| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－2－9 第3号機海水ポンプ室の地震応答計算書

目 次

1．概要 1
2．基本方針 2
2.1 位置 2
2．2 構造概要 3
2.3 解析方針 5
2.4 適用基準 7
3．解析方法 8
3.1 地震時荷重算出断面 8
3．2 解析方法 11
3．2．1 構造部材 11
3．2．2 地盤物性及び材料物性のばらつき 12
3．2．3 減衰定数 13
3．2．4 地震応答解析の解析ケースの選定． 14
3.3 荷重及び荷重の組合せ 21
3．3．1 耐震評価上考慮する状態 21
3．3．2 荷重 21
3．3．3 荷重の組合せ 22
3．4 入力地震動 23
3.5 解析モデル及び諸元 56
3．5．1 解析モデル 56
3．5．2 使用材料及び材料の物性値 59
3．5．3 地盤の物性値 59
3．5．4 地下水位 60
4．解析結果 62
4． 1 全応力解析による解析結果． 62
4．1．1 南北方向（スクリーンエリア）の解析結果 62
4．1．2 南北方向（循環水ポンプエリア）の解析結果 91
4．1．3 東西方向の解析結果 112
4．2 有効応力解析による解析結果． 121
4．2．1 南北方向（スクリーンエリア）の解析結果 121
4．2．2 南北方向（循環水ポンプエリア）の解析結果． 144
4．2．3 東西方向の解析結果 165

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき実施する第 3 号機海水ポ ンプ室の地震応答解析について説明するものである。

本地震応答解析は，第 3 号機海水ポンプ室が耐震性に関する技術基準へ適合することを確認す るために用いる応答値を抽出するものである。

第 3 号機海水ポンプ室は，面部材として加振方向に平行に配置される妻壁や隔壁を有する箱形構造物であることから，二次元地震応答解析により地震時荷重を算定し，その荷重を三次元構造解析モデルに作用させて耐震評価を実施するものである。よって，地震応答解析により抽出する応答値は，三次元構造解析モデルに作用させる地震時土圧，慣性力及び基礎地盤に発生する接地圧である。

また，機器•配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2．基本方針
2.1 位置

第 3 号機海水ポンプ室の位置を図 2－1 に示す。

図 2－1 第 3 号機海水ポンプ室の位置図

2.2 構造概要

第 3 号機海水ポンプ室の平面図を図2－2に，断面図を図2－3～図2－5に示す。
第 3 号機海水ポンプ室は，耐震重要施設である防潮壁等を間接支持する支持機能及び浸水防止のための止水機能が要求される。
第 3 号機海水ポンプ室は，地下 2 階または地下 3 階構造となっており，上部はスクリーンエ リア，循環水ポンプエリアの 2 エリアに分かれている。下部は水路となっており，スクリーン エリアの下部は四連のボックスカルバート構造，循環水ポンプエリアの下部は二連のボックス カルバート構造となっている。また，上部は各エリアが隔壁により仕切られ，各エリアによっ て開口部の存在や中床版の設置レベルが異なる等，複雑な構造となっている。

第3号機海水ポンプ室は，加振方向に平行に配置される妻壁や隔壁等の面部材を耐震部材と して考慮する箱形構造物である。

西

図2－2 第3号機海水ポンプ室平面図

図 2－3 第 3 号機海水ポンプ室断面図（ $\mathrm{A}-\mathrm{A}$ 断面）

図 2－4 第 3 号機海水ポンプ室断面図（B－B 断面）

東

図 2－5 第3号機海水ポンプ室断面図（C－C 断面）

2.3 解析方針

第 3 号機海水ポンプ室は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動S s 及び弾性設計用地震動S d に対して地震応答解析を実施する。
図2－6に第3号機海水ポンプ室の地震応答解析フローを示す。
地震応答解析は，「2．基本方針」に基づき，「3．1 地震時荷重算出断面」に示す断面に おいて，「3．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法を用いた時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．3 荷重及び荷重の組合せ」及び「3．5 解析モデル及び諸元」に示す条件を基に，「3．4 入力地震動」により設定する入力地震動を用 いて実施する。
地震応答解析による応答加速度は，機器•配管系の設計用床応答曲線の作成に用い，地震時土圧，慣性力及び基礎地盤の接地圧は，第 3 号機海水ポンプ室の耐震評価に用いる。

注記＊：耐震評価に用いる応答値を算定する。

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）

3．解析方法
3.1 地震時荷重算出断面

第 3 号機海水ポンプ室の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，南北方向では妻壁や隔壁の配置が異なることによる剛性差を考慮して，スクリーンエリア（ $\mathrm{A}-\mathrm{A}$ 断面）及び循環水ポンプエリア（ $\mathrm{B}-\mathrm{B}$ 断面）の各エリア の構造モデルを使用して地震時応答解析を行う。各エリアで周辺状況に大きさ差異はないが，土圧を大きく評価できるよう，比較的盛土が広く分布している補機ポンプエリアの中心を通る地質断面を各エリアの地盤モデルとして，地震時荷重算出用地質断面とする。

また，東西方向については，構造的特徴や周辺地盤状況を踏まえ，構造物中心を通る断面（C－ C 断面）を地震時荷重算出用地質断面とする。地震時荷重算出用地質断面図を図 3－2～図3－4 に示す。

なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向（A－ A 断面及び B－B 断面）が弱軸方向となり，東西方向（C－C 断面）が強軸方向となる。よって，構造物の耐震評価に用いる応答値の抽出は，弱軸方向に対して実施し，機器•配管系の耐震評価 に用いる応答値の抽出は，弱軸方向及び強軸方向に対して実施する。

図 3－1 第3号機海水ポンプ室の地震時荷重算出断面位置図

図 3－2 第3号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北（スクリーンエリア））

図 3－3 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，南北（循環水ポンプエリア））

図 3－4 第3号機海水ポンプ室 地震時荷重算出用地質断面図（C－C 断面，東西）

3.2 解析方法

第 3 号機海水ポンプ室の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 のうち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s 及び弾性設計用地震動 S d に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行うことする。第3号機海水ポンプの南北•東西方向は，地下水位が構造物底版より低いものの，構造物から遠ざかるにつれ地下水位が上昇することか ら解析手法は，全応力解析及び有効応力解析とする。
第 3 号機海水ポンプ室の東側には第 3 号機取水路と MMR が隣接しているが，荷重伝達は発生 しない構造となっていることから，第3号機取水路及び MMR は保守的な評価になるよう盛土と してモデル化する。
構造部材については，中床版，底版及び地震時荷重算出断面に垂直な壁部材は線形はり要素，断面に平行な壁部材は平面応力要素とし，構造物の奥行方向の長さと各部材の奥行方向の長さ の比率や三次元構造解析モデルとの変位を整合させるためのヤング係数の調整を行い，三次元構造モデルと等価な剛性となるようモデル化する。また，地盤については地盤のひずみ依存性 を適切に考慮できるようモデル化する。

地震応答解析については，解析コード「Soi1 Plus Dynamic 2015 Build3」及び「FLIP Ver．7．3．0＿2」を使用する。なお解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．2．1 構造部材

