本資料のらち，枠囲みの内容は商業機密の観点から公開できません。

女川原子力発電所第 2 号機 工事計画審査資料	
資料番号	02 －工－B－01－0036＿改 0
提出年月日	2021 年 8 月 24 日

VI－1－1－1－1 発電用原子炉設置変更許可申請書「本文（五号）」との整合性

2021年8月

東北電力株式会社
頁
1．概要 1
2．基本方針 1
3．記載の基本事項 1
4．発電用原子炉の設置の許可との整合性 2
五 発電用原子炉及びその附属施設の位置，構造及び設備
イ 発電用原子炉施設の位置
（1）敷地の面積及び形状 イ－1
（2）敷地内における主要な発電用原子炉施設の位置 イ－7
ロ 発電用原子炉施設の一般構造
（1）耐震構造 ロ－1（i）設計基準対象施設の耐震設計（ii）重大事故等対処施設の耐震設計
（2）耐津波構造 ロ－62
（i）設計基準対象施設の耐津波設計
（ii）重大事故等対処施設の耐津波設計
（3）その他の主要な構造 ロ－86
（i）a．設計基準対象施設
b．重大事故等対処施設

原子炉本体の構造及び設備

（1）発電用原子炉の炉心 八－1
（ i ）構造（ii）燃料体の最大挿入量（iii）主要な核的制限値（iv）主要な熱的制限値
（2）燃料体 八－10
（i）燃料材の種類
（ii）燃料被覆材の種類
（iii）燃料要素の構造
（iv）燃料集合体の構造
（ v ）最高燃焼度
（3）減速材及び反射材の種類 八－14
（4）原子炉容器 八－14
（i）構造（ii）最高使用圧力及び最高使用温度
（5）放射性遮蔽体の構造 八－23
（6）その他の主要な事項 八－23
ニ 核燃料物質の取扱施設及び貯蔵施設の構造及び設備
（1）核燃料物質取扱設備の構造 $=-1$
（2）核燃料物質貯蔵設備の構造及び貯蔵能力 $=-4$
（i）新燃料貯蔵庫（ii）使用済燃料貯蔵設備
（3）核燃料物質貯蔵用冷却設備の構造及び冷却能力 $=-12$
（i）燃料プール冷却浄化系
（ii）使用済燃料プールの泠却等のための設備

ホ 原子炉冷却系統施設の構造及び設備

（1）一次冷却材設備 木－1（i）冷却材の種類（ii）主要な機器及び管の個数及び構造（iii）泠却材の温度及び圧力
（2）二次冷却設備 木－29
（3）非常用冷却設備 木－29（i）泠却材の種類（ii）主要な機器及び管の個数及び構造
a．非常用炉心泠却系
b．重大事故等対処設備
（4）その他の主要な事項 木－88
（i）残留熱除去系
（ii）原子炉隔離時冷却系
（iii）原子炉冷却材浄化系
（iv）原子炉補機冷却系
（v）最終ヒートシンクへ熱を輸送するための設備
（vi）重大事故等の収束に必要となる水の供給設備

へ 計測制御系統施設の構造及び設備

（1）計装 $\wedge-1$
（i）核計装の種類
（ii）その他の主要な計装の種類
（2）安全保護回路 $\wedge-15$
（i）原子炉停止回路の種類
（ii）その他の主要な安全保護回路の種類
（3）制御設備 $\wedge-27$
（ i ）制御材の個数及び構造
（ii）制御材駆動設備の個数及び構造
（iii）反応度制御能力
（4）非常用制御設備 へ－35
（i）制御材の個数及び構造
（ii）主要な機器の個数及び構造
（iii）反応度制御能力
（5）その他の主要な事項 ヘ－39
（i）制御棒引抜阻止回路
（ii）警報回路（iii）制御棒価値ミニマイザ（iv）原子炉再循環流量制御系
（ v ）圧力制御装置
（vi）中央制御室
（vii）原子炉給水制御系
（viii）選択制御棒挿入機構
（ix）原子炉冷却材再循環ポンプトリップ機能
（x）計装用圧縮空気系
（ x i ）所内用圧縮空気系
（ x ii）緊急停止失敗時に発電用原子炉を未臨界にするための設備
（ x iii）原子炉冷却材圧力バウンダリを減圧するための設備

ト 放射性廃棄物の廃棄施設の構造及び設備
（1）気体廃棄物の廃棄施設 ト－1
（ i ）構造
（ii）廃棄物の処理能力
（iii）排気口の位置
（2）液体廃棄物の廃棄設備 ト－2
（i）構造
（ii）廃棄物の処理能力
（iii）排水口の位置
（3）固体廃棄物の廃棄設備 ト－4
（i）構造
（ii）廃棄物の処理能力
チ 放射線管理施設の構造及び設備
（1）屋内管理用の主要な設備の種類 チ－1
（i）出入管理関係設備（1号及び 2 号炉共用，一部既設）
（ii）試料分析関係設備（1号及び 2 号炉共用，一部既設）
（iii）放射線監視設備
（iv）個人管理用測定設備及び測定機器（1 号及び 2 号炉共用，一部既設）
（ v ）遮蔽設備
（vi）換気空調設備
（2）屋外管理用の主要な設備の種類
リ 原子炉格納施設の構造及び設備
（1）原子炉格納容器の構造 リー1
（2）原子炉格納容器の設計圧力及び設計温度並びに漏えい率 リ－22
（3）非常用格納容器保護設備の構造 リ－24
（i）設計基準対象施設
（ii）重大事故等対処設備
（4）その他の主要な事項 リー138
（i ）原子炉建屋原子炉棟
（ii）非常用ガス処理系
（iii）水素爆発による原子炉建屋等の損傷を防止するための設備

ヌ その他発電用原子炉の附属施設の構造及び設備

（1）常用電源設備の構造 又 -1
（i）発電機
（ii）外部電源系
（iii）変圧器
（2）非常用電源設備の構造 ．．ヌ－5
（i ）外部電源系
（ii）非常用ディーゼル発電機
（iii）蓄電池
（iv）代替電源設備
（3）その他の主要な事項 ．．．又－52
（i）火災防護設備
（ii）浸水防護設備
（iii）補助ボイラー（1号及び2号炉共用，既設）
（iv）補機駆動用燃料設備
（ v ）非常用取水設備
（vi）緊急時対策所
（vii）通信連絡設備
（viii）復水貯蔵タンク

1．概要

本資料は，「核原料物質，核燃料物質及び原子炉の規制に関する法律」（以下「法」という。）第43条の3の8第1項の許可を受けたところによる設計及び工事の計画であることが，法第43条の3 の9第3項第1号で認可基準として規定されており，当該基準に適合することを説明するものであ る。

2．基本方針
設計及び工事の計画が女川原子力発電所発電用原子炉設置変更許可申請書（以下「設置変更許可申請書」という。）の基本方針に従った詳細設計であることを，設置変更許可申請書との整合性により示す。

設置変更許可申請書との整合性は，設置変更許可申請書「本文（五号）」（以下「本文（五号）」 という。）と設計及び工事の計画のうち「基本設計方針」及び「機器等の仕様に関する記載事項」 （以下「要目表」という。）について示すとともに，設置変更許可申請書「本文（十号）」（以下「本文（十号）」という。）に記載する解析条件についても整合性を示す。

また，設置変更許可申請書「添付書類八」（以下「添付書類八」という。）のうち本文（五号） に係る設備設計を記載している箇所については，本文（五号）の関連情報として記載する。 なお，設置変更許可申請書の基本方針に記載がなく，設計及び工事の計画において詳細設計を行う場合は，設置変更許可申請書に抵触するものでないため，本資料には記載しない。

3．記載の基本事項

（1）説明書の構成は比較表形式とし，左欄から「設置変更許可申請書（本文（五号））」，「設置変更許可申請書（添付書類八）該当事項」，「設計及び工事の計画 該当事項」，「整合性」及び「備考」を記載する。
（2）説明書の記載順は，本文（五号）に記載する順とする。 なお，本文（十号）については，「設置変更許可申請書（本文（五号））」内の該当箇所に挿入する。
（3）本文（五号）と設計及び工事の計画の記載が同等の箇所には，実線のアンダーラインで明示 する。記載等が異なる場合には破線のアンダーラインを引くとともに，設計及び工事の計画が本文（五号）と整合していることを明示する。
（4）本文（十号）との整合性に関する補足説明は一重枠囲みにより記載する。
本文（五号）との整合性に関する補足説明は原則として「整合性」欄に記載するが，欄内に記載しきれないものについては別途，二重枠囲みにより記載する。
（5）添付書類八については，上記（3）において設計及び工事の計画にアンダーラインを引いた箇所について，同等の記載箇所には実線，記載が異なる箇所には破線のアンダーラインを引いて明示する。

4．発電用原子炉の設置の許可との整合性

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
五 発電用原子炉及びその附属施設の位置，構造及び設備 イ 発電用原子炉施設の位置 （1）敷地の面積及び形状 発電用原子炬施設を設置する敷地は，嵒城県牡鹿半鳥の ほぼ中央東部に位置し，北東側は太平洋に面しておりっ 三方を山に囲まれた山地と狭小な平地からなっている。 敷地内の地質は，中生界ジュラ系及びそれを不整合で覆 ら篤四系からなる。．．． 敷地の形状は海岸線に直径を持つほぼ半円形であり，敷地全体の広さは約173 万 m^{2} である。 敷地の整地面は，． $0 . \mathrm{P} .+14.8 \mathrm{~m}$ とする。ただし， $0 . \mathrm{P}$ ．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0． 74 m である。 地震の発生によって生じるおそれがあるその安全機能 の喪失に起因する放射線による公衆への影響の程度が特 に大きい施設（以下「耐震重要施設」という。）は，その供用中に大きな影響を及ぼすおそれがある地震動（以下「基準地震動 S s 」という。）による地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤 に設置する。	1．4．1 設計基準対象施設の耐震設計 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （3）建物••構築物については，耐震重要度分類の各クラ スに応じて算定する地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。	【原子灲冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 1．地盤等 1.1 地盤 設計基準対象施設のらち，地震の発生によって生じるお それがあるその安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きい施設（以下「耐震重要施設」という。）の建物•構築物，屋外重要土木構造物，津波防護機能を有する設備（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有する施設（以下「津波監視設備」という。）並びに浸水防止設備又は津波監視設備が設置された建物•構築物について，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設 については，自重や運転時の荷重等に加え，その供用中に大きな影響を及ぼすおそれがある地震動（以下「基準地震動 S s 」という。）による地震力が作用した場合において も，接地圧に対する十分な支持力を有する地盤に設置す	設置変更許可申請書（本文（五号））イ項におい て，設計及び工事の計画 の内容は，以下のとおり整合している。 設置変更許可申請書（本文（五号））において許可を受けた「敷地の面積及び形状」は，本工事計画の対象外である。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，上記に加え，基準地震動 S s による地震力が作用 することによって弱面上のずれが発生しない 1 （1）－（1）こと を含め，基漼地震動S sによる地震力に対する支持性能を直する地盤に設置する。 耐震重要施設以外の設計基準対象施設については，耐震重要度分類の各クラスに応じて算定する地震力が作用し た場合においても，接地圧に対する十分な支持力を有する地盤に設置する。 耐震重要施設は，地震発生に伴う地殻変動によって生じ る支持地盤の傾斜及び撓み並びに地震発生に伴う建物•構築物間の不等沈下，液状化及び摇すり込み沈下等の周辺地盤の変状により，その安全機能が損なわれるおそれがない地盤に設置する。	なお，建物•構築物とは，建物，構築物及び土木構造物 （屋外重要土木構造物及びその他の土木構造物）の総称と する。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系の間接支持機能又は非常時における海水の通水機能を求められる土木構造物をいう。 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （3）建物•構築物については，耐震重要度分類の各クラ スに応じて算定する地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。 ＜中略＞	る。 また，上記に加え，基準地震動 S s による地震力が作用 することによって弱面上のずれが発生しない 1 （1）－（1）地盤 として，設置（変更）許可を受けた地盤に設置する。 ここで，建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及びその他の土木構造物）の総称 とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系及び設備の間接支持機能又は非常時における海水の通水機能を求められる土木構造物をいう。 設計基準対象施設のうち，耐震重要施設以外の建物•構築物については，自重や運転時の荷重等に加え，耐震重要度分類の各クラスに応じて算定する地震力が作用した場合，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置さ れる重大事故等対処施設については，自重や運転時の荷重等に加え，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類の各クラスに応じて算定する地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。 設計基準対象施設のらち，耐震重要施設，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設は，地震発生に伴ら地殻変動によって生じる支持地盤 の傾斜及び撓み並びに地震発生に伴ら建物•構築物間の不等沈下，液状化及び摇すり込み沈下等の周辺地盤の変状に より，その安全機能，若しくは，重大事故に至るおそれが ある事故（運転時の異常な過渡変化及び設計基準事故を除 く。）又は重大事故（以下「重大事故等」という。）に対処 するために必要な機能が損なわれるおそれがない地盤と して，設置（変更）許可を受けた地盤に設置する。	設計及び工事の計画の イ（1）－（1）は，当該要求事項が設置変更許可を受 けた地盤に設置するこ とを記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
而震重要施設は，将来活動する可能性のある断層等の露頭がない地盤に設置する。	1．4．1．4 荷重の組合せと許容限界 （4）許容限界 d．基礎地盤の支持性能 （a）Sクラスの建物•構築物及びSクラスの機器•配管系（津波防護施設，浸水防止設備及び津波監視設備を除 く。）の基礎地盤 i．弾性設計用地震動S d による地震力又は静的地震力と の組合せに対する許容限界 接地圧に対して，安全上適切と認められる規格，基準等 による地盤の短期許容支持力度を許容限界とする。 ii ．基準地震動 S s による地震力との組合せに対する許容限界 接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有することを確認する。 （b）屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物の基礎地盤 i．基準地震動 S s による地震力との組合せに対する許容限界 接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有することを確認する。 （c）Bクラス及びCクラスの建物•構築物，Bクラス及 びCクラスの機器•配管系並びにその他の土木構造物の基礎地盤	設計基準対象施設のらち，耐震重要施設，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設は，将来活動する可能性のある断層等の露頭がない地盤として，設置（変更）許可を受けた地盤に設置する。 設計基準対象施設のらち，S クラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）の地盤，若 しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設の建物•構築物の地盤の接地圧に対する支持力の許容限界について，自重や運転時 の荷重等と基準地震動 S s による地震力との組合せによ り算定される接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有 することを確認する。 また，上記の設計基準対象施設にあっては，自重や運転時の荷重等と設置（変更）許可を受けた弾性設計用地震動 Sd（以下「弾性設計用地震動 S d」という。）による地震力又は静的地震力との組合せにより算定される接地圧 について，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備又は津波監視設備が設置された建物•構築物 の地盤においては，自重や運転時の荷重等と基準地震動S sによる地震力との組合せにより算定される接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有することを確認する。 設計基準対象施設のうち，B クラス及びCクラスの施設 の地盤，若しくは，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
耐震重要施設については，基準地震動S s による （2）地震力によって生じるおそれがある周辺の斜面の崩罴 に対して，その安全機能が損なわれるおそれがない場所に設置する。 常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設については，基準地震動S s による地震力が作用した場合においても，接地圧 に対する十分な支持力を有する地盤に設置する。	上記（a）i 。による許容支持力度を許容限界とする。 1．4．2 重大事故等対処施設の耐震設計 1．4．2．1 重大事故等対処施設の耐震設計の基本方針 （6）常設耐震重要重大事故防止設備，常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置 される重大事故等対処施設については，基準地震動S s による地震力が作用した場合においても，接地圧に対す る十分な支持力を有する地盤に設置する。	準拡張）（当該設備が属する耐震重要度分類が B クラス又 はCクラスのもの）が設置される重大事故等対処施設の建物•構築物及び機器•配管系の地盤においては，自重や運転時の荷重等と，静的地震力及び動的地震力（B クラスの共振影響検討に係るもの又はBクラスの施設の機能を代替 する常設重大事故防止設備の共振影響検討に係るもの）と の組合せにより算定される接地圧に対して，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 2．自然現象 2.1 地震による損傷の防止 2．1．2 地震による周辺斜面の崩壊に対する設計方針 而震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は常設重大事故緩和設備（設計基準扩張）が設置される重大事故等対処施設については，基準地震動 S s による （1）－（2）地震力により周辺斜面の䐗壊の影響がないことが確認された場所に設置する。 1．地盤等 1.1 地盤 設計基準対象施設のうち，地震の発生によって生じるお それがあるその安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きい施設（以下「耐震重要施設」という。）の建物•構築物，屋外重要土木構造物，津波防護機能を有する設備（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有する施設（以下「津波監視設備」という。）並びに浸水防止設備又は津波監視設備が設置された建物•構築物について，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設 については，自重や運転時の荷重等に加え，その供用中に大きな影響を及ぼすおそれがある地震動（以下「基準地震動 S s」という。）による地震力が作用した場合において も，接地圧に対する十分な支持力を有する地盤に設置す	設計及び工事の計画の （1）－2）は，設置変更許可申請書（本文（五号）） の（1）－（2）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
常設而震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設は，将来活動する可態性のある断層等の露頭がない地盤に設置する。	1．4．2．4 荷重の組合せと許容限界 （4）許容限界 c．基礎地盤の支持性能 （a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物，機器•配管系及び土木構造物の基礎地盤 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すSクラスの建物•構築物及びSクラスの機器•配管系の基礎地盤並びに屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物の基礎地盤の基準地震動 S s による地震力との組合せに対する許容限界を適用する。	設計基準対象施設のらち，耐震重要施設，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設は，将来活動する可能性のある断層等の露頭がない地盤として，設置（変更）許可を受けた地盤に設置する。 設計基準対象施設のうち，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）の地盤，若 しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設の建物•構築物の地盤の接地圧に対する支持力の許容限界について，自重や運転時 の荷重等と基準地震動S s による地震力との組合せによ り算定される接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有 することを確認する。 また，上記の設計基準対象施設にあっては，自重や運転時の荷重等と設置（変更）許可を受けた弾性設計用地震動 Sd（以下「弾性設計用地震動 S d」という。）による地震力又は静的地震力との組合せにより算定される接地圧 について，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物の地盤においては，自重や運転時の荷重等と基準地震動S s による地震力との組合せにより算定される接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有す ることを確認する。		

常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設については，基準地震動 S s による イ（1）－44地震力によって生じるおそれがあ る周辺の斜面の湔壊に対して，重大事故等に対処するため に必要な機能が損なわれるおそれがない場所に設置する。
（2）敷地内における主要な発電用原子炉施設の位置 2号炬原子炉本体は，旉地中央部に位置する1号炬原子炬建屋の北東側に設置する。排気筒は，2号炬原子炉建屋 の西側に設置し，復水器冷却水の取水口は，発電所敷地前面に設けた防波堤内側の櫵崖に，放水口は，東防波堤外側 に設置する。

設置変更許可申請書（添付書類八）該当事項
事項
（b）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設の建物•構築物，機器•配管系及び土木構造物の基礎地盤

「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すBクラス及びCクラスの建物•構築物，B クラス及びCクラスの機器•配管系並びにその他の土木構造物の基礎地盤の許容限界を適用する。
1.1 安全設計の方針

1．1．7 重大事故等対処設備に関する基本方針 1．1．7．1 多様性，位置的分散，悪影響防止等
（1）多様性，位置的分散
b 。 可搬型重大事故等対処設備

設計基準対象施設のうち，B クラス及びC クラスの施設 の地盤，若しくは，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又 はCクラスのもの）が設置される重大事故等対処施設の建物•構築物及び機器•配管系の地盤においては，自重や運転時の荷重等と，静的地震力及び動的地震力（Bクラスの共振影響検討に係るもの又は B クラスの施設の機能を代替 する常設重大事故防止設備の共振影響検討に係るもの）と の組合せにより算定される接地圧に対して，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。

2．自然現象
2.1 地震による損傷の防止

2．1．2 地震による周辺斜面の崩壊に対する設計方針
耐震重要施設及び常設耐震重要重大事故防止設備，常設
重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s による1 （1）－（4）地震力により周辺斜面の崩壊の影響がないことが確認された場所に設置する。

設計及び工事の計画の
イ（1）－44は，設置変更許
可申請書（本文（五号））
の $1(1)-4)$ と同義であ
り整合している。

設置変更許可申請書（本文（五号））の「発電用原子炉施設の位置」は，本工事計画の対象外で ある。

5．設備に対する要求
5.1 安全設備，設計基準対象施設及び重大事故等対処設備

5．1．2 多様性，位置的分散等
（1）多重性又は多様性及び独立性
b．可搬型重大事故等対処設備

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
屋外に保管する可搬型重大事故等対処設備は，原子炉建屋及び制御建屋から 100 m 以上の離隔距離を確保するとと もに，当該可搬型重大事故等対処設備がその機能を代替す る屋外のイ（2）－（1）設計基集事故対処設備並びに使用済燃料貯蔵槽（使用済燃料貯蔵プール）の冷却設備及び注水設備 （以下「設計基準事故対処設備等」という。）及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保した上 で，複数箇所に分散して保管する設計とする。 イ（2）－（2）想定される重大事故等の対処に必要な可搬型重大事故等対処設備の保管場所から設置場所及び接続場所 まで運搬するための経路又は他の設備の被害状況を把握 するための経路（以下「アクセスルート」という。）に対 して想定される自然現象のうち，地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり），津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山 の影響，生物学的事象，森林火災及び高潮を想定し，複数 のアクセスルートの中から，早期に復旧可能なアクセスル ートを確保するため，障害物を除去可能なブルドーザ及び バックホウの重機を分散して保管する設計とする。	屋外に保管する可搬型重大事故等対処設備は，原子炉建屋及び制御建屋から 100 m 以上の離隔距離を確保するとと もに，当該可搬型重大事故等対処設備がその機能を代替す る屋外の設計基準事故対処設備等及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保した上で，複数箇所に分散して保管する設計とする。 <中略 > 1．1．7．4 操作性及び試験•検査性 （1）操作性の確保 d．発電所内の屋外道路及び屋内通路の確保 想定される重大事故等が発生した場合において，可搬型重大事故等対処設備を運搬し，又は他の設備の被害状況を把握するため，発電所内の道路及び通路が確保できるよ ら，以下の設計とする。 ＜中略＞ 屋外及び屋内アクセスルートに対する自然現象につい ては，網羅的に抽出するために，地震，津波に加え，発電所敷地及びその周辺での発生実績の有無に関わらず，国内外の基準や文献等に基づき収集した洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災等の事象を考慮する。 これらの事象のらち，発電所敷地及びその周辺での発生 の可能性，屋外アクセスルートへの影響度，事象進展速度 や事象進展に対する時間余裕の観点から，屋外アクセスル ートに影響を与えるおそれがある事象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑 り，火山の影響，生物学的事象，森林火災及び高潮を選定 する。 ＜中略＞ 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ及 びバックホウをそれぞれ 1 台使用する。ブルドーザの保有数は 1 台，故障時及び保守点検による待機除外時のバック	屋外に保管する可搬型重大事故等対処設備は，原子炉建屋及び制御建屋から 100 m 以上の離隔距離を確保するとと もに，当該可搬型重大事故等対処設備がその機能を代替す る屋外のイ（2）－（1）設計基集事故対処設備等及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保した上で，複数箇所に分散して保管する設計とする。 < 中略 > 5．1．6 操作性及び試験•検査性 （1）操作性の確保 < 中略 > イ（2）－（2）想定される重大事故等が発生した場合におい て，可船型重大事故等対処設備を移動•運搬し，又は他の設備の被害状況を把握するため，発電所内の道路及び通路 が確保できるよう，以下の設計とする。 < 中略 > 屋外及び屋内アクセスルートに影響を与えるおそれが ある自然事唯として，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を選定する。 ＜中略＞ 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ （台数1（予備1））及びバックホウ（台数 1（予備 1））を保管，使用する。	設計及び工事の計画の （2）－11は，設置変更許可申請書（本文（五号）） の $1(2)$－（1）と同義であ り，整合している。 設計及び工事の計画の イ（2）－（2）は，設置変更許可申請書（本文（五号）） の（2）－（2）と文章表現 は異なるが，内容に相違 はないため整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
Cクラス Sクラスに属する施設及びBクラスに属する施設以外の一般産業施設又は公共施設と同等 の安全性が要求される施設 c．ロ（1）（i ）c．－①Sクラスの施設（e．に記載のものの うち，津波防護機能を有する設備（以下「津波防護施設」 という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有 する施設（以下「津波監視設備」という。）を除く。）， Bクラス及びCクラスの施設は，ロ（1）（i）c．－（2）建物•構築物については，地震層せん断力係数 C_{i} に，それぞ れ 3．0，1．5 及び 1.0 を乗じて求められる水平地震力， （1）（i）c．－3）機器•配管系については，それぞれ3．6， 1．8及び 1.2 を乗じた水平震度から求められる水平地震力に十分に耐えられるように設計する。建物•構築物及 び機器•配管系ともにっおおむね弾性状態にとどまる範囲で耐えられるように設計する。	－放射性物質の放出を伴らような場合に，その外部放散を抑制するための施設で，Sクラスに属さない施設 （3）Cクラスの施設 Sクラスに属する施設及びBクラスに属する施設以外 の一般産業施設又は公共施設と同等の安全性が要求され る施設である。 上記に基づく耐震重要度分類を第1．4．1－1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持されることを確認する地震動及び波及的影響を考慮 すべき施設に適用する地震動についても併記する。 （4）Sクラスの施設（ (6) に記載のもののらち，津波防護機能を有する設備（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」とい う。）及び敷地における津波監視機能を有する施設（以下「津波監視設備」という。）を除く。）は，基準地震動 S s による地震力に対してその安全機能が保持でき るように設計する。 また，弾性設計用地震動S dによる地震力又は静的地震力のいずれか大きい方の地震力に対しておおむね弾性状態にとどまる範囲で耐えられる設計とする。	－放射性物質の放出を伴うような場合に，その外部放散を抑制するための施設で，Sクラスに属さない施設 （c）Cクラスの施設 Sクラスに属する施設及びBクラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設である。 上記に基づく耐震重要度分類を第2．1．1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持されることを確認する地震動及び波及的影響を考慮 すべき施設に適用する地震動についても併記する。 c． $\mathrm{Q}(1) \mathrm{i}$（i）c．－（1）as クラスの施設（e．に記載のもののう ち，津波防護施設，浸水防止設備及び津波監視設備を除 く。）は，基漼地震動S Sによる地震力に対してその安全機能が保持できる設計とする。 建物•構築物については，構造物全体としての変形能力 （終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計と する。 機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生じる場合であっても， その量が小さなレベルにとどまって破断延性限界に十分 な余裕を有し，その施設に要求される機能に影響を及ぼさ ない，また，動的機器等については，基準地震動 S sによ る応答に対してその設備に要求される機能を保持する設計とする。なお，動的機能が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往 の研究等で機能維持の確認がなされた機能確認済加速度等を超えていないことを確認する。 また，弾性設計用地震動S dによる地震力又は静的地震力のいずれか大きい方の地震力に対しておおむね弾性状態にとどまる範囲で耐えられる設計とする。 ＜中略＞	設計及び工事の計画の ロ（1）（ i ）c．－（1）a，ロ（1） （ i ）c．－（1）b及びロ（1） （ i ）c．－（1）cは，耐震重要度分類に応じた地震力（静的地震力を含む） に対する設計基準対象施設（建物•構築物及び機器•配管系を含む）を総括した記載であり，設置変更許可申請書（本文 （五号））の（1）（ i ）c． －（1）と整合している。 設計及び工事の計画の ロ（1）（i ）c．－（2）は，設置変更許可申請書（本文 （五号））の（1）（ i ）c． （2）を具体的に記載し ており整合している。 設計及び工事の計画の （1）（i）c．—3は，設置変更許可申請書（本文 （五号））の（1）（i）c． －（3）を具体的に記載し	

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	（7）Bクラスの施設は，静的地震力に対しておおむねね弾性状態にとどまる範囲で耐えられるように設計する。 また，共振のおそれのある施設については，その影響に ついての検討を行ら。その場合，検討に用いる地震動は，弾性設計用地震動 S d に 2 分の1 を乗じたものとする。 なお，当該地震動による地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとし，S ク ラス施設と同様に許容限界の範囲内にとどまることを確認する。 （8）Cクラスの施設は，静的地震力に対しておおむむね弾性状態にとどまる範囲で耐えられるように設計する。 1．4．1．3 地震力の算定方法 設計基準対象施設の耐震設計に用いる地震力の算定は以下の方法による。 （1）静的地震力 静的地震力は，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。），Bクラス及びCクラ スの施設に適用することとし，それぞれ耐震重要度分類に応じて次の地震層せん断力係数 C i 及び震度に基づき算	f．ロ（1）（i）c．－（1）bBクラスの施設は，静的地震力に対し ておおむね弾性状態にとどまる範囲で耐えられる設計 とする。 また，共振のおそれのある施設については，その影響に ついての検討を行う。その場合，検討に用いる地震動は，弾性設計用地震動 S d に 2 分の 1 を乗じたものとする。な お，当該地震動による地震力は，水平2方向及び鉛直方向 について適切に組み合わせて算定するものとする。．．． （1）（i）c．－（1）cc クラスの施設は，静的地震力に対して おおむね弾性状態にとどまる範囲で耐えられる設計とす る。 ＜中略＞ j．耐震重要施設については，液状化，摇すり込み沈下等 の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれないよう，適切な対策を講ずる設計とす る。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するた めに必要な機能が損なわれるおそれがないよう，適切な対策を講ずる設計とする。 （3）地震力の算定方法耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 設計基準対象施設に適用する静的地震力は，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除 く。），Bクラス及びCクラスの施設に適用することとし，そ れぞれ耐震重要度分類に応じて次の地震層せん断力係数	ており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
Sクラスの施設（e．に記載のもののらち，津波防護施設，浸水防止設備及び津波監視設備を除く。）については，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。 （1）（i）c．－（4）鉛直地震力は，建物•構築物については，震度 0.3 以上を基準とし，建物•構築物の振動特性，地艦 の種類等を考慮して求められるる鉛直震度， 機器•配管系口（1）（i）c．－（5）については，これを 1.2 倍し た鉛真震度より算定する。 ただし，鉛直震度は高さ方向に一定とする。	なお， S クラスの施設については，水平地震力と鉛直地震力は同時に不利な方向の組合せで作用するものとする。 ただし，鉛直震度は高さ方向に一定とする。 上記a．及びb。の標準せん断力係数 Co o 等の割増し係数の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。	公共施設等の耐震基準との関係を考慮して設定する。 （1）耐震設計の基本方針 d．Sクラスの施設（e．に記載のもののらち，津波防護施設，浸水防止設備及び津波監視設備を除く。）について，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。 また，基準地震動 S s 及び弾性設計用地震動 S d による地震力は，水平 2 方向及び鉛直方向について適切に組み合 わせて算定するものとする。 ＜中略＞ （3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 （a）建物•構築物 ＜中略＞ S クラスの施設については，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。回 （1）（i）c．－44）鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向 に一定として求めた鉛直震度より算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認め られる規格及び基準を参考に，C クラスに適用される静的地震力を適用する。 （b）機器•配管系 静的地震力は，上記（a）に示す地震層せん断力係数 C_{i} に施設の耐震重要度分類に応じた係数を乗じたものを水平震度として，当該水平震度及びロ（1）（i）c．－（5）上記（a）の鉛直震度をそれぞれ 20% 堌しとした震度より求めるものと まる。 S クラスの施設については，水平地震力と鉛直地震力は同時に不利な方向の組合せで作用するものとする。ただ し，鉛直震度は高さ方向に一定とする。 上記（a）及び（b）の標準せん断力係数C。等の割増し係数 の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。	設計及び工事の計画の （1）（i）c．－44は，設置変更許可申請書（本文 （五号））の（1）（i）c． －（4）と同義であり整合 している。 設計及び工事の計画の （1）（i）c．－（5）の「20\％増し」は，設置変更許可申請書（本文（五号）） の（1）（i）c．－（5）$「 1$. 2倍」と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
d．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動S s による地震力に対して安全機能が保持できるよ うに設計する。 建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有するように設計 する。 機器•配管系については，その施設に要求される機能を保持するように設計し，塑性ひずみが生じる場合であって も，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼ さないように，また，動的機器等については，基準地震動	1．4．1．1 設計基準対象施設の耐震設計の基本方針 （4）Sクラスの施設（ (6) に記載のもののらち，津波防護機能を有する設備（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有する施設（以下「津波監視設備」という。）を除く。）は，基準地震動 S s に よる地震力に対してその安全機能が保持できるように設計する。 ＜中略＞ 1．4．1．4 荷重の組合せと許容限界 （4）許容限界 a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物 ii ．基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみっ，応力等） なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成23年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等 が鉄筋コンクリート造耐震壁の変形能力及び終局耐力に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 b．機器•配管系（c．に記載のものを除く。） （a）Sクラスの機器•配管系 ii ．基準地震動 S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能が要求される機器等	（1）耐震設計の基本方針 c．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動S s による地震力に対してその安全機能が保持 できる設計とする。 建物•構築物については，構造物全体としての変形能力 （終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計と する。 機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生じる場合であっても， その量が小さなレベルにとどまって破断延性限界に十分 な余裕を有し，その施設に要求される機能に影響を及ぼさ ない，また，動的機器等については，基準地震動 S s によ			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，弾性設計用地震動 S d（1）（i）d．－（2）は，基準地震動S s との応签スペクトルの比率が目安として0．5を下回らない値とし，さらに応答スペクトルに基づく手法によ る基準地震憅S S－D 1，D2に対しては，「発電用原子㷧施設に関する耐震設計審查指針（昭和56年7月20日原子力安全委員会決定，平成13年3月29日一部改訂）」に おける基準地震憅 S ，を踏まえて設定する。具体的には，工学的判断により，基準地震動 S S－F 1，F 2 ，F F 3 及 びS S－N 1 は係数 0.5 を乗じた地震憅，基準地震憅 S s －D 1，D2，D3は係数 0.58 を乗じた地震動を弾性設計用地震動S d として設定する。．．． （1）（i）d．—3なお，Bクラスの施設のうちっ，共振のお それのある施設については，弾性設計用地震動S dに2分 の1を乗じた地震動によりその影響についての検討を行 う。	1．4．1．3 地震力の算定方法 （2）動的地震力 ＜中略＞ また，弾性設計用地震動 S d は，基漼地震動 S s との応答スペクトルの比率が目安として0．5を下回らないよう基蕉地震動 S s に係数を乗じて設定する。ここで，係数は工学的判断として，原子炉施設の安全機能限界と弾性限界に対する入力荷重の比率が 0.5 程度であるという知見 ${ }^{(1)}$ を踏 まえ，さらに，「発電用原子炬施設に関する耐震設計審查指針（昭和56年7月20日原子力安全委員会決定，平成13年 3月29日一部改訂）」における基準地震憅 S_{1} の応签スペ クトルをおおむ数下回らないよう配慮した值とする。具体的には，S s－F 1～F3及びS s －N1は係数 0.5 を乗 じた地震動，応劄スペクトルに基づく地震動評価による基蕉地震憅 S s－D $1 \sim$ D 3 は係数 0.58 を乗じた地震動を弾性設計用地震憅 S d として設定する。 ＜中略＞ 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （7）Bクラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐えられるように設計する。 また，共振のおそれのある施設については，その影響に ついての検討を行う。その場合，検討に用いる地震動は，．．．弾性設計用地震動S d に 2 分の1を乗じたものとする。 なお，当該地震動による地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとし，Sク ラス施設と同様に許容限界の範囲内にとどまることを確認する。 1．4．1．4 荷重の組合せと許容限界 （4）許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている許容応力等を用いる。	1．地盤等 1.1 地盤 ＜中略＞ また，上記の設計基準対象施設にあっては，自重や運転時の荷重等と（1）（i）d．－（2）設置（変更）許可を受けた弾性設計用地震動 S d（以下「弾性設計用地震動S d」とい う。）による地震力又は静的地震力との組合せにより算定 される接地圧について，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 <中略 > （1）耐震設計の基本方針 f．（1）（i）d．－3 B クラスの施設は，静的地震力に対して おおむね弾性状態にとどまる範囲で耐えられる設計と する。 また，共振のおそれのある施設については，その影響に ついての検討を行う。その場合，検討に用いる地震動は，．．．弾性設計用地震動 S d に 2 分の 1 を乗じたものとする。な お，当該地震動による地震力は，水平 2 方向及び鉛直方向 について適切に組み合わせて算定するものとする。 < 中略 > （4）荷重の組合せと許容限界 d．許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用い る。	設計及び工事の計画に適用する巴（1）（i）d． （2）は，設置変更許可申請書（本文（五号））の （1）（i）d．－（2）にて設定した弾性設計用地震動を用いており整合し ている。 設計及び工事の計画の （1）（i）d．－（3）と設置変更許可申請書（本文 （五号））の（1）（i）d． －（3）は文章構成上の相違であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1）（i）d．－（4）建物•横築物及び機器•配管采ともに，扮 およな权弾性状態にとどまる範囲で耐えられるように設計 まる。	a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物 i ．弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界 「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 ただし，泠却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリにおける長期的荷重との組合せを除く。）に対しては，下記 ii ．に示す許容限界を適用する。 ii ．基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成23年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等 が鉄筋コンクリート造耐震壁の変形能力及び終局耐力に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 （b）Bクラス及びCクラスの建物•構築物（（e）及び（f） に記載のものを除く。）	（a）建物•構築物（（c）に記載のものを除く。） イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物 （へ，に記載のものを除く。） （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界 （1）（i）d．－（4）a．「建築基準法」等の安全上適切と認めら れる規格及び基準による許容応力度を許容限界とする。 ただし，冷却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリを構成する設備における長期的荷重との組合せを除く。）に対しては，下記イ（ロ）に示す許容限界を適用する。 （口）基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力 に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 ロ．（1）（i）d．－（4）b B クラス及びCクラスの建物•構築物 （ ，及びト，に記載のものを除く。）並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属 する耐震重要度分類が B クラス又はCクラスのもの）が	設計及び工事の計画の ■（1）（i）d．－（4），■（1） （i）d．－（4）b及びロ（1） （i）d．－（4）dは設置変更許可申請書（本文（五号））の厄（1）（i）d．－（4） を具体的に記載してお り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
e．津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動 S s による地震力に対して，それぞれの施設及び設備に要求される機能が保持できるように設計する。	上記（a）i ．による許容応力度を許容限界とする。 ＜中略＞ b．機器•配管系（c．に記載のものを除く。） （b）Bクラス及びCクラスの機器•配管系 応答が全体的におおむね弾性状態にとどまることとす る（評価項目は応力等）。 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （6）屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動 S s による地震力に対して，構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有するとともに，それぞれの施設及び設備に要求される機能が保持できるように設計する。 なお，基準地震動 S s の水平 2 方向及び鉛直方向の地震力の組合せについては，上記（5）と同様とする。 < 中略 > 1．4．1．3 地震力の算定方法 （2）動的地震力 動的地震力は，Sクラスの施設，屋外重要土木構造物及 びBクラスの施設のうち共振のおそれのあるものに適用 することとし，基準地震動 S s 及び弾性設計用地震動 S d から定める入力地震動を入力として，動的解析により水平 2 方向及び鉛直方向について適切に組み合わせて算定す る。 なお，構造特性から水平 2 方向及び鉛直方向の地震力の影響が考えられる施設及び設備については，水平 2 方向及 び鉛直方向の地震力の組合せに対して，許容限界の範囲内 にとどまることを確認する。	設置される重大事故等対処施設の建物•構築物（ト，に記載のものを除く。） 上記イ．（イ）による許容応力度を許容限界とする。 ＜中略＞ （b）機器•配管系（（c）に記載のものを除く。） 八。（1）（i）d．－（4） C Bクラス及び C クラスの機器•配管采並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 B クラス又は C クラスのもの）が設置される重大事故等対処施設の機器•配管系 応答が全体的におおむすね弾性状態にとどまることとす る（評価項目は応力等）。 （1）耐震設計の基本方針 e．屋外重要土木構造物，津波防護施設，浸水防止設備及 び津波監視設備並びに浸水防止設備又は津波監視設備 が設置された建物•構築物は，基準地震動 S s による地震力に対して，構造物全体として変形能力（終局耐力時 の変形）について十分な余裕を有するとともに，それぞ れの施設及び設備に要求される機能が保持できる設計 とする。 ＜中略＞ （3）地震力の算定方法 b．動的地震力 設計基準対象施設については，動的地震力は，Sクラス の施設，屋外重要土木構造物及びBクラスの施設のうち共振のおそれのあるものに適用する。 Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）については，基準地震動 S s 及び弾性設計用地震動S d から定める入力地震動を適用する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	B クラスの施設のらち共振のおそれのあるものについ ては，弾性設計用地震動S dから定める入力地震動の振幅 を 2 分の 1 にしたものによる地震力を適用する。 屋外重要土木構造物，津波防謢施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動 S s による地震力を適用する。 「添付書類六 5．地震」に示す基準地震動S s は，「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」について，解放基盤表面における水平方向及び鉛直方向の地震動としてそれぞれ策定した。 「敷地ごとに震源を特定して策定する地震動」に基づき策定した基準地震動 S s－D $1 \sim$ D 3 の年超過確率は 10^{-4} $\sim 10^{-6}$ 程度で， S s $-\mathrm{F} 1 \sim \mathrm{~F} 2$ の年超過確率は， $\mathrm{S} \mathrm{s}-$ D 1 を超過する帯域で 10^{-6} より低くなっており， $\mathrm{S} s-\mathrm{F}$ 3 の年超過確率は，短周期側でおおむね 10^{-4} 程度である。「震源を特定せず策定する地震動」に基づき設定した基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ の年超過確率は $10^{-4} \sim 10^{-7}$ 程度である。 ＜中略＞ a．入力地震動 原子炉格納施設設置位置周辺は，地質調査の結果によれ ば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広が りをもって存在することが確認されており，建物•構築物 はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布 し，原子炉建屋の設置しベルにもこの岩盤が分布している ことから，解放基盤表面は，この岩盤が分布する原子炉建屋の設置位置0．P．－14．1mに設定する。	Bクラスの施設のらち共振のおそれのあるものについて は，弾性設計用地震動S d から定める入力地震動の振幅を 2分の1にしたものによる地震力を適用する。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動 S s による地震力を適用する。 ＜中略＞ 動的解析においては，地盤の諸定数も含めて材料のばら つきによる変動幅を適切に考慮する。 動的地震力は水平2方向及び鉛直方向について適切に組 み合わせて算定する。動的地震力の水平2方向及び鉛直方向の組合せについては，水平1方向及び鉛直方向地震力を組み合わせた既往の耐震計算への影響の可能性がある施設•設備を抽出し， 3 次元応答性状の可能性も考慮したう えで既往の方法を用いた耐震性に及ぼす影響を評価する。 （a）入力地震動 原子炉格納施設設置位置周辺は，地質調査の結果によれ ば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広が りをもって存在することが確認されており，建物•構築物 はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布 し，原子炉建屋の設置レベルにもこの岩盤が分布している ことから，解放基盤表面は，この岩盤が分布する原子炉建屋の設置位置 0．P．－14．1m に設定する。 建物•構築物の地震応答解析における入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	b ．地震応答解析 （a）動的解析法 i．建物•構築物 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件 を設定する。動的解析は，時刻歴応答解析法又は線形解析 に適用可能な周波数応答解析法による。 建物•構築物の動的解析に当たつては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定する。 動的解析には，建物•構築物と地盤との相互作用を考慮 するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，地盤の剛性等を考慮して定める。設計用地盤定数は，原則として，弾性波試験によるものを用いる。 地盤—建物•構築物連成系の減衰定数は，振動エネルギ ーの地下逸散及び地震応答における各部のひずみレベル	地震動Sdを基に，対象建物•構築物の地盤の非線形特性等の条件を適切に考慮した上で，必要に応じ 2 次元 FEM 解析， 1 次元波動論又は 1 次元地盤応答解析により，地震応答解析モデルの入力位置で評価した入力地震動を設定す る。地盤条件を考慮する場合には，地震動評価で考慮した敷地全体の地下構造との関係や対象建物•構築物位置と炉心位置での地質•速度構造の違いにも留意するとともに，地盤の非線形応答に関する動的変形特性を考慮する。ま た，必要に応じ敷地における観測記録による検証や最新の科学的•技術的知見を踏まえ，地質•速度構造等の地盤条件を設定する。 また，設計基準対象施設における耐震 B クラスの建物•構築物及び重大事故等対処施設における耐震 B クラスの施設の機能を代替する常設重大事故防止設備又は当該設備 が属する耐震重要度分類が B クラスの常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物のらち共振のおそれがあり，動的解析が必要な ものに対しては，弾性設計用地震動S d に 2 分の 1 を乗じ たものを用いる。 （b）地震応答解析 1．動的解析法 （イ）建物•構築物 動的解析による地震力の算定に当たっては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件 を設定する。動的解析は，時刻歴応答解析法又は線形解析 に適用可能な周波数応答解析法による。 建物•構築物の動的解析に当たっては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定する。 動的解析には，建物•構築物と地盤との相互作用を考慮 するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，基礎側面と地盤の接触状況，地盤の剛性等を考慮して定める。設計用地盤定数は，原則として，弾性波試験によるものを用いる。 地盤一建物•構築物連成系の減衰定数は，振動エネルギ の地下逸散及び地震応答における各部のひずみレベルを			

