女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －補－E－01－0150－1＿改 5
提出年月日	2021 年 9 月 2 日

※なお，本資料は抜粋版のため，公開 できない箇所はありません。

補足－150－1 竜巻への配慮に関する説明書の補足説明資料

目 次

1．竜巻の影響を考慮する施設について
1.1 外部事象防護対象施設等のうち竜巻の影響を考慮する施設の抽出について
1.2 外部事象防護対象施設等に波及的影響を及ぼし得る施設の選定について
1.3 建屋開口部の調査結果について

1．4 飛来物の選定について
1.5 砂利等の極小飛来物による外部事象防護対象施設への影響について
1.6 屋外重大事故等対処設備の竜巻防護設計について
1.7 竜巻影響評価の風速場モデルの適用について
1.8 飛散評価における竜巻の不確かさを踏まえた評価条件の設定について
1.9 設計竜巻の最大風速 $100 \mathrm{~m} / \mathrm{s}$ の設定について
\square ：今回提出範囲
1.2 外部事象防護対象施設等に波及的影響を及ぼし得る施設 の選定について

1.2 外部事象防護対象施設等に波及的影響を及ぼし得る施設の選定について

1．2．1 抽出方針

女川原子力発電所構内の構築物，系統及び機器のうち外部事象防護対象施設等を除く施設 （以下「その他の施設」という。）より，外部事象防護対象施設等に対する波及的影響として，以下の観点から波及的影響を及ぼし得る施設を抽出する。

なお，別紙 1 に示すとおり，女川原子力発電所の津波防護施設等については，基準津波の高さや防護範囲の広さ等，その重要性に鑑み自主的に機能維持のための配慮を行う。
（1）機械的影響の観点での抽出
外部事象防護対象施設等に対して，機械的影響の観点から，施設が倒壊することにより，外部事象防護対象施設等の機能を喪失させる可能性がある施設及び隣接する施設を抽出する。

図 1．2－1に示すとおり，隣接施設及び施設の高さが外部事象防護対象施設等との距離以上 である施設を抽出した。

抽出フローを図 1．2－2 に，抽出結果を表1．2－1 及び図 1．2－3 に示す。また，抽出結果の詳細を，別紙2に示す。

なお，第 3 号機排気筒は，第 2 号機排気筒と支持構造物を共有する集合方式であることを踏まえ，添付書類「VI－3－別添 1－1－7 排気筒の強度計算書」において，設計竜巻による風圧力による荷重及び設計飛来物の衝撃荷重に対し，竜巻時及び竜巻通過後においても倒壊しな いことを確認しているため，第2号機の外部事象防護対象施設等に波及的影響を及ぼすこと はない。

図 1．2－1 隣接する施設及び倒壊により外部事象防護対象施設等に損傷を及ぼし得る施設

図 1．2－2 外部事象防護対象施設等に波及的影響を及ぼし得る施設の抽出フロー

表 1．2－1 機械的影響の観点からの抽出結果
$\left.\begin{array}{|l|c|c|c|}\hline \begin{array}{c}\text { 外部事象防護対象施設等に } \\ \text { 波及的影響を及ぼし得る施設 }\end{array} & \text { 外部事象防護対象施設等 }\end{array} \begin{array}{c}\text { 地上高 } \\ (\mathrm{m})\end{array} \begin{array}{c}\text { 外部事象防護対象施設等 } \\ \text { までの最短距離 } \\ (\mathrm{m})\end{array}\right]$
（注）機械的影響の観点からの主な抽出結果を記載している。
注記＊1：通常待機位置における最短距離
＊ 2 ：海水ポンプ室門型クレーンはストッパーにより固定されているが，破損した場合に は竜巻の風圧を受け移動し，原子炉補機冷却海水ポンプ等に隣接する可能性がある ため抽出する

図 1．2－3 機械的影響の観点からの抽出結果
（2）機能的影響の観点での抽出
a．外部事象防護対象施設の付属設備のうち屋外にある設備
外部事象防護対象施設に対して，機能的影響の観点（「屋外にある外部事象防護対象施設の付属設備」）から，機能喪失に陥つた場合に外部事象防護対象施設も機能喪失する可能性がある施設を抽出した。抽出結果を表1．2－2 及び図1．2－4に示す。

表1．2－2 機能的影響の観点からの抽出結果

外部事象防護対象施設	屋外にある外部事象防護対象施設の付属設備
非常用ディーゼル発電設備	排気消音器
	機関ミスト配管
	潤滑油サンプタンクミスト配管
	燃料デイタンクミスト配管
	燃料油ドレンタンクミスト配管
高圧炉心スプレイ系ディーゼル発電設備	排気消音器
	機関ミスト配管
	潤滑油補給タンクミスト配管
	燃料デイタンクミスト配管
	燃料油ドレンタンクミスト配管
軽油タンク A系	軽油タンク A系ベント配管
軽油タンクB系	軽油タンクB系ベント配管
軽油タンクHPCS系	軽油タンク H P C S 系ベント配管

図 1．2－4 機能的影響の観点からの抽出結果

外部事象に対する津波防護施設，浸水防止設備及び津波監視設備の防護方針について

1．概要

津波防護施設，浸水防止設備及び津波監視設備（以下「津波防護施設等」という。）の外部事象津波防謢施設，浸水防止設備及び津波監視設備（以下「津波防護施設等」という。）の外部事象に対する防護方針を以下に示す。

2．防護に関する考え方
以下の考え方に基づき，女川原子力発電所において設計上考慮すべき外部事象に対する津波防護施設等の機能維持のための対応の要否について整理した。

外部事象に対する津波防護施設等の機能維持対応要否判断フローを図 1 に示す。
（1）設計上考慮すべき事象が，津波若しくは津波の随伴，重畳が否定できない事象に該当するかを確認する。定量的な重畳確率が求められない事象については，保守的にその影響を考慮する。
（2）津波の随伴，重畳が否定できない場合は，当該事象による津波防護施設等の機能喪失モードの有無を確認する。機能喪失モードが認められる場合は，設計により健全性を確保する。
（3）津波の随伴，重畳が有意でないと評価される事象についても，女川原子力発電所の津波防護施設等については，基準津波の高さや防護範囲の広さ等その重要性に鑑み，自主的に機能維持の ための配慮を行う。

