| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－別添 3－4 可搬型重大事故等対処設備のうちボンベ設備の耐震計算書

1．概要 1
2．基本方針 1
2.1 配置 1
2.2 構造計画 1
2.3 評価方針 7
2.4 適用規格•基準等 8
3．固有値解析 9
3.1 基本方針 9
3.2 解析方法 9
3.3 解析モデル及び諸元 9
3.4 固有値解析結果 23
3.5 設計用地震力 26
4．構造強度評価 28
4.1 基本方針 28
4.2 評価部位 28
4.3 荷重及び荷重の組合せ 29
4.4 許容限界 29
4.5 評価方法 31
5．波及的影響評価 39
5.1 基本方針 39
6．計算条件 40
6.1 機器要目 40
6.2 計算数値 44
6.3 使用材料の許容応力評価条件 47
7．評価結果 49
7.1 構造強度評価結果 49
7.2 波及的影響評価結果 49

1．概要

本計算書は，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」（以下「別添 3－1」という。）にて設定している構造強度の設計方針に基づき，可搬型重大事故等対処設備のうちボンべ設備が地震後において，基準地震動 S s による地震力に対し，十分な構造強度を有するとともに，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響 を及ぼさないことを説明するものである。その耐震評価は，固有値解析，構造強度評価及び波及的影響評価により行う。

2．基本方針
別添3－1「2．耐震評価の基本方針」に示す構造計画のとおり，ボンベ設備の「2．1 配置」及 び「2．2 構造計画」を示す。
2.1 配置

ボンベ設備は，別添3－1の「2．1 評価対象設備」のうち構造計画に示すとおり，原子炉建屋（ 0. P． 15.00 m ），制御建屋（ 0. P． 1.50 m ， 0. P． 15.00 m ）及び緊急時対策建屋（ 0. P． 57.30 m ）に保管する。
2.2 構造計画

ボンベ設備の構造は，別添3－1の「2．1 評価対象設備」に示す構造計画としており，ボン ベ設備の構造計画を表 2－1に，ボンベ設備の概略構造図を図 2－1～図2－5に示す。

表 2－1 ボンベ設備の構造計画

設備名称	計画の概要		$\begin{aligned} & \text { 概略 } \\ & \text { 構造図 } \end{aligned}$
	主体構造	基礎•支持構造	
高圧窒素ガス供給系高圧窒素ガスボンベ	高圧窒素ガスボ ンベ及びボンベ の支持構造物で あるボンベラッ クにより構成す る。	高圧窒素ガスボンベは，容器とし て十分な強度を有する構造とし，固定ボルトによりボンベラックに固定し，ボンベラックを躯体床及 び壁に施工された埋込金物に溶接 し据え付ける。	図 2－1
代替高圧窒素ガス供給系高圧窒素ガスボンベ	高圧窒素ガスボ ンベ及びボンベ の支持構造物で あるボンベラッ クにより構成す る。	高圧窒素ガスボンベは，容器とし て十分な強度を有する構造とし，固定ボルトによりボンベラックに固定し，ボンベラックを躯体床及 び壁に取付ボルトで設置されたア ンカープレートに溶接し据え付け る。	図 2－2 図 2－3
中央制御室待避所加圧設備 （空気ボンベ）	空気ボンベ及び ボンべの支持構造物であるボン ベラックにより構成する。	空気ボンべは，容器として十分な強度を有する構造とし，固定ボル トによりボンベラックに固定し， ボンベラックは取付ボルトにより躯体床に据え付ける。	図 2－4
緊急時対策所加圧設備 （空気ボンベ）	空気ボンベ及び ボンべを収納す るボンベカード ルフレームによ り構成する。	空気ボンベは，容器として十分な強度を有する構造とし，ボンベカ ードルフレーム内に固定し，ボン ベカードルフレームは，躯体床に施工された埋込金物に溶接にて固定された支持架構に取付ボルトに より据え付ける。	図 2－5

図 2－1 高圧窒素ガス供給系高圧窒素ガスボンベラックの概略構造図
\square
図2－2 代替高圧窒素ガス供給系高圧窒素ガスボンベラック（A）の概略構造図
\square
図 2－3 代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）の概略構造図

図 2－4 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの概略構造図
\square
図 2－5 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの概略構造図
2.3 評価方針

ボン心゙設備の評価方針を以下に示し，耐震評価フローを図 2－6に示す。
（1）構造強度評価
ボンベ設備は，別添3－1 の「2．2（2）ボンベ設備」にて設定した構造強度評価の方針に従い構造強度評価を実施する。
ボンべ設備の構造強度評価は，「3．固有値解析」にて得られた固有周期を用い，「4．構造強度評価」に示す方法により，ボンベ設備の評価部位に作用する応力が許容限界を満足 することを確認する。確認結果を「7．評価結果」に示す。
別添3－1の「2．2 評価方針」に示す評価部位のらち直接支持構造物としてのボンベラッ ク等，溶接部及び取付ボルトの構造強度評価については，J E A G 4 6 0 1•補—1984に規定されているその他の支持構造物の評価に従い実施する。
（2）波及的影響評価
ボンベ設備は，別添3－1 の「2．2（2）ボン心設備」にて設定した波及的影響評価の方針 に従い，波及的影響評価を実施する。
ボンベ設備の波及的影響評価は，「5．波及的影響評価」に示す方法により，基準地震動 S s による地震力に対し，当該設備による波及的影響を防止する必要がある他の設備に対 して波及的影響を及ぼさないことを，「4．構造強度評価」により確認する。確認結果を「7．評価結果」に示す。

図 2－6 ボンベ設備の耐震評価フロー
2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補—1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）
（5）日本産業規格
（6）鋼構造設計規準