設置変更許可申請書（ ${ }^{\text {a }}$ 本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	して設定する。 原子炉建屋については， 3 次元 FEM解析等から，建物•構築物の 3 次元応答性状及び機器•配管系への影響を評価する。 屋外重要土木構造物の動的解析は，構造物と地盤の相互作用を考慮できる連成系の地震応答解析手法とし，地盤及 び構造物の地震時における非線形挙動の有無や程度に応 じて，線形，等価線形又は非線形解析のいずれかにて行う。 また，地震力については，水平2方向及び鉛直方向につ いて適切に組み合わせて算定する。 ii ．機器•配管系 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，解析条件として考慮すべき減衰定数，剛性等の各種物性值は，適切な規格及び基準又は試験等の結果に基づき設定する。ここで，原子炉本体の基砼につい ては，鋼板とコンクリートの複合構造物として，より現実 に近い適正な地震応答解析を実施する観点から，コンクリ ートの剛性変化を適切に考慮した復元力特性を設定する。復元力特性の設定に当たっては，既往の知見や実物の原子炉本体の基礎を模噯した試験体による加力試験結果を踏 まえて，妥当性，適用性を碓認するとともに，設定におけ る不確実性や保守性を考慮し，機器•配管系の設計用地震力を設定する。 なお，原子炉本体の基碇の構造強度は，鋼板のみで地震力に耐える設計とする。 機器の解析に当たつては，形状，構造特性等を考慮して，代表的な振動モードを適切に表現できるよう質点系モデ ル，有限要素モデル等に置換し，設計用床応答曲線を用い	る。 原子炉建屋については，3 次元 FEM 解析等から，建物•構築物の 3 次元応答性状及びそれによる機器•配管系への影響を評価する。 動的解析に用いる解析モデルは，地震観測網により得ら れた観測記録により振動性状の把握を行い，解析モデルの妥当性の碓認を行ら。 屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類が S クラス のもの）又は常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設の土木構造物の動的解析は，構造物と地盤の相互作用を考慮できる連成系の地震応答解析手法とし，地盤及び構造物の地震時における非線形挙動の有無や程度に応じて，線形，等価線形又は非線形解析 のいずれかにて行う。 地震力については，水平 2 方向及び鉛直方向について適切に組仅合わせて算定する。 （口）機器•配管系 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，解析条件として考慮すべき減衰定数，剛性等の各種物性值は，適切な規格及び基準又は試験等の結果に基づき設定する。ここで，原子炉本体の基礎につい ては，鋼板とコンクリートの複合構造物として，より現実 に近い適正な地震応答解析を実施する観点から，コンクリ ートの剛性変化を適切に考慮した復元力特性を設定する。復元力特性の設定に当たっては，既往の知見や実物の原子炉本体の基躄を模膨した試験体による加力試験結果を踏 まえて，妥当性，適用性を碓認するとともに，設定におけ る不確実性や保守性を考慮し，機器•配管系の設計用地震力を設定する。 なお，原子炉本体の基碳の構造強度は，鋼板のみで地震力に耐える設計とする。 機器の解析に当たっては，形状，構造特性等を考慮して，代表的な振動モードを適切に表現できるよう質点系モデ ル，有限要素モデル等に置換し，設計用床応答曲線を用い			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	たスペクトルモーダル解析法又は時刻歴応答解析法によ り応答を求める。配管系については，配管の形状や構造を考慮して，代表的な振動モードを適切に表現できるモデル を作成し，設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。スペク トルモーダル解析法及び時刻歴応答解析法の選択に当た つては，衝突，すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入れ実機の挙動を模擬する観点で，建物•構築物の剛性，地盤物性のばらつき等への配慮をし つつ時刻歴応答解析法を用いる等，解析対象とする現象，対象設備の振動特性，構造特性等を考慮し適切に選定す る。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとする。 なお，剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて地震力 を算定する。 （3）設計用減衰定数 応答解析に用いる減衰定数は，安全上適切と認められる規格及び基準，既往の振動実験，地震観測の調查結果等を考慮して適切な値を定める。 なお，建物•構築物の応答解析に用いる鉄筋コンクリー トの減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討する。 また，地盤と屋外重要土木構造物の連成系地震応答解析 モデルの減衰定数については，地中構造物としての特徴及 び同モデルの振動特性を考慮して適切に設定する。	たスペクトルモーダル解析法又は時刻歴応答解析法によ り応答を求める。 また，時刻歴応答解析法及びスペクトルモーダル解析法 を用いる場合は地盤物性等のばらつきを適切に考慮する。 スペクトルモーダル解析法には地盤物性等のばらつきを考慮した床応答曲線を用いる。 配管系については，その仕様に応じて適切なモデルに置換し，設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。 スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たつては，衝突・すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入れ実機の挙動を模擬す る観点で，建物•構築物の剛性，地盤物性のばらつきへの配慮をしつつ時刻歴応答解析法を用いる等，解析対象とす る現象，対象設備の振動特性•構造特性等を考慮し適切に選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとする。 剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価 に用いる地震力を算定する。 c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認めら れる規格及び基準に基づき，設備の種類，構造等により適切に選定するとともに，試験等で妥当性を確認した値も用 いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンク リートの減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討す る。 また，地盤と屋外重要土木構造物の連成系地震応答解析 モデルの減衰定数については，地中構造物としての特徴，同モデルの振動特性を考慮して適切に設定する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	（3）荷重の組合せ地震力と他の荷重との組合せを以下に示す。 a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物については，常時作用して いる荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施設に作用する荷重と地震力とを組 み合わせる。 （b）Sクラスの建物•構築物については，常時作用して いる荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動 S d による地震力又は静的地震力とを組み合わせ る。 （c）Bクラス及びCクラスの建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用 する荷重と動的地震力又は静的地震力とを組み合わせ る。	c．荷重の組合せ 地震と組み合わせる荷重については，「2．3 外部からの㣫撃による損傷の防止」で設定している風及び積雪による荷重を考慮し，以下のとおり設定する。 （a）建物•構築物（（c）㲹記載のものを除く。） ィ． S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準払張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物に ついては，常時作用している荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施設に作用 する荷重と地震力とを組み合わせる。 口． S クラスの建物•構築物については，常時作用してい る荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動S dによる地震力又は静的地震力とを組み合わせる。 ＊1，＊2 ホ． B クラス及び C クラスの建物•構築物並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの） か設置される重大事故等対処施設の建物•構築物につい ては，常時作用している荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合 わせる。 ＊1：S クラスの建物•構築物の設計基準事故の状態で施設 に作用する荷重については，（b）機器•配管系の考立方に沿った下記の 2 つの考え方に基づき検討した結果と して後者を踏まえ，施設に作用する荷重のらち長時間そ の作用が続く荷重と弾性設計用地震動 S d による地震力又は静的地震力とを組み合わせることとしている。こ の考え方は，JEAG4601に請ける建物•構築物の荷重の組合せの記載とも整合している。 －常時作用している荷重及び設計基準事故時の状態のらち地震によって引き起こされるおそれのある事象によっ て施設に作用する荷重は，その事故事象の繙続时間との		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	b．機器•配管系（c．に記載のものを除く。） （a）Sクラスの機器•配管系については，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。 （b）Sクラスの機器•配管系については，運転時の異常 な過渡変化時の状態及び設計基準事故時の状態のうち地震によって引き起こされるおそれのある事象によっ て施設に作用する荷重と地震力とを組み合わせる。 （c）Sクラスの機器•配管系については，運転時の異常 な過渡変化時の状態及び設計基準事故時の状態のうち地震によって引き起こされるおそれのない事象であっ ても，いつたん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及 び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。 （d）Bクラス及びCクラスの機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力とを組み合わせる。	関係を踏まえ，適切な地震力と組み合わせて考慮する。 －常時作用している荷重及び設計基準事故時の状態のらち地震によって引き起こされるおそれのない事象であっ ても，いつたん事故が発生した場合，長時間続する事象による荷重は，その事故事象の発生確率，継㸿時間及 び地震動の超過碓率の関係を踏まえ，適切な地震力と組 み合わせる。 ＊2 ：原子炉格納容器バウンダリを構成する施設について は，異常時圧力の最大値と弾性設計用地震動 $\mathrm{S} d$ による地震力とを組み合わせる。 （b）機器•配管系（（c）亿記載のものをを除く。） ィ． S クラスの機器•配管系及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準払張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準扩張）が設置される重大事故等対处施設の機器•配管系に ついては，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。 ロ．Sクラスの機器•配管系については，連転時の異常な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのある事象によって施設に作用する荷重と地震力とを組み合わせる。 ＝． S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのない事象であって も，いったん事故が発生した場合，長時間繙続する事象 による荷重は，その事故事象の発生確率，継时間及び地震動の年超過碓率の関係を踏まえ，適切な地震力と組 み合わせる。 ${ }^{*}$ へ．Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの） が設置される重大事故等対処施設の機器•配管系につい ては，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力とを組み合わせる。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	持される施設の耐震重要度分類に応じた地震力と常時作用している荷重，運転時の状態で施設に作用する荷重及びその他必要な荷重とを組み合わせる。 なお，第 1．4．1－1 表に対象となる建物•構築物及びそ の支持機能が維持されていることを検討すべき地震動等 について記載する。 （e）地震と組み合わせる自然現象として，風及び積雪を考慮し，風荷重及び積雪荷重については，施設の設置場所，構造等を考慮して，地震荷重と組み合わせる。 （4）許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている許容応力等を用いる。 a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物 i．弹性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界 「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 ただし，冷却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリにおける長期的荷重との組合せを除く。）に対しては，下記 ii ．に示す許容限界を適用する。 ii．基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力	d．許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用い る。 （a）建物•構築物（（c）に記載のものを除く。） イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物 （ －に記載のものを除く。） （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界 「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 ただし，冷却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリを構成する設備における長期的荷重との組合せを除く。）に対しては，下記イ（ロ）に示す許容限界を適用する。 （口）基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力			

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力 に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 （b）Bクラス及びCクラスの建物•構築物（（e）及び（f） に記載のものを除く。） 上記（a）i．による許容応力度を許容限界とする。 （c）耐震重要度分類の異なる施設を支持する建物•構築物（（e）及び（f）に記載のものを除く。） 上記（a）ii ．を適用するほか，耐震重要度分類の異なる施設を支持する建物•構築物が，変形等に対してその支持機能を損なわないものとする。 なお，当該施設を支持する建物•構築物の支持機能が損 なわれないことを確認する際の地震動は，支持される施設 に適用される地震動とする。 （d）建物•構築物の保有水平耐力（（e）及び（f）に記載の ものを除く。） 建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類に応じ た妥当な安全余裕を有していることを確認する。	を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成 23 年（2011 年）東北地方太平洋油地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力 に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 ロ． B クラス及び C クラスの建物•構築物（ C ，及びト， に記載のものを除く。）並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準払張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの）が設置される重大事故等対処施設の建物•構築物（ト，汇記載のものを除く。） 上記イ，（イ）による許容応力度を許容限界とする。 八。而震重要度分類の異なる施設又は設備分類の異なる重大事故等対処施設を支持する建物•横築物（へ，及び ト，に記載のものを除く。） 上記イ。（口）を適用するほか，而震重要度分類の異なる施設又は設備分類の異なる重大事故等対処施設がそれを支持する建物•構築物の変形等に対して，その支持機能を損なわないものとする。 当該施設を支持する建物•構築物の支持機能が維持され ることを確認する際の地震動は，支持される施設に適用さ れる地震動とする。 二．建物•構築物の保有水平耐力（ ，及びト，に記載の ものを除く。） 建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類又は重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類に応じた安全余裕を有 しているものとする。 ＜中略＞ 木．気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の碓保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，その機能を維持できる許容限界を適切に設定するものとする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
f．耐震重要施設は，ロ（1）（i）f．－（1）耐震重要度分類の下位のクラスに属する施設の波及的影響によって，その安全機能を損なわないように設計する。 波及的影響の評価に当たつては，敷地全体を俯瞰した調查•検討を行い，（1）（i）f．－（2）事象選定及び影響評価を行う。 （1）（i）f．－（3）なおっ，影響評価においては，耐震重要施設の設計に用いる地震動又は地震力を適用する。	c．津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物 津波防護施設及び浸水防止設備が設置された建物•構築物については，当該施設及び建物•構築物が構造物全体と しての変形能力（終局耐力時の変形）について十分な余裕 を有するとともに，その施設に要求される機能（津波防護機能及び浸水防止機能）が保持できることを確認する（評価項目はせん断ひずみ，応力等）。 浸水防止設備及び津波監視設備については，その設備に要求される機能（浸水防止機能及び津波監視機能）が保持 できることを確認する。 ＜中略＞ 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （9）耐震重要施設は，耐震重要度分類の下位のクラスに属するものの波及的影響によって，その安全機能を損な わないように設計する。 1．4．1．5 設計における留意事項 耐震重要施設は，耐震重要度分類の下位のクラスに属す る施設（以下「下位クラス施設」という。）の波及的影響 によって，その安全機能を損なわないように設計する。 波及的影響については，耐震重要施設の設計に用いる地震動又は地震力を適用して評価を行ら。 なお，地震動又は地震力の選定に当たつては，施設の配置状況，使用時間等を踏まえて適切に設定する。また，波及的影響においては水平2方向及び鉛直方向の地震力が同時に作用する場合に影響を及ぼす可能性のある施設及 び設備を選定し評価する。 波及的影響の評価に当たつては，以下（1）～（4）をもと に，敷地全体を俯瞰した調查•検討を行い，耐震重要施設 の安全機能への影響がないことを確認する。	（c）津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置された建物•構築物 津波防護施設及び浸水防止設備が設置された建物•構築物については，当該施設及び建物•構築物が構造物全体と しての変形能力（終局耐力時の変形）及び安定性について十分な余裕を有するとともに，その施設に要求される機能 （津波防護機能及び浸水防止機能）が保持できるものとす る（評価項目はせん断ひずみ，応力等）。 浸水防止設備及び津波監視設備については，その設備に要求される機能（浸水防止機能及び津波監視機能）が保持 できるものとする。 （5）設計における留意事項 a．波及的影響 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（以下「上位クラス施設」という。）は， ■（1）（i）f．－①下位クラス施設の波及的影響によって，そ の安全機能及び重大事故等に対処するために必要な機能 を損なわない設計とする。 （1）（i）f．－（3）波及的影響については，耐震重要施設の設計に用いる地震動又は地震力を適用して評価を行う。 なお，地震動又は地震力の選定に当たつては，施設の配置状況，使用時間等を踏まえて適切に設定する。また，波及的影響においては水平 2 方向及び鉛直方向の地震力が同時に作用する場合に影響を及ぼす可能性のある施設，設備 を選定し評価する。 波及的影響の評価に当たつては，敷地全体を俯瞰した調查•検討等を行う。 ここで，下位クラス施設とは，上位クラス施設以外の発電所内にある施設（資機材等含む。）をいう。 波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保安規定に定めて管理する。 （1）（i）f．－（2）耐震重要施設に対する波及的影響につい	設計及び工事の計画の ロ（1）（i）f．－（1）は，設置変更許可申請書（本文 （五号））の（1）（i）f． －（1）と同義であり整合 している。 設計及び工事の計画の ロ（1）（i ）f．－（2）a，ロ（1） （ i ）f．－（2）b，\quad（1）（ i ） f．－（2）c及びロ（1）（i ）f． －（2）dは，設計及び工事 の計画の日（1）（i）f． （2）を具体的に記載して おり，設計及び工事の計画の（1）（i ）f．－（2）は，設置変更許可申請書（本文（五号））の回（1）（i） f．－（2）を具体的に記載 しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
g．設計基準対象施設は，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位よ り保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	とを確認する。 b ．耐震重要施設の設計に用いる地震動又は地震力に対し て，耐震重要施設の周辺斜面が崩壊しないことを確認す る。 なお，上記（1）～（4）の検討に当たっては，溢水及び火災 の観点からも波及的影響がないことを確認する。 上記の観点で検討した波及的影響を考慮する施設を，第 1．4．1－1表中に「波及的影響を考慮すべき施設」として記載する。 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （11）設計基準対象施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，そ の機能を考慮した設計用地下水位を設定し水圧の影響 を考慮する。地下水位低下設備の効果が及ばない範囲に おいては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	b．主要施設への地下水の影響 防潮堤下部の地盤改良等により山から海に向から地下水の流れが遮断され，敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，原子炉建屋等に作用 する揚圧力の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的とし，地下水位を一定の範囲に保持す るために，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアに地下水位低下設備を各エリア 2 系統設置する。耐震評価において，地下水位の影響を受ける施設等について，地下水位低下設備の効果が及ぶ範囲 （O．P．＋14．8m 盤）においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位よ り保守的に設定した水位又は地表面にて設計用地下水位 を設定し水圧の影響を考慮する。 地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水ポンプ，配管，水位計，制御盤，電源（ディーゼル発電機），電源盤及び電路により系統を構成する。 地下水位低下設備は，ドレーン及び接続桝により揚水井戸に地下水を集水し，揚水ポンプ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$ 個，揚程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，揚水ポンプに接続さ れた配管を通して地下水を屋外排水路へ排水する。 揚水ポンプは，地下水の最大流入量を排水可能な容量を有する設計とし，設備の信頼性向上のため 100% 容量のポ ンプを 1 系統当たり 2 個（計 8 個）設置し，集水した地下水を排水できる設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		地下水位低下設備は，1 系統当たり 3 個（計 12 個）設置			
		した水位計からの水位信号を用いて， 2 out of 3 論理によ			
		り揚水ポンプの自動起動及び自動停止を行らことで，揚水			
		井戸の水位を自動で制御できる設計とする。また，各系統			
		の水位を，原子炬建屋及び中央制御室に設置した制御盤か			
		ら監視可能な設計とする。水位や設備の異常時には，これ			
		らを碓実に検出して自動的に中央制御室に警報（水位低又			
		は高，水位高高，過負荷等）を発信する装置を設けるとと			
		もに，表示ランプの点灯，ブザー鳴動等により運転員に通			
		報できる設計とする。			
		制御盤は， 2 系統の独立した設備を 1 系統当たり現場及			
		び中央制御室に 1 面ずつ設置し，原子炬建屋•制御建屋工			
		リア及び第3号機海水熱交換器建屋エリアのそれぞれ 1 系			
		統の設備ごとに，監視•制御可能な設計とする。			
		地下水位低下設備は，電源盤（容量 296kVA），及び電路			
		を設置し，非常用交流電源設備である非常用ディーゼル発			
		電機及び常設代替交流電源設備であるガスタービン発電			
		機から設備に必要な電力を供給できる設計とする。			
		電源盤は，2 系䖻の独立した設備を 1 系䖻当たり 1 面ず			
		つ設置し，原子灯建屋•制御建屋エリア及び第3号機海水			
		熱交器建屋エリアのそれぞれ 1 系統の設借ごとに電力を			
		供給できる設計とする。			
		揚水ポンプ，配管及び水位計は揚水井戸内に設置し，揚			
		水井戸により支持するとともに，掦水井戸上部に蒠を設置			
		することで，外部事象の影響を受けない設計とする。			
		地下水位低下設備は，地震時及び地震後を含む，原子力			
		発電所の供用期間の全ての状態において機能維持を可能			
		とするため，基準地震動S s による地震力に対して機能維			
		持する設計とする。			
		また，「実用発電用原子炉及びその附属施設の位置，構			
		造及び設備の基準に関する規則」第十二条第 2 項に基づき，			
		地下水位低下設備を設置する原子炬建屋•制御建屋エリア			
		及び第3号機海水熱交換器建屋エリアの各エリアで，多重			
		性及び独立性を備える設計とするとともに，外部事象等に			
		よる機能㖵失要因に対し機能維持する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		震重要度分類」という。）し，それぞれに応じた地震力 に十分耐えられる設計とする。 重大事故等対処施設については，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて，常設耐震重要重大事故防止設備が設置される重大事故等対処施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設 （特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備が設置される重大事故等対処施設，常設重大事故防止設備（設計基準拡張）か設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同 じ。）及び可搬型重大事故等対処設備に分類する。 重大事故等対処施設のらち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される地震力 に十分に耐えることができる設計とする。 常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基準払張）が設置される重大事故等対処施設の両方に属する重大事故等対処施設については，基準地震動 S s による地震力を適用 するものとする。 重大事故等対処施設のらち，常設重大事故防止設備（設計基準拡掁）（当該設備が属する耐震重要度分類が B クラ ス又はCクラスのもの）が設置される重大事故等対処施設 は，当該設備が属する耐震重要度分類のクラスに適用され る地震力に十分に耐えることができる設計とする。 常設重大事故防止設備（設計基準抁張）（当該設備が属 する耐震重要度分類がBクラス又はCクラスのもの）が設置される重大事故等対処施設と常設重大事故緩和設備又 は常設重大事故緩和設備（設計基準払張）か設置される重大事故等対処施設の両方に属する重大事故等対处施設に ついては，基準地震動S s による地震力を適用するものと する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
常設重大事故防止設備（設計基準拡張）（当該設備が属す る耐震重要度分類がBクラス又はCクラスのもの）が設置 される重大事故等対処施設は，当該設備が属する耐震重要度分類のクラスに適用される地震力に十分に耐えること ができるように設計する。 （1）（ii）c．－（1）なお，Bクラス施設の機能を代替する虽設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設のうち，共振のおそれ のある施設又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラス のもの）が設置される重大事故等対処施設が属する耐震重要度分類が B クラスのもののうち，共振のおそれのある施設については，弾性設計用地震動 S d に 2 分の 1 を乗じた地震動によりその影響についての検討を行う。建物•構築物及び機器•配管系ともに，おおむね弾性状態にとどまる範囲で耐えられるように設計する。	（4）常設重大事故防止設備（設計基準拡張）が設置され る重大事故等対処施設（特定重大事故等対処施設を除 く。） 当該設備が属する耐震重要度分類のクラスに適用され る地震力に十分に耐えることができるように設計する。	止設備が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の両方に属する重大事故等対処施設については，基準地震動S s による地震力を適用 するものとする。 重大事故等対処施設のうち，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラ ス又はCクラスのもの）が設置される重大事故等対処施設 は，当該設備が属する耐震重要度分類のクラスに適用され る地震力に十分に耐えることができる設計とする。 常設重大事故防止設備（設計基準拡張）（当該設備が属 する耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設と常設重大事故緩和設備又 は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の両方に属する重大事故等対処施設に ついては，基準地震動S s による地震力を適用するものと する。 なお，特定重大事故等対処施設に該当する施設は本申請 の対象外である。 （1）耐震設計の基本方針 f．（1）（ii）c．－（1）B タラスの施設は，，静的地震力に対し ておおむね弾性状態にとどまる範囲で耐えられる設計 とする。 また，共振のおそれのある施設については，その影響に ついての検討を行ら。その場合，検討に用いる地震動は，弾性設計用地震動 S d に 2 分の 1 を乗じたものとする。な お，当該地震動による地震力は，水平 2 方向及び鉛直方向 について適切に組み合わせて算定するものとする。 C クラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐えられる設計とする。 （1）（ii）c．－（1）b 常設耐震重要重大事故防止設備以外の虽設重大事故防止設備が設置される重大事故等対処施設 は，上上記に示す，代賛する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される地震力に対して，おおむね弾性状態にとどまる範囲で耐えられ	設計及び工事の計画の （1）（ii）c．－（1）b及び回 （1）（ii）c．－（1）cに記載 した「上記に示す・••」 は，設計及び工事の計画 の（1）（ii）c．－（1）「Вク ラスの施設」であり，か つ，設置変更許可申請書 （本文（五号））の（1） （ ii ）c．－（1）を含んでお り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
建物•構築物については，構造物全体としての変形能力 （終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有するように設計する。機器•配管系については，その施設に要求され る機能を保持するように設計し，塑性ひずみが生じる場合 であっても，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように，また，動的機器等については，基準地震動S s による応答に対して，その設備に要求される機能を保持するように設計する。 e．可搬型重大事故等対処設備は，地震による周辺斜面の崩壊，『（1）（ii）e．－（1）溢水，火災等の影響を受けない場所に適切に保管する。	なお，本施設と（2）の両方に属する重大事故等対処施設 については，基準地震動 S s による地震力を適用するもの とする。 （5）可搬型重大事故等対処設備 地震による周辺斜面の崩壊，溢水，火災等の影響を受け ない場所に適切に保管する。	いように設計する。 建物•構築物については，構造物全体としての変形能力 （終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計と する。機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生じる場合であって も，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼ さない，また，動的機器等については，基準地震動 S s に よる応答に対して，その設備に要求される機能を保持する設計とする。なお，動的機能が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往 の研究等で機能維持の確認がなされた機能確認済加速度等を超えていないことを確認する。 h．可搬型重大事故等対処設備については，地震による周辺斜面の崩壊（1）（ii）e．－（1）等の影響を受けないように「5．1．5 環境条件等」に基づく設計とする。．． 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．5 環境条件等 （4）周辺機器等からの悪影響 ＜中略＞ （1）（ii）e．－（1）重大事故等対処設備は，事故対応のため に配置•配備している自主対策設備を含む周辺機器等から の悪影響により機能を損なわない設計とする。周辺機器等 からの悪影響としては，地震，火災及び溢水による波及的影響を考盧する。．．． ＜中略＞ 2．自然現象 2.1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 d．S クラスの施設（e．に記載のもののうち，津波防護施	設計及び工事の計画の （1）（ii）e．－（1）「5． 1 ． 5 環境条件等」は，「火災及び溢水」を考慮して いるため，設置変更許可申請書（本文（五号）） の（1）（ii）e．－（1）を含 んでおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
g．ロ（1）（ii）g．－（1）重大事故等対処施設を津波から防櫵す るための津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動S s による地震力に対して，それぞれの施設及び設備に要求される機能が保持できるように設計する。	（9）重大事故等対処施設を津波から防護するための津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動 S s に よる地震力に対して，それぞれの施設及び設備に要求さ れる機能が保持できるように設計することとし，「1．4．1設計基準対象施設の耐震設計」に示す津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物の設計方針に基づき設計する。 1．4．2．3 地震力の算定方法 重大事故等対処施設の耐震設計に用いる地震力の算定方法は，「1．4．1．3 地震力の算定方法」に示す設計基準対象施設の静的地震力，動的地震力及び設計用減衰定数に ついて，以下のとおり適用する。 （1）静的地震力 常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類がBクラス又はCクラスの もの）が設置される重大事故等対処施設について， 「1．4．1．3 地震力の算定方法」の「（1）静的地震力」に示すBクラス又はCクラスの施設に適用する静的地震力 を適用する。	分類のクラスに適用される地震力に対して，おおむむ数弾性状態にとどまる範囲で耐えられる設計とする。 e．屋外重要土木構造物，区（1）（ii）g．－（1）䢖波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動 S s による地震力に対して，構造物全体として変形能力（終局耐力時の変形）について十分な余裕を有するとともに，それぞれ の施設及び設備に要求される機能が保持できる設計と する。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物は，基準地震動 S s による地震力に対し て，重大事故等に対処するために必要な機能が損なわれる おそれがない設計とする。 （3）地震力の算定方法耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 <中略> 重大事故等対処施設については，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設に，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される静的地震力を，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスの もの）が設置される重大事故等対処施設に，当該設備が属 する耐震重要度分類のクラスに適用される静的地震力を， それぞれ適用する。	設計及び工事の計画の （1）（ii）g．－（1）は，設置変更許可申請書（本文 （五号））の（1）（ii）g． －（1）を含んでおり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
	（3）設計用減衰定数 「1．4．1．3 地震力の算定方法」の「（3）設計用減衰定数」を適用する。 1．4．2．4 荷重の組合せと許容限界 重大事故等対処施設の耐震設計における荷重の組合せ と許容限界は以下による。 （1）耐震設計上考慮する状態地震以外に設計上考慮する状態を次に示す。 a．建物•構築物 （a）運転時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 a．建物•構築物」に示す「（a）運転時の状態」を適用する。 （b）設計基準事故時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 a．建物•構築物」に示す「（b）設計基準事故時の状態」を適用する。 （c）重大事故等時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故	c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認めら れる規格及び基準に基づき，設備の種類，構造等により適切に選定するとともに，試験等で妥当性を確認した値も用 いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンク リートの減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討す る。 また，地盤と屋外重要土木構造物の連成系地震応答解析 モデルの減衰定数については，地中構造物としての特徴，同モデルの振動特性を考慮して適切に設定する。 （4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下によ る。 a．耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ．～ハ．の状態，重大事故等対処施設については以下のイ．～ニ，の状態を考慮する。 イ．運転時の状態 発電用原子炉施設が運転状態にあり，通常の自然条件下 におかれている状態。 ただし，運転状態には通常運転時，運転時の異常な過渡変化時を含むものとする。 口．設計基準事故時の状態 発電用原子炬施設が設計基準事故時にある状態。 八．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 二．重大事故等時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。 （d）設計用自然条件 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 a．建物•構築物」に示す「（c）設計用自然条件」を適用する。 b．機器•配管系 （a）通常運転時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 b ，機器•配管系」に示す「（a）通常運転時の状態」を適用する。 （b）運転時の異常な過渡変化時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 b ，機器•配管系」に示す「（b）運転時の異常な過渡変化時の状態」を適用する。 （c）設計基準事故時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 b ，機器•配管系」に示す「（c）設計基淮事故時の状態」を適用する。 （d）重大事故等時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。 （e）設計用自然条件 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設	又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。 （b）機器•配管系 設計基準対象施設については以下のイ．～ニ．の状態，重大事故等対処施設については以下のイ．～ホ，の状態を考慮する。 イ．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁に行われた場合であって運転条件が所定の制限値以内にある運転状態。 口．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若 しくはその誤作動又は運転員の単一の誤操作及びこれら と類似の頻度で発生すると予想される外乱によって発生 する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著しい損傷が生じ るおそれがあるものとして安全設計上想定すべき事象が発生した状態。 八．設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態であって，当該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放出するおそれがあるものと して安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 ホ．重大事故時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	計上考慮する状態 b ，機器•配管系」に示す「（d）設計用自然条件」を適用する。 （2）荷重の種類 a．建物•構築物 （a）発電用原子炉のおかれている状態にかかわらず常時作用している荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 （b）運転時の状態で施設に作用する荷重 （c）設計基準事故時の状態で施設に作用する荷重 （d）重大事故等時の状態で施設に作用する荷重 （e）地震力，風荷重，積雪荷重等 ただし，運転時の状態，設計基準事故時の状態及び重大事故等時の状態での荷重には，機器•配管系から作用する荷重が含まれるものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等による荷重が含まれる ものとする。 b．機器•配管系 （a）通常運転時の状態で施設に作用する荷重 （b）運転時の異常な過渡変化時の状態で施設に作用する荷重 （c）設計基準事故時の状態で施設に作用する荷重 （d）重大事故等時の状態で施設に作用する荷重 （e）地震力，風荷重，積雪荷重等 （3）荷重の組合せ地震力と他の荷重との組合せを以下に示す。	b．荷重の種類 （a）建物•構築物 設計基準対象施設については以下のイ，～ニ。の荷重，重大事故等対処施設については以下のイ。～ホ，の荷重とす る。 イ．発電用原子炉のおかれている状態にかかわらず常時作用している荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 ロ．運転時の状態で施設に作用する荷重 八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ホ．重大事故等時の状態で施設に作用する荷重 ただし，運転時の状態，設計基準事故時の状態及び重大事故等時の状態での荷重には，機器•配管系から作用する荷重が含まれるものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等による荷重が含まれる ものとする。 （b）機器•配管系 設計基準対象施設については，以下のイ，～ニ。の荷重，重大事故等対処施設については以下のイ。～ホ，の荷重と する。 イ．通常運転時の状態で施設に作用する荷重 ロ．運転時の異常な過渡変化時の状態で施設に作用する荷重 八．設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ホ，重大事故等時の状態で施設に作用する荷重 c．荷重の組合せ 地震と組み合わせる荷重については，「2．3 外部からの衝撃による損傷の防止」で設定している風及び積雪による			

