本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0083_改 1
提出年月日	2021年9月21日

VI-2-4-3-1-1 燃料プール冷却浄化系熱交換器の耐震性についての計算書

2021年9月

東北電力株式会社

目 次

1. 概要 · · · · · · · · · · · · · · · · · ·
2. 一般事項 · · · · · · · · · · · · · · · · · · ·
2.1 構造計画
3. 固有周期 · · · · · · · · 3
3.1 固有周期の計算・・・・・・・・・・・・・・・・・・・・・・・・3
4. 構造強度評価 · · · · · · · · · · · · 4
4.1 構造強度評価方法 4
4.2 荷重の組合せ及び許容応力 4
4.2.1 荷重の組合せ及び許容応力状態・・・・・・・・・・・・・・・・・・ 4
4.2.2 許容応力4
4.2.3 使用材料の許容応力評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.3 計算条件 · · · · · · · · · · · · · · · 4
4.4 疲労解析評価 · · · · · · · · · 9
5. 評価結果 · · · · · · · · · · · · · · · · · · ·
5.1 重大事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、燃料プール冷却浄化系熱交換器が設計用地震力に対して十分な構造強度を有していることを説明するものである。

燃料プール冷却浄化系熱交換器は、重大事故等対処設備においては常設耐震重要重大事故防 止設備に分類される。以下、重大事故等対処設備としての構造強度評価を示す。

なお、燃料プール冷却浄化系熱交換器は、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載の横置一胴円筒形容器と類似の構造であるため、添付書類「VI-2-1-13-2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また、「4.4 疲労解析評価」にて示す方法にて疲労解析評価を実施する。

2. 一般事項

2.1 構造計画

燃料プール冷却浄化系熱交換器の構造計画を表 2-1 に示す。

表 2-1 構造計画

表 2-1 構造計画	班隊 捷 注 內		5415 	(単位:mm)
	概要	主体構造	横置一胴円筒形容器 (水室側及び胴側に, 鏡板を有する横置一胴 円筒形容器)	
	計画の概要	基礎・支持構造	胴をそれぞれ基礎ボルト で基礎に据え付ける。	

3. 固有周期

3.1 固有周期の計算

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は、本計算書の【燃料 プール冷却浄化系熱交換器の耐震性についての計算結果】の機器要目に示す。

計算の結果,固有周期は 0.05 秒以下であり,剛であることを確認した。 固有周期の計算結果を表 3-1 に示す。

	表 3-1	固有周期	(単位:s)
水平方向			
鉛直方向			

4. 構造強度評価

4.1 構造強度評価方法

燃料プール冷却浄化系熱交換器の構造強度評価は、添付書類「VI-2-1-13-2 横置一胴円筒 形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

燃料プール冷却浄化系熱交換器の荷重の組合せ及び許容応力状態のうち重大事故等対処 設備の評価に用いるものを表 4-1 に示す。

4.2.2 許容応力

燃料プール冷却浄化系熱交換器の許容応力は、添付書類「VI-2-1-9 機能維持の基本方針」に基づき、表 4-2 及び表 4-3 のとおりとする。

4.2.3 使用材料の許容応力評価条件

燃料プール冷却浄化系熱交換器の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4-4 に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【燃料プール冷却浄化系熱交換器の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態 (重大事故等対処設備)

許容応力狀態	IV _A S V _A S (V _A S として IV _A S の許容限界 を用いる)					
荷重の組合せ	$D + P_D + M_D + S_{S^{*3}}$	$\mathrm{D} + \mathrm{P}_{\mathrm{SAD}} + \mathrm{M}_{\mathrm{SAD}} + \mathrm{S}_{\mathrm{S}}$				
機器等の区分		重大事故等 クラス2容器*2				
設備分類*1	常設耐震/防止					
機器名称	燃料プール冷却浄化系熱交換器					
施設区分		使用済燃料貯蔵槽冷却浄化 設備				
施割	核燃料物質	の取扱施設 及び貯蔵施 設				