3．固有値解析
3.1 基本方針

別添3－1 の「4．2（1）固有値解析」にて設定した基本方針に従い，固有値解析を実施する。固有値解析は，以下の「3．2 解析方法」に示す方法により，「3．3 解析モデル及び諸元」 に示す解析モデルを用いて，「3．4 固有値解析結果」においてボンベ設備の固有周期を求める。
3.2 解析方法
（1）ボンベラックを構成する各部材をはり要素及びシェル要素としてモデル化した多質点モ デルによる固有値解析を実施する。
（2）拘束条件として，建屋躯体との取合い点を完全拘束として設定する。
（3）ボンベラックに収納•固定されるボンベ及び配管•弁等の機器重量は，各々組込む位置 に相当する各質点に付加する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）高圧窒素ガス供給系高圧窒素ガスボンベ，代替高圧窒素ガス供給系高圧窒素ガスボンベ及び緊急時対策所加圧設備（空気ボンベ）の評価に用いる解析コードは，「NX NASTRAN」 とし，中央制御室待避所加圧設備（空気ボンベ）の評価に用いる解析コードは，「MSC NASTRAN」とする。なお，評価に用いる解析コード「NX NASTRAN」及び「MSC NASTRAN」 の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析 コード）の概要」に示す。
3.3 解析モデル及び諸元
（1）高圧窒素ガス供給系高圧窒素ガスボンベ
高圧窒素ガスボンベラックの解析モデルは，ボンベラックを構成する鋼材をはり要素と して，以下のとおりモデル化した多質点モデルである。

解析モデルを図 3－1，図 3－2 に，解析モデルの諸元を表 3－1 に示す。

図 3－2 解析モデル（高圧窒素ガス供給系高圧窒素ガスボンベラック（接点番号記載））

表3－1 解析モデルの諸元（ $1 / 2$ ）

項目	記 号	単 位	入力値
材 質	-	-	$\mathrm{SS} 400 / \mathrm{STKR400}$
温度条件（周囲環境温度）	T	${ }^{\circ} \mathrm{C}$	50
縦弾性係数	E	MPa	2.01×10^{5}
ポアソン比	v	-	0.3
質量（ボンベ）	W	kg	\square
質量（フレーム）	m	kg	\square
ボンベ数	-	本／基	
寸 法	-	-	8
要素数	-	図 2－1	
節点数	-	個	\square

O2（3）VI－2－別添3－4 R 3

表 3－1 解析モデルの諸元（2／2）

部材	番号	要素番号	材料	諸元	縦弾性係数(MPa)	断面積 （mm ${ }^{2}$ ）	断面二次モーメント		密度 $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$
							$\mathrm{I}_{1}\left(\mathrm{~mm}^{4}\right)$	$\mathrm{I}_{2}\left(\mathrm{~mm}^{4}\right)$	
フレーム			STKR400		2． 01×10^{5}				7.85×10^{-6}
			SS400		2． 01×10^{5}				7.85×10^{-6}
			SS400		2． 01×10^{5}				7.85×10^{-6}

（2）代替高圧窒素ガス供給系高圧窒素ガスボンベ
代替高圧窒素ガスボンベラックの解析モデルは，ボンベラックを構成する鋼材をはり要素として，以下のとおりモデル化した多質点モデルである。
解析モデルを図 3－3～図 3－6に，解析モデルの諸元を表 3－2 に示す。

図 3－3 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（A）（要素番号記載））

図 3－4 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（A）（節点番号記載））
枠囲みの内容は商業機密の観点から公開できません。

図 3－5 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）（要素番号記載））

図 3－6 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）（節点番号記載））

表3－2 解析モデルの諸元（1／2）

項 目	記 号	単 位	入力値
材 質	-	-	$\mathrm{SS} 400 / \mathrm{STKR} 400$
温度条件（周囲環境温度）	T	${ }^{\circ} \mathrm{C}$	50
縦弾性係数	E	MPa	2.01×10^{5}
ポアソン比	v	-	0.3
質量（ボンベ）	W	kg	\square
質量（フレーム）	m	kg	\square
ボンベ数	-	本／基	
寸 法	-	-	3
要素数	-	図 2－2，図 2－3	
節点数	-	個	\square

表 3－2 解析モデルの諸元 $(2 / 2)$

注記＊：要素 12,13 については，（A）のみ評価対象となる。
（3）中央制御室待避所加圧設備（空気ボンベ）
中央制御室待避所加圧設備（空気ボンベ）ボンベラックの解析モデルは，ボンベラック を構成する鋼材をはり要素及びシェル要素として，以下のとおりモデル化した多質点モデ ルである。

解析モデルを図 3－7に，解析モデルの諸元を表3－3に示す。

図 3－7 解析モデル（中央制御室待避所加圧設備（空気ボンベ）ボンベラック）

表3－3 解析モデルの諸元（ $1 / 2$ ）

項 目	記 号	単 位	入力値
材質（ボンベラック）	-	-	$\mathrm{SS} 400 / \mathrm{STKR400}$
材質（ボンベ）	-	-	クロムモリブデン鋼
温度条件（周囲環境温度）	T	${ }^{\circ} \mathrm{C}$	40
縦弾性係数（ボンベラック）	E	MPa	2.02×10^{5}
縦弾性係数（ボンベ）	E	MPa	2.04×10^{5}
ポアソン比	v	-	0.3
質量（ボンベユニット）	m	kg	
ボンベ数	-	本／基	
寸 法	-	-	10
要素数	-	個	2－4
節点数	-	個	\square

O 2 （3）VI－2－別添3－4 R 3

表 3－3 解析モデルの諸元（2／2）

部材	番号	要素番号	材料	諸元	縦弾性係数 （MPa）	断面積 （mm ${ }^{2}$ ）	断面二次モーメント		密度 （ $\mathrm{kg} / \mathrm{mm}^{3}$ ）
							$\mathrm{I}_{1}\left(\mathrm{~mm}^{4}\right)$	$\mathrm{I}_{2}\left(\mathrm{~mm}^{4}\right)$	
$\begin{gathered} \text { ボンベラック } \\ \text { フレーム } \end{gathered}$			STKR400		2.02×10^{5}				7.85×10^{-6}
			STKR400		2.02×10^{5}				7.85×10^{-6}
			STKR400		2.02×10^{5}				7.85×10^{-6}
			STKR400		2.02×10^{5}				7.85×10^{-6}
			SS400		2． 02×10^{5}				7． 85×10^{-6}
			SS400		2.02×10^{5}				7.85×10^{-6}
			SS400		2.02×10^{5}				7.85×10^{-6}
ボンベ			SCM430		2.04×10^{5}				1． 177×10^{-5}
固定ボルト			SNB7		2.04×10^{5}				7.85×10^{-6}
フレーム 接続ボルト			SCM435		－				－
取付ボルト			SS400		－				－