設置変更許可申請書（ ${ }^{\text {（ }}$ 本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	まえ，適切な地震力（基準地震動 S s 又は弾性設計用地震動S dによる地震力）と組み合わせる。この組合せに ついては，事故事象の発生確率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案の上設定する。 なお，継続時間については対策の成立性も考慮した上で設定する。 以上を踏まえ，原子灲格納容器バウンダリを構成する施設（原子炉格納容器内の圧力，温度の条件を用いて評価を行らその他の施設を含む。）については，いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S dによる地震力とを組み合わせ，その状態から さらに長期的に継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。また，その他の施設に ついては，いつたん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。 （d）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と，動的地震力又は静的地震力 とを組み合わせる。 b．機器•配管系 （a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設	まえ，適切な地震力（基準地震動S s 又は弾性設計用地震動S dによる地震力）と組み合わせる。この組合せに ついては，事故事象の発生碓率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継㸿時間については対策の成立性も考慮した上で設定する。 以上を踏まえ，原子炉格納容器バウンダリを構成する施設（原子炉格納容器内の圧力，温度の条件を用いて評価を行らその他の施設を含む。）については，いつたん事故が発生した場合，長時間繙続する事象による荷重と弾性設計用地震動S dによる地震力とを組み合わせ，その状態から さらに長期的に継続する事象による荷重と基準地震動S sによる地震力を組み合わせる。なお，格納容器破損モー ドの評価シナリオのらち，原子炉圧力容器が破損する評価 シナリオについては，重大事故等対処設備による原子炋注水は実施しない想定として評価しており，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炬注水により炬心損傷の回避が可能であることから荷重条件として考慮しない。 また，その他の施設については，いったん事故が発生し た場合，長時間繗㸿する事象による荷重と基準地震動S s による地震力とを組み合わせる。 ホ．B クラス及びCクラスの建物•構築物並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの） が設置される重大事故等対処施設の建物•構築物につい ては，常時作用している荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合 わせる。 ＜中略＞ （b）機器•配管系（（c）に記載のものを除く。） 1．Sクラスの機器•配管系及び常設而震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拚張）（当誩設備が属する耐震重要度分類がS			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	せについては，事故事象の発生確率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案 の上設定する。 なお，継続時間については対策の成立性も考慮した上で設定する。 以上を踏まえ，重大事故等時の状態で作用する荷重と地震力（基準地震動 S s 又は弾性設計用地震動S d による地震力）との組合せについては，以下を基本設計とする。 原子炉冷却材圧力バウンダリを構成する設備について は，いったん事故が発生した場合，長時間継続する事象に よる荷重と弾性設計用地震動S d による地震力とを組み合わせ，その状態からさらに長期的に継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。 原子炉格納容器バウンダリを構成する設備（原子炉格納容器内の圧力，温度の条件を用いて評価を行うその他の施設を含む。）については，いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S d による地震力とを組み合わせ，その状態からさらに長期的 に継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。 その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動 S s によ る地震力とを組み合わせる。 （d）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設の機器•配管系については，通常運転時の状態又は運転時の異常な過渡変化時の状態で作用する荷重と動的地震力又は静的地震力とを組み合わせる。	の組合せについては，事故事象の発生碓率，䋊続時間及 び地震動の年超過確率の積等を考慮し，工学的，総合的 に勘案の上設定する。 なお，継続時間については対策の成立性も考慮した上で設定する。 以上を踏まえ，重大事故等時の状態で作用する荷重と地震力（基準地震動S s 又は弾性設計用地震動S d による地震力）との組合せについては，以下を基本設計とする。 原子炉冷却材圧カバウンダリを構成する設備について は，いつたん事故が発生した場合，長時間継続する事象に よる荷重と弾性設計用地震動S d こよる地震力とを組み合わせ，その状態からさらに長期的に䋛続する事象による荷重と基準地震動S s による地震力とを組み合わせる。 原子炉格納容器バウンダリを構成する設備（原子炉格納容器内の圧力，温度の条件を用いて評価を行らその他の施設を含む。）については，いつたん事故が発生した場合，長時間䋛㸿する事象による荷重と弾性設計用地震動S d による地震力とを組み合わせ，その状態からさらに長期的 に継続する事象による荷重と基準地震動 S s による地震力とを組み合わせる。 なお，格納容器破損モードの評価シナリオのらち，原子炉圧力容器が破損する評価シナリオについては，重大事故等対処設備による原子炬注水は実施しない想定として評価しており，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉注水により炬心損傷の回避が可能であることから荷重条件として考慮しない。 その他の施設については，いったん事故が発生した場合，長時間繙続する事象による荷重と基準地震動S s によ る地震力とを組み合わせる。 へ．Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの） が設置される重大事故等対処施設の機器•配管系につい ては，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，			

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	c．荷重の組合せ上の留意事項 （a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抎張）が設置される重大事故等対処施設に作用する地震力のらち，動的地震力につ いては，水平 2 方向と鉛直方向の地震力とを適切に組み合わせ算定するものとする。 （b）ある荷重の組合せ状態での評価が明らかに厳しいこ とが判明している場合には，その他の荷重の組合せ状態 での評価は行わないことがある。 （c）複数の荷重が同時に作用する場合，それらの荷重に よる応力の各ピークの生起時刻に明らかなずれがある ことが判明しているならば，必ずしもそれぞれの応力の ピーク値を重ねなくてもよいものとする。 （d）重大事故等対処施設を支持する建物•構築物の当該部分の支持機能を確認する場合においては，支持される施設の設備分類に応じた地震力と常時作用している荷重，重大事故等時の状態で施設に作用する荷重及びその他必要な荷重とを組み合わせる。 （4）許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている許容応力等を用いる。	動的地震力又は静的地震力とを組み合わせる。 ト．炉心内の燃料被覆管の放射性物質の閉じ込めの機能 の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のう ち地震によって引き起こされるおそれのある事象によ って燃料被覆管に作用する荷重と地震力とを組み合わ せる。 ＊3：原子灲格納容器バウンダリを構成する設備について は，異常時圧力最大値と弾性設計用地震動 S d による地震力とを組み合わせる。 （d）荷重の組合せ上の留意事項動的地震力については，水平 2 方向と鉛直方向の地震力 とを適切に組み合わせ算定するものとする。 d．許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用い る。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	界」に示すBクラス及びCクラスの建物•構築物の許容限界を適用する。 （c）設備分類の異なる重大事故等対処施設を支持する建物•構築物（（e）及び（f）に記載のものを除く。） 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示す耐震重要度分類の異なる施設を支持する建物•構築物の許容限界を適用する。 なお，適用に当たっては，「耐震重要度分類」を「設備分類」に読み替える。 （d）建物•構築物の保有水平耐力（（e）及び（f）に記載の ものを除く。） 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示す建物•構築物の保有水平耐力に対する許容限界 を適用する。 なお，適用に当たっては，「耐震重要度分類」を「重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラス」に読み替える。 ただし，常設重大事故緩和設備又は常設重大事故緩和設備 （設計基準拡張）が設置される重大事故等対処施設につい ては，当該クラスをSクラスとする。 （e）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準扩張）が設置される重大事故等対処施設の土木構造物 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示す屋外重要土木構造物の基準地震動 S s による地震力との組合せに対する許容限界を適用する。	八。耐震重要度分類の異なる施設又は設備分類の異なる 重大事故等対処施設を支持する建物•構築物（ 。及び ト，に記載のものを除く。） 上記イ，（ロ）を適用するほか，耐震重要度分類の異なる施設又は設備分類の異なる重大事故等対処施設がそれを支持する建物•構築物の変形等に対して，その支持機能を損なわないものとする。 当該施設を支持する建物•構築物の支持機能が維持され ることを確認する際の地震動は，支持される施設に適用さ れる地震動とする。 二．建物•構築物の保有水平耐力（ $へ$ 。及びト．に記載の ものを除く。） 建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類又は重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類に応じた安全余裕を有 しているものとする。 ここでは，常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設に ついては，上記における重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類をSクラスとする。 木．気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，その機能を維持できる許容限界を適切に設定するものとする。 へ。 屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S ク ラスのもの）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設の土木構造物 （イ）静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （口）基準地震動 S s による地震力との組合せに対する			