鉄筋コンクリート部材は，線形はり要素及び平面応力要素でモデル化する。

3．2．2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表 3－1 に示す解析ケースを設定する。

第 3 号機海水ポンプ室は，MMR 上に設置され，周囲が埋戻されており，主たる荷重は盛土等の土圧となることから，盛土及び旧表土等の初期せん断係数のばらつきを考慮する。初期せん断弹性係数の標準偏差 σ を用いて設定した解析ケース（2），（3），（7）及び（8）を実施 することにより地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース（4）又は （9）を実施することにより，材料物性のばらつきの影響を考慮する。詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

材料物性 ンクリート） ：ヤング係数）	地盤物性	
	盛土，旧表土，D級岩盤， セメント改良土，改良地盤 （ G_{0} ：初期せん断弾性係数）	C_{L} 級岩盤，C_{M} 級岩盤， CH級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
計基準強度	平均値	平均値
計基準強度	平均値＋1 σ	平均値
計基準強度	平均値－1 σ	平均値
強度に基づく 圧縮強度＊3	平均値	平均値
計基準強度	平均値	平均値
計基準強度	平均値＋1 σ	平均値
計基準強度	平均値－1 σ	平均値
強度に基づく 圧縮強度＊3	平均値	平均値

注記 $\boldsymbol{*}^{1}$ ：A－A 断面，B－B 断面及び C－C 断面は，全応力解析及び有効応力解析を実施する。
＊2：基本ケース（ケース（1）及び（6）を実施し，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持力照查における照查値の最大値を比較し，最大照査値を示す解析手法において，実強度を考慮した解析ケース（ケース（4）又はケース（9）を を実施する。
＊3：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．2．3 減衰定数

構造部材の減衰定数は，粘性減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。なお，構造部材を線形でモデル化する場合は，Rayleigh 減衰のみを設定す る。

また，有効応力解析では，Rayleigh 減衰を考慮することとし，剛性比例型減衰（ $\alpha=0$ ， $\beta=0.002$ ）とする。なお，係数 β の設定については，「FLIP 研究会 14 年間の検討成果の まとめ「理論編」」による。

固有値解析結果に基づき設定した α, β を表 3－2 に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表3－2 Rayleigh 減衰における係数 α, β の設定結果

地震時荷重算出断面	解析手法	α	β
$\mathrm{A}-\mathrm{A}$ 断面，南北方向	全応力解析	4． 838×10^{-1}	6． 200×10^{-4}
（スクリーンエリア）	有効応力解析	0.000	2． 000×10^{-3}
B－B 断面，南北方向	全応力解析	4． 913×10^{-1}	6． 110×10^{-4}
（循環水ポンプエリア）	有効応力解析	0． 000	2． 000×10^{-3}
C－C 断面，東西方向	全応力解析	3． 882×10^{-1}	7． 730×10^{-4}
	有効応力解析	0.000	2.000×10^{-3}

3．2．4 地震応答解析の解析ケースの選定
（1）耐震評価における解析ケース
耐震評価においては，すべての基準地震動 S s に対し，基本ケース（全応力解析の場合 はケース（1），有効応力解析の場合はケース⑥）を実施する。解析ケースにおいて，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 を超える すべての照査項目に対して，最も厳しい地震動を用いて，全応力解析の場合は，表 3－1に示す解析ケース（2）及び（3）を，有効応力解析の場合は，表3－1に示す解析ケース（7）及び（8）を実施する。また，上記のケース①，⑥において，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持力照査における照査値の最大値を比較し，最大照査値を示す解析手法におい て，実強度を考慮した解析ケース（ケース（4）又はケース（9）を を実施する。耐震評価におけ る解析ケースを表3－3に示す。

表 3－3（1）耐震評価における解析ケース（全応力解析）

注記＊ 1 ：耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュア ル（土木学会 原子力土木委員会，2005 年 6 月）（以下「土木学会マニュアル」という。） に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。 ＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

表 3－3（2）耐震評価における解析ケース（有効応力解析）

注記＊$*$ ：耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュア ル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」という。） に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。
（2）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮として解析 ケース（1）に加え，表3－1に示す解析ケース（2）～（4）及び解析ケース（8）を実施する。機器•配管系の応答加速度抽出における解析ケースを表3－4に示す。

表 3－4（1）機器•配管系に対する応答加速度抽出のための解析ケース（基準地震動 S s ）

			全応力解析			
解析ケース			ケース（1）	ケース（2）	ケース（3）	ケース④
			基本ケース	地盤物性のばら つき（＋1 σ ）を考慮した解析ケー ス	地盤物性のばら つき（－1 σ ）を考慮した解析ケー ス	材料物性（コン クリート）に実強度を考慮した解析ケース
地盤物性			平均値	平均値＋1 σ	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基淮強度	実強度に基づく圧縮強度＊2
S s－D 1		＋＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 鰂 } \\ & \text { 位 } \end{aligned}$	S s－D 2	＋＋＊${ }^{1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Ss－D 3	＋＋＊${ }^{1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－F 1	＋＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－F 2	＋＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Ss－F 3	＋＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\mathrm{S} s-\mathrm{N} 1$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記＊1：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転 させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

表 3－4（2）機器•配管系に対する応答加速度抽出のための解析ケース（基準地震動S s）

注記 $*:$ 地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転さ せたケースを示す。

			有効応力解析
			ケース（8）
	解析ヶー		地盤物性のばらつ き（ -1σ ）を考慮し た解析ケース
	地艋物性		平均值－1 σ
	材料物㥩		設計基鹪強度
		＋＋＊	\bigcirc
	S s－D 1	－＋＊	\bigcirc
		＋＋＊	\bigcirc
	S S－D2	－＋＊	\bigcirc
	S－ 3	＋＋＊	\bigcirc
	S 5 － 3	－＋＊	\bigcirc
䡱	S－F1	＋＋＊	\bigcirc
集	S s－F1	－＋＊	\bigcirc
		＋＋＊	\bigcirc
	SS－F2	－＋＊	\bigcirc
	S $s-{ }^{\text {F }}$	＋＋＊	\bigcirc
	Ss ${ }^{\text {c }}$	－＋＊	\bigcirc
	S ${ }^{\text {N } 1}$	＋＋＊	\bigcirc
	$\mathrm{Ss}-\mathrm{N} 1$	－＋＊	\bigcirc

表 3－4（3）機器•配管系に対する応答加速度抽出のための解析ケース（弾性設計用地震動S d）

注記＊1：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させ たケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

表 3－4（4）機器•配管系に対する応答加速度抽出のための解析ケース（弾性設計用地震動S d）

			有効応力解析
			ケース⑧
	解析ケー		地盤物性のばらつき （－1 o ）を考慮した解析ケース
	地盤物性		平均値－1 σ
	材料物性		設計基準強度
	S d－D1	＋＋＊	\bigcirc
	S d－D	－＋＊＊	\bigcirc
	S d－D 2	＋＋＊	\bigcirc
	S d－D	－＋＊	\bigcirc
	S d－D 3	＋＋＊	\bigcirc
震	S ${ }^{\text {－}}$－ 3	－＋＊	\bigcirc
動	S d－F 1	＋＋＊	\bigcirc
位	S ${ }^{\text {－}} 1$	－＋＊	\bigcirc
相	S d－F 2	＋＋＊	\bigcirc
	S d－F 2	－＋＊＊	\bigcirc
	S d－F 3	＋＋＊	\bigcirc
	$\mathrm{Sd}-\mathrm{F} 3$	－＋＊＊	\bigcirc
	S d－N1	＋＋＊	\bigcirc
	S ${ }^{\text {－}}$ N1	$-+^{*}$	\bigcirc

