| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－5－7－1－5 原子炉補機冷却海水系ストレーナの
 耐震性についての計算書

2021年9月
東北電力株式会社

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の計算 3
4．構造強度評価 4
4.1 構造強度評価方法 4
4.2 荷重の組合せ及び許容応力 4
4．2．1 荷重の組合せ及び許容応力状態 4
4．2．2 許容応力 4
4．2．3 使用材料の許容応力評価条件 4
4．3 計算条件 4
5．評価結果 9
5.1 設計基準対象施設としての評価結果 9
5.2 重大事故等対処設備としての評価結果 9

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，原子灲補機冷却海水系ストレーナが設計用地震力に対して十分な構造強度を有して いることを説明するものである。

原子炬補機冷却海水系ストレーナは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，原子炉補機冷却海水系ストレーナは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横置一胴円筒形容器と類似の構造であるため，添付書類「VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

原子炉補機冷却海水系ストレーナの構造計画を表 2－1 に示す。

表2－1 構造計画

計画の概要		概略構造図		
基礎•支持構造	主体構造			
胴を 2 個の脚で支持し，脚をそれぞれ基礎ボルト で基礎に据え付ける。	横置一胴円筒形容器	A－A矢視		$B-B$ 矢視 （単位：mm）

3．固有周期
3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は，本計算書の【原子炉補機冷却海水系ストレーナの耐震性についての計算結果】の機器要目に示す。

計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。
固有周期の計算結果を表3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	0.010
鉛直方向	0.001

4．構造強度評価

4.1 構造強度評価方法

原子炉補機冷却海水系ストレーナの構造強度評価は，添付書類「VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

原子炉補機冷却海水系ストレーナの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－1 に，重大事故等対処設備の評価に用いるものを表4－2 に示す。

4．2．2 許容応力
原子炉補機冷却海水系ストレーナの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 4－3 及び表 4－4 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉補機冷却海水系ストレーナの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－5 に，重大事故等対処設備の評価に用いるものを表 4－6に示 す。

4．3 計算条件
応力計算に用いる計算条件は，本計算書の【原子炉補機冷却海水系ストレーナの耐震性につ いての計算結果】の設計条件及び機器要目に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	原子炉補機	原子炉補機冷却海水系ストレーナ	S	クラス 3 容器＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{Md}_{\mathrm{D}}+\mathrm{Sd} \mathrm{d}^{*}$	$\mathrm{III}_{4} \mathrm{~S}$
系統施設	冷却設備				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{Md}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：クラス 3 容器の支持構造物を含む。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	原子炉補機冷却設備	原子炉補機冷却海水系ストレーナ	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				重大事故等 $\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{PsAD}^{\text {d }}$ MsAD +Ss	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { としてIV } \\ { }_{A} \mathrm{~S} \text { の許容限界を } \\ \text { 用いる。) } \end{gathered}$

注記 $* 1$ ：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張），「常設／緩和（DB 拡張）」は常設重大事故緩和設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 容器の支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{PsAD}+\mathrm{MsAD}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（クラス 2，3容器及び重大事故等クラス 2 容器）

許容応力状態	許容限界＊1，＊2		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力 $\begin{gathered}\text { 一次 }+ \text { 二次 }+ \\ \text { ピーク応力 }\end{gathered}$
$\mathrm{III}_{4} \mathrm{~S}$	$\mathrm{S}_{\mathrm{y}} \text { と0.6• } \mathrm{S}_{\mathrm{u}} \text { の小さい方 }$ ただし，オーステナイト系ス テンレス鋼及び高ニッケル合 金については上記値と 1.2 • Sとの大きい方	左欄の 1.5 倍の値	弾性設計用地震動 S d 又は基準地震動 S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S} \mathrm{y}$ 以下であれば，疲労解析は不要。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許 } \\ \text { 容限界を用いる。) } \end{gathered}$			基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1．0以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}$ у以下であれば，疲労解析は不要。