設置変更許可申請書（ ${ }^{\text {a }}$（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	（f）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラ スのもの）が設置される重大事故等対処施設の土木構造物 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すその他の土木構造物の許容限界を適用する。 b．機器•配管系	許容限界 構造部材の曲げについては限界層間変形角，限界ひず み，降伏曲げモーメント又は許容応力度，構造部材のせん断についてはせん断耐力，許容応力度又は限界せん断ひず みに対して，妥当な安全余裕を持たせることとする。 3 次元静的材料非線形解析により評価を行らもの等，ひ ずみを許容值とする場合は，構造物の要求機能に応じた許容値に対し妥当な安全余裕を持たせることとする。 ト，その他の土木構造物及び常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの）が設置される重大事故等対処施設の土木構造物 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （b）機器•配管系（（c）に記載のものを除く。） イ．Sクラスの機器•配管系 （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまるものとす る（評価項目は応力等）。 ただし，冷却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリ及び非常用炉心泠却設備等 における長期的荷重との組合せを除く。）に対しては，下記イ。（ロ）に示す許容限界を適用する。 （ロ）基準地震動 S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能又は電気的機能が要求される機器については，基準地震動 S s による応答に対 して，実証試験等により確認されている機能確認済加速度等を許容限界とする。 口．常設耐震重要重大事故防止設備，常設重大事故緩和			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
h．ロ（1）（ii）h．－（1）上記b，及びd．の施設は，（1）（ii）h．－ （2） B クラス及びCクラスの施設，上記 c ．－の施設，上記 e．の設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準掋張）及 び常設重大事故緩和設備（設計基漼拡張）のいずれにも属さない常設の重大事故等対処施設の波及的影響によ つて，重大事故等に対処するために必要な機能を損なわ ないように設計する。	設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すSクラスの機器•配管系の基準地震動S s によ る地震力との組合せに対する許容限界を適用する。 ただし，原子炉格納容器バウンダリを構成する設備，非常用炉心冷却設備等の弾性設計用地震動 S d と設計基準事故時の状態における長期的荷重との組合せに対する許容限界は，「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すSクラスの機器•配管系の弾性設計用地震動 S d による地震力又は静的地震力との組合せに対す る許容限界を適用する。 （b）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラ スのもの）が設置される重大事故等対処施設の機器•配管系 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すBクラス及びCクラスの機器•配管系の許容限界を適用する。 1．4．2．1 重大事故等対処施設の耐震設計の基本方針 （10）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設が，Bクラス及びCクラスの施設，常設耐震重要重大事故防止設備以外の虽設重大事故防止設備又は虽設重大事故防止設備（設計基蕉掋張）（当該設備 が属する耐震重要度分類がBクラス又はCクラスのも の）が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及 び常設重大事故緩和設備（設計基蕉扩張）のいずれにも。属さない常設の重大事故等対処施設の波及的影響によ つて，重大事故等に対処するために必要な機能を損なわ	設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系 イ．（ロ）に示す許容限界を適用する。 ただし，原子炉格納容器バウンダリを構成する設備及び非常用炉心冷却設備等の弹性設計用地震動 S d と設計基準事故時の状態における長期的荷重との組合せに対する許容限界は，イ．（イ）に示す許容限界を適用する。 八。 B クラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類B クラス又はC クラスのもの）が設置される重大事故等対処施設の機器•配管系 応答が全体的におおむね弾性状態にとどまることとす る（評価項目は応力等）。 （1）耐震設計の基本方針 g．耐震重要施設及びロ（1）（ii）h．－（1）常設耐震重要重大事故防止設備，，常設重大事故緩和設備，常設重大事故防止設備（設計基漼拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は虽設重大事故緩和設備（設計基準掋張）が設置される重大事故等対処施設が，回 （1）（ii）h．－（2）それ以外の発電所内にある施設（資機材等含等。）の波及的影響によって，その安全機能及び重大事故等に対処するために必要な機能を損なわない設計 とする。	設計及び工事の計画の ロ（1）（ii）h．－（1）は，設置変更許可申請書（本文 （五号））の（1）（ ii ）h． －（1）「b．常設耐震重要重大事故防止設備又は常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのも の）が設置される重大事故等対処施設（特定重大事故等対処施設を除 く。）」及び「d．常設重	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
波及的影響の評価に当たつては，敷地全体を俯酷した調查•検討を行い，（1）（ii）h．－（3）事象選定及び影響評価を行5。．．． ぴd．の施設の設計に用いる地震動又は地震力を適用す る。	耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設」に， 「安全機能」を「重大事故等に対処するために必要な機能」 に読み替える。 なお，耐震重要度分類の下位のクラスに属する施設の波及的影響については，Bクラス及びCクラスの施設に加 え，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスの もの）が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拚張）のいずれにも属さな い常設の重大事故等対処施設の影響についても評価する。 また，可搬型重大事故等対処設備については，地震によ る周辺斜面の崩壊，溢水，火災等の影響を受けない場所に適切な保管がなされていることを併せて確認する。	重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（以下「上位クラス施設」という。）は，下位クラス施設の波及的影響によって，その安全機能及び重大事故等に対処するために必要な機能を損なわない設計とする。 （1）（ii）h．－（4）波及的影響については，耐震重要施設の設計に用いる地震動又は地震力を適用して評価を行う。 な お，地震動又は地震力の選定に当たっては，施設の配置状況，使用時間等を踏まえて適切に設定する。また，波及的影響においては水平 2 方向及び鉛直方向の地震力が同時に作用する場合に影響を及ぼす可能性のある施設，設備を選定し評価する。 波及的影響の評価に当たつては，敷地全体を俯敢した調查•検討等を行う。 ここで，下位クラス施設とは，上位クラス施設以外の発電所内にある施設（資機材等含む。）をいう。 波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保安規定に定めて管理する。 耐震重要施設に対する波及的影響については，以下に示 す（a）～（d）の 4 つの事項から検討を行う。 なお，原子力発電所の地震被害情報等から新たに検討す べき事項が抽出された場合には，これを追加する。 （1）（ii）h．－（3）虽設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基蕉搪張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は常設重大事故緩和設備（設計基漼拡張）が設置される重大事故等対処施設に対する波及的影響については，以下に示す（a）～（d）の 4 つの事項について「耐震重要施設」を「虽設耐震重要重大事故防止設備，常設重大事故緩和設備，，虽設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基漼摭張）が設置される重大事故等対処施設」 に，「安全機能」を「重大事故等に対処するために必要な機能」に読み替えて適用する。 （a）（1）（ii）h．－（3）a 設置地盤及び地震底答性状の相違等 に起因する不等沈下又は相対変位による影響	設計及び工事の計画の ロ（1）（ii）h．－（3）a，ロ（1） （ii ）h．－（3）b，（1）（ii） h．－（3）c及びロ（1）（ii）h． －（3）dは，設計及び工事 の計画の日（1）（ii）h．－ （3）を具体的に記載して おり，設計及び工事の計画の■（1）（ii）h．－（3）は，設置変更許可申請書（本文（五号））の口（1）（ii） h．－（3）を具体的に記載 しており整合している。 設計及び工事の計画の （1）（ii）h．－（4）は，設置変更許可申請書（本文 （五号））の（1）（ii）h． （4）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		水井戸により支持するとともに，揚水井戸上部に监を設置			
		することで，外部事象の影響を受けない設計とする。			
		地下水位低下設備は，地震時及び地震後を含む，原子力			
		発電所の供用期間の全ての状態において機能維持を可能			
		とするため，基準地震動S s による地震力に対して機能維			
		持する設計とする。			
		また，「実用発電用原子炉及びその附属施設の位置，構			
		造及ひ設備の基準に関する規則」第十二条第 2 項に基づき，			
		地下水位低下設備を設置する原子炬建屋•制御建屋エリア			
		及び第3号機海水熱交換器建屋エリアの各エリアで，多重			
		性及び独立性を備える設計とするとともに，外部事象等に			
		よる機能電失要因に対し機能維持する設計とする。			
		地下水位低下設備の機能喪失が発生した場合を想定し，			
		復旧措置に必要な資機材として，原子炬建屋•制御建屋エ			
		リア及び第3号機海水熱交換器建屋エリアにおける全ての			
		地下水位低下設備の機能喪失を考慮し，予備品及び可搬术			
		ンプ（個数3，容量 $114 \mathrm{~m}^{3} / \mathrm{h} /$ 個（計 $\left.342 \mathrm{~m}^{3} / \mathrm{h}\right)$ ）を搭載した			
		可搬ポンプユニット（個数 2 ）を配備する。			
		予備品は，復旧措置にあたり機器の交換が必要な場合に			
		備え，各エリアを1系統復旧できる数量を配備する。			
		可搬ポンプユニットは，各エリアの排水機能の維持を可			
		能とする配備数とし，高台の堅固な地盤に外部事象を考慮			
		して分散配置する。			
		地下水位低下設備は，保安規定において運転上の制限を			
		設定し，地下水位を一定の範囲に保持できない場合又はそ			
		のおそれがある場合には，可搬ポンプニニットによる水位			
		低下措置を速やかに開始するとともに，原子炉を停止す			
		また，地下水位低下設備の復旧措置に的碓かつ柔軟に対処			
		できるように，復旧措置に係る資機材の配備，手順書及び			
		体制の整備並びに教育訓練の実施方針を自然災害発生時			
		等の体制の整備及び重大事故等発生時の体制の整備とし			
		て，保安規定に定めた上で，社内規定に定める。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
a．．．．設計基集対象施設の津波防護対象設備（韭掌用取水設備を除く。）を内包する建屋及び区画の設置された數地 において，基漼津波による遡上波を地上部から到達又は流入させない設計とする。また，取水路，放水路等の経路から流入させない設計とする。具体的な設計内容を以下に示す。	10．6．1．1．2 設計方針 設計基準対象施設は，基準津波に対して安全機能が損な われるおそれがない設計とする。 耐津波設計に当たっては，以下の方針とする。 （1）設計基蕉対象施設の津波防護対象設備（非虽用取水設備を除く。）を内包する建屋及び区画の設置された敷地において，基準津波による遡上波を地上部から到達又 は流入させない設計とする。また，取水路，放水路等の経路から流入させない設計とする。具体的な設計内容を以下に示す。	の設備は損傷した場合を考慮して，代替設備により必要な機能を確保する等の対応を行う設計とする。これより，津波から防護すべき施設は，設計基準対象施設のらち「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されている巴（2）（i）－3 クラス 1 及びクラ ス2に該当する構築物，系統及び機器（以下「津波防櫵対象設備」という。）とする。 津波防護対象設備の防護設計においては，津波により津波防護対象設備に波及的影響を及ぼすおそれのある津波防護対象設備以外の施設についても考慮する。 また，重大事故等対処施設及び可搬型重大事故等対処設備についても，設計基準対象施設と同時に必要な機能が損 なわれるおそれがないよう，津波防護対象設備に含める。 （2）（i）－（3）更に，津波が地震の随伴事象であることを踏まえ，耐震Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）を含めて津波防櫵対象設備 とする。 1.3 津波防護対策 「1．2 入力津波の設定」で設定した入力津波による津波防護対象設備への影響を，津波の敷地への流入の可能性 の有無，漏水による重要な安全機能及び重大事故等に対処 するために必要な機能への影響の有無，津波による溢水の重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無並びに水位変動に伴ら取水性低下及 び津波の二次的な影響による重要な安全機能及び重大事	具体的な内容は，設置変更許可申請書（本文（五 号））「口（2）（i）a．（a）， （b），（c）」に記載してお り，これと整合している ことは以下に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a）（2）（i）a．（a）－（1）設計基集対象施設の津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画は，（2）（i）a．（a）－（2）基準津波による遡上波が到達する可能性があるため，（2）（i）a．（a）－（3）建波防護施設を設置し，津波の流入を防止する設計とする。	a．設計基蕉対象施設の津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画は，基潗津波によ る邀上波が到達する可能性があるため，津波防護施設を設置し，基準津波による遡上波を地上部から到達又は流入させない設計とする。	故等に対処するために必要な機能への影響の有無の観点 から評価することにより，津波防護対策が必要となる箇所 を特定して必要な津波防護対策を実施する設計とする。 入力津波の変更が津波防護対策に影響を与えないこと を確認することとし，定期的な評価及び改善に関する手順 を定める。 1．3．1 敷地への浸水防止（外郭防護 1） （1）遡上波の地上部からの到達，流入の防止 遡上波による敷地周辺の遡上の状況を加味した浸水高 さの分布を基に，津波防護対象設備（非常用取水設備を除 く。）を内包する建屋及び区画の設置された敷地において，遡上波の地上部からの到達，流入の可能性の有無を評価す る。 流入の可能性に対する裕度評価において，高潮ハザード の再現期間 100 年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえた水位の合計との差を参照する裕度として，設計上の裕度の判断の際 に考慮する。 評価の結果，（12）（i）a．（a）－（2）遡上波が地上部から到達 し流入するため，（2）（i）a．（a）－（1）津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画，（緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並びにガスタービン発電設備タンクピットを除く。）の設置された敷地に，（2）（i）a．（a）－（3）遡上波の流入を防止するための津波防護施設として，防潮堤を設置 する設計とする。 また，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画のらち，緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管エリア，第 2保管エリア及び第 4 保管エリア，緊急時対策建屋並びにが スタービン発電設備タンクピットは，津波による遡上波が地上部から到達，流入しない十分高い場所に設置する設計 とする。	設計及び工事の計画の （2）（i）a．（a）－（1）は，設置変更許可申請書（本文（五号））の（2）（i） a．（a）－（1）を具体的に記載しており整合してい る。 設計及び工事の計画の （2）（i）a．（a）－（2）は，設置変更許可申請書（本文（五号））の（2）（i） a．（a）－（2）と同義であり整合している。 設計及び工事の計画の （2）（i）a．（a）－（3）は，	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（c）（2）（i）a．（c）－（1）取水路，放水路等の経路から，津波が流入する可能性について検討した上でっ，流入の可能性のある経路，（韲，開口部，貫通口等）を特定し，．．． り，津波の流入を防止する設計とする。	c．取水路，放水路等の経路から，津波が流入する可能性 について検討した上で，流入の可能性のある経路（扉，開口部，貫通口等）を特定し， 必要に応じ浸水対策を施すことにより，津波の流入を防止する設計とする。また， 1 号炉取水路及び 1 号炉放水路 に対しては，津波の流入を防止するため，取放水路流路縮小工を設置するが， 1 号炬に悪影響を及ぼさない設計とす る。	1.3 津波防護対策 1．3．1 敷地への浸水防止（外郭防護 1） （2）取水路，放水路等の経路からの津波の流入防止 （2）（i）a．（c）－（1）津波の流入の可能性のある経路につ ながる循環水采，海水系及び屋外排水路の標高に基づき，許容される津波高さと経路からの津波高さを比較するこ とにより，津波防護対象設備（非虽用取水設備を除く。） を内包する建屋及び区画の設置された敷地への津波の流入の可能性の有無を評価する。流入の可能性に対する裕度評価において，高潮ハザードの再現期間 100 年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のば らつきを踏まえた水位の合計との差を参照する裕度とし，設計上の裕度の判断の際に考慮する。 評価の結果，流入する可能性のある経路が特定されたこ とから，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地並びに建屋及び区画への流入を防止するため，口（2）（i）a．（c）－（2）津波防護施設として防潮壁及び取放水路流路縮小工を設置する設計とする。．．また，口（2）（i）a．（c）－（3）浸水防止設備として逆流防止設備，水密扉，浸水防止蓋及び逆止弁付ファンネル を設置並びに貫通部止水処置を寒施する設計とする。．．． 防潮壁鋼製扉，水密扉及び浸水防止蓋については，原則閉止する運用を保安規定に定めて管理する。また，取放水路流路縮小工については，津波防護機能及び第 1 号機の取水•放水機能を維持する運用を保安規定に定めて管理す る。 上記（1）及び（2）において，外郭防護として設置する津波防護施設及び浸水防止設備については，各地点の入力津波	設計及び工事の計画の『（2）（i）a．（c）－（1）は，設置変更許可申請書（本文（五号））の（2）（i） a．（c）－（1）を具体的に記載しており整合してい る。 設計及び工事の計画の （2）（i）a．（c）－（2）は，設置変更許可申請書（本文（五号））の（2）（i） a．（c）－（2）を具体的に記載しており整合してい る。 設計及び工事の計画の （2）（i）a．（c）－（3）は，設置変更許可申請書（本文（五号））の（2）（i） a．（c）－（3）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（2）（i）d．－（4）かつつ，取水口からの砂の混入に対して非常用海水ポンプが機能保持できる設計とする。 e．㴹波防護施設及び浸水防止設備については，回 （2）（i）e．－（1）入力津波（施設の津波に対する設計を行う ために，津波の伝播特性，浸水経路等を考慮してっそれ	かつ，取水口からの砂の混入に対して非常用海水ポンプが機能保持できる設計とする。 （5）津波防護施設及び浸水防止設備については，入力津波（施設の津波に対する設計を行うために，津波の伝播特性，浸水経路等を考慮して，それぞれの施設に対して	非常用海水ポンプは，（2）（i）d．－（4）取水時に浮進砂が軸受に湦入した場合においてもっ，軸受部の異物逃がし溝か ら浮逰砂を排出することで，機能を保持できる設計とす る。 大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（夕 イプII）は，浮㨁砂の混入に対して，取水性能が保持でき るものを用いる設計とする。 漂流物に対しては，発電所敷地内及び敷地外で漂流物と なる可能性のある施設•設備を抽出し，抽出された漂流物 となる可能性のある施設•設備が漂流した場合に，非常用海水ポンプへの衝突並びに取水口，取水路及び海水ポンプ室の閉塞が生じることがなく，非常用海水ポンプの取水性碓保並びに取水口，取水路及び海水ポンプ室の通水性能が碓保できる設計とする。 発電所敷地内及び敷地外の人工構造物については，設置状況を定期的に碓認し評価する運用を保安規定に定めて管理する。更に，従前の評価結果に包絡されない場合は，漂流物となる可能性，非常用海水ポンプ等の取水性及び浸水防護施設の健全性への影響評価を行い，影響がある場合 は漂流物対策を実施する。 1.1 耐津波設計の基本方針 設計基準対象施設及び重大事故等対処施設が設置（変更）許可を受けた基準津波によりその安全性又は重大事故等に対処するために必要な機能が損なわれるおそれがな いよう，『（2）（i）e．－－（1）遡上への影響要因及び浸水経路等 を考慮して，設計時にそれぞれの施設に対してス力津波を設定するとともに津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計と する。 ＜中略＞ 1.4 津波防護対策に必要な浸水防護施設の設計 1．4．1 設計方針 津波防護施設，浸水防止設備及び津波監視設備について る繰返しの龔来を想定した入力津波に対して，津波防護対	設計及び工事の計画の （2）（i）d．－（4）は，設置変更許可申請書（本文 （五号））の（2）（i）d． （4）を具体的に記載し ており整合している。 設計及び工事の計画の『（2）（i）e．－①aは，設計及び工事の計画の回	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
ぞれの施設に対して設定するものをいう。以下同じ。） に対して津波防護機能及び浸水防止機能が保持できる設計とする。また，津波監視設備については，回 （2）（i）e．－（1）入力津波に対して津波監視機能が保持で きる設計とする。 f．津波防護施設，浸水防止設備及び津波監視設備の設計 に当たつては，	設定するものたいう。以下 10.6 において同じ。）に対 して津波防檴機能及び浸水防止機能が保持できる䯩計 とする。また，津波監視設備については，入力沼波に対 して津波監視機能が保持できる設計とする。 < 中略 > （6）津波防護施設，浸水防止設備及び津波監視設備の設計に当たっては，	象設備の要求される機能を損ならおそれがないよう以下 の機能を满足する設計とする。．．． （1）㯬波防護施設 津波防護施設は，津波の流入による浸水及び漏水を防止 する設計とする。 津波防護施設のらち防潮堤及び防潮壁については，入力津波高さを上回る高さで設置し，止水性を保持する設計と する。 津波防護施設のうち取放水路流路縮小工については，第 1 号機の取水路及び放水路からの津波の流入を抑制し，入力津波に対して浸水を防止する設計とする。また，第1号機の廃止措置期間中に性能を維持すべき施設（以下「性能維持施設」という）に影響を与えない設計とする。 津波防護施設のうち貯留堰については，津波による水位低下に対して，非常用海水ポンプの取水可能水位を保持 し，かつ，冷却に必要な海水を確保する設計とする。 主要な構造体の境界部には，想定される荷重の作用及び相対変位を考慮し，試験等にて止水性を確認した止水ジョ イント等を設置し，止水処置を講じる設計とする。 （2）浸水防止設備 浸水防止設備は，浸水想定範囲等における浸水時及び冠水後の波圧等に対する耐性を評価し，津波の流入による浸水及び漏水を防止する設計とする。 また，津波防護対象設備を内包する建屋及び区画に浸水時及び冠水後に津波が流入することを防止するため，当該区画への流入経路となる開口部に浸水防止設備を設置し，止水性を保持する設計とする。 浸水防止設備として逆流防止設備，水密扉，浸水防止蓋，浸水防止壁，逆止弁付ファンネルを設置するとともに，貫通部止水処置を実施する設計とする。	（2）（i i）e．－（1）の「入力津波」を具体的に記載し ており，設計及び工事の計画の（2）（i）e．－（1） は，設置変更許可申請書 （本文（五号））の（2） （i）e．－（1）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
地震による～（2）（i）f．－（1）敷地の隆起•沈降，	地震による僌地の隆起•沈降，	軽油タンクエリアの浸水に対する浸水防止設備につい ては，内郭防謢として流入経路となる開口部に設置する設計とする。 浸水防止設備は，入力津波高さに余裕を考慮した高さの水位又は内部溢水の評価にて保守性を見込んで算出した溢水水位により，静水圧に対する而性を評価又は試験等に よる止水性を碓認した方法により，止水性を保持する設計 とする。 （3）津波監視設備 津波監視設備は，津波の襲来状況を監視可能な設計とす る。津波監視カメラは，波力及び漂流物の影響を受けない位置，取水ピット水位訳は波力及び漂流物の影響を受けに くい位置に設置し，津波監視機能が十分に保持できる設計 とする。また，基準地震動S s汇対して，機能を震失しな い設計とする。設計に当たつては，自然条件（積雪，風荷重）との組合せを適切に考慮する。 津波監視設備のらち津波監視カメラは，非常用電源から給電し，赤外線撮像機能を有したカメラにより，昼夜にわ たり中央制御室から監視可能な設計とする。 津波監視設備のらち取水ピット水位計は，非常用電源か ら給電し， 0. P．$-11.25 \mathrm{~m} \sim 0$. P．+19.00 m を測定範囲として，非常用海水ポンプが設置された海水ポンプ室補機ポンプ エリアの上昇側及び下降側の水位を中央制御室から監視可能な設計とする。 1．2 入力津波の設定 1．2．1 遡上波による入力津波 遡上波による入力津波については，遡上への影響要因と して，敷地及び敷地周辺の地形及びその標高，河川等の存在，設備等の設置状況並びに地震による ${ }^{(1)}$（2）（i）f．－（1）広域的な隆起•沈降を考慮して，遡上波の回り，込みを含め敷地への遡上の可能性を評価する。 遡上する場合は，基漼津波の波源から各施設•設備の設置位置において算定される津波高さとして設定する。ま た，地震による変状又は繰返し襲来する津波による洗掘•堆積により地形又は河川流路の変化等が考えられる場合 は，敷地への遡上経路に及ぼす影響を評価する。	設計及び工事の計画の （2）（i）f．－（1）は，設計 に用いる遡上波の設定 において，地震による敷地の隆起•沈降を考慮し ており，設置変更許可申請書（本文（五号））の （2）（i）f．－（1）を含ん でおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
影響， 津波の繰返しロ（2）（i）f．－44）の襲来による影響）	地震（本震及び余震）による影響，	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 2．自然現象 2．1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 e．屋外重要土木構造物，津波防櫵施設，浸水防止設備及 び津波監視設備並びに浸水防止設備が設置された建物•構築物は，（2）（i）f．－（2）基蕉地震動S s による地震力に対して，構造物全体として変形能力（終局耐力時 の変形）について十分な余裕を有するとともに，それで れの施設及び設備に要求される機能が保持できる設計 とする。 <中略 > 【浸水防護施設】（基本設計方針） 1.4 津波防護対策に必要な浸水防護施設の設計 1．4．2 荷重の組合せ及び許容限界 （2）（i）f．－（3）津波防櫵施設，浸水防止設備及び津波監視設備の設計に当たつては，津波による荷重及び津波以外 の荷重を適切に設定しっそれらの組合せを考虜する。また，想定される荷重に対する部材の健全性や構造安定性につ いて適切な許容限界を設定する。 （1）荷重の組合せ （2）（i）f．－（3）津波と組み合わせる荷重については，原子炉冷却采統施設の基本設計方針「第1章 共通項目」の らち「2．3 外部からの衝撃による損傷の防止」で設定し ている自然条件（積雪，風荷重）及び余震として考えられ る地震に加え，漂流物による荷重を考盧する。津波による荷重の設定に当たつては，各施設•設備の機能損傷モード に対応した荷重の算定過程に介在する不確かさを考慮し，余裕の程度を検討した上で安全側の設定を行う。 （2）許容限界 津波防護施設，浸水防止設備及び津波監視設備の許容限界は，地震後，津波後の再使用性や，津波の繰返し口	設計及び工事の計画の （2）（i）f．－②）は，設置変更許可申請書（本文 （五号））の（2）（i）f． （2）を具体的に記載し ており整合している。 設計及び工事の計画の （2）（i）f．－（3）では，荷重の組合せに余震によ る荷重を考慮しており，設置変更許可申請書（本文（五号））の（2）（i） f．－（3）を含んでおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
g．■（2）（i）g．－（1）津波防櫵施設，浸水防止設備及び津波監視設備の設計並びに非虽用海水ポンプの取水性の評価に当たつては，入力津波による水位変動に対して朔望平均潮位を考慮して安全側の評価を塞施する。．．．	（7）津波防護施設，浸水防止設備及び津波監視設備の設計並びに非虽用海水ポンプの取水性の評価に当たって は，入力津波による水位変勲に対して朔望平均潮位を考慮して安全側の評価を寒施する。	【浸水防護施設】（基本設計方針） 1．2 入力津波の設定 1．2．3 水位変動 「1．2．1 遡上波による入力津波」及び「1．2．2 経路か らの津波による入力津波」においては，水位変動として，『（2）（i）g．－（1）塑望平均満潮位 $0 . P .+1.43 \mathrm{~m}$ ，朔望平均干潮位 0. P．－-0.14 m を考盧する。上昇側の水位変動に対しては，潮位のばらつきとして 0.16 m を考盧して設定する。下隆側 の水位変動に対しては，潮位のばらつきとして 0.10 m を考虜して設定する。 1.1 耐津波設計の基本方針 （2）（i）g．－（1）設計基集対象施設及び重大事故等対処施設が設置（変更）許可を受けた基準津波によりその安全性又は重大事故等に対処するために必要な機能が損なわれ るおそれがないよう，遡上への影響要因及び浸水経路等を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとともに津波防櫵対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とす る． <中略> 1.3 津波防護対策 1．3．4 水位変動に伴ら取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するた めに必要な機能への影響防止 （1）非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の取水性 ＜中略＞ ロ（2）（i）g．－（1）評価の結果，海水ポンプ室の下隆側の評価水位が非常用海水ポンプの取水可能水位を下回ること から，津波防護施設として，海水を貯留するための貯留堰 を設置することでっ，取水性を確保する設計とする。．．． ＜中略＞ 1．2 入力津波の設定	設計及び工事の計画の （2）（i）g．－（1）は，設置変更許可申請書（本文 （五号））の（2）（i）g． （1）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（2）（i）g．－（2）なお，その他の要因による潮位変動につ いても適切に評価し耉虜する。 （2）（i）g．－（3）また，地震により陸域の隆起又は沈降が想定される場合，想定される地震の震源モデルから算定さ れる敷地の地殻変動量を考慮して口（2）（i）g．－（4）安全側の評価を実施する。	なおっ，その他の要因による潮位変動についても適切に評価し考慮する。．．． また，地震により陸域の隆起又は沈隆が想定される場合，想定される地震の震源モデルから算定される藪地の地殼変動量を考慮して客全側の評価を塞施する。．．．	1．2．3 水位変動 ＜中略＞ 地殻変動については，基準津波の波源である東北地方太平洋沖型の地震による広域的な地殻変動及び平成 23 年 （2011 年）東北地方太平洋沖地震による広域的な地殻変動 を考慮する。 （2）（i）g．－3東北地方太平洋沖型の地震による広域的 な地殻変動については，基準津波の波源モデルを踏まえ て，Mansinha and Smylie（1971）の方法により算定し，水位上昇側で考慮する波源で 0.72 m の沈降，水位下降側で考慮する波源で 0.77 m の沈降を考慮する。．．．また，平成 23年（2011 年）東北地方太平洋沖地震による地殻変動につい ては，発電所構内の水準点を用いた水準測量結果から 1 m と設定する。なお，平成 23 年（2011 年）東北地方太平洋沖地震後の余効変動として平成 29 年 4 月時点で約 0.3 m 隆起していることを確認している。 （2）（i）g．－（4）上昇側の水位変動に対して安全側に評価 するため，平成 23 年（2011年）東北地方太平洋沖型の地震による 0.72 m の沈降を考慮する。 下降側の水位変動に対して安全側に評価するため，平成 23 年（2011 年）東北地方太平洋沖型の地震による 0.77 m の沈隆は考盧しない。 ただし，下隆側の水位変動に対する安全性評価を実施す る際には，平成 29 年4月までに確認された余効変動によ る約 0.3 m の隆起の影響を考慮する。また，今後も余効変動が継続することを想定し，平成 23 年（2011 年）東北地方太平洋沖地震による底域的な地䡰変動の解消により絇 1 m 隆起した場合の影響も耉慮する。．． また，基準津波による入力津波が有する数値計算上の不確かさを考慮することを基本とする。 1.3 津波防護対策 1．3．1 敷地への浸水防止（外郭防護 1） （1）遡上波の地上部からの到達，流入の防止 遡上波による敷地周辺の遡上の状況を加味した浸水高 さの分布を基に，津波防護対象設備（非常用取水設備を除 く。）を内包する建屋及び区画の設置された敷地において，	設計及び工事の計画の （2）（i）g．－（2）は，設置変更許可申請書（本文 （五号））の（2）（i）g． （2）を具体的に記載し ており整合している。 設計及び工事の計画の （2）（i）g．－（3）は，設置変更許可申請書（本文 （五号））の（2）（i）g． －（3）を具体的に記載し ており整合している。 設計及び工事の計画の （2）（i）g．－44は，設置変更許可申請書（本文 （五号））の（2）（i）g． －（4）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ii）重大事故等対処施設の耐津波設計 重大事故等対処施設は，基準津波に対して，口（2）（ii）－ （1）以下の方針に基づき耐津波設計を行い，重大事故等に対処するために必要な機能が損なわれるおそれがない設計 とする。（2）（ii）－（2）基集津波の策定位置を第6図に，時刻歴波形を第7図に示す。	10．6．1．2 重大事故等対処施設 10．6．1．2．1 概要 発電用原子炉施設の耐津波設計については，「重大事故等対処施設は，基準津波に対して重大事故等に対処するた めに必要な機能が損なわれるおそれがないものでなけれ ばならない。」ことを目的として，津波の敷地への流入防止，漏水による重大事故等に対処するために必要な機能へ の影響防止，津波防護の多重化及び水位低下による重大事故等に対処するために必要な機能への影響防止を考慮し た津波防護対策を講じる。 ＜中略＞ 1．5．2 重大事故等対処施設の耐津波設計 1．5．2．1 重大事故等対処施設の耐津波設計の基本方針 重大事故等対処施設は，基準津波に対して重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。 なお，耐津波設計においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮し た設計とし，以下1．5．2 及び 10．6．1．2 では，地盤沈下量 を考慮した敷地高さや施設高さ等を記載する。	遡上波の地上部からの到達，流入の可能性の有無を評価す る。 （2）（i）g．－（2）流入の可能性に対する裕度評価におい て，高潮ハザードの再現期間 100 年に対する期待值とっ，入力津波で考盧した朔望平均満潮位及び潮位のばらつきを踏まえた水位の合計との差を参照する裕度として，設計上 の裕度の判断の際に考盧する。－ ＜中略＞ 【浸水防護施設】（基本設計方針） 1.1 耐津波設計の基本方針 設計基準対象施設及び重大事故等対処施設が口（2）（ii）－ （2）設置（変更）許可を受けた基準津波によりその安全性又 は重大事故等に対処するために必要な機能が損なわれる おそれがないよう，ロ（2）（ii）－（1）遡上への影響要因及び浸水経路等を考盧して，設計時にそれぞれの施設に対して入力津波を設定するとともに津波防護対象設備に対する入力津波の影響を評価し，影響に底じた津波防櫵対策を講じ る設計とする。 ＜中略＞	設計及び工事の計画の （2）（ii）－（1）は，設置変更許可申請書（本文（五号））の（2）（ii）－（1）を具体的に記載しており整合している。 設計及び工事の計画の （2）（ii）－（2）は，「設置 （変更）許可を受けた基準津波」と記載してお り，設置変更許可申請書 （本文（五号））の（2） （ii）－（2）と整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a）口（2）（ii）a．（a）－（1）重大事故等対処施設の津波防護対象設備（非常用取水設備を除く。）のらち，設計基蕉対象施設を使用するもの及び可搬型重大事故等対処設備保管場所である第 3 保管エリアについては，基準津波に よる遡上波が到達する可能性があるため，津波防護施設 を設置し，津波の流入を防止する設計とする。 （b）凹（2）（ii ）a．（b）－（1）重大事故等対処施設の津波防護対象設備（非常用取水設備を除く。）のらち，設計基蕉対象施設を使用するもの及び可搬型重大事故等対処設備保管場所である第 3 保管工少ア以外は，口（2）（ii）a．（b） （2）基準津波による遡上波が到達しない十分高い場所に設置する。 （c）上記（a）及び（b）の遡上波の到達防止に当たつての検討は，「（i）設計基蕉詨象施設の耐津波設計」を適用 する。． （d）■（2）（ii）a．（d）－（1）取水路，放水路等の経路から，津波が流入する可能性について検討した上でっ，津波が流入 する可能性のある経路（扉，開口部，貫通口等）を特定 L．（2）（ii）a．（d）－（2）必要に応じて寒施する浸水対策に ついては，「（i）設計基蕉対象施設の耐津波設計」を	a ．重大事故等対処施設の津波防護対象設備（非常用取水設備を除く。）のうち，設計基蕉対象施設を使用するも の及び可搬型重大事故等対処設備保管場所である第 3保管エリアについては，基準津波による遡上波が到達す る可能性があるためっ，津波防櫵施設を設置し，津波の流入を防止する設計とする。 b．重大事故等対処施設の津波防護対象設備（非常用取水設備を除く。）のらち，設計基漼対象施設を使用するも の及び可搬型重大事故等対処設備保管場所である第 3保管エリア以外は，基漼津波による遡上波が到達しない十分高い場所に設置する。 c．上記 a．及び b ，の遡上波の到達防止に当たつての検討は，「10．6．1．1 設計基蕉対象施設」を適用する。… d．取水路，放水路等の経路から，津波が流入する可能性 のある経路（扉，䦩口部，，貫通口等）を特定し，必要に応じて実施する浸水対策については，「10．6．1．1 設計基蕉対象施設」を適用する。…	1．3．1 敷地への浸水防止（外郭防護 1） （1）遡上波の地上部からの到達，流入の防止 <中略 > 評価の結果，遡上波が地上部から到達し流入するため， （2）（ii）a．（a）－（1）建波防護対象設備（非常用取水設備を除 く。）を内包する建屋及び区画（緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管工リア，第 2 保管エリア及び第4保管エリア，緊急時対策建屋並びに ガスタービン発電設備タンクピットを除く。）の設置され た敷地に，遡上波の流入を防止するための津波防櫵施設と して，防潮堤を設置する設計とする。．．． また，口（2）（ii）a．（b）－（1）建波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画のらち，緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並びにがスタービン発電設備タンクピットは，回 （2）（ii）a．（b）－（2）津波による遡上波が地上部から到達，流入しない十分高い場所に設置する設計とする。 （2）取水路，放水路等の経路からの津波の流入防止 （2）（ii）a．（d）－（1）津波の流入の可能性のある経路につ ながる循環水系っ，海水系及び屋外排水路の標高に基づき，許容される津波高さと経路からの津波高さを比較するこ とにより，津波防護対象設備（非虽用取水設備を除く。） を内包する建屋及び区画の設置された敷地への津波の流	設計及び工事の計画の （2）（ii）a．（a）－（1）は，設置変更許可申請書（本文（五号））の（2）（ii） a．（a）－（1）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （2）（ii）a．（b）－（1）は，設置変更許可申請書（本文（五号））の（2）（ii） a．（b）－（1）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （2）（ii）a．（b）－（2）は，設置変更許可申請書（本文（五号））の（2）（ii） a．（b）－（2）と同義であり整合している。 具体的な内容は，設置変更許可申請書（本文（五号））「口（2）（i）設計基準対象施設に対す る耐津波設計」に示す。 設計及び工事の計画の （2）（ii）a．（d）－（1）は，設置変更許可申請書（本文（五号））の（2）（ii） a．（d）－（1）を具体的に記	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
等から隔離する。 そのため，浸水防護重点化範柬を明確化するとともに，回 （2）（ii）c．－（3）必要に応じて実施する浸水対策については，「（i））設計基漼対象施設の耐津波設計」を適用する。 d．水位変動に伴ら取水性低下による重大事故等に対処す るために必要な機能への影響を防止する。（1）（ii）d．－ （1）そのため，非常用海水ポンプについては，「（i）設計基蕉対象施設の耐津波設計」を適用する。．．	る。 そのため，浸水防護重点化範囲を明確化するとともに，必要に応じて実施する浸水対策については，「10．6．1．1設計基準対象施設」を適用する。 （4）水位変動に伴う取水性低下による重大事故等に対処 するために必要な機能への影響を防止する設計とする。 そのため，非常用海水ポンプについては，「10．6．1．1 設計基準対象施設」を適用する。．．．	水範囲及び浸水量を基に，浸水防護重点化範囲への浸水の可能性の有無を評価する。浸水範囲及び浸水量について は，地震による溢水の影響も含めて確認する。地震による溢水については，「2．発電用原子炉施設内における溢水等による損傷の防止」に示す内部溢水にて評価している溢水事象を考慮する。 評価の結果，浸水防護重点化範囲への浸水の可能性のあ る経路，浸水口が特定されたことから，地震による設備の損傷箇所からの津波の流入を防止するための浸水防止設備として，浸水防止壁，水密扉及び浸水防止蓋の設置並び に貫通部止水処置を実施する設計とする。 また，浸水防止設備として設置する水密扉及び浸水防止蓋については，津波の流入を防止するため，扉及び蓋の閉止運用を保安規定に定めて管理する。 内郭防護として設置及び実施する浸水防止設備につい ては，貫通部，開口部等の一部分のみが浸水範囲となる場合においても貫通部，開口部等の全体を浸水防護すること により，浸水評価に対して裕度を確保する設計とする。 1．3．4 水位変動に伴ら取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するた めに必要な機能への影響防止 （1）非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の取水性 原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機泠却海水ポンプ（以下「非常用海水ポンプ」という。）に ついては，評価水位としての海水ポンプ室での下降側水位 と非常用海水ポンプの取水可能水位を比較し，評価水位が非常用海水ポンプ取水可能水位を下回る可能性の有無を評価する。 評価の結果，海水ポンプ室の下降側の評価水位が非常用海水ポンプの取水可能水位を下回ることから，津波防護施設として，海水を貯留するための貯留堰を設置すること で，取水性を確保する設計とする。 非常用海水ポンプについては，津波による上昇側の水位変動に対しても，取水機能が保持できる設計とする。 大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タ イプII）についても，ロ（2）（ii）d．－（2）入力津波の水位に対	（2）（ii）c．－（2）は，設置変更許可申請書（本文 （五号））の（2）（ii）c． －（2）を具体的に記載し ており整合している。 設置変更許可申請書（本文（五号））の（2）（ii） c．－（3）の具体的な内容 は，「ロ（2）（i）設計基準対象施設に対する耐津波設計」に示す。 設置変更許可申請書（本文（五号））の（2）（ii） d．－（1）の具体的な内容 は，「ロ（2）（i）設計基準対象施設に対する耐津波設計」に示す。 設計及び工事の計画の （2）（ii）d．－（2）は，設置	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
る水位の変動に対して取水性を確保でき，．．．	に対して取水性を確保でき，	して，取水性を確保できるものを用いる設計とする。．．．	変更許可申請書（本文 （五号））の（2）（ii）d． （2）を具体的に記載し ており整合している。		
		（2）津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイ プII）の機能保持確認 基準津波による水位変動に伴ら海底の砂移動•堆積に対 して，取水口，取水路及び海水ポンプ室が閉塞することな く取水口，取水路及び海水ポンプ室の通水性が確保できる設計とする。 非常用海水ポンプは，取水時に浮遊砂が軸受に混入した場合においても，軸受部の異物逃がし溝から浮遊砂を排出 することで，機能を保持できる設計とする。			
（12）（ii）d．－（3）取水口からの砂の混入に対して，ポンプが	取水口からの砂の混入に対して，ポンプが機能保持できる設計とする。	大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タ イプII）は，（2）（ii）d．－（3）浮遊砂の混入に対して，取水性能が保持できるものを用いる設計とする。 <中略 >	設計及び工事の計画の （2）（ii）d．－3 は，設置変更許可申請書（本文 （五号））の（2）（ii）d． －（3）を具体的に記載し ており整合している。		
		1．3．5 津波監視 津波監視設備として，敷地への津波の繰返しの襲来を察知し，津波防護施設及び浸水防止設備の機能を確実に確保 するため，津波監視カメラ（計測制御系統施設の中央制御室機能と兼用（以下同じ。））及び取水ピット水位計を設置 する。			
e．．．津波防護施設，浸水防止設備及び津波監視設備の機能 の保持については，「（i）設計基漼対象施設の耐津波設計」を適用する。	（5）津波防護施設，浸水防止設備及び津波監視設備の機能の保持については，「10．6．1．1 設計基漼対象施設」 を適用する。		具体的な内容は，設置変更許可申請書（本文（五号））「口（2）（i ）設計基準対象施設に対す る耐津波設計」に示す。		
f．津波防護施設，浸水防止設備及び津波監視設備の設計並びに非常用海水ポンプの取水性の評価に当たっては，	（6）津波防護施設，浸水防止設備及び津波監視設備の設計に当たつて考慮する自然現象については，「10．6．1．1		具体的な内容は，設置変更許可申請書（本文（五		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（3）その他の主要な構造 （i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもとに安全設計を行 う。 a．設計基準対象施設 （a）外部からの衝撃による損傷の防止 （3）（i）a．（a）－（1）安全施設は，発電所敷地で想定される洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑 り，火山の影響，生物学的事象，森林火災及び高潮の自然現象（地震及び津波を除く。）又はその組合せに遭遇した場合において，自然現象そのものがもたらす環境条件及び その結果として施設で生じ得る環境条件においても回 （3）（i）a．（a）－2 安全機能を損なわない設計とする。 なお」，発電所敷地で想定される自然現象のうち，洪水及 び地滑りについては，立地的要因により設計上考慮する必要はない。	1.1 安全設計の方針 1．1．1 安全設計の基本方針 1．1．1．4 外部からの衝撃による損傷の防止 発電所敷地で想定される自然現象（地震及び津波を除 く。）については，網羅的に抽出するために，発電所敷地及びその周辺での発生実績の有無に関わらず，国内外の基準や文献等に基づき事象を収集し，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災等を考慮する。また，これらの自然現象について関連して発生する自然現象も含める。 これらの事象について，海外の評価基準を考慮の上，発電所及びその周辺での発生の可能性，安全施設への影響度，発電所敷地及びその周辺に到達するまでの時間余裕及 び影響の包絡性の観点から，発電用原子炉施設に影響を与 えるおそれがある事象として，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を選定する。 安全施設は，これらの自然現象（地震及び津波を除く。）又はその組合せに遭遇した場合において，自然現象そのも のがもたらす環境条件及びその結果として施設で生じ得 る環境条件においても，安全機能を損なわない設計とす る．．． なお，発電所敷地で想定される自然現象のうち，洪水及 び地滑りについては，立地的要因により設計上考慮する必要はない。	【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 2．自然現象 2.3 外部からの衝撃による損傷の防止 （3）（i）a．（a）－（1）設計基準対象施設は，，外部からの衝撃 のうち自然現象による損傷の防止において，発電所敷地で想定される風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮の自然現象 （地震及び津波を除く。）又は地震及び津波を含む自然現象の組合せに遭遇した場合において，自然現象そのものが もたらす環境条件及びその結果として施設で生じ得る環境条件において，ロ（3）（i）a．（a）－（2）その安全性を損なうお それがある場合は，防護措置，，基礎地盤の改良その他，供用中における運転管理等の運用上の適切な措置を講じる。 <中略 > 2．3．1 外部からの衝撃より防護すべき施設 設計基準対象施設が外部からの衝撃によりその安全性 を損ならことがないよう，外部からの衝撃より防護すべき施設は，設計基準対象施設のうち，ロ（3）（i）a．（a）－（3）a電用軽水型原子哣施設の安全機態の重要度分類に関する審查指針」で規定されているクラス 1, クラス 2 及び安全評価上その機能に期待するクラス 3 に属する構築物，系統	設計及び工事の計画の ロ（3）（i ）a．（a）－（1）の 「設計基準対象施設」 は，設置変更許可申請書 （本文（五号））の口（3） （i）a．（a）－（1）の「安全施設」を含んでおり整合 している。 設計及び工事の計画の （3）（i）a．（a）－（2）は，設置変更許可申請書（本文（五号））のロ（3）（ i ） a．（a）－（2）を具体的に記載しており整合してい る。 設置変更許可申請書（本文（五号））で設計上の考慮を不要としている。 設計及び工事の計画の ロ（3）（i ）a．（a）－（3）a の 「外部事象防護対象施設」及びロ（3）（i）a．（a） －（3）bの「上記以外の設計基準対象施設」は，設	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（a）－（3）上記妘加六，重要安全施設は，科学的技術的知見を踏まえ，当該重要安全施設に大きな影響を及 ぼすおえれがあると想定される自然現象により当該重要安金施設に作用する衝撃及び設計基準事故時に生じる回 （3）（i）a．（a）－（4）底力について，それぞれの困果関係及ぴ時間的変化を考慮して適切に組あ合わせる。	上記に加え，重要安全施設は，科学的技術的知見を踏ま远，当該重要安全施設に大きな影響を及ぼすおそれがある と想定される自然現象により当該重要安全施設に作用す子㣫撃及ひ設計基準事故時に生じる応力について，それぞ れの因果關係及び時闑的変化を考盧して適切に組み合わ せる。	及び機器（以下「外部事䱏防櫵対潒施設」という。）とす る。また，外部事象防護対象施設の防護設計については，外部からの㣫撃により外部事象防護対象施設に波及的影響を及ぼすおそれのある外部事象防護対象施設以外の施設についても考慮する。更に，重大事故等対処設備につい ても，重大事故防止設備が，設計基準事故対処設備並びに使用済燃料貯蔵槽（使用済燃料プール）の泠却設備及び注水設備（以下「設計基準事故対処設備等」という。）の安全機能と同時に必要な機能が損なわれることがないよう，外部からの㣫撃より防護すべき施設に含める。 （3）（i）a．（a）－（3）b ては，（3）（i）a．（a）－（3）機能を維持すること若しくは損傷を考虜して代替設備により必要な機能を碓保すること，安全上支障のない期関での修復等の対庶を行うこと又は それらを適切に組あ合わせることにより，その安全性を損 なわない設計とする。 2．3．2 設計基準事故時及び重大事故等時に生じる荷重と の組合せ 科学的技術的知見を踏ま元，（3）（i）a．（a）－（3）外部事集防護対象施設及び重大事故等対処設備のらち，特に自然現象（地震及び津波を除く。）の影響を受けやすく，かつ，代替手段によってその機能の維持が困難であるか，又はそ の修復が著しく困難な構築物，系統及び機器は，建屋内に設置すること，又は可搬型重大事故等対処設備によるバッ タアップが可能となるように位置的分散を考慮して可搬型重大事故等対处設備を複数保管すること等により，当該施設に大きな影響を及ぼすおそれがあると想定される自然現象（地震及び津波を除く。）により作用する衝撃が設計基準事故時及び重大事故等時にし生じる（3）（i）a．（a）－ （44）葓重と重なり合わない設計とする。 具体的には，建屋内に設置される外部事象防護対象施設及び重大事故等対処設備については，建屋によって自然現象（地震及び津波を除く。）の影響を防止することにより，設計基準事故又は重大事故等が発生した場合でも，自然現象（地震及び津波を除く。）による影響を受けない設計と する。	置変更許可申請書（本文 （五号））の（3）（i）a． （a）－（1）の「安全施設」 を示している。 設計及び工事の計画の （3）（i）a．（a）－（3）の 上記以外の設計基準対象施設・の設計は，設置変更許可申請書（本文 \qquad （a）－（2）を具体的に記載 しており整合している。 設計及び工事の計画の （3）（i）a．（a）－（3）の「外部事象防護対象施設」は，「クラス1，ク ラス2に属する構築物，系統及び機器及び安全評価上その機能に期待 するクラス3に属する構築物，系統及び機器」で あり，設置変更許可申請書（本文（五号））の回 （3）（i）a．（a）－（3）を含 んでおり整合している。 設計及び工事の計画の （3）（i）a．（a）－4）につ いて，設計及び工事の計画の添付書類「VI－1－1－ 2－1 発電用原子炉施設	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
設の安全性を損なわせる原因となるおそれがある事象で	人為によるもの（故意によるものを除く。）に対して，安	基蕉対象施設が安全性を損なわないために必要な回	設置変更許可申請書（本		
あって人為によるもの（故意によるものを除く。）に対し	全施設が安全機能を損なわないために必要な安全施設以	（3）（ i ）a．（a）－（11）設計基漼対象施設以外の施設又は設備等	文（五号））の区（3）（ i ）		
て，安全施設が安全機能を損なわないために必要な回	外の施設又は設備等（重大事故等対処設備を含む。）への	（重大事故等対処設備を含む。）への措置を含める。	a．（a）－（10）と同義であり		
（3）（ i ）a．（a）－（11）安全施設以外の施設又は設備等（重大事	措置を含める。		整合している。		
故等対処設備を含む。）への措置を含める。		重大事故等対処設備は，外部からの衝撃による損傷の防止において，想定される自然現嶑（地震及び津波を除く ）	設計及び丁事の計画の		
		及び人為事象に対して，「5．1．2 多様性，位置的分散等」	(3) (i) a. (a) - (11)の		
		及び「5．1．5 環境条件等」の基本設計方針に基づき，必	「設計基準対象施設」		
		要な機能が損なわれることがないよう，防護措置その他の	は，設置変更許可申請書		
		適切な措置を講じる。	（本文（五号））の（3）		
		設計基準対象施設又は重大事故等対処設備に対して講	（i）a．（a）－（11）の「安全		
		じる防護措置として設置する施設は，その設置状況並びに防護する施設の耐震重要度分類及び重大事故等対処施設	施設」を含んでおり整合 している。		
		の設備分類に応じた地震力に対し構造強度を確保し，外部			
		からの衝撃を考慮した設計とする。			
	1．10．3 発電用原子炉設置変更許可申請（平成25年12月27	2．3．3 設計方針			
	日申請）に係る実用発電用原子炉及びその附属施設の位	外部事象防護対象施設及び重大事故等対処設備は，以下			
	置，構造及び設備の基準に関する規則への適合 （外部からの衝撃によろ損傷の防止）	の自然現象（地震及び津波を除く。）及び人為事象に係る設計方針に基づき設計する			
	（外部からの衝撃による損傷の防止）第六条	設計方針に基づき設計する。 自然現象（地震及び津波を除く。）のうち森林火災，人			
	適合のための設計方針	為事象のらち爆発，近隣工場等の火災，危険物を搭載した			
	第1項について	車両及び有毒ガスの設計方針については「c．外部火災」			
	（2）風（台風）	の設計方針に基づき設計する。			
	＜中略＞	なお，危険物を搭載した車両については，近隣工場等の			
	安全施設は，「建築基準法」及び同施行令第87条第2項及び第 4 項に基づく「建設省告示第 1454 号」を参照し，設	火災及び有毒ガスの中で取り扱う。			
	計基準風速（ $30 \mathrm{~m} / \mathrm{s}$ ，地上高 $10 \mathrm{~m}, 10$ 分間平均）の風（台風）				
	が発生した場合においても，安全機能を損なわない設計と				
	する。				
	＜中略＞	（1）自然現象			
（ $\mathrm{a}-1$ ）風（台風）		d．風（台風）			
口（3）（i）a．（a－1）－1安全施設は，設計基漼風速による風	また」上記以外の安全施設については，風（台風）に対	口（3）（i）a．（a－1）－①外部事象防護対象施設は，風荷重を	設計及び工事の計画の		
荷重に対し，安全施設及び安全施設を内包する建屋の構造	して機能を維持すること若しくは風（台風）による損傷を	「．－建築基漼法」に基づき設定し，外部事象防護対象施設及	「2．3．1 外部からの衝		
健全性の確保若しくは風，（台風）による損傷を考虜して，	考慮して代替設備により必要な機能を確保すること，安全	び外部事象防護対象施設を内包する建屋の構造健全性を	撃より防護すべき施設」		
代替設備により必要な機能を確保すること，安全上支障の	上支障のない期間での修復等の対応を行うこと又はそれ	確保することで，外部事象防護対象施設の安全機能を損な	及びロ（3）（ i ）a．（a－1）		
ない期聞での修復等の対応を行うこと又はそれらを適切	らを適切に組み合わせることにより，その安全機能を損な	わない設計とする。．．．	（1）は，設置変更許可申		
に組み合わせることでっその安全機能を損なわない設計と	わない設計とする。．．		請書（本文（五号））の		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	（2）設計竜巻の設定	おける想定に包絡される設計とする。また，竜巻随伴によ る溢水に対しては，溢水による損傷の防止における溢水量 の想定に包絡される設計とする。更に，竜巻随伴による外部電源喪失に対しては，ディーゼル発電機による電源供給 が可能な設計とする。 （1）自然現象 a．竜巻	同義であり整合してい る。		
	「添付書類六 7.2 竜巻」において設定した基準竜巻	外部事象防謢対象施設は，（3）（i）a．（a－2）－（3）童券防櫵	設計及び工事の計画の		
の設計竜巻の最大風速は， $100 \mathrm{~m} / \mathrm{s}$ と	の最大風速は $92 \mathrm{~m} / \mathrm{s}$ とする。		¢（3）（i）a．（a－2）－ 3		
	設計竜巻の設定に際して，発電所は北東が太平洋江面 し，三方を山及び森林に囲まれた狭监な地形であり，地形	の竜巻（以下「設計竜巻」という。）が発生した場合につ いて音巻より防護すごき施設に作用する荷重を設定し，外	は，設置変更許可申請書 （本文（五号））の（3）		
	効果による風の増幅について評価した結果，增幅を考慮す	部事象防護対象施設が安全機能を損なわないよう，それぞ	（i）a．${ }^{\text {a }}$－ 2 ）－3）${ }^{\text {a }}$ 同義		
	る必要はないことを確認したが，将来的な気候変動による竜巻発生の不碓実性を踏まえ，基準音巻の最大風速を安全側に切り上げて，設計童巻の最大風速は $100 \mathrm{~m} / \mathrm{s}$ とする。	れの施設の設置状況等を考慮して影響評価を実施し，外部事象防護対象施設が安全機能を損ならおそれがある場合 は，影響に応じた防護措置その他の適切な措置を講じる設計とする。	であり整合している。		
		＜中略＞			
	1．10．3 発電用原子炉設置変更許可申請（平成25年12月27 日申請）に係る実用発電用原子炉及びその附属施設の位 置，構造及び設備の基準に関する規則への適合 （外部からの衝撃による損傷の防止） 第六条 適合のための設計方針 第1項について （3）竜巻	（a）影響評価における荷重の設定			
	安全施設は，設計竜巻の最大風速 $100 \mathrm{~m} / \mathrm{s}$ による風圧力に		設計及び工事の計画の		
よる荷重，気圧差による荷重及び飛来物が安全施設に衝突	よる荷重，気圧差による荷重及び設計飛来物の衝撃荷重を	よる荷重，気圧差による荷重及び飛来物の衝繋荷重を組あ	（3）（i）a．${ }^{\text {a }}$－2）－（4）		
する際の動繋荷重を組み合わせた設計竜巻荷重並びに安	組み合わせた荷重等に対し安全機能を損なわないために，	合わせた設計竜巻荷重並びに童卷以外の荷重を適切比組	は，設置変更許可申請書		
全施設に常時作用する荷重，運転時㑑重及びその他童巻以	飛来物の発生防止対策及び童巻防讙対策を行う。．．	爻合わせた設計荷重を設定する。	（本文（五号））の日（3）		
外の自然現象による荷重等を適切に組み合わせたものと		風圧力による荷重及び気圧差による荷重としては，設計	（i）a．（a－2）－4）と文章		
して設定する。		竜巻の特性值に基づいて設定する。	表現は異なるが内容に相違はないため整合し		
	a．飛来物の発生防止対策	飛来物の衝撃荷重としては，口（3）（i）a．（a－2）－（5）設置 （変更）許可を受けた設計飛来物である銅製材（長さ4．2m	ている。		
口（3）（i）a．（a－2）－（5）安全施設の安全機能を損なわない	竜巻により発電所構内の資機材等が飛来物となり，外部	\times 幅 $0.3 \mathrm{~m} \times$ 高さ 0.2 m ，質量 135 kg ，飛来時の水平速度	設計及び工事の計画の		
ようにするため，安全施設に影響を及ぽす飛來物の登生防	事象防護対象施設等が安全機能を損なわないために，以下	$46.6 \mathrm{~m} / \mathrm{s}$ ，飛来時の銨真速度 $16.7 \sim 34.7 \mathrm{~m} / \mathrm{s}$ ）より も䆃動エ	®（3）（i）a． a －2）－5		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
止対策を実施するとともに， （3）（ i ）a．（a－2）－（6）作用する設計荷重に対する回 （3）（i）a．（a－2）－7 ）安全施設及び安全施設を内包する区画 の構造健全性の確保若しくは飛来物による損傷を考慮し て，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで，その安全機能を損なわない設計とする。	の対策を行う。 －外部事象防護対象施設等へ影響を及ぼす資機材及び車両 については，固縛，固定，外部事象防護対象施設等及び竜巻飛来物防護対策設備からの離隔，頑健な建屋内収納又は撤去する。 b．竜巻防護対策 固縛等による飛来物の発生防止対策ができないものが飛来し，安全施設が安全機能を損なわないように，以下の対策を行う。 －外部事象防護対象施設を内包する区画及び竜巻飛来物防護対策設備により，外部事象防護対象施設を防護し，構造健全性を維持し安全機能を損なわない設計とする。 －外部事象防護対象施設の構造健全性が維持できない場合 には，代替設備の確保，損傷した場合の取替え又は補修 が可能な設計とすることにより安全機能を損なわない設計とする。 ここで，竜巻は積乱雲や積雲に伴って発生する現象であ り，積乱雲の発達時に竜巻と同時発生する可能性のある自然現象は，雷，雪，ひょう及び降水である。これらの自然現象の組合せにより発生する荷重は，設計竜巻荷重に包含 される。 1．8．2．1 設計方針 （5）設計飛来物の設定 < 中略 > 設計飛来物は，浮き上がりの有無，運動エネルギー及び貫通力を踏まえ，鋼製材を設定する。 < 中略 >	ネルギ又は貫通力が大きな重大事故等対処設備，資機材等 は設置場所及び障害物の有無を考慮し，固縛，，固定又は外部事象防檴対象施設等からの離隔を実施することっ並びに車两については入構管理及び退避を実施することにより飛来物とならない措置を講じることから，設計飛来物が衝突する場合の荷重を設定することを基本とする。更に，設計飛来物に加えて，竜巻の影響を考慮する施設の設置状況 その他環境状況を考慮し，評価に用いる飛来物の衝突によ る荷重を設定する。 なお，口（3）（i）a．（a－2）－（6）飛来した場合の運動エネルギ又は貫通力が設計飛来物である鋼製材よりも大きな重大事故等対処設備，資機材等については，その保管場所，設置場所及び障害物の有無を考慮し，ロ（3）（i）a．（a－2）－7 ）外部事象防檴対象施設，飛来物の衝突により外部事象防護対象施設の安全機能を損なわないよう設置する防護措置（以下「防檴対策施設」という。）及び外部事象防護対象施設 を内包する施設に衝突し，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，固縛，，固定又は外部事象防護対象施設等からの離隔によって，浮き上がり又は横滑りにより外部事象防檴対象施設の機能に影響を及ぼ すような飛来物とならない設計とする。 （a）影響評価における荷重の設定 構造強度評価においては，風圧力による荷重，気圧差に よる荷重及び飛来物の衝撃荷重を組み合わせた設計竜巻荷重並びに竜巻以外の荷重を適切に組み合わせた設計荷重を設定する。 風圧力による荷重及び気圧差による荷重としては，設計竜巻の特性値に基づいて設定する。	は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－2）－（5）を具体的に記載しており整合 している。 設計及び工事の計画の （3）（i）a．（a－2）－6 及 びロ（3）（i）a．（a－2）－7 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－2）－（6）及びロ （3）（i）a．（a－2）－（7）と 文章表現は異なるが内容に相違はないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
『（3）（i）a．（a－2）－8）飛来物の登生防止対策として，飛来物となる可能性のあるもののらち，資機材，車両等につい ては，飛来した場合の運動エネルギー又は貫通力が設定す る設計飛来物より大きなものに対し，固縛，固定又は防護 すごき施設からの䍜隔を実施する。．．	飛来物の発生防止対策については，現地調查により抽出 した飛来物や登霫所に持ち込まれる資機村，車两等の寸法，質量及び形状から飛来の有無を判断し，運動エネルギ一及び貫通力を乽慮して，㣫突時に建屋等又は童巻飛来物防護対策設備に与えるエネルギー又は貫通力が設計飛来物のらち鋼製材によるものより大きく，外部事象防護対象施設等を防護できない可能性があるものは固縛，固定又は評価対像施設等からの離隔を実施し，碓寒に飛来物となら ない運用とする。	飛来物の衝撃荷重としては，（3）（i）a．（a－2）－8）設置 （変更）許可を受けた設計飛来物である鋼製材（長さ 4.2 m \times 幅 $0.3 \mathrm{~m} \times$ 高さ 0.2 m ，質量 135 kg ，飛来時の水平速度 $46.6 \mathrm{~m} / \mathrm{s}$ ，飛来時の鉛直速度 $16.7 \sim 34.7 \mathrm{~m} / \mathrm{s})$ よりも運動工 ネルギ又は貫通力が大きな重大事故等対処設備，資機材等 は設置場所及ず障害物の有無を考盧し，固縛，固定又は外部事象防櫵対象施設等からの離隔を実施すること，並びに車両については入構管理及び退避を実施することにより飛来物とならない措置を講じることから，設計飛来物が衝突する場合の荷重を設定することを基本とする。更に，設計飛来物に加えて，竜巻の影響を考慮する施設の設置状況 その他環境状況を考慮し，評価に用いる飛来物の衝突によ る荷重を設定する。 なお，飛来した場合の運動エネルギ又は貫通力が設計飛来物である鋼製材よりも大きな重大事故等対処設備，資機材等については，その保管場所，設置場所及び障害物の有無を考慮し，外部事象防護対象施設，飛来物の衝突により外部事象防護対象施設の安全機能を損なわないよう設置 する防護措置（以下「防護対策施設」という。）及び外部事象防護対象施設を内包する施設に衝突し，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，固縛，固定又は外部事象防護対象施設等からの離隔によっ て，浮き上がり又は横滑りにより外部事象防護対象施設の機能に影響を及ぼすような飛来物とならない設計とする。 重大事故等対処設備，資機材等の固縛，固定又は外部事象防護対象施設からの離隔を実施すること，並びに車両に ついては，入構管理及び退避を実施することを保安規定に定めて管理する。 （b）竜巻に対する影響評価及び竜巻防護対策 屋外の外部事象防護対象施設は，安全機能を損なわない よう，設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，要求される機能を維持する設計とすること を基本とする。 屋内の外部事象防護対象施設については，設計荷重に対 して安全機能を損なわないよう，外部事象防護対象施設を内包する施設により防護する設計とすることを基本とし，	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－2）－ 8 は，設置変更許可申請書（本文（五号））の『（3）（i）a．（a－2）－8と同義であり整合してい る。		

