| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書
－「5．耐震評価結果」の更なる追加解析ケースを反映した結果については，別途示す。

2021年9月

東北電力株式会社

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造及び補強の概要 3
2.3 評価方針 9
2.4 適用基準 12
3．耐震評価 13
3.1 地震時荷重算出断面 13
3.2 使用材料及び材料の物性値 17
3.3 許容限界 18
3．3．1 構造部材の健全性に対する許容限界 18
3．3．2 基礎地盤の支持性能に対する許容限界 28
3．4 評価方法 29
3．4．1 構造部材の健全性評価． 29
3．4．2 基礎地盤の支持性能評価 41
4．構造部材の地震時応答 42
4.1 全応力解析による荷重に対する断面力分布 45
4.2 有効応力解析による荷重に対する断面力分布 64
5．耐震評価結果 83
5.1 全応力解析による荷重に対する耐震評価結果。 83
5．1．1 構造部材の健全性に対する評価結果 83
5．1．2 各要求機能に対する評価結果． 89
5.1 .3 S クラスの施設等を支持する機能に対する評価結果 91
5．1．4 基礎地盤の支持性能に対する評価結果 95
5.2 有効応力解析による荷重に対する耐震評価結果 97
5．2．1 構造部材の健全性に対する評価結果 97
5．2．2 各要求機能に対する評価結果 100
5．2．3 S クラスの施設等を支持する機能に対する評価結果 102
5．2．4 基礎地盤の支持性能に対する評価結果 105

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，第3号機海水ポンプ室が基準地震動S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

第3号機海水ポンプ室に要求される機能の維持を確認するにあたつては，地震応答解析により算定した荷重を三次元構造解析モデルに作用させて，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

2．基本方針
2.1 位置

第 3 号機海水ポンプ室の位置を図 $2-1$ に示す。

図 2－1 第 3 号機海水ポンプ室の位置図

2.2 構造及び補強の概要

第 3 号機海水ポンプ室の平面図を図 $2-2$ に，断面図を図 $2-3 \sim$ 図 $2-5$ に，耐震補強の概要図を図2－6に，補強計画図を図2－7～図2－10に，概略配筋図を図2－11～図2－13に示 す。
第 3 号機海水ポンプ室は，浸水防護設備である防潮壁を間接支持する支持機能及び浸水防止 のための止水機能が要求される。

第 3 号機海水ポンプ室は，地下 2 階または地下 3 階構造となっており，上部はスクリーンエ リア，循環水ポンプエリアの 2 エリアに分かれている。下部は水路となっており，スクリーン エリアの下部は四連のボックスカルバート構造，循環水ポンプエリアの下部は二連のボックス カルバート構造となっている。また，上部は各エリアが隔壁により仕切られ，各エリアによっ て開口部の存在や中床版の設置レベルが異なる等，複雑な構造となっている。

第 3 号機海水ポンプ室は，加振方向に平行に配置される妻壁や隔壁等の面部材を耐震部材と して考慮する箱形構造物である。

第3号機海水ポンプ室の耐震性を確保するために耐震補強を実施する。

曲げ・軸力系の破壊に対する補強として，水路部における導流壁の増厚，気中部における隔
壁の追加及び妻壁への補強梁の追加を実施する。
せん断破壊に対する補強として，後施工せん断補強工法（セラミックキャップバー工法）（以下「CCb 工法」という。）によるせん断補強を実施する。

図 2－2 第3号機海水ポンプ室平面図

図 2－3 第 3 号機海水ポンプ室断面図（A－A 断面）

図 2－4 第3号機海水ポンプ室断面図（B－B 断面）

図2－5 第3号機海水ポンプ室断面図（C－C 断面）

図2－6 耐震補強の概要図

：CCb による耐震補強箇所

：部材増厚または部材追加箇所
図2－7 補強計画図（平面図）

- ：CCb による耐震補強箇所
- 部材增厚または部材追加箇所

図 2－9 補強計画図（ $\mathrm{B}-\mathrm{B}$ 断面，南北（循環水ポンプエリア））

図 2－10 補強計画図（C－C 断面，東西）

$\square: \mathrm{CCb}$ 工法適用箇所
図 2－11 第 3 号機海水ポンプ室概略配筋図（A－A 断面，南北（スクリーンエリア））

図 2－13 第 3 号機海水ポンプ室概略配筋図（C－C 断面，東西）

2． 3 評価方針

第 3 号機海水ポンプ室は，設計基準対象施設においては，S クラス施設の間接支持構造物で ある屋外重要土木構造物に分類される。

第 3 号機海水ポンプ室の耐震評価フローを図 $2-14$ に示す。
第3号機海水ポンプ室の耐震評価は，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」より得られた地震応答解析の結果に基づき，設計基準対象施設の評価として，表2 － 1 に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。
構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及びS クラスの施設等を支持する機能を損なわないことを確認する。

構造部材の健全性評価については，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」より得られた，水平方向及び鉛直方向の荷重を用いた，非線形ソリッド要素による三次元静的材料非線形解析（以下「三次元構造解析」という。）により応答値を算定し，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の照査用ひずみが許容限界を下回ること，せん断破壊に対しては照査用せん断力及び照査用面内せ ん断ひずみが許容限界を下回ることを確認する。
基礎地盤の支持性能評価においては，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機機能維持の基本方針」 に基づく許容限界を下回ることを確認する。

図2－14 第3号機海水ポンプ室の耐震評価フロー

表 2－1 第3号機海水ポンプ室の評価項目

評価方針	評価項目	部位	評価方法			午容限界
構造強度 を有する こと	構造部材の健全性	鉄筋コン クリート 部材	照査用ひずみ，照査用せん断力及び照査用面内せん断ひ ずみが許容限界を下回ることを確認	曲げ・軸力		限界ひずみ＊
				せん断力	面外	せん断耐力＊
					面内	限界せん断ひずみ＊
	基礎地盤の支持性能	基礎地盤	発生する接地圧が許容限界を下回る ことを確認	岩盤の極限支持力＊		
		MMR		MMR の支圧強度＊		
S クラス の施設を	構造部材の健全性	鉄筋コン クリート 部材	照査用ひずみ，照査用せん断力及び照査用面内せん断ひ ずみが許容限界を下回ることを確認	曲げ・軸力		限界ひずみ＊
機能を損				せん 断力	面外	せん断耐力＊
$\begin{aligned} & \text { なわない } \\ & \text { こと } \end{aligned}$					面内	限界せん断ひずみ＊

注記＊：妥当な安全余裕を考慮する。

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2012年 コンクリート標準示方書［設計編］
- 土木学会 2017年 コンクリート標準示方書［設計編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編
- 一般財団法人土木研究センター 建設技術審査証明報告書 後施工セラミック定着型せん断補強鉄筋「セラミックキヤップバー（CCb）」
－鉄道総合技術研究所 平成 13 年 3 月 鉄道構造物等設計標準•同解説（開削トンネル）

