図3-20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向,水平成分: Sd-D2)

(b) 加速度応答スペクトル

図3-21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (南北方向, 鉛直成分: Sd-D2)

(b) 加速度応答スペクトル

図3-22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-D1)

(a) 加速度時刻歷波形

図3-23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向, 鉛直成分: Ss-D1)

図3-24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-D2)

図3-25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分:Ss-D2)

図3-26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-D3)

図3-27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分:Ss-D3)

図3-28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-F1)

図3-29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分:Ss-F1)

図3-30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-F2)

図3-31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分:Ss-F2)

図3-32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-F3)

図3-33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向, 鉛直成分: Ss-F3)

図3-34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Ss-N1)

図3-35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分:Ss-N1)

図3-36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,水平成分: Sd-D2)

図3-37 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (東西方向,鉛直成分:Sd-D2)

3.5 解析モデル及び諸元

3.5.1 解析モデル

第3号機海水ポンプ室の地震応答解析モデルを図3-38~図3-40に示す。

(1) 解析領域

二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は,境界条件の影響が 地盤及び構造物の応力状態に影響を及ぼさないよう,十分に広い領域とする。

(2) 境界条件

二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については,有限要素 解析における半無限地盤を模擬するため,粘性境界を設ける。

(3) 構造物のモデル化

構造物と等価な剛性を有する二次元等価剛性モデルを作成して実施することとし、構造 部材については、線形はり要素及び平面応力要素によりモデル化する。

(4) 地盤のモデル化

□級を除く岩盤は線形の平面ひずみ要素でモデル化する。また、盛土、旧表土及び □級 岩盤は、地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化する。なお、改良地盤は、保守的な評価になるよう盛土としてモデル化する。

(5) 隣接構造物のモデル化

隣接構造物となる防潮堤(鋼管式鉛直壁)は、添付書類「VI-2-10-2-2-1 防潮堤(鋼管式鉛直壁)の耐震性について」に基づき、鋼管杭は、線形はり要素(ビーム要素)でモデル化する。

(6) ジョイント要素の設定

地震時の「地盤と MMR」、「MMR と構造物」及び「構造物と盛土」との接合面における剥離及びすべりを考慮するため、これらの接合面にジョイント要素を設定する。なお、防潮堤(鋼管式鉛直壁)は、添付書類「VI-2-10-2-2-1 防潮堤(鋼管式鉛直壁)の耐震性について」に基づき、ジョイント要素を設定する。

図 3-38 第 3 号機海水ポンプ室の地震応答解析モデル図 (A-A 断面,南北 (スクリーンエリア))

凡

例

図 3-39 第 3 号機海水ポンプ室の地震応答解析モデル図 (B-B 断面,南北 (循環水ポンプエリア))

図3-40 第3号機海水ポンプ室の地震応答解析モデル図(C-C 断面, 東西)

3.5.2 使用材料及び材料の物性値

構造物の使用材料を表 3-6 に、材料の物性値を表 3-7 に示す。

表 3-6 使用材料

材料	仕様	
コンクリート	設計基準強度 23.5N/mm ²	
鉄筋	SD345	

表 3-7 材料の物性値

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 (kN/m³)		24. 0	
コンクリート	ヤング係数 (N/mm²)	実強度*	3.46×10^4	解析ケース④, ⑨
		設計基準強度	2. 48×10^4	解析ケース①, ②, ③, ⑥, ⑦, ⑧
	ポアソン比		0.2	

注記*: 既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.5.3 地盤の物性値

地盤については、添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。

3.5.4 地下水位

設計用地下水位は,添付書類「VI-2-1-3 地盤の支持性能に係る基本方針」に従い設定する。設計用地下水位の一覧を表 3-8 に、設計用地下水位を図 3-41~図 3-43 に示す。

20 0 (Mar/1/10-1/1/12-1)				
施設名称	地震時荷重算出断面	設計用地下水位		
第3号機 海水ポンプ室	A-A 断面,南北方向			
	(スクリーンエリア)	0. P. −12. 00m∼0. P. −2. 50m		
	B-B 断面,南北方向	0. F12. 00m -0. F2. 50m		
	(循環水ポンプエリア)			
	C-C 断面,東西方向	0. P. −12. 00m∼0. P. +8. 00m		

表 3-8 設計用地下水位の一覧

図3-41 設計用地下水位 (A-A 断面,南北 (スクリーンエリア))

図3-42 設計用地下水位 (B-B 断面,南北 (循環水ポンプエリア))

図3-43 設計用地下水位(C-C 断面, 東西)

 \circ

4. 解析結果

4.1 全応力解析による解析結果

4.1.1 南北方向 (スクリーンエリア) の解析結果

耐震評価のために用いる応答加速度として、解析ケース①(基本ケース)について、すべての基準地震動Ssに対する最大加速度分布図を図4-1 \sim 図4-14に示す。また、解析ケース①において、三次元構造解析の結果、照査項目ごとに照査値が0.5を超えるケースで照査値が最大となる地震動について、解析ケース②~④の最大加速度分布図を図4-15 \sim 図4-20に示す。

これらに加え、スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いる S d - D 2 に対する最大加速度分布図を図 4-21 \sim 図 4-28 に示す。

(a) Ss-D1 (++) 水平

図 4-1 最大加速度分布図 (解析ケース①) (1/20)

鉛直

S s - D 1 (++)

(b)

	1376		2792
	1366		2240
	1368		/1871
	1364		1585
			1393
			1317
			1295
1050		1001	1269 1241
			1241
1221	1251	1223	1207
1193	1229	1197	1182
1148	1190	1158	1179
1096	1144	1113	1228
			1191
			1085
			1063
			1105
856	886	1001	1129
820	834	1006	1132
776	775	998	1114
727	711	977	1185
708	- 649	978	1237
725	653	1013	1245
725	680	995	1187
708	692	926	1071
675	689	813	912
			758
619	652	675	683
629	622	646	648
635 645	628 639	626	678 694
	1193 1148 1096 1041 980 929 888 856 820 776 727 708 725 725 708 675 629 619 629	1366	1366