注記＊：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させ たケースを示す。

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 耐震評価上考慮する状態

第 3 号機海水ポンプ室の地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。第3号機海水ポンプ室は，埋設構造物であるため風の影響は考慮しな い。なお，第 3 号機海水ポンプ室の隣接構造物としてモデル化される防潮堤（鋼管式鉛直壁）は，添付書類「VI－2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性について」に基づき，風の影響を考慮する。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．3．2 荷重

第 3 号機海水ポンプ室の地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，機器•配管荷重を考慮する。
（2）積載荷重（P）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（S s ）
基準地震動S s による荷重を考慮する。
（5）地震荷重（S d）
弾性設計用地震動 S d による荷重を考慮する。

3．3．3 荷重の組合せ

荷重の組合せを表 $3-5$ に示す。

表 3－5 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$
地震時 $(\mathrm{S} \mathrm{d})^{*}$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{d}$

注記 $*: ~$ 機器•配管系の耐震設計に用いる。

G：固定荷重
P：積載荷重（積雪荷重 P_{s} を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s）
S d ：地震荷重（弾性設計用地震動 S d）

3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 S d を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用 いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図3－5に入力地震動算定の概念図を，図3－6～図3－37に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「Ark Quake Ver．3．10」 を使用する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。

図 3－5 入力地震動算定の概念図
（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－D 3 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－D 3）

（b）加速度応答スペクトル

図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－F 1）

MAX $\quad 370 \mathrm{~cm} / \mathrm{s}^{2} \quad$（18．79s）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－F1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－F 2 ）

MAX $\quad 386 \mathrm{~cm} / \mathrm{s}^{2} \quad(28.38 \mathrm{~s})$

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－F3）

MAX $\quad 410 \mathrm{~cm} / \mathrm{s}^{2} \quad(27.59 \mathrm{~s})$

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 $3-17$ 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－F 3 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－N1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－N1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S d－D 2）

MAX $\quad 308 \mathrm{~cm} / \mathrm{s}^{2} \quad$（11．41s）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－D 1）

（b）加速度応答スペクトル

図3－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－D 2）

（b）加速度応答スペクトル

図3－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－D 3）

（b）加速度応答スペクトル

図3－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－D 3）

（b）加速度応答スペクトル

図3－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－F 1）

（b）加速度応答スペクトル

図3－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－F 1）

（b）加速度応答スペクトル

図3－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－F2）
（a）加速度時刻歴波形

図3－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－F 2 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－37 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S d－D 2）

3.5 解析モデル及び諸元

3．5．1 解析モデル

第 3 号機海水ポンプ室の地震応答解析モデルを図 3－38～図3－40に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
構造物と等価な剛性を有する二次元等価剛性モデルを作成して実施することとし，構造部材については，線形はり要素及び平面応力要素によりモデル化する。
（4）地盤のモデル化
D級を除く岩盤は線形の平面ひずみ要素でモデル化する。また，盛土，旧表土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化す る。なお，改良地盤は，保守的な評価になるよう盛土としてモデル化する。
（5）隣接構造物のモデル化
隣接構造物となる防潮堤（鋼管式鉛直壁）は，添付書類「VI－2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性について」に基づき，鋼管杭は，線形はり要素（ビーム要素）でモデ ル化する。
（6）ジョイント要素の設定
地震時の「地盤とMMR」，「MMR と構造物」及び「構造物と盛土」との接合面における剥離及びすべりを考慮するため，これらの接合面にジョイント要素を設定する。なお，防潮堤
（鋼管式鉛直壁）は，添付書類「VI－2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性につい て」に基づき，ジョイント要素を設定する。

図 3－39 第3号機海水ポンプ室の地震応答解析モデル図 （ $\mathrm{B}-\mathrm{B}$ 断面，南北（循環水ポンプエリア））

図 3－40 第3号機海水ポンプ室の地震応答解析モデル図（C－C 断面，東西）

3．5．2 使用材料及び材料の物性値

構造物の使用材料を表3－6に，材料の物性値を表3－7に示す。

表 3－6 使用材料

材料	仕様
コンクリート	設計基準強度 $23.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表 3－7 材料の物性値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

3．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位の一覧を表3－8に，設計用地下水位を図 3－41～図3－43に示す。

表 3－8 設計用地下水位の一覧

施設名称	地震時荷重算出断面	設計用地下水位
第 3 号機海水ポンプ室	A－A 断面，南北方向 （スクリーンエリア）	0．P．$-12.00 \mathrm{~m} \sim 0$ ．P．-2.50 m
	B－B 断面，南北方向 （循環水ポンプエリア）	
	C－C 断面，東西方向	0．P．$-12.00 \mathrm{~m} \sim 0$ ．P．+8.00 m

図 3－41 設計用地下水位（A－A 断面，南北（スクリーンエリア））

図 3－42 設計用地下水位（B－B 断面，南北（循環水ポンプエリア））

図 3－43 設計用地下水位（C－C 断面，東西）

4．解析結果

4． 1 全応力解析による解析結果

4．1．1 南北方向（スクリーンエリア）の解析結果
耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，す べての基準地震動 S s に対する最大加速度分布図を図4－1～図4－14に示す。また，解析 ケース① において，三次元構造解析の結果，照査項目ごとに照査値が 0.5 を超えるケース で照査値が最大となる地震動について，解析ケース（2）～（4）の最大加速度分布図を図 4－15 ～図4－20に示す。

これらに加え，スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用 いるS d－D 2 に対する最大加速度分布図を図 4－21～図4－28に示す。

（b） S s－D $1 \quad(++)$ 鉛直

図 4－1 最大加速度分布図（解析ケース①）（1／20）

（a） S s－D $1(-+)$ 水平

（b） S s－D $1 \quad(-+)$ 鉛直

図 4－2 最大加速度分布図（解析ケース①）（2／20）

（a） S s－D $2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－3 最大加速度分布図（解析ケース①）（3／20）

（a） S s $-\mathrm{D} 2(-+)$ 水平

$$
37
$$

（b） S s $-\mathrm{D} 2(-+)$ 鋁直

図 4－4 最大加速度分布図（解析ケース（1）（4／20）

（a） S s－D $3(++)$ 水平

1058		779		1838
1057		777		1835
1052		773		1828
1046		765		1815
1038		755		1798
1028		742		1777
1016		725		1752
1004		710		1729
993	657	694×765		1705
984 649		683	758	1689
975	640	672	751	1670
964	630	660	742	1650
948	615	642	729	1620
931	599	－ 623	716	1588
913	582	603	711	1553
893	563	582	705	1517
$\begin{array}{r} 876 \\ 859 \\ \hline \end{array}$	547	－ 564	－ 700	1486
	531	547	695	1456
	522	537	692	1425
$\begin{aligned} & 841 \\ & 830 \end{aligned}$	512	526	687	1393
827	501	－ 515	682	1358
824821	499	503	677	1322
	496	492	671	1288
816	492	482	662	1242
811	487	476	653	1195
805	481	470	642	1148
799	475	464	631	1100
$\begin{aligned} & 793 \\ & 787 \end{aligned}$	468	－ 457	619	1052
	463	453	611	1019
780	457	446	599	976
$\begin{aligned} & 772 \\ & 768 \\ & \hline \end{aligned}$	$\begin{aligned} & 449 \\ & \hline 445 \\ & \hline \end{aligned}$	$\begin{array}{r} 439 \\ 435 \\ \hline \end{array}$	$\begin{aligned} & 585 \\ & 578 \\ & \hline \end{aligned}$	$\begin{aligned} & 928 \\ & 904 \end{aligned}$
	ケール		$\begin{aligned} & 0 \quad 100 \\ & \square ـ \end{aligned}$	