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備を示す。

*2: 重大事故等クラス2容器の支持構造物を含む。

*3 : 「D+P_{SAD}+M_{SAD}+S_S」の評価に包絡されるため、評価結果の記載を省略する。

O 2 \bigcirc VI-2-4-3-1-1 R 1

表 4-2 許容応力 (重大事故等クラス2容器)

		許容限	許容限界*1, *2	
許容応力状態	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次十二次応力	一次+二次+ピーク応力
$ ext{IV}_{ ext{A}} ext{S}$		† 6 † 1 ° 6 HT T	基準地震動Ssのみによる疲労解析を行い, 疲労累積係数が1.0以下であること。	「を行い、疲労累積係数が
$ m V_AS$ として $ m IV_AS$ の許容限界を用いる)	0.0 • S	左柳の 1.5 待の順	ただし, 地震動のみによる一次+二次応力の変動値が2・S y以下であれば, 疲労解析は不要。	次応力の変動値が2・S _y 以

注記*1:座屈による評価は,クラスMC容器の座屈に対する評価式による。

*2 :当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 許容応力 (重大事故等クラス2支持構造物)

1		,	1		
	許容限界*1, *2 (ボルト等)	一次応力	せん断		1.5 • f s *
<u> </u>	許容限(ボル	 	引張り		1.5 • f .*
女 4-5 - 町谷心刀(黒八ず以き	許容限界*1, *2 (ボルト等以外)	一次応力	引張り		1.5 · f · *
		許容応力状態		$\mathrm{IV_AS}$	V_{AS} $(V_{AS} \ge L \subset IV_{AS} $ の許容限界を用いる)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2 :当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-4 使用材料の許容応力評価条件 (重大事故等対処設備)

評価部材	材料	温度条件 (°C)	4	S (MPa)	S _y (MPa)	S _u (MPa)	S _y (RT) (MPa)
胴板	SGV410	最高使用温度	0.2	I	210	380	1
脚	SS400 ()厚さ≦16mm)	周囲環境温度	99	ı	234	385	1
基礎ボルト	SS400 (16mm<径≦40mm)	周囲環境温度	99	I	225	385	1

4.4 疲労解析評価

胴の応力評価において、一次応力と二次応力の和の変動値が設計降伏点Syの2倍を上回る場合には、設計・建設規格 PVB-3300に規定された簡易弾塑性評価方法に基づき、疲労解析評価を実施する。

なお、疲労解析評価に用いる基準地震動Ssの等価繰返し回数N。は、とする。

(1)繰返しピーク応力強さ

繰返しピーク応力強さS₂は、次式により求める。

Ke: 次の計算式により計算した値

a. S_n<3・S_mの場合

K $_{\rm e}$ = 1

- b. S_n≧3・S_mの場合
- (a) K < B₀の場合

(b) K≥B₀の場合

ここで,

q, A₀, B₀:下表に掲げる材料の種類に応じ、それぞれの同表に掲げる値

材料の種類	q	Α 0	Во
低合金鋼	3. 1	1.0	1. 25
マルテンサイト系ステンレス鋼	3. 1	1.0	1. 25
炭素鋼	3. 1	0.66	2. 59
オーステナイト系ステンレス鋼	3. 1	0.7	2. 15
高ニッケル合金	3. 1	0.7	2. 15

S_n:一次応力と二次応力を加えて求めた応力解析による応力強さのサイクルにおいて、その最大値と最小値の差

 $S_m: 2/3 \cdot S_v$

K。: 弾塑性解析に用いる繰返しピーク応力強さの補正係数

Sը: 地震荷重のみにおける一次+二次+ピーク応力の応力差範囲

S&:繰返しピーク応力強さ

(2) 運転温度における繰返しピーク応力強さの補正

縦弾性係数比を考慮し、繰返しピーク応力強さS₁を次式により補正する。

 $S_{\ell}' = S_{\ell} \cdot E_{0} / E$

S_ℓ':補正繰返しピーク応力強さ

E o : 縦弾性係数

E:運転温度の縦弾性係数

(3) 疲労累積係数

疲労累積係数Ufが次式を満足することを確認する。

 $U_f = \Sigma (N_c/N_a) \leq 1.0$

N_a: 地震時の許容繰返し回数 N_c: 地震時の等価繰返し回数

なお, 許容繰返し回数の算出には, 設計・建設規格 表 添付 4-2-1 炭素鋼, 低合金鋼 および高張力鋼の設計疲労線図より求めた値を用いる。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