(a) S s - D 1 (-+) 水平

構造スケール $\stackrel{0}{\ }\stackrel{2}{\ }\stackrel{2}{\ }\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }\stackrel{(cm/s^2)}{\ }$ (b) S s - D 1 (-+) 鉛直

図 4-2 最大加速度分布図 (解析ケース①) (2/20)

(a) S s - D 2 (++) 水平

図 4-3 最大加速度分布図 (解析ケース①) (3/20)

(a) S s - D 2 (-+) 水平

(b) Ss-D2 (-+) 鉛直

図 4-4 最大加速度分布図 (解析ケース①) (4/20)

(a) S s - D 3 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$

図 4-5 最大加速度分布図 (解析ケース①) (5/20)

(a) S s - D 3 (-+) 水平

構造スケール $\stackrel{0}{\ }\stackrel{2}{\ }\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }\stackrel{(cm/s^2)}{\ }$ (b) Ss-D3 (-+) 鉛直

図 4-6 最大加速度分布図 (解析ケース①) (6/20)

1735		887		1624
1353		863		1379
1045		837		
934		808		981
862		776		865
798		758		789
740		737		768
720		720		743
700	698	703	707	719
678	683	686	696	695
654	662	666	679	671
638	639	645	659	652
616	606	614	628	628
588	570	582	594	599
570	546	548	560	565
552	528	515	527	546
536	511	496	508	529
520	495	486	491	520
503	484	471	476	514
502	476	454	460	507
524	466	437	442	508
542	454	432	440	505
554	H 470	430	438	499
565	493	426	434	493
587	513	444	427	485
596	528	469	420	476
594	539	490	435	460
581	546	507	467	437
571	549	517	487	437
570	550	527	508	470
566 564	550 549	536 539	527 534	516 536

(a) Ss-F1 (++) 水平

構造スケール $\stackrel{0}{\ \ \, }$ $\stackrel{2}{\ \ \, }$ $\stackrel{(m)}{\ \ \, }$ 応答値スケール $\stackrel{0\ 1000}{\ \ \, }$ $\stackrel{(cm/s^2)}{\ \ \, }$

図 4-7 最大加速度分布図 (解析ケース①) (7/20)

1404		928		1507
1242		913		1346
1094		897		1189
1007		881		1033
947		865		915
896		847		894
863		828		866
842		812		838
819	812	798	788	808
803	802	782	771	780
792	787	762	746	750
777	769	740	717	718
751	741	708	673	682
724	707	671	628	734
689	669	644	604	772
665	626	619	614	791
644	587	596	606	788
621	570	576	582	768
602 579	558 542	566 553	547 547	785 795
H 549	519	536	542	783
521	494	515	533	748
498	473	491	550	738
487	474	488	571	783
474	488	509	587	810
463	496	529	599	817
T 441	501	547	604	801
450	502	561	605	763
H 450 477	519	569	603	726
510	539	576	597	668
542	558		П	
H 558	H 566	580 580	587 581	601 570

(a) Ss-F1(-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 (cm/s²) (b) Ss-F1 (-+) 鉛直

図 4-8 最大加速度分布図 (解析ケース①) (8/20)

(a) Ss-F2 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-9 最大加速度分布図 (解析ケース①) (9/20)

2225		1257		2164
2029		1245		1906
1836		1232		1652
1648		1213		1405
1466		1189		1217
1292		1160		1147
1212		1128		1110
1175		1101		1077
1137	1101	1080	1065	1035
1099	1070	1056	1035	976
1056	1029	1020	995	914
1009	982	975	948	878
963	930	908	878	873
930	892	848	804	839
886	846	799	741	792
833	792	742	709	779
782	743	691	691	803
729	693	643	705	837
672	640	657	717	877
652	618	669	726	911
653 664	625 628	679 685	734	940 960
H 670	625	685	738	970
668	614	677	734	971
650	595	660	725	956
H	H	H		<u> </u>
613	568	633	712	926
H 589	567	635	697	902
571	571	632	681	880
575	571	624	669	855
620	591	623	669	813
665 687	630 651	631 634	677 680	763 739

(a) Ss-F2(-+) 水平

構造スケール $\binom{0}{2}\binom{2}{m}$ 応答値スケール $\binom{0\ 1000}{2}\binom{cm/s^2}{2}$ (b) S s - F 2 $\binom{-}{2}$ 鉛直

図 4-10 最大加速度分布図 (解析ケース①) (10/20)

(a) Ss-F3(++) 水平

(b) Ss-F3(++) 鉛直

図 4-11 最大加速度分布図 (解析ケース①) (11/20)

図 4-12 最大加速度分布図 (解析ケース①) (12/20)

図 4-13 最大加速度分布図 (解析ケース①) (13/20)

図 4-14 最大加速度分布図 (解析ケース①) (14/20)

2093		1345		184
1916		1288		1632
1772		1232		1436
1684		1218		1334
1599		1201		1285
1515		1236		1262
				1279
1432 1368		1268 1290		1279
1313	1305	1307	1300	1279
1280	1308	1319	1301	1276
1253	1302	1320	1295	1262
1221	1288	1312	1284	1245
1172	1259	1291	1263	1218
1117	1219	1258	1236	1186
1057	1167	1214	1202	1151
993	1106	1159	1160	1110
940	1050	1107	1121	1073
887	995	1056	1080	1035
847	941	1001	1037	988
846	883	943	989	977
838	856	877	932	964
817 787	838 816	814 797	871 849	939
799	778	765	883	843
828	810	729	898	839
7				
843	828	721	893	903
844	828	764	869	937
835	811	801	829	936
819	789	822	809	916
829	750	843	839	872
847 857	757 788	856 858	859 862	808 840

