女川原子力発電所第2号機	
工事計画審査資料	
資料番号	02 －工－B－19－0198＿改 1
提出年月日	2021 年 9 月 2 日

VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性についての計算書

2021年 9 月東北電力株式会社
1．概要 1
2．一般事項 2
2.1 構造計画 2
2． 2 評価方針 4
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．構造強度評価 8
4． 1 構造強度評価方法 8
4.2 荷重の組合せ及び許容応力 8
4．2．1 荷重の組合せ及び許容応力状態 8
4．2．2 許容応力 8
4．2．3 許容応力評価条件 8
4．2．4 設計荷重 8
4.3 計算方法 9
4． 4 応力の評価 11
5．参照図書 12

図表目次

図 2－1 スタビライザの耐震評価フロー 4
図 3－1 形状•寸法•材料 13
図 3－2 応力評価点 14
図 4－1 スタビライザ各部に加わる荷重 15
図4－2 ブラケットの形状及び寸法 16
表 2－1 構造計画 3
表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設） 17
表 4－2 許容応力（クラス 1 支持構造物） 18
表 4－3 許容応力評価条件 19
表 4－4 スタビライザに加わる荷重 20
表 4－5 評価結果まとめ 21

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，原子炉圧力容器スタビライザ（以下「スタビライザ」という。）が設計用地震力に対して十分な構造強度を有していることを説明するものである。

スタビライザは設計基準対象施設においてはS クラス施設に分類される。以下，設計基準対象施設としての構造強度評価を示す。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（参照図書（1））を「既工認」という。

2．一般事項
2.1 構造計画

スタビライザの構造計画を表2－1に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
スタビライザは，原子炉しやへい壁に設置されたソールプレ ートに溶接される。	ブラケット，ロッ ド，ヨーク，座金及 び皿ばねで構成され る，原子炉圧力容器 が摇れた場合にその水平方向を支持する ためのものであり，原子炉圧力容器外周 に 8 個等間隔に配置 されている。	B部詳細 $\mathrm{C}-\mathrm{C}$ 断面

2.2 評価方針

スタビライザの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定 した荷重及び荷重の組合せ並びに許容応力に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容応力内に収まることを，「4．構造強度評価」にて示す方法にて確認することで実施する。

スタビライザの耐震評価フローを図 2－1に示す。

図 2－1 スタビライザの耐震評価フロー
2.3 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 • 補－ 1984）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
D	死荷重	－
W A	ロッド及びブラケットに加わる最大荷重	N
FH_{H}	スタビライザ 1 個に加わる最大地震荷重	N
Fo	初期締付荷重	N
f b	許容曲げ応力	MPa
f s	許容せん断応力	MPa
f t	許容引張応力	MPa
H_{1}	スタビライザ全体に加わる S d＊地震時の水平地震荷重	N
H_{2}	スタビライザ全体に加わる S s 地震時の水平地震荷重	N
σ b	曲げ応力	MPa
τ	せん断応力	MPa
σ k	組合せ応力	MPa
$\mathrm{M}_{\mathrm{A}}, \mathrm{M}_{\mathrm{B}}$	モーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{Z}_{\mathrm{A}}, \quad \mathrm{Z}_{\mathrm{B}}$	断面係数	mm^{3}
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$	断面積	mm^{2}
	地震及び死荷重以外で地震と組み合わすべきプラントの運	－
M	転状態（地震との組合せが独立な運転状態IV，V は除く）で設備に作用している機械的荷重	
M_{L}	地震との組合せが独立な運転状態IV の事故の直後を除き， その後に生じている死荷重及び地震荷重以外の機械的荷重	－
P	地震と組み合わすべきプラントの運転状態（地震との組合 せが独立な運転状態IV，Vは除く）における圧力荷重	－
P_{L}	地震との組合せが独立な運転状態IV の事故の直後を除き， その後に生じている圧力荷重	－
S	許容引張応力 設計•建設規格 付録材料図表 Part5 表 5 又は表6に規定される値	MPa
S d	弾性設計用地震動S d により定まる地震力	－
S d＊	弾性設計用地震動 S d により定まる地震力又はSクラス設備に適用される静的地震力のいずれか大きい方の地震力	－
S s	基準地震動S s により定まる地震力	－
S u	設計引張強さ 設計•建設規格 付録材料図表 Part5 表 9 に規定される値	MPa
S y	設計降伏点 設計•建設規格 付録材料図表 Part5 表 8 に規定される値	MPa
S y（R T ）	$40^{\circ} \mathrm{C}$ における設計降伏点 設計•建設規格 付録材料図表 Part5 表8に規定される値	MPa