（4）緊急時対策所加圧設備（空気ボンベ）
緊急時対策所加圧設備（空気ボンベ）ボンベカードルの解析モデルは，ボンベカードル を構成する鋼材をはり要素として，以下のとおりモデル化した多質点モデルである。解析モデルを図 3－8 に，解析モデルの諸元を表 3－4に示す。
\square

図 3－8 解析モデル（緊急時対策所加圧設備（空気ボンベ）ボンベカードル）

表 3－4 解析モデルの諸元（1／2）

項 目	記 号	単 位	入力値
材質（ボンベカードル）	-	-	SS400／STKR400
材質（取付ボルト）	-	-	SNB7
質量（ボンベ）	W	kg	\square
質量（フレーム）	m	kg	\square
温度条件（周囲環境温度）	T	${ }^{\circ} \mathrm{C}$	\square
縦弾性係数	E	MPa	50
ポアソン比	v	-	2.01×10^{5}
ボンベ数	-	本／基	0.3
寸 法	-	-	20
要素数	-	個	図 2－5
節点数	-	個	\square

表 3－4 解析モデルの諸元（2／2）

部材	番号	要素番号	材料	諸元	縦弾性係数 （MPa）	断面積 （mm ${ }^{2}$ ）	断面二次モーメント		密度 $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$
							$\mathrm{I}_{1}\left(\mathrm{~mm}^{4}\right)$	$\mathrm{I}_{2}\left(\mathrm{~mm}^{4}\right)$	
$\begin{gathered} \text { ボンベカードル } \\ \text { フレーム } \end{gathered}$			STKR400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2． 01×10^{5}				7.85×10^{-6}
			STKR400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
取付ボルト			SNB7		－				－

3． 4 固有値解析結果

ボンベ設備の固有値解析結果を表 3－5 に， 1 次の振動モード図を図 3－9～図 3－13 に示す。固有周期は， 0.05 秒以下であり，剛であることを確認した。

表 3－5 固有値解析結果

設備名称	ボンベラック 支持構造	モード	卓越方向	固有周期（s）
高圧窒素ガス供給系 高圧窒素ガスボンベラック	溶接			
代替高圧窒素ガス供給系 高圧窒素ガスボンベラック（A）	溶接取付ボルト			
代替高圧窒素ガス供給系 高圧窒素ガスボンベラック（B）	溶接 取付ボルト			
中央制御室待避所加圧設備 （空気ボンベ）ボンベラック	溶接接続ボルト取付ボルト			
緊急時対策所加圧設備 （空気ボンベ）ボンベカードル	溶接 取付ボルト			

図 3－9 高圧窒素ガス供給系高圧窒素ガスボンベラック振動モード

枠囲みの内容は商業機密の観点から公開できません。

図 3－11 代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）振動モード

\square
図 3－12 中央制御室待避所加圧設備（空気ボンベ）ボンベラック振動モード

図 3－13 緊急時対策所加圧設備（空気ボンベ）ボンベカードル振動モード

3.5 設計用地震力

基準地震動 S s による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基 づき設定する。耐震評価に用いる設計用地震力を表 3－6～表3－9 に示す。

表 3－6 設計用地震力（高圧窒素ガス供給系高圧窒素ガスボンベ）

据付場所 及び 床面高さ （m）	固有周期 （s）	基準地震動	
		水平方向	鉛直方向
		設計震度	設計震度
原子炉建屋付属棟		2． 12	1． 56
0．P．15．00＊			
（0．P．22．50）			

注記＊：基準床レベルを示す。

表 3－7 設計用地震力（代替高圧窒素ガス供給系高圧窒素ガスボンベ（A系，B 系））

据付場所 及び 床面高さ （m）	固有周期 （s）	基準地震動	
		水平方向	鉛直方向
		設計震度	設計震度
原子炉建屋付属棟	＊2		
0．P．15．00＊1		2.12	1． 56
（0．P．22．50）			

注記＊1：基準床レベルを示す。
＊2：ボンベラック（A）の固有周期。
＊3：ボンベラック（B）の固有周期。

表 3－8 設計用地震力（中央制御室待避所加圧設備（空気ボンベ））

据付場所 及び 床面高さ （m）	固有周期 （s）	基準地震動	
		水平方向	鉛直方向
		設計震度	設計震度
制御建屋			
0．P．1．50＊		2． 25	1． 39
0．P．15．00＊			

注記＊：基準床レベルを示す。

表 3－9 設計用地震力（緊急時対策所加圧設備（空気ボンベ））

据付場所 及び 床面高さ (m)	固有周期 (s)	基準地震動	
	水平方向 設計震度	鉛直方向 設計震度	

注記＊：基準床レベルを示す。

4．構造強度評価
4.1 基本方針

ボンベ設備の構造強度評価は，別添3－1の「2．2（2）ボンベ設備」で設定した評価方針に従 って，構造強度評価を実施する。
ボンベ設備の構造強度評価は，「4．2 評価部位」に示す評価部位が，「4．3 荷重及び荷重の組合せ」に示す荷重及び荷重の組合せに対し，「4．4 許容限界」に示す許容限界を満足するこ とを，「3．5 設計用地震力」に示す設計用地震力及び「4．5 評価方法」に示す方法を用いて評価を行う。