注記 $* 1$ ：座屈による評価は，クラス MC 容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 許容応力（クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）	許容限界＊1，＊2 （ボルト等）	
	一次応力	一次応力	
	引張り	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
胴板		最高使用温度	50	－			－
脚		周囲環境温度	50	－			－
基礎ボルト		周囲環境温度	50	－			－

表 4－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
胴板		最高使用温度	50	－			－
脚		周囲環境温度	50	－			－
基礎ボルト		周囲環境温度	50	－			－

5．評価結果
5.1 設計基準対象施設としての評価結果

原子炉補機冷却海水系ストレーナの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度 は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又 は静的震度による発生値の算出を省略した。

5.2 重大事故等対処設備としての評価結果

原子炉補機冷却海水系ストレーナの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有して いることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【原子炉補機泠却海水系ストレーナの而振性についての計算結果】
1．設計基準対象施設

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		最高使用圧力 (MPa)	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
原子炉補機冷却海水系ストレーナ	S	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } \quad-8.10^{* 1} \end{gathered}$	0． 010	0． 001	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$	0.78	50	50

注記 $* 1$ ：基淮床レベルを示す。
＊2：$\Pi_{A} S$ については，基準地震動 S s で評価する。

厄

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{4}\right)$	I_{sy} $\left(\mathrm{mm}^{4}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)
242	70	1.174×10^{9}	2.630×10^{7}	2.981×10^{6}	2.330×10^{5}	2.581	0.991

$\begin{aligned} & \mathrm{A}_{\mathrm{s}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	E_{s} （ MPa ）	Gs （ MPa ）	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 1} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 2} \\ & \left(\mathrm{mar}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 3} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s} 4} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$
2． 253×10^{4}	201000	77300	5.881×10^{3}	1． 411×10^{4}	4． 129×10^{3}	1． 120×10^{4}

$\mathrm{K}_{11}{ }^{* 1}$	$\mathrm{~K}_{12}{ }^{* 1}$	$\mathrm{~K}_{21}{ }^{* 1}$	$\mathrm{~K}_{22^{* 1}}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\bullet 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$
0.91	1.68	-	-	1.58	1.17	1.39	1.05	0.79	0.43	1.67	1.19
1.76	1.20	-	-	1.58							

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
15	2	2	1	160	1000			60	100

च

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (利板) } \\ (\mathbb{1 P a}) \end{gathered}$		$\begin{gathered} \mathrm{S} \\ \hline(\text { 月月同板 }) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ (\text { (NPa) } \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (䀷) } \\ (\mathrm{NPa}) \end{gathered}$	$\begin{aligned} & \hline F \text { (INAN) } \\ & (\text { (NPa) } \end{aligned}$	$\begin{gathered} \mathrm{F}^{*} \text { (I脚) } \\ (\mathbb{N P a}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (基聕术ルト) } \\ (\mathbb{N P a}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ \substack{\text { (基䞨术ルト) } \\ (\mathbb{N P a})} \end{gathered}$	$\begin{gathered} \hline \text { F (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	
		－								

注記 $* 1$ ：表中で上段は一次応力，下段は二次応力の俰数とする。
＊2：最高使用温度て算出
＊3：周囲澴樈㳑度で算出

1．3 計算数値
1．3．1 胴に生じる応力
（1）一次一般鄚応力
（単位： MPa ）

～	弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度				基淮地震動S s			
	長手方向		横方向		長手方向		横方向	
	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	－＊	－＊	－＊	－＊	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$
内圧による応力 （鉛直方向地震時）	－＊	－	－＊	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運輀時質量による長手方向曲げ モーメントにより生じる応力	－	－＊	－	－＊	－	$\sigma_{\times 2}=1$	－	$\sigma_{\times 2}=1$
$\begin{gathered} \text { 鉛直方向地震による長手方向曲げ } \\ \text { モーメントにより生じる応力 } \\ \hline \end{gathered}$	－	－＊	－	－＊	－	$\sigma_{\times 6}=1$	－	$\sigma_{\times 6}=1$
長手方向地震により胴軸断面全面に生じる引張応力	－	－＊	－	－	－	$\sigma_{\times 413}=1$	－	－
組合せ応力	－＊		－＊		$\sigma_{0 \ell}=19$		$\sigma_{0 \mathrm{c}}=19$	