（b） S s $-\mathrm{D} 3(++)$ 鉛直

図 4－5 最大加速度分布図（解析ケース①）（5／20）

（b） S s－D $3(-+)$ 鉛直

図 4－6 最大加速度分布図（解析ケース①）（6／20）

（a） S s－F $1(++)$ 水平

（b）S s－F $1 \quad(++)$ 鉛直

図 4－7 最大加速度分布図（解析ケース①）（7／20）

（a）S s－F $1(-+)$ 水平

1265		477		985
1263				984
1259		476		982
1252		－475		979
1243		－474		974
1231		－473		969
1218		－ 472		963
1205		－ 470		957
1191	647	469	586	950
1181	642	467	583	946
1170	638	465	－ 580	942
1158	632	－ 463	－ 576	937
1139	624	－ 459	－ 570	929
1119	615	455	564	920
1098	605	451	556	910
1075	594	446	548	899
1055	584	－ 441	540	890
1035	574	437	532	880
1015	568	434	527	871
994	561	－ 430	－ 521	862
986	552	426	514	851
977	544	－ 422	506	840
970	535	417	499	830
959	523	410	488	815
948	510	403	476	799
937	497	396	464	783
926	483	388	451	766
914	468	379	437	
905	463	373	428	735
894	459	365	415	718
881 875	$\begin{array}{r} 455 \\ -453 \\ \hline \end{array}$	$\begin{array}{r} 356 \\ 351 \\ \hline \end{array}$	$\begin{array}{r} 400 \\ -393 \\ \hline \end{array}$	697 687
	ル		$\underbrace{0} 100$	
			鋁直	

図 4－8 最大加速度分布図（解析ケース①）（8／20）

図 4－9 最大加速度分布図（解析ケース①）（9／20）

2225		1257		2164
2029		1245		1906
1836		1232		1652
1648		1213		1405
1466		1189		1217
1292		1160		1147
1212		1128		1110
1175		1101		1077
1137	1101	1080	1065	1035
1099	1070	1056	1035	976
1056	1029	1020	995	914
1009	982	975	948	878
963	930	908	878	873
930	892	848	804	839
886	846	799	741	792
833	792	742	709	779
782	743	691	691	803
729	693	643	705	837
672	640	657	717	877
652	618	669	726	911
653	625	679	734	940
664	628	685	737	960
670	625	685	738	970
668	614	677	734	971
650	595	660	725	956
613	568	633	712	926
589	567	635	697	902
571	571	632	681	880
575	$\square 571$	624	669	855
620	591	623	－669	813
$\begin{array}{r} 665 \\ 687 \\ \hline 8 \end{array}$	$\begin{array}{r} 630 \\ 651 \\ \hline \end{array}$	$\begin{array}{r} 631 \\ -\quad 634 \\ \hline \end{array}$	$\begin{array}{r} 677 \\ -680 \\ \hline \end{array}$	763 739

（a） S s $-\mathrm{F} 2(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(-+) \quad$ 鉛直

図 4－10 最大加速度分布図（解析ケース（1）（10／20）

2544		1712		2636
2333		1625		2313
2125		1538		2000
1923		1445		1697
1731		1347		1412
1544		1243		1314
1372		1137		1191
1256		1055		1099
1232	1164	1034	1000	1073
1214	1159	1028	989	1048
1195	1153	1014	976	1036
1173	1143	992	965	1037
1140	1122	952	944	1026
1106	1091	904	915	1000
1070	1050	848	879	958
1031	998	800	837	903
991	947	783	797	851
947	895	770	757	810
896	851	756	723	842
882	803	738	700	869
886	769	714	674	890
878	743	685	645	958
860	713	661	620	1069
818	664	654	636	1192
759	606	633	653	1277
680	606	628	646	1312
580	615	631	625	1293
614	638	626	669	1222
642	656	649	696	1149
672	673	682	727	1034
$\begin{aligned} & 695 \\ & 704 \\ & \hline \end{aligned}$	$\begin{array}{r} 685 \\ 692 \\ \hline \end{array}$	$\begin{aligned} & 712 \\ & 724 \\ & \hline \end{aligned}$	$\begin{array}{r} 755 \\ 765 \\ \hline \end{array}$	$\left[\begin{array}{l} 893 \\ 825 \end{array}\right.$

1726		795		2258
1722		793		2252
1714		791		2235
1702		786		2213
1686		780		2184
1665		773		2148
1640		765		2105
1617		758		2067
1593	830	751	635	2027
1576		745	638	1999
1557	828	738	641	1968
1537	826	731	644	1934
1507	821	721	647	1885
1476	816	710	649	1833
1442	809	698	652	1778
1406	801	685	－653	1719
1375	793	674	－653	1669
1346	785	663	651	1620
1316	779	657	648	1571
1286	771	649	644	1520
1252	762	641	637	1465
1218	752	632	628	1409
1186	742	623	619	1356
1143	727	610	604	1286
1099	712	596	587	1216
1055	695	582	568	1146
1038	676	566	561	1093
1039	657	551	560	1081
1038	644	540	573	1072
1037	625	525	590	1059
$\begin{array}{r} 1034 \\ 1033 \\ \hline \end{array}$	$\begin{array}{r} 604 \\ 593 \\ \hline \end{array}$	$\begin{array}{r} 508 \\ 499 \\ \hline \end{array}$	$\begin{array}{r} 608 \\ -616 \\ \hline \end{array}$	$\begin{aligned} & 1045 \\ & 1040 \end{aligned}$
	ール		$\begin{aligned} & 01 \\ & \square \end{aligned}$	

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－11 最大加速度分布図（解析ケース①）（11／20）

2237		1632		2810
2064		1556		2431
1891		1478		2090
1709		1396		1868
1509		1308		1646
1297		1216		1433
1219		1122		1238
1182		1050		1138
1146	1054	991	1034	1057
1121	1045	948	982	987
1103	1027	932	925	1004
1081	1004	909	891	1014
1032	965	868	876	1006
972	920	821	855	975
919	872	782	828	923
862	822	754	798	855
821	784	722	773	845
778	753	692	749	870
814	733	697	732	916
945	710	700	712	956
1086	683	699	684	987
1218	666	694	650	1004
1324	652	690	612	1000
1424	660	685	558	964
1463	673	666	530	891
1426	705	633	502	783
1308	732	660	557	650
1120	753	692	608	505
958	764	710	639	526
852	773	729	672	591
$\begin{aligned} & 834 \\ & 826 \\ & \hline \end{aligned}$	$\begin{aligned} & 781 \\ & 784 \end{aligned}$	$\begin{aligned} & 744 \\ & 749 \end{aligned}$	$\begin{aligned} & 701 \\ & 712 \end{aligned}$	$\begin{aligned} & 651 \\ & 676 \end{aligned}$