燃料プール冷却浄化系熱交換器の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

枠囲みの内容は商業機密の観点から公開できません。

【燃料プール冷却浄化系熱交換器の耐震性についての計算結果】 1. 重大事故等対処設備

1.1 設計条件

周囲環境温度	(C)	99
馬高	(°C)	0.2
最高使用压力	(MPa)	1.18
§動Ss	鉛直方向 設計震度	$C_{v} = 1.37$
	水平方向 設計震度	C_{H} =1.97
·用地震動Sd :静的震度	鉛直方向 設計震度	l
弾性設計用: 又は静(水平方向 設計震度	l
固有周期 (s) 水平方向 鉛直方向		
据付場所及び床面高さ	(m)	原子炉建屋 0.P. 15.00
抽	HÎ .	常設耐震/防止
8	(数在17.7.17.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	燃料プール冷却浄化系 熱交換器

1.2 機器要目

$\begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix} $	8.3 周板 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4	mi m² m² m²	Wms1 Z Z ms2 v m s2 v m		∧	7p	•	10 No
			$\ell_{\rm w}$	20				
	$\frac{R_2}{(N)}$ 1. 720×10^4		$\theta_{\rm w}$ (rad)	0.001				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		h 2 (mm)	600				
	M_2 $(N \cdot mm)$ 5.690×10^6		$\frac{h}{(mm)}$	444		θ (rad)	1.395	
	M_1 $(N \cdot mm)$ 7.971×10^6		$ ho_{\rm O}$ (mm)	2600		$^{ heta}_{ m (rad)}$	2, 096	
m 6 (kg)	θ ₆ (mm) 3328		t e (mm)	12.0*1		$Z_{\mathrm{s.y}}$ (mm ³)	1. 400×10^6	
m 5 (kg)	θ ₅ (mm)		t (mm)	12.0		$Z_{\mathrm{s.x}}$ (mm ³)	3. 736×10^6	
m ₄ (kg)	θ ₄ (mm) 1300		D _i (mm)	600		$\stackrel{\rm I}{{}_{\rm s.y}}$	2. 099×10^{8}	
m 3 (kg)	(mm) 0		ms2 (kg)	119		I s x (mm ⁴)	1. 009×10^9 2. 099×10^8 3. 736×10^6 1. 400×10^6	
m 2 (kg)	(mm) -441		m s 1 (kg)	119		C ₂ (mm)	150	
m 1 (kg)	(mm) -971		m。 (kg)	4177		C ₁ (mm)	270	

$A_{S4} (mm^2)$	1. 410×10^4
$A_{\mathrm{S}~3} \over (\mathrm{mm}^2)$	6. 064×10^3
$A_{\mathrm{S}2} \over (\mathrm{mm}^2)$	1.650×10^4
$\mathop{A_{S,1}}\limits_{\left(mm^2\right)}$	7. 238×10^3
$_{ m G_S}$	77100*4
Es (MPa)	200000*4
A_{S} (mm ²)	2. 586×10^4

C . 2			
C c 1]	
C 82			
C 8 1			
K c 2			
K c 1]	
$K_{\emptyset 2}$			
$K_{\ell,1}$			
K 2 2 *2	1		
K 2 1 *2			
K ₁₂ *2			
K 1 1 *2			

		d 2 (mm)	120
		d 1 (mm)	50
		$A_{ m b} ({ m mm}^2)$	706.9
		d (mm)	30 (M30)
		b (mm)	600
		a (mm)	400
		n 2	2
	1	n 1	2
		n	4
		S	15

