女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0181_改 1
提出年月日	2021年9月7日

VI-2-10-2-7-2 水密扉(溢水防護設備)の耐震性についての計算書

2021年9月

東北電力株式会社

1. 概要 ···································
2. 一般事項 ······ 2
2.1 検討対象水密扉一覧 ······2
2.2 配置概要 ····································
2.3 構造計画 ····································
2.4 評価方針 ····· 8
2.5 適用規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.6 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 固有値解析 ······ ··· ··· ··· ··· ··· ··· ··· ··
3.1 固有振動数の算出方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.1.1 解析モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 固有振動数の算出条件等 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.1 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.2 固有振動数の算出方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.3 固有振動数の算出条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.3 固有振動数の算出結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 耐震評価
4.1 評価対象部位 ····································
4.2 荷重及び荷重の組合せ ・・・・・ 24
4.2.1 荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.2.2 荷重
4.3 許容限界
4.3.1 使用材料 ····································
4.3.2 許容限界 ····································
4.4 設計用地震力
4.5 評価方法
4.5.1 応力算定 ····································
4.5.2 断面検定 ····································
4.6 評価条件 ····································
5. 評価結果 · · · · · · · · · · · · · · · · · · ·

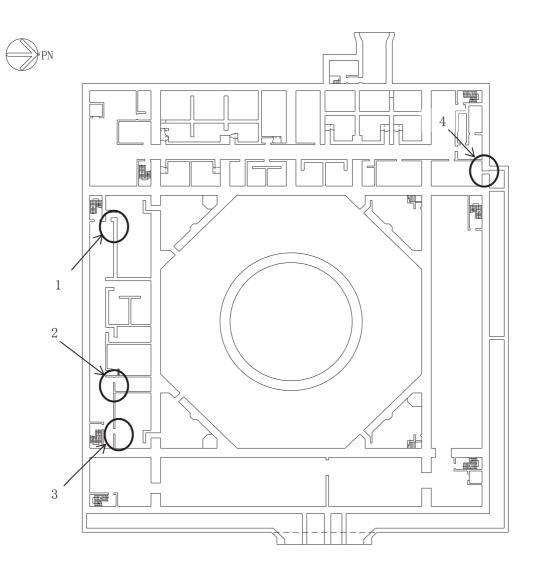
1. 概要

本計算書は,添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能 維持の設計方針に基づき,溢水防護設備である原子炉建屋の水密扉及びタービン建屋の水密扉(以 下「水密扉」という。)が,設計用地震力に対して十分な構造強度有していることを説明するもの である。

その耐震評価は、水密扉に要求される機能の維持を確認するために、応力評価に基づく、構造 部材の健全性評価により行う。

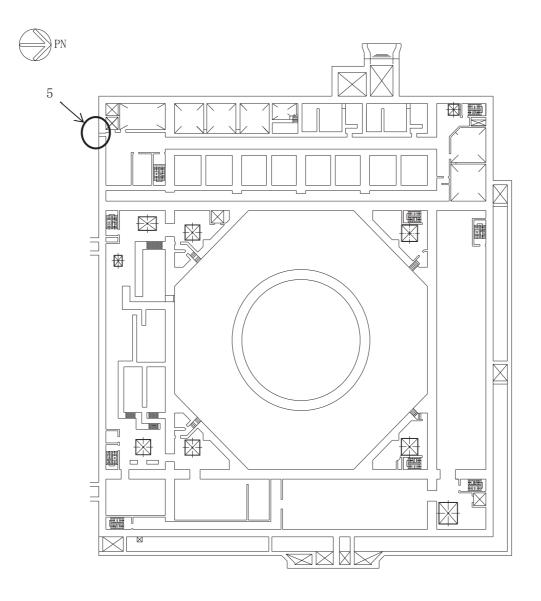
水密扉は,設計基準対象施設においては溢水防護設備に分類される。以下に設計基準対象施設 としての構造強度評価を示す。

2. 一般事項


 2.1 検討対象水密扉一覧 検討対象の水密扉を表 2-1 に示す。

水密扉	扉名称	
No.		
1	RCIC タービンポンプ室-共通通路浸水防止水密扉	-8.10m
2	FPMUW ポンプ室浸水防止水密扉	-8.10m
3	RHR ポンプ(C)室-共通通路浸水防止水密扉	-8.10m
4	原子炉建屋浸水防止水密扉(No.3)	-8.10m
5	原子炉建屋浸水防止水密扉(No. 4)	2.00m
6	RHR Hx(A)室-RHR Hx(B)室浸水防止水密扉	15.00m
7	原子炉建屋管理区域外伝播防止水密扉(No.3)	15.00m
8	主排気ダクト連絡トレンチ(2T-5)管理区域外伝播防止水密扉	15.00m
9	原子炉建屋管理区域外伝播防止水密扉(No.1)	15.00m
10	原子炉建屋管理区域外伝播防止水密扉(No.2)	15.00m
11	北西階段室管理区域外伝播防止水密扉	15.00m
12	Rw 制御室管理区域外伝播防止水密扉	15.00m
13	原子炉建屋大物搬入口	15.00m
14	タービン建屋管理区域外伝播防止水密扉	0.80m

表 2-1 検討対象水密扉一覧

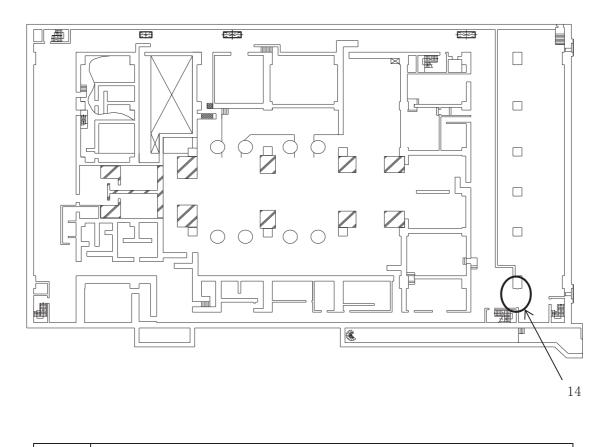

2.2 配置概要

原子炉建屋の水密扉の設置位置図を図 2-1 に,タービン建屋の水密扉の設置位置図を図 2-2 に示す。

1	RCIC タービンポンプ室-共通通路浸水防止水密扉
2	FPMUW ポンプ室浸水防止水密扉
3	RHR ポンプ(C)室-共通通路浸水防止水密扉
4	原子炉建屋浸水防止水密扉(No.3)

図 2-1 原子炉建屋の水密扉の設置位置図(1/3) 0.P.-8.10m

5	原子炉建屋浸水防止水密扉(No.4)


図 2-1 原子炉建屋の水密扉の設置位置図(2/3) 0.P.2.00m(0.P.-0.80m)

6	RHR Hx(A)室-RHR Hx(B)室浸水防止水密扉
7	原子炉建屋管理区域外伝播防止水密扉(No.3)
8	主排気ダクト連絡トレンチ(2T-5)管理区域外伝播防止水密扉
9	原子炉建屋管理区域外伝播防止水密扉(No.1)
10	原子炉建屋管理区域外伝播防止水密扉(No.2)
11	北西階段室管理区域外伝播防止水密扉
12	Rw 制御室管理区域外伝播防止水密扉
13	原子炉建屋大物搬入口

図 2-1 原子炉建屋の水密扉の設置位置図(3/3) 0.P.15.00m

枠囲みの内容は防護上の観点から公開できません。

14 タービン建屋管理区域外伝播防止水密扉

図 2-2 タービン建屋の水密扉の設置位置図 0.P.0.80m

2.3 構造計画

水密扉は、片開き型の鋼製扉とし、扉板の背面に芯材を配した構造である。また、閉止状態 において、カンヌキ及びカンヌキ受けにより固定され止水性を確保しており、アンカーボルト によって建屋躯体に固定された扉枠にて支持する構造とする。水密扉の構造計画を表 2-2 に 示す。

計画の概要		⇒光 田 [27]
主体構造	支持構造	説明図
片開き型の鋼製扉と	扉開放時においては,	
し,鋼製の扉板に芯材	ヒンジにより扉が扉	
を取付け,扉に設置さ	枠に固定され, 扉閉止	
れたカンヌキを鋼製	時においては, カンヌ	
の扉枠に差込み,扉体	キにより,扉と扉枠を	
と扉枠を一体化させ	一体化する構造とす	
る構造とする。	る。	
また,扉と建屋躯体の	扉枠はアンカーボル	
接続はヒンジを介す	トにより建屋躯体へ	
る構造とする。	固定する構造とする。	

表 2-2 水密扉の構造計画

2.4 評価方針

水密扉の耐震評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した荷重及び荷 重の組合せ並びに許容限界に基づき、「2.3 構造計画」に示す水密扉の構造を踏まえ、「4.1 評 価対象部位」にて設定する評価部位において、「3. 固有値解析」で算出した固有振動数に基づ く設計用地震力により算出した応力等が許容限界内に収まることを、「4.5 評価方法」に示す 方法にて確認する。応力評価の確認結果を「5. 評価結果」にて確認する。

耐震評価フローを図 2-3 に示す。水密扉の耐震評価においては、その構造を踏まえ、基準地 震動 Ssによる地震荷重の作用方向及び伝達経路を考慮し、評価対象部位を設定する。

耐震評価においては,荷重を静的に作用させることにより,ヒンジ部(ヒンジ板,ヒンジピン, ヒンジボルト),カンヌキ部(カンヌキ,カンヌキ受けピン,カンヌキ受けボルト),方立,マ グサ及びパネル取付ボルトの発生応力並びにアンカーボルトの発生荷重を算定し,許容限界と の比較を行う。