注記＊：IIISについては，基準地震動S s で評価する。

地震の種類 地震の方向 応力の方向		弾性設計用地震動S d 又 は 静的震度				基準地震動S s			
		長手方向		横方向		長手方向		横方向	
		周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力		－＊	－＊	－＊	－＊	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$
内圧による応力 （鉛直方向地震時）		－＊	－	－＊	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運転时質量による長手方向曲げ モーメントにより生じる応力		－	－＊	－	－＊	－	$\sigma_{\times 2}=1$	－	$\sigma_{\times 2}=1$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力		－	－＊	－	－＊	－	$\sigma_{\times 6}=1$	－	$\sigma_{\times 6}=1$
運転時質量による脚反力 により生じる応力		－＊	－＊	－＊	－＊	$\sigma_{\phi 3}=4$	$\sigma_{\times 3}=3$	$\sigma_{\phi 3}=4$	$\sigma_{\times 3}=3$
鉛直方向地震による脚反力 により生じる応力		－＊	－＊	－＊	－＊	$\sigma_{\phi 71}=3$	$\sigma_{\times 71}=2$	$\sigma_{\phi 71}=3$	$\sigma_{\times 71}=2$
水平方向地震 による応力	引張り	$\begin{aligned} & \hline \text {-* } \\ & \text {-* } \end{aligned}$	$\begin{aligned} & \mathbf{- *}^{*} \\ & - \\ & \hline \end{aligned}$	－＊	－＊	$\begin{gathered} \sigma_{\phi 411}=10 \\ \sigma_{\phi 412}=8 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 411}=2 \\ & \sigma_{\times 412}=6 \\ & \hline \end{aligned}$	$\sigma_{\phi 51}=6$	$\sigma \times 51=9$
		－＊	－＊			$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$		
	せん断	－＊		－＊		$\tau_{\ell}=4$		$\tau_{\mathrm{c}}=1$	
組合せ応力		－＊		－＊		$\sigma_{1 \ell}=43$			

注記＊： $\mathrm{II}_{A} \mathrm{~S}$ については，基準地震動 S s で評価する。
（3）地震動のみによる一次応力と二次応力の和の変動値
（単位： MPa ）

	地震の種類		弾性設計用地	又は静的震度			基淮		
\bigcirc	地震の方向								
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧 （鉛直）		－＊	－	－＊	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
鋁直方向地窘曲げモーメン	$\begin{aligned} & \text { 方向 } \\ & \text { る応力 } \end{aligned}$	－	－＊	－	－＊	－	$\sigma_{\times 6}=1$	－	$\sigma_{\times 6}=1$
鉛直方向地 により		$\begin{aligned} & \hline \text {-* } \\ & \text {-* } \end{aligned}$	$\begin{aligned} & \hline \text {-* } \\ & \text {-* } \end{aligned}$	$\begin{aligned} & \text {-* } \\ & \text {-* } \end{aligned}$	$\begin{aligned} & \text {-* } \\ & -* \end{aligned}$	$\begin{aligned} & \sigma_{\phi 71}=3 \\ & \sigma_{\phi 72}=7 \end{aligned}$	$\begin{aligned} & \sigma \times 71=2 \\ & \sigma \times 72=5 \end{aligned}$	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \end{gathered}$	$\begin{aligned} & \sigma_{\times 71}=2 \\ & \sigma_{\times 72}=5 \end{aligned}$
		－＊	－＊	－＊	－＊	$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$	$\sigma_{\phi 51}=6$	$\sigma_{\times 51}=9$
水平方向地震	引張り	$\begin{aligned} & \hline \text {-* } \\ & \text {-* } \end{aligned}$	$\begin{aligned} & \hline \text {-* } \\ & \text {-* } \end{aligned}$	－＊	－＊	$\begin{gathered} \sigma_{\phi 421}=8 \\ \sigma_{\phi 422}=18 \end{gathered}$	$\begin{aligned} & \sigma_{\times 421}=25 \\ & \sigma_{\times 422}=15 \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=22$	$\sigma_{\times 52}=14$
		－＊	－＊			$\sigma_{\phi 42}=26$	$\sigma_{\times 42}=39$		
	せん断	－＊		－＊		$\tau_{\ell}=4$		$\tau_{c}=1$	
組合せ応力		－＊		－＊		$\sigma_{2 \ell}=113$		$\sigma_{2 \mathrm{c}}=71$	

