女川原子力発電所算	第2号機 工事計画審査資料
資料番号	02-補-E-19-0600-40-19_改 1
提出年月日	2021年9月2日

補足 600-40-19 原子炉圧力容器の耐震性についての計算書における

ブラケット類の応力評価について

1. 概要

本資料は、添付書類「VI-2-3-4-1-1 原子炉圧力容器の応力解析の方針」及び「VI-2-3-4-1-2 原子炉圧力容器の耐震性についての計算書」において、ブラケット類の一次+二次応力の評価及 び疲労評価を省略することの妥当性を説明する。

2. 評価の考え方

ブラケット類は、原子炉圧力容器に溶接により取り付けられる部材であることから、設計・建 設規格^[3]における、クラス1容器の規定に基づき評価を行うこととなり、一次応力の評価に加え て、一次+二次応力の評価及び疲労評価が必要となるが、計算書においてブラケット類の応力評 価では、一次+二次応力の評価及び疲労評価を省略していることから、その考え方を、以下に示 す。

2.1 一次+二次応力の評価について

ブラケット類の評価において考慮する評価条件は、外荷重のみであり、一次応力及び一次+ 二次応力は、外荷重に比例した値となる。一次応力の評価において最も厳しい応力比(応力強 さ/許容応力)となるブラケットにおける一次+二次応力評価の結果を表3に示す。

表 3 に示すとおり、一次+二次応力<mark>強さ S_n</mark>は許容値(3·S_m)を下回る。よって、一次+二 次応力評価を省略する。

2.2 疲労評価について

ブラケット類の疲労評価は,設計・建設規格^[3]における疲労解析不要の条件(PVB-3140)に 適合する場合,評価を不要とすることが可能である。表1に設計・建設規格^[3]における疲労解 析不要の条件(PVB-3140)並びに各条件に対する判定結果を示す。

表1の項目(1)~(5)については、既に認可された工事計画の添付書類(以下「既工認」という。)の応力解析の方針^[1]の図4-1に記載している原子炉圧力容器の運転条件(圧力,温度), 並びに既工認の計算書^[2]のブラケット及びその取付部に使用している材料(SQV2A, SFVQ1A, SGV480及び SUSF316)から、いずれも疲労評価は不要と判定することができる。

表1の項目(6)については、機械的荷重による応力変動を評価する必要がある。機械的荷重に より生じる一次+二次及びピーク応力は、一次応力に構造不連続の影響を考慮したものである。 ブラケットにおいて構造不連続の影響は、ブラケットと取付部の構造により決まり、ブラケッ ト本体より遥かに大きな胴板に取り付く構造は各ブラケット共通であることから、構造不連続 による影響は、各ブラケットで異なることはないと考えられる。よって、一次応力の応力比が 最も厳しいブラケットで代表して確認する。

表2よりブラケット類の耐震計算結果から一次膜+一次曲げ(PL+Pb)で厳しい蒸気乾燥 器支持ブラケットに着目し,機械的荷重により生じる応力の全振幅を計算することで,疲労評 価不要の規定を満たすことを確認する。

表4に蒸気乾燥器支持ブラケットの機械的荷重により生じる応力の全振幅である補正繰り返 しピーク応力強さS²、を計算した結果を示す。表4より、Sd地震の補正繰返しピーク応力強さ S²、は MPa、Ss地震の補正繰返しピーク応力強さS²、は MPaとなり、Sd地震繰り返し 回数590回に対応する許容繰返しピーク応力強さの MPa及びSs地震繰返し回数340回に対応 する許容繰返しピーク応力強さの MPaをそれぞれ下回ることから,疲労評価は不要と判定す ることができる。

3. 結論

2章より,ブラケット類の応力評価において,一次+二次応力の評価及び疲労評価については, 設計・建設規格^[3]における疲労解析不要の条件(PVB-3140)の各規定を満たしているため,既工 認^[2]と同様に一次+二次応力及び疲労評価結果の記載は不要としている。

