| 女川原子力発電所第 2 号機 |  |
| :---: | :---: |
| 工事計画審査資料 |  |
| 資料番号 | 02 －工－B－02－0015＿改 1 |
| 提出年月日 | 2021年 9 月 2 日 |

VI－1－2－1 原子炉本体の基礎に関する説明書
1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
2.2 評価方針 ..... 3
2.3 適用規格•基準等 ..... 3
2． 4 記号の説明 ..... 4
2.5 計算精度と数値の丸め方 ..... 5
3．評価部位 ..... 6
4．構造強度評価 ..... 8
4． 1 構造強度評価方法 ..... 8
4．2 荷重の組合せ及び許容値 ..... 8
4．2．1 荷重の組合せ及び許容応力状態 ..... 8
4．2．2 許容値 ..... 8
4．2．3 使用材料の許容応力度評価条件 ..... 8
4．2．4 設計荷重 ..... 12
4.3 設計用地震力 ..... 14
4．4 計算方法 ..... 17
4．4．1 応力評価点 ..... 17
4．4．2 荷重及び応力度計算方法 ..... 20
4． 5 計算条件 ..... 23
4．6 荷重及び応力度の評価 ..... 23
5．評価結果 ..... 24
5.1 設計基準対象施設としての評価結果 ..... 24
5.2 重大事故等対処設備としての評価結果 ..... 34
6．参照図書 ..... 41

## 1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び
「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に準じて，原子炉本体の基礎が設計用地震力に対して十分な構造強度を有していることを説明するも のである。

原子炉本体の基礎は設計基準対象施設においてはSクラス相当施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備相当に分類 される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示 す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力による荷重及び重大事故等時の荷重に対する評価について記載するものとし，前述の荷重を除く荷重に よる原子炉本体の基礎の評価は，平成元年6月8日付け元資庁第2015号にて認可され た工事計画の添付書類（参照図書（1））による（以下「既工認」という。）。

2．一般事項

## 2.1 構造計画

原子炉本体の基礎の構造計画を表2－1に示す。 O（3） $\mathrm{VI}-1-2-1$ R 2
表 $2-1$ 構造計画

| 計画の概要 |  | 概略構造図 |
| :---: | :---: | :---: |
| 基礎•支持構造 | 主体構造 |  |
| 原子炉本体の基礎は，原子炉格納容器底部コンク リートに支持される。原子炉本体の基礎の鉛直方向荷重及び水平方向荷重は，原子炉格納容器底部を介して原子炉建屋に伝達させる。 | 鋼板とコンクリートか ら成る構造物であり，主要構造は，外径 $\square$ mm，壁厚 $\square$ mm の円筒形構造物であ る。 <br> なお，コンクリートは強度部材として考慮し ない。 |  |
|  |  | （単位：mm） |

## 2.2 評価方針

原子炉本体の基礎の応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件 に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重 の組合せ並びに「2．3 適用規格•基準等」にて設定される許容限界に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力度等が許容限界内に収まることを，「4．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