なお、パネル取付ボルトはカンヌキ受けボルトと同じ評価方法とする。

アンカーボルトは壁に埋め込まれた方向によって下記のとおりに呼ぶこととする。

- ・0° 方向配置:アンカーボルトが壁の厚さの直交方向に配置されている場合
- ・45°方向配置:アンカーボルトが壁の厚さの方向から45°傾斜して配置されている場合
- ・90°方向配置:アンカーボルトが壁の厚さの方向に配置されている場合

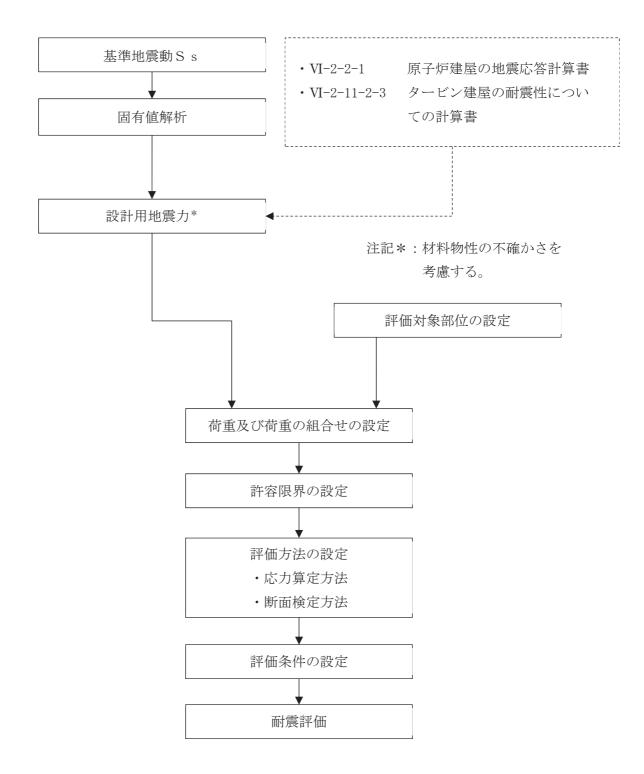


図 2-3 水密扉の耐震評価フロー

2.5 適用規格·基準等

適用する規格,基準等を以下に示す。

- ・建築基準法(昭和 25 年 5 月 24 日法律第 201 号)
- ・建築基準法施行令(昭和 25 年 11 月 16 日政令第 338 号)
- ・日本建築学会 2005 年 鋼構造設計規準 -許容応力度設計法-
- ・日本建築学会 2010年 各種合成構造設計指針・同解説
- ·日本機械学会 機械工学便覧

2.6 記号の説明

水密扉の耐震評価に用いる記号を表 2-3 に示す。

	<u> </u>	
記号	単位	定義
W 1	kN	スラスト荷重
G	kN	扉重量
W _p	kN	パネル重量
k _H		水平震度
k ud		鉛直震度
F 1	Ν	転倒力
F _{1a}	Ν	扉と扉枠の重量を含んだ転倒力
R 1	Ν	地震力に伴う荷重の反力
L ₁	mm	扉重心とヒンジ芯間距離
L ₂	mm	ヒンジ芯間距離
L ₃	mm	ヒンジ板の2軸間距離
L ₄	mm	ヒンジ板と受板間距離
L ₅	mm	カンヌキの突出長さ
L ₆	mm	方立の支持間距離
L 7	mm	マグサの支持間距離
L p	mm	カンヌキ受けピンの軸支持間距離
М	N•mm	曲げモーメント
Т	Ν	引張力
Q	Ν	せん断力
n 1	本	ヒンジボルトの本数
n ₂	本	カンヌキの本数
n ₃	本	ヒンジ側アンカーボルトの本数
n _b	本	カンヌキ受けボルト又はパネル取付ボルトの本数
g	m/s^2	重力加速度
W a	kN	扉枠の重量
W _{1 a}	Ν	扉と扉枠の重量を含んだスラスト荷重
σ	N/mm^2	曲げ応力度
σ _t	N/mm^2	引張応力度
τ	N/mm^2	せん断応力度
x	N/mm^2	組合せ応力度
Z	mm ³	断面係数
А	mm^2	断面積

表 2-3 耐震評価に用いる記号(1/2)

記号	単位	定義
A s	mm^2	せん断断面積
T _d	Ν	アンカーボルト1本当たりに生じる引張力
H $_1$	mm	ヒンジ板の高さ
Τ 1	mm	ヒンジ板の厚さ
d ₃	mm	ヒンジピンの径
\mathbf{Q}_{d}	Ν	アンカーボルト1本当たりに生じるせん断力
T a	Ν	アンカーボルト1本当たりの短期許容引張力
Q a	Ν	アンカーボルト1本当たりの短期許容せん断力

表 2-3 耐震評価に用いる記号(2/2)

- 3. 固有值解析
- 3.1 固有振動数の算出方法

水密扉の構造に応じて解析モデルを設定し、1次固有振動数を算出する。

3.1.1 解析モデルの設定

水密扉は、ヒンジ及びカンヌキにより扉と扉枠を支持する構造であることから、扉閉止 時については両端ヒンジ梁又は四辺支持の長方形板に、扉開放時についてはヒンジ、自由 端梁に単純化したモデルとし、モデル化に用いる水平方向に配している芯材又は扉板の長 さは保守的に扉幅とし、鉛直方向に配している芯材は扉閉止時については扉高さ、扉開放 時については扉幅の保守的な値とした。解析モデル図を図 3-1 に示す。

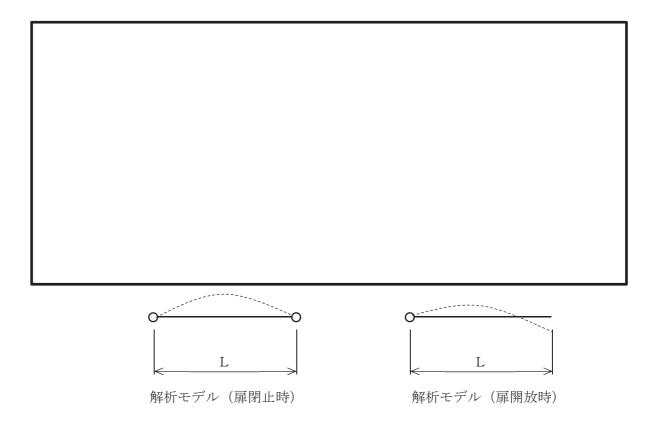


図 3-1 水密扉の固有値解析モデル図

3.2 固有振動数の算出条件等

3.2.1 記号の説明

水密扉の固有振動数算出に用いる記号を表 3-1 に示す。

記号	単位	定義		
f	Hz	水密扉の1次固有振動数		
L	cm	モデル化に用いる芯材の長さ		
Е	kgf/cm^2	ヤング率		
Ι	cm^4	断面二次モーメント		
γm	kg/cm	質量分布		
t	cm	扉板の板厚		
а	cm	2隣辺の長さ(扉の幅)		
b	cm	2隣辺の長さ(扉の高さ)		
ν		ポアソン比		
m		辺 a に平行な節線の数(1)		
n		辺 b に平行な節線の数(1)		
γ	kgf/cm^3	単位体積の重さ		
g	cm/s^2	重力加速度		

表 3-1 水密扉の固有振動数に用いる記号

3.2.2 固有振動数の算出方法

1次固有振動数fを「日本機械学会編 機械工学便覧」に基づき以下の式より計算する。 ここで,固有振動数は水平方向(扉体面外方向)について算出するものとし,鉛直方向(扉 体面内方向)については,扉に配された鉛直方向の芯材等の軸剛性が,面外方向の剛性に 比べて十分に大きいため,固有振動数の算出を省略する。

モデル化の対象は,扉板及び芯材の組合せによる断面を有する水密扉については芯材を, 芯材がなく扉板そのものにより断面を構成する水密扉については扉板とする。

(1) 扉閉止時

a. 両端ヒンジ梁モデル(芯材をモデル化)

$$f = \frac{\pi^2}{2 \cdot \pi \cdot L^2} \cdot \sqrt{\frac{E \cdot I \cdot g}{\gamma_m}}$$

b. 四辺支持の長方形板モデル(扉板をモデル化)

$$f = \frac{\pi \cdot t}{4} \cdot \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right) \cdot \sqrt{\frac{E \cdot g}{3 \cdot \left(1 - \nu^2\right) \cdot \gamma}}$$

(2) 扉開放時

雇開放時において水密扉は、面外方向については、<mark>扉は端部をヒンジで固定されるもの</mark> のヒンジを中心として自由に回転するため、慣性力を受け流すような状態となり、 これに 伴う荷重の増幅は生じないが、本評価においては芯材又は扉板が自由振動するものとして、 下記の評価式にて固有振動数を算出することとした。

ヒンジ,自由端梁モデル

$$f = \frac{3.927^2}{2 \cdot \pi \cdot L^2} \cdot \sqrt{\frac{E \cdot I \cdot g}{\gamma_m}}$$

