本資料のうち,枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料	
資料番号	02-工-B-19-0331_改1	
提出年月日	2021年9月21日	

VI-2-5-7-1-5 原子炉補機冷却海水系ストレーナの

耐震性についての計算書

2021年9月 東北電力株式会社

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方 針に基づき、原子炉補機冷却海水系ストレーナが設計用地震力に対して十分な構造強度を有して いることを説明するものである。

原子炉補機冷却海水系ストレーナは,設計基準対象施設においてはSクラス施設に,重大事故 等対処設備においては常設重大事故防止設備(設計基準拡張)及び常設重大事故緩和設備(設計 基準拡張)に分類される。以下,設計基準対象施設及び重大事故等対処設備としての構造強度評 価を示す。

なお,原子炉補機冷却海水系ストレーナは,添付書類「VI-2-1-13 機器・配管系の計算書作 成の方法」に記載の横置一胴円筒形容器と類似の構造であるため,添付書類「VI-2-1-13-2 横 置一胴円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

- 2. 一般事項
- 2.1 構造計画

原子炉補機冷却海水系ストレーナの構造計画を表 2-1 に示す。

表 2-1 構造計画

3. 固有周期

3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は,本計算書の【原子 炉補機冷却海水系ストレーナの耐震性についての計算結果】の機器要目に示す。

計算の結果,固有周期は0.05秒以下であり,剛であることを確認した。 固有周期の計算結果を表 3-1 に示す。

表 3-1	固有周期	(単位:s)
水平方向		0.010
鉛直方向		0.001

- 4. 構造強度評価
- 4.1 構造強度評価方法

原子炉補機冷却海水系ストレーナの構造強度評価は、添付書類「VI-2-1-13-2 横置一胴円筒 形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

- 4.2 荷重の組合せ及び許容応力
 - 4.2.1 荷重の組合せ及び許容応力状態

原子炉補機冷却海水系ストレーナの荷重の組合せ及び許容応力状態のうち設計基準対象 施設の評価に用いるものを表 4-1 に,重大事故等対処設備の評価に用いるものを表 4-2 に 示す。

4.2.2 許容応力

原子炉補機冷却海水系ストレーナの許容応力は,添付書類「VI-2-1-9 機能維持の基本 方針」に基づき,表4-3及び表4-4のとおりとする。

4.2.3 使用材料の許容応力評価条件

原子炉補機冷却海水系ストレーナの使用材料の許容応力評価条件のうち設計基準対象施 設の評価に用いるものを表 4-5 に,重大事故等対処設備の評価に用いるものを表 4-6 に示 す。

4.3 計算条件

応力計算に用いる計算条件は,本計算書の【原子炉補機冷却海水系ストレーナの耐震性についての計算結果】の設計条件及び機器要目に示す。

施設	区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	原子炉補機	原子炉補機冷却海水系	C	カニマ 0 広田*	$D + P_D + M_D + S d *$	Ⅲ _A S
系統施設	冷却設備	ストレーナ	2	クラス3容器*	$D + P_D + M_D + S_s$	IV _A S

表 4-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

注記*:クラス3容器の支持構造物を含む。

	表 4-2	荷重の組合せ及び許容応力状態	(重大事故等対処設備)
--	-------	----------------	-------------

施設区分		機器名称 設備分類*1		機器等の区分	荷重の組合せ	許容応力状態
			常設/防止		$D+P_D+M_D+S$ s *3	IV _A S
原子炉冷却 系統施設	原子炉補機 冷却設備	原子炉補機冷却海水系 ストレーナ	(DB 拡張) 常設/緩和	重大事故等 クラス2容器 ^{*2}	$D+P_{SAD}+M_{SAD}+S_{S}$	V _A S (V _A S としてIV
			(DB 拡張)		D + r sad + msad + 5 s	_A S の許容限界を 用いる。)