原子炉本体の基礎の耐震評価フローを図2－1 に示す。


図 2－1 原子炉本体の基礎の耐震評価フロー
2.3 適用規格•基準等

適用規格•基準等を以下に示す。

- 鋼構造設計規準（日本建築学会 2005 改定）
- 鉄筋コンクリート構造計算規準•同解説（日本建築学会1999改定）

2． 4 記号の説明

| 記号 | 記号の説明 | 単位 |
| :---: | :---: | :---: |
| D | 死荷重 | － |
| $f$ a | 許容付着応力度 | $\mathrm{N} / \mathrm{mm}^{2}$ |
| $\mathrm{f}_{\mathrm{b}}$ | 許容曲げ応力度 | $\mathrm{N} / \mathrm{mm}^{2}$ |
| $f$ c | 許容圧縮応力度 | $\mathrm{N} / \mathrm{mm}^{2}$ |
| f s | 許容せん断応力度 | $\mathrm{N} / \mathrm{mm}^{2}$ |
| f ${ }_{\text {t }}$ | 許容引張応力度 | $\mathrm{N} / \mathrm{mm}^{2}$ |
| F | 許容応力度の基準値 | $\mathrm{N} / \mathrm{mm}^{2}$ |
| $\mathrm{F}_{\mathrm{v}}$ | 軸力 | kN |
| L | 異常時熱荷重 | － |
| L SAL | 熱荷重（SA 後長期（L）熱荷重） | － |
| L SALL | 熱荷重（SA 後長期（LL）熱荷重） | － |
| M | 機械的荷重 | － |
| $\mathrm{M}_{\mathrm{L}}$ | 地震と組み合わせる機械的荷重 | － |
| $\mathrm{M}_{\text {S A L }}$ | 機械的荷重（SA 後長期（L）機械的荷重） | － |
| M $\mathrm{SALL}^{\text {L }}$ | 機械的荷重（SA 後長期（LL）機械的荷重） | － |
| O | 通常運転時荷重 | kN |
| $\mathrm{S}_{1}$ | 基準地震動 $\mathrm{S}_{1}$ により定まる地震力 | － |
| $\mathrm{S}_{2}$ | 基準地震動 $\mathrm{S}_{2}$ により定まる地震力 | － |
| S d＊ | 弾性設計用地震動 S d により定まる地震力又はS クラ ス設備に適用される静的地震力のいずれか大きい方の地震力 | － |
| S s | 基準地震動S s により定まる地震力 | － |
| S u | 設計引張強さ | $\mathrm{N} / \mathrm{mm}^{2}$ |
| S y | 設計降伏点 | $\mathrm{N} / \mathrm{mm}^{2}$ |
| T SAL | 温度（SA 後長期（L）温度） | ${ }^{\circ} \mathrm{C}$ |
| T SALL | 温度（SA 後長期（LL）温度） | ${ }^{\circ} \mathrm{C}$ |

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりである。

表 2－2 表示する数値の丸め方

| 数値の種類 | 単位 | 処理桁 | 処理方法 | 表示桁 |
| :---: | :---: | :---: | :---: | :---: |
| 温度 | ${ }^{\circ} \mathrm{C}$ | - | - | 整数位 |
| 長さ | mm | - | - | 整数位 |
| モーメント | kN | 有効数字 5 桁目 | 四捨五入 | 有効数字 4 桁 |
| m | 有効数字 5 桁目 | 四捨五入 | 有効数字 4 桁 |  |
| 算出応力度 | MPa | 小数点以下第 1 位 | 切上げ | 整数位 ${ }^{*} 1$ |
| 許容応力度 | $\mathrm{N} / \mathrm{mm}^{2}$ | 小数点以下第 1 位 | 切捨て | 整数位 |

注記 $* 1$ ：引き抜き力の場合は，有効数字 4 桁表示とする。

3．評価部位
原子炉本体の基礎の形状及び主要寸法を図3－1に，使用材料及び使用部位を表3－1に示す。


基礎版

図 3－1 原子炉本体の基礎の形状及び主要寸法（その 1）（単位：mm）
① スタビライザ（2）原子炉圧力容器（3）原子炉遮へい壁（4）原子炉本体の基礎（5）アンカ ボルト


$\underline{\mathbf{A}-\mathrm{A}}$ 断面

図 3－1 原子炉本体の基礎の形状及び主要寸法（その 2）（単位：mm）

表 3－1 使用材料表

| 使用部位 | 使用材料 |
| :---: | :---: |
| 構造用鋼材 | SPV490 |
| （円筒部，縦リブ，スカートフランジ） |  |
| 原子炉本体の基礎 |  |
| アンカボルト |  |

## 4．構造強度評価

4． 1 構造強度評価方法
（1）原子炉本体の基礎の地震荷重は，アンカボルトを介して原子炉建屋に伝達され る。原子炉本体の基礎の耐震評価として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において計算された荷重を用いて，参照図書（1）に示す既工認の手法 に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

## 4．2 荷重の組合せ及び許容値

4．2．1 荷重の組合せ及び許容応力状態
原子炉本体の基礎の荷重の組合せ及び許容応力状態のうち，設計基準対象施設 の評価に用いるものを表4－1に，重大事故等対処設備の評価に用いるものを表4－ 2 に示す。

許容応力状態及び詳細な荷重の組合せは，既工認及び添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮 し決定する。

なお，考慮する荷重の組合せは，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

## 4．2．2 許容値

原子炉本体の基礎の許容応力度及び許容荷重は「2．3 適用規格•基準等」に基づき算出する。構造用鋼材及び原子炉本体の基礎アンカボルトに対する許容応力度を表4－3に示す。