3．耐震評価
3.1 地震時荷重算出断面

第 3 号機海水ポンプ室の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，南北方向では妻壁や隔壁の配置が異なることによる剛性差を考慮し，スクリーンエリア（A－A 断面）及び循環水ポンプエリア（B－B 断面）の各エリアの構造モデルを使用して地震時応答解析を行う。各エリアで周辺状況に大きさ差異はないが，土圧を大きく評価できるよう，比較的盛土が広く分布している補機ポンプエリアの中心を通る地質断面を各エリアの地盤モデルとして，地震時荷重算出用地質断面とする。

また，南北方向については，構造的特徴や周辺地盤状況を踏まえ，構造物中心を通る東西断面（C－C 断面）を地震時荷重算出用地質断面とする。地震時荷重算出用地質断面図を図 3－2～図 3－4に示す。

なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，東西方向（C－ C 断面）が強軸方向となり，南北方向（A－A 断面及び B－B 断面）が弱軸方向となることから，耐震評価は弱軸方向である南北方向（A－A 断面及び B－B 断面）に対して実施する。

地震応答解析における解析手法は，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」のうち，「3．2 解析方法」に示すとおり全応力解析及び有効応力解析とする。解析ケ ースを表3－1に示す。

また，第 3 号機海水ポンプ室は，加振方向に平行に配置される面部材（妻壁や隔壁）を有す る箱形構造物であり，かつ，止水機能が要求される構造物であることから，ひび割れ状態を評価できるソリッド要素を用いた三次元構造解析により耐震評価を行う。

図 3－1 第 3 号機海水ポンプ室の地震時荷重算出断面位置図

図 3－2 第3号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北（スクリーンエリア））

図 3－3 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，南北（循環水ポンプエリア））

図 3－4 第3号機海水ポンプ室 地震時荷重算出用地質断面図（C－C 断面，東西）

表 3－1 耐震評価における解析ケース

注記＊ $1: ~ A-A$ 断面，B－B 断面及び C -C 断面は，全応力解析及び有効応力解析を実施する。 ＊2：基本ケース（ケース（1）及び⑥）を実施し，曲げ・軸力系の破壊，せん断破壊及び基礎地盤 の支持力照査における照査値の最大値を比較し，最大照査値を示す解析手法において，実強度を考慮した解析ケース（ケース（4）又はケース（9）を実施する。
＊3：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.2 使用材料及び材料の物性値

構造物の使用材料を表3－2に，材料の物性値を表3－3に示す。

表3－2 使用材料

材料	仕様
コンクリート	設計基準強度 $23.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表3－3 材料の物性値（構造部材）

材料		目	材料諸元	備考
鉄筋コンクリート	単位体積重量 （ $\mathrm{kN} / \mathrm{m}^{3}$ ）		24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	実強度＊	3.46×10^{4}	解析ケース（4），（9）
		設計基準強度	2． 48×10^{4}	$\begin{aligned} & \text { 解析ケース(1), (2), } \\ & \text { (3), (6), (7), (8) } \end{aligned}$
	ポアソン比		0.2	

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．3許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」という。） に基づき，限界ひずみ（圧縮縁コンクリートひずみ 1.0% ）とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており，圧縮縁コンクリートひずみ 1.0% の状態は，かぶりコンクリートが剥落する前の状態であることが，屋外重要土木構造物を模し たラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定されたもの である。

表 3－4 第3号機海水ポンプ室の曲げ・軸力系の破壊に対する許容限界

確認項目	許容限界	
構造強度を有すること	限界ひずみ	止水機能：主鉄筋（SD345）： 1725μ $\text { コンクリート : } 2000 \mu$
S クラスの施設を支持する機能を損なわないこと		支持機能：主鉄筋（SD345）： 1725μ $\text { コンクリート : 2000 } \mu$

（2）せん断破壊に対する許容限界
構造強度を有することの確認におけるせん断破壊に対する許容限界は，土木学会マニュ アルに基づくせん断耐力とする。

せん断耐力は，土木学会マニュアルに基づき「a．棒部材式」を適用することとし，デ イープビームとなる部材についても，「 a．棒部材式」を用いることで安全側の評価とする。

CCb 工法を用いる構造部材については「b。 CCb によりせん断補強された部材のせん断耐力式」を，増厚補強を行う構造部材については「c．増厚部におけるせん断耐力式」を用 いる。また，CCb 適用部材に対して増厚補強を行う場合については，「d．CCb 適用部材に対して増厚補強を行う場合におけるせん断耐力式」を用いる。せん断破壊に対する耐力評価フローを図 3－5に示す。

増厚部におけるせん断耐力については，「鉄道構造物等設計標準•同解説（開削トンネル） （鉄道総合技術研究所，平成 13 年 3 月）」（以下「鉄道標準」という。）によることとする。各要求機能に対する確認について，止水機能及び支持機能のいずれも，せん断破壊に対 しては，終局状態に至らないことを目標性能とすることからせん断耐力を許容限界とする。壁部材の面内せん断に対する許容限界は，限界せん断ひずみ 2000μ（2／1000）とする。限界せん断ひずみ 2000μ（2／1000）は，J E A G 4 6 O 1－1987において，耐震壁の終局耐力に相当する面内せん断ひずみ 4000μ（ $4 / 1000$ ）に余裕を見込んだ許容限界かつ耐震壁 の支持機能に対する許容限界として規定されている。