注記＊ 1 ：定量的に評価できないものを含む
＊2：「○」，「 $\triangle 」$ ，「一」は，後掲の表 1 における整理に対応している

図1 外部事象に対する津波防護施設等の機能維持対応要否判断フロー

3．検討結果
上記フローに基づく各事象に対する防護方針の検討結果を以下に示す。（詳細は表 1 のとお り）
（1）津波の随伴，重畳が否定できない事象＊に対する防護方針
これらの外部事象に対しては，津波との随伴若しくは重畳の可能性を否定できないため，荷重の重ね合わせのタイミングも考慮した上で設計への反映の要否を検討し，津波防護施設等へ の影響が考えられる事象に対しては，津波防護施設等の機能を維持する設計とする。
注記＊：地震，風（台風），凍結，降水，積雪，落雷，森林火災
（2）津波の随伴，重畳が有意ではない事象（竜巻，火山の影響）に対する防護方針
「竜巻」，「火山の影響」の 2 つの外部事象に津波は随伴せず，また，基準津波との重畳の確率も有意ではないため，津波防護施設等を防護対象施設とはしないものの，津波防護施設等の機能が要求される時にはその機能を期待できるように以下の対応を自主的に実施する。
a．竜巻
設計竜巻と基準津波が重畳する年超過確率は約 $1.9 \times 10^{-12} \sim 1.9 \times 10^{-13}$（／年）であり，竜巻と津波の重畳は有意ではないと評価されるが，竜巻が襲来した場合には必ず作用する風荷重に対 しては，津波防護施設等の健全性を維持する設計とする。また，竜巻が襲来した場合でも，必 ずしも津波防護施設に作用するとは限らない竜巻飛来物の衝撃荷重に対しては，大規模な損傷 に至り難い構造とする。

b．火山の影響

設計で想定する降下火砕物の噴火と基準津波が重畳する年超過確率は約 $1.2 \times 10^{-10} \sim 1.2 \times$ 10^{-11}（／年）＊であり，火山の影響と基準津波の重畳は有意ではないと評価されるが，降下火砕物の堆積荷重について長期荷重に対する構造健全性を確保するとともに，降灰後に適宜除去が可能な設計とする。

注記＊：噴火については約 1 万 2 千年前の肘折尾花沢噴火を考慮

4．自主的に機能維持のための配慮を行ら施設について
女川原子力発電所の津波防護施設（防潮堤，防潮壁，取放水路流路縮小工及び貯留堰），浸水防止設備（逆流防止設備，水密扉，浸水防止蓋，浸水防止壁，逆止弁付ファンネル及び貫通部止水処置）及び津波監視設備（取水ピット水位計及び津波監視カメラ）のうち防潮堤及び防潮壁につ いては，基準津波の高さや防護範囲の広さ等，津波防護上重要な施設であること，また，形状，配置を考慮し，受圧面積が大きく竜巻の風圧力による荷重の影響を受けやすい施設であることか ら，自主的に機能維持のための配慮として，竜巻の風圧力に対しては健全性を維持する設計とし，飛来物については，大規模な損傷に至り難い構造設計とする。

表1 外部事象に対する津波防護施設等の対応方針整理表（1／2）						
設計上考慮 すべき外部事象	（1）随伴事象として津波を考慮要	（2）独立事象として津波が重畳し得る	津波との重畳 を考慮要 （1）か（2）が○）	津波防護施設の機能喪失による安全施設等の機能喪失の可能性	設計への 反映要否	機能維持のための対応方針
地震	\bigcirc	－	\bigcirc	地震荷重により損傷した場合，安全施設等への津波の到達，浸水による機能喪失が想定される。	\bigcirc	耐震 S クラスとして基準地震動Ss に対し健全性を維持し，津波に対する防護機能 を維持する。 また，津波と余震の組み合わせも考慮す る。
風（台風）	－	\bigcirc	\bigcirc	風荷重により損傷した場合，安全施設等への津 波の到達，浸水による機能喪失が想定される。	\bigcirc	－風荷重，津波荷重を考慮した設計とす る。
竜巻	－	－	－	なし 以下のとおり，重畳の頻度は無視し得る。 - 設計竜巻の確率：約 1.9×10^{-6}／年 - 基準津波の年超過確率： $1 \times 10^{-6} \sim 1 \times 10^{-7} /$ 年 \Rightarrow 重畳確率：約 $1.9 \times 10^{-12} \sim 1.9 \times 10^{-13} /$ 年 年超過確率が 1×10^{-7}／年未満であり，有意で はない。	\triangle	防潮堤•防潮壁の設計においては，自主的 に以下の配慮を行い，信頼性を高める。 －風圧力に対しては，健全性を維持する設計とする。 －飛来物については，大規模な損傷に至り難い構造とする。
凍結	－	\bigcirc	\bigcirc	凍害により止水目地が損傷した場合，安全施設 への津波の到達，浸水による機能喪失が想定さ れる。	\bigcirc	止水目地は最低気温を考慮した設計とす る。

	：津波の随伴，重畳が否定できないため，設計で健全性を確保する事象（○） ：津波の随伴，重畳は有意ではないが，機能維持について設計上配慮する事象（ \triangle ）対応が不要な事象（一）