3.2.3 固有振動数の算出条件

水密扉の固有振動数の算出条件のうち、芯材をモデル化した場合の算出条件を表 3-2 に、扉板をモデル化した場合の算出条件を表 3-3 及び表 3-4 に示す。

	我 5 2 元内をビアル 目じに 湯日		())[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		
水密扉	三 4 11.	粱長さ	ヤング率	断面二次 モーメント	質量分布
No.	扉名称	L	Е	Ι	γm
		(cm)	$(\rm kgf/cm^2)$	(cm^4)	(kg/cm)
1	RCIC タービンポンプ室-共通通路	100.0	0.00\/106	1990	2.48
1	浸水防止水密扉	106.0	2.09 $\times 10^{6}$	1380	
3	RHR ポンプ(C)室-共通通路	118.6	0.00 × 1.06	1000	2.61
5	浸水防止水密扉	110.0	2.09 $\times 10^{6}$	1380	
8	主排気ダクト連絡トレンチ(2T-5)	134.5	2.09 $\times 10^{6}$	618.5	1.55
0	管理区域外伝播防止水密扉	134. 5	2.09×10	010. 0	1.00
9	原子炉建屋管理区域外伝播防止	134.5	2.09×10^{6}	618.5	1.62
	水密扉(No.1)	101.0	2.00/(10	010.0	1.02
	原子炉建屋管理区域外伝播防止	112.9	2.09×10^{6}	2490	3.91
	水密扉(No.2)(くぐり戸)	110.0	1.000010		0.01
10	原子炉建屋管理区域外伝播防止	460.0	2.09 $\times 10^{6}$	119000	17.50
	水密扉(No. 2) (大扉・扉閉止時)				
	原子炉建屋管理区域外伝播防止	495.0	2.09 $\times 10^{6}$	62610	26.70
	水密扉(No. 2)(大扉・扉開放時)				
13	原子炉建屋大物搬入口	692.0	2. 09×10^{6} 202700		9.63
	タービン建屋管理区域外伝播防止				
	水密扉(扉)	100.0	2.09 $\times 10^{6}$	1380	<mark>1. 68</mark>
	タービン建屋管理区域外伝播防止	100.0	0.00.106	100.0	0.54
	水密扉(パネル①)	109.0	2.09 $\times 10^{6}$	188.0	
	タービン建屋管理区域外伝播防止	100 5	0.001/106	100.0	0.77
	水密扉(パネル②)	109.5	2.09 $\times 10^{6}$	188.0	
14	タービン建屋管理区域外伝播防止	101 0	0.001/106		0.50
	水密扉 (パネル③)	101.0	2.09 $\times 10^{6}$	188.0	0.79
	タービン建屋管理区域外伝播防止	100.0			0.37
	水密扉 (パネル④)	109.0	2.09 $\times 10^{6}$	188.0	
	タービン建屋管理区域外伝播防止			105 -	
	水密扉(パネル⑤)	109.5	2.09 $\times 10^{6}$	188.0	0.78
t			1		

表 3-2 芯材をモデル化した場合の算出条件(扉閉止時及び扉開放時)

	衣 3-3 扉板をて			1/1411 (791			
			ヤング			ポア	単位
水密扉		板厚	率	幅	高さ	ソン	体積
No.	扉名称		,			比	の重さ
NO.		t	Е	а	b	ν	γ
		(cm)	(kgf/cm^2)	(cm)	(cm)	(—)	(kg/cm^3)
2	FPMUW ポンプ室	2 0	2.00×10^{6}	105.0	904 0	0.0	0.010
Δ	浸水防止水密扉	3.2	2. 09×10^{6}	105.0	204.0	0.3	0.012
4	原子炉建屋	6.0	2.09 $\times 10^{6}$	92.5	136.0	0.3	0.016
4	浸水防止水密扉(No.3)	0.0	2.09×10				
5	原子炉建屋	6.0	2.09×10 ⁶	92.5	136.0	0.3	0.016
0	浸水防止水密扉(No.4)	0.0					
	RHR Hx(A)室-RHR Hx(B)室	3.2	2.09 $\times 10^{6}$	95.0	209.0	0.3	0.012
6	浸水防止水密扉 (扉)						
0	RHR Hx(A)室-RHR Hx(B)室	3.2	2.09×10 ⁶	102.0	217.2	0.3	0.008
	浸水防止水密扉(パネル)						
7	原子炉建屋管理区域外伝播	3.2	2.09 $\times 10^{6}$	130.0	197.0	0.3	0.013
1	防止水密扉(No.3)						
11	北西階段室管理区域外伝播	3.2	2.09 $\times 10^{6}$	90.0	134.0	0.3	0.016
	防止水密扉	5.2					
	Rw 制御室管理区域外伝播	3.2	2.09 $\times 10^{6}$	105.0	204.0	0.3	0.012
12	防止水密扉(扉)	3.2	2.09 $\times 10^{-5}$				
	Rw 制御室管理区域外伝播	0.6	2.09 $\times 10^{6}$	71.6	207.8	0.3	0.010
	防止水密扉(パネル①)	0.0	$2.09 \times 10^{\circ}$				
	Rw 制御室管理区域外伝播	0.6	2.09 $\times 10^{6}$	86.3	182.2	0.3	0.011
	防止水密扉 (パネル②)	0.0	2.03 ^ 10	00.0	104.4	0.0	0.011

表 3-3 扉板をモデル化した場合の算出条件(扉閉止時)

表 3-4 扉板をモアル化した場合の鼻出条件(扉開放時)					
水密扉	扉名称	梁長さ	ヤング率	断面二次 モーメント	質量分布
No.		L	Е	Ι	γ m
		(cm)	(kgf/cm^2)	(cm^4)	(kg/cm)
2	FPMUW ポンプ室浸水防止水密扉	105.0	2. 09×10^{6}	557.1	8.10
4	原子炉建屋浸水防止水密扉(No.3)	92.5	2. 09×10^{6}	2448	12.97
5	原子炉建屋浸水防止水密扉(No.4)	92.5	2. 09×10^{6}	2448	12.97
6	RHR Hx(A)室-RHR Hx(B)室 浸水防止水密扉	95.0	2. 09×10^{6}	570.7	7.89
7	原子炉建屋管理区域外伝播防止 水密扉(No.3)	130.0	2. 09×10^{6}	537.9	8.46
11	北西階段室管理区域外伝播防止 水密扉	90.0	2. 09×10^{6}	365.9	6.67
12	Rw 制御室管理区域外伝播防止 水密扉(扉)	105.0	2. 09×10^{6}	557.1	8.10

表 3-4 扉板をモデル	化した場合の算出条件	(扉開放時)
--------------	------------	--------

3.3 固有振動数の算出結果

水密扉の固有振動数の算出結果を表3-5に示す。各水密扉の固有振動数は20Hz以上であり、 剛構造であることを確認した。

		固有振動数			
水密扉 No.	扉名称		f		
	庐口小	扉閉止時	扉開放時		
		(Hz)	(Hz)		
1	RCIC タービンポンプ室-共通通路	149.30	233. 28		
1	浸水防止水密扉	149.30	200.20		
2	FPMUW ポンプ室浸水防止水密扉	<mark>72. 13</mark>	83. 58		
3	RHR ポンプ(C)室-共通通路	116.25	181.65		
	浸水防止水密扉	110.20	101.05		
4	原子炉建屋浸水防止水密扉(No.3)	174.49	178.41		
5	原子炉建屋浸水防止水密扉(No.4)	<mark>174. 49</mark>	178.41		
	RHR Hx(A)室-RHR Hx(B)室	04.05	104 71		
6	浸水防止水密扉 (扉)	<mark>84. 05</mark>	104.71		
0	RHR Hx(A)室-RHR Hx(B)室	<mark>90. 32</mark>			
	浸水防止水密扉(パネル)	90. 32			
7	7 原子炉建屋管理区域外伝播防止水密扉 51.30	<mark>51. 30</mark>	52.43		
	(No. 3)				
8	主排気ダクト連絡トレンチ(2T-5)	78.53	122.70		
	管理区域外伝播防止水密扉				
9	原子炉建屋管理区域外伝播防止水密扉	76.81	120.02		
	(No. 1)				
	原子炉建屋管理区域外伝播防止水密扉	140.79	219.99		
10	(No. 2) (くぐり戸)				
-~	原子炉建屋管理区域外伝播防止水密扉	27.71	21.96		
	(No. 2) (大扉)				
11	北西階段室管理区域外伝播防止水密扉	<mark>97. 53</mark>	101.60		

表 3-5 固有振動数の算出結果(1/2)

表 3-5 固有振動数の鼻出結果(2/2)				
		固有振動数		
水密扉 No.	百久升	f		
	雇名称	扉閉止時	扉開放時	
		(Hz)	(Hz)	
	Rw 制御室管理区域外伝播防止水密扉	72.13		
	(扉)	<u>(2.13</u>	83. 58	
12	Rw 制御室管理区域外伝播防止水密扉	<mark>28. 18</mark>		
12	(パネル①)	<u>28. 18</u>		
	Rw 制御室管理区域外伝播防止水密扉	20. 24		
	(パネル②)	20.24		
13	原子炉建屋大物搬入口*	48.84	33.65	
10		10.01	00.00	
	タービン建屋管理区域外伝播防止水密扉	<mark>203. 82</mark>	318.46	
	(扉)	200.02	310. 40	
	タービン建屋管理区域外伝播防止水密扉	<mark>111. 68</mark>		
	(パネル①)	· · · · · · · · · · · · · · · · · · ·		
	タービン建屋管理区域外伝播防止水密扉	<mark>92. 67</mark>	144.80	
14	(パネル②)	52.01	111.00	
14	タービン建屋管理区域外伝播防止水密扉	<mark>107. 54</mark>	<mark>168. 03</mark>	
	(パネル③)	101.01	100.00	
	タービン建屋管理区域外伝播防止水密扉	<mark>134. 92</mark>		
	(パネル④)	101.02		
	タービン建屋管理区域外伝播防止水密扉	<mark>92. 08</mark>	143.87	
	(パネル⑤)	<u></u>	110.01	

表 3-5 固有振動数の算出結果(2/2)