設置変更許可中請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		外気と䌘がっている屋内の外部事象防護対象施設及び建屋等による飛来物の防護が期待できない屋内の外部事象防護対象施設は，加わるおそれがある設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，安全機能を損なわないよう，要求される機能を維持する設計とするこ とを基本とする。 外部事象防護対象施設の安全機能を損ならおそれがあ る場合には，防護措置その他の適切な措置を講じる設計と する。 屋外の重大事故等対処設備は，竜巻による風圧力による荷重に対し，設計基準事故対処設備等及び同じ機能を有す る他の重大事故等対処設備と位置的分散を考慮した配置 とすることにより，重大事故等に対処するために必要な機能を有効に発揮する設計とする。 また，屋外の重大事故等対処設備は，その保管場所及び設置場所を考慮し，外部事象防護対象施設及び防謢対策施設に衝突し，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，浮き上がり若しくは横滑りを拘束 することにより，飛来物とならない設計とする。ただし，浮き上がり又は横滑りを拘束する車両の重大事故等対処設備のらち，地震時の移動等を考慮して地震後の機能を維持する設備は，重大事故等に対処するために必要な機能を損なわないよう，余長を有する固緷で拘束する。 屋内の重大事故等対処設備は，竜巻による風圧力による荷重に対し，設計基準事故対処設備等の安全機能と同時に重大事故等に対処するために必要な機能を損なわないよ らに，重大事故等対処設備を内包する施設により防護する設計とすることを基本とする。 防謢措置として設置する防護対策施設としては，竜巻防護ネット（ネット（金網部）（硬鋼線材：線径 $\phi 4 \mathrm{~mm}$ ，網目寸法 50 mm 及び 40 mm ），防護板（炭素鋼：板厚 8 mm 以上）及 び支持部材により構成する。）及び竜巻防謢鋼板（防護龬板（炭素鋼：板厚 8 mm 以上）及び架構により構成する。） を設置し，内包する外部事象防護対象施設の機能を損なわ ないよう，外部事象防護対象施設の機能嘠失に至る可能性 のある飛来物が外部事象防護対象施設に衝突することを防止する設計とする。防護対策施設は，地震時において外部事象防護対象施設に波及的影響を及ぼさない設計とす			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－3）凍結 （ D （3）（i）a．（a－3）－（1）安全施設は，設計基準温度による凍結に対し，（3）（i）a．（a－3）－（2）安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは涷結を考慮して，代替設備により必要な機能を確保すること，安全上支障の ない期間での修復等の対底を行うこと又はそれらを適切 に組み合わせることでっ，その安全機能を損なわない設計と する。	1．10．3 発電用原子炉設置変更許可申請（平成25年12月 27日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （外部からの衝撃による損傷の防止） 第六条 適合のための設計方針 第 1 項について （4）凍結 石巻特別地域気象観測所での観測記録（1887 年～2017年）によれば，最低気温は一 $14.6^{\circ} \mathrm{C}$（1919年1月6日）で ある。 安全施設は，設計基準温度（ $-14.6^{\circ} \mathrm{C}$ ）の低温が発生し た場合においても，安全機能を損なわない設計とする。 その上で，外部事象防護対象施設等は，上記観測記録を惹慮し，屋内施設については換気空調系により環境温度を維持し，屋外施設については保温等の涷結防止対策を必要	る。 外部事象防護対象施設及び重大事故等対処設備を内包 する施設については，設計荷重に対する構造強度評価を実施し，内包する外部事象防護対象施設及び重大事故等対処設備の機能を損なわないよう，飛来物が内包する外部事象防護対象施設及び重大事故等対処設備に衝突することを防止可能な設計とすることを基本とする。飛来物が内包す る外部事象防護対象施設及び重大事故等対処設備に衝突 し，その機能を損ならおそれがある場合には，防護措置そ の他の適切な措置を講じる設計とする。 また，外部事象防護対象施設及び重大事故等対処設備 は，設計荷重により，機械的及び機能的な波及的影響によ り機能を損なわない設計とする。外部事象防護対象施設に対して，重大事故等対処設備を含めて機械的な影響を及ぼ す可能性がある施設は，設計荷重に対し，当該施設の倒壊，損壊等により外部事象防護対象施設に損傷を与えない設計とする。当該施設かか機能喪失に陥った場合に外部事象防護対象施設も機能喪失させる機能的影響を及ぼす可能性 がある施設は，設計荷重に対し，必要な機能を維持する設計とすることを基本とする。 ＜中略〉 （1）自然現象 e．凍結 ［（3）（i）a．（a－3）－（1）外部事象防護対象施設は，設計基準温度による涷結に対して，ロ（3）（i）a．（a－3）－（2）屋内施設に ついては換気空調系により環境温度を維持し，屋外旅設に ついては保温等の涷結防止対策を必要に応じて行うこと により，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及び口（3）（i）a．（a－3） （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－3）－1 と同義であり整合してい	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－4）降水 （3）（i）a．（a－4）－（1）安全施設は，設計基漼隆水量による浸水及び荷重に対し，安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは隆水による損傷を老慮し て，代替設備により必要な機能を確保すること，安全上支翰のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることでっその安全機能を損なわない設計とする。	に応じて行うことにより，安全機能を損なわない設計とす る。 また，上記以外の安全施設については，低温による逨結 に対して機能を維持すること若しくは低温による繋結を煮慮して代替設備により必要な機能を碓保すること，安全上支障のない期間での修復等の対応を行うこと又は大それ らを適切に組み合わせることにより，その安全機能を損な わない設計とする。 （5）隆水 石巻特別地域気象観測所での観測記録（1937 年～2017年）によれば，最大 1 時間降水量は 91． 0 mm （2014 年 9 月 11日）である。 安全施設は，発電用原子炉施設内において設計基準降水量（ $91.0 \mathrm{~mm} / \mathrm{h}$ ）の降水が発生した場合においても，安全機能を損なわない設計とする。 その上で，外部事象防護対象施設等は，設計基準降水量 （91． $0 \mathrm{~mm} / \mathrm{h}$ ）の隆水に対し，排水口及び構内排水路による海域への排水，浸水防止のための建屋止水処置等により，安全機能を損なわない設計とする。 また，上記以外の安全施設については，隆水に対して機熊維持すること惹しくは隆水による損傷を考慮して代替設備により必要な機能を碓保すること，安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組 み合わせることにより，安全機能を損なわない設計とす る。 なおっ「森林法」に基づく林地開発許可に関する審査基準等を示した「森林法に基づく林地開発許可申請の手引き る対象区域の碓率雨量強度は「気仙沼（三陸）」に分類さ $れ, ~ 10$ 年碓率で想定される雨量強度は $88.11 \mathrm{~mm} / \mathrm{h}$ であり，設計基準降水量に包絡される。 ここで，降水に関連して発生する可能性がある自然現象 としては，土石流，土砂崩れ及び地滑りが考えられるが，敷地には，土石流，土砂崩れ及び地滑りの素因となるよう な地形の存在は認められないことから，安全施設の安全機能を損ならような土石流，土砂崩れ及び地滑りが生じるこ とはない。	考慮することにより，設計基準事故対処設備等の安全機能 と同時にその機能を損なわない設計とする。 f．降水 （ 3 ）（i）a．（a－4）－（1）外部事象防檴対象施設は，降水によ る浸水に対して，設計基蕉隆水量を上回る排水能力を有す る構内排水路による海域への排水及び建屋止水処置を行 ら設計とする。 降水による荷重に対して，排水口及び構内排水路による海域への排水により，外部事象防櫵対象施設及び外部事象防護対象施設を内包する建屋の構造健全性を確保するこ とで，外部事象防護対象施設の安全機能を損なわない設計 とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能 と同時にその機能を損なわない設計とする。	設計及び工事の計画の （3）（ i ）a．（a－3）－2 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－3）－2 を を具体的に記載しており整合 している。 設計及び工事の計画の 「2．3．1 外部からの衝 撃より防護すべき施設」及びロ（3）（i）a．（a－4） （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－4）－（1）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（ $\mathrm{a}-5$ ）積雪 （3）（ i ）a．（a－5）－（1）安全施設は，設計基漼積雪量による荷重及び閉塞に対し，安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは積雪による損傷を考慮し て，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで，その安全機能を損なわない設計とする。 （a－6）落雷 雷サージに対し，安全機能を損なわない設計とすること若 しくは雷サージによる損傷を考盧して，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせるこ とでっその安全機能を損なわない設計とする。	（6）積雪 石巻特別地域気象観測所での観測記録（1887 年～2017年）によれば，月最深積雪は 43 cm （1923年2月17日）で ある。 安全施設は，発電用原子炉施設内において設計基準積雪量（ 43 cm ）の積雪が発生した場合においても，安全機能を損なわない設計とする。 その上で，外部事象防護対象施設等は，設計基蕉積雪量 （43 cm）の積霄荷重に対し機械的強度を有することにより安全機能を損なわない設計とする。 また，設計基漼積雪量（ 43 cm ）に対し給排気口を閉塞さ せないことにより安全機能を損なわない設計とする。 また，上記以外の安全施設については，積雪に対して機熊を維持すること若しくは積雪による損傷を考慮して代替設備により必要な機能を確保することっ，安全上支障のな い期間での除雪，修復等の対応を行うこと又はそれらを適切に組み合わせることにより，安全機能を損なわない設計 とする。 なお，「建築基準法」及び同施行令第 86 条第 3 項に基 づく「宮城県建築基準法施行細則」及び「石巻市建築基準法施行細則」によると，建築物を設計する際に要求される基準積雪量は，石巻市及び女川町においては 40 cm であり，設計基準積雪量に包絡される。 積雪事象は，気象予報により事前に予測が可能であり，進展も緩やかであるため，建屋屋上等の除雪を行うことで積雪荷重の低減及び給排気口の閉塞防止，構内道路の除雪 を行らことでプラント運営に支障をきたさない措置が可能である。 （7）落雷 電気技術指針 JEAG4608－2007「原子力発電所の耐雷指針」を参照し設定した最大雷撃電流値は，100kA である。 女川原子力発電所を中心とした標的面積 $4 \mathrm{~km}^{2}$ の範囲で観測された雷撃電流の最大値は 31 kA である。 安全施設は，電気技術指針 JEAG4608－2007「原子力発電所の耐雷指針」を参照し，設計基準電流値（ 100 kA ）の落雷が発生した場合においても，安全機能を損なわない設計	g．積雪 （3）（i）a．（a－5）－11外部事象防櫵対象施設は，発電所の最寄りの気象官署である石䄅特別地域気象観測所の観測記録に基づき設定した設計基漼積雪量による積雪荷重に対して，機械的強度を有することっまた，閉塞に対してっ非常用換気空調系の給排気口を設計基蕉積雪量より高所 に設置することにより，安全機能を損なわない設計とす る。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮すること，及び除雪の実施により，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計と する。 なお，除雪を適宜実施することを保安規定に定めて管理 する。 h．落雷 （3）（i）a．（a－6）－（1）外部事象防檴対象施設は，発電所の雷害防止対策として，原子焒建屋等への避雷針の設置を行 らとともに，設計基準電流値による雷サージに対して，接地網の敷設による接地抵抗の低減等及び安全保護装置へ の雷サージ侵入の抑制を図る回路設計を行うことにより，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－5） （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－5）－（1）と同義であり整合してい る。 設計及び工事の計画の「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－6）－ （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－6）－1）と	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－7）火山の影響 （3）（i）a．（a－7）－（1）安全施設は，発電所の運用期間中に おいて発電所の安全機能に影響を及ぼし得る火山事象と して口（3）（i）a．（a－7）－（2）設定した層厚 15 cm ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態） の降下火砕物に対し，（3）（i）a．（a－7）－3 以下のような設計 とすることにより降下火砕物による直接的影響に対して機能維持すること若しくは降下火砕物による損傷を考慮 して，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応又はそれらを適切に組 み合わせることで，（巴（3）（i）a．（a－7）－（4）光の安全機能を損 なわない設計とする。	とする。 その上で，外部事象防護対象施設等の雷害防止対策とし て，原子炉建屋等への避雷針の設置，接地網の數設による接地抵抗の低減等を行うとともに，安全保護系への雷サー ジ侵入の抑制を図る回路設計を行うことにより，安全機能 を損なわない設計とする。 また，上記以外の安全施設については，落雷に対して機能を維持すること茬しくは落雷による强傷を考慮して，代替設備により必要な機能を碓保すること，安全上支障のな い期閴での修復等の対底を行うこと又はそれらを適切に組条合わせることにより，安全機能を損なわない設計とす る。 （9）火山の影響 外部事象防護対象施設等は，隆下火砕物による真接的嚗響及び闃接的影響が発生した場合においても，安全機能を損なわないよう以下の設計とする。	故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，必要に応じ避雷設備又は接地設備により防護することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわな い設計とする。 b．火山 （3）（i）a．（a－7）－①）外部事象防檴対象施設は，発電所の運用期間中において発電所の安全性に影響を及ぼし得る火山事象として口（3）（i）a．（a－7）－②設置（変更）許可を受 けた隆下火砕物の特性を設定し，その降下火砕物が発生し た場合においても，外部事象防護対象施設が回 （3）（i）a．（a－7）－4）安全機能を損なうおうれがない設計と する。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。 なお，定期的に新知見の確認を行い，新知見が得られた場合に評価することを保安規定に定めて管理する。 （a）防護設計における降下火砕物の特性の設定設計に用いる降下火砕物は，設置（変更）許可を受けた （ a ）（ i ）a．（a－7）－（2）a 層厚 15 cm ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）と設定する。 （b）降下火砕物に対する防護対策 降下火砕物の影響を考慮する施設は，降下火砕物による「直接的影響」及び「間接的影響」に対して，以下の適切 な防護措置を講じることで安全機能を損なうおそれがな	同義であり整合してい る。 設計及び工事の計画の （3）（i）a．（a－7）－1 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－7）－11と同義 であり整合している。 設計及び工事の計画の （3）（i）a．（a－7）－（2）a を含む設計及び工事の計画の（3）（i）a．（a－ 7）－（2）は，設置変更許可申請書（本文（五号）） の（3）（i）a．（a－7）－（2） と同義であり整合して いる。 設置変更許可申請書（本文（五号））の（3）（i） a．（a－7）－（3）に対する整合については，以下に示 す。 設計及び工事の計画の	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（a－7）－（8）換気系，電気系及び計測制御系に対 する機械的影響（閉塞）に対して隆下火䂠物が唚入しに くい設計とすること	－換気系，電気系及び計測制御系の機械的影響（閉塞）に対して隆下火砕物が侵入しにくい設計とすること	に波及的影響を及ぼし得る施設のらち，『（3）（i）a．（a－7）－ （7）隆下炎硞物を含ま海水の流路となる施設については，隆下火砤物に対し，機能を損なうおそれかかないようっ隆下火䂠物の粘湰に対し十分な洗路幅を設けることにより，水循嘸系の狭险部が閉塞しない設計とする。 ii．ロ（3）（i）a．（a－7）－8換気系，電気系及び計測制御采に対する機械的影響（閉塞） 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のらち，非虽用ディーゼル発電機（高圧炬心スプレイ采ディーゼル発電機を含む。） は，吸気口上流側の外気取入口にルーバを設置し，下側か ら吸い远す構造とすることにより，降下火确物が流路に侵入しにくい設計とする。排気䈹及び非虽用が不处理系（屋外配管）は，排気第の排気により隆下火砤物を侵入し難く することで排気流路が閣塞しない設計とする。… また，外気を取り入れる非虽用換気空調系（外気取入口）及び非虽用デイーゼル発電機（高圧哣心スプレイ系ディー ぜル発電機を含む。）の空気の流路にそれぞれだグフィル タな設置することにより，フィルタメッシュより大きな隆下火整物が内部に侵入しにくい㝄計とし，更に隆下火整物 がフィルタに付着した場合でも取替え又は清掃が可能な構造とすることで，隆下火砤物により閉塞しない設計とす 3．－ 非常用ディーゼル機関及び高圧炬心スプレイ系ディー ゼル機関は，フィルタを通過した小さな粒径の降下火砕物 が侵入した場合でも，降下火砤物により閉塞しない設計と する。 非常用換気空調系（外気取入口）以外の降下火砤物を含 む空気の流路となる換気系，電気系及び計測制御系の施設 についても，降下火砤物に対し，機能を損ならおそれがな いよう，降下火㸴物が侵入しにくい構造，又は降下火砤物 が侵入した場合でも，降下火砤物により流路が閉塞しない設計とする。 なお，降下火砕物により閉塞しないよう外気取入ダンパ の閉止，換気空調系の停止又は事故時運転モードへ切替元 ることを保安規定に定めて管理する。	は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－7）－（7）を具体 的に記載しており整合 している。 設計及び工事の計画の （3）（i）a．（a－7）－8 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－7）－8をを具体 的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
－（3）（i）a．（a－7）－（9）水循環系の内部における摩耗並びに換気系，電気系及び計測制御系に対する機械的影響（摩耗）に対して摩耗しにくい設計とすること －\quad（3）（i）a．（a－7）－（10）構造物の化学的影響（腐食），水循環系の化学的影響（腐食）並びに換気系，電気系及び計測制御系に対する化学的影響（腐食）に対して短期での腐食が発生しない設計とすること	－水循環系の内部における摩耗並びに換気系，電気系及び計測制御系の機械的影響（摩耗）に対して摩耗しにくい設計とすること －構造物の化学的影響（腐食），水循環系の化学的影響（腐食）並びに換気系，電気系及び計測制御系の化学的影響 （腐食）に対して短期での腐食が発生しない設計とする こと	（八）摩耗 i．水循環系の内部における摩耗 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のらち，口（3）（i）a．（a－7）－ （9）降下火砕物を含む海水の流路となる施設の内部におけ る摩耗については，主要な降下火砕物は砂と同等又は砂よ り硬度が低くもちいことから，摩耗による影響は小さい。 また当該施設については，定期的な内部点検及び日常保守管理により，状況に応じて補修が可能であり，摩耗により外部事象防護対象施設の安全機能を損なわない設計とす る． ii ．換気系，電気系及び計測制御系に対する機械的影響（摩耗） 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のうち，口（3）（i）a．（a－7）－ （9）降下火砕物を含空空気を取り込みかつ摺動部を有する換気系，電気系及び計測制御系の施設については，降下火砕物に対し，機能を損ならおそれがないよう，隆下火砕物 が侵入しにくい構造とすること又は糜耗しにくい材料を使用することにより，摩耗しにくい設計とする。 なお，摩耗が進展しないようバグフィルタの取替え又は清掃すること等を保安規定に定めて管理する。 （二）腐食 i．構造物の化学的影響（腐食） 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のうち，口（3）（i）a．（a－7）－ （10）屋外に設置している施設及び外部事象防櫵対象施設を内包する施設については，降下砕物に対し，機能を損な らおそれがないよう，耐食性のある材料の使用又は塗装を寒施することにより，隆下火砕物による短期的な腐食が発生しない設計とする。 なお，長期的な腐食の影響については，日常保守管理等 により，状況に応じて補修が可能な設計とする。 屋内の重大事故等対処設備については，降下火砕物によ る短期的な腐食により機能を損なわないように，耐食性の	設計及び工事の計画の （3）（i）a．（a－7）－（9） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－7）－（9）を具体的に記載しており整合 している。 設計及び工事の計画の （3）（i）a．（a－7）－（10 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－7）－（10）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		塞）			
		外部事象防護対象施設等及び外部事象防護対象施設等			
		に波及的影響を及ぼし得る施設のらち，非常用ディーゼル			
		発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）			
		は，吸気口上流側の外気取入口にルーバを設置し，下側か			
		ら吸い込む構造とすることにより，降下火砤物が流路に侵			
		入しにくい設計とする。排気筒及び非常用が大処理系（屋			
		外配管）は，排気筒の排気により降下火砤物を侵入し難く			
		することで排気流路が閉塞しない設計とする。			
		（3）（i）a．（a－7）－（1）また，外気を取り入れる韭堂用換気			
		坴調系（外気取入口）及び非常用ディーゼル発電機（高圧			
		灯心スプレイ系ディーゼル発電機を含む。）の坴気の流路			
		にそれぞれバグフィルタを設置することにより，フィィルタ			
		メッシュより大きな隆下炏砕物が内部に侵入しにくい設			
		計とし，更に隆下火砤物がフィルタに付着した場合でも取			
		替え又は清撏が可能な構造とすることで，降下火䂠物によ			
		，閔塞しない設計とする。			
		非常用ディーゼル機関及び高圧炬心スプレイ系ディー			
		ぜル機関は，フィルタを通過した小さな粒径の降下火砕物			
		が侵入した場合でも，降下火砤物により閉塞しない設計と			
		する。			
		非常用換気空調系（外気取入口）以外の降下火凂物を含			
		む空気の流路となる換気系，電気系及び計測制御系の施設			
		についても，降下火砤物に対し，機能を損ならおうそれがな			
		いよう，降下火砤物が侵入しにくい構造，又は降下火砕物			
		が侵入した場合でも，降下火砕物により流路が閉塞しない			
		設計とする。			
		なおさ，隆下炎砤物により閉塞しないよう外気取入ダンパ			
		の閉止，換気空調系の停止又は事故时運転モードー切替え			
		ることを保安規定に定めて管理する。			
		（木）発電所周辺の大気污染			
		外部事象防詨対象施設等及び外部事象防謢対象施設等			
		に波及的影響を及ぼし得る施設のらち，¢（3）（i）a．（a－7）－			
		（1）虫央制御室換気坴調系汇ついては，隆下少䂠物に対し，			
		機能を損ならおそれがないよう，バブフィイルタを設置する			
		ことにより，隆下火硞物が中央制御室に侵入しにくい設計			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（a－9）口（3）（i）a．（a－9）－1 1 外部火災（森林火災，爆発及 び近隣工場等の火災） 安全施設は，想定される外部火災において，最も厳しい火災が発生した場合においても安全機能を損なわない設計とする。 （3）（i）a．（a－9）－（2）想定される森林火災の延焼防止を目的として，発電所周辺の植生を確認し，作成した植生デ ータ等を基に求めた最大火線強度（4，428kW／m）から算出 される防火帯（約 20 m ）を敷地内に設ける。	1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 安全施設が外部火災（火災•爆発（森林火災，近隣工場等の火災•爆発，航空機墜落火災等））に対して，発電用原子炉施設の安全性を確保するために想定される最も厳 しい火災が発生した場合においても必要な安全機能を損 なわないよう，防火帯の設置，離隔距離の確保，建屋によ る防護，代替手段等によって，安全機能を損なわない設計 とする。 外部火災によってその安全機能が損なわれないことを確認する必要がある施設を，安全重要度分類のクラス 1 ， クラス 2 及びクラス 3 に属する構築物，系統及び機器とす る。 外部火災によってその安全機能が損なわれないことを確認する必要がある施設のらち，外部事象防護対象施設 は，防火帯の設置，離隔距離の確保，建屋による防護等に より安全機能を損なわない設計とする。 想定する外部火災として，森林火災，近隣の産業施設の火災•爆発，発電所敷地内に設置する危険物貯蔵施設等の火災及び航空機墜落による火災を選定する。外部火災にて想定する火災を第1．8．9－1表に示す。 また，想定される火災及び爆発の二次的影響（ばい煙等） に対して，安全施設の安全機能を損なわない設計とする。 1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 （2）森林火災 「原子力発電所の外部火災影響評価がイド」を参照し，発電所周辺の植生及び過圭10年間の気象条件を調查し，発電所から直線距離10kmの間に発火点を設定し，森㷊火災シ ミュレーション解析コード（以下「FARSITE」とい う。）を用いて影響評価を実施し，森㷊火災の延焼を防ぐ ための手段として防火帯を設けっ，火炎が防火帯外縁に到達 するまでの時間，評価詨象施設への熱影響及び危険距離を評価し，必要な防火帯幅，評価対象施設との離隔距離を確保すること等により，評価対象施設の安全機能を損なわな い設計とする。．．	c．\quad（3）（ i ）a．（a－9）－（1）外部火災 想定される外部火災において，火災源を発電所敷地内及 び敷地外に設定し外部事象防護対象施設に係る温度や距離を算出し，それらによる影響評価を行い，最も厳しい火災が発生した場合においても安全機能を損なわない設計 とする。 外部事象防護対象施設は，防火帯の設置，離隔距離の確保，建屋による防護によって，安全機能を損なわない設計 とする。 重大事故等対処設備は，「5．1．2 多様性，位置的分散等」 のうち，位置的分散を考慮した設計とする。 外部火災の影響については，定期的な評価の実施を保安規定に定めて管理する。 （a）防火帯幅の設定に対する設計方針 ロ（3）（ i ）a．（a－9）－（2）自然現象として想定される森林火災については森林火災シミュレーション解析コードを用 いて求めた最大火線強度から設定し，設置（変更）許可を受けた防火帯（約 20 m ）を敷地内に設ける設計とする。 また，防火帯は延焼防止効果を損なわない設計とし，防火帯に可燃物を含む機器等を設置する場合は必要最小限 とする。 （b）発電所敷地内の火災•爆発源に対する設計方針 < 中略 > －森林火災については，発電所周辺の植生を確認し，作成	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－9） （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－9）－（1）と同義であり整合してお り，設置変更許可申請書 （本文（五号））の「森林火災，爆発及び近隣工場等の火災」について は，設計及び工事の計画 の「2．3．3（1）c．（a）， （b），（c），（d），（e）」にて示す。 設計及び工事の計画の ロ（3）（i）a．（a－9）－（2 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－9）－（2）と同義 であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1（3）（i）a．（a－9）－③また，森林火災による熱影響につい ては，最大火炎輻射強度の影響を考慮した場合において も，，催隔距離の碓保等により安全施設の安全機能を損なわ ない設計とする。	1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 （2）森林火災 g ．評価対象施設への熱影響 森林火災の直接的な影響を受ける評価対象施設への影響評価を実施し，離隔距離の確保，建屋による防櫵により，評価対潒施設の安全機能を損なわない設計とする。 なお，影響評価に用いる火炎輻射強度は，FARSIT Eから出力される反応強度から求める。 （a）火災の想定 i）森林火災による熱を受ける面と森林火災の火炎輻射強度が発する地点が同じ高さにあると仮定し，離隔距離 は最短距離とする。 ii）森林火災の火炎は，円筒火炎モデルとする。火炎の高さは燃焼半径の 3 倍とし，燃焼半径から円筒火炎モデ ルの数を算出することにより火炎到達幅の分だけ円筒火炎モデルが横一列に並ぶものとする。 （b）原子炉建屋，タービン建屋，制御建屋への熱影響火炎輻射発散度 $477 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $477 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点1」に基づき算出する，防火帯の外縁（火炎側） から最も近くに位置する原子炉建屋（垂直外壁面及び天井 スラブから選定した，火災の輻射に対して最も厳しい箇所）の表面温度を，火災時における短期温度上昇を考慮し た場合のコンクリート圧縮強度が維持される保守的な温度である $200^{\circ} \mathrm{C}$ 以下とし，かつ換気空調系等による除熱に より建屋内の温度上昇を抑制することで，当該建屋内の外部事象防護対象施設の安全機能を損なわない設計とする。 （c）排気筒への熱影響 火炎輻射発散度 $367 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点2－1」に基づき算出する排気筒の温度を，鋼材 の強度が維持される温度である $325^{\circ} \mathrm{C}$ 以下とすることで，排気筒の安全機能を損なわない設計とする。 （d）復水貯蔵タンクへの熱影響 火炎輻射発散度 $408 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点2－1」に基づき算出する復水貯蔵タンクの温度 を，復水貯蔵タンクの貯留水を使用する復水補給水系の系	c．外部火災 （3）（i）a．（a－9）－（3）想定される外部火災において，火災源を発䨐所僌地内及び敷地外に設定し外部事象防櫵対象施設に係る温度や距離を算出しっそれらによる影響評価を行い，最も厳しい火災が発生した場合においても安全機能 を損なわない設計とする。 ＜中略＞ （b）発電所敷地内の火災•爆発源に対する設計方針火災•爆発源として，森林火災，発電所敷地内に設置す る屋外の危険物タンク，危険物貯蔵所，常時危険物を貯蔵 する一般取扱所及び危険物を内包する貯蔵設備以外の設備（以下「危険物貯蔵施設等」という。）の火災•爆発，航空機墜落による火災及び敷地内の危険物貯蔵施設等の火災と航空機墜落による火災が同時に発生した場合の重畳火災を想定し，口（3）（i）a．（a－9）－（3）火災源からの外部事象防檴対象施設への熱影響を評価する。… なお，発電所敷地内には屋外で爆発する可能性のある設備を設置していないことからガス爆発によって評価対象施設の安全機能が損なわれることはない。 外部事象防護対象施設の評価条件を以下のように設定 し，評価する。評価結果より火災源ごとに輻射強度，燃焼継続時間等を求め，外部事象防護対象施設を内包する建屋 （垂直外壁面及び天井スラブから選定した，火災の輻射に対して最も厳しい箇所）の表面温度が許容温度（ $200^{\circ} \mathrm{C}$ ） となる危険距離及び屋外の外部事象防護対象施設の温度 が許容温度（排気筒の表面温度 $325^{\circ} \mathrm{C}$ 並びに復水貯蔵タン クの貯留水を使用する補給水系の系統最高使用温度 $66^{\circ} \mathrm{C}$並びに原子炉補機冷却海水ポンプの泠却空気温度を上部軸受の機能維持に必要な $40^{\circ} \mathrm{C}$ 及び下部軸受の機能維持に必要な $55^{\circ} \mathrm{C}$ 並びに高圧灲心スプレイ補機泠却海水ポンプ の椧却空気温度を上部軸受及び下部軸受の機能維持に必要な温度である $55^{\circ} \mathrm{C}$ ）となる危険距離を算出し，その危険距離を上回る離隔距離を確保する設計，又は建屋表面温度及び屋外の外部事象防護対象施設の温度を算出し，その温	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及び凹（3）（i）a．（a－9） （3）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－9）－（3）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）（i）a．（a－9）－（5）また，想定される発電所敷地内に設置する危険物貯蔵施設等の火災及び航空機墜落による火災については，離隔距離を確保すること，その火災による損傷を考慮して代替設備により必要な機能を確保するこ と又はそれらを適切に組み合わせることで，その安全施設 の安全機能を損なわない設計とする。外部火災による屋外施設への影響については，屋外施設の温度を許容温度以下 とすることで安全施設の安全機能を損なわない設計とす る。	ト施設を調査した結果，当該施設は存在しないことを確認 している。 なお，発電所に最も近い石油コンビナート地区は西南西約 40 km の塩釜地区及び仙台地区である。 （3）近隣産業施設の火災•爆発 e．発電所敷地内に設置する危険物貯蔵施設等の火災•爆発 （a）火災の影響 発電所敷地内に設置する危険物貯蔵施設等の火災によ る直接的な影響を受ける評価対象施設への影響評価を実施し，離隔距離の確保，建屋による防護等により，評価対象施設の安全機能を損なわない設計とする。 <中略 > （4）航空機墜落による火災 「原子力発電所の外部火災影響評価ガイド」を参照し，航空機墜落による火災について落下カテゴリごとに選定 した航空機を対象に，直接的な影響を受ける，評価対象施設への影響評価を実施し，離隔距離の確保及び建屋による防護により，評価対象施設の安全機能を損なわない設計と する。 また，航空機墜落による火災と発電所敷地内の危険物貯蔵施設等による㷋の重畳を考慮する設計とする。…	た，火災の輻射に対して最も厳しい箇所）の表面温度が許容温度となる危険距離及び屋外の外部事象防護対象施設の温度が許容温度となる危険距離を算出し，その危険距離を上回る離隔距離を確保する設計とする。 なお，漂流船舶の火災については，発電所敷地外半径 10 km を主要航路とする船舶が存在しないことから，発電所内の港湾施設に入港する船舶の中で燃料の積載量が最大である船舶の火災を想定する。 －発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の爆発については，ガス爆発の爆風圧が 0.01 MPa となる危険限界距離を算出し，その危険限界距離を上回る離隔距離を確保する設計とする。また，ガス爆発による容器破損時に破片の最大飛散距離を算出し，最大飛散距離を上回る離隔距離を確保する設計とする。 なお，漂流船舶の爆発については，爆発のおそれがあ る船舶が発電所敷地外半径 10 km 以内を航行していない ため，船舶の爆発による発電用原子炉施設への影響につ いては考慮しない。 c．外部火災 （ （3）（i）a．（a－9）－（5）想定される外部火災において，火災 $^{(1)}$源を発霥所敷地内及び敷地外に設定し外部事象防護対象施設に係る温度や距離を算出し，それらによる影響評価を行い，最も厳しい火災が発生した場合においても安全機能 を損なわない設計とする。 外部事象防護対象施設は，防火帯の設置，，離隔距離の確保，建屋による防護によって，安全機能を損なわない設計 とする。 ＜中略＞ （b）発電所敷地内の火災•爆発源に対する設計方針 火災•爆発源として，森林火災，発電所敷地内に設置す る屋外の危険物タンク，危険物貯蔵所，常時危険物を貯蔵 する一般取扱所及び危険物を内包する貯蔵設備以外の設備（以下「危険物貯蔵施設等」という。）の火災•爆発，．．．．航空機墜落による火災及び敷地内の危険物貯蔵施設等の	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－9） （5）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－9）－（5）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		火災と航空機嗉落による火災が同時に発生した場合の重䵣火災を想定し，火災源からの外部事象防護対象施設への熱影響を評価する。 なお，発電所僌地内には屋外で爆発する可能性のある設備を設置していないことからガス爆発によって評価対象施設の安全機能が損なわれることはない。 外部事象防護対象施設の評価条件を以下のように設定 し，評価する。評価結果より火災源ごとに輻射強度，燃焼䋛続時間等を求め，外部事象防護対象施設を内包する建屋 （垂直外壁面及び天井スラブから選定した，火災の輻射に対して最も厳しい䉯所）の表面温度が許容温度（ $200^{\circ} \mathrm{C}$ ） となる危険距離及び屋外の外部事象防護対象施設の温度 か許容温度（排気筒の表面温度 $325^{\circ} \mathrm{C}$ 並びに復水貯蔵タン クの貯留水を使用する補給水系の系統最高使用温度 $66^{\circ} \mathrm{C}$並びに原子炉補機泠却海水ポンプの泠却空気温度を上部軸受の機能維持に必要な $40^{\circ} \mathrm{C}$ 及び下部軸受の機能維持に必要な $55^{\circ} \mathrm{C}$ 並びに高圧炉心スプレイ補機冷却海水ポンプ の椧却空気温度を上部軸受及び下部軸受の機能維持に必要な温度である $\left.55^{\circ} \mathrm{C}\right)$ となる危険距離を算出し，その危険趾離を上回る離偪距離を確保する設計，又は建屋表面温度及び屋外の外部事象防護対象施設の温度を算出し，その温度が許容温度を満足する設計とする。 －森林火災については，発電所周辺の植生を碓認し，作成 した植生データ等を基に求めた防火帯の外縁（火災側） における火炎輻射発散度（建屋及び復水貯蔵タンク評価 においては $477 \mathrm{~kW} / \mathrm{m}^{2}$ ，排気筒評価においては $367 \mathrm{~kW} / \mathrm{m}^{2}$ ， その他評価においては $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）を用いて危険距灈を求 め評価する。 －発電所敫地内に設置する危険物貯蔵施設等の火災につい ては，貯蔵量等を勘案して火災源ごとに建屋表面温度及 び屋外の外部事象防謢対象施設の温度を求め，評価す る。 －航空機渼落による火災については，「実用発電用原子炉施設への航空機落下確率の評価基準について」（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号（平成 21 年 6 月 30 日原子力安全•保安院一部改正））により鏊落碓率が 10^{-7}（回／炉•年） となる面積及び灕隔距䜅を算出し，外部事象防護対象施設への影響が最も厳しくなる地点で火災が起こること			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（a－9）－⑥また，外部火災の二次的影響である ばい煙及び有毒がスによる影響については，換気空調系等 に適切な防護対策を講じることで安全施設の安全機能を損なわない設計とする。	1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 （5）二次的影響（ばい煙等） 外部火災による二次的影響として，ばい煙等による影響 を抽出し，外気を取り込む評価対象施設を抽出した上で，第1．8．9－5表の分類のとおり評価を行い，必要な場合は対策を実施することで評価対象施設の安全機能を損なわな い設計とする。	を想定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め，評価する。 －敷地内の危険物貯蔵施設等の火災と航空機墜落火災の重畳については，各々の火災の評価条件により算出した輻射強度，燃焼継続時間等により，外部事象防護対象施設 の受熱面に対し，最も厳しい条件となる火災源と外部事象防護対象施設を選定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め評価する。 （d）（3）（i）a．（a－9）－⑥二次的影響（ばい煙）に対する設計方針 屋外に開口しており空気の流路となる設備及び換気空調系統に対し，ばい煙の侵入を防止するためっ，適切な防櫵対策を講じることで外部事象防護対象施設の安全機能を損なわない設計とする。 イ。換気空調系 外部火災によるばい煙が発生した場合には，侵入を防止 するためフィルタを設置する設計とする。 なお，室内に滞在する人員の環境劣化を防止するため に，ばい煙の侵入を防止するよう外気取入ダンパの閉止及 び事故時運転モードへの切替えによる外気の遮断を保安規定に定めて管理する。 口 安全保櫵装置 外部事象防護対象施設のうち空調系統にて空調管理さ れており間接的に外気と接する安全保櫵装置盤について は，フィルタを設置することによりばい煙が侵入しにくい設計とする。 八．非常用ディーゼル発電機（高圧炬心スプレイ系ディー ぜル発需機を含む。） 非常用ディーゼル発電機（高圧炡心スプレイ系ディーゼ ル発䨖機を含む。）については，フィルタを設置すること によりばい煙が侵入しにくい設計とする。．．． また，ばい煙が侵入したとしてもばい煙が流路に溜まり にくい構造とし，ばい煙により閉塞しない設計とする。… 二．原子炬補機冷却海水ポンプ及び高圧炬心スプレイ補機	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－9） ⑥は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－9）－（6）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（a－10）高潮 （3）（1）a．（a－10）－1）安全施設（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さ（ 0. P．+3.5 m ）以上に設置する ことで，その安全機能を損なわない設計とする。 （ $\mathrm{a}-11$ ）有毒ガス ロ（3）（1）a．（a－11）－1 安全施設は，想定される有毒ガスの発生 に対し，中央制御室換気空調系等により，中央制御室の居住性 を損なわない設計とする。 （ $\mathrm{a}-12$ ）船舶の衝突 ロ（3）（1）a．（a－12）－1）安全施設は，航路を通行する船舶の衝突に対し，航路からの離隔距離を確保することにより，安	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （外部からの衝撃による損傷の防止） 第六条 適合のための設計方針 第1項について （12）高潮 安全施設（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さ（ $0 . \mathrm{P} .+3.5 \mathrm{~m}$ ）以上に設置することで，安全機能を損なわない設計とする。 なお，発電所周辺海域の潮位については，発電所から南方約 11 km 地点に位置する気象庁鮎川検潮所で観測された潮位を設計潮位とする。本地点の最高潮位は0．P．+3.22 m （1960年5月24日，チリ地震津波），朔望平均満潮位が0．P． +1.43 m である。 < 中略 > 第 3 項について （5）有毒ガス 有毒ガスの漏えいについては固定施設（石油コンビナー卜施設等）と可動施設（陸上輸送，海上輸送）からの流出 が考えられる。発電所周辺には周辺監視区域が設定されて いるため，発電用原子炬施設と近隣の施設や周辺道路との間には離隔距離が確保されていることから，有毒がスの漏 えいを想定した場合でもっ中央制御室の居住性を損なうこ とはない。また，発電所周辺の主要航路を移動中の可動施設から有毒ガスの漏えいを想定した場合も同様に，離隔距離が確保されていることから，中央制御室の居住性を損な うことはない。 また」，中央制御室換気空調系については，事故時運転モ ードへ切り替えることにより中央制御室の居住性を損な うことはない。．．． （6）船舶の衝突 航路を通行する船舶の衝突に対し，航路からの離隔距離 を確保することにより，安全施設が安全機能を損なわない	2.3 外部からの衝撃による損傷の防止 2．3．3 設計方針 （1）自然現象 j．高潮 （3）（1）a．（a－10）－1）外部事象防護対象施設及び重大事故等対処設備（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さ（ 0. P．+3.5 m ）以上に設置することによ り，高潮により影響を受けることがない設計とする。 c．外部火災 （e）有毒ガスに対する設計方針 ロ（3）（1）a．（a－11）－（1）外部火災起因を含む有毒ガスが発生 した場合には，中央制御室内に滞在する人員の環境劣化を防止するために設置した外気取入ダンパを閉止し，中央制御室内の空気を事故時運転モードへ切替えの実施及び必要に応じ中央制御室以外の空調ファンを停止することに より，有毒ガスの侵入を防止する設計とする。 なお，外気取入ダンパの閉止及び事故時運転モードへ切替えによる外気の遮断及び空調ファンの停止による外気流入の抑制を保安規定に定めて管理する。 主要道路，鉄道線路，一般航路及び石油コンビナート施設は離隔距離を確保することで事故等による火災に伴う発電所への有毒ガスの影響がない設計とする。 （2）人為事象 a．船舶の衝突 ロ（3）（1）a．（a－12）－11）外部事象防護対象施設は，航路からの	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（1）a．（a－10）－1 は，設置変更許可申請書 （本文（五号））の（3） （1）a．（a－10）－1）と同義で あり整合している。 設計及び工事の計画の回 （3）（1）a．（a－11）－1）は，設置変更許可申請書（本文 （五号））の（3）（1）a．（a －11）－（1）を具体的に記載 しており整合している。 設計及び工事の計画の「2．3．1 外部からの衝	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（c）火災による損傷の防止 設計基準対象施設は，火災により発電用原子炬施設の安全性を損なわないよう，火災防護对策を講じる設計とす る。 火災防護対策を講じる設計を行らに当たり，原子炉の高温停止及び低温停止を達成し，維持するための口（3）（i）a． （c）－（1）安全機能を有する構築物，系統及び機器を設置する区域を火災区域及び火災区画に設定し，放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置す る区域を火災区域に設定する。	1.6 火災防護に関する基本方針 1．6．1 設計基準対象施設の火災防護に関する基本方針 1．6．1．1 基本事項 設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわないよう，火災防護対策を講じる設計とす る。 火災防護対策を講じる設計を行うに当たり，原子炉の高温停止及び低温停止を達成し，維持するための安全機能を直する構築物，系統及び機器を設置する区域を火災区域及 び火災区画に，放射性物質の貯蔵又は閉じ込め機能を有す る構築物，系統及び機器を設置する区域を火災区域に設定 する。 （3）原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器 設計基準対象施設のらち，重要度分類に基づき，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な以下の機能を確保するための構築物，系統及び機器を「原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器」として選定する。 （1）原子炬冷却材圧力バウンダリ機能 （2）過剰反応度の印加防止機能 （3）炉心形状の維持機能 （4）原子炉の緊急停止機能 （5）未臨界維持機能 （6）原子炉冷却材圧力バウンダリの過圧防止機能 （7）原子炉停止後の除熱機能 （8）炬心冷却機能 （9）工学的安全施設及び原子炉停止系への作動信号の発生機能 （10）安全上特に重要な関連機能	【火災防護設備】（基本設計方針） 1．火災防護設備の基本設計方針 設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわないよう，火災防護上重要な機器等を設置す る火災区域及び火災区画に対して，火災防護対策を講じ る。 発電用原子炉施設は，火災によりその安全性を損なわな いように，適切な火災防護対策を講じる設計とする。火災防護対策を講じる対象として「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」のクラス 1 ，ク ラス 2 及び安全評価上その機能を期待するクラス 3 に属す る構築物，系統及び機器とする。 火災防護上重要な機器等は，上記構築物，系統及び機器 のうち原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器とす る。 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器は，発電用原子炉施設にお いて火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために口（3）（i）a．（c）－（1）必要な以下 の機能を確保するための構築物，系統及び機器とする。 （1）原子炬冷却材圧力バウンダリ機能 （2）過剰区応度の印加防止機能 （3）炡心形状の維持機能 （4）原子哣の緊急停止機能 （5）未臨界維持機能 （6）原子炬冷却材圧力バウンダりの過厓防止機能 （7）原子炬停止後の除熱機能 （8）炬心冷却機能 （9）工学的安全施設及び原子炬停止系への作動信号の発生機能 （10）安全上特に重要な関連機能	設計及び工事の計画の （3）（i）a．（c）－（1）は， 設置変更許可申請書（本文（五号））の回（3）（i） a．（c）－（1）と同義であり整合している。 以下同じものは扊災 1 とし省略する。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
その他の発電用原子炉施設については，「消防法」，「建築基準法」，日本電気協会電気技術規程•指針に基づき設備に応じた火災防護対策を行うことについて定める。．． 外部火災については，安全施設を外部火災から防護する ための運用等について定める。．．． （c－2）火災発生防止 （c－2－1）火災の発生防止対策 火災の発生防止については，（1（3）（i）a．（c－2－1）－（1）${ }^{2}$ 発火性又は引炎性物質を内包する設備及びこれらの設備を設置する火災区域又は火災区画に対する火災の発生防止対策を講じるほかっ，	その他の発電用原子炬施設については，「消防法」，「建築基準法」，日本電気協会電気技術規程•指針に基づき設備に応じた火災防護対策を行うことについて定める。 外部火災については，安全施設を外部火災から防護する ための運用等について定める。．．． 1．6．1．2 火災発生防止に係る設計方針 1．6．1．2．1 火災発生防止対策 発電用原子炉施設の火災の発生防止については，発火性又は引火性物質を内包する設備及びこれらの設備を設置 する火災区域又は火災区画に対する火災の発生防止対策 を講じるほか，	に対する火災防護対策についても保安規定に定めて，管理 する。 その他の発電用原子炉施設については，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講じることを保安規定に定 あて，管理する。 外部火災については，設計基準対象施設及び重大事故等対処施設を外部火災から防護するための運用等について保安規定に定めて，管理する。 1．火災防護設備の基本設計方針 ＜中略＞ 設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減 のそれぞれを考慮した火災防護対策を講じる設計とする。 ＜中略＞ 1.1 火災発生防止 1．1．1 火災の発生防止対策 火災の発生防止における発火性又は引火性物質に対す る火災の発生防止対策は，（3）（i）a．（c－2－1）－（1）火災区域又は火災区画に設置する润滑油又は燃料油を内包する設備並びに水素を内包する設備を対象とする。 潤滑油又は燃料油を内包する設備は，溶接構造，シール構造の採用による漏えいの防止及び防爆の対策を講じる とともに，堰等を設置し，漏えいした閴滑油又は燃料油が拡大することを防止する設計とし，泪滑油又は燃料油を内包する設備の火災により発電用原子炉施設の安全機能及 び重大事故等に対処する機能を損なわないよう，壁の設置又は離隔による配置上の考慮を行ら設計とする。 潤滑油又は燃料油を内包する設備を設置する火災区域又は火災区画は，空調機器による機械換気又は自然換気を行う設計とする。 潤滑油又は燃料油を貯蔵する設備は，貯蔵量を一定時間 の運転に必要な量にとどめる設計とする。	設計及び工事の計画の （3）（i）a．（c－2－1）－1 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－2－1）－（1）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		水素を内包する設備のらち気体廃乗物处理系設備及び発電機水素がス供給設備の配管等は水素の漏えいを考慮 した溶接構造とし，弁グランド部から水素の漏えいの可能性のある弁は，ベローズ升等を用いて防爆の対策を行ら設計とし，水素を内包する設備の火炏により，発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわ ないよう，壁の設置による配置上の考慮を行ら設計とす る。 水素を内包する設備である蓄電池，気体廃棄物处理系設備，発電機水素がス供給設備及び水素ボンバを設置する火災区域又は火災区画は，送風機及び排風機による機械換気 を行い，水素濃度を燃鸾限界濃度以下とする設計とする。 水素ボン心゙は，ボンベ使用時のみ建屋内汇持込みを行ら運用として保安規定に定めて，管理し，火災区域内沉水素 の貯蔵機器は設置しない設計とする。 ＜中略〉			
（3）（i）a．（c－2－1）－（2）可燃性の蒸気又は可燃性の微粉に対于る対策，	可燃性の蒸気又は可燃性の微汾行対する対策，．．．	火災の発生防止のため，火災区域又は火災区画において有機溶剤を使用する場合は必要量以上持ち込まない運用 として保安規定に定めて，管理するとともに，（3）（i）a． （c－2－1）－（2）可燃性の蒸気が洪留するおそれがある場合は，使用する作業場所において，換気っ，通風，掋散の措置を行 らとともに，建屋の送風機及び排風機による機械換気によ り滞留を防止する設計とする。 ＜中略＞ 火災の発生防止のため，可燃性の微粉を発生する設備及 び静電気が溜まるおうれがある設備を火災区域又は火災区画に設置しないことによって，可燃性の微㸮及び静電気 による兆災の登生を防止する設計とする。．．	設計及び工事の計画の （3）（i）a．（c－2－1）－（2） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－2－1）－（2）を具 体的に記載しており整合している。		
発火源への対策，	発火源への対策，	火災の発生防止のため，発火源いの対策として，設備を金属製の筐体内に収納する等，（3）（i）a．（c－2－1）－（3）火火 花㚙設備外部に出ない設備を設置するとともに，高温部分を保温材で覆うことによって，可然性物質との接触防止や潤滑油等可燃物の猧熱防止を行ら設計とする。 ＜中略＞	設計及び工事の計画の （3）（i）a．（c－2－1）－③ は，設置変更許可申請書 （本文（五号））を具体的に記載しており整合 している。		
（3）（i）a．（c－2－1）－（4）水素に対する換気及び	水素に対する換気及び				