注記*1:「常設/防止(DB 拡張)」は常設重大事故防止設備(設計基準拡張),「常設/緩和(DB 拡張)」は常設重大事故緩和設備(設計基準拡張)を示す。

*2:重大事故等クラス2容器の支持構造物を含む。

*3:「D+Psad+Msad+Ss」の評価に包絡されるため、評価結果の記載を省略する。

СЛ

	許容限界*1,*2						
許容応力状態	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ ピーク応力			
₩AS	S _y と0.6・S _u の小さい方 ただし,オーステナイト系ス テンレス鋼及び高ニッケル合 金については上記値と1.2・ Sとの大きい方	左欄の 1.5 倍の値	 弾性設計用地震動Sd又は基準地震動Ssのみによる疲析を行い,疲労累積係数が1.0以下であること。ただし,動のみによる一次+二次応力の変動値が2・Sv以下であれ 				
IV _A S			動のみによる一次+二次応力の 疲労解析は不要。	⊃変動値が2・S _ッ 以下であれば,			
V _A S (V _A S としてIV _A S の許 容限界を用いる。)	0.6 • S u	左欄の 1.5 倍の値	1.0以下であること。	労解析を行い,疲労累積係数が :+二次応力の変動値が 2・S _y 以			

表 4-3 許容応力(クラス2,3容器及び重大事故等クラス2容器)

注記*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

	許容限界 ^{*1,*2} (ボルト等以外)	許容限界* ^{1,*2} (ボルト等)		
許容応力状態	一次応力	一次応力		
	引張り	引張り	せん断	
III₄S	1.5 • f t	1.5 • f t	1.5 • f s	
IV _A S				
V _A S (V _A SとしてIV _A Sの許容限界を 用いる。)		1.5 • f t*	1.5 • f _s *	

表 4-4 許容応力(クラス 2,3支持構造物及び重大事故等クラス 2支持構造物)

注記*1: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件 (℃)		S (MPa)	S y (MPa)	S _u (MPa)	S _y (RT) (MPa)
胴板		最高使用温度	50				
脚		周囲環境温度	50				_
基礎ボルト		周囲環境温度	50				

表 4-5 使用材料の許容応力評価条件(設計基準対象施設)

表 4-6 使用	目材料の許容応力評価条件	(重大事故等対処設備)
----------	--------------	-------------

評価部材	材料	温度条件 (℃)		S (MPa)	S _y (MPa)	S _u (MPa)	S _y (RT) (MPa)
胴板		最高使用温度	50	_			
脚		周囲環境温度	50				_
基礎ボルト		周囲環境温度	50				_

 ∞

- 5. 評価結果
- 5.1 設計基準対象施設としての評価結果

原子炉補機冷却海水系ストレーナの設計基準対象施設としての耐震評価結果を以下に示す。 発生値は許容限界を満足しており,設計用地震力に対して十分な構造強度を有していることを 確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお,弾性設計用地震動Sd及び静的震度 は基準地震動Ssを下回っており,基準地震動Ssによる発生値が,弾性設計用地震動S d又は静的震度に対する評価における許容限界を満足するため,弾性設計用地震動Sd又 は静的震度による発生値の算出を省略した。

5.2 重大事故等対処設備としての評価結果

原子炉補機冷却海水系ストレーナの重大事故等時の状態を考慮した場合の耐震評価結果を以 下に示す。発生値は許容限界を満足しており,設計用地震力に対して十分な構造強度を有して いることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【原子炉補機冷却海水系ストレーナの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

機器名称 而震重要度分類	据付場所及び床面高さ	固有周期(s)		弾性設計用地震動Sd 又は静的震度		基準地	動S s	最高使用圧力	最高使用温度	周囲環境温度	
	展里安度 刀狽	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(°C)	(°C)
原子炉補機冷却 海水系ストレーナ	S	原子炉建屋 0.P8.10 ^{*1}	0.010	0.001	*2	*2	С _Н =0.99	C _V =0.69	0.78	50	50