4． 2 評価部位

ボンベ設備の評価部位は，別添3－1の「2．2 評価方針」で設定した評価部位に従って設定 する。評価部位を表 4－1 に示す。

表 4－1 ボンベ設備の評価部位

設備名称	ボンベラック支持構造	評価部位	図
高圧窒素ガス供給系高圧窒素ガスボンベ	溶接	$\begin{gathered} \text { フレーム } \\ \text { フレーム取付 } \end{gathered}$ 溶接部	図 2－1
代替高圧窒素ガス供給系高圧窒素ガスボンベ	溶接 取付ボルト	フレーム フレーム取付 溶接部 取付ボルト	図 2－2 図 2－3
中央制御室待避所加圧設備 （空気ボンベ）	溶接接続ボルト 取付ボルト	フレーム フレーム取付 溶接部 フレーム 接続ボルト 取付ボルト	図 2－4
緊急時対策所加圧設備 （空気ボンベ）	溶接 取付ボルト	フレーム 固定端溶接部取付ボルト	図 2－5

4.3 荷重及び荷重の組合せ

ボンベ設備の構造強度評価に用いる荷重及び荷重の組合せは，別添 3－1 の「3．1荷重及び荷重の組合せ」で設定した荷重及び荷重の組合せを用いる。
ボン心゙設備の構造強度評価に用いる荷重の組合せを表 4－2 に示す。

表 4－2 荷重の組合せ

設備名称	評価部位	荷重の組合せ
ボンべ設備	フレーム	D +S s
	フレーム取付溶接部	
	フレーム接続ボルト	
	固定端溶接部	
	取付ボルト	

4.4 許容限界

ボンべ設備の許容限界は，「4．2 評価部位」にて設定した評価部位の破断延性限界を考慮し，別添3－1の「3．2 許容限界」で設定した許容限界に従い，許容応力状態 $V_{A} S$ の の許容応力とす る。

評価部位の許容限界を表 4－3～表 4－5 に示す。

表 4－3 ボンベラックの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界 ${ }^{* 1, * 2}$
			一次応力
フレーム	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$

注記＊1： f_{t}＊は，設計•建設規格 $\mathrm{SSB}-3121.1(1) \mathrm{a}$ 本文中 S_{y} 及び $\mathrm{S}_{\mathrm{y}}\left(\mathrm{RT}\right.$ ）を $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（RT）と読み替えて算出した値（設計•建設規格 SSB－3121．3）。 ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 0 1 •補一1984の「その他の支持構造物の許容応力」に準じて設定 する。

表 4－4 フレーム取付溶接部及び固定端溶接部の許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界＊1，＊2
			一次応力
	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	せん断
固定端溶接部	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}^{*}$

 $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（RT）と読み替えて算出した値（設計•建設規格 SSB－3121．3）。 ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 0 1•補－1984の「その他の支持構造物の許容応力」に準じて設定する。

表 4－5 フレーム接続ボルト及び取付ボルトの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界 ${ }^{*} 1, * 2$	
			一次応力	
			引張り＊3	せん断＊3
フレーム 接続ボルト	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ff}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}^{*}$＊
取付ボルト	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}$ s ${ }^{*}$

注記＊1： $\mathrm{f}_{\mathrm{t}}{ }^{*}$ ， $\mathrm{f}_{\mathrm{s}}{ }^{*}$ は，設計•建設規格 $\mathrm{SSB}-3121.1$（1）a 本文中 S_{y} 及び S_{y}（RT）を $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$ 及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（RT）と読み替えて算出した値（設計•建設規格 SSB－3133）。 ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 O 1 •補－1984 の「その他の支持構造物の許容応力」に準じて設定 する。
＊3：ボルトにせん断力が作用する場合，組合せ評価を実施する。その際の許容引張応力 f_{t} は，設計•建設規格 $\mathrm{SSB}-3133$ に基づき，$f_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t}}{ }_{\mathrm{o}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， f_{to} ］とする。ここで，$f_{\mathrm{t} \text { 。は }} 1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊とする。
なお，f_{ts} は引張力とせん断力を同時に受けるボルトの許容引張応力をいい，$f_{\mathrm{t} \text { 。 }}$ は引張力のみ受けるボルトの許容引張応力をいう。

4.5 評価方法

ボンベ設備の構造強度評価は，別添 3－1 の「4．2（2）構造強度評価」で設定した計算式に従 って，評価部位の発生応力を算出し，許容応力以下であることを確認する。
（1）評価に使用する記号及び計算モデルの説明
構造強度評価に使用する記号を表 4－6に，計算モデル例を図 4－1～図 4－5に示す。

表 4－6 構造強度評価に使用する記号（ $1 / 2$ ）

記 号	単 位	定 義
$A_{\text {rea }}$	mm^{2}	R_{1} 軸方向の力を受けるフレームの断面積
A_{1}	mm^{2}	R_{2} 軸方向の力を受けるフレームの断面積
A_{2}	mm^{2}	R_{3} 軸方向の力を受けるフレームの断面積
A_{w}	mm ${ }^{2}$	フレーム取付溶接部及び固定端溶接部の断面積
A_{b}	mm^{2}	フレーム接続ボルト及び取付ボルトの軸断面積
$\mathrm{F}_{\text {a }}$	MPa	フレームに生じる組合せ応力
F_{b}	MPa	フレームに生じる曲げ応力
Fs	MPa	フレームに生じるせん断応力
F_{t}	MPa	フレームに生じる引張応力
σ	MPa	フレーム（シェル）に生じる組合せ応力
$\sigma \times$	MPa	フレーム（シェル）に生じる垂直応力
σ_{y}	MPa	フレーム（シェル）に生じる垂直応力
$\tau_{x y}$	MPa	σ_{x}, σ_{y} の作用するフレーム（シェル）面内のせん断応力
F_{x}	N / mm	フレーム（シェル）の面内力
F_{y}	N / mm	フレーム（シェル）の面内力
F_{xy}	N / mm	フレーム（シェル）の面内力
M_{x}	$\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}$	フレーム（シェル）の曲げモーメント
M_{y}	$\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}$	フレーム（シェル）の曲げモーメント
$M_{x y}$	$\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}$	フレーム（シェル）の曲げモーメント
t	mm	フレーム（シェル）の板厚
$\mathrm{F}_{\text {sa }}$	MPa	フレーム取付溶接部及び固定端溶接部に生じる組合せ応力
$\mathrm{F}_{\text {sb }}$	MPa	フレーム取付溶接部及び固定端溶接部に生じる曲げ応力
$\mathrm{F}_{\text {ss }}$	MPa	フレーム取付溶接部及び固定端溶接部に生じるせん断応力
$\mathrm{F}_{\text {st }}$	MPa	フレーム取付溶接部及び固定端溶接部に生じる引張応力
F_{wt}	MPa	フレーム取付溶接部に生じる軸応力
F_{ws}	MPa	フレーム取付溶接部に生じるせん断応力
$\mathrm{F}_{\text {wb }}$	MPa	フレーム取付溶接部に生じる曲げ応力
$\mathrm{F}_{\text {wa }}$	MPa	フレーム取付溶接部に生じる組合せ応力
$\mathrm{F}_{\mathrm{b} 1}$	N	フレーム接続ボルト及び取付ボルトに作用する引張力 （1本当たり）
$\mathrm{F}_{\mathrm{b} 2}$	N	取付ボルトに作用するせん断力
$\mathrm{Fbb}_{\text {b }}$	N	フレーム接続ボルト及び取付ボルトに生じる軸力