注記＊：$\Pi_{A} S$ については，基準地震動S s で評価する。

1．3．2 脚に生じる応力					（単位： MPa ）
	地震の種類	弾性設計用地震動S d又は静的震度		基淮地震動S s	
	地震の方向	長手方向	横方向	長手方向	横方向
運車时質量による応力	圧縮	－＊	－＊	$\sigma_{\text {s } 1}=1$	$\sigma_{\text {s } 1}=1$
鉛直方向地震による応力	圧縮	－＊	－＊	$\sigma_{\text {s } 4}=1$	$\sigma_{\text {s } 4}=1$
水平方向地震による応力	曲げ	－＊	－＊	$\sigma_{\text {s } 2}=21$	$\sigma_{\text {s } 3}=3$
	せん断	－＊	－＊	$\tau_{\mathrm{s} 2}=6$	$\tau_{\text {s } 3}=1$
組合せ応力		－＊	－＊	$\sigma_{\text {s } \ell}=24$	$\sigma_{\text {sc }}=4$

注記＊：$\Pi_{A} S$ については，基漼地震動S s で評価する。

1．3．3 基礎ボルトに生じる応力				（単位： MPa ）	
	地震の種類	弾性設計用地震動S d 又は静的震度		基準地震動S s	
	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び水平方向地震による応力	引張り	－＊	－＊	$\sigma_{\mathrm{b} 1}=9$	$\sigma_{\mathrm{b} 2}=7$
水平方向地震による応力	せん断	－＊	－＊	$\tau_{\mathrm{b} 1}=11$	$\tau_{\mathrm{b} 2}=6$

注記＊：IIISについては，基準地震動S s で評価する。
1.4 結論

1.4 .1 （単位： s ）
有周期
方向
長手方向
横方向
鈖直方向

1．4．2 応力					（単位： MPa ）	
部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
		一次一般膜	$\sigma_{0}=19 * 2$	$\mathrm{S}_{\mathrm{a}}=231$	$\sigma_{0}=19$	$\mathrm{S}_{\mathrm{a}}=236$
胴板		一次	$\sigma_{1}=43 * 2$	$\mathrm{S}_{\mathrm{a}}=346$	$\sigma_{1}=43$	$\mathrm{S}_{\mathrm{a}}=355$
		一次＋二次	$\sigma_{2}=113^{* 2}$	$\mathrm{S}_{\mathrm{a}}=462$	$\sigma_{2}=113$	$\mathrm{S}_{\mathrm{a}}=462$
脚		組合せ	$\sigma_{\mathrm{s}}=24^{* 2}$	$f_{\mathrm{t}}=231$	$\sigma_{\text {s }}=24$	$f_{\mathrm{t}}=276$
其鿬ボルト		引張り	$\sigma_{\mathrm{b}}=9^{* 2}$	$f_{\text {ts }}=173^{* 1}$	$\sigma_{\mathrm{b}}=9$	$f_{\mathrm{ts}}=207^{* 1}$
基砝小ハト		せん断	$\tau_{\mathrm{b}}=11^{* 2}$	$f_{\mathrm{sb}}=133$	$\tau_{\mathrm{b}}=11$	$f_{\mathrm{sb}}=159$
すべて許容応	下である。				$=\operatorname{Min}[1 .$ 地震動S	$\left..6 \cdot \tau_{\mathrm{b}}, \quad f_{\mathrm{f}_{\mathrm{t}}}\right]$ 出値

