女川原子力発電所第2号機 工事計画審査資料	
資料番号	02 －工－B－19－0186＿改 1
提出年月日	2021 年 9 月 7 日

VI－2－別添 2－4 循環水系隔離システムの耐震性についての計算書
1．循環水系隔離システム（N71－LE041A，B，C） 1
1.1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．3 固有周期 3
1．4 構造強度評価 3
1．4．1 構造強度評価方法 3
1．4．2 荷重の組合せ及び許容応力 3
1．4．3 計算条件 3
1.5 機能維持評価 6
1．5．1 電気的機能維持評価方法 6
1． 6 評価結果 7
1．6．1 設計基準対象施設としての評価結果 7
2．循環水系隔離システム（N71－LE043A，B，C） 11
2.1 概要 11
2.2 一般事項 11
2．2．1 構造計画 11
2． 3 固有周期 13
2.4 構造強度評価 13
2．4．1 構造強度評価方法 13
2．4．2 荷重の組合せ及び許容応力 13
2．4．3 計算条件 13
2.5 機能維持評価 16
2．5．1 電気的機能維持評価方法 16
2.6 評価結果 17
2．6．1 設計基準対象施設としての評価結果 17

1．循環水系隔離システム（N71－LE041A，B，C）

1.1 概要

本計算書は，添付書類「VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針」にて設定し ている構造強度及び機能維持の設計方針に基づき，循環水系隔離システム（N71－LE041A，B，C） が基準地震動 S s に対して十分な構造強度及び電気的機能を有していることを説明するもので ある。

循環水系隔離システム（N71－LE041A，B，C）は，設計基準対象施設においてはCクラス施設 に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，循環水系隔離システム（N71－LE041A，B，C）が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションと類似 の構造であるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成 の基本方針」に基づき評価を実施する。

構造強度評価については，計器スタンションの基礎ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで計器スタンションが剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表とし て評価する。

評価対象を表1－1に示す。
表 1－1 概略構造識別

評価部位	評価方法	構造計画
N71－LE041A（代表）	VI－2－1－13－9 計器スタンシ	
N71－LE041B	ョンの耐震性についての計算	表 $1-2$
N71－LE041C 構造計画		

1．2 一般事項

1．2．1 構造計画

循環水系隔離システム（N71－LE041A）の構造計画を表 1－2 に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，取付板に固定され，取付板は，取付板取付ボルトにより計器 スタンションに固定され る。 計器スタンションは，基礎に基礎ボルトで設置 する。	電極式水位検出器 （壁面に設置された計器スタンションに検出器を取付板取付ボルト により固定する構造）	【循環水系隔離システム（N71－LE041A）】 上面 計器スタンション （単位：mm）

1．3 固有周期

循環水系隔離システム（N71－LE041A）が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンション（打振試験）の測定結果から固有周期は 0.05 秒以下であり，剛であることを確認した。固有周期を表1－3に示す。

表 1－3 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

1．4 構造強度評価

1．4．1 構造強度評価方法

循環水系隔離システム（N71－LE041A）の構造強度評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

1．4．2 荷重の組合せ及び許容応力
1．4．2．1 荷重の組合せ及び許容応力状態
循環水系隔離システム（N71－LE041A）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 1－4に示す。

1．4．2．2 許容応力

循環水系隔離システム（N71－LE041A）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－5 のとおりとする。

1．4．2．3 使用材料の許容応力評価条件

循環水系隔離システム（N71－LE041A）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表1－6に示す。

1．4．3 計算条件

応力計算に用いる計算条件は，本計算書の【循環水系隔離システム（N71－LE041A） の耐震性についての計算結果】の設計条件及び機器要目に示す。
表 1－4 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
その他発電用原子炉の附属施設	浸水防護施設	循環水系隔離システム （N71－LE041A）	C	—＊	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
O 2 （4）VI－2－別添2－4 R 2
表 1－5 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}^{*}$	$1.5 \cdot \mathrm{f}^{*}$＊

注記 $~ 1 ~: ~$ 応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
表 1－6 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S y (MPa)	$\mathrm{S} u$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	50	211	394

1.5 機能維持評価

1．5．1 電気的機能維持評価方法
循環水系隔離システム（N71－LE041A）の電気的機能維持評価について，以下に示す。電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき評価する。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－別添2－1溢水防護に係る施設の耐震計算の方針」に基づき，同形式の検出器単体の正弦波加振試験 において，電気的機能の健全性を確認した器具の最大加速度を適用する。

機能確認済加速度を表1－7に示す。

評価部位	方向	機能確認済加速度
循環水系隔離システム $($ N71－LE041A）	水平方向	
	鉛直方向	

1.6 評価結果

1．6．1 設計基準対象施設としての評価結果
循環水系隔離システム（N71－LE041A）の設計基準対象施設としての耐震評価結果を以下 に示す。発生値は許容限界を満足しており，基準地震動 S s に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度	
循環水系隔離システム （N71－LE041A）	C	$\begin{gathered} \text { タービン建屋 } \\ \text { 0.P. P. } 80 \\ \text { (0. P. } \left.7.60^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.67$	$\mathrm{C}_{\mathrm{V}}=0.89$	50

注記＊：基準床レベルを示す。
1.2 機器要目

部 材	m $(\mathrm{~kg})$	h_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{a} (mm)	ℓ_{b} (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	n_{fV}	n_{fH}
基礎ボルト		260				4	2	2		