4．2．3 使用材料の許容応力度評価条件
原子炉本体の基礎の使用材料の許容応力度評価条件を表4－4に示す。
表4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| 施設区分 |  | 機器名称 | 耐震重要度分類 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 荷重ケース番号 | 荷重の組合せ | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉本体 | 原子炉 <br> 圧力容器支持構造物 | 原子炉本体 <br> の基礎 | －＊1 | 建物• <br> 構築物 | $1^{* 2}$ | $\mathrm{D}+\mathrm{M}+\mathrm{Sd}{ }^{*}$ | 短期 |
|  |  |  |  |  | 3 | $\mathrm{D}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{*}$ | 機能維持の検討 |
|  |  |  |  |  | 2 | $\mathrm{D}+\mathrm{M}+\mathrm{S}$ s | 機能維持の検討 |

注記＊1：Sクラス相当として評価する。
＊2：既工認と同様に熱荷重を考慮する。
表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

| 施設区分 |  | 機器名称 | 設備分類 | 機器等 <br> の区分 | 荷重ケース番号 | 荷重の組合せ＊2 |  | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉本体 |  | 原子炉本体 <br> の基礎 | －＊1 | 建物• <br> 構築物 | a | $\mathrm{D}+\mathrm{L}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{Sd}^{* * 3}$ | （V（L）－1） | 機能維持の検討 |
|  | 土ノ容器 <br> 支持構造物 |  |  |  | b | $\mathrm{D}+\mathrm{L}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S}_{\text {S }}$ | （V（LL）－1） | 機能維持の検討 |

注記 $* 1$ ：常設耐震重要重大事故防止設備及び常設重大事故緩和設備相当として評価する。
＊2：保守的に重大事故等時の熱荷重を考慮する。
＊3：重大事故等後の最高温度との組合せを考慮する。

表 4－3 許容応力度

| 許容応力状態 | ボルト等以外 |  |  |  | アンカボルト |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 引張／ <br> 組合せ | せん断 | 圧縮 | 曲げ | 引張 | 付着 |
| 短期 | $1.5 \cdot \mathrm{ft}_{\mathrm{t}}$ | $1.5 \cdot \mathrm{fs}$ | $1.5 \cdot \mathrm{f}$ c | $1.5 \cdot \mathrm{f}{ }_{\text {b }}$ | $1.5 \cdot \mathrm{ft}_{\mathrm{t}}$ | f a |
| 機能維持の検討 | $1.5 \cdot \mathrm{ft}_{\text {t }}$ | $1.5 \cdot \mathrm{f}$ s | $1.5 \cdot \mathrm{f}$ c | $1.5 \cdot \mathrm{f}$ b | $1.5 \cdot \mathrm{ft}$ | f a |

表 4－4 使用材料の許容応力度評価条件
（設計基準対象施設及び重大事故等対処設備）

| 評価部材 | 材料 | F <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | Sy <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | Su <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 構造用鋼材 <br> （円筒部，縦リブ， <br> スカートフランジ） | SPV490 |  |  |  |
| 原子炉本体の基礎 <br> アンカボルト | SNCM439 |  |  |  |

## 4．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用温度及び死荷重は，既工認（参照図書（1））からの変更はなく，次のとおりである。
a．最高使用温度
温度
$171^{\circ} \mathrm{C}$
b．死荷重
自重及び機器支持荷重等を死荷重とし，参照図書（1）の表4－2に示すとおりと する。
（2）重大事故等対処設備としての設計荷重
重大事故等対処設備としての評価温度は，以下のとおりとする。重大事故等対処設備としての設計荷重を表4－5 及び表4－6に示す。

| 温度 TSAL | $178^{\circ} \mathrm{C}(\mathrm{SA}$ 後長期 $(\mathrm{L}))$ |
| :--- | :--- |
| 温度 $\mathrm{T}_{\mathrm{SALLL}}$ | $111^{\circ} \mathrm{C}(\mathrm{SA}$ 後長期 $(\mathrm{LL}))$ |