表1 外部事象に対する津波防護施設等の対応方針整理表（2／2）

設計上考慮 すべき外部事象	（1）随伴事象として津波を考慮要	（2）独立事象として津波が重畳し得る	津波との重畳 を考慮要 （1）か（2）が○）	津波防護施設の機能喪失による安全施設等の機能喪失の可能性	設計への反映要否	機能維持のための対応方針
降水	－	\bigcirc	\bigcirc	降雨による海水面の上昇の影響は無視し得る。	－	－
積雪	－	\bigcirc	\bigcirc	積雪荷重により損傷した場合，安全施設等への津波の到達，浸水による機能喪失が想定される。	\bigcirc	積雪荷重と津波荷重を考慮した設計とす る。
落雷	－	\bigcirc	\bigcirc	落雷による津波監視設備の機能喪失が想定され る。	\bigcirc	津波監視設備については，既設避雷設備 の遮へい範囲内への設置を行う。
火山	－	－	－	なし 以下のとおり，重畳の頻度は無視し得る。 - 想定する火山の確率：約 $1.2 \times 10^{-4} /$ 年 $^{* 1}$ - 基準津波の年超過確率： $1 \times 10^{-6} \sim 1 \times 10^{-7} /$ 年 \Rightarrow 重畳確率：約 $1.2 \times 10^{-10} \sim 1.2 \times 10^{-11} /$ 年 年超過確率が $1 \times 10^{-7} /$ 年未満であり，有意で はない。	\triangle	設計にて長期荷重に対する構造健全性を確保するとともに，降灰後に降下火砕物 を適宜除去が可能な設計とする。
生物学的事象	－	－	－	生物による影響（閉塞，侵入）による機能喪失モ ードを有しない。	－	－
森林火災	－	\bigcirc	\bigcirc	なし 防火帯により森林との離隔距離が確保されるた め，熱影響を受けることはない。	－	－

[^0]外部事象防護対象施設等に波及的影響を及ぼし得る施設に係る調査結果について

女川原子力発電所おける波及的影響を及ぼし得る施設に係るウォークダウンは，平成 25 年 9 月 10 日～12日，平成 27 年 2 月 12 日～13日に実施した。
調査では，外部事象防護対象施設及び外部事象防護対象施設の外殻に波及的影響を及ぼし得る施設を抽出し，倒壊による影響を及ぼす可能性について確認を行った。

1．調査範囲

外部事象防護対象施設等の周りの最も高い建物である事務建屋の高さを基準として，約 40 m の範囲とした。また，地上からの高さがある施設（第 1 機排気筒及び送電鉄塔）は倒壊した場合 に波及的影響を及ぼし得る可能性があるため調査対象とした。（別紙 3 参照）

2．調査方法

調査範囲内にある施設について，外部事象防護対象施設等の周辺の状況を確認し，隣接施設及 び比較的近接している施設を抽出するとともに，倒壊による影響の可能性の観点から寸法測定，設置場所の確認，写真撮影等を行った。具体的な内容については以下のとおり。
（1）寸法測定
外部事象防護対象施設等からの離隔距離の測定，対象物の平面寸法及び高さを，計測器によ る測定及び図面等により確認した。
（2）設置場所
確認した施設について，配置図の作成及び，写真撮影を実施した。
その他，現地で確認できない情報（重量，寸法等）については，設計図書等により確認し た。

3．調査結果

本調査で抽出された，波及的影響を及ぼし得る施設を図 $1 \sim$ 図 3 及び表 $1 \sim$ 表 3 に示す。外部事象防護対象施設等から約 40 m の範囲内に設置されている設備，建物•構築物及び地上からの高さがある施設（第 1 号機排気筒及び送電鉄塔）を合わせて 109 施設を抽出し，それらについて図4のフローに基づいて評価を行った。

その結果，外部事象防護対象施設に波及的影響を及ぼし得る施設の評価対象として，第 1 号機制御建屋，第 2 号機補助ボイラー建屋，サイトバンカ建屋及び海水ポンプ室門型クレーンに加 え，基準津波の高さや防護範囲の広さ等の重要性に鑑み自主的に機能維持のための配慮を行う防潮堤及び防潮壁の 6 施設を選定した。