注記*1:基準床レベルを示す。

*2:Ⅲ』Sについては、基準地震動Ssで評価する。

1.2 機器要目

m1	m2	m3	m4	m 5
(kg)	(kg)	(kg)	(kg)	(kg)

0 1 (mm)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		()	M ₁ (N•mm)	M2 (N•mm)	R 1 (N)	R 2 (N)	
					5.098 $\times 10^{5}$	3. 292×10^5	9. 921×10^3	9.319 \times 10 ³

m ₀	m _{s 1}	m _{s 2}	D _i	t	t _e	l _o	h 1	h 2	θ_{w} (rad)	ℓ _w
(kg)	(kg)	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		(mm)
			872	19.0	19.0				_	_

C ₁	C 2	I _{sx}	I _{sy}	Z _{s x}	Z _{sy}	θ ₀	θ
(mm)	(mm)	(mm ⁴)	(mm ⁴)	(mm ³)	(mm ³)	(rad)	(rad)
242	70	1.174×10^{9}	2.630 $\times 10^{7}$	2.981 $\times 10^{6}$	2. 330×10^5	2.581	0.991

A s	E s	G _s	A _{s 1}	A _{s 2}	A _{s 3}	A _{s 4}
(mm ²)	(MPa)	(MPa)	(mm ²)	(mm ²)	(mm ²)	(mm ²)
2.253 $\times 10^{4}$	201000	77300	5.881 $\times 10^{3}$	1.411×10^{4}	4. 129×10^{3}	1.120×10^{4}

	K_{11}^{*1}	K_{12}^{*1}	K_{21}^{*1}	K_{22}^{*1}	$K_{\ell 1}$	$K_{\ell 2}$	K_{c1}	K _{c2}	$C_{\ell 1}$	$C_{\ell 2}$	С _{с1}	С _{с2}
Γ	0.91	1.68	—	_	1 59	1. 17	1.39	1.05	0.79	0.42	1.67	1. 19
	1.76	1.20	_	_	1.58	1.17	1. 39	1.05	0. 79	0. 43 1. 67	1. 19	

s	n	n 1	n_2	a (mm)	b (mm)	d (mm)	A _b (mm²)	d 1 (mm)	d 2 (mm)
15	2	2	1	160	1000			60	100

S _y (胴板)	S u(胴板)	S (胴板)	S _y (脚)	S u (脚)	F(脚)	F*(脚)	S _y (基礎ボルト)	S u(基礎ボルト)	F(基礎ボルト)	F*(基礎ボルト)
(MPa)	(MPa)	(MPa)	(卿a)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
		_								

注記*1:表中で上段は一次応力、下段は二次応力の係数とする。

*2:最高使用温度で算出

*3:周囲環境温度で算出

1.3 計算数値

1.3.1 胴に生じる応力

(1) 一次一般膜応力

(単位 : MPa)

地震の種類		弹性設計用地震動	Sd 又は静的震度			基準地震	動S s	
地震の方向	長手方向		横	方向	長手	方向	横	方向
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	_*	*	*	*	σ _{φ1} =19	$\sigma_{x1}=10$	σ _{φ1} =19	σ _{x1} =10
内圧による応力 (鉛直方向地震時)	_*	—	_*	—	σ _{φ2} =0	—	σ _{φ2} =0	_
運転時質量による長手方向曲げ モーメントにより生じる応力	_	*	_	_*	_	$\sigma_{x2}=1$	_	$\sigma_{x2}=1$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	_	_*	—	_*	—	$\sigma_{x6}=1$	_	$\sigma_{x6}=1$
長手方向地震により胴軸断面 全面に生じる引張応力	_	_*	_	_	_	σ _{x413} =1	_	_
組合也応力	-	_*	=	_*	σο	=19	σ ₀ ,	=19