表 4－5 原子炉本体の基礎上部円筒部設計用荷重（重大事故等対処設備）


表 4－6 原子炉本体の下部円筒部設計用荷重（重大事故等対処設備）

| 荷重 |  | 荷重細目 | レベル |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0．P．$-2.500 \mathrm{~m}^{*}$ | 0．P．$-6.200 \mathrm{~m}^{*}$ |
|  | D |  | 死荷重 |  |  |
| O | O U | 通常運転時荷重 <br> （上向き荷重） |  |  |
|  | O D | 通常運転時荷重 （下向き荷重） |  |  |
| L | $L_{\text {SAL }}$ | SA 後長期（L）熱荷重 | ドライウェル内 $178^{\circ} \mathrm{C}$ |  |
|  | Lsall | SA 後長期（LL）熱荷重 | ドライウェル内 $111^{\circ} \mathrm{C}$ |  |

注記＊：0．P．1．150m 以下は原子炉格納容器底部コンクリートに完全埋没されており，周辺のコ ンクリートによって，O．P．1．150m より上部に対して十分に高い剛性である。そのため， 0．P．1．150m 以下は原子炉建屋と一体構造であるものとし，変形挙動が異なる上部円筒
部の底部 O．P．1．150m で発生する荷重を用いて評価する。

## 4.3 設計用地震力

原子炉本体の基礎の設計用地震力を，表 4－7～表 4－10に示す。「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－3－2炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。

表 4－7 原子炉本体の基礎上部円筒部に作用する設計用地震力

| $\begin{gathered} \text { 高さ } \\ \text { 0.P. } \quad(\mathrm{m}) \end{gathered}$ | 水平荷重 $\mathrm{Sd}{ }^{*} * 1$ |  |
| :---: | :---: | :---: |
|  | せん断力 （ kN ） | $\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$ |
| 7.040 | － |  |
| 6． 240 |  |  |
| 4． 950 |  |  |
| 3.050 |  |  |
| 1． 150 |  |  |
|  | — |  |

注記 $* 1$ ：重大事故等対処設備に対しては，弾性設計用地震動 S d に加え静的地震力を考慮する。

表 4－8 原子炉本体の基礎上部円筒部に作用する設計用地震力

| $\begin{gathered} \text { 高さ } \\ \text { 0.P. } \quad(\mathrm{m}) \end{gathered}$ | 水平荷重 S S |  |
| :---: | :---: | :---: |
|  | せん断力 （ kN ） | $\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$ |
| 7.040 | － |  |
| 6． 240 |  |  |
| 4． 950 |  |  |
| 3.050 |  |  |
| 1． 150 | － |  |

表 4－9 原子炉本体の基礎上部円筒部に作用する設計用地震力

| 高さ0.P. ( m ) | 弾性設計用地震動 S <br> d | 基準地震動 S s |
| :---: | :---: | :---: |
|  | 軸力 Fv （ kN ） | 軸力 Fv （ kN ） |
| 7． 040 | － | － |
| 6． 240 |  |  |
| 4． 950 |  |  |
| 3． 050 |  |  |
| 1． 150 | － | － |

表 4－10 原子炉本体の基礎下部円筒部設計用地震力

| 高さ 0．P．（m） | 弾性設計用地震動 S d＊＊1 |  | 基準地震動S s |  |
| :---: | :---: | :---: | :---: | :---: |
|  | せん断力 <br> （kN） | $\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$ | せん断力 (kN ) | $\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$ |
| $-2.500^{* 2}$ |  |  |  |  |
| $-6.20{ }^{* 2}$ |  |  |  |  |

注記 $* 1$ ：重大事故等対処設備に対しては，弾性設計用地震動 Sd に加え静的地震力 を考慮する。
＊2：0．P．1． 150 m 以下は原子炉格納容器底部コンクリートに完全埋没されており，周辺のコンクリートによって，0．P．1．150m より上部に対して十分に高い剛性である。そのため，0．P．1．150m 以下は原子炉建屋と一体構造であるもの とし，変形挙動が異なる上部円筒部の底部 0. P． 1.150 m で発生する荷重を用 いて評価する。

## 4． 4 計算方法

4．4．1 応力評価点
原子炉本体の基礎の応力評価点は，原子炉本体の基礎を構成する部材の形状及 び荷重伝達経路を考慮し，発生応力度が大きくなる部位を選定する。

選定した応力評価点を表4－11 及び図4－1に示す。
応力評価点P1 及びP2 の応力は，既工認の各荷重条件や耐震条件の比を用いて発生応力を算出し評価する。

表 4－11 応力評価点

| 応力評価点番号 | 応力評価点 |
| :---: | :--- |
| $\mathrm{P}^{*}$ | 円筒部（内筒，外筒） |
| $\mathrm{P} 2^{*}$ | 縦リブ |
| P 3 | アンカボルト |
| P 4 | スカートフランジ |
| P 5 | CRD 開口まわり |