図2波及的影響を及ぼし得る可能性のある施設配置図（エリア 1）

[^1]外部事象防護対象施設等の約 40 m の範囲内に設置されている設備及び建物•構築物

図4 倒壊による波及的影響を及ぼし得る可能性のある施設の評価判定フロー

表1 倒壊により外部事象防護対象施設又は外部事象防護対象施設の外殻となる施設に
損傷を及ぼす可能性がある施設 評価対象外一覧表【88施設＊】

No．	施設名	No．	施設名	No．	施設名
1	第1号機再生純水タンク	36	第 1 号機主復水器電解鉄イオン注入装置電解槽 A	81	硫酸計量槽
2	第 1 号機化学分析室用ボンべ庫	37	第 1 号機主復水器電解鉄イオン注入装置電解槽 B	82	硫酸貯槽
3	第1号及び第2号機Bゲート前検査所	38	第 1 号機主復水器電解鉄イオン供給装置直流電源装置盤	83	第 1 号機鉄イオン供給装置現場盤
4	MH排水ポンプ制御盤	39	第1号機吸気フィルタサイレンサ（A）	84	第 1 号機主復水器連続洗浄装置電気防食装置直流電源盤
5	窒素ガス供給装置制御盤	40	第1号機吸気フィルタサイレンサ（B）	85	第1号機主復水器電解鉄イオン供給装置制御盤
6	窒素貯槽	41	第1号機吸気フィルタサイレンサ（C）	86	第 1 号機主復水器連続洗浄装置制御盤
7	常時補給用液体窒素蒸発器（送ガス）	42	第1号機吸気フィルタサイレンサ（D）	87	第1号機No． 8 揚水井戸制御盤
8	常時補給用液体窒素蒸発器（加圧用）	43	第1号機排気サイレンサ（A）	88	第1号機ガスボンべ庫
10	計器収納箱（A）	44	第1号機排気サイレンサ（B）	89	事務本館
11	計器収納箱（B）	46	第1号機中央制御室用凝縮機（B）	90	スタック放射線モニタ建屋
13	固化系固化剤タンク	47	第 1 号機 C V C F 設置エリア用屋外機 （ $\mathrm{A}-1$ ）	91	第3号機スタック放射線モニタ建屋
14	固化系固化剤ポンプ（A）	48	第 1 号機 C V C F 設置エリア用屋外機 （ $\mathrm{A}-2$ ）	92	第3号機起動変圧器A
15	固化系固化剤ポンプ（B）	49	第 1 号機 C V C F 設置エリア用屋外機 （ $\mathrm{B}-1$ ）	93	第3号機起動変圧器3 A 冷却制御盤
16	S OL 固化剤タンク水位計架台	50	第 1 号機 C V C F 設置エリア用屋外機 $(B-2)$	94	第 3 号機起動変圧器 3 A 中性点接地装置 $(2$ 次側 $)$
17	屋外作業用分電盤	51	第 1 号機給湯系統高置水槽	95	第 3 号機起動変圧器 3 A 中性点接地装置 $(3$ 次側 $)$
18	PLR－VVVF 入力変压器	52	第 1 号機給水系統高置水槽	96	第3号機起動変圧器B
19	第3号機タービン建屋	53	補助ボイラーサイレンサー	97	第3号機起動変圧器 3 B 冷却制御盤
20	第3号機硫酸貯槽	54	渡り廊下	98	第3号機起動変圧器 3 B 中性点接地装置 （2 次側）
21	第3号機苛性ソーダ貯槽	59	空冷チリングユニット	99	第 3 号機起動変圧器 3 B中性点接地装置 （3 次側）
22	第3号機ガスボンべ庫	60	主復水器連続洗浄装置制御盤	100	第3号機GIS 2 号送電線ユニット制御盤
23	除塵装置電源室	63	放水路サンプリング建屋	101	第3号機GIS主変圧器ユニット制御盤
25	揚水ポンプ操作盤（No．8）	67	主変圧器制御盤	102	第 3 号機 G I S 起動変圧器 3 B ユニット制御盤
26	揚水ポンプ操作盤（No．9）	68	屋外変圧器消火制御盤	103	第3号機開閉所電源盤
27	揚水ポンプ操作盤（ No .111$)$	69	所内変圧器 2 A 冷却器制御盤	104	第3号機CVケーブル洞道出入口
28	No． 9 揚水ポンプ遠方操作盤	70	所内変圧器 2 B 冷却器制御盤	105	第3号機CVケーブル洞道冷却制御盤
29	屋外作業用電源盤	74	屋外作業用分電盤	107	第1号機排気筒
32	補助ボイラー変圧器クーラ制御盤（A）	76	起動変圧器制御盤	108	松島幹線No． 1 送電鉄塔
33	補助ボイラー変圧器クーラ制御盤（ ${ }^{\text {a }}$ ）	77	起動変圧器中性点接地装置 $2-1$	109	牡鹿幹線No． 1 送電鉄塔
34	補助ボイラー用変圧器（A）	79	復水脱塩装置薬液貯槽現場盤		
35	補助ボイラー用変圧器（B）	80	苛性ソーダ貯槽		

注記＊：防潮堤及び防潮壁については，基準津波の高さや防護範囲の広さ等の重要性を鑑み，自主的に機能維持のための配慮を行う

表2 外部事象防護対象施設の外殼の損傷が，内包する外部事象防護対象施設に直接影響を及ぼす可能性がある施設 評価対象外一覧表【15 施設】

No．	施設名	No．	施設名	No．	施設名
9	パージ用液体窒素蒸発器（※A）	56	原子炉建屋避雷針（※B）	71	所内変圧器2 A 中性点接地装置（※A）
12	空冷チラーユニット（ C A）	57	タービン建屋避雷針（※B）	72	所内変圧器 2 B 中性点接地装置（ （A）
24	泡消火設備現場盤（※B）	58	制御建屋避雷針（※B）	73	所内変圧器（※A）
30	泡薬剤タンク（※B）	64	励磁電源変圧器（ C A）	75	起動変圧器（※A）
45	第 1 号機中央制御室用凝縮機（A）（※B）	66	主変圧器（ F A）	78	起動変圧器中性点接地装置 $2-2$（※A）

※：判断理由
A：外殻となる隔壁内側に隣接して外部事象防護対象施設が設置されておらず影響を及ぼさない。
B：外殻による防護が可能であり影響を及ぼさない。
表3 現地調查結果における波及的影響を及ぼし得る施設の抽出結果（ $1 / 5$ ）
評価対象

No．	設備名称	$\begin{aligned} & \text { 安全 } \\ & \text { 重要度 } \\ & \text { クラス } \end{aligned}$	波及的影響を及ぼす対象（外部事象防護対象施設の外殼となる建屋及 び構築物等）	地上高（m） H	外部事象防護対象施設の外殼となる建屋及び構築物等ま での最短距離（m） L	$\mathrm{L}-\mathrm{H}(\mathrm{m})$	波及的影響	
							倒壊により外部事象防護対象施設又は外部事象防護対象施設の外殻となる施設に損傷を及ぼす可能性 があるか （高さ $\mathrm{H} \geqq$ 水平距離 L ）	外部事象防護対象施設の外殼となる施設の損傷が，内包する外部事象防護対象施設に直接影響を及ぼ す可能性があるか
1	第1号機再生純水タンク	NON	制御建屋	11.8	27.0	15.2	－	－
2	第 1 号機化学分析室用ボンべ庫	NON	制御建屋	2.6	22.0	19.4	－	－
3	第1号及び第2号機Bゲート前検査所	NoN	制御建屋	3.6	16.0	12.4	－	－
4	MH排水ポンプ制御盤	NON	制御建屋	1.7	11.0	9.3	－	－
5	窒素ガス供給装置制御盤	MS－3	原子炉建屋	2.7	13.0	10.3	－	－
6	窒素貯槽	MS－3	原子炉建屋	4.0	9.0	5.0	－	－
7	常時補給用液体窒素蒸発器（送ガス）	MS－3	原子炉建屋	2.8	7.0	4.2	－	－
8	常時補給用液体窒素蒸発器（加圧用）	NON	原子炉建屋	2.7	5.8	3.1	－	－
9	パージ用液体窒素蒸発器	NON	原子炉建屋	3.4	0.8	－2．6	\bigcirc	－
10	計器収納箱（A）	NON	原子炉建屋	1.8	4.0	2.2	－	－
11	計器収納箱（B）	MS－3	原子炉建屋	1.8	10.0	8.2	－	－
12	空冷チラーユニット	NON	原子炉建屋	3.7	0.6	－3．1	\bigcirc	－
13	固化系固化剤タンク	NON	原子炉建屋	6． 5	10.0	3.5	－	－
14	固化系固化剤ポンプ（A）	NON	原子炉建屋	0.6	4.3	3.7	－	－
15	固化系固化剤ポンプ（B）	NON	原子炉建屋	0.6	6.1	5.5	－	－
16	S O L 固化剤タンク水位計架台	NON	原子炉建屋	1.8	10.0	8.2	－	－
17	屋外作業用分電盤	NON	原子炉建屋	1.6	1.7	0.1	－	－
18	PLR－VVVF 入力変圧器	PS－3	原子炉建屋	3.3	8.0	4.7	－	－
19	第3号機タービン建屋	PS－2	軽油タンク室	24.5	35.0	10.5	－	－
20	第3号機硫酸貯槽	NON	軽油タンク室	2.5	30.0	27.5	－	－
21	第3号機苛性ソーダ貯槽	NON	軽油タンク室	2.7	35.0	32.3	－	－
22	第3号機ガスボンべ庫	NON	軽油タンク室	4.7	34.0	29．3	－	－