[^0]a．棒部材式
$\mathrm{V}_{\mathrm{yd}}=\mathrm{V}_{\mathrm{cd}}+\mathrm{V}_{\mathrm{sd}}$
ここで， V_{yd} ：せん断耐力
V_{cd} ：コンクリートが分担するせん断耐力
V_{sd} ：せん断補強鉄筋が分担するせん断耐力
$\mathrm{V}_{\mathrm{cd}}=\beta_{\mathrm{d}} \cdot \beta_{\mathrm{p}} \cdot \beta_{\mathrm{n}} \cdot \beta_{\mathrm{a}} \cdot \mathrm{f}_{\mathrm{vcd}} \cdot \mathrm{b}_{\mathrm{w}} \cdot \mathrm{d} / \gamma_{\mathrm{bc}}$
$$
\mathrm{f}_{\mathrm{vcd}}=0.20 \sqrt[3]{\mathrm{f}_{\mathrm{cd}}^{\prime}} \quad \text { ただし, } \mathrm{f}_{\mathrm{vcd}}>0.72\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \text { となる場合は }
$$
$$
\mathrm{f}_{\mathrm{vcd}}=0.72 \quad\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
$$
$\beta_{d}=\sqrt[4]{1 / d}$（d $\left.[\mathrm{m}]\right)$ ただし，$\beta_{\mathrm{d}}>1.5$ となる場合は $\beta_{\mathrm{d}}=1.5$
$\beta_{\mathrm{p}}=\sqrt[3]{100 \mathrm{p}_{\mathrm{v}}} \quad$ ただし，$\beta_{\mathrm{p}}>1.5$ となる場合は $\beta_{\mathrm{p}}=1.5$
$\beta_{\mathrm{n}}=1+\mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{N}_{\mathrm{d}} \geq 0\right) \quad$ ただし，$\beta_{\mathrm{n}}>2.0$ となる場合は $\beta_{\mathrm{n}}=2.0$
$=1+2 \mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{N}_{\mathrm{d}}^{\prime}<0\right)$ ただし，$\beta_{\mathrm{n}}<0$ となる場合は $\beta_{\mathrm{n}}=0$
$\beta_{a}=1$
ここで， $\mathrm{f}^{\prime}{ }_{\mathrm{cd}}$ ：コンクリート圧縮強度の設計用値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right.$ ）で設計基準強度 $\mathrm{f}^{\prime}{ }_{\mathrm{ck}}$ を材料係数 γ_{mc} で除したもの
p_{v} ：引張鉄筋比 $\mathrm{p}_{\mathrm{v}}=\mathrm{A}_{\mathrm{s}} /\left(\mathrm{b}_{\mathrm{w}} \cdot \mathrm{d}\right)$
A_{s} ：引張側鋼材の断面積
b_{w} ：部材の有効幅
d ：部材の有効高さ
$N^{\prime}{ }_{d}$ ：設計軸圧縮力
M_{d} ：設計曲げモーメント
$\mathrm{M}_{0}: \mathrm{M}_{\mathrm{d}}$ に対する引張縁において，軸方向力によって発生する応力を打ち消すのに必要なモーメント（デコンプレッションモーメント） $\mathrm{M}_{0}=\mathrm{N}^{\prime}{ }_{\mathrm{d}} \cdot \mathrm{D} / 6$
D ：断面高さ
a／d ：せん断スパン比
γ_{bc} ：部材係数
γ_{mc} ：材料係数
$\mathrm{V}_{\mathrm{sd}}=\left\{\mathrm{A}_{\mathrm{w}} \mathrm{f}_{\mathrm{wyd}}(\sin \alpha+\cos \alpha) / \mathrm{s}\right\} z / \gamma_{\mathrm{bs}}$
ここで， A_{w} ：区間 s におけるせん断補強筋の総断面積
$\mathrm{f}_{\mathrm{wyd}}$ ：せん断補強筋の降伏強度の材料係数 $\gamma_{m s}$ で除したもので， $400 \mathrm{~N} / \mathrm{mm}^{2}$ 以下とする。ただし，コンクリートの圧縮強度の特性値 $\mathrm{f}^{\prime}{ }_{\mathrm{ck}}$ が $60 \mathrm{~N} / \mathrm{mm}^{2}$ 以上の時は， $800 \mathrm{~N} / \mathrm{mm}^{2}$ 以下としてよい。
α ：せん断補強筋と部材軸のなす角度
s ：せん断補強筋の配置間隔
z ：圧縮応力の合力の作用位置から引張鋼材図心までの距離で， d／1．15とする。
$\gamma_{\text {bs }}$ ：部材係数
γ_{ms} ：材料係数
b．CCb によりせん断補強された部材のせん断耐力式（棒部材式）
海水ポンプ室において後施工せん断補強（セラミックキャップバー（CCb））を配置し た構造部材のせん断耐力については，「建設技術審查証明報告書 技術名称 後施工セラ ミック定着型せん断補強鉄筋「セラミックキャップバー（CCb）一般財団法人土木研究 センター」」（以下「建設技術証明書」という。）に示されている以下の設計式により求め る。
\[

$$
\begin{align*}
& \mathrm{V}_{\mathrm{pyd}}=\mathrm{V}_{\mathrm{cd}}+\mathrm{V}_{\mathrm{sd}}+\mathrm{V}_{\mathrm{Ccbd}} \\
& \begin{aligned}
\mathrm{V}_{\mathrm{Ccbd}} & =\beta_{\mathrm{aw}} \cdot \mathrm{~V}_{\mathrm{awd}} \\
& =\beta_{\mathrm{aw}}\left\{\mathrm{~A}_{\mathrm{aw}} \cdot \mathrm{f}_{\mathrm{awyd}}\left(\sin \alpha_{\mathrm{aw}}+\cos \alpha_{\mathrm{aw}}\right) / \mathrm{S}_{\mathrm{aw}}\right\} \mathrm{z} / \gamma_{\mathrm{b}} \\
\beta_{\mathrm{aw}}=\eta & =1-\frac{1_{\mathrm{y}}}{2 S_{\mathrm{rb}}}
\end{aligned}
\end{align*}
$$
\]

ここに，
V_{cd} ：せん断補強鋼材を用いない壁部材の単位幅あたりのせん断耐力
$V_{\mathrm{s} \text { d }}$ ：既存のせん断補強鋼材により受け持たれる壁部材の単位幅あたりのせ ん断耐力
$\mathrm{V}_{\mathrm{CCbd}}$ ：セラミックキヤップバー（CCb）により受け持たれる壁部材の単位幅あたりのせん断耐力
$\mathrm{V}_{\mathrm{a} w \mathrm{wd}}$ ：セラミックキャップバー（CCb）を通常のスターラップと見なして求められる壁部材の単位幅あたりのせん断耐力
β_{aw} ：セラミックキャップバー（CCb）のせん断耐力の向上への有効性を示す係数
$\mathrm{A}_{\mathrm{a} w}$ ：単位長さ当たりの区間 $\mathrm{S}_{\mathrm{a} w}$ におけるセラミックキヤップバー （CCb）の総断面積
$\mathrm{f}_{\mathrm{awyd}}$ ：セラミックキヤップバー（CCb）の設計降伏強度で $400 \mathrm{~N} / \mathrm{mm}^{2}$ 以下 とする。
$\alpha_{\mathrm{a} w}$ ：セラミックキヤップバー（CCb）が部材軸となす角度
S_{aw} ：セラミックキャップバー（CCb）の配置間隔
z：圧縮応力の合力の作用位置から引張鋼材図心までの距離で一般に d／1．15としてよい。
γ_{b} ：部材係数（一般に1．10としてよい）
1_{y} ：セラミックキャップバー（CCb）の先端型定着耐の定着長（5D として よい）
$S_{r b}$ ：補強対象部材の圧縮鉄筋と引張鉄筋の間隔
d ：補強対象部材の有効高さ
d^{\prime} ：差し込み側の部材表面から圧縮鋼材図心までの距離

セラミックキャップバー（CCb）が負担するせん断耐力は，先端型定着体の定着長が 5D であることから，通常のせん断鉄筋に比べ補強効率が低下することから，セラミックキャ ップバー（CCb）が負担するせん断耐力は同定着長と補強対象部材の主鉄筋間隔から算出さ れる有効率 β_{aw} を通常のせん断補強鉄筋の負担分に乗じることにより考慮されている。図 $3-6$ に有効率算定における概念図を示す。

（a）斜めひび割れ内に定着不良が生じたせん断補強鉄筋

（b）標準型
図 3－6 セラミックキャップバー（CCb）の有効率算定の概念図
c．増厚部におけるせん断耐力式
増厚補強部において既設部材と補強部材を一体壁として考慮する場合におけるせん断補強鋼材が負担するせん断耐力 Vwd の算定の考え方を図 3－7に示す。せん断耐力式は，既設部材と補強部材が負担するせん断耐力の足し合わせとして図 3－7の（解 8．4．3－3） により算定する。