（a） S s $-\mathrm{F} 3(-+)$ 水平

（b） S s－F $3(-+)$ 鉛直

図 4－12 最大加速度分布図（解析ケース（1）（12／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N 1 （ ++ ）鉛直

図 4－13 最大加速度分布図（解析ケース①）（13／20）

2016		1316		1866
1902		1256		1661
1791		1228		1447
1688		1207		1316
1594		1189		1271
1506		1222		1307
1422		1251		1358
1359		1271		1350
1318	1308	1288	1262	1315
1294	1314	1300	1263	1293
1266	1311	1303	1259	1267
1234	1301	1298	1250	1235
1186	1275	1281	1232	1191
1132	1237	1252	1209	1164
1073	1187	1212	1180	1132
1009	1124	1159	1143	1094
955	1066	1108	1107	1059
899	1010	1056	1068	1022
827	954	999	1026	1018
788	895	938	978	1007
769	831	870	922	986
741	812	837	861	953
722	791	821	859	911
739	776	789	892	868
797	811	765	907	891
832	832	811	904	927
834	835	848	926	971
803	821	877	967	980
805	800	890	985	965
819	766	901	996	924
$\begin{aligned} & 872 \\ & 910 \end{aligned}$	791 824	$\begin{aligned} & 904 \\ & 900 \end{aligned}$	992	950 994

（a）S s－N $1(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直

図 4－14 最大加速度分布図（解析ケース（1）（14／20）

2093		1345		1841
1916		1288		1632
1772		1232		1436
1684		1218		1334
1599		1201		1285
1515		1236		1262
1432		1268		1279
1368		1290		1278
1313 1305		1307	1300	1279
1280	1308	1319	1301	1276
1253	1302	1320	1295	1262
1221	1288	1312	1284	1245
1172	1259	1291	1263	1218
1117	1219	1258	1236	1186
1057	1167	1214	1202	1151
993	1106	1159	1160	1110
940	1050	1107	1121	1073
887	995	1056	1080	1035
847	941	1001	1037	988
846	883	943	989	977
838	856	877	932	964
817	838	814	871	939
787	816	797	849	906
799	778	765	883	843
828	810	729	898	839
843	828	721	893	903
844	828	764	869	937
835	811	801	829	936
819	789	822	809	916
829	750	843	839	872
$\begin{aligned} & 847 \\ & 857 \\ & \hline \end{aligned}$	$\begin{aligned} & 757 \\ & 788 \end{aligned}$	$\begin{aligned} & 856 \\ & 858 \\ & \hline \end{aligned}$	$\begin{aligned} & 859 \\ & 862 \\ & \hline \end{aligned}$	$\begin{aligned} & 808 \\ & 840 \end{aligned}$

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 水平

1143		690		697
1143		690		696
1141		690		693
1138		691		689
1134		693		683
1128		695		676
1121		697		667
1114		700		659
1107	556	703	590	650
1100	559	704	592	645
1093	561	－ 705	－ 593	638
1085	564	706	－ 594	631
1074	567	707	－595	621
1061	570	709	－596	609
1048	572	711	－596	596
1034	573	713	－596	583
1023	573	715	－596	571
1012	572	716	595	560
1001	570	717	594	548
989	567	718	592	542
977	564	718	－ 590	536
965	560	718	－ 587	530
954	555	718	585	526
938	549	717	－ 581	528
924	542	715	578	530
936	534	713	－ 574	532
945	526	710	570	533
953	516	707	－ 571	538
957	510	$\square 704$	$\square 572$	545
961	501	700	574	553
$\begin{aligned} & 964 \\ & 964 \end{aligned}$	$\begin{array}{r} 491 \\ -485 \\ \hline \end{array}$	$\begin{array}{\|r} 696 \\ 693 \\ \hline \end{array}$	－ $\begin{array}{r}575 \\ -576 \\ \hline\end{array}$	561 565
	ール		$\begin{aligned} & 0 \quad 100 \\ & \square ـ \end{aligned}$	

（b）S s－N $1 \quad(-+)$ 鉛直

図 4－15 最大加速度分布図
（解析ケース（2）：せん断破壊に対する最大照査値ケース）（15／20）

1829		1571		2373		
1627		1481		2180		
1452		1394		2002		
1416		1337		1835		
1389		1301		1683		
1367		1268		1549		
1334		1236		1433		
1299 1285 1273		1237		1354		
		1322				
1282	1278			1287	1295	1301
1274	1281	1297	1294	1275		
1260	1281	1301	1287	1244		
1238	1278	1298	1267	1194		
1217	1273	1287	1239	1137		
1196	1263	1268	1201	1109		
1172	1246	1238	1153	1085		
1146	1225	1205	1107	1055		
1117	1197	1166	1057	1018		
1074	1166	1123	1005	979		
1025	1129	1073	948	930		
967	1080	1013	882	866		
904	1022	946	813	790		
865	959	879	746	781		
832	865	784	718	851		
780	784	727	767	904		
709	761	691	804	932		
662	749	703	826	930		
676	746	709	831	901		
680	738	726	822	871		
683	722	747	797	834		
$\begin{array}{r} 687 \\ -702 \\ \hline \end{array}$	$\begin{aligned} & 725 \\ & 737 \\ & \hline \end{aligned}$	$\begin{aligned} & 765 \\ & 772 \\ & \hline \end{aligned}$	$\begin{aligned} & 820 \\ & 862 \\ & \hline \end{aligned}$	$\begin{array}{r} 897 \\ 926 \end{array}$		

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－16 最大加速度分布図
（解析ケース（2）：基礎地盤の支持性能に対する最大照査値ケース）（16／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－17 最大加速度分布図
（解析ケース（3）：せん断破壊に対する最大照査値ケース）（17／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－18 最大加速度分布図
（解析ケース③）：基礎地盤の支持性能に対する最大照査値ケース）（18／20）

2506		1554		1822
2293		1494		1646
2084		1433		1600
1881		1368		1572
1686		1297		1542
1505		1269		1491
1493		1283		1469
1496		1311		1448
1481	1408	1336	1311	1410
1461	1400	1351	1306	1380
1434	1380	1350	1289	1349
1398	1352	1338	1265	1316
1334	1304	1310	1228	1271
1254	1245	1270	1204	1225
1158	1180	1224	1177	1177
1051	1109	1173	1146	1128
1025	1052	1131	1117	1088
1016	1010	1091	1086	1051
1001	990	1057	1058	1017
979	967	1017	1026	980
948	939	968	987	938
907	907	915	942	914
863	874	860	894	893
810	825	782	848	862
816	792	823	831	824
815	802	867	883	809
808	800	905	927	837
794	816	935	962	901
845	822	951	980	933
910	823	964	997	958
$\begin{aligned} & 984 \\ & 1025 \end{aligned}$	$\begin{aligned} & 872 \\ & 900 \\ & \hline \end{aligned}$	$\begin{array}{r} 971 \\ 971 \\ \hline \end{array}$	$\begin{array}{r} 1005 \\ 1007 \\ \hline \end{array}$	$\begin{aligned} & 979 \\ & 1021 \end{aligned}$