注記*:添付書類「VI-2-9-3-2 原子炉建屋大物搬入口の耐震性についての計算書」において 算出している値。

4. 耐震評価

4.1 評価対象部位

評価対象部位は、「2.3 構造計画」に示す水密扉の構造上の特徴を踏まえ選定する。 基準地震動Ssによる地震荷重により水密扉に作用する慣性力は、ヒンジ部(ヒンジ板、ヒ ンジピン、ヒンジボルト)及びカンヌキ部(カンヌキ、カンヌキ受けピン、カンヌキ受けボル ト)から扉枠に伝わり、扉枠を固定するアンカーボルトを介し、開口部周辺の建屋躯体に伝達 されることから、評価対象部位をヒンジ部及びカンヌキ部並びにアンカーボルトとする。また、 アンカーボルトに生じる応力が最大となる状態で評価を行うことを考慮し、扉が0°、90°又 は180°の開閉状態における評価を行うとともに、地震荷重の作用により応力が集中する扉の 状態を踏まえ、ヒンジ側アンカーボルトを評価対象とする。

パネル付きの水密扉については,パネル板を支える方立及びマグサ並びにパネル取付ボルト を評価対象部位として選定する。

また,評価結果が厳しい評価対象部位を有する水密扉を代表として評価するものとし,水密 扉 No. 1, 9, 10 及び 12 を抽出した。

水密扉閉止時に水密扉に作用する荷重の作用図を図 4-1 に,水密扉開放時に水密扉に作用 する荷重の作用図を図 4-2 に示す。 ▲-----: 評価対象部位に作用する荷重
↓ : 評価対象部位

図 4-1 水密扉に作用する荷重の作用図(水密扉閉止時)

▲-----: 評価対象部位に作用する荷重
↓ : 評価対象部位

図 4-2 水密扉に作用する荷重の作用図(水密扉開放時)

- 4.2 荷重及び荷重の組合せ
 - 4.2.1 荷重の組合せ

水密扉の評価に用いる荷重の組合せを以下に示す。

G + S s

ここで,

G : 固定荷重(kN)

Ss:基準地震動Ssによる地震荷重(kN)

水密扉は、上載物の荷重を負担する又は、影響を受ける構造となっていないことから、 積載荷重については考慮しない。

- 4.2.2 荷重
 - (1) 固定荷重(G)固定荷重として水密扉の自重を考慮する。自重は「4.6 評価条件」に示す。
 - (2) 地震荷重(Ss) 基準地震動Ssによる荷重を考慮する。「4.4 設計用地震力」で設定した設計震度を用 いて,次式により算定する。

 $S s = G \cdot k$

ここで,

- Ss:基準地震動Ssによる地震荷重(kN)
- G :固定荷重(kN)
- k : 設計震度

なお,水平及び鉛直地震力による組合せ応力が作用する部位の評価は,水平方向と鉛直 方向の地震力が同時に作用するものとして評価する。

4.3 許容限界

許容限界は,「VI-2-1-9 機能維持の基本方針」にて設定している許容限界を踏まえて設定する。

4.3.1 使用材料

水密扉を構成するヒンジ部,カンヌキ部,パネル取付ボルト,方立,マグサ及び及びア ンカーボルトの使用材料を表 4-1 に示す。

⇒亚/平			4- 挨	
言半1曲	対象部位	材質	仕様	
	ヒンジ板	SS400	高さ(mm) 70, 80, 85, 100, 500, 560 厚さ(mm) 40, 70, 95, 200, 250	
ヒンジ部	ヒンジピン	S45C SCM440	径(mm) 25, 35, 40, 45, 55, 60, 80, 240	
	ヒンジボルト	10.9 (SCM435, SCM440) 12.9(SCM435)	M12, M16, M24, M30, M42	
	カンヌキ	SUS304 SUS304N2 SCM440	径(mm) 45, 50, 60, 90, 120	
カンヌキ部	カンヌキ受けピン	SUS304N2 S45C SCM435 SUS304	径(mm) 25, 30, 40, 45, 60, 65, 70	
	カンヌキ受けボルト	10.9 (SCM435, SCM440) 12.9(SCM435)	M16, M20	
パネル	取付ボルト	12.9(SCM435)	M10, M12	
方立		SS400	PL-9×276 [-250×90×11×14.5 H-200×200×8×12	
マグサ		SS400	PL-9×276 [-250×90×11×14.5]	
アンカーボルト		SS400 SM490	M16, M20, M30, M36 φ16	

表 4-1 使用材料

- 4.3.2 許容限界
 - (1) 鋼材の許容応力度

鋼材の許容応力度は、「日本建築学会 2005 年 鋼構造設計規準 -許容応力度設計法 -」を踏まえて表 4-2 の値とする。

	短期許容応力度(N/mm²)		
材質・強度区分*1	曲げ・引張	せん断	
SS400(t ≤ 40)*2	235	135	
SS400 (40 < t \leq 100) *2	215	124	
SS400(100< t)*2	205	118	
SM490(t ≤ 16)*2	325	187	
SM490 (16< t \leq 40) *2	315	181	
SUS304	205	118	
SUS304N2	345	199	
S45C	345	199	
SCM435	651	375	
SCM440	686	396	
10.9(SCM435)	728	420	
12. 9 (SCM435)	854	493	

表 4-2 鋼材の許容限界

注記*1:許容応力度を決定する基準値Fは、JISに基づく。

*2: t は板厚(mm)を示す。

(2) アンカーボルトの許容限界の算定値

アンカーボルトの許容限界は、「4.1 評価対象部位」に記載したアンカーボルトに作用 する荷重の向きを踏まえて、「日本建築学会 2010年 各種合成構造設計指針・同解説」 に基づき算定する。

地震荷重を考慮する場合のアンカーボルトの許容限界を表 4-3 に示す。

なお,評価対象部位のアンカーボルトが引張力を受ける場合においては,アンカーボル トの降伏により決まる許容応力及び付着力又はコーン状破壊により決まる許容応力を比較 して,いずれか小さい値を採用する。また,評価対象部位のアンカーボルトがせん断力を 受ける場合においては,アンカーボルトのせん断強度により決まる許容応力,定着したコ ンクリート躯体の支圧強度により決まる許容応力及びコーン状破壊により決まる許容応力 を比較して,いずれか小さい値を採用する。

水密扉	扉名称	許容耐力*(N/本)	
No.	月尾石 怀	引張	せん断
1	RCIC タービンポンプ室-共通通路浸水防止水密扉	37957	12824
9	原子炉建屋管理区域外伝播防止水密扉(No.1)	40463	40302
10	原子炉建屋管理区域外伝播防止水密扉(No.2)	131835	92284
12	Rw 制御室管理区域外伝播防止水密扉	26928	25826

表 4-3 アンカーボルトの許容限界

注記*:扉が開放状態のとき,地震力による応力がヒンジ側に集中する扉の構造を考慮し, ヒンジ側アンカーボルトのみ選定した。 4.4 設計用地震力

「3. 固有値解析」に示したとおり、水密扉の固有振動数が20Hz以上であることを確認したため、水密扉の耐震評価で用いる設計震度は、材料物性の不確かさを考慮したものとして「VI-2-2-1 原子炉建屋の地震応答計算書」及び「VI-2-11-2-3 タービン建屋の耐震性についての計算書」によることとし、建屋の階ごとの設計震度を表4-4に示す。

ここで,最大応答加速度を保守的に評価するために,最大応答加速度の抽出位置は水密扉設 置階の上階の値とする。

建屋	階	0. P.	設計震度		
建座			水平方向 k H	鉛直方向 k up	
	CRF	41.20m	2.86	1.58	
	3F	33. 20m	2.21	1.47	
	2F	22. 50m	1.77	1.30	
原子炉建屋	1F	15.00m	1.65	1.15	
	B1F	6.00m	1.31	0.91	
	B2F	-0.80m	1.11	0.73	
	B3F	-8.10m	0.82	0.57	
タービン建屋	B1F	7.60m	1.39	0.75	

表 4-4 設計震度

4.5 評価方法

- 4.5.1 応力算定
 - (1) ヒンジ部

ヒンジ部は、ヒンジ板、ヒンジピン及びヒンジボルトで構成されており、次式により算 定するスラスト荷重(回転軸線方向荷重)及び転倒力から、各部材に発生する応力を算定 する。ここで、扉の重量は2箇所のヒンジで支持することから、ヒンジ部に作用する転倒 力には、扉上半分の重量を慣性力として作用させるものとする。ヒンジ部に作用する荷重 の例を図4-3に示す。

$$W_1 = G \cdot 10^3 + k_{UD} \cdot G \cdot 10^3$$

$$\mathbf{F}_{1} = \mathbf{W}_{1} \cdot \frac{\mathbf{L}_{1}}{\mathbf{L}_{2}} + \frac{\mathbf{k}_{H} \cdot \mathbf{G} \cdot 10^{3}}{2}$$

ここで,

W₁ : スラスト荷重(N)

G : 扉重量(kN)

k_н :水平震度

k_{UD} :鉛直震度

F₁ :転倒力(N)

- L₁ : 扉重心とヒンジ芯間距離(mm)
- L₂ : ヒンジ芯間距離(mm)

◄-----: 評価対象部位に作用する荷重
↓ : 評価対象部位

図 4-3 ヒンジ部に作用する荷重

a. ヒンジ板

ヒンジ板に生じる応力は、次式により算定する。ヒンジ板に作用する荷重の例を図 4 -4に示す。

$$\begin{array}{c} \mathbf{M} = \mathbf{W}_1 \cdot \mathbf{L}_3 \\ \mathbf{Q} = \mathbf{W}_1 \end{array}$$

ここで,

M : ヒンジ板に生じる曲げモーメント(N·mm)

W₁ : スラスト荷重(N)

- L₃:ヒンジ板の2軸間距離(mm)
- Q : ヒンジ板に生じるせん断力(N)