各々の壁に分離してせん断補強鋼村を配置する場合において，せん断補強鋼材により受け持たれる設計 せん断耐力は，式（解 8．4．3－3）により算定してよい。
$h_{1}>h_{2}$ の場合

$$
V_{w d}=\left\{\frac{A_{w 1} \cdot f_{w y d} \cdot\left(\sin \theta_{1}+\cos \theta_{1}\right) \cdot z_{1}}{s_{1}}+\frac{A_{w 2} \cdot f_{w y d} \cdot\left(\sin \theta_{2}+\cos \theta_{2}\right) \cdot z_{2}}{s_{2}} \cdot \frac{h_{2}}{h_{1}}\right\} / \gamma_{\mathrm{b}}
$$

$h_{1}=h_{2}$ の場合

$$
V_{\mathrm{wd}}=\left\{\frac{A_{\mathrm{w} 1} \cdot f_{\mathrm{wyd}} \cdot\left(\sin \theta_{1}+\cos \theta_{1}\right) \cdot z_{1}}{s_{1}}+\frac{A_{\mathrm{w} 2} \cdot f_{\mathrm{wdd}} \cdot\left(\sin \theta_{2}+\cos \theta_{2}\right) \cdot z_{2}}{s_{2}}\right\} / \gamma_{\mathrm{b}}
$$

$h_{1}<h_{2}$ の場合

$$
V_{\mathrm{wd}}=\left\{\frac{A_{\mathrm{w} 1} \cdot f_{\mathrm{wyd}} \cdot\left(\sin \theta_{1}+\cos \theta_{1}\right) \cdot z_{1}}{s_{1}} \cdot \frac{h_{1}}{h_{2}}+\frac{A_{\mathrm{w} 2} \cdot f_{\mathrm{wyd}} \cdot\left(\sin \theta_{2}+\cos \theta_{2}\right) \cdot z_{2}}{s_{2}}\right\} / \gamma_{\mathrm{b}}
$$

（解 8．4．3－3）
ここに，$\quad V_{\mathrm{wd}}:$ せん断補強鋼材により受け持たれる棒部材の設計せん断耐力

解貺図 8．4．3－4 一体化におけるせん断補強鉄筋の配置（分離して配置した場合）

図 3－7 既設部材と補強部材を一体壁としたせん断耐力の考え方
（鉄道標準より抜粑（一部加筆））
d． CCb 適用部材に対して増厚補強を行う場合におけるせん断耐力式
既設部材に CCb 補強を行ら一体壁のせん断耐力のうちせん断補強鋼材が負担する設計 せん断耐力 Vwd は，図 3－6に示す有効率 β aw を考慮する。例として，$h_{1}>h_{2}$ の場合に β aw を考慮したせん断耐力式を式（1）に示す。
コンクリート負担分のせん断耐力 Vcd は，既設部材と補強部材との間にジベル鉄筋を配置し，既設部材と補強部材が一体として挙動するため，増厚を実施しない部材におい て参照している原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（2005年 6 月 土木学会 原子力土木委員会）に基づき算出する。

$$
\begin{equation*}
V_{w d}=\left\{\frac{A_{w 1} f_{w y d}\left(\sin \theta_{1}+\cos \theta_{1}\right) z_{1}}{s_{1}} \cdot \beta_{a w}+\frac{A_{w 2} f_{w y d}\left(\sin \theta_{2}+\cos \theta_{2}\right) z_{2}}{s_{2}} \cdot \frac{h_{2}}{h_{1}}\right\} / \gamma_{b} \tag{1}
\end{equation*}
$$

ここで，
A_{wi} ：区間 s におけるせん断補強筋の総断面積
$\mathrm{f}_{\mathrm{wyd}}$ ：せん断補強筋の降伏強度を材料係数 γ_{ms}（1．0）で除したもので， $400 \mathrm{~N} / \mathrm{mm}^{2}$ 以下とする。ただし，コンクリートの圧縮強度の特性値 f，ckが $60 \mathrm{~N} / \mathrm{mm}^{2}$ 以上の時は， $800 \mathrm{~N} / \mathrm{mm}^{2}$ 以下とする。
θ_{i} ：せん断補強筋と部材軸のなす角度
S_{i} ：せん断補強筋の配置間隔
z_{i} ：圧縮応力の合力の作用位置から引張鋼材図心までの距離で， $\mathrm{d} /$ 1．15とする。
γ_{b} ：部材係数 $(=1.1)$
h_{i} ：部材厚
（3）壁部材の面内せん断に対する許容限界
壁部材の面内せん断に対する許容限界は，原子力発電所耐震設計技術指針
J E A G 4 6 O 1－1987（社団法人 日本電気協会 電気技術基準調査委員会）に基づき，面内せん断ひずみ 2000μ（2／1000）を許容限界とする。

原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（社団法人 日本電気協会 電気技術基準調査委員会）において，限界せん断ひずみ 2000μ（2／1000）は，耐震壁の終局耐力に相当する面内せん断ひずみ 4000μ（ $4 / 1000$ ）に余裕を見込んだ許容限界として規定されている。

3．3．2 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（牧の浜部層）
基礎地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（牧の浜部層）の許容限界を表3－5に示す。

表 3－5 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	牧の浜部層	11.4

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書［構造性能照査編］（土木学会，2002 年制定）に基づき，コンクリートの支圧強度とする。 MMR（既設）の許容限界を表3－6に示す。

表 3－6 \quad MMR （既設）の支持性能に対する許容限界		
評価項目	MMR（既設）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
支圧強度	コンクリート $\left(\mathrm{f}^{\prime}{ }_{\mathrm{c} \mathrm{k}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$	$\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$

3.4 評価方法

3．4．1 構造部材の健全性評価

第 3 号機海水ポンプ室の耐震評価は，非線形ソリッド要素を用いた三次元構造解析によ り実施する。三次元構造解析には，解析コード「COM3 Ver．9．15」を用いる。なお，解析コ ードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

三次元構造解析への入力荷重は，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」に基づく地震応答解析において，第3号機海水ポンプ室の耐震評価に支配的な荷重が最大となる時刻を選定し，当該時刻における地震時応答から設定する。

添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」に基づく地震応答解析 により算定した地震時荷重（地震時土圧及び慣性力）を用いて，三次元構造解析により算定した照査用応答値が，「3．3 許容限界」において設定した許容限界を下回ることを確認 する。
（1）解析モデル
材料の非線形特性を考慮した非線形ソリッド要素でモデル化する。三次元構造解析モデ ルを図 3－8 及び図 3－9に示す。

また，構造部材（鉄筋コンクリート）の非線形特性を図 3－10 及び図 3－11に示す。

図3-8 三次元構造解析モデル図 (鳥瞰図)

図3－9 三次元構造解析モデル図（鳥瞰図）

図3－10 構造部材の非線形特性（コンクリートの応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2017年制定）より引用）