注記*:ⅢASについては、基準地震動Ssで評価する。

12

(2) 一次応力									(単位:MPa)	
	地震の種類		弹性設計用地震動	IS d 又は静的震度			基準地震動S s			
	地震の方向	長手方向		横	方向	長手	方向	横方向		
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応ブ	<u>ታ</u>	*	_*	_*	-*	σ _{φ1} =19	$\sigma_{x1}=10$	σ _{φ1} =19	σ _{x1} =10	
内圧による応フ (鉛直方向地震)		_*	_	_*	_	σ _{φ2} =0	_	σ _{φ2} =0	_	
運転時質量による長手 モーメントにより生し		—	_*	_	_*	-	$\sigma_{x2}=1$	_	$\sigma_{x2}=1$	
鉛直方向地震による長言 モーメントにより生し		_	*	_	*	_	$\sigma_{x6}=1$	—	$\sigma_{x6}=1$	
運転時質量による肺 により生じる応		*	*	_*	*	σ _{φ3} =4	σ _{x3} =3	σ _{φ3} =4	σ _{x3} =3	
鉛直方向地震による により生じる応		_*	*	_*	_*	σ _{φ71} =3	σ _{x71} =2	σ _{φ71} =3	σ _{x71} =2	
		*	_*			σ _{φ411} =10	σ _{x411} =2			
水平方向地震	弓張り	*	_*	_*	-*	σ _{φ412} =8	σ _{x412} =6	σ _{φ51} =6	σ _{x51} =9	
による応力		*	_*			σ _{φ41} =17	σ _{x41} =8			
	せん断		_*	-	_*	τ .=4		τ_c=1		
組合せ応力	組合也応力		_*	-	_*	σ ₁	=43	σ _{1 c}	=30	

注記*:ⅢASについては、基準地震動Ssで評価する。

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位	:MPa)	

	地震の種類			IS d 又は静的震度				震動S s	
	地震の方向	長手方向		横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応 (鉛直方向地震)		_*	—	_*	—	σ _{φ2} =0	—	σ _{φ2} =0	_
鉛直方向地震による: 曲げモーメントにより:		_	*	_	_*	_	$\sigma_{x6}=1$	—	$\sigma_{x6}=1$
鉛直方向地震による	5脚反力	_*	_*	_*	_*	$\sigma_{\phi 71}=3$	σ _{x71} =2	σ _{φ71} =3	σ _{x71} =2
により生じる応	动	_*	*	_*	_*	σ _{φ72} =7	σ _{x72} =5	$\sigma_{\phi 72}=7$	σ _{x72} =5
		_*	*	_*	_*	σ _{φ41} =17	σ _{x41} =8	σ _{φ51} =6	σ _{x51} =9
小豆十片山の雪	引張り	_*	_*			σ _{φ421} =8	σ _{x421} =25		
水平方向地震 による応力	り取り	_*	_*	_*	_*	σ _{φ422} =18	σ _{x422} =15	σ _{φ52} =22	σ _{x52} =14
による心の		_*	_*			σ _{φ42} =26	σ _{x42} =39		
	せん断	-	_*	-	_*	τι	=4	τ	==1
組合せ応力		-	_*	-	_*	σ 2 0=113		σ _{2c} =71	

注記*:ⅢASについては、基準地震動Ssで評価する。

1.3.2 脚に生じる応力					(単位:MPa)
	地震の種類	弹性設計用地震動	bSd又は静的震度	基準地震	震動S s
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	_*	-*	σ _{s1} =1	σ _{s1} =1
鉛直方向地震による応力	圧縮	_*	-*	σ _{s4} =1	σ _{s4} =1
水平方向地震による応力	曲げ	_*	_*	σ _{s2} =21	σ _{s3} =3
小十万同地展による心万	せん断	_*	_*	τ s2=6	τ _{s3} =1
組合せ応力		_*	_*	σ _{s l} =24	σ _{sc} =4

注記*:Ⅲ、Sについては、基準地震動Ssで評価する。

1.3.3 基礎ボルトに生じる応力

13

(単位:MPa)