[^2]| 21 | 第3号機苛性ソーダ貯槽 |
| :--- | :--- |
| 22 | 第 3 号機ガスボンベ庫 |

仙対象

表3 現地調查結果における波及的影響を及ぼし得る施設の抽出結果 $(2 / 5)$

							波及	影響	
No．	設備名称	$\begin{aligned} & \text { 安全 } \\ & \text { 重要度 } \\ & \text { クラ } \end{aligned}$	波及的影響を及ぼす対象（外部事象防護対象施設の外殻となる建屋及 び構築物等）	$\begin{gathered} \text { 地上高 (m) } \\ H \end{gathered}$	外部事象防護対象施設の外殻となる建屋及び構築物等ま での最短距離（m） L	L－H（m）	倒壊により外部事象防護対象施設又は外部事象防護対象施設の外殻となる施設に損傷を及ぼす可能性 があるか （高さ $\mathrm{H} \geqq$ 水平距離 L ）	外部事象防護対象施設の外殻となる施設の損傷が，内包する外部事象防護対象施設に直接影響を及ぼ す可能性があるか	評価対象
23	除塵装置電源室	NoN	軽油タンク室	4.8	13.0	8.2	－	－	－
24	泡消火設備現場盤	MS－3	原子版建屋	2.3	2.0	－0．3	\bigcirc	－	－
25	揚水ポンプ操作艋（No．8）	NoN	原子炬建屋	2.4	15.0	12.6	－	－	－
26	揚水ポンプ操作盤（No．9）	NoN	原子炉建屋	2.4	15.0	12.6	－	－	－
27	掦水ポンブ操作盤（No．11）	noN	原子炉建屋	2.4	15.0	12.6	－	－	－
28	No． 9 揚水ポンプ遠方操作盤	NoN	非常用海水ポンプ	1.6	3.5	1.9	－	－	－
29	屋外作業用電源艋	NoN	非常用海水ポンプ	2.7	3.0	0.3	－	－	－
30	泡薬剤タンク	MS－3	原子炬建屋	2.2	1.1	－1．1	\bigcirc	－	－
31	海水ポンプ室門型クレーン＊	NoN	タービン建屋	22.7	19.6	－3．1	\bigcirc	－	O＊
32	補助ボイラー変圧器クーラ制御盤（A）	PS－3	制御建屋	1.7	19.0	17.3	－	－	－
33	補助ボイラー変圧器クーラ制御盤（B）	PS－3	制御建屋	1.7	29.0	27.3	－	－	－
34	補助ボイラー用変圧器（A）	PS－3	制御建屋	5.7	13.0	7.3	－	－	－
35	補助ボイラー用変圧器（B）	PS－3	制御建屋	5.7	23.0	17.3	－	－	－
36	第 1 号機主復水器電解鉄イオン注入装置電解槽A	NoN	制御建屋	4.0	33.0	29.0	－	－	－
37	第 1 号機主復水器電解鉄イオン注入装置電解槽B	noN	制御建屋	4.0	34.0	30.0	－	－	－
38	第 1 号機主復水器電解鉄イオン供給装置直流電源装置盤	NoN	制御建屋	2.4	35.0	32.6	－	－	－
39	第1号機吸気フイルタサイレンサ（A）	MS－1	制御建屋	5.2	9.0	3.8	－	－	－
40	第1号機吸気フィルタササイレンサ（B）	MS－1	制御建屋	5.2	15.0	9.8	－	－	－
41	第1号機吸気フィルタサイレンサ（C）	MS－1	制御建屋	5.2	12.0	6.8	－	－	－
42	第1号機吸気フィルタサイレンサ（D）	MS－1	制御建屋	5.2	18.0	12.8	－	－	－
43	第1号機排気サイレンサ（A）	MS－3	制御建屋	10.6	5.0	5.6	－	－	－
44	第1号機排気サイレンサ（B）	MS－3	制御建屋	10.6	15.0	5.6	－	－	－

注記＊：海水ポンプ室門型クレーンについては，ストッパーにより固定されるが，ストッパーが破損した場合には竜巻の風により移動し，原子炉補機椧却海水ポンプ等に隣接する可能性があるため抽出する。
表3 現地調查結果における波及的影響を及ぼし得る施設の抽出結果（3／5）