部 材	$\underset{(\mathrm{MPa}}{\mathrm{y}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向＊1	
					弾性設計用地震動 S d 又 は静的震度	基準地震動 S s
基礎ボルト	211	394	－	253	－	水平方向
注記 $* 1:$ 水平，鉛直方向のうち，評価の厳しい方向を示す。						

$$
1.3 \text { 計算数値 }
$$

1．3．1 ボルトに作用する力			（単位：N）	
	F_{b}		Q_{b}	
部材	弾性設計用 地震動 S d 又は静的震度	基準地震動S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1.4 結論1.4 .1 ボルトの応力						
						（単位：MPa）
部材	材料	応力	弾性設計用地震動 S d 又 は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=7$	$f_{\mathrm{ts}}=152 *$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$f_{\text {s b }}=117$

注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出。
すべて許容応力以下である。

1.4 .2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
$\begin{array}{c}\text { 循環水系隔離システム } \\ \text {（N71－LE041A）}\end{array}$	水平方向	1.39	
	鉛直方向	0.75	

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (4) VI-2-別添 2-4 R } 2
$$

2．循環水系隔離システム（N71－LE043A，B，C）

2.1 概要

本計算書は，添付書類「VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針」にて設定し ている構造強度及び機能維持の設計方針に基づき，循環水系隔離システム（N71－LE043A，B，C） が基準地震動 S s に対して十分な構造強度及び電気的機能を有していることを説明するもので ある。

循環水系隔離システム（N71－LE043A，B，C）は設計基準対象施設においてはCクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，循環水系隔離システム（N71－LE043A，B，C）が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計器スタンションと類似 の構造であるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成 の基本方針」に基づき評価を実施する。

構造強度評価については，計器スタンションの基礎ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで計器スタンションが剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表とし て評価する。

評価対象を表2－1に示す。
表 2－1 概略構造識別

評価部位	評価方法	構造計画
N71－LE043A（代表）	VI－2－1－13－9 計器スタンシ	
N71－LE043B	ヨンの耐震性についての計算	表2－2
構造計画		
N71－LE043C	書作成の基本方針	

2． 2 一般事項

2．2．1 構造計画

循環水系隔離システム（N71－LE043A）の構造計画を表 2－2 に示す。

2． 3 固有周期

循環水系隔離システム（N71－LE043A）が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンション（打振試験）の測定結果から固有周期は 0.05 秒以下であり，剛であることを確認した。固有周期を表2－3に示す。

表 2－3 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

2.4 構造強度評価

2．4．1 構造強度評価方法
循環水系隔離システム（N71－LE043A）の構造強度評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

2．4．2 荷重の組合せ及び許容応力

2．4．2．1 荷重の組合せ及び許容応力状態
循環水系隔離システム（N71－LE043A）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 2－4に示す。

2．4．2．2 許容応力

循環水系隔離システム（N71－LE043A）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 $2-5$ のとおりとする。

2．4．2．3 使用材料の許容応力評価条件
循環水系隔離システム（N71－LE043A）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 2－6に示す。

2．4．3 計算条件

応力計算に用いる計算条件は，本計算書の【循環水系隔離システム（N71－LE043A） の耐震性についての計算結果】の設計条件及び機器要目に示す。
表 2－4 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
その他発電用原子炉の附属施設	浸水防護 施設	循環水系隔離システム （N71－LE043A）	C	—＊	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
O 2 （4）VI－2－別添 2－4 R 2
表 2－5 許容応力（その他の支持構造物）

許容応力状態	許容限界 ${ }^{* 1, ~ * 2 ~}$ （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}^{*}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2－6 使用材料の許容応力評価条件（設計基準対象施設）						
評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \text { y } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} \text { u } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	211	394	－

2.5 機能維持評価

2．5．1 電気的機能維持評価方法
循環水系隔離システム（N71－LE043A）の電気的機能維持評価について，以下に示す。電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき評価する。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－別添2－1溢水防護に係る施設の耐震計算の方針」に基づき，同形式の検出器単体の正弦波加振試験 において，電気的機能の健全性を確認した器具の最大加速度を適用する。

機能確認済加速度を表2－7に示す。

表 2－7 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
循環水系隔離システム $(\mathrm{N} 71-\mathrm{LE} 043 \mathrm{~A})$	水平方向	
	鉛直方向	

[^0]
2． 6 評価結果

2．6．1 設計基準対象施設としての評価結果
循環水系隔離システム（N71－LE043A）の設計基準対象施設としての耐震評価結果を以下 に示す。発生値は許容限界を満足しており，基準地震動 S s に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
【循環水系隔離システム（N71－LE043A）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度	
循環水系隔離システム （N71－LE043A）	C	$\begin{gathered} \text { タービン建屋 } \\ \text { O.P. O. } 80^{*} \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.14$	$\mathrm{C}_{\mathrm{v}}=0.71$	50

注記＊：基準床レベルを示す。

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{gathered} \mathrm{h}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{\substack{\ell_{1} * 1 \\(\mathrm{~mm})}}{ }$	$\underset{(\mathrm{mm})}{\ell_{2} * 1}$	$\underset{(\mathrm{mm})}{\mathrm{d}}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{b}}}$	n	$\mathrm{n} \mathrm{f}^{* 1}$
基礎ボルト		225					4	2
								2

部 材	$\underset{(\mathrm{MPa}}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向＊2	
					弾性設計用地震動 S d 又 は静的震度	基準地震動 S s
基礎ボルト	211	394	－	253	－	前後方向

注記 $* 1$ ：各ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，

機器名称

1.2 機器要目

$$
1.3 \text { 計算数値 }
$$

1．3．1 ボルトに作用する力			（単位：N）	
	F_{b}		Q b	
部 材	弾性設計用地震動 Sd又は静的震度	基準地震動S s	弹性設計用地震動 Sd又は静的震度	基準地震動S s
基礎ボルト	－		－	

機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

正面

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