地震の種類	弾性設計用地震動	S d 又は静的震度	基準地震動S s		
地震の方向	長手方向	横方向	長手方向	横方向	
引張り	*	_*	σ _{b1} =9	σ _{b2} =7	
せん断	_*	*	τ _{b1} =11	τь2=6	
	地震の方向 引張り	地震の方向 長手方向 引張り -*	地震の方向 長手方向 横方向 引張り -* -*	地震の方向 長手方向 横方向 長手方向 引張り -* -* σ _{b1} =9	

注記*:Ⅲ、Sについては、基準地震動Ssで評価する。

1.4 結論

1.4.1 固有周期	(単位:s)
方向	固有周期
長手方向	Т 1=0.010
横方向	T ₂ =0.004
鉛直方向	T ₃ =0.001

1.4.2 応力

(単位:MPa)

	++ 10	÷ +	弹性設計用地震颤	めSd又は静的震度	基準地	震動S s
部材	材 料	応力	算出応力	許容応力	算出応力	許容応力
		一次一般膜	$\sigma_0 = 19^{*2}$	S a=231	σ ₀ =19	S _a =236
胴板		一次	$\sigma_1 = 43^{*2}$	S _a =346	σ ₁ =43	S _a =355
		一次+二次	σ ₂ =113*2	S _a =462	σ ₂ =113	S _a =462
脚		組合せ	σ _s =24*2	$f_{t}=231$	$\sigma_s=24$	$f_{\rm t} = 276$
基礎ボルト		引張り	σ _b =9*2	$f_{t s} = 173^{*1}$	σь=9	$f_{t s} = 207^{*1}$
ZENEAVEL		せん断	$\tau_{\rm b} = 11^{*2}$	f _{sb} =133	$\tau_{\rm b}=11$	<i>f</i> _{sb} =159

すべて許容応力以下である。

注記*1: f_{ts}=Min[1.4·f_{to}-1.6·τ_b, f_{to}] *2: 基準地震動Ssによる算出値

14

2. 重大事故等对処設備

2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ	固有周期(s)		弾性設計用地震動S d 又は静的震度		基準地震動S s		最高使用圧力	最高使用温度	周囲環境温度
的戏音产口作小	同文11用了 7天只	(m)	水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向	(MPa)	(°C)	(°C)
					設計震度	設計震度	設計震度	設計震度			
原子炉補機冷却	常設/防止(DB 拡張)	原子炉建屋	0.010	0.001	_	_	С _н =0.99	C _v =0.69	0. 78	50	50
海水系ストレーナ	常設/緩和(DB 拡張)	0. P8. 10*	0.010	0.001	_	_	$C_{\rm H} = 0.99$	$C_{\rm V} = 0.09$	0.78	50	50

注記*:基準床レベルを示す。

2.2 機器要目

m1	m2	m3	m4	m₅
(kg)	(kg)	(kg)	(kg)	(kg)

l 1	l 2	е _з	0 ₄	е ₅	M1	M2	R 1	R 2
(mm)	(mm)	(mm)	(mm)	(тт)	(N•mm)	(N•mm)	(N)	(N)
					5.098×10 ⁵	3. 292×10^5 .	9. 921×10 ³	9.319×10 ³

m ₀	m _{s 1}	m _{s 2}	D _i	t	t _e	е _о	h 1	h 2	θ _w	.l. _w
(kg)	(kg)	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(rad)	(mm)
			872	19. 0	19. 0				-	-

С ₁	C 2	I _{sx}	I _{sy}	Z _{s x}	Z _{sy}	θ_{0} (rad)	θ
(тт)	(mm)	(mm ⁴)	(mm ⁴)	(mm ³)	(mm ³)		(rad)
242	70	1.174×10^{9}	2.630 $\times 10^{7}$	2.981 \times 10 ⁶	2. 330×10 ⁵	2. 581	0. 991