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	漏えい検出対策，	池，気体廃乗物処理系設備，発電機水素がス供給設備及び̛	（3）（i）a．$(\mathrm{c}-2-1)-$－4		
		水素ボンべを設置する火火災区域又は䀆災区画は，送風機及	は，設置変更許可申請書		
		び排風機による機棫換気を行い，水素濃度を燃瘈限界濃度	（本文（五号））の辺		
		以下とする設計とする。	（i）a．（c－2－1）－（4）を具		
		＜中略＞	体的に記載しており整合している。		
（3）（i）a．（c－2－1）－（5）漏えい検出文策，		（3）（i）a．（c－2－1）－（5）火炏の発生防止における水素漏	設計及び工事の計画の		
	＜中略＞	えい検出は，．蓄電池室の上部に水素滞度検出器を設置し，			
		水素の燃烍限界濃度である $4 \mathrm{vol} \%$ の $1 / 4$ に達する前の濃度	は，設置変更許可申請書		
		にて嵒央制御室に警報を登する設計とする。．．．	(本文 (五号)) の (3)		
		気体廃重物処理系設備内の水素濃度については，水素濃	（i）a．（c－2－1）－（5）を具		
		度計により中央制御室で常時監視ができる設計とし，水素	合している。		
		濃度が上昇した場合には中央制御室に警報を発する設計			
		とする。			
		発電機水素が供給設備は，水素消費量を管理するとと			
		もに，発電機内の水素純度，水素圧力を中央制御室で常時臨視ができる設計とし，登電機内の水素純度や水素厂力が			
		監視ができる設計とし，発電機内の水素純度や水素圧力が低下した場合には中央制御室に警報を発する設計とする。			
		水素ボンベを使用する火災区域又は火災区画について			
		は，ボンバ使用時のみ建屋内に持込みを行ら運用として保			
		安規定に定めて，管理し，機械換気により水素浱度を燃㳣			
		限界裖度以下とするように設計することから，水素裖度検出器は設置しない設計とする。			
		＜中略＞			
電気系統の過電流による過熱及び焼損の防止対策の（3） （i）a．（c－2－1）－6）等を講じる設計とする。	電気系統の過電流による過熱及び焼損の防止対策等を講 じる設計とする。	火災の発生防止のため，発電用原子炉施設内の電気系統	設計及び工事の計画の		
		は，保護䋛電器及び遮断器によって故障回路を早期に遮断	(3) (i) a. (c-2-1)-(6)		
		し，過電流による過熱及び焼損を防止する設計とする。 <中略>	は，設置変更許可申請書 （本文（五号））のロ（3）		
		¢（3）（i）a．（c－2－1）－6火火災区域又は火火火火火災区画において，	（i）a．（c－2－1）－（6）を具		
		発火性又は引炎性物質を内包する設備は，溶接構造の採用	体的に記載しており整		
		及び機棫換気等により，「需気設備に闗する技術基蕉を定	合している。		
		める省令」及び「工場需気設備防爆指針」で要求される爆			
		発性雰囲気とならない設計とするとともに，当該の設備を			
		設ける火火災区域又は爫災区画に設置する電気•計装品の必			
		要な箇所には，接地を施す設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（c－2－1）－7）なお，放射線分解等により発生す る水素の蓄積防止対策は，水素や酸素の濃度が高い状熊で滞留及び萻積することを防止する設計とする。 （c－2－2）不燃性材料又は難燃性材料の使用火災2安全機能を有する構築物，系統及び機器のうち，主要な構造材，	1．6．1．2．1 火災発生防止対策 （5）放射線分解等により発生する水素の蓄積防止対策放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策としては，社団法人火力原子力発電技術協会「BWR配管における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10月）」等に基づき，蓄積した水素の急速な燃焼によって，原子炉の安全性を損ならおそれがある場合には水素の蓄積を防止する設計とする。 $<$ 中略 $>$ 1．6．1．2．2 不燃性材料又は難燃性材料の使用 安全機能を有する構築物っ，系統及び機器に対しては，不燃性材料又は難燃性材料を使用する設計とし，	＜中略＞ 電気品室は，電源供給のみに使用する設計とする。 火災の発生防止のため，放射線分解により水素が発生す る火災区域又は火災区画における，水素の蓄積防止対策と して，（3）（i）a．（c－2－1）－（7）社団法人火力原子力発電技術協会「BWR 配管における混合がス（水素•酸素）蔁積防止 に関するガイドライン（平成17年10月）」 等に基づき，原子炬の安全性を損なうおそれがある場合には水素の萻積を防止する設計とする。 重大事故等時の原子炉格納容器内及び建屋内の水素に ついては，重大事故等対処施設にて，蓄積防止対策を行う設計とする。 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能を有するもの（以下「代替材料」 という。）を使用する設計，若しくは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用 が技術上困難な場合は，当該構築物，系統及び機器におけ る火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止する ための措置を講じる設計とする。 火災2 火災防櫵上重要な機器等及び重大事故等対処施設 のうち，機器，配管，ダクト，トレイ，電線管，盤の筐体及びこれらの支持構造物の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を確保するため に必要な代替材料の使用が技術上困難であるため，金属で覆われた狭隘部に設置し直接火炎に晒されることのない設計とする。 金属に覆われたポンプ及び弁等の駆動部の潤滑油並び	設計及び工事の計画の （3）（i）a．（c－2－1）－7 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－2－1）－（7）を具体的に記載しており整合している。	

	設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
$\begin{aligned} & \stackrel{\rightharpoonup}{a} \\ & I \\ & I \\ & I \\ & I \\ & \text { I } \\ & \text { a } \\ & 0 \end{aligned}$	ケーブル, チャコールフィルタを除く換気設備のフィルタ， 保温材及び 建屋内装材は，不燃性材料又は難燃性材料を使用する設計 とする。		に金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他の火災防護上重要な機器等及び重大事故等対処施設に延焼しないことから，不燃性材料又は難燃性材料でない材料を使用する設計とする。 <中略〉 火災防護上重要な機器等及び重大事故等対処施設に使用するケーブルは，実証試験により自己消火性（UL 垂直燃焼試験）及び耐延㳣性（IEEE383（光ファイバケ ーブルの場合はIEEE1202）垂直トレイ燃焼試験） を碓認した難䑱ケーブルを使用する設計とする。 <中略> 火災防護上重要な機器等及び重大事故等対処施設のう ち，換気空調設備のフィルタはチャコールフィルタを除 き，「JIS L 1091（繊維製品の燃恠性試験方法）」又は「JACA No．11A－2003（空気清浄装置用万材燃焼性試験方法指針（公益社団法人日本空気清净協会））」を满足 する難燃性材料を使用する設計とする。 火災防護上重要な機器等及び重大事故等対処施設のら ち，屋内の変圧器及び遮断器は，可燃性物質である絶縁油 を内包していないものを使用する設計とする。 1．1．2 不燃性材料又は難然性材料の使用 ＜中略＞ 火災防護上重要な機器等及び重大事故等対処施設に使用する保温材は，原則，「平成 12 年建設省告示第 1400 号」 に定められたもの又は「建築基集法」で不燃性材料として認められたものを使用する設計とする。 火災防護上重要な機器等及び重大事故等対処施設を設置する建屋の内装材は，「建築基準法」で不燃性材料とし て認められたものを使用する設計とする。 ただし，管理区域の床や，原子媔格納容器内の床や壁に使用于る耐放射線性のコーティング剤は，不燃性材料であ るコンクリート表面に荼布すること，難然性が碓認された塗料であること，加熱源を除去した場合はその燃㳣部が広 がらないこと，原子炉格納容器内を含む建屋内に設置する火炏防護上重要な機器等及び重大事故等対处施設は，不燃性又は難㦓性の材料を使用し，その周辺には可燃物がない ことから，難㦓性材料を使用する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
火災感知設備及び消火設備については，設けられた火災区域及び火災区画に設置された扊災2安全機能を直する構築物，系統及び機器の耐震クラスに応じて，地震に対して機能を維持できる設計とする。	かつっ，安全機能を有する構築物，系統及び機器の耐震クラ スに応じて，機能を維持できる設計とすることを「1．6．1． 3.3 自然現象の考慮」に示す。	火災感知設備及び消火設備については，火災区域及び火災区画に設置された扊災2火災防護上重要な機器等の耐震 クラス及び重大事故等対処施設の区分に応じて，地震に対 して機能を維持できる設計とする。 1．2．1 火災感知設備 ＜中略＞ 火災区域又は火災区画の火災感知設備は，凍結等の自然現象によっても，機能，性能が維持できる設計とする。 屋外に設置する火災感知設備は，$-14.6^{\circ} \mathrm{C}$ まで気温が低下しても使用可能な火災感知設備を設置する設計とする。 屋外の火災感知設備は，火災感知器の予備を保有し，万一，風水害の影響を受けた場合にも，早期に取替えを行う ことにより機能及び性能を復旧する設計とする。 1．2．2 消火設備 （6）消火設備に対する自然現象の考慮 a．凍結防止対策 屋外消火設備の配管は，保温材により配管内部の水が涷結しない設計とする。 屋外消火栓は，凍結を防止するため，自動排水機構によ り消火栓内部に水が溜まらないような構造とする設計と する。 b．風水害対策 消火用水供給系の消火設備を構成する電動機駆動消火 ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系デ ィーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブ ルトレイ消火設備は，風水害に対してその性能が著しく阻害されることのないよう，建屋内に設置する設計とする。 c．地盤変位対策 地震時における地盤変位対策として，水消火配管のレイ アウト，配管支持長さからフレキシビリティを考慮した配置とすることで，地盤変位による変形を配管系統全体で吸収する設計とする。 さらに，屋外消火配管が破断した場合でも移動式消火設備を用いて屋内消火栓へ消火用水の供給ができるよう，建屋に給水接続口を設置する設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，消火設備は，破損，誤作動又は誤操作が起きた場合 においても，原子炉を安全に停止させるための機能を口（3） （i）a．（c－3）－（1）損なわない設計とする。 （c－3－1）火災感知設備 火災感知器は，環境条件や火災の性質を考慮して口（3） （i ）a．（c－3－1）－（1）型式を選定し，固有の信号を発する異な る種類を組み合わせて設置する設計とする。	また，消火設備は，破損，誤動作又は誤操作が起きた場合 においても，原子炉の高温停止及び低温停止を達成し，維持するための機能を損なわない設計とすることを「1．6．1． 3.4 消火設備の破損，誤動作又は誤操作による安全機能 への影響」に示す。 1．6．1．3．1 火災感知設備 （2）固有の信号を発する異なる火災感知器の設置 火災感知設備の火災感知器は，「1．6．1．3．1（1）火災感知器の環境条件等の考慮」の環境条件等を考慮し，火災感知器を設置する火災区域又は火災区画の安全機能を有す る構築物，系統及び機器の種類に応じ，火災を早期に感知 し，誤作動を防止するために，固有の信号を発するアナロ グ式の煙感知器及びアナログ式の熱感知器の異なる種類 の感知器を組み合わせて設置する設計とする。 ただし，発火性又は引火性の雰囲気を形成するおそれの ある場所及び屋外等は，非アナログ式も含めた組み合わせ で設置する設計とする。 炎感知器は非アナログ式であるが，炎が発する赤外線又 は紫外線を感知するため，炎が生じた時点で感知すること ができ，火災の早期感知が可能である。 ここで，アナログ式とは「平常時の状況（温度，煙の濃度）を監視し，かつ，火災現象（急激な温度や煙の濃度の上昇）を把握することができる」ものと定義し，非アナロ	1．2．2 消火設備 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起きた場合においても，原子炉を安全に停止 させるための機能又は重大事故等に対処するために必要 な機能を有する電気及び機械設備凹（3）（i）a．（c－3）－（1）に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火設備又は手動操作による固定式消火設備であるハロンガ ス消火設備及びケーブルトレイ消火設備を設置して消火 を行ら設計とする。 ＜中略＞ 1.2 火災の感知及び消火 1．2．1 火炎感知設備 火災感知設備の火災感知器は，火災区域又は火災区画に おける放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置 する火災区域又は火災区画の火災防護上重要な機器等及 び重大事故等対処施設の（3）（i）a．（c－3－1）－（1）種類に応 じ，．．．災を早期に感知できるよう，固有の信号を発するア ナログ式の煙感知器及びアナログ式の熱感知器の異なる種類の火災感知器を組み合わせて設置する設計とする。 火災感知器については，消防法施行規則に従い設置す る，又は火災区域内の感知器の網羅性及び火災報知設備の感知器及び発信機に係る技術上の規格を定める省令に定 める感知性能と同等以上の方法により設置する設計とす る。 ただし，発火性又は引火性の雰囲気を形成するおそれの ある場所及び屋外等は，環境条件や火災の性質を考慮し，非アナログ式の炎感知器，アナログ式の屋外仕様の熱感知 カメラ，非アナログ式の屋外仕様の炎感知器，非アナログ式の防爆型の煙感知器及び非アナログ式の防爆型の熱感知器も含めた組み合わせで設置する設計とする。 非アナログ式の火災感知器は，環境条件等を考慮するこ とにより誤作動を防止する設計とする。 なお，アナログ式の屋外仕様の熱感知カメラ及び非アナ	設計及び工事の計画の （3）（i）a．（c－3）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3）－（1）を含ん でおり整合している。 設計及び工事の計画の （3）（i）a．（c－3－1）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－1）－（1）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
火災感知設備は，外部電源喪失時においても火災の感知が可能なように電源確保を行い， 中央制御室で常時監視できる設計とする。	グ式とは「平常時の状況（温度，煙の濃度）を監視するこ とはできないが，火災現象（急激な温度や煙の濃度の上昇等）を把握することができる」ものと定義する。 ＜中略＞ （4）火災感知設備の電源確保 安全機能を有する構築物，系統及び機器を設置する火災区域又は火災区画の火災感知設備は，外部電源喪失時にお いても火災の感知が可能となるように蓄電池を設け，電源 を確保する設計とする。 また，原子炉の高温停止及び低温停止を達成し，維持す るために必要な構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域又は火災区画の火災感知設備に供給する電源は，非常用ディーゼル発電機が接続されている非常用電源より供給する設計とする。 （3）火災受信機盤 火災感知設備の火災受信機盤は中央制御室に設置し，火災感知設備の作動状況を常時監視できる設計とする。 ＜中略＞	ログ式の屋外仕様の炎感知器は，監視範囲に火災の検知に影響を及ぼす死角がないように設置する設計とする。 また，発火源となるようなものがない火災区域又は火災区画は，可燃物管理により可燃物を持ち込まない運用とし て保安規定に定めて，管理することから，火災感知器を設置しない設計とする。 $<$ 中略 $>$ 火災感知設備は，外部電源喪失時又は全交流動力電源喪失時においても火災の感知が可能となるように蓄電池を設け，電源を確保する設計とする。また，火災防護上重要 な機器等及び重大事故等対処施設を設置する火災区域又 は火災区画の火災感知設備の電源は，非常用電源又は常設代替交流電源設備からの受電も可能な設計とする。 ＜中略＞ 1．2．1 火災感知設備 ＜中略＞ 火災感知設備のうち火災受信機盤は中央制御室に設置 し，火災感知設備の作動状況を常時監視できる設計とす る。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を 1 つずつ特定できる設計と する。屋外の海水ポンプ室（補機ポンプエリア）及びガス タービン発電設備燃料移送ポンプを監視するアナログ式 の屋外仕様の熱感知カメラの火災受信機盤においては，カ メラ機能による映像監視（熱サーモグラフィ）により火災発生箇所の特定が可能な設計とする。 火災感知器は，自動試験機能又は遠隔試験機能により点検ができる設計とする。 自動試験機能又は遠隔試験機能を持たない火災感知器 は，機能に異常がないことを確認するため，「消防法施行規則」に準じ，煙等の火災を模擬した試験を実施する。 <中略 >		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（c－3－2）消火設備 火災2安全機能を有する構築物，系統及び機器を設置す る火災区域又は火災区画で，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところには，自動消火設備又は手動操作による固定式消火設備を設置して消火を行ら設計とするとともに，	1．6．1．3．2 消火設備 消火設備は，以下に示すとおり，安全機能を有する構築物，，系統及び機器を設置する火災区域又は火災区画の火災 を早期に消火できるよう設置する設計とする。 （1）原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備は，当該構築物，系統及び機器 の設置場所が，火災発生時の煙の充満又は放射線の影響に より消火活動が困難となるかを考慮して設計する。 c．火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画に設置する消火設備 火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画は，自動又は中央制御室からの手動操作による固定式消火設備である全域が ス消火設備を設置し消火を行ら設計とする。 なお，これらの固定式消火設備に使用するガスは，ハロ ゲン化物消火剤とする。 <中略 > （2）放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備 放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備は，当該火災区域又は火災区画が，火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画であるかを考慮して設計する。 < 中略 > c．火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画に設置する消火設備	1．2．2 消火設備 火災2炎災防護上重要な機器等及び重大事故等対処施設 を設置する火災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起きた場合においても，原子炉を安全に停止させるための機能又は重大事故等に対処するために必要な機能を有する電気及び機械設備に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火設備又は手動操作による固定式消火設備であるハロンガス消火設備及び ケーブルトレイ消火設備を設置して消火を行う設計とす る。 火災発生時の煙の充満又は放射線の影響により消火活動が困難とならないところは，消火器，移動式消火設備又 は消火栓により消火を行う設計とする。 なお，消火設備の破損，誤作動又は誤操作に伴う溢水に よる安全機能及び重大事故等に対処する機能への影響に ついては，浸水防護設備の基本設計方針にて確認する。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
（3）（i）a．（c－3－2）－（1）全域がス消火設備を設置する場合 は，作動前に職員等の退出ができるよう警報を発する設計	放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域又は火災区画のらち，火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画は，自動又は中央制御室か らの手動操作による固定式消火設備である全域がス消火設備を設置し消火を行ら設計とする。 なお，この固定式消火設備に使用するガスは，「消防法施行規則」を踏まえハロゲン化物消火剤とする。 < 中略 > 1．6．1．3．2 消火設備 （13）固定式消火設備等の職員退避警報 固定式消火設備である全域がス消火設備は，作動前に職員等の退出ができるように警報又は音声警報を吹鳴し， 20	原子炉格納容器は，運転中は窒素に置換され火災は発生 せず，内部に設置された火災防護上重要な機器等が火災に より機能を損ならおそれはないことから，原子炉起動中並 びに低温停止中の状態に対して措置を講じる設計とし，消火については，消火器又は消火栓を用いた消火ができる設計とする。火災の早期消火を図るために原子炉格納容器内 の消火活動の手順を定めて，自衛消防隊（運転員，初期消火要員）の訓練を実施する。 なお，原子炉格納容器内において火災が発生した場合，原子炉格納容器の空間体積（約 $7650 \mathrm{~m}^{3}$ ）に対してパージ用排風機の容量が約 $24000 \mathrm{~m}^{3} / \mathrm{h}$ であることから，煙が充満しな いため，消火活動が可能であることから，消火器又は消火栓を用いた消火ができる設計とする。 中央制御室は，消火器で消火を行ら設計とし，中央制御室制御盤内の火災については，電気機器への影響がない二酸化炭素消火器で消火を行ら設計とする。また，中央制御室床下ケーブルピットについては，自動消火設備である八 ロンガス消火設備（局所）を設置する設計とする。 トーラス室において火災が発生した場合，トーラス室の空間体積（約 $11000 \mathrm{~m}^{3}$ ）に対して換気風量の容量が約 $21600 \mathrm{~m}^{3}$ $/ \mathrm{h}$ であることから，煙が充満しないため，消火活動が可能 であることから，消火器を用いた消火ができる設計とす る。 ＜中略＞ （5）消火設備の警報 b．ハロンガス消火設備の職員退避警報 ロ（3）（i）a．（c－3－2）－（1）固定式消火設備であるハロンガ ス消火設備は，作動前に職員等の退出ができるように警報	設計及び工事の計画の $\text { (3)(i)a. }(\mathrm{c}-3-2)-1$	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
とする。 また，火災1原子炉の高温停止及び低温停止に係る安全機能を有する構築物，系統及び機器の相互の系統分離を行 らために設けられた火災区域又は火災区画に設置される回 （3）（i）a．（c－3－2）－（2）消火設備は，選択弁等の動的機器の単一故障も考慮し，系統分離に応じた独立性を備えた設計 とする。	秒以上の時間遅れをもってハロンガスを放出する設計と する。 ＜中略＞ 1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （火災による損傷の防止） 第八条 適合のための設計方針 第1項について （2）火災感知及び消火 <中略 > 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器の相互の系統分離を行うた めに設けられた火災区域又は火災区画に設置する消火設備は，．系統分離に応じた独立性を備えた設計とする。 <中略 > 1．6．1．3．2 消火設備 （8）消火用水の最大放水量の確保	又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置した ケーブルトレイ内に留まり，外部に有意な影響を及ぼさな いため，消火設備作動前に退避警報を発しない設計とす る。 1．2 火災の感知及び消火 1．2．2 消火設備 （2）消火設備の系統構成 b．系統分離に応じた独立性 火災1原子炉の高温停止及び低温停止を達成し，維持す るために必要な構築物，系統及び機器の相互の系統分離を行うために設けられた火災区域又は火災区画に設置され る（3）（i）a．（c－3－2）－（2）ハロンガス消火設備及びケーブ ルトレイ消火設備は，以下に示すとおり，系統分離に応じ た独立性を備えた設計とする。 （a）動的機器である選択弁は多重化する。．．． （b）容器弁及びボンべを必要数より 1 つ以上多く設置す る。 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時 に機能喪失しないよう，区分分離や位置的分散を図る設計 とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置するハロンガス消火設備は，上記の区分分離や位置的分散に応じた独立性を備えた設計とする。 1．2 火災の感知及び消火 1．2．2 消火設備 <中略 > 火災防護上重要な機器等及び重大事故等対処施設を設	は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（1）を具 体的に記載しており整合している。 設計及び工事の計画の （3）（i）a．（c－3－2）－（2） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（2）を具 体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
消火用水供給系は， 2 時間の最大放水量を確保し， （3）（i）a．（c－3－2）－③）飲料水系等と共用する場合は隔離弁を設置し消火を優先する設計とし， する。	消火用水供給系の水源の供給先は屋内及び屋外の各消火栓である。 屋内消火栓については，「消防法施行令」第十一条（屋内消火栓設備に関する基準）に基づき，2時間の最大放水量（31． $2 \mathrm{~m}^{3}$ ）を確保する設計とする。 ＜中略＞ （9）水消火設備の優先供給 消火用水供給系は，飲料水系や所内用水系等と共用する場合には，隔離弁を設置して遮断する措置により，消火用水の供給を優先する設計とする。 なお，水道水系とは共用しない設計とする。 1．6．1．3．2 消火設備 （3）消火用水供給系の多重性又は多樣性の考慮 消火用水供給系の水源は，屋内の火災区域又は火災区画用としては， 1 号炉及び 2 号炬共用の消火水槽（約 110 m 3 ），消火水タンク（約 110 m 3 ）を設置し，多重性を有する設計 とする。また，屋外の火災区域用としては，屋外消火水夕 ンク（約 100 m 3 ）を 2 基設置し多重性を有する設計とする。屋内消火用水供給系の消火ポンプは，電動機駆動消火ポ ンプを 2 台設置し，多重性を有する設計とする。 なお，消火ポンプについては外部電源喪失時であっても機能を進失しないよう，非常用電源から受電する設計とす る。 屋外消火用水供給系の消火ポンプは，電動機駆動消火ポ ンプ，ディーゼル駆動消火ポンプをそれぞれ 1 台ずつ設置 し，多様性を有する設計とする。 なお，消火ポンプについては外部電源䨤失時であっても機能を喪失しないよう，ディーゼル駆動消火ポンプについ	置する火災区域又は火災区画の消火設備は，以下の設計を行う。 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。 b．消火用水供給采は， 2 時間の最大放水量を確保する設計とする。 c．屋内，屋外の消火栓は，「消防法施行令」に基づく容量を確保する設計とする。 （2）消火設備の系統構成 c．消火用水の優先供給 消火用水供給系は，口（3）（i）a．（c－3－2）－（3）鱽料水系や所内用水系等と共用する場合には，隔離弁を設置して遮断す る措置により，消火用水の供給を優先する設計とする。 （2）消火設備の系統構成 a．消火用水供給系の多重性又は多様性屋内水消火系の水源は，消火水槽（第 1，2号機共用（以下同じ。）），消火水タンクを設置し，屋外水消火系は，屋外消火系消火水タンクを 2 基設置し多重性を有する設計 とする。 屋内水消火系の消火ポンプは，電動機駆動消火ポンプ （第1，2号機共用（以下同じ。））を 2 台設置し，多重性を有する設計とする。 屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプを設置 し，多様性を有する設計とする。 屋外消火系ディーゼル駆動消火ポンプの駆動用燃料は，屋外消火系ディーゼル駆動消火ポンプに付属する燃料夕	設計及び工事の計画の （3）（i）a．（c－3－2）－3 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（3）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
する設計とする。 直接的な影響，流出流体等による二次的影響を受けずっ，火㢁2安全機能を有する構築物，系統及び機器に悪影響を及 ぼさないよう設置し，	れがあることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に堰等を設置するとともに，各フロアの建屋内排水系により液体廃重物処理設備に回収し，処理する設計とする。万一，流出した場合であって も建屋内排水系から系外に放出する前にサンプリングを実施し，検出が可能な設計とする。 （5）火災に対する二次的影響の考慮 全域がス消火設備は，電気絶縁性の高いガスを採用する ことで，火災が発生している火災区域又は火災区画からの火災の火炎，熱による直接的な影響のみならず，流出流体，断線及び爆発等の二次的影響を，火災が発生していない安全機能を有する構築物，系統及び機器に及ぼさない設計と する。また，防火ダンパを設け煙の二次的影響が安全機能 を有する構築物，系統及び機器に悪影響を及ぼさない設計 とする。 < 中略 >	れがあることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に堰等を設置するとともに，各フロアの建屋内排水系により液体廃棄物処理設備に回収し，処理する設計とする。 （4）消火設備の配置上の考慮 a．火災による二次的影響の考慮 （3）（i）a．（c－3－2）－（5）ヘロンガス消火設備（全域）のボ こべ及び制御盤は，扊災 2 火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさないよう消火対象と なる機器が設置されている火災区域又は火災区画と別の区画に設置する設計とする。 また，ハロンガス消火設備（全域）は，電気絶縁性の高 いがスを採用し，火災の火炎，熱による直接的な影響のみ ならず，煙，流出流体，断線及び爆発等の二次的影響が，火災が発生していない兆災2，火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。 ハロンガス消火設備（局所）及びケーブルトレイ消火設備は，電気絶縁性の高いがスを採用するとともに，ケーブ ルトレイ消火設備及び電源盤用のハロンガス消火設備（局所）については，ケーブルトレイ内又は電源盤周囲の隔壁内に消火剤を留める設計とする。．．． また，消火対象と十分離れた位置にボンべ及び制御盤を設置することでっ，火災の火炎，熱による直接的な影響のみ ならず，煙，流出流体，，断線及び爆発等の二次的影響が，火災が発生していない灵災2炎災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。 消火設備のボンべは，火災による熱の影響を受けても破損及び爆発が発生しないよう，ボンべに接続する安全弁に よりボンべの過圧を防止する設計とする。．． また，防火ダンパを設け，煙の二次的影響が火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさ ない設計とする。	設計及び工事の計画の （3）（i）a．（c－3－2）－（5） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（5）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
外部電源喪失時の口（3）（i）a．（c－3－2）－⑥電源確保を図る とともに， 中央制御室に故障警報を発する設計とする。	（11）消火設備の電源碓保 屋内消火用水供給系のらち，電動機駆動消火ポンプは外部電源喪失時でも起動できるように非常用電源から受電 し，消火用水供給系の機能を碓保することができる設計と する。 屋外消火用水供給系のらち，電動機駆動消火ポンプは常用電源から受電する設計とするが，ディーゼル駆動消火ポ ンプは，外部電源衰失時でもディーゼル機関を起動できる ように蓄電池により電源を碓保する設計とし，外部電源囊失時においてもディーゼル機関より消火ポンプへ動力を供給することによって消火用水供給系の機能を碓保する ことができる設計とする。 安全機能を有する構築物，系統及び機器を設置する火災区域又は火災区画の全域がス消火設備及び局所がス消火設備は，外部電源喪失時にも消火が可能となるように，韭虽用電源から受電するとともに，設備の作動に必要な電源 を供給する蓄電池も設ける設計とする。 ケーブルトレイ用の局所ガス消火設備は，作動に電源が不要な設計とする。 （10）消火設備の故障警報 電動機駆動消火ポンプ，ディーゼル駆動消火ポンプ，全域がス消火設備等の消火設備は，電源断等の故障警報を中央制御室に吹鳴する設計とする。	（3）消火設備の電源確保 屋内水消火系の電動機駆動消火ポンプは，外部電源喪失時でも起動できるように非常用電源から受電する設計と する。 屋外水消火系のうち屋外消火系ディーゼル駆動消火ポ ンプは，外部電源喪失時にもディーゼル機関を起動できる ように蓄電池を設け，電源を確保する設計とする。 ハロンガス消火設備は，口（3）（i）a．（c－3－2）－（6）外部電源喪失時にも消火ができるように，韭虽用電源から受電する とともに，設備の作動に必要な電源を供給する蓄電池も設 け，全交流動力電源喪失時にも電源を確保する設計とす る。 ケーブルトレイ消火設備については，作動に電源が不要 な設計とする。 （5）消火設備の警報 a．消火設備の故障警報 電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポン プ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発する設計とする。 b．ハロンガス消火設備の職員退避警報 固定式消火設備であるハロンガス消火設備は，作動前に職員等の退出ができるように警報又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置した ケーブルトレイ内に留まり，外部に有意な影響を及ぼさな いため，消火設備作動前に退避警報を発しない設計とす る。 （4）消火設備の配置上の考慮	設計及び工事の計画の （3）（i）a．（c－3－2）－6 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（6）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，防火ダンパを設け煙の二次的影響が兆災2安全機能を有する構築物，系統及び機器に悪影響を及ぼさない設計とする。 （3）（i）a．（c－3－2）－7）なおっ，消火設備を設置した場所へ の移動及び操作を行うため，蓄電池を内蔵する照明器具を設置する設計とする。 （c－4）火災の影響軽減 火災の影響軽減については，ロ（3）（i）a．（c－4）－1安全機能を有する構築物，系統及び機器の重要度に応じ，ロ（3） （i）a．（c－4）－（2）それを設置する火災区域又は火災区画 の火災及び隣接する火災区域又は火災区画における火災 による影響を軽減するためっ以下の対策を講じる設計とす る。	（5）火災に対する二次的影響の考慮 <中略 > また，防火ダンパを設け煙の二次的影響が安全機能を有す る構築物，系統及び機器に悪影響を及ぼさない設計とす る。 （15）消火用非常照明 建屋内の消火栓，消火設備現場盤の設置場所及び設置場所までの経路には，移動及び消火設備の操作を行うため， 「消防法」で要求される消火継続時間 20 分に現場への移動等の時間（最大約 1 時間）も考慮し， 8 時間以上の容量 の蓄電池を内蔵する照明器具を設置する設計とする。 1．6．1．4 火災の影響軽減のための対策 1．6．1．4．1 安全機能を有する構築物，系統及び機器の重要度に応じた火災の影響軽減のための対策 安全機能を有する構築物，系統及び機器の重要度に応 じ，それらを設置する火災区域又は火災区画内の火災及び隣接する火災区域又は紧区画の火災による影響に対し，「1．6．1．4．1（1）原子炉の高温停止及び低温停止の達成，維持に係わる火災区域の分離」から「1．6．1．4．1（8）油夕 ンクに対する火災の影響軽減対策」に示す火災の影響軽減 のための対策を講じる設計とする。 （1）原子炉の高温停止及び低温停止の達成，維持に係わ る火災区域の分離	a．火災による二次的影響の考慮 <中略 > また，防火ダンパを設け，煙の二次的影響が 火災 2 火炎防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。 （7）その他 b．消火用の照明器具 ロ（3）（i）a．（c－3－2）－7 建屋内の消火栓，消火設備現場盤 の設置場所及び設置場所までの経路には，移動及び消火設備の操作を行うため，消防法で要求される消火継続時間 2 0 分に現場への移動等の時間も考慮し， 8 時間以上の容量 の蓄電池を内蔵する照明器具を設置する設計とする。 1．3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設 において火災が発生した場合に，口（3）（i）a．（c－4）－（1）原子炬の高温停止及び低温停止を達成し，維持するために必要 な火災防護対象機器及び火災防護対象ケーブルを火災防櫵対象機器等とする。 火災が発生しても原子炉の高温停止及び低温停止を達成し，維持するためには，プロセスを監視しながら原子炬 を停止し，冷却を行うことが必要であり，このためには，手動操作に期待してでも原子炉の高温停止及び低温停止 を達成し，維持するために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要がある。 （3）（i）a．（c－4）－22このため，火災防檴対象機器等に対 して，以下に示す火災の影響軽減対策を講じる設計とす る． （1）火災防護対象機器等の系統分離による影響軽減対策	設計及び工事の計画の （ 3 ）（ i ）a．（c－3－2）－ 7 は，設置変更許可申請書 （本文（五号））の回（3） （ i ）a．（c－3－2）－7 を具 体的に記載しており整合している。 設計及び工事の計画の （3）（ i ）a．（c－4）－（1） は，設置変更許可申請書 （本文（五号））のロ（3） （ i ）a．（c－4）－（1）を具体的に記載しており整合 している。 設計及び工事の計画の （3）（ i ）a．（c－4）－（2 は，設置変更許可申請書 （本文（五号））の（3） （ i ）a．（c－4）－（2）と同義 であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
火災2原子炬の高温停止及び低温停止を達成し，維持する ための安全機能を有する構築物，系続及び機器並びに放射性物質の貯蔵又は閉じ达め機能を有する構築物，系統及び機器を（3）（i）a．（c－4）－（3）設置する火災区域は， 3 時間以上の耐火能力を有する耐火壁，天井，，床により他の火炎区域と分離する設計とする。	原子炬の高温停止及び低温停止を详成し，維持するため に必要な構築物，系統及び機器を設置する火災区域は，．．． 3時間以上の耐火能力を有する耐火壁として， 3 時間耐火に設計上必要な 150 mm 以上の壁厚を有するコンクリート壁や火災耐久試験により3時間以上の耐火能力を有する耐火壁（貫通部シール，防火蔍，防火ダンパ）によって，隣接 する他の火災区域から分離する設計とする。 ＜中略＞ （5）放射性物質の貯藏又は閉じ达め機能に関わる火災区域の分離 放射性物質の䀦蔵又は閉じうめめ機能を有する構築物，采続及び機器を設置する火災区域は， 3 時間以上の耐火能力 を有する耐火壁として，3時間耐火記設計上必要な 150 mm以上の壁厚を有するコンクリート壁や火災耐久試験によ り 3 時間以上の耐火能力を有することを碓認した耐火㗒 （貫通部シール，防火扉，防火ダンパ）により，隣接する他の火災区域と分離する設計とする。 1．6．1．4．1 安全機能を有する構築物，系統及び機器の重要度に応じた火災の影響軽減のための対策 （2）火災防護対象機器及び火災防護対象ケーブルの系統分離	中央制御室及び原子炉格納容器を除く火災防護対象機器等は，原則として安全系区分I と安全系区分II，IIIを境界とし，以下のいずれかの系統分離によって，火災の影響 を軽減するための対策を講じる。 a． 3 時間以上の耐火能力を有する隔壁等 （3）（i）a．（c－4）－（3）丕いに相違する系列の圧災2火災防檴対象機器等は，火災耐久試験により 3 時間以上の耐火能力を確認した隔壁等で分離する設計とする。 1.3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設 において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な火災防護対象機器及び火災防護対象ケーブルを火災防護対象機器等とする。 火災が発生しても原子炉の高温停止及び低温停止を達成し，維持するためには，プロセスを監視しながら原子炉 を停止し，冷却を行らことが必要であり，このためには，手動操作に期待してでも原子炉の高温停止及び低温停止 を達成し，維持するために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要がある。 このため，火災防護対象機器等に対して，以下に示す火	設計及び工事の計画の （3）（i）a．（c－4）－3 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－4）－（3）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
ただし，火災の影響軽減のための措置を講じる設計と同等の設計として，中央制御室制御盤に関しては，操作スイ ッチの離隔等による分離対策，	1． 10.3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （火災による損傷の防止） 第八条 適合のための設計方針 第1項について （2）火災感知及び消火 <中略 > 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器の相互の系統分離を行うた めに設けられた火災区域又は火災区画に設置する消火設備は，系統分離に応じた独立性を備えた設計とする。 <中略 > 1．6．1．4 火災の影響軽減のための対策 1．6．1．4．1 安全機能を有する構築物，系統及び機器の重要度に応じた火災の影響軽減のための対策 （3）中央制御室に対する火災の影響軽減のための対策 a．中央制御室制御盤内の火災の影響軽減 （a）離隔距離による分離 中央制御室の火災防護対象機器及び火災防護対象ケー ブルは，運転員の操作性及び視認性向上を目的として近接 して設置することから，中央制御室の制御盤については区分ごとに別々の盤で分離する設計とする。一部，一つの制	1.2 火災の感知及び消火 1．2．2 消火設備 （2）消火設備の系統構成 b．系統分離に応じた独立性 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器の相互の系統分離を行うた めに設けられた火災区域又は火火災区画に設置される（3） （i）a．（c－4）－⑤）ロロンガス消火設備及びケーブルトレイ消火設備は，以下に示すとおり，系統分離に応じた独立性 を備えた設計とする。 （a）動的機器である選択弁は多重化する。 （b）容器弁及びボンベを必要数より 1 つ以上多く設置す る。 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時 に機能䨖失しないよう，区分分離や位置的分散を図る設計 とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置するハロンガス消火設備は，上記の区分分離や位置的分散に応じた独立性を備えた設計とする。 （2）中央制御室の火災の影響軽減対策 a．中央制御室制御盤内の火災の影響軽減 中央制御室制御盤内の火災防護対象機器等は，以下に示 すとおり，実証試験結果に基づく離隔距離等による分離対策，高感度煙検出設備の設置による早期の火災感知及び常駐する運転員による早期の消火活動に加え，火災により中			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
高感度煙検出設備の設置，常駐する運転員による消火活動等により，上記設計と同等な設計とする。	御盤内比複数の安全系区分の火災防謢対象機器及び火災防護対象ケーブルを設置しているものがあるが，これらに ついては，区分間に金属製の仕切りを設置する。ケーブル については，当該ケーブルに火災が発生しても延焼せず， また，周囲へ火災の影響を与えない耐熱ビニル電線，難然仕様のフッ素樹脂（ETFE）電線及び難燃ケーブルを使用し，電線管に敷設する，又は離隔距離を碓保すること等 により系統分離する設計とする。これらの分離について は，実証試験等において火災により近接する他の区分の構成部品に火災の影響がないことを確認した設計とする。 （b）高感度煄検出設備の設置による早期の火災感知中央制御室内には，異なる 2 種類の火炎感知器を設置す る設計とするとともに，火災発生時には常駐する運転員に よる早期の消火活動によって，異区分への影響を軽減する設計とする。特に，一つの制御盤内汇複数の安全系区分の火災防護対象機器及び火災防護対象ケーブルを設置して いるものについては，これに加えて盤内へ高感度煄検出設備を設置する設計とする。 （c）常駐する運転員による早期の消火活動 中央制御室制御盤内に自動消火設備は設置しないが，中央制御室制御盤内江火災が発生しても，高感度垔検出設備 や中央制御室の火災感知器からの感知信号により，常駐す る運転員が中央制御室に設置する消火器で早期に消火活動を行らことで，相違する系列の火災防護対象機器及び火災防護対象ケーブルへの火災の影響を防止できる設計と する。 消火設備は，電気機器へ悪影響を与えない二酸化炭素消火器を使用する設計とし，常駐する運転員による中央制御室内の火災の早期感知及び消火を図るために，消火活動の手順を定めて，訓練を実施する。火災の発生箇所の特定が困難な場合も想定し，サーモグラフィカメラ等，火災の発生箇所を特定できる装置を配備する設計とする。	央制御室制御盤の 1 つの区画の安全機能が全て喪失して も，他の区画の制御盤は機能が維持されることを確認する ことにより，原子炉の高温停止及び低温停止の達成，維持 ができることを確認し，上記（1）と同等の火災の影響軽減対策を講じる設計とする。 離隔距離等による分離として，中央制御室制御盤につい ては，安全系区分ごとに別々の盤で分離する設計とし， 1 つの制御盤内に複数の安全系区分のケーブルや機器を設置しているものは，安全系区分間に金属製の仕切りを設置 する。ケーブルは，当該ケーブルに火災が発生しても延焼 せず，また，周囲へ火災の影響を与えない耐熱ビニル電線，難燃仕様のフッ素樹脂（ETFE）電線及び難燃ケーブルの使用，電線管への敷設，操作スイッチの離隔等により系統分離する設計とする。 中央制御室内には，異なる 2 種類の火災感知器を設置す る設計とするとともに，火災発生時には常駐する運転員に よる早期の消火活動によって，異なる安全系区分への影響 を軽減する設計とする。これに加えて盤内へ高感度煙検出設備を設置する設計とする。 火災の発生箇所の特定が困難な場合も想定し，サーモグ ラフィカメラ等，火災の発生箇所を特定できる装置を配備 する設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	るように，非常用電源から受電する。				
	c．原子炉の高温停止及び低温停止の達成，維持火災により，中央制御室内の一つの制御盤の機能がすべ て喪失したと仮定しても，他の制御盤での運転操作や現場 での操作により，原子炉の高温停止及び低温停止の達成，維持が可能な設計とする。				
口（3）（i）a．（c－4）－8 また，原子炉格納容器に関しては，	（4）原子炉格納容器内に対する火災の影響軽減のための対策 原子炉格納容器内は，プラント運転中については，窒素	（3）原子炉格納容器内の火災の影響軽減対策 (3) (i) a. (c-4) - 8 8 原子炉格納容器内は, プラント運転	設計及び工事の計画の		
運転中は窒素に置換され火災は発生せずっ内部に設置され	が封入され雰囲気が不活性化されていることから，火災の	中は窒素が封入され，．．火災の発生は想定されない。．．	（ 3 ）（ i ）a．（c－4）－8		
た安全機能を有する構築物っ，系統及び機器が火災により機能を損なうおそれはないことから，	発生は想定されない。		は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－4）－8と同義 であり整合している。		
口（3）（ i ）a．（c－4）－9）原子炬起動中並びに低温停止中の状	一方で，窒素が封入されていない期間のほとんどは原子	（3）（i）a．（c－4）－（9）窒素が封入されていない期間のほと	設計及び工事の計画の		
態に対して措置を講じる設計とする。	炬が低温停止に到達している期間であるが，わずかではあ	んどは原子炬が低温停止期間であるが，わずかに低温停止	ロ（3）（ i ）a．（c－4）－⑨		
	るものの原子炉が低温停止に到達していない期間もある	に到達していない期間もあることを踏まえ，上記（1）と同	は，設置変更許可申請書		
	ことを踏まえ，以下のとおり火災の影響軽減対策を講じ 3	等の火災の影響軽減対策を講じる設計とする。 また，原子㤱格納容器内への持込み可燃物は，持込み期	（本文（五号））のロ（3） （i）a（c－4）－9を具体		
	＜中略＞	間，可燃物量等，運用について保安規定に定めて，管理す る。	的に記載しており整合 している。		
	a．火災防護対象機器及び火災防護対象ケーブルの系統分離原子炉格納容器内の火災防護対象機器及び火災防護対象ケーブルの系統分離は，火災によっても原子炉の高温停止及び低温停止を達成，維持するために必要な機能が同時 に喪失しないことを目的に行うことから，原子炉格納容器内の状態に応じて以下のとおり対策を行う。				
	（a）起動中 i ．火災防護対象ケーブルの分離及び火災防護対象機器の分散配置				
口（3）（ i ）a ．（ $\mathrm{c}-4)$－（10）原子炉格納容器内の機器には難燃ケ	原子炉格納容器内においては，機器やケーブル等が密集	a．口（3）（ i ）a．（c－4）－（10）原子炉格納容器内の火災防護対	設計及び工事の計画の		
ーブルを使用する設計とし，火災防護对象機器及び火火災防	しており，干渉物が多く，耐火ラッピング等の 3 時間以上	象機器等の系統分離は以下のとおり対策を行う設計と	ロ（3）（ i ）a．（c－4）－（10）		
櫵対象ケーブルは，金属製の電線管等の使用等により火災	の耐火能力を有する隔壁の設置が困難である。このため，		は，設置変更許可申請書		