	設備名称	$\begin{aligned} & \text { 安全 } \\ & \text { 重要度 } \\ & \text { クラス } \end{aligned}$	波及的影響を及ぼす対象（外部事象防護対象施設の外绢となる建屋及 び構築物等）	地上高（m） H	外部事象防護対象施設の外殻となる建屋及び構築物等ま での最短距離（m） L	L－H（m）	波及的影響		評価対象
No．							倒壊により外部事象防護対象施設又は外部事象防護対象施設の外款となる施設に損傷を及ぼす可能性 があるか （高さ $\mathrm{H} \geqq$ 水平距離 L ）	外部事象防護対象施設の外殻となる施設の損傷が，内包する外部事象防護対象施設に直接影響を及ぼ す可能性があるか	
45	第 1 号機中央制御室用凝縮機（A）	MS－1	制御建屋	4.6	4.0	－0．6	\bigcirc	－	－
46	第 1 号機中央制御室用凝縮機（B）	MS－1	制御建屋	4.6	10.0	5.4	－	－	－
47	第1号機CVCF 設置エリア用屋外機（ $\mathrm{A}-1$ ）	NoN	制御建屋	0.8	24.0	23.2	－	－	－
48	第1号機CVC F 設置エリア用屋外機（ $\mathrm{A}-2$ ）	NoN	制御建屋	0.8	24.0	23.2	－	－	－
49	第1号機CVCF設置エリア用屋外機（ $\mathrm{B}-1$ ）	NoN	制御建屋	0.8	24.0	23.2	－	－	－
50	第1号機C V C F 設置エリア用屋外機（ $\mathrm{B}-2$ ）	NoN	制御建屋	0.8	24.0	23.2	－	－	－
51	第 1 号機給湯系統高置水槽	NoN	制御建屋	2.2	7.0	4.8	－	－	－
52	第1号機給水系統高置水槽	NoN	制御建屋	2.2	4.0	1.8	－	－	－
53	補助ボイラーサイレンサー	NoN	タービン建屋	0.9	10.5	9.6	－	－	－
54	渡り廊下	NoN	原子炉建屋	5.2	37.7	32.5	－	－	－
55	補助ボイラー建屋	PS－3	$\begin{aligned} & \text { 制御建屋, } \\ & \text { タービン建屋 } \\ & \hline \end{aligned}$	－	隣接	－	\bigcirc	\bigcirc	\bigcirc
56	原子炉建屋避雷針	NoN	原子炉建屋	10.4	屋上	－	\bigcirc	－	－
57	タービン建屋避雷針	NoN	タービン建屋	10.4	屋上	－	\bigcirc	－	－
58	制御建屋避雷針	NoN	制御建屋	13.0	10.0	-3.0	\bigcirc	－	－
59	空冷チリングユニット	NoN	制御建屋	2.3	22.0	19.7	－	－	－
60	主復水器連続洗浄装置制御媻	NoN	タービン建屋	2.4	35.0	32.6	－	－	－
61	防潮堤	$\begin{gathered} \text { NON } \\ (\text { (津波防護施設) } \end{gathered}$	基潍津波の高さや防護範囲の広さ等の重要性を鑑み，自主的に機能維持のための配慮を行う						
62	防潮壁	$\begin{gathered} \text { NON } \\ \text { (津波防護施設) } \end{gathered}$	基潍津波の高さや防護範囲の広さ等の重要性を鑑み，自主的に機能維持のための配慮を行う						
63	放水路サンプリング建屋	NoN	タービン建屋	4.8	34.0	29.2	－	－	－
64	励磁電源変圧器	PS－3	タービン建屋	4.8	3.0	－1．8	\bigcirc	－	－
65	第 1 号機制御建屋	NoN	制御建屋	－	隣接	－	\bigcirc	\bigcirc	\bigcirc

表3 現地調査結果における波及的影響を及ぼし得る施設の抽出結果（4／5）

	設備名称	安全 重要度 クラス	波及的影響を及ぼす対象（外部事象防護対象施設の外殼となる建屋及 び構築物等）	地上高（m） H	外部事象防護対象施設の外殻となる建屋及び構築物等ま での最短距離（m） L	$\mathrm{L}-\mathrm{H}(\mathrm{m})$	波及的影響		評価対象
No．							倒壊により外部事象防護対象施設又は外部事象防護対象施設の外殼となる施設に損傷を及ぼす可能性 があるか （高さ $\mathrm{H} \geqq$ 水平距離 L ）	外部事象防護対象施設の外殻となる施設の損傷が，内包する外部事象防護対象施設に直接影響を及ぼ す可能性があるか	
66	主変圧器	PS－3	タービン建屋	9.5	8.6	－0．9	\bigcirc	－	－
67	主変圧器制御盤	PS－3	タービン建屋	2.7	22.0	19.3	－	－	－
68	屋外変圧器消火制御盤	MS－3	タービン建屋	2.6	22.3	19.7	－	－	－
69	所内変圧器 2 A 冷却器制御盤	PS－3	タービン建屋	2.7	11.5	8.8	－	－	－
70	所内変圧器 $2 B$ 冷却器制御盤	PS－3	タービン建屋	2.7	11.5	8.8	－	－	－
71	所内変圧器 2 A 中性点接地装置	PS－3	タービン建屋	2． 2	1.8	－0． 4	\bigcirc	－	－
72	所内変圧器 2 B 中性点接地装置	PS－3	タービン建屋	2.2	1.8	－0．4	\bigcirc	－	－
73	所内変圧器	PS－3	タービン建屋	5.8	4.5	－1．3	\bigcirc	－	－
74	屋外作業用分電盤	NON	タービン建屋	1.6	19.0	17.4	－	－	－
75	起動変圧器	PS－3	タービン建屋	7.5	4． 8	－2．7	\bigcirc	－	－
76	起動変圧器制御盤	PS－3	タービン建屋	2.7	14.0	11.3	－	－	－
77	起動変圧器中性点接地装置 $2-1$	PS－3	タービン建屋	2.2	4． 2	2.0	－	－	－
78	起動変圧器中性点接地装置 $2-2$	PS－3	タービン建屋	2.2	2． 2	0.0	\bigcirc	－	－
79	復水脱塩装置薬液貯槽現場盤	NON	タービン建屋	2． 0	13.0	11.0	－	－	－
80	苛性ソーダ貯槽	NON	タービン建屋	4.2	5.5	1.3	－	－	－
81	硫酸計量槽	NON	タービン建屋	1.4	5.5	4.1	－	－	－
82	硫酸貯槽	NON	タービン建屋	2.9	8.5	5.6	－	－	－
83	第 1 号機鉄イオン供給装置現場盤	NON	制御建屋	1.7	18.0	16.3	－	－	－
84	第1号機主復水器連続洗浄装置電気防食装置直流電源盤	NON	制御建屋	2.4	25.0	22． 6	－	－	－
85	第1号機主復水器電解鉄イオン供給装置制御盤	NON	制御建屋	2.7	19.0	16.3	－	－	－
86	第 1 号機主復水器連続洗浄装置制御盤	NON	制御建屋	2.7	28.0	25.3	－	－	－