2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示す通りである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊	MPa	小数点以下第 1 位	切捨て	整数位

注記＊：設計•建設規格 付録材料図表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

本計算書で解析する箇所の形状•寸法•材料を図 3－1 に示す。
なお，スタビライザの応力評価点は，スタビライザを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を図 3－2 に示す。

4．構造強度評価

4． 1 構造強度評価方法

（1）スタビライザは，原子炉しやへい壁に設置されたソールプレート上に溶接され，原子炉圧力容器の水平地震荷重を原子炉圧力容器スタビライザブラケット（以下「スタ ビライザブラケット」という。）からヨーク，ロッド，皿ばね，ブラケットの順に伝え られ，ソールプレートを介して，原子炉しやへい壁に伝達させる構造である。スタビ ライザの耐震評価は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた荷重を用いて，参照図書（1）に示す既工認の手法に基づき構造強度評価を行う。
（2）構造強度評価に用いる寸法は，既工認からの変更はなく，参照図書（1）に定めると おりである。
（3）概略構造図を表2－1に示す。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態 スタビライザの荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力
スタビライザの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き表 4－2 に示す。

4．2．3 許容応力評価条件
スタビライザの許容応力評価条件を表4－3に示す。

4．2．4 設計荷重
（1）最高使用温度
最高使用温度は，既工認からの変更はなく，参照図書（1）に定めるとおりである。
（2）スタビライザに加わる荷重及び設計用地震力
スタビライザに加わる荷重を表 4－4に示す。
スタビライザの評価に用いる設計用地震力は，水平地震荷重として，添付書類「VI －2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた，「弾性設計用地震動 S d 又は静的地震力」及び「基準地震動 S s 」の応答値を用いる。
（3）ロッド及びブラケットに加わる荷重
水平地震荷重Hは，表2－1 に示すように 8 個のスタビライザで分担されるので， 1 個の受けもつ最大地震荷重 F_{H} は次のように求める。

$$
\mathrm{F}_{\mathrm{H}}=\frac{1}{4} \cdot \mathrm{H}
$$

また，スタビライザは，図 3－1 に示すようにあらかじめ初期締付荷重を与えた 2組の皿ばねによって，スタビライザブラケットを両側から押え付ける構造となって いる。したがって，各部に加わる荷重は図 4－1 に示すようになる。

ロッド及びブラケットに加わる最大荷重 W_{A} は，次のようにして求める。
a．弾性設計用地震動 S d 又は静的地震力の場合
スタビライザ 1 個に加わる最大地震荷重 F_{H} は $1 / 4 \cdot \mathrm{H}_{1}$ であり， Fo o $1 / 2 \cdot$ $\mathrm{F}_{\mathrm{H}} \geqq 0$ となり皿ばねは外力に対して2組とも有効に働くため，次のように求める。

$$
\mathrm{W}_{\mathrm{A}}=\mathrm{Fo}+\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{H}}=\mathrm{Fo}+\frac{1}{2} \cdot \frac{1}{4} \cdot \mathrm{H}_{1}
$$

b．基準地震動 S s の場合
スタビライザ 1 個に加わる最大地震荷重 F_{H} は $1 / 4 \cdot \mathrm{H}_{2}$ であり，Fo－1／2•
$\mathrm{F}_{\mathrm{H}}<0$ となり外力は全て1組の皿ばねで受けることになるため，次のように求める。

$$
\mathrm{W}_{\mathrm{A}}=\mathrm{F}_{\mathrm{H}}=\frac{1}{4} \cdot \mathrm{H}_{2}
$$

4． 3 計算方法
ロッドの応力計算方法は，既工認から変更はなく，参照図書（1）に示すとおりである。 ブラケットの応力計算方法は，以下に示すとおりである。ブラケットの形状及び寸法を図4－2に示す。
（1）応力評価点 P02
a．曲げ応力 σ b