F*(基礎ボルト) (MPa)	270
F (基礎ボルト) (MPa)	1
S _u (基礎ボルト) (MPa)	385*4
S _y (基礎ボルト) (MPa)	225^{*4} (16mm $<$ ≈ 40 mm)
F *(脚) (MPa)	270
F (脚) (MPa)	I
S _u (期) (MPa)	385*4
S _y (脚) (MPa)	234*4 (厚さ≦16mm)
S (胴板) (MPa)	
S _u (胴板) (MPa)	380*3
S _y (胴板) (MPa)	210*3

注記*1:本計算においては当板を無効とした。

^{*2 :}表中で上段は一次応力,下段は二次応力の係数とする。

^{*3 :}最高使用温度で算出

^{*4 :} 周囲環境温度で算出

計算数値
 3.1 胴に生じる応力
 一次一般膜応力

.: 5: 1 // 1/10 // 1 // 1 // 1 // 1 // 1 //								(単位: MPa)
地震の種類		弾性設計用地震動Sd又は静的震度	カS d 又は静的)震度		基準地震動S s	§動Ss	
地震の方向		長手方向	横	横方向	長手方向	方 向	横大	横方向
応力の方向	方向 周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力			_	_	$\sigma_{\phi 1} = 31$	$\sigma_{x1} = 16$	$\sigma_{\phi 1} = 31$	$\sigma_{x1} = 16$
内圧による応力 (鉛直方向地震時)	I	I	_	-	$\sigma_{\phi 2} = 0$	-	0 = 0	-
運転時質量による長手方向曲げ モーメントにより生じる応力	曲げ 	I	_	-	I	$\sigma_{x2} = 22$	_	$\sigma_{x2} = 22$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	1曲げ —	I	_	-	I	$\sigma_{x6} = 29$	_	ο × ₆ = 29
長手方向地震により胴軸断面 全面に生じる応力		I	_			$\sigma_{x413}=4$	-	
組合せ応力					Ο 0	ο ο = 69	ο 0 ο	ο ο ο = 66

(2)一次応力									(単位: MPa)
	地震の種類	崩	性設計用地震動	弾性設計用地震動Sd又は静的震度	震度		基準地震動S	§動Ss	
//	地震の方向	半単	長手方向	横之	横方向	長年	長手方向	横入	横方向
/	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧に、	内圧による応力			1	_	$\sigma_{\phi 1} = 31$	$\sigma_{X1} = 16$	$\sigma_{\phi 1} = 31$	$\sigma_{x1} = 16$
内压亿 (鉛直方)	内圧による応力 (鉛直方向地震時)				_	$0=^{z\phi}$	_	$\sigma_{\phi 2} = 0$	
運転時質量によるサースントに、	運転時質量による長手方向曲げ モーメントにより生じる応力	ı				ı	$\sigma_{x2} = 22$	I	$\sigma_{x2} = 22$
鉛直方向地震に モーメントに。	鉛直方向地震による長手方向曲げ モーメントにより生じる応力	-		1	_	_	$\sigma_{x6} = 29$	_	$\sigma = 29$
運転時質量により生	運転時質量による脚反力 により生じる応力	ı				$\sigma_{\phi 3} = 13$	σ _{x3} =13	$\sigma_{\phi 3} = 13$	$\sigma_{x3} = 13$
鉛直方向地震 により生	鉛直方向地震による脚反力 により生じる応力	I	I	I	_	$\sigma_{\phi71} = 18$	$\sigma_{x71} = 18$	$\sigma_{\phi71}$ =18	$\sigma_{x71} = 18$
水平方向地震	引張り			I	_	$\sigma_{\phi 411} = 36$ $\sigma_{\phi 4112} = 7$	$\sigma_{x 4 1 1} = 17$ $\sigma_{x 4 1 2} = 7$	$\sigma_{\phi 5.1} = 27$	$\sigma \times 5.1 = 75$
による応力						$\sigma_{\phi 41} = 42$	$\sigma_{x41} = 27$		
	せん断					I = 0 2	=11	3 2	=4
組合	組合セ応力	l				Ο 10	$\sigma_{10} = 127$	$\sigma_{1 c} = 171$	=171

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位: MPa)