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b）S s－N $1(-+)$ 鉛直

図 4－19 最大加速度分布図
（解析ケース（4）：せん断破壊に対する最大照査値ケース）（19／20）

1661		1543		2588
1597		1498		2386
1534		1450		2188
1476		1398		1996
1428		1338		1810
1391		1274		1634
1350		1232		1474
1327		1241		1364
1345	1291	1270		1320
1347	1284	1291	1283	1319
1340	1280	1300	1275	1314
1328	1277	1300	1265	1302
1305	1270	1290	1246	1276
1271	1261	1273	1223	1235
1226	1246	1250	1194	1178
1171	1223	1221	1158	1109
1134	1197	1193	1122	1045
1108	1163	1164	1083	1000
1073	1124	1133	1038	1030
1036	1080	1096	989	1031
993	1027	1049	933	992
946	969	995	875	911
900	909	939	829	823
900	824	856	860	801
884	734	766	874	813
850	718	672	871	812
801	707	690	851	802
739	686	719	815	786
692	670	733	781	773
664	662	742	763	824
681 699	691 703	741 736	837 872	894

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－20 最大加速度分布図
（解析ケース（4）：基礎地盤の支持性能に対する最大照査値ケース）（20／20）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

580		444		597
579		\443		596
－ 577		－ 442		594
－ 575		439		－ 591
572		436		588
568		432		584
－ 564		－427		580
$\square 560$		－ 423		576
557	450	418	393	573
554	447	－ 415	390	570
551	－ 445	－ 411	386	－ 567
－ 548	－ 442	－ 407	384	565
543	－ 437	－ 401	380	560
－ 539	－ 432	－ 395	377	556
534	427	388	373	551
529	－ 420	380	368	546
－525	414	373	364	542
520	408	367	360	538
516	405	363	358	534
511	－ 401	－ 359	356	529
－ 506	396	354	353	$\bigcirc 524$
501	－ 391	349	351	520
497	－ 387	］ 344	348	－ 517
490	380	338	344	514
483	374	331	342	511
477	367	324	343	－ 508
470	359	317	343	－ 505
－ 463	352	310	343	－501
458	347	305	343	－ 498
451	340	298	343	－ 495
$\begin{array}{r}444 \\ 440 \\ \hline\end{array}$	$\begin{array}{r}332 \\ 328 \\ \hline\end{array}$	$\begin{array}{r}291 \\ +287 \\ \hline\end{array}$	$\begin{array}{r}343 \\ 343 \\ \hline\end{array}$	$\square 4890$
	ール		$\begin{aligned} & 0100 \\ & ـ_{ـ} \end{aligned}$	

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－21 最大加速度分布図（解析ケース①）（1／8）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+) \quad$ 鉛直

1227		847		1553
1121		823		1408
1016		798		1266
914		777		1131
816		754		1007
803		728		895
764		709		841
720		693		815
673	661	680	723	788
632	653	674	699	769
－ 627	641	662	671	747
617	625	646	642	722
597	601	620	601	682
568	573	591	559	636
530	542	560	527	585
488	510	528	497	529
472	486	504	474	507
461	466	485	455	490
459	451	470	439	496
458	435	454	424	500
－ 456	416	436	406	499
454	397	416	388	493
－ 450	379	396	－ 370	482
－444	361	368	358	463
－ 467	352	355	369	458
476	355	361	381	448
471	355	370	390	132
455	354	376	394	416
－ 439	360	378	395	418
－413	367	380	395	416
408 411	｜ 388	382 389	391 393	408 417

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－23 最大加速度分布図（解析ケース（2））（3／8）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

（b） S d $-\mathrm{D} 2(-+)$ 鉛直

図 4－24 最大加速度分布図（解析ケース（2））（4／8）

1220		975		1602
1119		946		1462
1019		918		1323
920		889		1190
856		859		1065
813		828		949
771		796		882
734		769		864
710	701	745	789	838
684	689	718	766	812
655	676	687	737	783
624	659	666	703	750
582	632	644	653	700
565	603	620	599	645
548	573	595	564	586
528	543	569	537	529
511	520	548	516	511
495	501	530	496	491
483	488	516	479	479
472	473	500	460	477
459	455	480	439	－476
447	435	458	416	－ 477
－435	416	434	393	－478
－434	400	399	365	473
455	382	366	379	470
－463	364	367	389	462
－ 458	362	371	396	447
－442	356	376	399	429
－429	356	378	399	428
－ 436	378	378	－ 396	423
434 429	398 405	382 390	$\begin{array}{r}392 \\ 390 \\ \hline\end{array}$	－ 411

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

582		454		592
－ 582		453		$\square 591$
－581		452		－590
$\bigcirc 88$		449		－ 588
－ 578		446		－586
－ 575		442		－584
571		－436		582
568		432		580
565	463	427	400	578
562	461	423	398	576
$\square 560$	458	419	396	574
557	455	415	393	572
553	450	408	390	－ 569
549	444	102	386	565
－545	438	394	381	－ 562
541	431	386	376	558
537	425	379	372	554
－533	419	373	368	551
529	415	368	366	547
525	411	364	363	543
520	106	359	360	538
－ 516	401	354	358	534
511	396	349	355	－ 529
505	389	343	351	523
499	382	336	349	－517
492	375	329	350	510
486	368	321	350	504
479	360	314	350	－497
474	354	309	350	－493
467	347	302	350	－489
$\begin{array}{r}460 \\ 456 \\ \hline\end{array}$	$\begin{array}{r}339 \\ 335 \\ \hline\end{array}$	294 291	350 350	485 483
	－ル	応	$\underbrace{01000}_{1}$	

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－25 最大加速度分布図（解析ケース③）（5／8）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平
$\left.\begin{array}{|l|l|l|l|l|l|l}678 \\ 677 \\ 674 \\ 670 \\ 670 \\ 664 \\ 657 \\ 648 \\ 648 \\ 640 \\ 631\end{array}\right)$
（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(-+) \quad$ 鉛直

1216		822		1411
1111		809		1305
1006		796		1201
900		779		1101
861		761		1008
814		746		924
762		732		851
724		719		800
693	691	705	728	762
677	677	685	713	753
659	656	663	695	741
641	632	639	675	726
614	598	605	644	701
586	573	569	611	671
557	545	530	575	636
527	516	495	537	595
505	490	480	503	560
503	486	468	471	524
$\square 500$	181	159	410	490
－ 496	475	450	433	480
487	467	441	425	473
476	457	431	418	470
464	446	421	410	464
－ 444	430	407	398	450
422	410	392	386	428
－ 400	390	376	－ 375	410
398	368	374	382	405
－396	359	378	385	402
390	364	379	386	403
395	368	379	386	402
$\begin{array}{r}403 \\ 407 \\ \hline\end{array}$	－ $\begin{array}{r}381 \\ 390\end{array}$	379 380	$\begin{array}{r}384 \\ 384 \\ \hline\end{array}$	397 394