(a) S s - N 1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-15 最大加速度分布図 (解析ケース②: せん断破壊に対する最大照査値ケース) (15/20)

1829		1571		2373
1627		1481		2180
1452		1394		2002
1416		1337		1835
1389		1301		1683
1367		1268		1549
1334		1236		1433
1299 1285	1273	1237 1268	1288	1354 1322
1282	1278	1287	1295	1301
1274	1281	1297	1294	1275
1260	1281	1301	1287	1244
1238	1278	1298	1267	1194
1217	1273	1287	1239	1137
1196	1263	1268	1201	1109
1172	1246	1238	1153	1085
1146	1225	1205	1107	1055
1117	1197	1166	1057	1018
1074	1166	1123	1005	979
1025 967	1129	1073	948 882	930 866
904	1080 1022	946	882	790
865	959	879	746	781
832	865	784	718	851
780	784	727	767	904
709	761	691	804	932
662	749	703	826	930
676	746	709	831	901
680	738	726	822	871
683	722	747	797	834
687 702	725 737	765 772	820 862	897 926

(a) Ss-N1 (++) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 (cm/s²)

(b) Ss-N1(++) 鉛直

図 4-16 最大加速度分布図

(解析ケース②:基礎地盤の支持性能に対する最大照査値ケース)(16/20)

	2080			_ 1335			_	1909
	1955		1	1274				1695
	1834			1227			Г	1474
	1721			1213				1295
	1617			1198			Г	1278
	1521			1237			\vdash	1309
	\neg		H	7			\vdash	\neg
\vdash	1433		\vdash	1269 1292			\vdash	1364 1362
	1330	1327		1310		1277	\vdash	1326
	1303	1332	т	1324	П	1282	7	1304
	1272	1327		1328		1281		1279
\vdash	1238	1314	⊢	1323	⊢	1276	\vdash	1247
	1185	1285		1305		1263	┕	1198
	1128	1242		1273		1241	L	1169
	1066	1188		1229		1210	L	1143
	999	1122		1171		1167	L	1110
	943	1062	┕	1116	┕	1124	╙	1078
Щ	886	1004	╄	1060	╙	1077	4	1068
H	821	948	Н	1001	Н	1027	\vdash	1065
Н	792	889	H	938	Н	972 909	\vdash	1050
Н	757 735	841 822	Н	869 828	Н	909 843	\vdash	1018 971
Н	755	799		812		786	\vdash	912
	783	778		780		785		880
	812	811		795		793	П	902
	847	829		840		865		926
	850	830		875		926		916
	861	812		898		974		872
	866	789		907		998		843
	869	801		911		1016	\perp	909
	868 899	814 820	\vdash	906 901	L	1020 1016	\vdash	1001 1042

(a) S s - N 1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-17 最大加速度分布図

(解析ケース③: せん断破壊に対する最大照査値ケース) (17/20)

2006		1529		231
1747		1440		2139
1500		1355		1971
1303		1291		1814
1275		1262		1673
1272		1236		1549
1257		1214		1443
1287 1291	1281	1248 1276	1280	1372 1317
1290	1289	1276	1290	1278
1291	1294	1308	1293	1245
1285	1298	1316	1292	1218
1275	1299	1317	1281	1176
1259	1295	1310	1262	1129
1237	1285	1293	1232	1078
1207	1264	1263	1189	1045
1175	1236	1226	1144	1010
1138	1199	1181	1093	971
1090	1154	1129	1038	932
1035	1102	1070	978	884
971 902	1038 966	1001 925	910 836	824 797
887	893	851	764	778
852	855	780	771	795
798	835	744	823	827
726	803	744	857	835
704	760	741	872	852
698	723	726	866	851
686	706	711	849	831
672	693	728	812	819
674 672	729 741	751 761	805 833	841 875

(a) Ss-N1 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(b)}{\ }$ S s - N 1 (++) 鉛直

図 4-18 最大加速度分布図

(解析ケース③:基礎地盤の支持性能に対する最大照査値ケース)(18/20)

2506		1554		1822
2293		1494		1646
2084		1433		1600
1881		1368		1572
1686		1297		1542
1505		1269		1491
1493		1283		1469
1496	4.400	1311	1011	1448
1481 1461	1408	1336 1351	1311	1410 1380
1434	1380	1350	1289	1349
1398	1352	1338	1265	1316
1334	1304	1310	1228	1271
1254	1245	1270	1204	1225
1158	1180	1224	1177	1177
1051	1109	1173	1146	1128
1025	1052	1131	1117	1088
1016	1010	1091	1086	1051
1001	990	1057	1058	1017
979	967	1017	1026	980
948	939	968	987	938
907	907 874	915 860	942	914 893
810	825	782	848	862
816	792	823	831	824
815	802	867	883	809
808	800	905	927	837
794	816	935	962	901
845	822	951	980	933
910	823	964	997	958
984 1025	872 900	971 971	1005 1007	979 1021

(a) Ss-N1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-19 最大加速度分布図

(解析ケース④: せん断破壊に対する最大照査値ケース) (19/20)

1661		1543		2588
1597		1498		2386
1534		1450		2188
1476		1398		1996
		<u> </u>		——————————————————————————————————————
1428		1338		1810
1391		1274		1634
1350		1232		1474
1327	1001	1241	4000	1364
1345 1347	1291	1270 1291	1288 1283	1320 1319
1340	1280	1300	1275	1314
1328	1277	1300	1265	1302
1305	1270	1290	1246	1276
1271	1261	1273	1223	1235
1226	1246	1250	1194	1178
1171	1223	1221	1158	1109
1134	1197	1193	1122	1045
1108	1163	1164	1083	1000
1073	1124	1133	1038	1030
1036	1080 1027	1096 1049	989	1031 992
946	969	995	875	911
900	909	939	829	823
900	824	856	860	801
884	734	766	874	813
850	718	672	871	812
801	707	690	851	802
739	686	719	815	786
692	670	733	781	773
664	662	742	763	824
681 699	691 703	741 736	837 872	894 935