表 4－6 構造強度評価に使用する記号 $(2 / 2)$

記 号	単 位	定 義
$\mathrm{S}_{\mathrm{b} 1}$	N	フレーム接続ボルト及び取付ボルトに生じるせん断力
$\mathrm{S}_{\mathrm{b} 2}$	N	フレーム接続ボルト及び取付ボルトに生じるせん断力
F_{bs}	MPa	フレーム接続ボルト及び取付ボルトに生じるせん断応力
$\mathrm{Fbt}_{\text {b }}$	MPa	フレーム接続ボルト及び取付ボルトに生じる引張応力
e	mm	取付ボルト間の距離
ℓ_{1}	mm	取付ボルト間の距離
ℓ_{2}	mm	取付ボルト間の距離
M_{1}	$\mathrm{N} \cdot \mathrm{mm}$	R_{1} 軸廻りのモーメント
M_{2}	$\mathrm{N} \cdot \mathrm{mm}$	R_{2} 軸廻りのモーメント
M_{3}	$\mathrm{N} \cdot \mathrm{mm}$	R_{3} 軸廻りのモーメント
n	－	固定端1箇所当たりのフレーム接続ボルト及び取付ボルトの本数
n_{f}	－	評価上引張力を受けるとして期待する取付ボルトの本数
R_{1}	N	R_{1} 軸方向の力
R_{2}	N	R_{2} 軸方向の力
R_{3}	N	R_{3} 軸方向の力
S	N	フレーム取付溶接部及び固定端溶接部に生じる組合せせん断力
Z_{1}	mm ${ }^{3}$	R_{3} 軸廻りのモーメント M_{3} を受けるフレームの断面係数
Z_{2}	mm ${ }^{3}$	R_{2} 軸廻りのモーメント M_{2} を受けるフレームの断面係数
$\mathrm{Z}_{\mathrm{p} 1}$	mm ${ }^{3}$	R_{2} 軸方向の応力を組合せる時のモーメント M_{1} を受けるねじり断面係数
$\mathrm{Z}_{\mathrm{p} 2}$	mm ${ }^{3}$	R_{3} 軸方向の応力を組合せる時のモーメント M_{1} を受けるねじり断面係数
Z_{pw}	mm ${ }^{3}$	フレーム取付溶接部のねじり断面係数
$Z_{\text {xw }}$	mm ${ }^{3}$	R_{1} 軸廻りのモーメント M_{3} を受ける溶接部の断面係数
$Z_{\text {yw }}$	mm ${ }^{3}$	R_{3} 軸廻りのモーメント M_{2} を受ける溶接部の断面係数

図 4－1 フレーム（はり）の計算モデル例

図 4－2 フレーム（シェル）の計算モデル例

図 4－3 フレーム取付溶接部の計算モデル例

図 4－4 固定端溶接部の計算モデル例

図 4－5 フレーム接続ボルト及び取付ボルトの計算モデル例
（a）評価式
イ．フレーム（はり）
（イ）引張応力
$\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{R}_{1}}{A_{\text {rea }}}$
（ロ）せん断応力

又は，
$\mathrm{F}_{\mathrm{s}}=\sqrt{\left(\frac{\mathrm{R}_{2}}{A_{1}}\right)^{2}+\left(\frac{\mathrm{R}_{3}}{A_{2}}\right)^{2}}+\operatorname{Max}\left\{\frac{\left|M_{1}\right|}{Z_{\mathrm{pl}}}, \frac{\left|M_{1}\right|}{Z_{\mathrm{D} 2}}\right\}$

（ハ）曲げ応力

（二）組合せ応力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{a}}=\sqrt{\left(\mathrm{F}_{\mathrm{t}}+\mathrm{F}_{\mathrm{b}}\right)^{2}+3 \cdot \mathrm{~F}_{\mathrm{s}}^{2}} \tag{4.5}
\end{equation*}
$$

ロ．フレーム（シェル）
フレーム（シェル）の組合せ応力を以下のとおり計算する。
$\sigma=\sqrt{\sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}{ }^{2}-\sigma_{\mathrm{x}} \cdot \sigma_{\mathrm{y}}+3 \cdot \tau_{\mathrm{xy}}{ }^{2}}$
ここで，
$\sigma_{\mathrm{x}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{t}} \pm \frac{6 \mathrm{M}_{x}}{\mathrm{t}^{2}}$
$\sigma_{y}=\frac{F_{y}}{t} \pm \frac{6 W_{y}}{t^{2}}$

$$
\begin{equation*}
\tau_{x y}=\frac{F_{x y}}{t} \pm \frac{61_{x y}}{t^{2}} \tag{4.9}
\end{equation*}
$$