枠囲みの内容は商業機密の観点から公開できません。

15

A _s	E s	G _s	A _{s 1}	A _{s 2}	A _{s 3}	A _{s 4}
(mm ²)	(MPa)	(MPa)	(mm ²)	(mm ²)	(mm ²)	(mm ²)
2.253×10^4	201000	77300	5.881 $\times 10^{3}$	1.411×10^{4}	4. 129×10^{3}	1.120×10^{4}

K_{11}^{*1}	K_{12}^{*1}	K_{21}^{*1}	K_{22}^{*1}	$K_{\ell 1}$	$K_{\ell 2}$	K_{c1}	K_{c2}	$C_{\ell 1}$	$C_{\ell 2}$	C _{c1}	С _{с2}
0.91	1.68	_	_	1.58	1.17	1.39	1.05	0.79	0. 43	1.67	1. 19
1.76	1.20	_	_	1.00	1.17	1. 39	1.05	0.19	0.43	1.07	1. 19

s	n	n 1	n_2	a (mm)	b (mm)	d (mm)	A b (mm²)	d 1 (mm)	d 2 (mm)
15	2	2	1	160	1000			60	100

S _y (胴板)	S u(胴板)	S(胴板)	S _y (脚)	S u (脚)	F(脚)	F*(脚)	S _y (基礎ボルト)	S _u (基礎ボルト)	F(基礎ボルト)	F*(基礎ボルト)
(MPa)	(MPa)	(MPa)	(卿a)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
		_								

注記*1:表中で上段は一次応力、下段は二次応力の係数とする。

*2:最高使用温度で算出

*3:周囲環境温度で算出

2.3 計算数値

2.3.1 胴に生じる応力

(1) 一次一般膜応力

(単位 : MPa)

地震の種類		弹性設計用地震動	IS d 又は静的震度		基準地震動S s			
地震の方向	長手	長手方向		横方向		長手方向		方向
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	-	—	—	—	σ _{φ1} =19	$\sigma_{x1}=10$	σ _{φ1} =19	σ _{x1} =10
内圧による応力	_	_	_	_	σ _{φ2} =0	_	$\sigma_{\phi 2}=0$	_
(鉛直方向地震時)					0 @2 0		0 0 2 0	
運転時質量による長手方向曲げ	_	_	_	_	_	$\sigma_{x^2}=1$	_	$\sigma_{x2}=1$
モーメントにより生じる応力						0 x2-1		0 x2-1
鉛直方向地震による長手方向曲げ	_	_	_	_	_	g −1	_	$\sigma_{x6}=1$
モーメントにより生じる応力						$\sigma_{x6}=1$		0 x 6-1
長手方向地震により胴輔断面						1		
全面に生じる引張応力						$\sigma_{x^{4}13} = 1$		
組合せ応力		_		_	σο	_l =19	σ ₀	==19

17

(2) 一次応力									(単位 : MPa)	
	地震の種類 弾性設計用地震動Sd 又は静的震度						基準地震動S s			
	地震の方向	長手	方向	横	方向	長手	方向	横方向		
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応	力	_	-	—	—	σ _{φ1} =19	$\sigma_{x1}=10$	σ _{φ1} =19	$\sigma_{x1}=10$	
内圧による応 の 鉛直方向地震		_	_	_	_	σ _{φ2} =0	_	σ _{φ2} =0	_	
運転時質量による長手 モーメントにより生		—	—	_	_	_	$\sigma_{x2}=1$	_	$\sigma_{x2}=1$	
鉛直方向地震による長 モーメントにより生		—	—	_	_	_	$\sigma_{x6}=1$	_	$\sigma_{x6}=1$	
運転時質量による により生じる応		—	_	_	_	σ _{φ3} =4	σ _{x3} =3	σ _{φ3} =4	σ _{x3} =3	
鉛直方向地震による により生じる応		—	—	_	_	σ _{φ71} =3	σ _{x71} =2	σ _{φ71} =3	σ _{x71} =2	
水平方向地震	引張り	_	_	_	_	$\sigma_{\phi 411} = 10$ $\sigma_{\phi 412} = 8$	$\sigma_{x411}=2$ $\sigma_{x412}=6$	σ _{φ51} =6	σ _{x51} =9	
による応力		_	-			σ _{φ41} =17	σ _{x41} =8			
	せん断	-	_	-	_	τι	=4	τ.	=1	
組合せ応力		-	_	-	_	σ ₁	1=43	σ ₁	=30	