図 3－11 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2012年制定）より引用）
（2）照査時刻
構造部材の健全性評価において，照査時刻は構造的特徴を踏まえ，損傷モードごと及び部材ごとに評価が厳しくなる時刻を地震応答解析の結果から複数選定する。表 3－7に照査時刻の選定の考え方を示す。

表 3－7 照査時刻の考え方

照査時刻	損傷モード	着目部位		荷重抽出時刻
時刻1	曲げ・軸力系の破壊	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$		下部構造（水路）における頂底版間の層間変位が最大となる時刻
時刻 2,3	曲げ・軸力系の破壊	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$		上部構造における 各側壁の転倒曲げモーメン トが最大となる時刻
時刻 4	せん断破壊 （面外）	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$		総水平荷重が最大となる時刻
時刻 5， 6	せん断破壊 （面外）	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$		上部構造における各側壁の水平荷重が最大となる時刻
時刻7	せん断破壊 （面内）	$\begin{gathered} \text { 壁 } \\ \text { (面内) } \end{gathered}$		面部材の層間変位が 最大となる時刻
時刻 8,9	曲げ・軸力系の破壊及び せん断破壊 （面外）	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$		上部構造における各側壁の上部荷重が最大となる時刻

（3）作用荷重分布図
a．全応力解析による地震時荷重
曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査のうち，全応力解析に よる地震時荷重を用いた三次元構造解析の結果において照査値が最大となる作用荷重分布図を図3－12～図3－13に示す。

直応力 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

直応力

せん断応力 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－12（1）作用荷重分布図（直応力及びせん断応力）
（解析ケース（4），S s－N $1(++)$ ，A－A 断面，南北（スクリーンエリア））

図3－12（2）作用荷重分布図（設計震度分布）
（解析ケース（4），S s－N $1(++)$ ，A－A 断面，南北（スクリーンエリア））

－800 直応力 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ 800

O 2 （5） $\mathrm{VI}-2-2-10$ R 1

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－13（1）作用荷重分布図（直応力及びせん断応力）
（解析ケース（4），S s－N $1(++)$ ，B－B 断面，南北（循環水ポンプエリア））

図 3－13（2）作用荷重分布図（設計震度分布）
（解析ケース（4），S s－N $1(++)$ ，B－B 断面，南北（循環水ポンプエリア））

b．有効応力解析による地震時荷重

曲げ・軸力系の破壊に対する照査及びせん断破壊に対する照査のうち，有効応力解析 による地震時荷重を用いた三次元構造解析の結果において照査値が最大となる作用荷重分布図を図3－14～図3－15に示す。

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－14（1）作用荷重分布図（直応力及びせん断応力）
（解析ケース 8 ，S s－D $2(++)$ ， $\mathrm{A}-\mathrm{A}$ 断面，南北（スクリーンエリア））

図 3－14（2）作用荷重分布図（設計震度分布）
（解析ケース 8 ，S s－D $2(++)$ ，A－A 断面，南北（スクリーンエリア））

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－15（1）作用荷重分布図（直応力及びせん断応力）
（解析ケース（8），S s－D $2(++), ~ B-B$ 断面，南北（循環水ポンプエリア））

図3－15（2）作用荷重分布図（設計震度分布）
（解析ケース（8），S s－D $2(++)$ ，B－B 断面，南北（循環水ポンプエリア））
（4）入力荷重
三次元構造解析の入力荷重は，設計値及び添付書類「VI－2－2－9 第3号機海水ポンプ室 の地震応答計算書」より得られた地震応答解析に基づく「（2）照查時刻」で選定した照査時刻における応答値を用いて算定する。地震時荷重は地震応答解析から抽出した荷重を各 エリア奥行方向に一様に載荷する。入力荷重の一覧を表3－8に示す。

表 3－8 三次元構造解析における入力荷重

3．4．2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては，構造部材を支持する基礎地盤に発生する接地圧が許容限界を下回ることを確認する。

4．構造部材の地震時応答

三次元構造解析に基づく，各構造部材の地震時応答結果を示す。各部材位置を図4－1 に，各部材の要素座標系を図 4－2 及び図 4－3 に，ソリッド要素における各要素の断面力の方向を図4— 4 に示す。

断面力の算出には，解析コード「Com3Eva1Sh Ver．2021．01．27」を用いる。解析コードの検証及 び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

注記＊：手前の側壁は非表示としている。
図 4－1 各部材位置

黒：全体座標系を示す
赤：要素座標系を示す
図 4－2 各部材の要素座標系（1／2）

妻壁（1）（上流側）

妻壁 ${ }^{2}$（下流側）

隔壁（1）（スクリーン）

隔壁（2）（スクリーン－循環水）

隔壁（3）（循環水）

黒：全体座標系を示す
赤：要素座標系を示す
図 4－3 各部材の要素座標系（2／2）

$\mathrm{M}_{\mathrm{x}}, ~ \mathrm{M}_{\mathrm{y}}$ ：曲げモーメント
$\mathrm{Q}_{\mathrm{x}}, ~ \mathrm{Q}_{\mathrm{y}}$ ：せん断力
N_{x} ， N_{y} ：軸力
$\mathrm{N}_{\mathrm{x}} \mathrm{y}$ ：面内せん断力

図 4－4 ソリッド要素における断面力の方向

4.1 全応力解析による荷重に対する断面力分布

全応力解析による地震時荷重を用いた三次元構造解析結果における曲げ・軸力系の破壊に対 する照査のうち，各部材のコンクリートの圧縮縁ひずみ，コンクリートの圧縮ひずみ及び主筋 のひずみに対して最大照査値となる評価時刻でのひずみ分布を図 4－5～図4－7に，せん断破壊に対して最大照査値となる評価時刻での断面力分布を図4－8～図4－13に示す。

図 4－5（1）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（コンクリートの圧縮縁ひずみ）
（妻壁（1），解析ケース（2），S s－N $1(++)$ ）

図 4－5（2）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（コンクリートの圧縮縁ひずみ）
（妻壁（1），解析ケース（2），S s－N $1(++)$ ）

図 4－6（1）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（コンクリートの圧縮ひずみ）
（隔壁（3），解析ケース（2），S s－N $1(++)$ ）

図 4－6（2）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（コンクリートの圧縮ひずみ）
（隔壁（3），解析ケース（2），S s－N 1 （＋＋））

図4－7（1）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（鉄筋）（中床版（3），解析ケース（1），S s－D $2(++)$ ）

隔壁（3）（循環水）

図 4－7（2）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（鉄筋）（中床版（3），解析ケース（1），S s－D $2(++)$ ）

底版

側壁（2）（南側）

中床版①（スクリーン）

中床版（4）

導流壁（2）（中央）

導流壁(1) (北側)

導流壁（3）（南側）

図 4－8（1）せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{x} ）
（導流壁（1），解析ケース④）S s－N $1 \quad(++))$

図 4－8（2）せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{x} ）
（導流壁（1），解析ケース（4），S s－N $1 \quad(++)$ ）