ハ．フレーム取付溶接部及び固定端溶接部
フレーム取付溶接部及び固定端溶接部の応力を以下のとおり計算する。
（イ）引張応力

$$
\mathrm{F}_{\mathrm{st}}=\frac{\mathrm{R}_{3}}{A_{m}}
$$

（ロ）軸応力
$\mathrm{F}_{\mathrm{wt}}=\frac{\mathrm{R}_{1}}{A_{\mathrm{w}}}$
（ハ）せん断応力
$\mathrm{F}_{\mathrm{ss}}=\frac{\mathrm{S}}{\mathrm{A}_{\mathrm{w}}}+\frac{\mathrm{M}_{3}}{Z_{\mathrm{pw}}}$
又は，
$\mathrm{F}_{\mathrm{ws}}=\sqrt{\left(\frac{\mathrm{R}_{2}}{A_{n}}\right)^{2}+\left(\frac{\mathrm{R}_{3}}{A_{\mathrm{N}}}\right)^{2}}+\frac{\left|\mathrm{M}_{1}\right|}{Z_{\mathrm{pw}}}$
ここで，組合せせん断力 S は，
$S=\sqrt{R_{1}{ }^{2}+R_{2}{ }^{2}}$
（二）曲げ応力
$\mathrm{F}_{\mathrm{sb}}=\frac{\mathrm{M}_{2}}{Z_{\mathrm{yw}}}+\frac{\mathrm{M}_{1}}{Z_{\mathrm{xv}}}$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{wb}}=\frac{\left|M_{2}\right|}{Z_{2}}+\frac{\left|M_{3}\right|}{Z_{1}} \tag{4.16}
\end{equation*}
$$

（ホ）組合せ応力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sa}}=\sqrt{\left(\mathrm{F}_{\mathrm{st}}+\mathrm{F}_{\mathrm{sb}}\right)^{2}+\mathrm{F}_{\mathrm{ss}}{ }^{2}} \tag{4.17}
\end{equation*}
$$

又は，

$$
\begin{equation*}
F_{w a}=\sqrt{\left(\left|F_{w t}\right|+F_{w b}\right)^{2}+F_{w s}^{2}} \tag{4.18}
\end{equation*}
$$

ニ．フレーム接続ボルト及び取付ボルト
フレーム接続ボルト及び取付ボルトの応力を以下のとおり計算する。
（イ）引張応力
$\mathrm{F}_{\mathrm{bt}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
ここで，引張力は，
$\mathrm{F}_{\mathrm{b} 1}=\operatorname{Max}\left\{\left(\frac{R_{1}}{\mathrm{n}}\right)+\left(\frac{M_{2}}{n_{f} \ell}\right),\left(\frac{R_{1}}{\mathrm{n}}\right)+\left(\frac{M_{3}}{n_{f} \ell}\right)\right\}$
$\mathrm{F}_{\mathrm{b} 1}=\operatorname{Max}\left\{\left(\frac{R_{1}}{n_{n}}\right)+\left(\frac{M_{2}}{n_{\mathrm{f}} \ell_{2}}\right),\left(\frac{R_{1}}{n_{n}}\right)+\left(\frac{M_{3}}{n_{f} \ell_{1}}\right)\right\}$
又は，
$\mathrm{F}_{\mathrm{b} 1}=\frac{\mathrm{F}_{\mathrm{bb}}}{\mathrm{n}}$

ここで，せん断力は，
$\mathrm{F}_{\mathrm{b} 2}=\sqrt{\left(\mathrm{R}_{2}+\frac{\mathrm{M}_{1}}{\ell}\right)^{2}+\left(\mathrm{R}_{3}+\frac{\mathrm{M}_{1}}{\ell}\right)^{2}}$
$\mathrm{F}_{\mathrm{b} 2}=\sqrt{\left(\mathrm{R}_{2}+\frac{\mathrm{M}_{1}}{\ell_{1}}\right)^{2}+\left(\mathrm{R}_{3}+\frac{\mathrm{M}_{1}}{\ell_{1}}\right)^{2}}$
又は，
$\mathrm{F}_{\mathrm{b} 2}=\sqrt{\mathrm{S}_{\mathrm{b} 1}{ }^{2}+\mathrm{S}_{\mathrm{b} 2}{ }^{2}}$

5．波及的影響評価
5.1 基本方針

ボンベ設備は，別添3－1の「2．2（2）ボンベ設備」にて設定した評価方針に従い，当該設備 による波及的影響を防止する必要がある他の設備への波及的影響を実施する。

ボンベ設備の波及的影響は，「4．2 評価部位」に示す評価部位が，「4．3 荷重および荷重の組合せ」に示す荷重及び荷重の組合せに対し，「4．4 許容限界」に示す許容応力を満足するこ とを，「3．5 設計用地震力」に示す設計用地震力及び「4．5 評価方法」に示す方法を用いて評価を行う。

6．計算条件
6． 1 機器要目
「4．構造強度評価」及び「5．波及的影響評価」における機器要目を表 6－1～表 6－13に示す。
\square
∞

> 表 6-1 高圧窒素ガス供給系高圧窒素ガスボンベラックの機器要目 (フレーム)

| 記 号 | 単 位 | 評価条件 |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| | | |
| | | |

表 6－2 高圧窒素ガス供給系高圧窒素ガスボンベラックの評価条件

（フレーム取付溶接部）					
記 号	単 位	評価条件			

表 6－3 代替高圧窒素ガス供給系高圧窒素ガスボンベラックの評価条件（フレーム）

記 号	単 位	評価条件

枠囲みの内容は商業機密の観点から公開できません。

表 6－4 代替高圧窒素ガス供給系高圧窒素ガスボンベラックの評価条件

表 6－5 代替高圧窒素ガス供給系高圧窒素ガスボンベラックの評価条件 （取付ボルト）

表 6－6 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの評価条件

表 6－7 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの評価条件

（フレーム（シェル要素））						
記 号	単	位	評価条件			

表 6－8 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの評価条件

表 6－9 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの評価条件

（フレーム接続ボルト）					
記 号	単	位	評価条件		

表 6－10 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの評価条件 （取付ボルト）

記 号	単 位	評価条件		

表 6－11 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの評価条件（フレーム）

| 記 号 | 単 位 | 評価条件 |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| | | |
| | | |