（a） S d $-\mathrm{D} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－27 最大加速度分布図（解析ケース（4））（7／8）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

（b） $\mathrm{S} d-\mathrm{D} 2(-+)$ 鉛直

4．1．2 南北方向（循環水ポンプエリア）の解析結果

耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，三次元構造解析の結果，すべての基準地震動S s に対する最大加速度分布図を図4－29～図 4－42に示す。また，解析ケース①において，照査項目ごとに照査値が 0.5 を超えるケー スで照査値が最大となる地震動について，解析ケース②～（4）の最大加速度分布図を図4－ 43～図4－48に示す。

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 水平

（b） S s－D $1 \quad(++)$ 鉛直

図 4－29 最大加速度分布図（解析ケース（1）（1／20）

3259 （ 3094		
2421		2658
1928		2223
1750		1797
1558		1671
1381		1548
1352		1481
1311		1417
1261	960	1340
1207	927	1262
1153	896	1186
1100	886	1125
1028	873	1097
957	855	1063
888	834	1022
820	811	973
770	793	928
750	781	879
731	772	827
708	754	－ 767
698	729	740
702	698	762
705	660	－ 779
724	602	793
722	583	793
701	578	774
664	－582	735
703	578	679
725	602	631
747	632	696
$\begin{array}{r} 763 \\ -770 \\ \hline \end{array}$	$\begin{array}{r} 662 \\ -674 \\ \hline \end{array}$	$\square \begin{aligned} & 772 \\ & 813 \end{aligned}$

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 水平

（b） S s $-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－30 最大加速度分布図（解析ケース（1）（2／20）

（a） S s－D $2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－31 最大加速度分布図（解析ケース（1）（3／20）

（a） S s $-\mathrm{D} 2(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－32 最大加速度分布図（解析ケース（1）（4／20）

（a） S s $-\mathrm{D} 3(++)$ 水平

図 4－33 最大加速度分布図（解析ケース（1）（5／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

（b） S s－D $3(-+)$ 鉛直

図 4－34 最大加速度分布図（解析ケース（1）（6／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平

（b）S s－F 1 （ ++ ）鉛直

図 4－35 最大加速度分布図（解析ケース（1）（7／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 水平

（b）S s－F $1(-+)$ 鉛直

図 4－36 最大加速度分布図（解析ケース（1）（8／20）

（a） S s $-\mathrm{F} 2(++)$ 水平

（b） S s－F $2(++)$ 鉛直

図 4－37 最大加速度分布図（解析ケース（1）（9／20）

図 4－38 最大加速度分布図（解析ケース（1）（10／20）

2938		3170
2550		2738
2195		2319
1851		1922
1526		1596
1308		1460
1338		1326
1314		1222
1260	841	1161
1194	818	1111
1125	797	1063
1054	775	1015
954	－ 758	952
903	741	885
871	724	816
827	706	755
786	693	755
818	682	750
856	668	746
889	648	738
912	－ 624	726
922	－ 597	723
918	613	753
895	632	788
854	647	812
798	655	823
722	703	821
629	755	850
602	784	906
650	811	970
$\begin{array}{r}699 \\ -721 \\ \hline\end{array}$	840 858	1037 1072

（a） S s $-\mathrm{F} 3(++)$ 水平

（b） S s－F $3(++)$ 鉛直

図 4－39 最大加速度分布図（解析ケース①）（11／20）

（a） S s $-\mathrm{F} 3(-+)$ 水平

（b） S s－F $3(-+)$ 鉛直

図 4－40 最大加速度分布図（解析ケース（1）（12／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） S s $-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－41 最大加速度分布図（解析ケース①）（13／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b） S s $-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－42 最大加速度分布図（解析ケース①）（14／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－43 最大加速度分布図
（解析ケース（2）：せん断破壊に対する最大照査値ケース）（15／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

図 4－44 最大加速度分布図
（解析ケース（2）：基礎地盤の支持性能に対する最大照査値ケース）（16／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 鉛直

図 4－45 最大加速度分布図
（解析ケース③）：せん断破壊に対する最大照査値ケース）（17／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－46 最大加速度分布図
（解析ケース（3）：基礎地盤の支持性能に対する最大照査値ケース）（18／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 鉛直

図 4－47 最大加速度分布図
（解析ケース（4）：せん断破壊に対する最大照査値ケース）（19／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－48 最大加速度分布図
（解析ケース（4）：基礎地盤の支持性能に対する最大照査値ケース）（20／20）

4．1．3 東西方向の解析結果

スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いるS d－D 2 に対する最大加速度分布図を図 4－49～図 4－56に示す。

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

$$
\text { 構造スケール } \quad \begin{array}{lll}
0 & 2 \\
ـ^{2} & (\mathrm{~m}) & \text { 応答値スケール } 0^{0} 1000 \\
\underbrace{1}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
\end{array}
$$

図 4－49 最大加速度分布図（解析ケース（1）（1／8）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 鉛直

図 4－50 最大加速度分布図（解析ケース①）（2／8）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

構造スケール $0 \quad 2 \quad$（m）応答値スケール ${ }^{0} 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－51 最大加速度分布図（解析ケース（2））（3／8）

図 4－52 最大加速度分布図（解析ケース（2）（4／8）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－53 最大加速度分布図（解析ケース③）（5／8）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 鉛直

図 4－54 最大加速度分布図（解析ケース③）（6／8）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

構造スケール $0 \quad 2 \quad$（m）応答値スケール $0 \quad 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S d $-\mathrm{D} 2(++)$ 鉛直

図 4－55 最大加速度分布図（解析ケース（4））（7／8）

図 4－56 最大加速度分布図（解析ケース④）（8／8）

4．2 有効応力解析による解析結果

4．2．1 南北方向（スクリーンエリア）の解析結果

耐震評価のために用いる応答加速度として，解析ケース⑥（基本ケース）について，す べての基準地震動 S s に対する最大加速度分布図を図4－57～図4－70に示す。また，解析ケース（6）において，三次元構造解析の結果，照査項目ごとに照査値が 0.5 を超えるケー スで照査値が最大となる地震動について，解析ケース（7）～⑨の最大加速度分布図を図4－ 71～図4－76に示す。

これらに加え，スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用 いるS d－D 2 に対する最大加速度分布図を図 4－77～図4－78に示す。

（a） S s－D $1(++)$ 水平

（b） S s－D $1 \quad(++)$ 鉛直

図 4－57 最大加速度分布図（解析ケース⑥）（1／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 水平

図 4－58 最大加速度分布図（解析ケース⑥）（2／20）

（b） S s $-\mathrm{D} 2(++)$ 鉛直

図 4－59 最大加速度分布図（解析ケース⑥）（3／20）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－60 最大加速度分布図（解析ケース⑥）（4／20）

（b） S s－D $3(++)$ 鉛直

図 4－61 最大加速度分布図（解析ケース⑥）（5／20）

（b） S s－D $3(-+)$ 鉛直

図 4－62 最大加速度分布図（解析ケース⑥）（6／20）

（b）S s－F 1 （ ++ ）鉛直

図 4－63 最大加速度分布図（解析ケース⑥）（7／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 鉛直