(a) Ss-N1 (++) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 (cm/s²)

(b) Ss-N1(++) 鉛直

図 4-20 最大加速度分布図

(解析ケース④:基礎地盤の支持性能に対する最大照査値ケース)(20/20)

1223		990		1638
1124		955		1482
1032		921		1329
938		886		1184
854		850		1049
806		814		928
H				
742		778		889
739 731	714	749 724	784	870 844
712	714	697	762	821
687	691	680	734	794
658	671	664	702	763
613	639	638	655	716
563	604	611	604	661
540	567	583	553	602
518	530	556	523	540
500	504	534	503	515
484	484	516	486	496
473	470	503	471	484
462	455	489	456	-471
452	437	471	437	481
443	417	451	417	489
434	399	430	397	492
445	382	398	368	489
467	366	370	382	479
475	366	371	393	463
470	364	378	400	440
453	358	382	402	421
436	359	383	402	422
431	377	383	399	419
431 428	397 404	382 389	394 393	409 403

(a) Sd-D2(++) 水平

構造スケール $\stackrel{0}{\ }\stackrel{2}{\ }\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }\stackrel{(cm/s^2)}{\ }$ (b) Sd-D2 (++) 鉛直

図 4-21 最大加速度分布図 (解析ケース①) (1/8)

1449		861		123
1328		839		1131
1210		818		1028
1097		795		979
992		772		946
897		749		889
10.34		- U.D. S. C.		
822 801		724 703		813 746
778	720	684	670	688
761	698	663	656	639
741	673	651	630	616
718	657	635	598	593
681	634	611	549	561
637	611	585	515	525
589	589	557	482	507
574	566	530	450	502
565	549	510	442	493
557	533	494	429	490
553	520	482	412	517
548	506	469	403	539
541	490	453	393	555
530	472 454	436 418	382 370	559 554
			1	
511	427	393	353	530
504	396	367	343	489
495	376	374	352	443
487	376	377	358	438
469	377	377	362	423
450	375	374	367	408
421	381	387	393	426
420	400	406	415	437
423	409	413	422	439

(a) Sd-D2(-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 にm/s²)

(b) Sd-D2(-+) 鉛直

図 4-22 最大加速度分布図(解析ケース①)(2/8)

_	1227			847				1553
L	1121		L	823				1408
L	1016			798				1266
Г	914		Г	777				1131
Г	816		Г	754			Г	7 1007
Γ	803		Г	728			Г	895
Г	764		П	709			Г	841
h	720		П	693			Г	815
L	673	661		680		723		788
┢	632	653	Н	674	L	699	L	769
\vdash	627 617	641	Н	662 646	H	671 642	H	747 722
H	1	П	Н		Н		Н	
Н	597	601	Н	620	Н	601	Н	682
H	568	573	Н	591	Н	559	Н	636
H	530	542	Н	560	Н	527	Н	585
┡	488	510		528	Ц	497		529
Н	472	486		504	Н	474	_	507
Н	461 459	466 451		485 470	Н	455 439	-	490 496
H	458	435	_	454	H	424		500
	456	416		436		406		499
L	454	397	_	416	н.	388	_	493
Н	450	379	Н	396	Н	370	Н	482
Н	444	361	Ш	368	Ц	358	Н	463
Ц	467	352	LI:	355	Ц	369	L	458
L	476	355	LI:	361	Ц	381	Ц	448
L	471	355	LI.	370		390	Ц	432
	455	354	П	376		394		416
	439	360		378		395		418
Ц	413	367	Ц	380	Ц	395	Ц	416
H	408 411	388 396	L	382 389	H	391 393	F	408 417

(a) Sd-D2(++) 水平

図 4-23 最大加速度分布図 (解析ケース②) (3/8)

Sd-D2(++)

鉛直

(b)

1437		811		1
1315		792		1
1196		773		9
1084		754		8
979		734		84
884		715		82
802		694		78
775		677		74
749	691	660	660	69
731	668	643	642	64
712	653	625	613	59
690	639	608	589	57
656	618	589	557	55
618	597	567	521	525
576	574	543	483	518
556	552	518	442	506
547	533	498	422	493
536	517	481	405	481
531	504	468	394	510
525	490	453	387	534
515 511	474	437	380	556
504	440	419	365	550
490	415	376	355	523
475	388	350	343	486
480	366	359	336	459
474	367	365	345	458
459	367	367	351	440
443	368	367	358	425
416	375	381	382	401
416 420	395	400	403	404

(a) Sd-D2(-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 (cm/s^2)

(b) Sd-D2(-+) 鉛直

図 4-24 最大加速度分布図 (解析ケース②) (4/8)

(a) Sd-D2(++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-25 最大加速度分布図 (解析ケース③) (5/8)

1429		848		1209
1306		826		1104
1187		806		1000
1074		785		978
971		764		952
1525				1000
878		742		893
809		720		818
790 766	714	701 683	673	752 694
747	692	660	659	646
726	667	646	633	613
702	647	631	601	592
664	625	608	554	560
621	602	582	523	525
573	581	556	490	521
565	559	530	459	518
561	543	511	436	510
555	528	495	426	499
554	516	484	420	506
552	503	471	413	528
546	487	456	404	542
535 521	470 452	438	394	547 541
TI ISSUE	1000000	T 15500	The state of the s	100000
526	425	395	367	517
520	396	366	349	476
511	374	368	348	427
502	373	371	355	421
483	370	371	358	408
462	369	369	373	423
430	385	389	397	437
420 424	403 411	407 414	417 423	443 442