図 4-4 ヒンジ板に作用する荷重の例

b. ヒンジピン

ヒンジピンに生じる応力は、次式により算定する。ヒンジピンに作用する荷重の例を 図 4-5 に示す。

(a) 受材が1箇所の場合

$$M = F_1 \cdot L_4$$
$$Q = F_1$$

(b) 受材が2箇所の場合

$$M = F_1 \cdot \frac{1}{2} \cdot L_4$$
$$Q = F_1 \cdot \frac{1}{2}$$

ここで、
 M : ヒンジピンに生じる曲げモーメント(N・mm)
 F₁:転倒力(N)
 L₄:ヒンジ板と受材間距離(mm)
 Q : ヒンジピンに生じるせん断力(N)

(受材が1箇所の場合)

(受材が2箇所の場合)

図 4-5 ヒンジピンに作用する荷重の例

c. ヒンジボルト

ヒンジボルトに生じる応力は、次式により算定する。ヒンジボルトに作用する荷重の 例を図 4-6 に示す。

(a) 受材が1箇所の場合

$$Q = \sqrt{(W_1 / n_1)^2 + (F_1 / n_1)^2}$$

(b) 受材が2箇所の場合

$$Q = \sqrt{(W_{1} / n_{1})^{2} + (F_{1} \cdot \frac{1}{2 \cdot n_{1}})^{2}}$$

ここで, Q : ヒンジボルト1本当たりに生じるせん断力(N) W₁ : スラスト荷重(N) F₁ : 転倒力(N) n₁ : ヒンジボルトの本数

(受材が1箇所の場合)

(受材が2箇所の場合)

図4-6 ヒンジボルトに作用する荷重の例

(2) カンヌキ部

カンヌキ部は、カンヌキ、カンヌキ受けピン及びカンヌキ受けボルトで構成されており、 カンヌキ部に生じる応力は、次式により算定する。カンヌキ部に作用する荷重の例を図 4 -7に示す。

 $R_1 = k_H \cdot G \cdot 10^3 / n_2$

ここで,

- R₁:カンヌキに作用する地震力に伴う荷重の反力(N)
- n₂:カンヌキの本数
- kн:水平震度
- G : 扉重量(kN)

▲----- : 評価対象部位に作用する荷重
↓---- : 評価対象部位

a. カンヌキ

カンヌキに生じる応力は、次式により算定する。なお、算定にあたっては、カンヌキ 受けピン中心位置を固定端とした片持ち梁として評価し、カンヌキの取付部位に応じて 作用する応力を考慮する。カンヌキに作用する荷重の例を図4-8に示す。

 $M = R_1 \cdot L_5$ $Q = R_1$

ここで,

- M : カンヌキに生じる最大曲げモーメント(N・mm)
 R₁ : カンヌキに作用する地震力に伴う荷重の反力(N)
 L₅ : カンヌキの突出長さ(mm)
- Q : カンヌキに生じる最大せん断力(N)

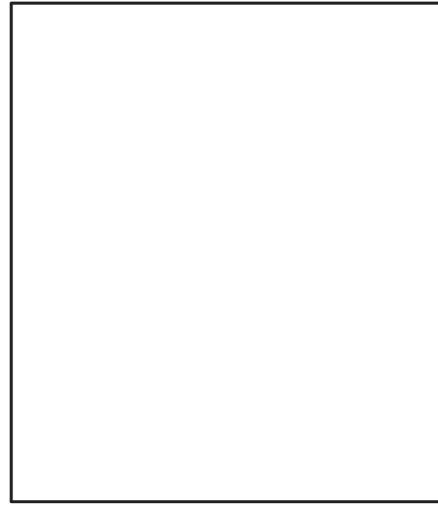


図4-8 カンヌキに作用する荷重の例

b. カンヌキ受けピン

カンヌキ受けピンに生じる応力は、カンヌキ受けピンを集中荷重が作用する単純梁と みなし、次式により算定する。カンヌキ受けピンに作用する荷重の例を図4-9に示す。

$$M = R_1 \cdot L_p \cdot \frac{1}{4}$$
$$Q = R_1 \cdot \frac{1}{2}$$

ここで,

- M : カンヌキ受けピンに生じる最大曲げモーメント(N・mm)
 R₁ : カンヌキに作用する地震力に伴う荷重の反力(N)
- L_p:カンヌキ受けピンの軸支持間距離(mm)
- Q : カンヌキ受けピンに生じる最大せん断力(N)

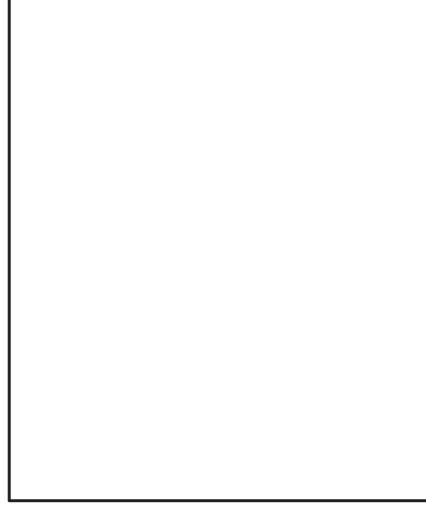


図 4-9 カンヌキ受けピンに作用する荷重の例

c. カンヌキ受けボルト及びパネル取付ボルト

カンヌキ受けボルト及びパネル取付ボルトに生じる応力は、次式により算定する。カ ンヌキ受けボルトに作用する荷重の例を図4-10に、パネル取付ボルトに作用する荷重 の例を図4-11示す。

$$T = \frac{R_1}{n_b}$$

ここで,

T : カンヌキ受けボルト又はパネル取付ボルトに生じる最大引張力(N)
 R₁: カンヌキ又はパネルに作用する地震力に伴う荷重の反力(N)
 n_b: カンヌキ受けボルト又はパネル取付ボルトの本数

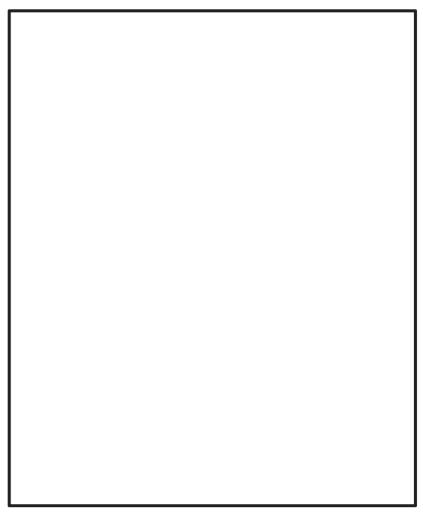


図 4-10 カンヌキ受けボルトに作用する荷重の例

◄-----: 評価対象部位に作用する荷重
↓ 評価対象部位

図 4-11 パネル取付ボルトに作用する荷重の例

(3) アンカーボルト

アンカーボルトに生じる応力は、「4.1 評価対象部位」に基づき、地震荷重を考慮する 場合はヒンジ側のアンカーボルトで荷重を負担するものとして算出する。ここで、アンカ ーボルトに生じる荷重は、引張力又はせん断力として作用する。評価対象のアンカーボル トの範囲の例は図4-12に示すとおり、転倒力が作用するヒンジ付近に限定し、枠の慣性 力は枠全体の重量の1/2を評価において保守的に考慮する。また、扉体の開放角度ごとの 荷重の作用状況を図4-13示す。

$$F_{1a} = F_{1} + k_{H} \cdot w_{a} \cdot 10^{3} \cdot \frac{1}{2}$$
$$W_{1a} = W_{1} + \left(k_{UD} \cdot w_{a} + w_{a}\right) \cdot 10^{3} \cdot \frac{1}{2}$$

- F_{1a}: 扉と扉枠の重量を含んだ転倒力(N)
- F₁ :転倒力(N)
- W₁a:扉と扉枠の重量を含んだスラスト荷重(N)
- W₁ : スラスト荷重(N)
- kн:水平震度
- k_{UD}:鉛直震度
- w_a : 扉枠の重量(kN)

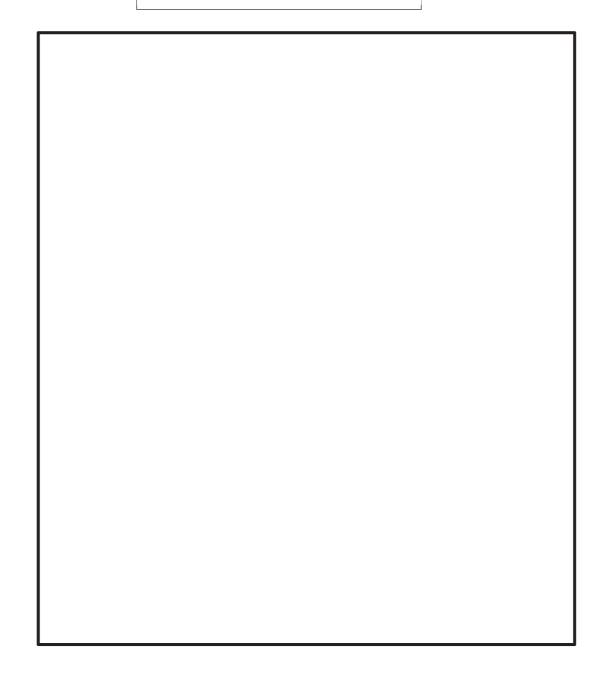
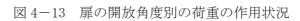



図 4-12 評価対象のアンカーボルトの範囲の例

(4) 方立

方立に生じる応力は,扉体重量及びパネル重量による地震荷重の1/2が方立の中心に集 中荷重で方立の中央に作用するものとして保守的に算出する。方立に作用する荷重の例を 図4-14に示す。

$$R_{1} = (G + W_{p}) \cdot k_{H} \cdot \frac{1}{2}$$
$$M = R_{1} \cdot L_{6} \cdot \frac{1}{4}$$
$$Q = \frac{R_{1}}{R_{1}} \cdot \frac{1}{2}$$