図 4－9（1）せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{y} ）
（導流壁（1），解析ケース（4），S s－N $1(++))$

図 4－9（2）せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{y} ）
（導流壁（1），解析ケース（4），S s－N $1 \quad(++)$ ）

図 4－10（1）せん断破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{x} ）
（導流壁（1），解析ケース（4），S s－N $1(++)$ ）

図 4－10（2）せん断破壊に対する照査值最大時の断面力分布図
（軸力（ kN / m ）： N_{x} ）
（導流壁（1），解析ケース（4），S s－N $1(++)$ ）

側壁（2）（南側）

底版

側壁（1）（北側）

中床版（4）

導流壁（2）（中央）

中床版（3）

中床版①（スクリーン）

中床版（2）（スクリーン）

導流壁(1) (北側)

導流壁（3）（南側）

図 4－11（1）せん断破壊に対する照査値最大時の断面力分布図
（軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{y}}$ ）
（導流壁（1），解析ケース（4），S s－N $1(++)$ ）

図 4－11（2）せん断破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{y} ）
（導流壁（1），解析ケース（4），S s－N $1 \quad(++)$ ）

図 4－12（1）せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{x} ）
（導流壁（1），解析ケース（4），S s－N $1(++))$

図 4－12（2）せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{x} ）
（導流壁（1），解析ケース（4），S s－N $1 \quad(++)$ ）

図 4－13（1）世ん断破壊に対する照査値最大時の断面力分布図
（せん断力（kN／m）： Q_{y} ）
（導流壁（1），解析ケース（4），S s－N $1(++)$ ）

図 4－13（2）せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{y} ）
（導流壁（1），解析ケース（4），S s－N $1(++)$ ）

4．2 有効応力解析による荷重に対する断面力分布

有効応力解析による地震時荷重を用いた三次元構造解析結果における曲げ・軸力系の破壊に対する照査のうち，各部材のコンクリートの圧縮縁ひずみ，コンクリートの圧縮ひずみ及び主筋のひずみに対して最大照査値となる評価時刻でのひずみ分布を図 4－14～図4－16に，せん断破壊に対して最大照査値となる評価時刻での断面力分布を図4－17～図4－22に示す。

図 4－14（1）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図 （コンクリートの圧縮縁ひずみ）
（妻壁（1），解析ケース（6），S s－D $1(-+)$ ）

隔壁（3）（循環水）

図 4－14（2）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図 （コンクリートの圧縮縁ひずみ）
（妻壁（1），解析ケース⑥）S s－D $1(-+)$ ）

図 4－15（1）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（コンクリートの圧縮ひずみ）
（隔壁（3），解析ケース⑥）S s－N 1 （＋＋））

隔壁（1）（スクリーン）

隔壁（2）（スクリーン一循環水）

隔壁（3）（循環水）

図 4－15（2）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（コンクリートの圧縮ひずみ）
（隔壁（3），解析ケース⑥）S s－N $1(++)$ ）

図 4－16（1）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図 （鉄筋）（隔壁③，解析ケース⑥，S s－N $1 \quad(++)$ ）

図 4－16（2）曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図 （鉄筋）（隔壁（3），解析ケース（6），S s－N $1(++)$ ）

図 4－17（1）せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（kN•m／m）： M_{x} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

図 4－17（2）せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{x} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

図 4－18（1）せん断破壊に対する照査値最大時の断面力分布図 （曲げモーメント（kN•m／m）： M_{y} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

隔壁（1）（スクリーン）

隔壁（2）（スクリーン一循環水）

隔壁（3）（循環水）

図 4－18（2）せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{y} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

図 4－19（1）せん断破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{x} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

隔壁（2）（スクリーン一循環水）

隔壁（3）（循環水）

図 4－19（2）せん断破壊に対する照査値最大時の断面力分布図
（軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{x}}$ ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

図 4－20（1）せん断破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{y} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

隔壁（3）（循環水）

図 4－20（2）せん断破壊に対する照査値最大時の断面力分布図
（軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{y}}$ ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

図 4－21（1）せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{x} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

妻壁（1）（上流側）

妻壁（2）（下流側）

隔壁（2）（スクリーン－循環水）

隔壁（3）（循環水）

図 4－21（2）せん断破壊に対する照査値最大時の断面力分布図
（せん断力 $(\mathrm{kN} / \mathrm{m}): \mathrm{Q}_{\mathrm{x}}$ ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

図 4－22（1）せん断破壊に対する照査値最大時の断面力分布図
（せん断力（kN／m）： Q_{y} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

隔壁（3）（循環水）

図 4－22（2）せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{y} ）
（導流壁（2），解析ケース（8），S s－D $2(++)$ ）

5．耐震評価結果

第 3 号機海水ポンプ室は，基準地震動 S s による耐震評価として，全応力解析及び有効応力解析から算定した地震時荷重を用いた三次元構造解析により構造部材の曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持性能に対する評価を実施した。

構造部材の健全性評価については，鉄筋及びコンクリートのひずみ，せん断力，壁部材の面内 せん断変形に伴う面内せん断ひずみが要求機能に応じた許容限界を下回ることを確認した。基礎地盤の支持性能評価については，基礎地盤に発生する応力（接地圧）が極限支持力に基づ く許容限界を下回ること，MMR（既設）に発生する応力（接地圧）が支圧強度を下回ることを確認 した。

5.1 全応力解析による荷重に対する耐震評価結果

5．1．1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する最大照査値を表 5－1 に，せん断破壊 に対する各評価位置での最大照査値を表 5－2 に，各壁部材の面内せん断に対する照査値を表5－3に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮縁ひずみ），照査用せん断力及 び壁部材の照査用面内せん断ひずみが，構造部材の健全性に対する許容限界を下回ることを確認した。

表 5－1 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮縁ひずみ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2 ε d	限界 ひずみ ε R	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	2	（3）	S s－N $1(-+)$	639 н	10000μ	0.07
中床版	12	（2）	S s－N $1 \quad(++)$	1070 m	10000μ	0.11
側壁	43	（1）	S s－N $1 \quad(-+)$	873μ	10000μ	0.09
隔壁	113	（2）	S s－N $1 \quad(++)$	725μ	10000μ	0.08
導流壁	62	（2）	S s－N $1 \quad(++)$	1298μ	10000μ	0． 13
妻壁	77	（2）	S s－N $1(++)$	1697 m	10000μ	0． 17

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 5－2 せん断破壊に対する照査
$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { 評価位置＊1 } & \begin{array}{c}\text { 解析 } \\ \text { ケース }\end{array} & \text { 地震動 } & \begin{array}{c}\text { 照査用 } \\ \text { せん断力＊2 } \\ V_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m})\end{array} & \begin{array}{c}\text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m})\end{array} & \begin{array}{c}\text { 照査値 }\end{array} \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{d}}\end{array}\right]$