(a) Sd-D2(-+) 水平

構造スケール $\binom{0}{2}\binom{2}{m}$ 応答値スケール $\binom{0\ 1000}{2}\binom{cm/s^2}$ (b) S d - D 2 $\binom{0\ 1000}{2}$ 鉛直

図 4-26 最大加速度分布図(解析ケース③)(6/8)

(a) Sd-D2(++) 水平

図 4-27 最大加速度分布図 (解析ケース④) (7/8)

Sd-D2(++)

鉛直

(b)

1312		806		1					
1205		795		1					
1114 1039 964 893 826 777		783 768 754 740 725		970 940 890 832 785					
					738	707	697	713	74
					707	685	678	699	71
					689	662	654	676	67
					674	638	627	648	64
					648	605	590	606	60
616	573	557	561	56					
579	554	525	523	529					
553	541	495	500	507					
547	530	483	479	488					
543	519	473	455	469					
542	509	465	429	460					
542	498	455	410	441					
541	486	444	400	439					
538 533	472 458	432 420	388	434					
523	437	402	360	414					
507	414	383	348	396					
484	390	363	337	392					
455	364	342	330	396					
426	343	334	325	392					
412	341	333	334	386					
391	348	342	343	376					
388 393	369 378	360	354 362	363 358					

(a) Sd-D2(-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 (cm/s²)

(b) Sd-D2(-+) 鉛直

図 4-28 最大加速度分布図 (解析ケース④) (8/8)

 \circ

4.1.2 南北方向(循環水ポンプエリア)の解析結果

耐震評価のために用いる応答加速度として、解析ケース①(基本ケース)について、三次元構造解析の結果、すべての基準地震動Ssに対する最大加速度分布図を図 4-29~図 4-42に示す。また、解析ケース①において、照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動について、解析ケース②~④の最大加速度分布図を図 4-43~図 4-48に示す。

(a) S s - D 1 (++) 水平

図 4-29 最大加速度分布図 (解析ケース①) (1/20)

S s - D 1 (++)

(a) S s - D 1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-30 最大加速度分布図 (解析ケース①) (2/20)

(a) S s - D 2 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-31 最大加速度分布図 (解析ケース①) (3/20)

(a) Ss-D2 (-+) 水平

図 4-32 最大加速度分布図 (解析ケース①) (4/20)

鉛直

S s - D 2 (-+)

(a) Ss-D3 (++) 水平

図 4-33 最大加速度分布図 (解析ケース①) (5/20)

 $S_{s} - D_{3} (++)$

(a) S s - D 3 (-+) 水平

図 4-34 最大加速度分布図 (解析ケース①) (6/20)

S s - D 3 (-+)

(a) Ss-F1 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(n)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-35 最大加速度分布図 (解析ケース①) (7/20)

(a) Ss-F1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{2}{\ }$ $\stackrel{1000}{\ }$

図 4-36 最大加速度分布図 (解析ケース①) (8/20)

(a) Ss-F2 (++) 水平

図 4-37 最大加速度分布図 (解析ケース①) (9/20)

 $S_{s} - F_{2} (++)$

(a) Ss-F2(-+) 水平

構造スケール $\stackrel{0}{\ \ \, }$ $\stackrel{2}{\ \ \, }$ $\stackrel{(m)}{\ \ \, }$ 応答値スケール $\stackrel{0\ 1000}{\ \ \, }$ $\stackrel{(cm/s^2)}{\ \ \, }$

図 4-38 最大加速度分布図 (解析ケース①) (10/20)

(a) Ss-F3(++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ (m) 応答値スケール $\stackrel{0\ 1000}{\ }$ (cm/s²) (b) Ss-F3 (++) 鉛直

図 4-39 最大加速度分布図 (解析ケース①) (11/20)

(a) Ss-F3(-+) 水平

(b) Ss-F3 (-+) 鉛直

図 4-40 最大加速度分布図 (解析ケース①) (12/20)

(a) Ss-N1 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{2}{\ }$ $\stackrel{1000}{\ }$ に答値スケール $\stackrel{0}{\ }$ $\stackrel{1000}{\ }$ $\stackrel{1}{\ }$

図 4-41 最大加速度分布図 (解析ケース①) (13/20)

(a) S s - N 1 (-+) 水平

構造スケール $\binom{0}{2}$ (m) 応答値スケール $\binom{0\ 1000}{2}$ (cm/s²) (b) Ss-N1 (-+) 鉛直

図 4-42 最大加速度分布図 (解析ケース①) (14/20)

a) Ss-N1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(b)}{\ }$ S s - N 1 (-+) 鉛直

図 4-43 最大加速度分布図 (解析ケース②: せん断破壊に対する最大照査値ケース) (15/20)

図 4-44 最大加速度分布図 (解析ケース②:基礎地盤の支持性能に対する最大照査値ケース) (16/20)

(a) Ss-N1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(b)}{\ }$ S s - N 1 (-+) 鉛直

図 4-45 最大加速度分布図 (解析ケース③: せん断破壊に対する最大照査値ケース) (17/20)

図 4-46 最大加速度分布図 (解析ケース③:基礎地盤の支持性能に対する最大照査値ケース) (18/20)

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(b)}{\ }$ S s - N 1 (-+) 鉛直

図 4-47 最大加速度分布図 (解析ケース④: せん断破壊に対する最大照査値ケース) (19/20)

図 4-48 最大加速度分布図 (解析ケース④:基礎地盤の支持性能に対する最大照査値ケース) (20/20)

 \circ

 \simeq

4.1.3 東西方向の解析結果

スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いる S d - D 2 に対する最大加速度分布図を図 4-49~図 4-56 に示す。

(a) Sd-D2(++) 水平

(b) Sd-D2(++) 鉛直

構造スケール $\begin{array}{cccc} 0 & 2 \\ \hline \end{array}$ (m) 応答値スケール $\begin{array}{cccc} 0 & 1000 \\ \hline \end{array}$ (cm/s²)