- G :扉重量(N)
- W_p:パネル重量(N)
- kн:水平震度
- M : 方立に生じる最大曲げモーメント(N・mm)
- R₁:地震力に伴う荷重の反力(N)
- L₆: 方立の支持間距離(mm)
- Q : 方立に生じる最大せん断力(N)

∢	:評価対象部位に作用する荷重
1222	:評価対象部位

図 4-14 方立に作用する荷重の例

(5) マグサ

マグサに生じる応力は、方立に作用する地震力に伴う荷重の反力の 1/2 がマグサの中心 に集中荷重でマグサの中央に作用するものとして保守的に算出する。マグサに作用する荷 重の例を図 4-15 に示す。

$$M = R_1 \cdot \frac{1}{2} \cdot L_7 \cdot \frac{1}{4}$$
$$Q = R_1 \cdot \frac{1}{2} \cdot \frac{1}{2}$$

Q : マグサに生じる最大せん断力(N)

◀	:評価対象部位に作用する荷重
1222	:評価対象部位

図 4-15 マグサに作用する荷重の例

4.5.2 断面検定

各部材に生じる応力より算定する応力度等が,許容限界を下回ることを確認する。なお, 異なる荷重が同時に作用する部材については,組合せを考慮する。

- (1) ヒンジ部
 - a. ヒンジ板

ヒンジ板に生じる曲げ応力度及びせん断応力度から,組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 -許容応力度設計法-」に基づく次式により算定し,ヒンジ 板の短期許容応力度を下回ることを確認する。

$$\mathbf{x} = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

ここで,

x : 組合せ応力度(N/mm²)

- $\sigma = M / Z$
- σ : ヒンジ板に生じる曲げ応力度(N/mm²)
- M : ヒンジ板に生じる曲げモーメント(N·mm)
- Z : ヒンジ板の断面係数(mm³)

$\tau = Q \diagup A_s$

- τ : ヒンジ板に生じるせん断応力度(N/mm²)
- Q : ヒンジ板に生じるせん断力(N)
- A_s: ヒンジ板のせん断断面積(mm²)

b. ヒンジピン

ヒンジピンに生じる曲げ応力度とせん断応力度から,組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 -許容応力度設計法-」に基づく次式により算定し,ヒンジ ピンの短期許容応力度を下回ることを確認する。

$$x = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

ここで,

- x : 組合せ応力度(N/mm²)
- $\sigma = M / Z$
- σ : ヒンジピンに生じる曲げ応力度(N/mm²)
- M : ヒンジピンに生じる曲げモーメント(N·mm)
- Z : ヒンジピンの断面係数(mm³)
- $\tau = Q \angle A_s$
- τ : ヒンジピンに生じるせん断応力度(N/mm²)
- Q : ヒンジピンに生じるせん断力(N)
- A_s: ヒンジピンのせん断断面積(mm²)
- c. ヒンジボルト

ヒンジボルトに生じるせん断応力度を次式により算定し,ヒンジボルトの短期許容応 力度を下回ることを確認する。

 $\tau = Q \swarrow A_s$

- τ : ヒンジボルトに生じる最大せん断応力度(N/mm²)
- Q : ヒンジボルトに生じる最大せん断力(N)
- A_s:ヒンジボルトのせん断断面積(mm²)

- (2) カンヌキ部
 - a. カンヌキ

カンヌキに生じる曲げ応力度及びせん断応力度から、組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 -許容応力度設計法-」に基づく次式により算定し、カンヌ キの短期許容応力度を下回ることを確認する。

$$x = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

ここで,

- x : 組合せ応力度(N/mm²)
- $\sigma = M \angle Z$
- σ : カンヌキに生じる最大曲げ応力度(N/mm²)
- M : カンヌキに生じる最大曲げモーメント(N·mm)
- Z : カンヌキの断面係数(mm³)

 $\tau = Q \angle A_s$

- τ : カンヌキに生じる最大せん断応力度(N/mm²)
- Q : カンヌキに生じる最大せん断力(N)
- A_s: カンヌキのせん断断面積(mm²)
- b. カンヌキ受けピン

カンヌキ受けピンに生じる曲げ応力度及びせん断応力度を次式により算定し,カンヌ キ受けピンの短期許容応力度を下回ることを確認する。

 $\sigma = M \diagup Z$

$\tau = Q / A_s$

- σ : カンヌキ受けピンに生じる最大曲げ応力度(N/mm²)
- M : カンヌキ受けピンに生じる最大曲げモーメント(N·mm)
- Z : カンヌキ受けピンの断面係数(mm³)
- τ : カンヌキ受けピンに生じる最大せん断応力度(N/mm²)
- Q : カンヌキ受けピンに生じる最大せん断力(N)
- A_s:カンヌキ受けピンのせん断断面積(mm²)

c. カンヌキ受けボルト及びパネル取付ボルト

カンヌキ受けボルト及びパネル取付ボルトに生じる引張応力度を次式により算定し, カンヌキ受けボルト及びパネル取付ボルトの短期許容応力度を下回ることを確認する。

 $\sigma_t = T \swarrow A$

ここで,

- σ_t:カンヌキ受けボルト又はパネル取付ボルトに生じる最大引張応力度(N/mm²)
- T : カンヌキ受けボルト又はパネル取付ボルトに生じる最大引張力(N)

```
A : カンヌキ受けボルト又はパネル取付ボルトの断面積(mm<sup>2</sup>)
```

(3) アンカーボルト

アンカーボルト1本当たりに生じる引張力及びせん断力を次式により算定し,アンカー ボルトの許容荷重を下回ることを確認する。また,引張力とせん断力が同時に作用する場 合は,組合せ応力を「日本建築学会 2010年 各種合成構造設計指針・同解説」に基づく 次式により算定し,アンカーボルトの許容荷重を下回ることを確認する。

 $(\mathbf{Q}_{d} \neq \mathbf{Q}_{a}) \leq 1.0$

$$(T_{d} / T_{a})^{2} + (Q_{d} / Q_{a})^{2} \leq 1.0$$

ここで,

 $T_{d} = F_{1a} / (n_{b3} / 2)$

- T_d:転倒力によるアンカーボルト1本当たりに生じる引張力(N)
- F₁a: 扉と扉枠の重量を含んだ転倒力(N)
- n_{b3}:ヒンジ側アンカーボルトの本数

 $Q_{d1} = F_{1a} / (n_{b3} / 2)$ $Q_{d1} : 転倒力によるアンカーボルト1本当たりに生じるせん断力(N)$

 $Q_{d2} = W_{1a} / n_{b3}$ $Q_{d2} : スラスト荷重によるアンカーボルト1本当たりに生じるせん断力(N)$ $W_{1a} : 扉と扉枠の重量を含んだスラスト荷重(N)$

 $Q_{d} = \int (Q_{d1}^{2} + Q_{d2}^{2})$ Q_{d} : アンカーボルト1本当たりに生じるせん断力(N) T_{a} : アンカーボルト1本当たりの短期許容引張力(N) Q_{a} : アンカーボルト1本当たりの短期許容せん断力(N) (4) 方立

方立に生じる曲げ応力度及びせん断応力度を次式により算定し,方立の短期許容応力度 を下回ることを確認する。

$$\sigma = M \not Z$$

$$\tau = Q \not A_s$$

ここで,

- σ : 方立に生じる最大曲げ応力度(N/mm²)
- M : 方立に生じる最大曲げモーメント(N・mm)
- Z : 方立の断面係数(mm³)
- τ : 方立に生じる最大せん断応力度(N/mm²)
- Q : 方立に生じる最大せん断力(N)
- A_s: 方立のせん断断面積(mm²)
- (5) マグサ

マグサに生じる曲げ応力度及びせん断応力度を次式により算定し,マグサの短期許容応 力度を下回ることを確認する。

$$\sigma = M / Z$$

$$\tau = Q / A_s$$

- σ : マグサに生じる最大曲げ応力度(N/mm²)
- M :マグサに生じる最大曲げモーメント(N・mm)
- Z : マグサの断面係数(mm³)
- τ : マグサに生じる最大せん断応力度(N/mm²)
- Q :マグサに生じる最大せん断力(N)
- A_s:マグサのせん断断面積(mm²)