注記 $* 1$ ：評価位置は図 5－1～図5－3 に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：増厚補強部材における評価であることから，「3．3．1 構造部材の健全性に対す る許容限界」に示す鉄道標準に基づき，せん断耐力式によりせん断耐力を算定 する。（既設部材厚 1.5 m ，補強部材厚 0.9 m ）
＊ 4 ：増厚補強部材における評価であることから，「3．3．1構造部材の健全性に対す る許容限界」に示す鉄道標準に基づき，せん断耐力式によりせん断耐力を算定 する。（既設部材厚 1.5 m ，補強部材厚 2.5 m ）

【側壁•隔壁】

図 5－1 評価位置図（曲げ・軸力系の破壊及びせん断破壊）（ $1 / 3$ ）

【底版•中床版】

図 5－2 評価位置図（曲げ・軸力系の破壊及びせん断破壊）（2／3）

【妻壁•隔壁】

図 5－3 評価位置図（曲げ・軸力系の破壊及びせん断破壊）（3／3）

表 5－3 壁部材の面内せん断に対する照査

	評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用面内せん断ひずみ＊2 γ_{d}	限界 せん断ひずみ γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
	底版	－	－	－	－	－	－
	中床版	－	－	－	－	－	－
	側壁	－	－	－	－	－	－
	隔壁	110	（2）	S s－N $1 \quad(++)$	514μ	2000μ	0.26
	導流壁	－	－	－	－	－	－
\checkmark	妻壁	70	（2）	S s－N $1 \quad(++)$	377μ	2000 m	0． 19

注記＊1 ：評価位置は図 5－4に示す。
＊2：照査用面内せん断ひずみ＝発生する面内せん断ひずみ \times 構造解析係数 γ_{a}

図 5－4 評価位置図（壁部材の面内せん断）

5．1．2 各要求機能に対する評価結果

（1）止水機能
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5 -4 及び表 5－5に，せん断破壊に対する各評価位置での最大照査値を表5－6に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮ひずみ及び主筋ひずみ）が，止水機能に対する許容限界を下回ることを確認した。

表 5－4 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮ひずみ）

評価位置＊${ }^{1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	20	（1）	S s－N $1(-+)$	515μ	2000μ	0.26
側壁	－	－	－	－	－	－
隔壁	113	（2）	S s－N $1(++)$	630μ	2000μ	0.32
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記 $* 1$ ：評価位置は図5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図 5－5に示す。
＊3：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表 5－5 曲げ・軸力系の破壊に対する照査（主筋ひずみ）

評価位置＊${ }^{1,2}$		解析 ケース	地震動	照査用 ひずみ*3 ε d	限界 ひずみ $\varepsilon \mathrm{R}$	照査値 $\varepsilon \mathrm{d}_{\mathrm{d}} / \varepsilon \mathrm{R}$
底版	－	－	－	－	－	－
中床版	20	（1）	S s－D $2(++)$	622μ	1725μ	0． 37
側壁	－	－	－	－	－	－
隔壁	113	（1）	S s－N $1(-+)$	470μ	1725μ	0． 28
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図5－5に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 5－6 せん断破壊に対する照査

評価位置＊${ }^{1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊3 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\mathrm{V}_{\mathrm{y} \mathrm{~d}}$ （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
底版	－	－	－	－	－	－
中床版	20	（1）	S s－N $1(-+)$	2634	4420	0.60
側壁	－	－	－	－	－	－
隔壁	104	（2）	S s－N $1(++)$	1300	1958	0.67
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記 $* 1$ ：評価位置は図 5－1～図5－3 に示す。
＊2：止水機能が要求される部材の範囲は図5－5に示す。
$* 3$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

図5－5 止水機能が要求される部材の範囲

5．1．3 Sクラスの施設等を支持する機能に対する評価結果
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表5 -7 及び表 5－8に，せん断破壊に対する各評価位置での最大照查値を表5－9に，各壁部材の面内せん断（面内せん断ひずみ）に対する照査値を表5－10に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮ひずみ及び主鉄筋ひずみ），照査用せん断力が，S クラスの施設等を支持する機能に対する許容限界を下回ることを確認した。

表 5－7 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

評価位置 ${ }^{* 1,2}$	解析 ケース	地震動	照査用 ひずみ ${ }^{* 3}$ ε_{d}	限界 ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$	
底版	-	-	-	-	-	-
中床版	-	-	-	-	-	-
側壁	-	-	-	-	-	-
隔壁	105	（1）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$	576μ	2000μ	0.29
導流壁	-	-	-	-	-	-
妻壁	-	-	-	-	-	-

注記 $* 1$ ：評価位置は図5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
$* 3$ ：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表5－8 曲げ・軸力系の破壊に対する照査（主筋ひずみ）

評価位置＊${ }^{\text {P }}$ ， 2		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ*3 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \hline \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	103	（2）	S s - N $1 \quad(++)$	449μ	1725 m	0． 27
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記 $* 1$ ：評価位置は図 5－1～図5－3 に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma_{\text {a }}$

表 5－9 せん断破壊に対する照査

評価位置＊${ }^{1,2}$		解析 ケース	地震動	照査用 せん断耐力＊3 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 V_{yd} $(\mathrm{kN} / \mathrm{m})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	104	（2）	S s－N $1 \quad(++)$	1300	1958	0.67
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
$* 3$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ_{a}

表 5－10 壁部材の面内せん断に対する照査

評価位置＊${ }^{1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用面内せん断ひずみ＊3 γ_{d}	限界 せん断ひずみ γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	100	（2）	S s－N $1(++)$	315μ	2000μ	0.16
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図5－4に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
＊3：照査用面内せん断ひずみ＝発生する面内せん断ひずみ \times 構造解析係数 γ_{a}

図 5－6 支持機能が要求される部材の範囲

5．1．4 基礎地盤の支持性能に対する評価結果
（1）基礎地盤（牧の浜部層）
基礎地盤の支持性能に対する照査結果を表5－11に示す。また，最大接地圧分布図を図 5－7に，照査位置図を図5－8に示す。

第 3 号機海水ポンプ室の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－11 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（4）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	6.8	11.4	0.60

図 5－7 基礎地盤の最大接地圧分布図
（解析ケース（4），S s－N $1 \quad(++)$ ，循環水ポンプエリア）
東
西

\square ：照査位置

図 5－8 照査位置図
（2）MMR（既設）
MMR（既設）の支持性能に対する照査結果を表 5－12に示す。また，最大接地圧分布図 を図5－9に，照査位置図を図5－10に示す。

第 3 号機海水ポンプ室の MMR（既設）に発生する最大接地圧が，支圧強度を下回ること を確認した。

表 5－12 MMR（既設）の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime} \mathrm{a}_{\mathrm{a}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	5.5	15.6	0.36

図 5－9 MMR（既設）の最大接地圧分布図
（解析ケース（3），S s－N 1（＋＋），循環水ポンプエリア）

図 5－10 照査位置図

5.2 有効応力解析による荷重に対する耐震評価結果

5．2．1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する最大照査値を表5－13 に，せん断破壊に対する各評価位置での最大照査値を表 5－14に，各壁部材の面内せん断に対する照査値を表5－15に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮縁ひずみ），照査用せん断力及び壁部材の照査用面内せん断ひずみが，構造部材の健全性に対する許容限界を下回る ことを確認した。