	表1		ト類の疲労評価不要の条件とその評価	1
適用	PVB-3140	1 -2005/2007	評 価	疲労評価 要否判定
項目	条件	判定基準		安日刊足
(1)	大気圧-運転圧力 変動回数	$N_1 {\leq} N_a$	使用している材料について、PVB-3140(1)における N_a の最小値は 回であり、評価の基準となる N_1 (起動・停止回数)の 回よりも多く、疲労評価不要の条件を満たす。	不要
(2)	運転時の圧力変動	$\Delta P \! \leq \! A_{m2}$	使用している材料について、PVB-3140(2)b.にお けるA _{m2} の最小値は MPaであり、評価の基 準となるΔP(起動時,停止時及び耐圧試験時を 除く供用状態A及び供用状態Bにおける実際の 圧力変動幅)の MPaより大きく、疲労評価不 要の条件を満たす。	不要
(3)	起動時及び停止時の 温度差	Δ T \leq T 1	使用している材料について, PVB-3140(3)におけ るT₁の最小値は Cである。 疲労評価不要の条件を満たす。	不要
(4)	運転時の温度差変動	$\Delta T_R \leq T_1$	使用している材料について、PVB-3140(4)におけ るT ₂ の最小値としてSUSF316の Cを考慮した 場合に,起動時及び停止時を除く供用状態A及び 供用状態BにおいてT ₂ を超える領域温度変動 回数は,領域Aにおいては 回,領域Bにおい ては 回である。この場合,領域A及びBで求 められるT ₁ の最小値は Cとなる。評価の基 準となる Δ T _R (起動時及び停止時を除く供用状 態A及び供用状態Bの領域最大温度変動幅)は, R P V サーマルサイクルでは領域A及びBで	不要
(5)	異なる材料よりなる 部分の温度変動	Δ T \leq T 1	使用している材料について、PVB-3140(5)におけ るTの最小値として領域Aにおいて C ,領域B において C を考慮した場合に、供用状態A及び 供用状態Bに対しTを超える領域温度変動回数 は、領域A及びBにおいて 回である。この場 合、T ₁ の最小値は Cとなる。評価の基準と なる Δ T(供用状態A及び供用状態Bの最大温度 変動幅)は、RPVサーマルサイクルでは C であり、疲労評価不要の条件を満たす。	不要
(6)	機械的荷重による 応力変動	$\Delta \sigma \leq S$	一次応力評価で許容値に対する応力比が最も小 さくなる蒸気乾燥器支持ブラケットにおいて,応 力変動幅ΔσはSd地震動で MPa,Ss地震動 で MPaであり,評価の基準となるS(地震繰り 返し回数590回及び340回に対する最大応力変動 幅)の MPa及び MPaを下回ることより,疲 労評価不要の条件を満たす。	不要

表1 RPVブラケット類の疲労評価不要の条件とその評価

枠囲みの内容は商業機密の観点から公開できません。

機器	応力分類	Рm		$P_L + P_b$	
(材 料)	許容応力状態	$IV_A S$	III _A S	IV _A S	III _A S
スタビライザブラケット	応力強さ (MPa)	70	52	149	110
(SQV2A)	許容応力(MPa)	326	303	490	454
(SQVZR)	応 力 比	0.215	0.172	0.304	0.242
蒸気乾燥器支持ブラケット	応力強さ (MPa)	47	35	166	121
	許容応力(MPa)	280	143	420	214
(505F310)	応 力 比	0.168	0.245	0.395	0.565
給水スパージャブラケット	応力強さ (MPa)	2	2	6	6
「和水スパーシャノノクット (SUSF316)	許容応力(MPa)	280	143	420	214
(505F310)	応 力 比	0.007	0.014	0.014	0.028
「炉心スプレイブラケット	応力強さ (MPa)	6	6	45	41
が広スプレイフラクット (SUSF316)	許容応力 (MPa)	280	143	420	214
(2021210)	応 力 比	0.021	0.042	0.107	0.192

表2 一次応力評価における応力比と機械的荷重による応力変動の代表計算を行うブラケットの選択

表3 蒸気乾燥器支持ブラケットの一次+二次応力の評価

	S d	S s
一次+二次応力 <mark>強さ</mark> Sn(MPa)	242	332
一次+二次応力強さの許容応力 3・S _m (MPa)	360	360

<mark>表4</mark> 烝気乾燥器文持フラケットの繰返しヒーク応刀強さ				
	S d (590回)	S s (340回)		
一次+二次+ピーク応力強さ S _p (MPa) *1	799	1096		
繰返しピーク応力強さ S ₂ (MPa)	400	548		
補正繰返しピーク応力強さS ₀ '(MPa)* ^{2,3}				
地震繰り返し数に対応した許容繰返しピーク応力 (MPa)				
注記*1:応力集中係数は引用文献[1]付録2に示す計算式によりK _n =, K _b =と計算し, そ				

表4 蒸気乾燥器支持ブラケットの繰返しピーク応力強さ

注記*1:応力集中係数は引用文献[1]付録2に示す計算式により $K_n = K_b = b$ 計算し、その最大値 を一律に考慮した。

- *2:補正繰返しピーク応力強さS²を計算する際に, E⁰/Eはオーステナイト系ステンレス 鋼の値 を一律に考慮した。
- *3:補正繰返しピーク応力強さS¹は,地震繰返し回数に対応した許容繰返しピーク応力を満たす。

引用図書及び文献

- [1]第5回工事計画認可申請書 添付書類「IV-3-1-1-1 原子炉圧力容器の応力解析の方針」
- [2]第5回工事計画認可申請書 添付書類「Ⅳ-3-1-1-21 ブラケット類の応力計算書」
- [3] 発電用原子力設備規格 設計·建設規格((社)日本機械学会, 2005/2007)

以上