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位	:	MPa)
-----	---	------

	地震の種類	弾性設計用地震動Sd 又は静的震度			基準地震動S s					
	地震の方向		長手方向		横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応対 (鉛直方向地震)		_	_	_	_	σ _{φ2} =0	_	σ _{φ2} =0	—	
鉛直方向地震による: 曲げモーメントにより		_	_	—	_	—	$\sigma_{x6}=1$	_	$\sigma_{x6}=1$	
鉛直方向地震による	鉛直方向地震による脚反力		_	_	_	σ _{φ71} =3	σ _{x71} =2	σ _{φ71} =3	σ _{x71} =2	
により生じる応	 力	—	—	—	_	$\sigma_{\phi 72}=7$	σ _{x72} =5	σ _{φ72} =7	σ _{x72} =5	
		_	_	—	_	σ _{φ41} =17	σ _{x41} =8	σ _{φ51} =6	σ _{x51} =9	
水平方向地震	引張り	-	-			σ _{φ421} =8	σ _{x421} =25			
による応力	0.0000	_	_	-	-	σ _{φ422} =18	σ _{x422} =15	σ _{φ52} =22	σ _{x52} =14	
		_	_			σ _{φ42} =26	σ _{x42} =39			
	せん断	-	_	-	_	τε	=4	τ	=1	
組合せ応力		-	_	-	_	σ _{2ℓ}	=113	σ ₂₀	,=71	

2.3.2 脚に生じる応力

18

233 基礎ボルトに生じる広力

					(<u>++</u>] <u>1</u> , . MI C
	地震の種類	地震の種類弾性設計用地震動Sd又は静的震度			憂動S s
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	—	—	σ _{s1} =1	σ _{s1} =1
鉛直方向地震による応力	圧縮	—	—	σ _{s4} =1	σ _{s4} =1
水平方向地震による応力	曲げ	—	—	σ _{s2} =21	σ _{s3} =3
小平万円地長による応力	せん断	-	-	τ _{s2} =6	τ _{s3} =1
組合せ応力		—	—	σ _{s l} =24	σ _{sc} =4

2.3.3 基礎ボルトに生じる応力					(単位:MPa)
	地震の種類	弹性設計用地震動	IS d 又は静的震度	基準地	裏動S s
	地震の方向	長手方向	横方向	長手方向	横方向
鉛直方向地震及び 水平方向地震による応力	引張り	_	_	σ _{b1} =9	σ _{b2} =7
水平方向地震による応力	せん断	_	_	τ _{b1} =11	τ _{b2} =6

(単位:MPa)

2.4 結論

2.4.1 固有周期	(単位: s)
方向	固有周期
長手方向	Т 1=0.010
横方向	T ₂ =0.004
鉛直方向	T ₃ =0.001

2.4.2 応力

(単位 : MPa)

立7 十十	部材材料	応力	弹性設計用地震颤	めSd又は静的震度	基準地震動S s		
아 네크		応力	算出応力	許容応力	算出応力	許容応力	
		一次一般膜	_	_	σ ₀ =19	S _a =236	
胴板	一次		-	_	σ ₁ =43	S _a =355	
		一次+二次	-	_	σ ₂ =113	S _a =462	
脚		組合せ	-	_	σ _s =24	$f_{\rm t} = 276$	
基礎ボルト		引張り	_	_	σь=9	f _{ts} =207*	
ZEWEAVEN		せん断	_	_	τ _b =11	<i>f</i> _{sb} =159	

すべて許容応力以下である。

注記*: f_{ts} =Min[1.4· f_{to} -1.6· τ_{b} , f_{to}]

19