4.6 評価条件

「4.5 評価方法」に用いる評価条件を表 4-5 に示す。

対象部位		単位	定義	水密扉 No.
		1 1		1
		kN	扉重量	7.35
	k $_{\rm H}$	—	水平震度	1.11
	$k_{\rm UD}$		鉛直震度	0.73
共通	L ₁	mm	扉重心とヒンジ芯間距離	575
	L $_2$	mm	ヒンジ芯間距離	1704
		Ν	スラスト荷重	12720
		Ν	転倒力	8372
	L ₃	mm	ヒンジ板の2軸間距離	220
ヒンジ板	σ	N/mm^2	曲げ応力度	66
	τ	N/mm^2	せん断応力度	4
ヒンジピン	L ₄	mm	ヒンジ板と受材間距離	31
	σ	N/mm^2	曲げ応力度	170
	τ	N/mm^2	せん断応力度	18
ヒンジ	n 1	本	ヒンジボルトの本数	4
ボルト	τ	N/mm^2	せん断応力度	46
共通	n ₂	本	カンヌキの本数	4
	L ₅	mm	カンヌキの突出長さ	68.5
カンヌキ	σ	N/mm^2	曲げ応力度	12
	τ	N/mm^2	せん断応力度	2
カンフキ	L p	mm	カンヌキ受けピンの軸支持間距離	62
	σ	N/mm^2	曲げ応力度	12
又りレン	τ	N/mm^2	せん断応力度	2
カンヌキ	n _b	本	カンヌキ受けボルトの本数	2
受けボルト	$\sigma_{\rm t}$	N/mm^2	引張応力度	5
	 共通 ヒンジピン ヒンジピン ヒンジピン カンジレト カンヌキ カンマキ カンマキ カンマキ 	G k H k UD L 1 L 2 W1 L 2 W1 F 1 L 3 F 1 J 2 W1 F 2 W1 F 1 J 2 W1 F 2 M1 T J 2 M1 T J 2 J 2 J 2 J 2 J 2 J 2 J 2 J 2 J 2 J 3 J 3 J 3 J 3 J 4 J 3 J 4 J 5 J 5 J 5 J 5 J 5 J 5 </td <td>ハハハGk Nk H$$$k_{UD}$$$$k_{UD}$$$$k_{UD}$$$$L_1$$mm$$L_2$$mm$$L_2$$mm$$L_2$$mm$$K_{UD}$$N$$L_1$$mm$$L_2$$mm$$L_2$$mm$$L_2$$mm$$L_2$$mm$$L_2$$mm$$\Gamma$$N/mm^2$$\sigma$$N/mm^2$$\tau$$N/mm^2$$\tau$$n_1$$\pi$$\tau$$\pi$$n_1$$\pi$$\pi$$\pi$$n_2$$\pi$$n_1$$\pi$$\pi$$\pi$$n_2$$\pi$$n_1$$\pi$$\pi$$\pi$$n_2$$\pi$$n_2$$\pi$$n_1$$\pi$$\pi$$\pi$$n_2$$\pi$$n_2$$\pi$$n_1$$\pi$$\pi$$\pi$$n_2$$\pi$$n_1$$\pi$$\pi$$\pi$$n_1$$\pi$$\pi$$\pi$$n_1$$\pi$$\pi$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$$n_1$$\pi$<!--</td--><td>内 内 原重量 k H 一 水平震度 k H 一 水平震度 k UD 一 鈴直震度 L 1 mm 扉重心とヒンジ芯間距離 L2 mm ヒンジ芯間距離 W1 N スラスト荷重 F1 N 転倒力 た2 mm ヒンジ芯板の2軸間距離 ビンジ板 G N/m2 比3 mm ヒンジ板の2軸間距離 ビンジ板 G N/m2 比3 mm ヒンジ板の2軸間距離 ビンジ板 G N/m2 ビム M ビンジ板と受材間距離 ビンジビジ G N/m2 世人断応力度 て N/m2 世人断応力度 ボルト て N/m2 世人断応力度 ガンスキ ク カンスキの突出長さ ガンスキ フ メンスキの突出長さ ガンスキ ク カンスキの突出長さ ガンスキ グ シンスキ受けビンの軸支持問距離</td></td>	ハハハG k N k H $$ k_{UD} $$ k_{UD} $$ k_{UD} $$ L_1 mm L_2 mm L_2 mm L_2 mm K_{UD} N L_1 mm L_2 mm L_2 mm L_2 mm L_2 mm L_2 mm Γ N/mm^2 σ N/mm^2 τ N/mm^2 τ n_1 π τ π n_1 π π π n_2 π n_1 π π π n_2 π n_1 π π π n_2 π n_2 π n_1 π π π n_2 π n_2 π n_1 π π π n_2 π n_1 π π π n_1 π π π n_1 π π π n_1 π </td <td>内 内 原重量 k H 一 水平震度 k H 一 水平震度 k UD 一 鈴直震度 L 1 mm 扉重心とヒンジ芯間距離 L2 mm ヒンジ芯間距離 W1 N スラスト荷重 F1 N 転倒力 た2 mm ヒンジ芯板の2軸間距離 ビンジ板 G N/m2 比3 mm ヒンジ板の2軸間距離 ビンジ板 G N/m2 比3 mm ヒンジ板の2軸間距離 ビンジ板 G N/m2 ビム M ビンジ板と受材間距離 ビンジビジ G N/m2 世人断応力度 て N/m2 世人断応力度 ボルト て N/m2 世人断応力度 ガンスキ ク カンスキの突出長さ ガンスキ フ メンスキの突出長さ ガンスキ ク カンスキの突出長さ ガンスキ グ シンスキ受けビンの軸支持問距離</td>	内 内 原重量 k H 一 水平震度 k H 一 水平震度 k UD 一 鈴直震度 L 1 mm 扉重心とヒンジ芯間距離 L2 mm ヒンジ芯間距離 W1 N スラスト荷重 F1 N 転倒力 た2 mm ヒンジ芯板の2軸間距離 ビンジ板 G N/m2 比3 mm ヒンジ板の2軸間距離 ビンジ板 G N/m2 比3 mm ヒンジ板の2軸間距離 ビンジ板 G N/m2 ビム M ビンジ板と受材間距離 ビンジビジ G N/m2 世人断応力度 て N/m2 世人断応力度 ボルト て N/m2 世人断応力度 ガンスキ ク カンスキの突出長さ ガンスキ フ メンスキの突出長さ ガンスキ ク カンスキの突出長さ ガンスキ グ シンスキ受けビンの軸支持問距離

表 4-5 耐震評価に用いる評価条件(1/8)

			衣 4-5	Ⅰ 晨評価に用いる評価余件(2/8)	
计色点	対象部位		単位	定義	水密扉 No.
对家部位		記号	中位	<u></u> 仁我	1
		W a	kN	扉枠の重量	2.45
		n ₃	本	ヒンジ側アンカーボルトの本数	7
アンカー	ギルト	T _d	Ν	アンカーボルト1本当たりに生じる引張力	2781
) >),-		Q_{d}	Ν	アンカーボルト1本当たりに生じるせん断力	3497
		T a	Ν	アンカーボルト1本当たりの短期許容引張力	37957
		Q a	Ν	アンカーボルト1本当たりの短期許容せん断力	12824
	芯材	L	СШ	梁長さ	106.0
		Е	kgf/cm^2	ヤング率	2.09 $\times 10^{6}$
		Ι	Cm ⁴	断面二次モーメント	1380
		γm	kg/cm	質量分布	2.48
固有		t	ст	扉板厚さ	—
振動数		а	ст	2 隣辺の長さ(扉の幅)	
		b	СШ	2 隣辺の長さ(扉の高さ)	
	扉板	Е	kgf/cm ²	ヤング率	—
		γ	kg/cm ³	単位体積の重さ	—
		ν		ポアソン比	

表 4-5 耐震評価に用いる評価条件(2/8)

	対象部位 記号		単位	定義	水密扉 No.	
		G	kN	扉自重	23. 54	
		k _H		水平震度	1.77	
		k _{UD}		鉛直震度	1.30	
	共通	L ₁	mm	扉重心とヒンジ芯間距離	762.5	
		L ₂	mm	ヒンジ芯間距離	1665	
		W_1	Ν	スラスト荷重	54140	
		F 1	Ν	転倒力	45630	
		L ₃	mm	ヒンジ板の2軸間距離	220	
	ヒンジ板	σ	N/mm^2	曲げ応力度	105	
		τ	N/mm^2	せん断応力度	7	
ヒン	ヒンジピン	L ₄	mm	ヒンジ板と受材間距離	41	
ヒンジ 部		σ	N/mm^2	曲げ応力度	45	
니디		τ	N/mm^2	せん断応力度	9	
	ヒンジ	n 1	本	ヒンジボルトの本数	4	
	ボルト	τ	N/mm^2	せん断応力度	42	
	共通	n ₂	本	カンヌキの本数	4	
		L ₅	mm	カンヌキの突出長さ	114.5	
	カンヌキ	σ	N/mm^2	曲げ応力度	98	
カ		τ	N/mm^2	せん断応力度	6	
ンヌ	1	L p	mm	カンヌキ受けピンの軸支持間距離	72	
ヌキ部	カンヌキ	σ	N/mm^2	曲げ応力度	123	
	受けピン	τ	N/mm^2	せん断応力度	11	
	カンヌキ	n _b	本	カンヌキ受けボルトの本数	2	
	受けボルト	σ _t	N/mm^2	引張応力度	34	

表 4-5 耐震評価に用いる評価条件(3/8)

			衣 4-5		
対象部位 記号		単位	定義	水密扉 No.	
			<u>++-</u> <u>17</u>		9
		W a	kN	扉枠の重量	19.61
		n ₃	本	ヒンジ側アンカーボルトの本数	12
アンカーズ	ビルト	T _d	Ν	アンカーボルト1本当たりに生じる引張力	10500
		Q_{d}	Ν	アンカーボルト1本当たりに生じるせん断力	12290
		T _a	Ν	アンカーボルト1本当たりの短期許容引張力	40463
		Q a	Ν	アンカーボルト1本当たりの短期許容せん断力	40302
	芯材	L	ст	梁長さ	134.5
		Е	kgf/cm^2	ヤング率	2.09 $\times 10^{6}$
		Ι	CIII ⁴	断面二次モーメント	618.5
		γm	kg/cm	質量分布	1.62
固有		t	ст	扉板厚さ	—
振動数		а	ст	2 隣辺の長さ(扉の幅)	
	扉板	b	сш	2 隣辺の長さ(扉の高さ)	
	月戶11火	E	kgf/cm^2	ヤング率	
		γ	kg/cm^3	単位体積の重さ	
		ν	_	ポアソン比	

表 4-5 耐震評価に用いる評価条件(4/8)