図 4－64 最大加速度分布図（解析ケース⑥）（8／20）

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++) \quad$ 鉛直

図 4－65 最大加速度分布図（解析ケース⑥）（9／20）

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(-+)$ 鉛直

図 4－66 最大加速度分布図（解析ケース⑥）（10／20）

図 4－67 最大加速度分布図（解析ケース（6））（11／20）

（b） S s $-\mathrm{F} 3(-+)$ 鉛直

図 4－68 最大加速度分布図（解析ケース⑥）（12／20）

（b）S s－N $1 \quad(++)$ 鉛直

図 4－69 最大加速度分布図（解析ケース⑥）（13／20）

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－70 最大加速度分布図（解析ケース（6））（14／20）

（b） S s－D $2(++)$ 鉛直

図 4－71 最大加速度分布図
（解析ケース 7 ）：せん断破壊に対する最大照査値ケース）（15／20）

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 鉛直

図 4－72 最大加速度分布図
（解析ケース 7 ）：基礎地盤の支持性能に対する最大照査値ケース）（16／20）

1174
1095
1044
1005
966
923
877
838
800
769
751
731
703
673
641
617
605
593
578
562
46
38
541
543
542
537
28
528
527
530
546
588
599
（a） S s－D $2(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－73 最大加速度分布図
（解析ケース（8）：せん断破壊に対する最大照査値ケース）（17／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－74 最大加速度分布図
（解析ケース 8 ：基礎地盤の支持性能に対する最大照査値ケース）（18／20）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－75 最大加速度分布図
（解析ケース（9）：せん断破壊に対する最大照査値ケース）（19／20）

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－76 最大加速度分布図
（解析ケース（9）：基礎地盤の支持性能に対する最大照査値ケース）（20／20）

（a） $\mathrm{S} d-\mathrm{D} 2(++)$ 水平
（b） S d $-\mathrm{D} 2(++)$ 鉛直

図 4－77 最大加速度分布図（解析ケース（8）（1／2）

		जे
¢w		
		$\stackrel{\text {＊}}{ }$

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

（b） $\mathrm{S} d-\mathrm{D} 2(-+)$ 鉛直

図 4－78 最大加速度分布図（解析ケース（8）（2／2）

4．2．2 南北方向（循環水ポンプエリア）の解析結果

耐震評価のために用いる応答加速度として，解析ケース⑥（基本ケース）について，す べての基準地震動S s に対する最大加速度分布図を図 4－79～図4－92 に示す。また，解析ケース⑥において，三次元構造解析の結果，照査項目ごとに照査値が 0.5 を超えるケー スで照査値が最大となる地震動について，解析ケース（7）～⑨の最大加速度分布図を図4－ 93～図4－98に示す。

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++) \quad$ 鉛直

図 4－79 最大加速度分布図（解析ケース⑥）（1／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 鉛直

図 4－80 最大加速度分布図（解析ケース⑥）（2／20）
（a） S s－D $2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－81 最大加速度分布図（解析ケース⑥）（3／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$
水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－82 最大加速度分布図（解析ケース⑥）（4／20）

（a） S s $-\mathrm{D} 3(++)$ 水平

（b） S s－D $3(++)$ 鉛直

図 4－83 最大加速度分布図（解析ケース⑥）（5／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

（b） S s－D $3(-+)$ 鉛直

図 4－84 最大加速度分布図（解析ケース⑥）（6／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(++)$ 水平

（b）S s－F $1(++)$ 鉛直

図 4－85 最大加速度分布図（解析ケース⑥）（7／20）

（a） S s $-\mathrm{F} 1(-+)$ 水平

（b）S s－F $1 \quad(-+)$ 鉛直

図 4－86 最大加速度分布図（解析ケース⑥）（8／20）

（a） S s $-\mathrm{F} 2(++)$ 水平

（b） S s－F $2(++)$ 鉛直

図 4－87 最大加速度分布図（解析ケース⑥）（9／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(-+)$ 水平

（b） S s $-\mathrm{F} 2(-+)$ 鉛直

図 4－88 最大加速度分布図（解析ケース（6））（10／20）

（a） S s $-\mathrm{F} 3(++)$ 水平

（b）S s－F $3(++)$ 鉛直
図 4－89 最大加速度分布図（解析ケース⑥）（11／20）

（a） S s $-\mathrm{F} 3(-+)$ 水平

（b） S s－F $3(-+)$ 鉛直

図 4－90 最大加速度分布図（12／20）（解析ケース⑥）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++)$ 水平

（b） S s $-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－91 最大加速度分布図（解析ケース（6））（13／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b） S s $-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－92 最大加速度分布図（解析ケース⑥）（14／20）

（a） S s $-\mathrm{D} 2(++)$
水平

（b） S s－D $2(++)$ 鉛直

図 4－93 最大加速度分布図
（解析ケース（7）：せん断破壊に対する最大照査値ケース）（15／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b） S s $-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－94 最大加速度分布図
（解析ケース（7）：基礎地盤の支持性能に対する最大照査値ケース）（16／20）

1063	
1007	
952	
897	
841	
784	
737	
713	704
694	｜ 688
673	－ 673
656	－658
652	－637
650	－ 628
649	－628
647	627
643	－625
638	625
631	621
622	－ 613
610	602
595	－ 588
579	570
554	541
525	515
505	498
489	479
501	－485
－ 512	－ 490
－521	－ 501
$\begin{array}{r} 536 \\ -551 \\ \hline \end{array}$	$\begin{array}{r} 529 \\ -539 \\ \hline \end{array}$

（a） S s－D $2(++) \quad$ 水平

820 （197		
820		1196
819		1193
815 （ 1181		
809 ｜l｜lll 1163		
806		
803 － $797{ }^{79}$－ 1144		
800	796	1138
$747 \times 691 \times 1001$		
666	535	871
656 650	$\begin{aligned} & 520 \\ & 513 \\ & \hline \end{aligned}$	$\begin{aligned} & 866 \\ & 863 \end{aligned}$

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－95 最大加速度分布図
（解析ケース 8 ：せん断破壊に対する最大照査値ケース）（17／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直

図 4－96 最大加速度分布図
（解析ケース 8 ：基礎地盤の支持性能に対する最大照査値ケース）（18／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$
水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－97 最大加速度分布図
（解析ケース⑨）せん断破壊に対する最大照査値ケース）（19／20）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$
水平

（b） S s $-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－98 最大加速度分布図
（解析ケース（9）：基礎地盤の支持性能に対する最大照査値ケース）（20／20）

4．2．3 東西方向の解析結果

スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いるS d－D 2 に対する最大加速度分布図を図 4－99～図4－100に示す。

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

図 4－99 最大加速度分布図（解析ケース（8）（1／2）

$\begin{array}{lll}379 & & \\ 370 \\ 362 & & \\ 355 & & \\ 351 & & \\ 346 & & \\ 340 & & \\ 336 & & \\ 331 & \\ 326 \\ 321 & & \\ 317 & \\ 314 & \\ 312 & & \\ 310 & \\ 308 & & \\ 306 & & \\ 305 & \end{array}$

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 鋁直

図 4－100 最大加速度分布図（解析ケース（8）（2／2）