表 6－12 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの評価条件 （固定端溶接部）

| 記 号 | 単 位 | 評価条件 |
| :--- | :--- | :--- | :--- |
| | | |

表 6－13 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの評価条件 （取付ボルト）

| 記 号 | 単 位 | 評価条件 |
| :--- | :--- | :--- | :--- |
| | | |
| | | |
| | | |

6．2 計算数値
「4．構造強度評価」及び「5．波及的影響評価」における計算数値を表 6－14～6－26 に示す。

表 6－14 高圧窒素ガス供給系高圧窒素ガスボンベラックの計算数値（フレーム）

要素番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$R_{2}[\mathrm{~N}]$	$R_{3}[\mathrm{~N}]$
41	6.292×10^{1}	4.465×10^{5}	3.979×10^{5}	9.315×10^{2}	1.747×10^{3}	1.973×10^{3}

表 6－15 高圧窒素ガス供給系高圧窒素ガスボンベラックの計算数値 （フレーム取付溶接部）

要素番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$\mathrm{M}_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$\mathrm{M}_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$\mathrm{R}_{1}[\mathrm{~N}]$	$\mathrm{R}_{2}[\mathrm{~N}]$	$\mathrm{R}_{3}[\mathrm{~N}]$
27	1.152×10^{2}	3.992×10^{5}	4.472×10^{5}	6.456×10^{2}	1.977×10^{3}	1.747×10^{3}

表 6－16 代替高圧窒素ガス供給系高圧窒素ガスボンベラックの計算数値（フレーム）

要素番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$R_{2}[\mathrm{~N}]$	$R_{3}[\mathrm{~N}]$
（A）$: 30$	0	6.936×10^{5}	3.496×10^{4}	0	1.668×10^{2}	3.528×10^{3}
（B）$: 30$	0	6.936×10^{5}	3.496×10^{4}	0	1.668×10^{2}	3.528×10^{3}

表 6－17 代替高圧窒素ガス供給系高圧窒素ガスボンベラックの計算数値
（フレーム取付溶接部）

要素番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$R_{2}[\mathrm{~N}]$	$R_{3}[\mathrm{~N}]$
$(\mathrm{A}): 20$	1.319×10^{2}	3.258×10^{5}	6.110×10^{4}	4.584×10^{2}	1.729×10^{2}	1.491×10^{3}
$($ B）$: 20$	5.647×10^{1}	3.257×10^{5}	2.932×10^{4}	1.269×10^{3}	1.254×10^{2}	1.490×10^{3}

表 6－18 代替高圧窒素ガス供給系高圧窒素ガスボンベラックの計算数値（取付ボルト）

接点番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$R_{2}[\mathrm{~N}]$	$R_{3}[\mathrm{~N}]$
$(\mathrm{A}): 30$	1.113×10^{5}	5.828×10^{4}	9.767×10^{5}	1.755×10^{2}	3.720×10^{3}	4.263×10^{2}
（B）$: 7$	1.842×10^{3}	6.936×10^{5}	2.225×10^{3}	3.617×10^{3}	0	2.374×10^{2}

表 6－19 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの計算数値 （フレーム（はり要素））

要素番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$R_{2}[\mathrm{~N}]$	$R_{3}[\mathrm{~N}]$
36825	0	1.284×10^{5}	9.208×10^{4}	1.776×10^{3}	3.669×10^{3}	2.630×10^{3}

表 6－20 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの計算数値 （フレーム（シェル要素））

要素番号	$M_{x}[\mathrm{~N} \cdot \mathrm{~mm} / \mathrm{mm}]$	$\mathrm{M}_{y}[\mathrm{~N} \cdot \mathrm{~mm} / \mathrm{mm}]$	$\mathrm{M}_{\mathrm{xy}}[\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}]$	$\mathrm{F}_{\mathrm{x}}[\mathrm{N} / \mathrm{mm}]$	$\mathrm{F}_{\mathrm{y}}[\mathrm{N} / \mathrm{mm}]$	$\mathrm{F}_{\mathrm{xy}}[\mathrm{N} / \mathrm{mm}]$
2161	-4.013×10^{3}	-1.835×10^{3}	-2.032×10^{2}	-32.10	-25.59	-9.606

表 6－21 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの計算数値 （フレーム取付溶接部）

表 6－22 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの計算数値 （フレーム接続ボルト）

要素番号	$\mathrm{F}_{\mathrm{bb}}[\mathrm{N}]$	$\mathrm{S}_{\mathrm{b} 1}[\mathrm{~N}]$	$\mathrm{S}_{\mathrm{b} 2}[\mathrm{~N}]$
36813	2.757×10^{3}	1.164×10^{2}	4.313×10^{2}
2925	-3.792×10^{2}	1.485×10^{4}	5.413×10^{3}

表 6－23 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの計算数値

（取付ボルト）			
要素番号	$\mathrm{F}_{\mathrm{bb}}[\mathrm{N}]$	$\mathrm{S}_{\mathrm{b} 1}[\mathrm{~N}]$	$\mathrm{S}_{\mathrm{b} 2}[\mathrm{~N}]$
26918	1.417×10^{4}	1.065×10^{3}	1.004×10^{2}
33087	2.119×10^{3}	6.126×10^{3}	3.845×10^{3}

表 6－24 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの計算数値（フレーム）

要素番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$R_{2}[\mathrm{~N}]$	$R_{3}[\mathrm{~N}]$
$\mathrm{SS} 400: 132$	9.448×10^{2}	5.855×10^{5}	9.453×10^{4}	1.502×10^{3}	5.402×10^{2}	2.287×10^{3}
STKR400：190	5.231×10^{4}	5.536×10^{5}	7.786×10^{4}	2.094×10^{2}	3.849×10^{2}	1.215×10^{3}