$\stackrel{\rightharpoonup}{\triangleright}$

2．重大事故等対処設備

機枵名称	設備分類	据付場所及ひ休面高さ （m）	固有周期（s）		弾生設計用地震動S d又は静的麗度		基準地靎動S s		最高使用圧力 (MPa)	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲澴境温度 （ ${ }^{\circ}$ C）
			水平方向	鉛直方向	水平方向設計震度	鈖直方向設計震度	水平方向設計震度	鉿直方向設計震度			
原子炉補幾领令却 海水系ストレーナ	常設／防止（DE 拉張）常設／緩和（DB 抆掁）	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. } \quad-8.10^{*} \end{aligned}$	0.010	0.001	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$	0.78	50	50

注記＊：基淮床レベルを示す。

水

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	ℓ_{5} $(\mathrm{~mm})$	M_{1} $(\mathrm{~N} \cdot \mathrm{~mm})$	M_{2} $(\mathrm{~N} \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	R_{2} $(\mathrm{~N})$

m_{0} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 1}$ $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 2}$ $(\mathrm{~kg})$	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
	872	19.0	19.0				-	-		

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{1}\right)$	I_{sy} $\left(\mathrm{mm}^{4}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{nm}^{3}\right)$	θ_{0} (rad)	θ (rad)
242	70	1.174×10^{9}	2.630×10^{7}	2.981×10^{6}	2.330×10^{5}	2.581	0.991

枠囲みの内容は商業機密の観点から公開できません。

A_{s} $\left(\mathrm{mr}^{2}\right)$	E_{s} $(\mathbb{M P a})$	G_{s} $(\mathbb{P P a})$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{mr}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s}} 3$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{~mm}^{2}\right)$
2.253×10^{4}	201000	77300	5.881×10^{3}	1.411×10^{4}	4.129×10^{3}	1.120×10^{4}

$\mathrm{K}_{11}{ }^{* 1}$	$\mathrm{~K}_{12}{ }^{* 1}$	$\mathrm{~K}_{21}{ }^{* 1}$	$\mathrm{~K}_{22}{ }^{* 1}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\bullet 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$
0.91	1.68	-	-	1.58	1.17	1.39	1.05	0.79	0.43	1.67	1.19
1.76	1.20	-	-								

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
15	2	2	1	160	1000			60	100

た

2.3 計算数值

2．3．1 胴に生じる応力
（1）一次一般鄚応力
（単位： MPa ）

地震の種類地震の方向応力の方向	弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度				基淮地震動S s			
	長手方向		横方向		長手方向		横方向	
	周方向応力	軸万向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	－	－	－	－	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$
内圧による応力 （鉛直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運転时質量による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 2}=1$	－	$\sigma_{\times 2}=1$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 6}=1$	－	$\sigma_{\times 6}=1$
長手方向地震により䏱車由断面 全面に生じる引張応力	－	－	－	－	－	$\sigma_{\times 413}=1$	－	－
組合せ応力	－		－		$\sigma_{0} e=19$		$\sigma_{0 \mathrm{c}}=19$	