図 4-49 最大加速度分布図 (解析ケース①) (1/8)

(a) Sd-D2(-+) 水平

構造スケール $\begin{array}{ccc} 0 & 2 \\ \hline \end{array}$ (m) 応答値スケール $\begin{array}{ccc} 0 & 1000 \\ \hline \end{array}$ (cm/s²)

(b) Sd-D2(-+) 鉛直

図 4-50 最大加速度分布図 (解析ケース①) (2/8)

(a) Sd-D2(++) 水平

構造スケール 0 2 (m) 応答値スケール 0 $1000 (cm/s^2)$

(b) Sd-D2(++) 鉛直

図 4-51 最大加速度分布図 (解析ケース②) (3/8)

(a) Sd-D2(-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 $1000 (cm/s^2)$

(b) Sd-D2(-+) 鉛直

図 4-52 最大加速度分布図 (解析ケース②) (4/8)

(a) Sd-D2(++) 水平

構造スケール 0 2 (m) 応答値スケール 0 $1000 (cm/s^2)$

(b) Sd-D2(++) 鉛直

図 4-53 最大加速度分布図 (解析ケース③) (5/8)

(a) Sd-D2(-+) 水平

構造スケール $\begin{array}{cccc} 0 & 2 \\ \hline \end{array}$ (m) 応答値スケール $\begin{array}{cccc} 0 & 1000 \\ \hline \end{array}$ (cm/s²)

(b) Sd-D2(-+) 鉛直

図 4-54 最大加速度分布図 (解析ケース③) (6/8)

(a) Sd-D2(++) 水平

構造スケール 0 2 (m) 応答値スケール 0 $1000 (cm/s^2)$

(b) Sd-D2(++) 鉛直

図 4-55 最大加速度分布図 (解析ケース④) (7/8)

(a) Sd-D2(-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 $1000 (cm/s^2)$

(b) Sd-D2(-+) 鉛直

図 4-56 最大加速度分布図 (解析ケース④) (8/8)

 \circ

4.2 有効応力解析による解析結果

4.2.1 南北方向 (スクリーンエリア) の解析結果

耐震評価のために用いる応答加速度として、解析ケース⑥(基本ケース)について、すべての基準地震動Ssに対する最大加速度分布図を図4-57~図4-70に示す。また、解析ケース⑥において、三次元構造解析の結果、照査項目ごとに照査値が0.5を超えるケースで照査値が最大となる地震動について、解析ケース⑦~⑨の最大加速度分布図を図4-71~図4-76に示す。

これらに加え、スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いる S d - D 2 に対する最大加速度分布図を図 4-77 \sim 図 4-78 に示す。

1031		923		109
994		908		104
965		893		100
936		876		960
906		858		922
874		839		891
842		820		867
815 795	789	804	801	845 823
775	772	775	786	803
754	751	755	767	781
731	729	733	745	759
700	697	700	712	728
667	663	666	678	695
632	637	643	651	662
624	630	634	642	653
619	621	625	633	644
613	611	614	621	634
606	597	599	606	625
597 585	581	583	590	613
572	563 550	570 560	578 568	591
557	539	550	558	584
537	524	536	544	573
514	508	521	529	560
505	498	506	523	545
521	512	505	521	542
534	523	515	518	537
540	530	522	519	532
546	543	536	533	532
558 570	558 564	551 557	548 555	545 555

(a) Ss-D1 (++) 水平

構造スケール $\stackrel{0}{\bigsqcup}$ $\stackrel{2}{\bigsqcup}$ (m) 応答値スケール $\stackrel{0\ 1000}{\bigsqcup}$ (cm/s²)

図 4-57 最大加速度分布図 (解析ケース⑥) (1/20)

(a) S s - D 1 (-+) 水平

構造スケール $\binom{0}{2}$ (m) 応答値スケール $\binom{0\ 1000}{2}$ (cm/s²) (b) S s - D 1 (-+) 鉛直

図 4-58 最大加速度分布図 (解析ケース⑥) (2/20)

(a) S s - D 2 (++) 水平

(b) Ss-D2 (++) 鉛直

図 4-59 最大加速度分布図 (解析ケース⑥) (3/20)

図 4-60 最大加速度分布図 (解析ケース⑥) (4/20)

786		617		896
731		607		776
675		596		698
622		587		661
601		580		659
581				649
		572		Н
560		564		631
555	744	557	565	612
547 538	544 535	550 542	356	593 577
529	527	530	543	560
520	519	519	526	543
508	506	505	508	523
495	492	490	492	505
479	475	473	474	484
461	457	454	455	461
453	446	437	437	441
451	442	431	422	420
448	434	423	415	410
442	425	413	407	406
434	413	401	397	399
425	409	403	399	405
436	429	423	420	418
456	454	449	446	447
479	477	472	470	472
500	498	493	492	495
518	516	511	511	514
534	532	527	527	531
544	542	537	537	540
556	553	549	548	551
572 581	566 573	560 566	558 563	561 566

(a) S s - D 3 (++) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 (cm/s²) (b) Ss-D3 (++) 鉛直

図 4-61 最大加速度分布図 (解析ケース⑥) (5/20)

711		619		839
679		609		797
657		600		756
643		592		717
627		581		677
608		572		639
595		566		603
585 574	560	561 556	561	588
564	553	549	552	574 561
552	541	537	540	547
539	527	523	525	533
520	506	502	504	512
497	483	479	481	489
472	469	473	474	473
467	474	476	476	472
470	475	475	474	470
471	471	471	470	466
468	464	463	462	459
464	454	453	452	451
456 445	442 428	440 426	441	441
437	418	416	418	426
467	446	444	446	439
494	470	469	472	463
516	493	491	495	487
534	512	511	515	508
548	529	528	532	526
556	540	539	542	537
564	552	551	553	551
571 575	564 571	563 571	565 572	567 576