表 6－25 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの計算数値
（固定端溶接部）

要素番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$\mathrm{M}_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$\mathrm{M}_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$\mathrm{R}_{2}[\mathrm{~N}]$	$\mathrm{R}_{3}[\mathrm{~N}]$
116	1.345×10^{2}	2.460×10^{6}	8.945×10^{4}	5.140×10^{3}	3.171×10^{2}	8.325×10^{3}

表 6－26 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの計算数値（取付ボルト）

接点番号	$M_{1}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{2}[\mathrm{~N} \cdot \mathrm{~mm}]$	$M_{3}[\mathrm{~N} \cdot \mathrm{~mm}]$	$R_{1}[\mathrm{~N}]$	$R_{2}[\mathrm{~N}]$	$R_{3}[\mathrm{~N}]$
138	1.076×10^{6}	1.535×10^{6}	1.969×10^{4}	1.365×10^{4}	6.033×10^{3}	1.220×10^{3}

[^0]6． 3 使用材料の許容応力評価条件
「4．構造強度評価」及び「5．波及的影響評価」における使用材料の許容応力評価条件を表 6－27 に示す。

設備名称	ボンベラック 支持構造	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
高圧窒素ガス供給系高圧窒素ガスボンベ	溶接	フレーム	$\begin{gathered} \text { SS400 } \\ (t \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	241	394
		フレーム取付 溶接部	STKR400	周囲環境温度	50	234	394
代替高圧窒素ガス供給系高圧窒素 ガスボンベ	溶接	フレーム	$\begin{gathered} \text { SS400 } \\ (t \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	241	394
		フレーム取付溶接部	STKR400	周囲環境温度	50	234	394
	取付ボルト	取付ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\mathrm{t} \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	211	394
中央制御室待避所加圧設備（空気ボンベ）	溶接接続ボルト	フレーム	$\begin{gathered} \text { SS400 } \\ (\mathrm{t} \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	245	400
		フレーム取付溶接部	$\begin{gathered} \text { SS400 } \\ (\mathrm{t} \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	245	400
		フレーム 接続ボルト	$\begin{gathered} \text { SCM435 } \\ (t \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	785	930
	取付ボルト	取付ボルト	$\begin{gathered} \text { SS400 } \\ (t \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	245	400

表6－27 使用材料の許容応力評価条件（2／2）

設備名称	ボンベラック 支持構造	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
緊急時対策所加圧設備 （空気ボンベ）	溶接	フレーム	$\begin{gathered} \mathrm{SS} 400 \\ (\mathrm{t} \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	241	394
		フレーム	STKR400	周囲環境温度	50	234	394
		固定端溶接部	$\begin{gathered} \mathrm{SS} 400 \\ (\mathrm{t} \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	241	394
	取付ボルト	取付ボルト	$\begin{gathered} \text { SNB7 } \\ (\mathrm{t} \leqq 63 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	715	838

7．評価結果
ボンべ設備の基準地震動 S s による地震力に対する評価結果を表7－1 に示す。
構造強度評価及び波及的影響評価の結果，発生値は許容応力を満足しており，基準地震動 S s による地震動に対して評価部位の健全性が維持されるとともに，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認した。

以上より，ボンベ設備は地震後において，基準地震動 S s による地震力に対し，重大事故等に対処するために必要な機能を維持するとともに当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認した。

7.1 構造強度評価結果

ボンベ設備の構造強度評価結果を表 7－1に示す。
7.2 波及的影響評価結果

ボンベ設備の波及的影響評価結果を表 7－1 に示す。

表 7－1 構造強度評価結果及び波及的影響評価結果（ $1 / 2$ ）

設備名称		ボンベラック支持構造	評価部位	応力分類	発生値 （MPa）	許容 応力 （MPa）	評価 結果	
高圧窒素ガス供給系高圧窒素ガスボンベ		溶接	フレーム	組合せ	72	276	\bigcirc	
		フレーム 取付溶接部	せん断	60	159	\bigcirc		
代替高圧窒素ガス供給系高圧窒素 ガスボンベ	（A）		溶接	フレーム	組合せ	94	276	\bigcirc
		フレーム 取付溶接部		せん断	51	159	\bigcirc	
		取付ボルト	取付ボルト	引張り	13	152＊	\bigcirc	
				せん断	6	117	\bigcirc	
	（B）	溶接	フレーム	組合せ	94	276	\bigcirc	
			フレーム 取付溶接部	せん断	51	159	\bigcirc	
		取付ボルト	取付ボルト	引張り	14	152＊	\bigcirc	
				せん断	1	117	\bigcirc	

注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$

表 7－1 構造強度評価結果及び波及的影響評価結果（2／2）

	設備名称	ボンベラック 支持構造	評価部位	応力分類	発生値 （MPa）	許容 応力 （MPa）	評価結果
	中央制御室待避所加圧設備（空気ボンベ）	溶接接続ボルト	フレーム	組合せ	175	280	\bigcirc
			フレーム 取付溶接部	せん断	80	161	\bigcirc
			フレーム	引張り	14	488＊	\bigcirc
			接続ボルト	せん断	79	375	\bigcirc
		取付ボルト	取付ボルト	引張り	71	168＊	\bigcirc
				せん断	36	129	\bigcirc
	緊急時対策所加圧設備 （空気ボンベ）	溶接	$\begin{gathered} \text { フレーム } \\ \text { (SS400) } \end{gathered}$	組合せ	82	276	\bigcirc
$\begin{aligned} & 1 \times 1 \\ & \infty \\ & \infty \end{aligned}$			フレーム （STKR400）	組合せ	25	276	\bigcirc
$\begin{aligned} & \text { H} \\ & \text { 莎 } \end{aligned}$			固定端溶接部	せん断	18	159	\bigcirc
䨖		取付ボルト	取付ボルト	引張り	54	440＊	\bigcirc
				せん断	31	338	\bigcirc

注記 $*: f_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t}}\right]$

[^0]: O 2
 （3）VI－2－別添 3－4
 R 3