表 4-3						
:	対象部位	記号	単位	定義	水密扉 No.	
一一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		ЦСТО	1 1		10	
		G	kN	扉自重	259.2	
		k _H	—	水平震度	1.77	
		k _{UD}	—	鉛直震度	1.30	
	共通	L ₁	mm	扉重心とヒンジ芯間距離	2910	
		L ₂	mm	ヒンジ芯間距離	4012	
		W_1	Ν	スラスト荷重	596200	
		F 1	Ν	転倒力	661800	
		L ₃	mm	ヒンジ板の2軸間距離	850	
	ヒンジ板	σ	N/mm^2	曲げ応力度	61	
		τ	N/mm^2	せん断応力度	6	
ヒン	ヒンジピン	L ₄	mm	ヒンジ板と受材間距離	69	
ヒンジ部		σ	N/mm^2	曲げ応力度	80	
ЧЦ		τ	N/mm^2	せん断応力度	27	
	ヒンジ	n 1	本	ヒンジボルトの本数	8	
	ボルト	τ	N/mm^2	せん断応力度	199	
	共通	n ₂	本	カンヌキの本数	8	
		L ₅	mm	カンヌキの突出長さ	176	
	カンヌキ	σ	N/mm^2	曲げ応力度	141	
カン		τ	N/mm^2	せん断応力度	10	
ンヌキ	カンフナ	L p	mm	カンヌキ受けピンの軸支持間距離	110	
キ部	カンヌキ 受けピン	σ	N/mm^2	曲げ応力度	75	
	マリレイ	τ	N/mm^2	せん断応力度	11	
	カンヌキ	n _b	本	カンヌキ受けボルトの本数	_	
	受けボルト	σ _t	N/mm^2	引張応力度	—	

表 4-5 耐震評価に用いる評価条件(5/8)

衣 4-5 脳 辰 計 恤 に 用 い る 計 恤 余 件 (0/ 8)						
対象部位		記号	単位	定義	水密扉 No.	
		цс /J			10	
		W a	kN	扉枠の重量	32.36	
		n ₃	本	ヒンジ側アンカーボルトの本数	33	
アンカー	ポルト	T _d	Ν	アンカーボルト1本当たりに生じる引張力	41840	
) >),-	1171 F	Q_{d}	Ν	アンカーボルト1本当たりに生じるせん断力	46030	
			Ν	アンカーボルト1本当たりの短期許容引張力	131835	
		Q a	Ν	アンカーボルト1本当たりの短期許容せん断力	92284	
		L	СШ	梁長さ	460.0	
	芯材	Е	kgf/cm^2	ヤング率	2.09 $\times 10^{6}$	
		Ι	cm ⁴	断面二次モーメント	119000	
		γm	kg/cm	質量分布	17.50	
固有		t	ст	扉板厚さ	—	
振動数		а	ст	2 隣辺の長さ(扉の幅)	—	
	=+c	b	ст	2隣辺の長さ(扉の高さ)	—	
	扉板	Е	kgf/cm^2	ヤング率		
		γ	kg/cm ³	単位体積の重さ	_	
		ν		ポアソン比		

表 4-5 耐震評価に用いる評価条件(6/8)

対象部位 訴		記号	単位	定義	水密扉 No. 12	
			1 M	百万金		
		G	kN	扉自重	<mark>8. 34</mark>	
		k _H	—	水平震度	1.77	
		k _{UD}	—	鉛直震度	1.30	
	共通	L 1	mm	扉重心とヒンジ芯間距離	592.5	
		L ₂	mm	ヒンジ芯間距離	1576	
		W_1	Ν	スラスト荷重	<mark>19180</mark>	
		F 1	Ν	転倒力	<mark>14590</mark>	
		L ₃	mm	ヒンジ板の2軸間距離	190	
	ヒンジ板	σ	N/mm^2	曲げ応力度	64	
		τ	N/mm^2	せん断応力度	4	
ヒ	ヒンジピン	L ₄	mm	ヒンジ板と受材間距離	35.5	
ヒンジ部		σ	N/mm^2	曲げ応力度	62	
니다		τ	N/mm^2	せん断応力度	8	
	ヒンジ	n 1	本	ヒンジボルトの本数	4	
	ボルト	τ	N/mm^2	せん断応力度	33	
	共通	n ₂	本	カンヌキの本数	4	
		L ₅	mm	カンヌキの突出長さ	91	
	カンヌキ	σ	N/mm^2	曲げ応力度	28	
カ		τ	N/mm^2	せん断応力度	2	
ンヌキ		L p	mm	カンヌキ受けピンの軸支持間距離	72	
キ 部	カンヌキ	σ	N/mm^2	曲げ応力度	44	
	受けピン	τ	N/mm^2	せん断応力度	4	
	カンヌキ	n _b	本	カンヌキ受けボルトの本数	2	
	受けボルト	σ _t	N/mm^2	引張応力度	12	

表 4-5 耐震評価に用いる評価条件(7/8)

			衣 4-5	辰 評 に 用 い る 評 采 件 (8/8)	
対象部位		記号	単位	定義	水密扉 No.
					12
		W a	kN	扉枠の重量	17.65
		n ₃	本	ヒンジ側アンカーボルトの本数	12
7	ンカーボルト	T _d	Ν	アンカーボルト1本当たりに生じる引張力	<mark>5035</mark>
		Q_{d}	Ν	アンカーボルト1本当たりに生じるせん断力	<mark>6015</mark>
		T a	Ν	アンカーボルト1本当たりの短期許容引張力	26928
		Q a	N	アンカーボルト1本当たりの短期許容せん断力	25826
,	パネル取付	n _b	本	パネル取付ボルトの本数	10
	ボルト	σ _t	N/mm^2	引張応力度	3
		L	mm	方立の支持間距離	2225.5
	方立	σ	N/mm^2	曲げ応力度	40
		τ	N/mm^2	せん断応力度	2
		L	mm	マグサの支持間距離	2145
	マグサ	σ	N/mm^2	曲げ応力度	22
		τ	N/mm^2	せん断応力度	1
		L	CM	梁長さ	105.0
	扉板	Е	kgf/cm^2	ヤング率	2.09×10^{6}
	(開放)	Ι	Cm ⁴	断面二次モーメント	557.1
固		γm	kg/cm	質量分布	8.10
有振		t	CM	扉板厚さ	3.2
版 動		а	CM	2 隣辺の長さ(扉の幅)	105.0
勤数	扉板	b	CM	2 隣辺の長さ(扉の高さ)	204.0
女义	(閉止)	Е	kgf/cm^2	ヤング率	2.09 $\times 10^{6}$
		γ	kg/cm ³	単位体積の重さ	0.012
		ν		ポアソン比	0.3

表 4-5 耐震評価に用いる評価条件(8/8)

5. 評価結果

水密扉の評価結果を表 5-1 に示す。各部材の断面検定を行った結果,すべての水密扉において,発生応力度又は荷重が許容限界を下回る。

		~~~	)-1 計Ш船未(1/2)		[	
水密扉 No.		評価対象部位	発生値 (応力度,荷重) (N/mm ² ,N)	許容限 <mark>界</mark> (N/mm ² , N)	発生値/ 許容限 <mark>界</mark>	備考
	ヒンジ	ヒンジ板*1	67	235	0.29	組合せ
	ロンン部	ヒンジピン*1	173	345	0.51	組合せ
	이귝	ヒンジボルト	46	420	0.11	せん断
1	4.1	カンヌキ*1	13	205	0.07	組合せ
	カン ヌキ部	カンヌキ受けピン* ²	12	345	0.04	曲げ
	メイ部	カンヌキ受けボルト	5	728	0.01	引張
	ア	ンカーボルト*3	3497	12824	0.28	せん断
		ヒンジ板*1	106	215	0.50	組合せ
	ヒンジ 部	ヒンジピン*1	48	686	0.07	組合せ
		ヒンジボルト	42	420	0.10	せん断
9	カン ヌキ部	カンヌキ*1	99	205	0.49	組合せ
		カンヌキ受けピン* ²	123	345	0.36	曲げ
		カンヌキ受けボルト	34	854	0.04	引張
	ア	ンカーボルト*3	12290	40302	0.31	せん断
	ヒンジ	ヒンジ板*1	62	215	0.29	組合せ
	ロンン部	ヒンジピン*1	93	345	0.27	組合せ
	이귝	ヒンジボルト	199	420	0.48	せん断
10	+)/	カンヌキ*1	143	345	0.42	組合せ
	カンコキが	カンヌキ受けピン* ²	75	345	0.22	曲げ
	ヌキ部	カンヌキ受けボルト			_	
	P	ンカーボルト*3	46030	92284	0.50	せん断

表 5-1 評価結果(1/2)

注記*1:曲げ,せん断及び組合せのうち,評価結果が最も厳しい値を記載する。

*2:曲げ及びせん断のうち、評価結果が厳しい方の値を記載する。

*3:引張, せん断及び組合せのうち, 評価結果が最も厳しい値を記載する。

水密扉 No.		評価対象部位	発生値 (応力度,荷重) (N/mm ² , N)	許容限 <mark>界</mark> (N/mm ² , N)	発生値/ 許容限 <mark>界</mark>	備考				
	ヒンジ	ヒンジ板*1	65	215	0.31	組合せ				
	ロンショ	ヒンジピン*1	64	686	0.10	組合せ				
	미	ヒンジボルト	33	493	0.07	せん断				
	カン ヌキ部	カンヌキ*1	29	205	0.15	組合せ				
10		-				カンヌキ受けピン* ²	44	345	0.13	曲げ
12		カンヌキ受けボルト	12	854	0.02	引張				
	パ	ネル取付ボルト	3	854	0.01	引張				
		方立	40	235	0.18	曲げ				
		マグサ	22	235	0.10	曲げ				
	ア	ンカーボルト*3	<mark>6015</mark>	25826	0.24	せん断				

表 5-1 評価結果(2/2)

注記*1:曲げ,せん断及び組合せのうち,評価結果が最も厳しい値を記載する。

*2:曲げ及びせん断のうち,評価結果が厳しい方の値を記載する。

*3: 引張, せん断及び組合せのうち, 評価結果が最も厳しい値を記載する。