	地震の種類	弹性	:設計用地震動	弾性設計用地震動Sd又は静的震度	雲 度		基準地震動S	§動Ss	
//	地震の方向	長手方向	方向	横方向	テ向	長手方向	方向	横方向	ブ向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧に (鉛直方	内圧による応力 (鉛直方向地震時)	I	1	-	-	$\sigma_{\phi 2} = 0$	1	$\sigma_{\phi 2} = 0$	-
鉛直方向地震 曲げモーメント	鉛直方向地震による長手方向 曲げモーメントにより生じる応力	I	1	-	-	-	σ x 6 = 29	-	σ _{×6} =29
鉛直方向地類	鉛直方向地震による脚反力	I	1	I	I	$\sigma_{\phi71} = 18$	$\sigma_{x71} = 18$	σ φ 7 1 = 18	$\sigma_{x71} = 18$
により	生じる応力					$\sigma_{\phi72} = 66$	$\sigma_{x72} = 38$	$\sigma_{\phi 72} = 66$	$\sigma_{x72} = 38$
		_	-	-	I	$\sigma_{\phi 41} = 42$	$\sigma_{x41} = 27$	$\sigma_{\phi 51} = 27$	$\sigma_{x 51} = 75$
# ± 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	日間に					$\sigma_{\phi 421}{=}50$	$\sigma_{x 4 2 1} = 98$		
水半万回超瀬による下へほと	7 XC I		1	1	1	$\sigma_{\phi 422} = 26$	$\sigma_{x 4 2 2} = 15$	$\sigma_{\phi52} = 227$	$\sigma_{x 5 2} = 106$
						$\sigma_{\phi 42} = 75$	$\sigma_{x42} = 113$		
	せん断		ı		ı	$[1=^{\emptyset} 2]$	=11	° 2	=4
組合	組合せ応力			l		$\sigma_{2l} = 456$	=456	0 2 °	$\sigma_{2c} = 675$

1.3.2 脚に生じる応力

(単位: MPa)

震動S s	横方向	$\sigma_{s1} = 1$	$\sigma_{s4} = 2$	$\sigma_{s3} = 8$	$\tau_{S3} = 4$	σ s c = 11
基準地震動S	長手方向	$\sigma s_1 = 1$	$\sigma_{s4} = 2$	$\sigma s_2 = 14$	$\tau s_2 = 14$	$\sigma_{s\ell} = 28$
用地震動Sd 又は静的震度	横方向	1	1	1		
弹性設計用地震動	長手方向	—	—	—	—	—
地震の種類	地震の方向	圧縮	圧縮	曲げ	せん断)
		運転時質量による応力	鉛直方向地震による応力	中 3 2 4 4 単 4 早 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	小十乙円地域による心でフ	組合せ応力

1.3.3 基礎ボルトに生じる応力

1.3.3 基礎ボルトに生じる応力
地震の種類 弾性設計用地震動Sd又は静的震度
地震の方向
引張り
せん断

1.4 結論

期 (単位:s)	固有周期	$T_1 =$	$T_2 =$	$T_3 =$
1.4.1 固有周	方向	長手方向	横方向	鉛直方向

1.4.2 応力

(単位: MPa)

1.1	L. Lvivi	1	弹性設計用地震動	弾性設計用地震動Sd又は静的震度	基準地震動S s	喜動S s
部杯	A A	R	算出応力	許容応力	算出応力	許容応力
		一次一般膜			$\sigma_{0} = 69$	$S_a = 228$
胴板	SGV410	一次			$\sigma_{-1} = 171$	$S_a = 342$
		一次十二次		-	$\sigma_2 = 675^{*2}$	$S_a = 420$
脚	SS400	組合社		-	$\sigma_s = 28$	$f_{\rm t} = 270$
てき、予巻中	00733	引張り		-	$\sigma_{\rm b}$ =48	$f_{\rm ts} = 202^{*1}$
英徳 小ア い	22400	せん断	_	—	$\tau_{\rm b} = 29$	$f_{\rm s\ b}\!=\!155$

1.4.3 疲労評価

(MPa)	(MPa)
П	

注記*: E₀=2.07×10⁵ MPa E=2.00×10⁵ MPaとして補正する。