表 5－13 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮縁ひずみ）

評価位置＊1		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*2 $\varepsilon \mathrm{d}$	限界 ひずみ ε R	照査値 $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$
底版	2	（8）	S s－N $1 \quad(-+)$	623μ	10000μ	0.07
中床版	12	（6）	S s－D $1 \quad(-+)$	1078μ	10000μ	0.11
側壁	43	（6）	S s－D $1 \quad(++)$	832μ	10000μ	0.09
隔壁	114	（6）	S s－N $1 \quad(++)$	730μ	10000μ	0.08
導流壁	62	（6）	S s－D $1 \quad(-+)$	1223 m	10000μ	0.13
妻壁	77	（6）	S s－D $1 \quad(-+)$	1672μ	10000μ	0.17

注記＊1：評価位置は図 5－1～図5－3に示す。 ＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表 5－14 せん断破壊に対する照査

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $V_{y d}$ （kN／m）	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
底版	2	（9）	S s－N $1(-+)$	6393	10025	0.64
中床版	12	（6）	S s－D $1(-+)$	3010	4018	0.75
側壁	53	（9）	S s－D $2(++$ ）	3354	4251	0.79
隔壁	103	（8）	S s－N $1(-+)$	1141	1792	0.64
導流壁	63	（8）	S s－D $2(++)$	2246	2787	0.81
妻壁	81	（6）	S s－D $1 \quad(-+)$	3645	$5460 * 3$	$0.67 * 3$

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$

表 5－15 壁部材の面内せん断に対する照査

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用面内せん断ひずみ＊2 γ_{d}	限界 せん断ひずみ γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	110	（6）	S s－N $1(++)$	543μ	2000μ	0.28
導流壁	－	－	－	－	－	－
妻壁	70	（6）	S s－D $1 \quad(++)$	323μ	2000μ	0.17

注記 $* 1$ ：評価位置は図5－4に示す。
＊2：照査用面内せん断ひずみ＝発生する面内せん断ひずみ \times 構造解析係数 γ_{a}

5．2．2 各要求機能に対する評価結果

（1）止水機能
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表5 -16 及び表 5－17に，せん断破壊に対する各評価位置での最大照査値を表5－18に示す。第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮ひずみ及び主筋ひずみ）が，止水機能に対する許容限界を下回ることを確認した。

表 5－16 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮ひずみ）

評価位置＊1，2		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 ε d	限界 ひずみ ε R	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	19	（6）	S s－D $1 \quad(-+)$	429μ	2000μ	0． 22
側壁	－	－	－	－	－	－
隔壁	113	（6）	S s－N $1 \quad(++)$	648μ	2000μ	0． 33
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊ 1 ：評価位置は図 5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図 5－5に示す。
＊3：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表 5－17 曲げ・軸力系の破壊に対する照査（主筋ひずみ）

評価位置＊1，2		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 ε d	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	20	（6）	S s－N $1 \quad(++)$	460μ	1725μ	0． 27
側壁	－	－	－	－	－	－
隔壁	114	（6）	S s－N $1 \quad(++)$	552μ	1725μ	0． 32
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図5－5に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 5－18 せん断破壊に対する照査

評価位置＊${ }^{1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊3 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	せん断 耐力 $\begin{aligned} & \mathrm{V}_{\mathrm{yd}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
底版	－	－	－	－	－	－
中床版	19	（6）	S s－D $2(-+)$	1683	2989	0． 57
側壁	－	－	－	－	－	－
隔壁	103	（8）	S s－N $1(-+)$	1141	1792	0.64
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図5－5に示す。
$* 3$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

5．2．3 Sクラスの施設等を支持する機能に対する評価結果
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表5 -19 及び表5－20に，せん断破壊に対する各評価位置での最大照查値を表5－21に，各壁部材の面内せん断（面内せん断ひずみ）に対する照査値を表 5－22に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮ひずみ及び主鉄筋ひずみ），照査用せん断力が，S クラスの施設等を支持する機能に対する許容限界を下回ることを確認した。

表 5－19 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

評価位置 ${ }^{* 1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照查用 } \\ \text { ひずみ*3 } \\ \varepsilon_{\text {d }} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	105	（6）	S s－D $1 \quad(++)$	440μ	2000μ	0． 22
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記 $* 1$ ：評価位置は図5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
$* 3$ ：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 5－20 曲げ・軸力采の破壊に対する照査（主筋ひずみ）

評価位置＊1，2		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 ひずみ*3 $\varepsilon{ }_{d}$	限界 ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	105	（6）	S s－D $1 \quad(++)$	363μ	1725μ	0.22
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 5－21 せん断破壊に対する照査

評価位置＊${ }^{1,2}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断耐力＊3 V_{d} $(\mathrm{kN} / \mathrm{m})$	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	103	（8）	S s－N $1(-+)$	1141	1792	0.64
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図 5－6に示す。
$* 3$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表 5－22 壁部材の面内せん断に対する照査

評価位置＊${ }^{\text {1，}} 2$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用面内せん断ひずみ＊3 γ_{d}	限界 せん断ひずみ γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
底版	－	－	－	－	－	－
中床版	－	－	－	－	－	－
側壁	－	－	－	－	－	－
隔壁	100	（6）	S s－D $1(-+)$	240μ	2000μ	0.12
導流壁	－	－	－	－	－	－
妻壁	－	－	－	－	－	－

注記＊1：評価位置は図 5－4に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
＊3：照査用面内せん断ひずみ＝発生する面内せん断ひずみ \times 構造解析係数 γ a

5．2．4 基礎地盤の支持性能に対する評価結果
（1）基礎地盤（牧の浜部層）
基礎地盤の支持性能に対する照査結果を表5－23に示す。また，最大接地圧分布図を図 5－11に，照査位置図を図5－12に示す。

第 3 号機海水ポンプ室の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－23 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（8）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(-+)$	6.1	11.4	0.54

\qquad

図 5－11 基礎地盤の最大接地圧分布図
（解析ケース 8 ，S s－N $1(-+)$ ，循環水ポンプエリア）

\square ：照査位置

図 5－12 照査位置図
（2）MMR（既設）
MMR（既設）の支持性能に対する照査結果を表5－24に示す。また，最大接地圧分布図を図 5－13 に，照査位置図を図 5－14に示す。

第 3 号機海水ポンプ室の MMR（既設）に発生する最大接地圧が，支圧強度を下回ること を確認した。

表 5－24 MMR（既設）の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime} \mathrm{a}^{2}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime} \mathrm{a}_{\mathrm{a}}$
（6）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	5.1	15.6	0.33

南 南 北

構造物底面

図 5－13 MMR（既設）の最大接地圧分布図 （解析ケース⑥）S s－N $1 \quad(++)$ ，循環水ポンプエリア）

図 5－14 照査位置図

[^0]: 図 3－5 せん断破壊に対する耐力評価フロー