注記＊：円筒部及び縦リブの評価点は，最大組合せ応力度発生箇所 を含むよう選定するとともに，地震方向に対して応力度の大きくなる $90^{\circ}$ 及び $180^{\circ}$ 位置の代表的な高さから選定す る。

内（5）外

P1：円筒部（内筒，外筒）


りとし，評価部位は開口部全体である。）


## 4．4．2 荷重及び応力度計算方法

（1）設計基準対象施設としての荷重及び応力度計算
a．円筒部及び縦リブ
円筒部及び縦リブに生じる死荷重，通常運転時荷重及び温度荷重による応力度計算方法は，既工認から変更はなく，参照図書（1）に示すとおりである。

原子炉本体の基礎上部円筒部（0．P． $7.040 \mathrm{~m} \sim 0$. P．1． 150 m ）に生じる水平地震荷重による応力度は，既工認における基準地震動 $\mathrm{S}_{1}$ と弾性設計用地震動 Sd 又 は基準地震動 $\mathrm{S}_{2}$ と基準地震動 S s のせん断力及びモーメントの最大の荷重比を用いて，既工認における地震動 S 1 又は $\mathrm{S}_{2}$ に対して FEM 解析により算出した応力度を荷重の比を用いて求める。弾性設計用地震動 S d による地震荷重は，基準地震動 $\mathrm{S}_{1}$ と比べ小さいため，建設時基準地震動 S 1 による応力度を用いる。基準地震動 S s による地震荷重は，基準地震動 S 2 と基準地震動 S s のせん断力及 びモーメントの最大の荷重比（S s／S 2 の比 1．30）を用いる。鉛直地震荷重に よる応力度は，表 4－14 に示す 0．P．1．150mにおける弾性設計用地震動S d による軸力又は，基準地震動S s による軸力と死荷重による鉛直力の荷重比より算出し た鉛直震度を用いて，既工認における死荷重による応力度を基に震度法により算出する。

原子炉本体の基礎下部円筒部（0．P．1．150m～0．P．－ 6.200 m ）に生じる地震荷重は，原子炉格納容器底部コンクリートに完全埋没されており，周辺のコンクリ ートによって，0．P．1．150m より上部に対して十分に高い剛性である。そのため， 0．P． 1.150 m 以下は原子炉建屋と一体構造であるものとし，変形挙動が異なる上部円筒部の底部 O．P． 1.150 m で発生する荷重を用いて評価する。
鉛直地震により下部円筒部に生じる荷重は，上部円筒部と同様に表 4－12 に示 す鉛直震度を考慮する。

表 4－12 死荷重と弾性設計用地震動 S d（上下動）及び基準地震動 S s（上下動）による荷重の比率

| $\begin{gathered} \text { 高さ } \\ 0 . \mathrm{P} . \text { (m) } \end{gathered}$ | 軸力（kN） |  | S d／死荷重 | 軸力（kN） |  | S s／死荷重 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 死荷重 | S d |  | 死荷重 | S s |  |
| 1． 150 |  |  |  |  |  |  |

b．原子炉本体の基礎アンカボルト及びスカートフランジ
原子炉本体の基礎に生じた荷重は，スカートフランジを介してアンカボルトに より基礎版に伝達する。

アンカボルト及びスカートフランジの応力計算方法は，既工認から変更はなく，参照図書（1）に示すとおりである。

表 4－13 設計荷重

| 荷重ケ <br> ース番 <br> 号 | 鉛直力 <br> $(\mathrm{kN})$ | 曲げモーメント <br> $(\mathrm{kN} \cdot \mathrm{m})$ | せん断力 <br> $(\mathrm{kN})$ |
| :---: | :---: | :---: | :---: |
| $1,3, \mathrm{a}$ |  |  |  |
| $2, \mathrm{~b}$ |  |  |  |

c．CRD 開口まわり
原子炉圧力容器及び原子炉しゃへい壁より作用する荷重を考慮してCRD 開口ま わりの評価を行う。評価に用いる，CRD 開口まわりの各部荷重を表に示す。評価 に用いる応力度計算方法は，既工認から変更はなく，参照図書（1）に示すとおり である。