表3 現地調查結果における波及的影響を及ぼし得る施設の抽出結果（5／5）

評価対象

	設備名称	安全重要度 クラス	波及的影響を及ぼす対象（外部事象防護対象施設の外款となる建屋及 び構築物等）	地上高（m） H	外部事象防護対象施設の外殻となる建屋及び構築物等ま での最短距離（m） L	L－H（m）	波及的影響	
No．							倒壊により外部事象防護対象施設又は外部事象防護対象施設の外殼となる施設に損傷を及ぼす可能性 があるか （高さ H ミ水平距離 L ）	外部事象防護対象施設の外殼となる施設の損傷が，内包する外部事象防護対象施設に直接影響を及ぼ す可能性があるか
87	第 1 号機No． 8 揚水井戸制御盤	NON	制御建屋	2.1	7.0	4.9	－	－
88	第1号機ガスボン心゙庫	NON	制御建屋	2.6	9.0	6.4	－	－
89	事務本館	NON	排気筒	20.0	28.0	8.0	－	－
90	スタック放射線モ二タ建屋	MS－3	排気筒	4.3	4.6	0.3	－	－
91	第3号機スタック放射線モニタ建屋	MS－3	排気筒	4.7	5.1	0.4	－	－
92	第3号機起動変圧器 A	PS－3	排気筒	6.9	33.6	26.7	－	－
93	第3号機起動変圧器3 A 冷却制御盤	PS－3	排気筒	2.7	29.9	27.2	－	－
94	第 3 号機起動変圧器 3 A 中性点接地装置（ 2 次側）	PS－3	排気筒	2． 2	32.4	30． 2	－	－
95	第 3 号機起動変圧器 3 A 中性点接地装置（ 3 次側）	PS－3	排気筒	2.2	30.1	27.9	－	－
96	第3号機起動変圧器B	PS－3	排気筒	6.9	26.7	19． 8	－	－
97	第3号機起動変圧器 3 B 泠却制御盤	PS－3	排気筒	2.7	22.8	20.1	－	－
98	第 3 号機起動変圧器 3 B 中性点接地装置（ 2 次側）	PS－3	排気筒	2.2	24.0	21.8	－	－
99	第 3 号機起動変圧器 3 B 中性点接地装置（ 3 次側）	PS－3	排気筒	2.2	23.5	21.3	－	－
100	第3号機G I S 2 号送電線ユニット制御盤	PS－3	排気筒	2.0	36.0	34． 0	－	－
101	第3号機GIS主変圧器ユニット制御盤	PS－3	排気筒	2.0	35.3	33.3	－	－
102	第3号機G I S 起動変圧器3 B ユニット制御盤	PS－3	排気筒	2． 0	36.7	34.7	－	－
103	第3号機開閉所電源盤	PS－3	排気筒	2． 4	23.5	21.1	－	－
104	第3号機CVケーブル洞道出入口	NON	排気筒	2． 3	26.7	24.4	－	－
105	第3号機CVケーブル洞道冷却制御盤	PS－3	排気筒	2.4	29．8	27.4	－	－
106	サイトバンカ建屋	PS－3	タービン建屋	28.9	22.0	－6． 9	\bigcirc	\bigcirc
107	第 1 号機炉排気筒	MS－2	排気筒	125	154.9	29.9	－	－
108	松島幹線No． 1 送電鉄塔	NON	排気筒	52.1	151.4	99.3	－	－
109	牡鹿幹線No． 1 送電鉄塔	NON	制御建屋	45.8	248.0	202.2	－	－

第1号機排気筒及び送電鉄塔の波及的影響について
女川原子力発電所における波及的影響を及ぼし得る施設の調査対象として抽出した第1号機排気筒及 び送電鉄塔による影響について以下に示す。

1．設置場所
第 2 号機の外部事象防護対象施設等と第 1 号機排気筒及び送電鉄塔の位置関係を図 1 に示す。
第 1 号機排気筒の高さは 125 m であり，原子炉建屋等を設置する敷地高さに対して， 35 m の高台に設置している。送電鉄塔は 2 か所あり，松島幹線 No． 1 送電鉄塔は約 52 m ，牡鹿幹線 No 。 1 送電鉄塔 は約 46m である。

図1 外部事象防護対象施設等と第1号機排気筒及び送電鉄塔の位置関係

2．影響評価

（1）第 1 号機排気筒
排気筒は支持構造物（鉄塔）で支持されており，鉄塔の脚部はコンクリート基礎にボルトで固定さ れている。

第1号機排気筒から最も隣接する外部事象防護対象施設等は第 2 号機排気筒であり，第 1 号機排気筒（筒身外面）から第 2 号機排気筒（筒身外面）までの距離は約 154 m である。

第 1 号機排気筒の全長が 125 m であることから，倒壊したとしても第 2 号機排気筒に損傷を及ぼす可能性はない。
（2）送電鉄塔
送電鉄塔の脚部はコンクリート基礎にボルトで固定されている。
松島幹線 No． 1 送電鉄塔から最も隣接する外部事象防護対象施設等は第 2 号機排気筒であり，第 2 号機排気筒（筒身外面）までの距離は約 151 m である。
また，牡鹿幹線No． 1 送電鉄塔から最も隣接する外部事象防護対象施設等は第 2 号機制御建屋で あり，第 2 号機制御建屋（壁面）までは約 248 m である。

よって，いずれも倒壊したとしても外部事象防護対象施設等に損傷を及ぼす可能性はない。

以 上
1.6 屋外重大事故等対処設備の竜巻防護設計について
1.6 屋外重大事故等対処設備の竜巻防護設計について

1．6．1 女川原子力発電所における重大事故等対処設備の具体的な竜巻防護設計方針
（1）設計の考え方について
女川原子力発電所の屋外重大事故等対処設備においては，技術基準規則第 54 条の要求事項を踏まえた設計方針に従って，位置的分散による機能維持に加え，技術基準規則第 7 条の要求事項を踏まえた設計方針に従って，浮き上がり又は横滑りによって外部事象防護対象施設等又は防護対策施設に衝突し，外部事象防護対象施設等の機能に影響を及ぼす可能性があ る場合には，飛来物とならないよう固縛する設計とする。