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	火災の早期消火を図るために，原子炉格納容器内の消火活動の手順を定めて，自衛消防隊の訓練を実施する。 また，起動中又は停止過程の空気環境において，原子炬格納容器内が広簕囲な火災となり原子炉格納容器内への入域が困難な場合には，原子炉格納容器内を密閉状態とし内部の窒息消火を行ら設計とする。 なお，原子炉格納容器内点検終了後から窒素置換完了ま での間で原子炉格納容器内の火災が発生した場合には，火災による延焼防止の钼点から，窒素封入開始後，約 2 時間 20 分を目安に窒素封入作業の継続による窒息消火又は窒素封入作業を中止し，早期の消火活動を実施する。	むる。 起動中又は停止過程の空気環境において，原子炉格納容器内が広範囲な火災となり原子炉格納容器内への入域が困難な場合には，原子炉格納容器内を密閉状態とし内部の窒息消火を行ら設計とする。 なお，原子炉格納容器内点検終了後から窒素置換完了ま での間で原子炉格納容器内の火災が発生した場合には，火災による延恠防止の観点から窒素封入作業の継続による窒息消火又は寧素封入作業を中止し，早期の消火活動を実施する。 1．3．2 原子炉の安全碓保 （1）原子炉の安全停止対策 a．火棪区域又は火災区画に設置される不燃性材料で構成される構築物，采統及び機器を除く全機器の機能喪失 を想定した設計 発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，当該火災区域又 は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能霛失を想定しても，火災 の影響軽減のための系統分離対策によって，多重化された それぞれの系統が同時に機能を失らことなく，原子炉の高温停止及び低温停止が達成できる設計とする。 b．設計基準事故等に対処するための機器に単一故障を想定した設計 発電用原子炉施設内の火災によって運転時の異常な過渡変化又は設計基淮事故が発生した場合に，「発電用軽水型原子炉施設の安全評価に関する審查指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するため の機器に単一故障を想定しても，制御盤間の離隔距離，盤内の延㜔防止対策又は現場操作によって，多重化されたそ れぞれの系統が同時に機能を失らことなく，原子炉の高温停止，低温停止を達成できる設計とする。		

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
	（b）停止過程（窒素排出期間） i ．火災防護対象ケーブルの分離及び対象機器の分散配置原子炉格納容器内においては，機器やケーブル等が密集 しており，干渉物が多く，耐火ラッピング等の 3 時間以上 の耐火能力を有する隔壁の設置が困難である。このため，停止過程では原子炉起動中と同様に，原子炉格納容器内に おいては，原子炉格納容器内の火災防護対象機器及び火災防護対象ケーブルは，系統分離の観点から安全系区分I と安全系区分 II 機器の離隔距離を 6 m 以上確保し，安全系区分 I と安全系区分II機器の間において可燃物が存在する ことのないように，異なる区分の機器間にある介在物（ケ ーブル，電磁弁）については金属性の筐体に収納すること で延焼防止対策を行ら設計とする。 原子炉起動中と同様に，原子炉格納容器内の火災防護対象ケーブルは，原子炉格納容器貫通部を区分ごとに離れた場所に設置し，可能な限り距離的分散を図る設計とする。 また，火災発生後，消火活動を開始するまでの時間の耐火性能を確認した電線管又は金属製の蓋付ケーブルトレイ に敷設する。 ii ．火災感知設備 原子炉起動中と同様に，アナログ式の異なる 2 種類の火災感知器（煙感知器及び熱感知器）を設置する設計とする。 iii．消火設備 原子炉格納容器内の消火については，消火器を使用する設計とする。また，消火栓を用いても対応できる設計とす る。 なお，原子炉格納容器内が広範囲の火災の場合には，内部の窒息消火操作を行ら設計とする。 （c）低温停止中 i．火災防護対象ケーブルの分離及び火災防護対象機器の分散配置 原子炉格納容器内においては，機器やケーブル等が密集 しており，干渉物が多く，耐火ラッピング等の 3 時間以上 の耐火能力を有する隔壁の設置が困難である。このため，低温停止中は原子炉起動中と同様に，原子炉格納容器内の火災防護対象機器及び火災防護対象ケーブルは，系統分離 の観点から安全系区分 I と安全系区分II機器の水平距離			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（c－5）火災影響評価 設備等の設置状況を踏まえた可燃性物質の量等を基に，想定される発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，火災に よる影響を考慮しても，多重化されたそれぞれの系統が同	を 6 m 以上確保し，安全系区分 I と安全系区分II機器の間 において可燃物が存在することのないように，異なる区分 の機器間にある介在物（ケーブル，電磁弁）については金属性の筐体に収納することで延焼防止対策を行ら設計と する。 原子炉起動中と同様に，原子炉格納容器内の火災防護対象ケーブルは，原子炉格納容器貫通部は区分ごとに離れた場所に設置し，可能な限り距離的分散を図る設計とする。 また，火災発生後，消火活動を開始するまでの時間の耐火性能を確認した電線管又は金属製の蓋付ケーブルトレイ に敷設することによって，近接する他の区分の火災防護対象機器へ火災の影響を及ぼすことなく消火できる設計と する。 低温停止中は，原子炉の安全停止が達成•維持された状態であること，制御棒は金属等の不燃性材料で構成された機械品であることから，原子炉格納容器内の火災によって も，原子炉の停止機能及び未臨界機能の喪失は想定されな い。 ii ．火災感知設備 原子炉起動中と同様に，アナログ式の異なる 2 種類の火災感知器（煙感知器及び熱感知器）を設置する設計とする。 iii．消火設備 原子炉起動中と同様に，原子炉格納容器内の消火につい ては，消火器を使用する設計とする。また，消火栓を用い ても対応できる設計とする。火災の早期消火を図るため に，原子炉格納容器内の消火活動の手順を社内規程に定め て，自衛消防隊の訓練を実施する。 1．6．1．4．2 火災影響評価 火災の影響軽減のための対策を前提とし，設備等の設置状況を踏まえた可燃性物質の量等を基に想定される発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，火災による影響を考慮	1．3 火災の影響軽減 1．3．2 原子炉の安全確保 （2）火災の影響評価 a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失 を想定した設計に対する評価 設備等の設置状況を踏まえた可燃性物質の量等を基に想定される発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，火災に よる影響を考慮しても，多重化されたそれぞれの系統が同			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（c－6）その他 （3）（i）a．（c－6）－（1）口（3）（i）a．（c－2）火炎発生防㠿」から「口（3）（i）a．（ $\mathrm{c}-5$ ）火災影響評侕」のほかっ。安全機能を有する構築物，系統及び機器のそれそれれの特微 を考慮した火災防護対策を講じる設計とする。		1.1 火災発生防止 1．1．1 火災の発生防止対策 ＜中略＞ 合には，中央制御室に警報を発する設計とする。また，㣁霊池室には，直流閉閉装置やインバータを設置しない。 放射性廃重物处理設備及び放射性廃重物貯蔵設備に抒 いて，崩摆熱が発生しっ，火災事象に至るような放射性廃裹物を貯蔵しない設計とする。．．． また，放射性物質を含んだ使用済イオン交換樹脂，チャ コールフィルタ及び HEPAフィルタは，固体廃裹物として处理を行うまでの間，金属容器や不燃シートに包んで保管 することを保安規定に定めて，管理する。．．． 放射性廃重物処理設備及び放射性廃重物貯蔵設備を設置する火災区域又は火災区画の換気設備は，必災時に他の火災区域又は火災区画や環境への放射性物質の放出を防 ぐために，換気設備の停止及び風量調整ダンパの閉止によ り，隔離ができる設計とする。 ＜中略＞ 1．2 火災の感知及び消火 1．2．2 消火設備 （7）その他 c．ポンプ室の煙の排気対策 火災発生時の煙の充满により消火活動が困難となるポ ンプ室には，消火活動によらなくとも迅速に消火できるよ らに固定式消火設備を設置し，鎮火の確涊のために自衛消防隊がポンプ室に入る場合については，再発火するおそれ があることからっ，十分に冷却時間を碓保した上で扉の開放，，換気空調系及び可搬型排煙装置により換気が可能な設計とする。 d．使用済燃料貯蔵設備及び新燃料貯蔵設備使用斎燃料貯蔵設備は，，水中に設置されたラックに燃料 を貯蔵することで未臨界性が確保される設計とする。 新燃料貯蔵設備については，消火活憅により消坔水が噴霧され，水分雾囲気に満たされた状熊となっても未臨界性	設置変更許可申請書（本文（五号））の（3）（i） a．（c－6）－（1）は，設計及 び工事の計画の（3） （i）a．（c－6）－（1）以降に具体的に記載しており整合している。	

設置変更許可申請書（ ${ }^{\text {a }}$（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	－プール泠却及びプールへの給水の機能を適切に維持する ために必要な設備	機器の故障を考慮しても発生が予想される運転時の異常 な過渡変化又は設計基準事故について安全解析を行い，炉心損傷に至ることなく当該事象を収束できる設計とする。 重大事故等対処設備に期待する機能については，溢水影響を受けて設計基準事故対処設備並びに使用済燃料プー ルの泠却設備及び給水設備（以下「設計基準事故対処設備等」という。）と同時に機能を損ならおそれがないよう，没水，被水及び蒸気の影響に対しては可能な限り設計基準事故対処設備等の配置を含めて位置的分散を図る設計と する。 溢水影響に対し防護すべき設備（以下「防護すべき設備」 という。）として溢水防護対象設備及び重大事故等対処設備を設定する。 発電用原子炉施設内の放射性物質を含む液体を内包す る容器，配管その他の設備（ポンプ，弁，使用済燃料プー ル，原子炉ウェル，蒸気乾燥器•気水分離器ピット）から放射性物質を含む液体があふれ出るおそれがある場合に おいて，当該液体が管理区域外い漏えいすることを防止す る設計とする。 溢水評価条件の変更により評価結果が影響を受けない ことを確認するために，評価条件変更の都度，溢水評価を実施することとし保安規定に定めて管理する。 2.2 防護すべき設備の抽出 溢水によってその安全機能が損なわれないことを確認 する必要がある施設を，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」（以下「重要度分類審査指針」という。）における分類のクラス 1 ，クラス 2 及 びクラス 3 に属する構築物，系統及び機器とする。 この中から，溢水防護上必要な機能を有する構築物，系統及び機器を選定する。 具体的には，運転状態にある場合には発電用原子炉を高温停止，引き続き低温停止することができ，並びに放射性物質の閉じ込め機能を維持するため，停止状態にある場合 は引き続きその状態を維持するため，及び使用済燃料プー ルの泠却機能及び給水機能を維持するために必要となる，重要度分類審査指針における分類のクラス 1 ， 2 に属する構築物，系統及び機器に加え，安全評価上その機能を期待			

設置変更許可申請書（ ${ }^{\text {a }}$ 本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	配管の破損形状の想定に当たつては，高エネルギー配管 は，原則「完全全周破断」，低エネルギー配管は，原則「配管内径の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通ク ラック」（以下「貫通クラック」という。）を想定する。 ただし，応力評価を実施する配管については，発生応力 Sn と許容応力 Sa の比により，以下で示した応力評価の結果に基づく破損形状を想定する。 また，応力評価の結果により破損形状の想定を行ら場合 は，評価結果に影響するような減肉がないことを確認する ために継続的な肉厚管理を実施する。	めに設置される系統からの放水による溢水（以下「消火水 の放水による溢水」という。）並びに地震に起因する機器 の破損及び使用済然料プール等のスロッシングにより生 じる溢水（以下「地震起因による溢水」という。）を踏ま え，溢水源及び溢水量を設定する。 また，その他の要因による溢水として，地下水の流入，地震以外の自然現象，機器の誤作動等により生じる溢水 （以下「その他の溢水」という。）の影響も評価する。 想定破損による溢水では，単一の配管の破損による溢水 を想定して，配管の破損箅所を溢水源として設定する。 また，破損を想定する配管は，内包する流体のエネルギ に応じて，高エネルギ配管又は低エネルギ配管に分類す る。 高エネルキ配管は，「完全全周破断」，低エネルキ配管は，「配管内径の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通クラック」（以下「貫通クラック」という。）を想定した溢水量とし，想定する破損箇所は溢水影響が最も大きくな る位置とする。 ただし，高エネルギ配管についてはターミナルエンド部 を除き応力評価の結果により，原子炉冷却材圧力バウンダ リ及び原子炉格納容器バウンダリの配管であれば発生応力が許容応力の 0.8 倍以下であれば破損を想定せず，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管であれば発生応力か㮦容応力の 0.4 倍を超え 0 。 8 倍以下であれば「貫通クラック」による溢水を想定した評価とし， 0.4 倍以下であれはば破損は想定しない。 また，低エネルギ配管については，発生応力が許容応力 の 0.4 倍以下であれば破損は想定しない。 発生応力と許容応力の比較により破損形状の想定を行 ら場合は，評価結果に影響するような減肉がないことを確認するため红継続的な肉厚管理を実施することとし保安規定に定めて管理する。 高エネルギ配管のらち，高エネルギ配管として運転して いる割合が当該系統の連転している時間の 2% 又はプラン ト運転期間の 1% より小さいことから低エネルギ配管とす る系統については，運転時間実績管理を実施することとし保安規定に定めて管理する。 ＜中略＞			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
－発電所内で生じる異常状態（火災を含む。）の拡大防止 のために設置される系統からの放水による溢水 －（3）（i）a．（d）－8 地震に起因する機器の破損等により生 じる溢水（使用済燃料プール等のスロッシングにより発生する溢水を含む。）	1．7．3．2 消火水の放水による溢水 （1）消火水の放水による溢水源の想定 消火水の放水による溢水については，発電用原子炬施設内に設置される消火設備等からの放水を溢水源として設定する。 消火栓以外の設備としては，スプリンクラや格納容器ス プレイ冷却系があるが，溢水防護対象設備が設置されてい る建屋には，スプリンクラは設置しない設計とし，溢水防護対象設備が安全機能を損なわない設計とすることから溢水源として想定しない。 また，原子炉格納容器内の溢水防護対象設備について は，格納容器スプレイ泠却系の作動によって発生する溢水 により安全機能を損なわない設計とする。 なお，格納容器スプレイ泠却系は，単一故障による誤作動が発生しないように設計上考慮されていることから誤作動による溢水は想定しない。 1．7．3．3 地震起因による溢水 （1）発電所内に設置された機器の破損による漏水 （1）地震起因による溢水源の想定	2.3 溢水源及び溢水量の設定 溢水影響を評価するために想定する機器の破損等によ り生じる溢水（以下「想定破損による溢水」という。），発電所内で生じる異常状態（火災を含む。）の拡大防止のた めに設置される系統からの放水による溢水（以下「消火水 の放水による溢水」という。）並びに地震に起因する機器 の破損及び使用済燃料プール等のスロッシングにより生 じる溢水（以下「地震起因による溢水」という。）を踏ま え，溢水源及び溢水量を設定する。 また，その他の要因による溢水として，地下水の流入，地震以外の自然現象，機器の誤作動等により生じる溢水 （以下「その他の溢水」という。）の影響も評価する。 ＜中略＞ 消火水の放水による溢水では，消火活動に伴ら消火栓か らの放水を溢水量として設定する。発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置されるスプ リンクラ及び格納容器スプレイ泠却系からの溢水につい ては，防護すべき設備が溢水影響を受けない設計とする。 ＜中略＞ 2.3 溢水源及び溢水量の設定 溢水影響を評価するために想定する機器の破損等によ り生じる溢水（以下「想定破損による溢水」という。），発電所内で生じる異常状態（火災を含む。）の拡大防止のた めに設置される系統からの放水による溢水（以下「消火水 の放水による溢水」という。）並びにロ（3）（i）a．（d）－8 地震に起因する機器の破損及び使用済燃料プール等のスロ ッシングにより生じる溢水（以下「地震起因による溢水」 という。）を踏まえ，溢水源及び溢水量を設定する。 （3）（i）a．（d）－8 ）※た，その他の要因による溢水とし て，地下水の流入，地震以外の自然現象，機器の槑作動等 により生じる溢水（以下「その他の溢水」という。）の影響も評価する。	設計及び工事の計画の （3）（i）a．（d）－8 は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－8 と 同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	地震起因による溢水については，溢水源となり得る機器 （流体を内包する機器）のうち，基準地震動 S s による地震力により破損が生じる機器を溢水源として設定する。 耐震 S クラス機器については，基準地震動 S s による地震力によって破損は生じないことから溢水源として想定 しない。また，耐震B及びCクラス機器のらち耐震対策工事の実施又は設計上の裕度の考慮により，基準地震動S s による地震力に対して耐震性が確保されているものにつ いては溢水源として想定しない。 （2）使用済燃料プールのスロッシングによる溢水 （1）使用済燃料プールのスロッシングによる溢水源の想定 使用済燃料プールのスロッシングによる溢水について は，基準地震動 S s による地震力により生じる使用済燃料 プールのスロッシングによる漏えい水を溢水源として設定する。	＜中略＞ 地震起因による溢水では，流体を内包することで溢水源 となり得る機器のうち，基準地震動 S s による地震力によ り破損するおそれがある機器及び使用済燃料プール等の スロッシングによる漏えい水を溢水源として設定する。 耐震 S クラス機器については，基準地震動 S s による地震力によって破損は生じないことから溢水源として想定 しない。また，耐震 B 及びC クラス機器のうち耐震対策工事の実施又は設計上の裕度の考慮により，基準地震動S s による地震力に対して耐震性が碓保されているものにつ いては溢水源として想定しない。 溢水源となる配管については破断形状を完全全周破断 を考慮した溢水量とし，溢水源となる容器については全保有水量を考慮した溢水量とする。 また，使用済燃料プールのスロッシングによる溢水量の算出に当たっては，基準地震動 S s により発生する使用済燃料プールのスロッシングにて使用済燃料プール外へ漏 えいする溢水量を算出する。 また，施設定期検査中においては，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピットのスロッ シングによる漏えい水を溢水源とし溢水量を算出する。 その他の溢水については，地下水の流入，降水，屋外夕 ンクの竜巻による飛来物の衝突による破損に伴ら漏えい等の地震以外の自然現象に伴ら溢水，機器の誤作動，弁グ ランド部及び配管フランジ部からの漏えい事象等を想定 する。 溢水量の算出に当たっては，漏水が生じるとした機器の らち防護すべき設備への溢水の影響が最も大きくなる位置で漏水が生じるものとして評価する。 また，溢水量の算出において，漏えい検知による漏えい停止を期待する場合には，漏えい停止までの適切な隔離時間を考慮し，配管の破損箇所から流出した漏水量と隔離後 の溢水量として隔離範囲内の系統の保有水量を合算して設定する。なお，手動による漏えい停止の手順は，保安規定に定めて管理する。 2.4 溢水防護区画及び溢水経路の設定			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
『（3）（i）a．（d）－（9）憸水䛠価に当たつては，．．． の影響を受けて，溢水防檴対潒設備の安全機能を損なう热 成する壁，屝，堰，設備等の設置状況を踏まえ，評価条件 を設定する。	（1）溢水防護区画の設定 溢水防護に対する評価対象区画を溢水防護区画とし， 溢水防護対象設備が設置されている全ての区画並びに中㐱制御室及び現場操作が必要な設備へのアクセス通路に ついて設定する。 溢水防護区画は壁，扉，堰，床段差等又はそれらの組み合 わせによって他の区画と分離される区画として設定し，溢水防護区画を構成する壁，韲，，殹，，床段差等については，．．現場の設備等の設置状況を踏まえ，溢水の伝播に対する評価条件を設定する。 1．7．5．1 没水の影響に対する設計方針 （1）没水の影響に対する評価方針 a •発生した溢水による水位が，溢水の影響を受けて溢水防檴対象設備の安全機能を損ならおそれがある高さ（以下「機能喪失高さ」という。）を上回らないこと。 ＜中略＞	『（3）（i）a．（d）－（9）兴水影響を評価するために，溢水防護区画及び溢水経路を設定する。 溢水防護区画は，防護すべき設備が設置されている全て の区画並びに中央制御室及び現場操作が必要な設備への アクセス通路について設定する。 （3）（i）a．（d）－（1）溢水防護区画は壁，扉，堰，床段差等，又ばそれらの組み合わせによって他の区画と分離される区画として設定し，，溢水防護区画内外で発生を想定する溢水に対して，当該区画内の溢水水位が最も高くなるように保守的に溢水経路を設定する。 また，消火活動により区画の扉を開放する場合は，開放 した扉からの消火水の伝播を考慮した溢水経路とする。 溢水経路を構成する水密扉に関しては，扉の閉止運用を保安規定に定めて管理する。 常設している堰の取り外し及びハッチを開放する場合 の運用を保安規定に定めて管理する。 2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関する溢水評価及び防護設計方針 2．5．1 没水の影響に対する評価及び防護設計方針 （3）（i）a．（d）－（10）発生を想定する溢水量，溢水防護区画及び溢水経路から算出される溢水水位と防檴すべき設備 が要求される機能を損ならお学なれがある高さ（以下「機能露失高さ」という。）を評価し，防護すべき設備が要求さ れる機能を損ならおそれがない設計とする。 また，溢水の流入状態，溢水源からの距離，人員のアク セス等による一時的な水位変動を考慮し，機能喪失高さは溢水による水位に対して裕度を碓保する設計とする。 没水の影響により，防護すべき設備が溢水による水位に対し機能喪失高さを碓保できないおそれがある場合は，溢水水位を上回る高さまで，溢水により発生する水圧に対し て止水性（以下「止水性」という。）を維持する壁，扉，堰，逆流防止装置及び貫通部止水処置により溢水伝播を防止するための対策を実施する。 止水性を維持する浸水防護施設については，試験又は構造健全性評価にて止水性を碓認する設計とする。	設計及び工事の計画の （3）（i）a．（d）－（9）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（9）と同義であり整合している。 設計及び工事の計画の （3）（i）a．（d）－（10）の 「防護すべき設備」は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（10） 「溢水防護対象設備」を含んでい る。また，設計及び工事 の計画の口（3）（i）a． （d）－（10）「要求される機能」は，設置変更許可申請書（本文（五号）） のロ（3）（i）a．（d）－（10）の「安全機能」を含んでお り整合している。 設計及び工事の計画の （（3）（i）a．（d）－（11）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（11）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
るための壁，．扉，，堰等の浸水防護設備，床ドレンライン，防護カバー，ブローアウトパネル等の設備については，回 （3）（i）a．（d）－（13）wiskより要に守点検や（3）（i）a．（d）－（14水窑扉閉止等の運用を適切に塞施することにより，ロ（3） （i）a．（d）－（15）溢水防護対象設備が安全機能を損なわない設計とする。	1．7．9 手順等 溢水評価に関して，以下の内容を含む手順を定め，適切 な管理を行う。	2.8 溢水防護上期待する浸水防護施設の構造強度設計溢水防護区画及び溢水経路の設定並びに溢水評価にお いて期待する浸水防護施設の構造強度設計は，以下のとお りとする。 求される機能を維持するため，（1）（i）a．（d）－（1）計画的に保守管理，点検を実施するとともに必要に応じ補修を実施 する。 止水に期待する壁，堰，扉，蓋，逆流防止装置及び貫通部止水処置のらち，地震に起因する機器の破損等により生 じる溢水（使用済燃料プール等のスロッシングにより発生 する溢水を含む。）から防護する設備については，基準地震動 S s による地震力に対し，地震時及び地震後において も，溢水伝播を防止する機能を損ならおそれがない設計と する。ただし，放射性物質を含む液体が管理区域外に伝播 することを防止するために設置する堰については，要求さ れる地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損ならおそれがない設計とする。 排水に期待する床ドレン配管の設計については，発生を想定する溢水に対する排水機能を損なうおそれがない設計とする。 漏えい蒸気影響を緩和する保護カバーの設計において は，配管の破断により発生する荷重に対し，蒸気影響を緩和する機能を損ならおそれがない設計とする。 循環水系配管及びタービン補機冷却海水系配管の破損箇所からの溢水量を低減する循環水系隔離システム及び タービン補機冷却海水系隔離システムの設計においては，基準地震動 S s による地震力に対し，地震時及び地震後に おいても，溢水量を低減する機能を損ならおそれがない設計とする。 2.4 溢水防護区画及び溢水経路の設定 ＜中略＞ （3）（i）a．（d）－（14）㜋水経路を構成する水密扉に関して は，扉の閉止運用を保安規定に定めて管理する。… ＜中略＞	設計及び工事の計画の （3）（i）a．（d）－（12）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（12）を含んでおり整合している。 設計及び工事の計画の （3）（i）a．（d）－（13は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（13）と同義であり整合している。 設計及び工事の計画の （2）（i）a．（d）－（14）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（14）と同義であり整合している。 設計及び工事の計画の （ ${ }^{(3)}$（i）a．（d）－（5b）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（15）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	（1）配管の想定破損評価において，応力評価の結果によ り破損形状の想定を行う場合は，評価結果に影響するよ うな減肉がないことを継続的な肉厚管理で確認する。 （2）配管の想定破損による溢水が発生する場合及び基準地震動 S s による地震力により耐震B，Cクラスの機器 が破損し溢水が発生する場合においては，隔離手順を定 める。 （3）運転実績（高エネルギー配管として運転している割合が当該系統の運転している時間の 2% 又はプラント運転期間の 1% より小さい）により低エネルギー配管と している設備については，運転時間管理を行う。 （4）内部溢水評価で用いる屋外タンクの水量を管理す る。 （5）地震起因による溢水において，溢水源となる機器の らち運用によって溢水を考慮しない機器について，プラ ント運転中及び停止中において系統運用を停止し，隔離 （水抜き）する。 （6）溢水防護区画において，各種対策設備の追加，資機材の持込み等により評価条件としている床面積に見直 しがある場合は，あらかじめ定めた手順により溢水評価 への影響碓認を行う。 （7）排水を期待する箇所からの排水を阻害する要因に対 し，それを防止するための運用を実施する。 （8）施設定期検査作業に伴ら溢水防護対象設備の不待機 や扉の開放等，影響評価上設定したプラント状態の一時的な変更時においても，その状態を踏まえた必要な安全機能が損なわれない運用とする。 （9）水密扉については，開放後の確実な閉止操作，閉止状態の確認及び閉止されていない状態が確認された場合の閉止操作の手順等を定める。 （10）溢水発生後の滞留区画等での排水作業手順を定め る。 （11）溢水防護対象設備に対する消火水の影響を最小限 にとどめるため，消火活動における運用及び留意事項 と，それらに関する教育について「火災防護計画」に定 める。 （12）燃料プール泠却浄化系，燃料プール補給水系が機能喪失した場合における，残留熱除去系による使用済燃料	2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関する溢水評価及び防護設計方針 2．5．2 被水の影響に対する評価及び防護設計方針 発生を想定する溢水源からの直線軌道及び放物線軌道 の飛散による被水及び天井面の開口部若しくは貫通部か らの被水が，防護すべき設備に与える影響を評価し，防護 すべき設備が要求される機能を損なうおそれがない設計 とする。 防護すべき設備は，浸水に対する保護構造（以下「保護構造」という。）を有し，被水影響を受けても要求される機能を損ならおそれがない設計とする。 保護構造を有さない場合は，機能を損ならおそれがない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わない消火手段（ハロンガス消火設備による消火，ケーブルトレイ消火設備による消火又は消火器による消火）を採用する設計と する。 保護構造により要求される機能を損ならおそれがない設計とする設備については，評価された被水条件を考慮し ても要求される機能を損ならおそれがないことを設計時 に確認する。 消火対象以外の設備への誤放水がないよう，消火水放水時に不用意な放水を行わない運用とすることとし保安規定に定めて管理する。 2．5．3 蒸気影響に対する評価及び防護設計方針 発生を想定する漏えい蒸気，区画間を拡散する漏えい蒸気及び破損想定箇所近傍での漏えい蒸気の直接噴出によ る影響について，設定した空調条件や解析区画条件により防護すべき設備に与える影響を評価し，防護すべき設備が要求される機能を損なうおそれがない設計とする。 また，漏えい蒸気による環境条件（温度，湿度及び圧力） を想定した試験又は机上評価により，防護すべき設備が要求される機能を損ならおそれがない設計又は配置とする。 漏えい蒸気の影響により，防護すべき設備が要求される機能を損ならおそれがある場合は，漏えい蒸気影響を緩和 するための対策を実施する。 具体的には，漏えい蒸気による機器への影響を考慮した			