(a) S s - D 3 (-+) 水平

構造スケール $\binom{0}{2}$ (m) 応答値スケール $\binom{0}{1000}$ (cm/s²) (b) Ss-D3 (-+) 鉛直

図 4-62 最大加速度分布図 (解析ケース⑥) (6/20)

図 4-63 最大加速度分布図 (解析ケース⑥) (7/20)

S s - F 1 (++)

鉛直

(b)

(a) Ss-F1(-+) 水平

(b) S s - F 1 (-+) 鉛直

図 4-64 最大加速度分布図 (解析ケース⑥) (8/20)

(a) Ss-F2 (++) 水平

 構造スケール
 0
 2
 0
 1000
 cm/s²)

 (b)
 Ss-F2
 (++)
 鉛直

図 4-65 最大加速度分布図 (解析ケース⑥) (9/20)

構造スケール $\binom{0}{2}$ (m) 応答値スケール $\binom{0\ 1000}{2}$ (cm/s²) (b) Ss-F2 (-+) 鉛直

図 4-66 最大加速度分布図 (解析ケース⑥) (10/20)

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$

図 4-67 最大加速度分布図 (解析ケース⑥) (11/20)

図 4-68 最大加速度分布図 (解析ケース⑥) (12/20)

 $S_{s} - F_{3}(-+)$

鉛直

(b)

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-69 最大加速度分布図 (解析ケース⑥) (13/20)

(a) $S_s - N_1$ (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-70 最大加速度分布図 (解析ケース⑥) (14/20)

(b) S s - D 2 (++) 鉛直

図 4-71 最大加速度分布図 (解析ケース⑦: せん断破壊に対する最大照査値ケース) (15/20)

図 4-72 最大加速度分布図

(解析ケース⑦:基礎地盤の支持性能に対する最大照査値ケース)(16/20)

1137		961		1174
1073		944		1095
1009		927		1044
944		906		1005
879		882		966
846		855		923
821		824		877
798		798		838
771	768	774	783	800
741	740	747	762	769
709	708	714	731	751
697	691	691	703	731
677	666	662	674	703
652	647	643	645	673
641	636	631	631	641
627	622	616	616	617
612	606	600	601	605
611	588	582	584	593
612	581	564	564	578
610	574 564	552 543	552 541	562 546
598	553	532	529	538
590	542	522	517	541
575	525	506	505	543
556	508	490	500	542
536	489	494	500	537
533	500	504	509	528
	Н	Н	H	H
556 569	525 541	516 539	516 538	527 530
580	563	564	564	546
П		П		П
588 600	587 597	587 596	587 596	582 599

(a) S s - D 2 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-73 最大加速度分布図

(解析ケース⑧: せん断破壊に対する最大照査値ケース) (17/20)

1198		1052		1168
1173		1051		1156
1153		1050		1142
1133		1045		1125
1113		1038		1103
1091		1029		1078
1067		1018		1054
1047 1028	1014	1013 1009	1011	1035 1020
1028	1014	1003	1001	1020
993	992	991	990	994
974	975	976	977	980
948	950	952	957	961
920	923	926	934	941
890	894	898	910	918
859	865	869	882	893
832	841	846	856	872
806	818	823	829	850
778	794	799	796	828
752 736	768 738	773 744	766 734	804 775
736	708	713	701	744
739	681	683	669	712
741	690	651	653	667
740	696	641	642	633
734	698	637	631	623
722	697	636	618	614
703	691	634	605	605
684	684	633	601	599
654	672	630	603	593
639 629	653 642	626 624	605 607	589 592

(a) S s - N 1 (-+) 水平

(b) $S_{S} - N_{1} (-+)$ 鉛直

応答値スケール

図 4-74 最大加速度分布図

(解析ケース⑧:基礎地盤の支持性能に対する最大照査値ケース)(18/20)

図 4-75 最大加速度分布図 (解析ケース⑨: せん断破壊に対する最大照査値ケース) (19/20)

図 4-76 最大加速度分布図

(解析ケース⑨:基礎地盤の支持性能に対する最大照査値ケース)(20/20)

624		563		669
587		552		646
550		540		624
513		527		601
511		512		576
514		498		549
514		496		519
511		494		504
506	496	492	493	498
501	491	487	487	491
494	484	479	479	483
486	H 474	469	469	H 474
472	467	464	460	463
462	462	459	456	457
453	455	451	449	448
442	444	441	439	437
430	432	428	427	426
417	415 394	412 391	390	413
383	H 371	367	367	382
361	344	340	341	361
342	315	311	313	338
336	311	308	302	315
327	305	303	298	308
317	297	297	294	308
307	290	290	289	307
297	288	291	294	303
309	303	304	302	304
316	317	317	316	307
332	333	333	332	323
348 355	347 353	346 351	346 351	343 353

(a) Sd-D2(++) 水平

構造スケール $\stackrel{0}{\ }\stackrel{2}{\ }\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }\stackrel{(cm/s^2)}{\ }$ (b) S d - D 2 (++) 鉛直

図 4-77 最大加速度分布図 (解析ケース®) (1/2)

_	629	_	_ 544		_	606
L	588		531		Ц	578
	552		519			553
П	530		504		П	543
П	509		488		П	529
П	486		481		П	522
П	477		479		п	514
Н	480		478		_	505
П	479	475	475	481	_	495
	476	470	470	475		486
Ш	472	470	470	472	Ц	481
L	468	469	469	471	Ц	480
Ц	466	467	467	468	Ц	477
Ц	462	463	463	464	Ц	471
	456	457	456	457	Ц	462
Ш	446	447	446	447	Ш	449
П	436	435	434	436	П	437
	424	420	418	420		423
	410	399	397	400	Ц	407
Ш	393	376	374	378	Ш	389
	372	349	348	353	Н.	367
_	348	320	319	325	н.	343
Н	324	303	304	311	Η:	327
Ш	307	287	289	296	μ:	316
Ш	309	291	286	287		305
Ш	317	298	294	290	2	295
	322	304	300	297		289
П	325	310	307	303	;	302
П	325	323	320	316		311
Ш	335	337	334	330	LI:	323
L	353 362	351 356	346 351	342 348		339 347