位置的分散による重大事故等対処設備の機能維持設計は，VI－1－1－6「安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」にて示すため，以下で は，固縛等に関する設計の考え方を示す。

1．6．2 固縛の設計方針

固縛については，浮き上がり又は横滑りによって外部事象防護対象施設等又は防護対策施設に衝突し，外部事象防護対象施設等又は防護対策施設の機能に影響を及ぼさない設計とす るため，全ての屋外重大事故等対処設備を検討の対象とする。

ただし，屋外重大事故等対処設備のらち，重大事故等に対処するために必要な機能を損な わないよう，風荷重の作用しない場所に配置する設計又は設計竜巻の風圧力による荷重を考慮した設計とする設備は，竜巻防護が実施されていることから，固縛対象設備の選定候補か ら除外する。（表 1．6－1 参照）

1．6．3 固縛対象設備の選定

屋外重大事故等対処設備を対象に，浮き上がり又は横滑りによって外部事象防護対象施設等又は防護対策施設に衝突し，外部事象防護対象施設等又は防護対策施設を損傷させる可能性の有無を確認し，表1．6－1 に示した屋外重大事故等対処設備から固縛対象設備を選定する。

固縛対象として選定した屋外重大事故等対処設備及びその保管場所を表 1．6－2，図 1．6－1 に示す。
表 1．6－1 固縛対象設備の選定候補（1／2）

，	固緷対象設備の選定方針	常設／可搬	設備
（1）	外部事象防護対象施設等又は防護対策施設に衝突し損傷させる可能性の有無を碓認し，固縛対象設備を選定する。 また，同じ機能を有する他の重大事故用対処設備に衝突し損傷さ せる可能性の有無を確認し，固縛対象設備を選定する。	可搬	- 大容量送水ポンプ（タイプ I ） - 大容量送水ポンプ（タイプII） - ホース延長回収車 - 取水用ホース＊1 - 送水用ホース＊1 - 注水用ヘッダ - 原子炬補機代替冷却水系熱交換器ユニット - 耐熱ホース＊1 - 除熱用ヘッダ＊2 - 可搬型窒素ガス供給装置 - 窒素供給用ホース＊1 - 窒素供給用ヘッダ＊1 - 放水砲 - 泡消火薬剤混合装置 －シルトフェンス＊1 - 小型船舶 - 可搬型モニタリングポスト＊1 －ブルドーザ －バックホウ - 電源車 - 電源車（緊急時対策所用） －タンクローリ - 給油用ホース＊3 - 軽油払出用ホース＊3 - 代替気象観測設備＊1

[^3]表 1．6－1 固縛対象設備の選定候補（2／2）

－	固縛対象設備の選定方針	常設／可搬	設備
（2）	固定されている設備であり，竜巻の風圧力による荷重の影響を受け にくく，飛来物化しないと考えられるため，固縛対象設備として選定しない。	常設	- ガスタービン発電機 - ガスタービン発電設備燃料移送ポンプ - 緊急時対策所遮蔽 - 原子炉建屋ブローアウトパネル
（3）	外部事象防護対象施設を兼ねており，設計竜巻の風圧力による荷重，気圧差による荷重及びその他考慮すべき荷重に耐えうる設計で あるため，固縛対象設備として選定しない。	常設	- 復水貯蔵タンク - 原子炉補機冷却海水ポンプ - 高圧炉心スプレイ補機冷却海水ポンプ
（4）	竜巻の風圧力による荷重の影響を受けにくい構造物であり，飛来物化しないと考えられるため，固縛対象設備として選定しない。	常設	- 海水ポンプ室 - 取水口 - 貯留堰 - 取水路

$* 2:$ 原子炉補機代替冷却水系熱交換器ユニットの車内に格納されているため，同車両の評価で代表する。
$* 3:$ タンクローリの車内に格納されているため，同車両の評価で代表する。

表 1．6－2 固縛対象として選定した屋外重大事故等対処設備の保管場所一覧

設備	保管場所＊1
大容量送水ポンプ（タイプ I ）	（1）（2）（3）（4）
大容量送水ポンプ（タイプ II）	（1）（2）（4）
ホース延長回収車	（2）（3）（4）
取水用ホース＊2	（1）（2）（3）（4）
送水用ホース＊2	（1）（2）（3）（4）
注水用ヘッダ	（2）（3）（4）
原子炉補機代替冷却水系熱交換器ユニット	（1）（3）（4）
耐熱ホース＊2	（1）（3）（4）
除熱用ヘッダ＊3	（1）（3）4
可搬型窒素ガス供給装置＊4	（1）（4）
窒素供給用ホース＊2	（1）（4）
窒素供給用ヘッダ＊2	（1）4）
放水砲	（1）（4）
泡消火薬剤混合装置	（1）（4）
シルトフェンス＊2	（1）（4）
小型船舶	（1）4）
可搬型モニタリングポスト＊2	（1）（2）（4）
ブルドーザ	（1）（4）
バックホウ	（1）（4）
電源車	（2）（3）（4）
電源車（緊急時対策所用）	（5）
タンクローリ	（2）（3）（4）
給油用ホース＊4	（2）（3）（4）
軽油払出用ホース＊4	（2）（3）（4）
代替気象観測設備＊2	（2）（4）

注記＊1：図1．6－1における保管場所の番号を示す。
＊2：保管用のコンテナに格納されているため，設備を内包するコンテナの評価で代表す る。
＊3：原子炉補機代替冷却水系熱交換器ユニットの車内に格納されるため，原子炉補機代替冷却水系熱交換器ユニットを固縛対象とする。
＊4：タンクローリの車内に格納されるため，タンクローリを固縛対象とする。

[^0]: 注記＊1：噴火については約 1 万 2 千年前の肘折尾花沢噴火を考慮

[^1]: 図3 波及的影響を及ぼし得る可能性のある施設配置図（エリア 2）

[^2]:

[^3]: ＊2：原子炬補機代替冷却水系熱交換器ユニットの車内に格納されているため，同重両の評価で代表する。
 ＊3：タンクローリの車内に格納されているため，同車両の評価で代表する。