\rightleftharpoons

－	地震の種類		戦生設計用地	又は静的震度					
	地震の方向								
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内王に		－	－	－	－	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$
内圧l （鉛直）		－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運鋶時質量に モーメントに		－	－	－	－	－	$\sigma_{\times 2}=1$	－	$\sigma_{\times 2}=1$
鉛直方向地震に モーメントに	$\begin{aligned} & \text { 向曲げ } \\ & \text { 応力 } \end{aligned}$	－	－	－	－	－	$\sigma_{x 6}=1$	－	$\sigma_{x 6}=1$
$\begin{array}{r} \text { 運軾时質量 } \\ \text { により } \end{array}$		－	－	－	－	$\sigma_{\phi 3}=4$	$\sigma_{\times 3}=3$	$\sigma_{\phi 3}=4$	$\sigma_{\times 3}=3$
鉛直方向地 により		－	－	－	－	$\sigma_{\phi 71}=3$	$\sigma_{\times 71}=2$	$\sigma_{\phi 71}=3$	$\sigma_{x 71}=2$
水平方向地震 による応力	引張り	－	-	－		$\begin{gathered} \sigma_{\phi 411}=10 \\ \sigma_{\phi 412}=8 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 411}=2 \\ & \sigma_{\times 412}=6 \\ & \hline \end{aligned}$	$\sigma_{\phi 51}=6$	$\sigma_{\times 51}=9$
		－	－			$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$		
	せん断	－		－		$\tau_{\ell}=4$		$\tau_{\mathrm{c}}=1$	
組合せ応力				－		$\sigma_{1 \ell}=43$		$\sigma_{1 \mathrm{c}}=30$	

（3）地震動のみによる一次応力と二次応力の和の変動値

	地震の種類		戦性設計用地	又は静的震度			基淮		
\bigcirc	地震の方向								
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧 （鉛直		－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
鋁直方向地䫀曲げモーメン	方向 る応力	－	－	－	－	－	$\sigma_{x 6}=1$	－	$\sigma_{x 6}=1$
鉛直方向地 により		-	-	$-$	－	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\times 71}=2 \\ \sigma \times 72=5 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\times 71}=2 \\ \sigma \times 72=5 \\ \hline \end{gathered}$
		－	－	－	－	$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$	$\sigma_{\phi 51}=6$	$\sigma \times 51=9$
水平方向地震 による店力	引張り	-	$\begin{aligned} & - \\ & - \end{aligned}$	－	－	$\begin{gathered} \sigma_{\phi 421}=8 \\ \sigma_{\phi 422}=18 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 421}=25 \\ & \sigma_{\times 422}=15 \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=22$	$\sigma_{\times 52}=14$
		－	－			$\sigma_{\phi 42}=26$	$\sigma_{\times 42}=39$		
	せん断	－		－		$\tau_{\ell}=4$		$\tau_{\mathrm{c}}=1$	
組合せ応力				$\sigma_{2 \ell}=113$	$\sigma_{2 \mathrm{c}}=71$				

ϖ

	地震の種類	弾性設言	的震度		
	地震の方向	長手方向	横方向	長手方向	横方向
運軣时質量による応力	圧縮	－	－	$\sigma_{\text {s } 1}=1$	$\sigma_{\text {s } 1}=1$
鉛直方向地震による応力	圧縮	－	－	$\sigma_{\text {s } 4}=1$	$\sigma_{\text {s } 4}=1$
水平方向地震による応力	曲げ	－	－	$\sigma_{\text {s } 2}=21$	$\sigma_{\text {s } 3}=3$
	せん断	－	－	$\tau_{\text {s } 2}=6$	$\tau_{\mathrm{s} 3}=1$
組合せ応力		－	－	$\sigma_{\text {s } \ell}=24$	$\sigma_{\text {sc }}=4$

2.3 .3 基㯧ボルトに生じる応力				（単位： MPa ）	
	地震の種類	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
－	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び水平方向地震による応力	引張り	－	－	$\sigma_{\mathrm{b}_{1}}=9$	$\sigma_{\mathrm{b} 2}=7$
水平方向地震による応力	せん断	－	－	$\tau_{\mathrm{b} 1}=11$	$\tau_{\mathrm{b} 2}=6$

$$
\text { O } 2 \text { (3) VI-2-5-7-1-5 R } 2 \mathrm{E}
$$

2.4 結論

2.4 .1 固有周期	
単位： s ）	
向	固有周期
長手方向	$\mathrm{T}_{1}=0.010$
横方向	$\mathrm{T}_{2}=0.004$
鈖直方向	$\mathrm{T}_{3}=0.001$