表 4－14 各部荷重表
単位 $(\mathrm{kN} / \mathrm{m})$

| 荷重ケー ス番号 |  | F 1 | F 2 | F 3 | F 4 | 合計 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 最大圧縮力作用時 |  |  |  |  |  |
| 1，3，a | 最大引張力作用時 |  |  |  |  |  |
|  | 最大圧縮力作用時 |  |  |  |  |  |
| 2，b | 最大引張力作用時 |  |  |  |  |  |

（2）重大事故等対処設備としての荷重及び応力度計算
原子炉本体の基礎に作用する荷重及び応力度計算方法は「4．4．2（1）設計基準対象施設としての荷重及び応力度計算」と同様である。

なお，重大事故等時の熱荷重による応力度に関しては，既工認計算書における事故時熱荷重温度における応力度を基に，温度，縦弾性係数及び線膨張係数の違 いを考慮して係数倍により求めた。

4．5 計算条件
応力解析に用いる荷重を，「4．2 荷重の組合せ及び許容値」及び「4．3 設計用地震力」に示す。
4.6 荷重及び応力度の評価

「4．4 計算方法」で求めた各荷重及び応力度が表 4－4 に示す許容値以下であるこ と。

## 5．評価結果

5.1 設計基準対象施設としての評価結果

原子炉本体の基礎の設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していること を確認した。
（1）構造強度評価結果
構造強度評価の結果を表5－1～表5－3に示す。
表 5－1（1）許容応力状態短期に対する評価結果（D $+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）（その 1）



応力表示箇所
注記＊：単位はN
表 5－2（1）許容応力状態機能維持の検討に対する評価結果（ $\mathrm{D}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}^{*}$ ）（その 1 ）



枠囲みの内容は商業機密の観点から公開できません。


| 表 5－2（2） |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 評価対象設備 | 評価部位 |  | 応力分類 | 機能維持の検討 |  | 判定 | 荷重ケース番号 |
|  |  |  | 算出応力度 | 許容応力度 |  |  |
|  |  |  | $\mathrm{N} / \mathrm{mm}^{2}$ | $\mathrm{N} / \mathrm{mm}^{2}$ |  |  |
| 原子炉本体基礎 | P3 | アンカボルト |  | 引張応力度 | 151 |  | $\bigcirc$ | 3 |
|  |  |  |  | 引抜き力＊ | 4． $487 \times 10^{5}$ |  | $\bigcirc$ | 3 |
|  | P4 | スカートフランジ | 曲げ応力度 | 138 |  | $\bigcirc$ | 3 |
|  | P5 | CRD 開口まわり | 曲げ応力度 | 39 |  | $\bigcirc$ | 3 |
|  |  |  | せん断応力度 | 106 |  | $\bigcirc$ | 3 |
|  |  |  | ねじれによるせん断応力度 | 50 |  | $\bigcirc$ | 3 |

注記＊：単位はN




注記＊：単位はN

## 5.2 重大事故等対処設備としての評価結果

原子炉本体の基礎の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有し ていることを確認した。
（1）構造強度評価結果
構造強度評価の結果を表 5－4 及び表 5－5に示す。





枠囲みの内容は商業機密の観点から公開できません。
注記＊：単位はN

枠囲みの内容は商業機密の観点から公開できません。



| 評価対象 <br> 設備 | 評価部位 |  |  | 応力分類 | 機能維持の検討 |  | 判定 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 算出応力度 | 許容応力度 |  |
|  |  |  |  | $\mathrm{N} / \mathrm{mm}^{2}$ | $\mathrm{N} / \mathrm{mm}^{2}$ |  |
| 原子炉本体基礎 | P2 | 縦リブ | A |  | 組合せ応力度 | 190 |  | $\bigcirc$ |
|  |  |  | B |  | 組合せ応力度 | 214 |  | $\bigcirc$ |
|  |  |  | C | 組合せ応力度 | 246 |  | $\bigcirc$ |


注記＊：単位はN

## 6．参照図書

（1）女川原子力発電所第 2 号機 第 1 回工事計画認可申請書添付書類「IV－1－2 原子炉本体の基礎に関する説明書」