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{Z}_{\mathrm{A}}}
$$

ここで，

$$
\mathrm{M}_{\mathrm{A}}: \text { モーメント }=\frac{\mathrm{W}_{\mathrm{A}} \cdot \ell_{\mathrm{B} 3}}{8}
$$

$$
\mathrm{Z}_{\mathrm{A}}: \text { 断面係数 }=\frac{\ell_{\mathrm{B} 2} \cdot \ell_{\mathrm{B} 5}{ }^{2}}{6}
$$

b．せん断応力 τ

$$
\tau=\frac{\mathrm{W}_{\mathrm{A}}}{2 \cdot \mathrm{~A}_{3}}
$$

ここで，
A_{3} ：断面積 $=\ell_{\mathrm{B} 2} \cdot \ell_{\mathrm{B} 5}$

C．組合せ応力 σ_{k}

$$
\sigma_{\mathrm{k}}=\sqrt{\sigma \mathrm{b}^{2}+3 \cdot \tau^{2}}
$$

（2）応力評価点 P03
a．曲げ応力 σ b

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{Z}_{\mathrm{B}}}
$$

ここで，

$$
\mathrm{M}_{\mathrm{B}}: \text { モーメント }=\frac{\mathrm{W}_{\mathrm{A}} \cdot \ell_{\mathrm{B} 4}}{2}
$$

$$
Z_{\mathrm{B}}: \text { 断面係数 }=\frac{\mathrm{t}_{\mathrm{B} 1} \cdot \ell_{\mathrm{B} 1}{ }^{2}}{6}
$$

b．せん断応力 τ

$$
\tau=\frac{\mathrm{W}_{\mathrm{A}}}{2 \cdot \mathrm{~A}_{1}}
$$

ここで，
A_{1} ：断面積 $=\mathrm{t}_{\mathrm{B} 1} \cdot \ell_{\mathrm{B} 1}$

C．組合せ応力 σ_{k}

$$
\sigma_{\mathrm{k}}=\sqrt{\sigma_{\mathrm{b}}{ }^{2}+3 \cdot \tau^{2}}
$$

（3）応力評価点 P04
a．せん断応力 τ

$$
\begin{aligned}
& \tau=\frac{\mathrm{W}_{\mathrm{A}}}{2 \cdot \mathrm{~A}_{1}+\mathrm{A}_{2}} \\
& \text { ここで, } \\
& \mathrm{A}_{2}: \text { 断面積 }=2 \cdot \ell_{\mathrm{B} 6} \cdot \ell_{\mathrm{B} 3}
\end{aligned}
$$

4.4 応力の評価

各許容応力状態における評価を表 4－5 に示す。
表 4－5 より，各許容応力状態の各応力は，「4．2．2 許容応力」に示す許容応力を満足する。

5．参照図書
（1）女川原子力発電所第2号機 第5回工事計画認可申請書 添付書類 IV－3－1－3－2「原子炉圧力容器スタビライザの応力計算書」

図 3－1 形状•寸法•材料（単位：mm）
（a）$E=r$

図 3－2 応力評価点

（1）初期締結状態

（2）弾性設計用地震動 S d 又は静的地震力の場合

（3）基準地震動 S s の場合

図 4－2 ブラケットの形状及び寸法

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉本体	原子炉圧力容器付属構造物	スタビライザ	S	—＊	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}^{*}$	III $_{\text {A }} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}^{*}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	

[^0]O 2 （3）VI－2－3－4－2－1 R 2

表 4－4 スタビライザに加わる荷重

種別	記号	荷重
初期締付荷重	Fo	
スタビライザ全体に加わる S d＊地震時の 水平地震荷重	$\mathrm{H} \mathrm{H}_{1}$	
スタビライザ全体に加わるS s 地震時の 水平地震荷重	H_{2}	

O 2 （3）VI－2－3－4－2－1 R 2 E
表 4－5 評価結果まとめ

						（単位：MPa）		
評価対象設備	評価部位		応力分類	III ${ }_{\text {A }} \mathrm{S}$		$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
			算出応力	許容応力	算出応力	許容応力		
スタビライザ	P01	ロッド		引張応力	123	440	156	440
			曲げ応力	71	228	90	274	
	P02		せん断応力	17	114	22	137	
			組合せ応力	77	198	97	238	
			曲げ応力	119	228	150	274	
	P03	ブラケット	せん断応力	37	114	46	137	
			組合せ応力	134	198	170	238	
			曲げ応力	－	－	－	－	
	P04		せん断応力	29	114	37	137	
			組合せ応力	－	－	－	－	

[^0]: 注記＊：クラス 1 支持構造物の荷重の組合せ及び許容応力を準用する。