(a) S d - D 2 (-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000 にm/s²)

(b) Sd-D2(-+) 鉛直

図 4-78 最大加速度分布図 (解析ケース®) (2/2)

0

4.2.2 南北方向(循環水ポンプエリア)の解析結果

耐震評価のために用いる応答加速度として、解析ケース⑥(基本ケース)について、すべての基準地震動Ssに対する最大加速度分布図を図4-79~図4-92に示す。また、解析ケース⑥において、三次元構造解析の結果、照査項目ごとに照査値が0.5を超えるケースで照査値が最大となる地震動について、解析ケース⑦~⑨の最大加速度分布図を図4-93~図4-98に示す。

図 4-79 最大加速度分布図 (解析ケース⑥) (1/20)

S s - D 1 (++)

応答値スケール

構造スケール

(b)

 $\begin{array}{c} 0\ 1000 \\ \text{LU} & (\text{cm/s}^2) \end{array}$

(a) S s - D 1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-80 最大加速度分布図 (解析ケース⑥) (2/20)

(a) S s - D 2 (++) 水平

図 4-81 最大加速度分布図 (解析ケース⑥) (3/20)

S s - D 2 (++)

(a) S s - D 2 (-+) 水平

構造スケール $\binom{0}{2}$ (m) 応答値スケール $\binom{0\ 1000}{2}$ (cm/s²) (b) Ss-D2 (-+) 鉛直

図 4-82 最大加速度分布図 (解析ケース⑥) (4/20)

(a) S s - D 3 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-83 最大加速度分布図 (解析ケース⑥) (5/20)

(a) S s - D 3 (-+) 水平

(b) S s - D 3 (-+) 鉛直

図 4-84 最大加速度分布図 (解析ケース⑥) (6/20)

(a) Ss-F1 (++) 水平

構造スケール $\binom{0}{2}$ (m) 応答値スケール $\binom{0\ 1000}{2}$ (cm/s²) (b) Ss-F1 (++) 鉛直

図 4-85 最大加速度分布図 (解析ケース⑥) (7/20)

(a) Ss-F1(-+) 水平

構造スケール $\binom{0}{2}$ (m) 応答値スケール $\binom{0\ 1000}{2}$ (cm/s²) (b) Ss-F1 (-+) 鉛直

図 4-86 最大加速度分布図 (解析ケース⑥) (8/20)

(a) Ss-F2 (++) 水平

図 4-87 最大加速度分布図 (解析ケース⑥) (9/20)

S s - F 2 (++)

(a) Ss-F2(-+) 水平

(b) Ss-F2 (-+) 鉛直

図 4-88 最大加速度分布図 (解析ケース⑥) (10/20)

(a) Ss-F3(++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-89 最大加速度分布図 (解析ケース⑥) (11/20)

(a) Ss-F3 (-+) 水平

図 4-90 最大加速度分布図 (12/20) (解析ケース⑥)

(a) S s - N 1 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-91 最大加速度分布図 (解析ケース⑥) (13/20)

(a) S s - N 1 (-+) 水平

図 4-92 最大加速度分布図 (解析ケース⑥) (14/20)

S s - N 1 (-+)

(a) S s - D 2 (++) 水平

(b) S s - D 2 (++) 鉛直

図 4-93 最大加速度分布図 (解析ケース⑦: せん断破壊に対する最大照査値ケース) (15/20)

(a) Ss-N1 (-+) 水平

(b) Ss-N1(-+) 鉛直

図 4-94 最大加速度分布図

(解析ケース⑦:基礎地盤の支持性能に対する最大照査値ケース)(16/20)

0

(a) S s - D 2 (++) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-95 最大加速度分布図 (解析ケース®: せん断破壊に対する最大照査値ケース) (17/20)

(a) S s - N 1 (-+) 水平

構造スケール $\stackrel{0}{\ }$ $\stackrel{2}{\ }$ $\stackrel{(m)}{\ }$ 応答値スケール $\stackrel{0\ 1000}{\ }$ $\stackrel{(cm/s^2)}{\ }$ $\stackrel{(cm/s^2)}{\ }$

図 4-96 最大加速度分布図

(解析ケース⑧:基礎地盤の支持性能に対する最大照査値ケース)(18/20)

(a) Ss-D2 (++) 水平

図 4-97 最大加速度分布図

鉛直

(解析ケース⑨: せん断破壊に対する最大照査値ケース) (19/20)

S s - D 2 (++)

(b)

(a) Ss-N1 (-+) 水平

(b) Ss-N1 (-+) 鉛直

図 4-98 最大加速度分布図

(解析ケース⑨:基礎地盤の支持性能に対する最大照査値ケース)(20/20)

 \circ

4.2.3 東西方向の解析結果

スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いる S d - D 2 に対する最大加速度分布図を図 4-99~図 4-100 に示す。

(a) Sd-D2(++) 水平

構造スケール $\stackrel{0}{\square}$ $\stackrel{2}{\square}$ (m) 応答領スケール $\stackrel{0}{\square}$ $\stackrel{1000}{\square}$ (cm/s²)

図 4-99 最大加速度分布図 (解析ケース®) (1/2)

(a) Sd-D2(-+) 水平

構造スケール 0 2 (m) 応答値スケール 0 1000

(b) Sd-D2(-+) 鉛直

図 4-100 最大加速度分布図 (解析ケース®) (2/2)