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（d）－（16）また，設計基蕉対象施設は，発電用原子炬施設内の放射性物質を含む液体を内包する容器，配管 その他の設備から放射性物質を含む液体があふれ出た場合において，当該液体が管理区域外い漏えいしない設計と する。	1．7．7 放射性物質を含んだ液体の管理区域外への漏えい を防止するための設計方針 管理区域内で発生した溢水の管理区域外への伝播経路 となる箇所については，壁，扉，，堰等による漏えい防止対策を行うことにより，機器の破損等により生じた放射性物質を内包する液体が管理区域外に漏えいすることを防止 する設計とする。	信号発信後，約 30 秒で循環水ポンプを停止するとともに，約 3 分で復水器水室出入口弁を自動閉止する設計とする。 タービン建屋内におけるタービン補機冷却海水系配管 の破損による溢水量低減については，破損箇所からの溢水 を早期に自動検知し，隔離を行うために，タービン補機冷却海水系隔離システム（漏えい検出器，タービン補機泠却海水ポンプ出口升並びに漏えい検出制御盤及び監視盤）を設置する。タービン補機冷却海水系隔離システムは，隔離信号発生後，約 30 秒でタービン補機冷却海水ポンプを停止するとともに，タービン補機冷却海水ポンプ出口弁を自動閉止する設計とする。 また，地下水に対しては，地下水位低下設備のうち揚水 ポンプの故障等より建屋周囲の水位が地表面まで上昇す ることを想定し，建屋外周部における壁，扉，堰等により溢水防護区画を内包する建屋内への流入を防止するとと もに，地震による建屋外周部からの地下水の流入の可能性 を安全側に考慮しても，防護すべき設備が要求される機能 を損なわない設計とする。 止水性を維持する浸水防護施設については，試験又は机上評価にて止水性を確認する設計とする。 2.7 管理区域外への漏えい防止に関する溢水評価及び防護設計方針 （3）（i）a．（d）－（16）放射性物質を含む液体を内包する容器，配管その他の設備（ポンプ，弁，使用斎燃料プール，原子炬ウェル及び蒸気乾燥器•気水分離器ピット）からあ ふれ出る放射性物質を含む液体の溢水量，溢水防櫵区画及 び溢水経路により溢水水位を評価し，放射性物質を内包す る液体が管理区域外に漏えいすることを防止し伝播しな い設計とする。なお，地震時における放射性物質を含む液体の溢水量の算出については，要求される地震力を用いて設定する。 放射性物質を含む液体が管理区域外に伝播するおそれ がある場合には，溢水水位を上回る高さまで，止水性を維持する堰及び水密扉により管理区域外への溢水伝播を防止するための対策を実施する。	設計及び工事の計画の （ ${ }^{\text {（3）（i）a．（d）－（16）は，}}$設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（16）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
放射線防護措置（遮蔽回（3）（i）a．（e）－（1）及ひひ換気空調設備 の事故時運転モードの塞施）	器への誤接触を防止できる設計とする。 6．10．1．4．1 中央制御室 中央制御室は，制御建屋内に設置し，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障が発生した場合に，従事者が支障なく中央制御室に入ることができるよう，こ れに連絡する通路及び出入りするための区域を多重化す る。また，中央制御室内にとどまり必要な操作，措置を行 ら運転員が過度の被ばくを受けないよう施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室遮蔽を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室換気空調系等の機能 とあいまって，「実用発電用原子炉及びその附属施設の技術基準に関する規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則の解釈」に示される 100 mS vを下回るように遮蔽を設ける。中央制御室換気空調系は他と独立して設け，事故時には外気との連絡口を遮断し，高性能エアフィルタ及びチャコールエアフィルタを内蔵 した中央制御室再循環フィルタ装置を通る事故時運転も ードとし運転員その他従事者を過度の被ばくから防護す る設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィル夕装置で浄化しながら取り入れることも可能な設計とす る。また，室内の酸素濃度及び二酸化炭素濃度が活動に支障のない範囲であることを把握できるよう，酸素濃度計及 び二酸化炭素濃度計を保管する。 < 中略 >	【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の確保 中央制御室及びこれに連絡する通路並びに運転員その他の従事者が中央制御室に出入りするための区域は，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常が発生した場合に，中央制御室の気密性，遮蔽回 （3）（i）a．（e）－（1）との他適切な放射線防護措置，気体状の放射性物質並びに火災等により発生する燃焼がス，ばい煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切な防護措置を講じることにより，発電用原子炉の運転の停止その他の発電用原子炉施設の安全性を確保す るための措置をとるための機能を有するとともに連絡す る通路及び出入りするための区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計と する。 ＜中略＞ 【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.2 換気設備 2．2．1 中央制御室換気空調系 ＜中略＞ 中央制御室換気空調系は，通常のラインの他，高性能エ アフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉とす ることにより（3）（i）a．（e）－（1）外気との連絡口を遮断し，中央制御室再循環フィルタ装置入口ダンパ（A），（B）（V30 －D302A，B）を開とすることにより中央制御室再循環フィル夕装置を通る事故時運転モードとし，放射性物質を含む外	設計及び工事の計画の （3）（i）a．（e）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（e）－（1）と文章表現は異なるが，内容に相違は ないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	6．10．1．4．1 中央制御室 （内部火災） 中央制御室に二酸化炭素消火器を設置するとともに，常駐する運転員によって火災感知器による早期の火災感知 を可能とし，火災が発生した場合の運転員の対応を社内規程に定め，運転員による速やかな消火を行らことで運転操作に影響を与えず容易に操作ができる設計とする。また，中央制御室床下に火災感知器及び自動消火設備である局所ガス消火設備を設置することにより，火災が発生した場合に速やかな消火を行らことで運転操作に影響を与えず容易に操作ができる設計とする。	気が中央制御室に直接流入することを防ぐことができ，運転員を被ばくから防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循睘フィルタ装置で浄化しながら取り入れ ることも可能な設計とする。 ＜中略〉 【火災防護設備】（基本設計方針） 1．火災防護設備の基本設計方針 1.2 火災の感知及び消火 1．2．1 火災感知設備 火災感知設備の火災感知器は，火災区域又は火災区画に おける放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置 する火災区域又は火災区画の火災防護上重要な機器等及 び重大事故等対処施設の種類に応じ，火災を早期に感知で きるよう，ロ（3）（i）a．（e）－（2）固有の信号を発するアナログ式の煙感知器及びアナ口グ式の熱感知器の異なる種類の火災感知器を組み合わせて設置する設計とする。 ＜中略＞ 火災感知設備のらち火災受信機盤は中央制御室に設置 し，火災感知設備の作動状況を常時監視できる設計とす る。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を 1 つずつ特定できる設計と する。 ＜中略＞ 1．2．2 消火設備 < 中略 > 中央制御室は，消火器で消火を行う設計とし，中央制御室制御盤内の火災については，電気機器への影響がない二酸化炭素消火器で消火を行ら設計とする。また，ロ（3）（i） a．（e）－（2）中央制御室床下ケーブルピツトについては，自憅消火設備であるハロンガス消火設備（局所）を設置する設計とする。 【原子炉泠却系統施設（蒸気タービンを除く。）】	設計及び工事の計画の （3）（i）a．（e）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（e）－（2）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（g）安全施設 （g－1）（3）（i）a．（g－1）－①安全施設は，その安全機能の重要度に応じて，＋分高い信頼性を確保し，かつ，維持 し得る設計とする。このうち，安全機能の重要度が特に高い安全機能を有する系統は，原則，多重性又は多様性及び独立性を備える設計とするとともに，当該系統を構成する機器に短期間では動的機器の単一故障，長期間で は動的機器の単一故障若しくは想定される静的機器の単一故障のいずれかが生じた場合であって，外部電源が利用できない場合においても，その系統の安全機能を達成できる設計とする。	1．安全設計 1.1 安全設計の方針 1．1．1 安全設計の基本方針 1．1．1．7 多重性又は多様性及び独立性 安全施設は，その安全機能の重要度に応じて，十分高い信頼性を確保し，かつ維持し得る設計とする。このうち，重要度が特に高い安全機能を有する系統は，原則，多重性又は多様性及び独立性を備える設計とするとともに，当該系統を構成する機器の単一故障が生じた場合であって，外部電源が利用できない場合においても，その系統の安全機能を達成できる設計とする。 1．1．1．8 単一故障 （1）設計方針 安全施設のらち，重要度が特に高い安全機能を有する系統は，当該系統を構成する機器に短期間では動的機器の単一故障が生じた場合，長期間では動的機器の単一故障若し くは想定される静的機器の単一故障のいずれかが生じた場合であって，外部電源が利用できない場合においても， その系統の安全機能を達成できる設計とする。 なお，重要度が特に高い安全機能を有する系統のうち，長期間にわたって安全機能が要求される静的機器を単一設計とする場合には，単一故障が安全上支障のない期間に確実に除去又は修復できる設計，他の系統を用いてその機能を代替できる設計又は単一故障を仮定しても安全機能 を達成できる設計とする。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．2 多様性，位置的分散等 （1）多重性又は多様性及び独立性 ロ（3）（i）a．（g－1）－（1）設置許可基蕉規則第 12 条第 2 項に嫢定される「安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するもの」は，．．当該系統を構成する機器に「（2）単一故障」にて記載する単一故障が発生した場合であって，外部電源が利用できない場合にお いても，その系統の安全機能を達成できるよう，十分高い信頼性を確保し，かつ維持し得る設計とし，原則，多重性又は多様性及び独立性を備える設計とする。 <中略 > （2）単一故障 安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するものは，当該系統を構成する機器に短期間では動的機器の単一故障，長期間では動的機器の単一故障若しくは想定される静的機器の単一故障のいずれ かが生じた場合であって，外部電源が利用できない場合に おいても，その系統の安全機能を達成できる設計とする。短期間と長期間の境界は 24 時間とする。	設計及び工事の計画の （3）（i）a．（g－1）－1 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－1 と文章表現は異なるが，内容に相違はないため整合し ている。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたって機能が要求 される静的機器のらち，単一設計とする以下の機器につい ては，想定される最も過酷な条件口（3）（i）a．（g－1）－（2）下に おいても安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。回 （3）（i）a．（g－1）－（3）設計に当たっては，想定される単一故障の発生に伴う周辺公衆及び運転員の被ばく，当該単一故障の除去又は修復のためのアクセス性，補修作業性並びに当該作業期間における従事者の被ばくを考盧する。．．． - 非常用ガス処理系の配管の一部及びフィルタ装置 - 中央制御室換気空調系のダクトの一部及び再循環フィル夕装置	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （安全施設） 第十二条 適合のための設計方針 第2項について ＜中略＞ また，重要度が特に高い安全機能を有する系統におい て，設計基準事故が発生した場合に長期間にわたって機能 が要求される静的機器のらち，単一設計とする非常用ガス処理系の配管の一部及びフィルタ装置並びに中央制御室換気空調系のダクトの一部及び再循環フィルタ装置につ いては，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雾囲気中 の放射性物質の濃度低減機能及び原子炉制御室非常用換気空調機能が喪失する単一故障のうち，想定される最も過酷な条件として，配管及びダクトについては全周破断，フ ィルタ装置及び再循環フィルタ装置については閉塞を想定しても，単一故障による放射性物質の放出に伴ら被ばく の影響を最小限に抑えるよう，安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。設計に当たっては，想定される単一故障 の発生に伴う周辺公衆及び運転員の被ばく，当該単一故障 の除去又は修復のためのアクセス性，補修作業性並びに当該作業期間として想定する3日間における従事者の被ば くを考慮し，周辺公衆の被ばく線量が設計基準事故時の判断基準である実効線量を下回ること，運転員の被ばく線量 が緊急時作業に係る線量限度を下回ること及び従事者の被ばく線量が緊急時作業に係る線量限度に照らしても土分小さく修復作業が実施可能であることを満足するもの とする。 なお，単一故障を除去又は修復ができない場合であって も，周辺公衆に対する放射線被ばくが，安全評価指針に示 された設計基準事故時の判断基準を下回ることを確認す る。	【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 ＜中略＞ 重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたつて機能が要求 される静的機器のらち，単一設計とする非常用ガス処理系 の配管の一部及び非常用ガス処理系フィルタ装置につい ては，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雰囲気中の放射性物質の濃度低減機能が喪失する単一故障のうち，想定される最も過酷な条件口（3）（i）a．（g－1）－②として，配管 の全周破断及び非常用ガス処理系フィルタ装置の閉塞を想定しても，単一故障による放射性物質の放出に伴う被ば〈の影響を最小限に抑えるよう，安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単二故障を仮定しない。 （3）（i）a．（g－1）－（3）想定される単一故障の発生に伴う周辺公衆に対する放射線被ばくは，保守的に単一故障を除圭又は修復ができない場合で評価し，安全評価指針に示さ れた設計基漼事故時の判断基漼を下回ることを確認する。 また，単一故障の除去又は修復のための作業期間として想定する3日間を考虜し，修復作業に係る従事者の被ばく線量は緊急時作業に係る線量限度に照らしても十分小さ くする設計とする。．．． 単一設計とする箇所の設計に当たっては，想定される単一故障の除去又は修復のためのアクセスが可能であり，か つ，補修作業が容易となる設計とする。．．． <中略 >	設計及び工事の計画の （3）（i）a．（g－1）－（2 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－（2）を具体的に記載しており整合 している。 設計及び工事の計画の （3）（i）a．（g－1）－（3） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－（3）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.2 換気設備 2．2．1 中央制御室換気空調系 ＜中略＞ （3）（i）a．（g－1）－（2）重要度が特に高い安全機能を有す る系統において，設計基準事故が発生した場合に長期間に わたって機能が要求される静的機器のらち，単一設計とす る中央制御室換気空調系のダクトの一部及び中央制御室再循環フィルタ装置については，当該設備に要求される原子炉制御室非常用換気空調機能が喪失する単一故障のら ち，想定される最も過酷な条件として，ダクトの全周破断及び中央制御室再循環フイルタ装置の閉塞を想定してもっ単一故噇による放射性物質の放出に伴う被ばくの影響を最小限に抑えるよう，安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定 しない。 （3）（i）a．（g－1）－（3）想定される単一故障の発生に伴う中央制御室の運転員の被ばく量は保守的に単一故障を除寺又は修復ができない場合で評価し，緊急作業時に係る線量限度を下回ることを確認する。 また，単一故障の除寺又は修復のための作業期間として想定する3日間を考慮し，修復作業に係る従事者の被ばく線量は緊急時作業に係る線量限度に照らしても十分小さ くする設計とする。 単一設計とする笝所の設計に当たっては，想定される単一故障の除去又は修復のためのアクセスが可能であり，か つ，補修作業が容易となる設計とする。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．2 多様性，位置的分散等 （2）単一故障 <中略 > ただし，非常用ガス処理系の配管の一部及び非常用ガス処理系フィルタ装置，中央制御室換気空調系のダクトの一			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，重要度が特に高い安全機能を有する系統におい て，設計基準事故が発生した場合に長期間にわたつて機能 が要求される静的機器のらち，単一設計とする回（3）（i ）a． （ $\mathrm{g}-1$－－（4）以下の機器については，単一故障を仮定した場合 においても安全機能を達成できる設計とする。 －格納容器スプレイ冷却系のスプレイ管（ドライウェルス プレイ管及びサプレッションチェンバスプレイ管）	重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたつて機能が要求 される静的機器のらち，単一設計とする格納容器スプレイ泠却系のスプレイ管（ドライウェルスプレイ管及びサプレ ッションチェンバスプレイ管）については，想定される最 も過酷な単一故障の条件として，配管 1 箇所の全周破断を想定した場合においても，原子炉格納容器の泠却機能を達成できる設計とする。ここで，単一故障時には，残留熱除去系1系統による格納容器スプレイ泠却系は，スプレイ効果に期待できない状態となり，スプレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所から落下してサプ レッションチェンバのプール水に移行することを想定す る。このような場合においても，他の残留熱除去系 1 系統 をサプレッションプール水泠却モードで運転することで原子炉格納容器の泠却機能を代替できる設計とする。 ＜中略＞	部及び中央制御室再循環フィルタ装置並びに残留熱除去系（格納容器スプレイ泠却モード）のドライウェルスプレ イ管及びサプレッションチェンバスプレイ管については，設計基準事故が発生した場合に長期間にわたって機能が要求される静的機器であるが，単一設計とするため，個別 に設計を行う。 【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.2 原子炉格納容器安全設備 3．2．1 原子炉格納容器スプレイ冷却系 < 中略 > 重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたつて機能が要求 される静的機器のうち，単一設計とする口（3）（i）a．（g－1）－ （4）残留熱除寺系（格納容器スプレイ冷却モード）のドライ ウェルスプレイ管及びサプレッションチェンバスプレイ管については，想定される最も過酷な単一故障の条件とし て，配管 1 籄所の全周破断を想定した場合においても，原子炬格納容器の冷却機能を達成できる設計とする。 ここで，単一故障時には，残留熱除去系 1 系統による格納容器スプレイ冷却モードは，スプレイ効果に期待できな い状態となり，スプレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所から落下してサプレッションチェ ンバのプール水に移行することを想定する。このような場合においても，他の残留熱除去系 1 系統をサプレッション プール水泠却モードで運転することで原子炉格納容器の冷却機能を代替できる設計とする。 < 中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．2 多様性，位置的分散等 （2）単一故障 ただし，非常用ガス処理系の配管の一部及び非常用ガス	設計及び工事の計画の （3）（i）a．（g－1）－4 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－4）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
安全施設の設計条件を設定するに当たつては，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能 となるよう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，口（3）（i） a．（g－1）－（5）放射線量等各種の環境条件を考慮し，十分安全側の条件を与えることにより，これらの条件下においても期待されている安全機能を発揮できる設計とする。	第 3 項について 安全施設の設計条件を設定するに当たつては，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能 となるよう，通常運転時，運転時の異常な過渡変化時及び設計基漼事故時に想定される圧力，温度，湿度，放射線量等各種の環境条件を考慮し，十分安全側の条件を与えるこ とにより，これらの条件下においても期待されている安全機能を発揮できる設計とする。	処理系フィルタ装置，中央制御室換気空調系のダクトの一部及び中央制御室再循環フィルタ装置並びに残留熱除去系（格納容器スプレイ伶却モード）のドライウェルスプレ イ管及びサプレッションチェンバスプレイ管については，設計基準事故が発生した場合に長期間にわたって機能が要求される静的機器であるが，単一設計とするため，個別 に設計を行う。 5．1．5 環境条件等 安全施設の設計条件については，材料疲労，劣化等に対 しても十分な余裕を持って機能維持が可能となるよう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時 に想定される圧力，温度，湿度，（3）（i）a．（g－1）－（5）放射線，荷重，屋外の天候による影響（涷結及び隆水），海水 を通水する系統への影響，電磁的障害，周辺機器等からの悪影響及び原子炉冷却材の性状を考慮し，十分安全側の条件を与えることにより，これらの条件下においても期待さ れている安全機能を発揮できる設計とする。 ＜中略＞ （1）環境圧力，環境温度及び湿度による影響，放射線に よる影響，屋外の天候による影響（涷結及び降水）並び に荷重 安全施設は，通常運転時，運転時の異常な過渡変化時及 び設計基準事故時における環境圧力，環境温度及び湿度に よる影響，放射線による影響，屋外の天候による影響（涷結及び降水）並びに荷重を考慮しても，安全機能を発揮で きる設計とする。 <中略> （2）海水を通水する系統への影響 海水を通水する系統への影響に対しては，常時海水を通水する，海に設置する又は海で使用する安全施設及び重大事故等対処設備は耐腐食性材料を使用する設計とする。常時海水を通水するコンクリート構造物については，腐食を考慮した設計とする。	設計及び工事の計画の （3）（i）a．（g－1）－（5 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－（5）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ a （3）（i）a．（g－1）－6またた，安全施設は，その健全性及び	第4項について 安全施設は，その健全性及び能力を確認するため，その	（3）電磁的障害 電磁的障害に対しては，安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生した場合 においても，電磁波によりその機能が損なわれない設計と する。 ＜中略＞ （4）周辺機器等からの悪影響 安全施設は，地震，火災，溢水及びその他の自然現象並 びに人為事象による他設備からの悪影響により，発電用原子炉施設としての安全機能が損なわれないよう措置を講 じた設計とする。 ＜中略＞ （5）設置場所における放射線の影響 安全施設の設置場所は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生した場合においても操作及び復旧作業に支障がないように，遮蔽の設置や線源か らの離隔により放射線量が高くなるおそれの少ない場所 を選定した上で，設置場所から操作可能，放射線の影響を受けない異なる区画若しくは離れた場所から遠隔で操作可能，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。 <中略 > （6）原子炉冷却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準を定 めて水質を管理することにより異物の発生を防止する設計とする。 安全施設及び重大事故等対処設備は，系統外部から異物 が流入する可能性のある系統に対しては，ストレーナ等を設置することにより，その機能を有効に発揮できる設計と する。 5．1．6 操作性及び試験•検查性 （2）試験•検查性 （3）（i）a．（g－1）－6）設計基準対象施設は，健全性及び能	設計及び工事の計画の	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
ることによって，発電用原子炇施設の安全性を損なわない設計とする。 （g－3）重要安全施設は，発電用原子炉施設間で原則共用又は相互に接続しないものとするが，安全性が向上する場合は，共用又は相互に接続することを考慮する。 なお，発電用原子炉施設間で共用又は相互に接続する重要安全施設は無いことから，共用又は相互に接続すること を考慮する必要はない。 安全施設（重要安全施設を除く。）を共用又は相互に接続する場合には，発電用原子炉施設の安全性を損なわない設計とする。	回転機器に対して，その損壊によりプラントの安全性を損 ならおそれのある飛散物が発生する可能性を十分低く抑 えるよう，機器の設計，製作，品質管理，運転管理に十分 な考慮を払う。 さらに，万一タービンの破損を想定した場合でも，ター ビン羽根，T－Gカップリング，タービン・ディスク，高圧タービン・ロータ等の飛散物によって安全施設の機能が損なわれる可能性を極めて低くする設計とする。 高温高圧の流体を内包する主蒸気•給水管等について は，材料選定，強度設計，品質管理に十分な考慮を払う。 さらに，これに加えて安全性を高めるために，上記配管 については仮想的な破断を想定し，その結果生じるかも知 れない配管のむち打ち，流出流体のジェット力，周辺雰囲気の変化等により，安全施設の機能が損なわれることのな いよう配置上の考慮を払うとともに，それらの影響を低減 させるための手段として，主蒸気•給水管についてはパイ プホイップレストレイントを設ける。 以上の考慮により，安全施設は安全性を損なわない設計 とする。 1．1．1．6 共用 重要安全施設は，発電用原子炬施設間で原則，共用又は相互に接続しないものとするが，安全性が向上する場合 は，共用又は相互に接続することを考慮する。 安全施設（重要安全施設を除く。）において，共用又は相互に接続する場合には，発電用原子炬施設の安全性を損 なわない設計とする。	時の対象物を破損する確率が 10^{-7} 回／炬•年以下となるこ とを確認する。… 高温高圧の配管については，材料選定，強度設計に十分 な考慮を払う。更に，安全性を高めるために，原子炉格納容器内で想定される配管破断が生じた場合，破断口からの原子炉冷却材流出によるジェット噴流による力に耐える設計とする。また，ジェット反力によるホイッピングで原子炉格納容器が損傷しないよう配置上の考慮を払うとと もに，レストレイント等の配管ホイッピング防止対策を設 ける設計とする。 また，その他の高速回転機器が損壊し，飛散物とならな いように保護装置を設けること等によりオーバースピー ドとならない設計とする。 損傷防止措置を行う場合，想定される飛散物の発生箇所 と防護対象機器の距離を十分にとる設計とし，又は飛散物 の飛散方向を考慮し，配置上の配慮又は多重性を考慮した設計とする。 （2）共用 重要安全施設は，発電用原子炬施設間で原則共用しない ものとするが，安全性が向上する場合は，共用することを考慮する。 なお，発電用原子炬施設間で共用する重要安全施設はな いことから，共用することを考慮する必要はない。 安全施設（重要安全施設を除く。）を共用する場合には，発電用原子炉施設の安全性を損なわない設計とする。 ＜中略＞ （3）相互接続 重要安全施設は，発電用原子炬施設間で原則相互に接続 しないものとするが，安全性が向上する場合は，相互に接続することを考慮する。 なお，発電用原子炉施設間で相互に接続する重要安全施設はないことから，相互に接続することを考慮する必要は ない。	（i）a．（g－2）－（2）を含ん でおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
核燃料物質の取扱施設及び貯蔵施設のうち，使用済燃料 プール（使用済燃料貯蔵ラックを含む。），燃料プール泠却浄化系設備，燃料プール冷却浄化系の燃料プール注入逆止弁は， 1 号炉と共用することで， 1 号炉の使用済燃料を 2号炉の使用済燃料プールに貯蔵することが可能な設計 としている。設備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しないようにする ことで，共用により安全性を損なわない設計とする。 燃料交換機及び原子炉建屋クレーンは，1号炉と共用する が， 1 号炉の使用済燃料，輸送容器等の吊り荷重を考慮し た設計とすることで，共用により安全性を損なわない設計 とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （安全施設） 第十二条 適合のための設計方針 第 7 項について ＜中略＞ 核燃料物質の取扱施設及び貯蔵施設のうち，使用済燃料 プール（使用済燃料貯蔵ラックを含む），燃料プール泠却浄化系設備，燃料プール冷却浄化系の燃料プール注入逆止弁は， 1 号炉と共用することで， 1 号炉の使用済燃料を 2号炉の使用済燃料プールに貯蔵することが可能な設計と している。設備容量の範囲内で運用することにより，燃料 プール泠却浄化系の冷却能力が不足しないようにするこ とで，共用により安全性を損なわない設計とする。 燃料交換機及び原子炉建屋クレーンは，1号炉と共用す るが， 1 号炉の使用済燃料，輸送容器等の吊り荷重を考慮 した設計とすることで，共用により安全性を損なわない設計とする。	安全施設（重要安全施設を除く。）を相互に接続する場合には，発電用原子炬施設の安全性を損なわない設計とす る。 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 2．燃料貯蔵設備 2.2 設備の共用 使用済燃料プール及び使用済燃料貯蔵ラックは，第 1 号機と共用することで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計としてい る。設備容量の範囲内で運用することにより，燃料プール冷却浄化系の泠却能力が不足しないようにすることで，共用により安全性を損なわない設計とする。 4．使用済燃料貯蔵槽冷却浄化設備 4.8 設備の共用 燃料プール冷却浄化系設備及び燃料プール泠却浄化系燃料プール注入逆止弁（G41－F019）（設計基準対象施設と してのみ第 1,2 号機共用）は，第 1 号機と共用すること で，第 1 号機の使用済燃料を第 2 号機の使用済燃料プール に貯蔵することが可能な設計としている。設備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しないようにすることで，共用により安全性を損 なわない設計とする。 1．燃料取扱設備 1.2 設備の共用 燃料交換機及び原子炉建屋クレーンは，第 1 号機と共用 するが，第 1 号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすることで，共用により安全性を損なわな い設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
通信連絡設備は， 1 号， 2 号及び 3 号炉で共用するが，各号炉に係る通信•通話に必要な仕様を満足する設計とす ることで，共用により安全性を損なわない設計とする。 放射性廃葉物の廃棄施設のうち，排気筒の支持構造物 は， 3 号炉と共用するが，支持機能を十分維持できる設計 とすることで，共用により安全性を損なわない設計とす る。 （ C ）（i）a．（g－3）－（1）固体廃棄物処理系のうち，プラスチ ック固化式固化装置は， 1 号及び 2 号炉で共用し，固体廃棄物貯蔵所，固体廃棄物焼却設備，サイトバンカ設備，雑固体廃棄物保管室は， 1 号， 2 号及び 3 号炉で共用してい るが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで共用により安全性を損な わない設計とする。	通信連絡設備は， 1 号， 2 号及び 3 号炉で共用するが，各号炉で同時に通信•通話するために必要な仕様を満足す る設備とすることで，共用により安全性を損なわない設計 とする。 放射性廃棄物の廃棄施設のうち，排気筒の支持構造物 は， 3 号炬と共用するが，支持機能を十分維持できる設計 とすることで，共用により安全性を損なわない設計とす る。 固体廃寁物処理系のらち，プラスチック固化式固化装置 は， 1 号及び 2 号炉で共用し，固体廃棄物貯蔵所，固体廃棄物焼却設備，サイトバンカ設備，雑固体廃裹物保管室は， 1 号， 2 号及び 3 号炉で共用しているが，放射性廃妻物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮 することで，共用により安全性を損なわない設計とする。 なお，プラスチック固化式固化装置について，設備は休止しており，今後も使用しないこととしている。	【計測制御系統施設】（基本設計方針） 4．通信連絡設備 4.3 設備の共用 通信連絡設備のらち電力保安通信用電話設備（固定電話機及び PHS 端末）（焼却炉建屋，固体廃棄物貯蔵所，サイ トバンカ建屋及び予備変圧器配電盤室）（第 1 号機設備，第 1 ，2， 3 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわな い設計とする。 【放射性廃棄物の廃棄施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1.5 設備の共用 <中略 > 排気筒の支持構造物（第 $2, ~ 3$ 号機設備，第 $2, ~ 3$ 号機共用）は，第 3 号機と共用するが，支持機能を十分維持でき る設計とすることで，共用により安全性を損なわない設計 とする。 1.5 設備の共用 プラスチック固化式固化装置は，第 1 号機及び第 2 号機 で共用し，固体廃棄物貯蔵所（第 1 号機設備，第 $1,2,3$号機共用），固体廃棄物焼却設備，サイトバン力（第1号機設備，第 $1,2,3$ 号機共用），雑固体廃棄物保管室（第 1号機設備，第 1，2，3 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損なわない設計とする。 なお，プラスチック固化式固化装置は休止しており，今後 も使用しない。 【放射線管理施設】（基本設計方針） 1．放射線管理施設	設置変更許可申請書（本文（五号））の（3）（i） a．（g－3）－（1）は，以下に おいて休止設備である旨記載しており整合し ている。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
放射線管理施設のうち，放射能測定室は， 1 号炉と共用 しているが，試料の分析等を行らために必要な仕様を満足 する設計とすることで，共用により安全性を損なわない設計とする。 焼却炉建屋排気口モニタ，サイトバンカ建屋排気口モニ名，放射性廃棄物放出水モニタ，焼却炉建屋放射線モニタ， サイトバンカ建屋放射線モニタは，女川原子力発電所共用 エリア又は設備における放射線量率等を測定するために必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。 （3）（i）a．（g－3）－②固定モニタリング設備，放射能観測車，気象観測設備は，女川原子力発電所の共通の対象であ る発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とすることで，共用により安全性を損な わない設計とする。 原子炉格納施設のうち，液体窒素蒸発装置は， 3 号炉と共用しているが，各号炉に必要な容量を確保するととも に，接続部の弁を閉操作することにより隔離できる設計と することで，共用により安全性を損なわない設計とする。 常用電源設備のうち，275kV 送電線，275kV 開閉所，66k V 送電線， 66 kV 開閉所，予備電源盤は， 1 号， 2 号及び 3号炉で共用するが，各号炉の必要負荷容量を満足する設計 とすること，また，各号炉に遮断器を設け，短絡•地絡等 の故障が発生した場合，故障箇所を隔離し，他号炬へ影響	放射線管理施設のらち，放射能測定室は， 1 号炉と共用 しているが，試料の分析等を行うために必要な仕様を満足 する設計とすることで，共用により安全性を損なわない設計とする。 焼却炉建屋排気口モニタ，サイトバンカ建屋排気口モニ夕，放射性廃裹物放出水モニタ，焼却炉建屋放射線モニタ， サイトバンカ建屋放射線モニタは，女川原子力発電所共用 エリア又は設備における放射線量率等を測定するために必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。 固定モニタリング設備，放射能観測車，気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計と することで，共用により安全性を損なわない設計とする。 原子炉格納施設のらち，液体窒素蒸発装置は， 3 号炉と共用しているが，各号炉に必要な容量を確保するととも に，接続部の弁を閉操作することにより隔離できる設計と することで，共用により安全性を損なわない設計とする。 常用電源設備のらち，275kV 送電線，275kV 開閉所，66k V送電線， 66 kV 開閉所，予備電源盤は， 1 号， 2 号及び 3号炉で共用するが，各号炉の必要負荷容量を満足する設計 とすること，また，各号炉に遮断器を設け，短絡•地絡等 の故障が発生した場合，故障箇所を隔離し，他号炉へ影響	1.1 放射線管理用計測装置 1．1．6 設備の共用 放射能測定室は，第 1 号機と共用するが，試料の分析等 を行うために必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。 焼却炉建屋排気口ダストモニタ（第 1 号機設備，第 1,2 ， 3 号機共用），サイトバンカ建屋排気口放射線モニタ（第1号機設備，第 $1, ~ 2, ~ 3$ 号機共用），液体廃棄物処理系排水放射線モニタ（第1，2号機共用），焼却炉建屋放射線モニ タ（第 1 号機設備，第 1,2 ， 3 号機共用）及びサイトバン力建屋放射線モニタ（第 1 号機設備，第 $1,2,3$ 号機共用） は，女川原子力発電所共用エリア又は設備における放射線量率等を測定するために必要な仕様を満足する設計とす ることで，共用により安全性を損なわない設計とする。 ロ（3）（i）a．（g－3）－（2）モニタリングポスト，構内ダストモ二タ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定 するために必要な仕様を満足する設計とすることで，共用 により安全性を損なわない設計とする。 【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.7 設備の共用 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作することにより隔離できる設計とする ことで，共用により安全性を損なわない設計とする。 【常用電源設備】（基本設計方針） 1．保安電源設備 1．4 設備の共用及び相互接続 275 kV 送電線， 275 kV 開閉所， 66 kV 送電線， 66 kV 開閉所及び予備電源盤は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機の必要負荷容量を満足する設計とするこ と，また，各号機に遮断器を設け，短絡•地絡等の故障が発生した場合，故障箇所を隔離し，他号機へ影響を及ぼさ	設計及び工事の計画の （3）（i）a．（g－3）－（2） は，設置変更許可申請書 （本文（五号））の口（3） （i）a．（g－3）－（2）と同義 であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（h）運転時の異常な過渡変化及び設計基準事故の拡大の防止 設計基蕉対象施設は，運転時の異常な過渡変化及び設計基準事故に対する解析及び評価を「発電用軽水型原子炬施設の安全評価に関する審查指針」，「発電用原子哣施設の安全解析に関する気象指針」等に基づき実施し，要件を满足 する設計とする。	1． 10.3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （運転時の異常な過渡変化及び設計基準事故の拡大の防 止） 第十三条 適合のための設計方針 設計基漼対象施設は固有の安全性及び安全確保のため に設計した設備により安全に運転できることを示すため に，運転時の異常な過渡変化及ぴ設計基準事故に対する解晳及び評価を「発電用軽水型原子哣施設の安全評価に関す万審查指針」（平成 2 年8月30旦原子力安全委員会決定）及び「発需用原子炬施設の安全解析に関する気象指針」（昭和57年1月28日原子力安全委員会決定）等に基づき実施 し，要件を満足する設計とする。		設置変更許可申請書（本文（五号））において許可を受けた「運転時の異常な過渡変化及び設計基準事故の拡大の防止」 は，本工事計画の対象外 である。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（i）全交流動力電源喪失対策設備 全交流動力電源喪失時から重大事故等に対処するため に必要な電力の供給が常設代替交流電源設備から開始さ れるまでの約 15 分を包絡した約 8 時間に対し，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に炉心 を泠却するための設備が動作するとともに，原子炉格納容器の健全性を確保するための設備が動作することができ るよう，これらの設備の動作に必要な容量を有する回 （3）（i）a．（i）－（1）蓄電池（非虽用）を設ける設計とする。	10．その他発電用原子炉の附属施設 10.1 非常用電源設備 10．1．1 通常運転時等 10．1．1．2 設計方針 10．1．1．2．2 全交流動力電源喪失 発電用原子炉施設には，全交流動力電源趡失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの約 15 分を包絡した約 8時間に対し，発電用原子炬を安全に停止し，かつ，発電用原子炉の停止後に炬心を椧却するための設備が動作する とともに，原子炉格納容器の健全性を碓保するための設備 が動作することができるよう，これらの設備の動作に必要 な容量を有する非常用直流電源設備である蓄需池（非虽用）を設ける設計とする。	【非常用電源設備】（基本設計方針） 3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備 3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要な設備に対し，直流電源設備を施設する設計とする。 直流電源設備は，全交流動力電源喪失時から重大事故等 に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの約 15 分を包絡した約 8 時間に対し，発電用原子炉を安全に停止し，かつ，発電用原子炉 の停止後に炉心を椧却するための設備が動作するととも に，原子炉格納容器の健全性を確保するための設備が動作 することができるよう，これらの設備の動作に必要な容量 を有する（3）（i）a．（i）－（1）125V ，萻電池を設ける設計とす る。 非常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及び $125 V$ 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉 の安全性は確保できる設計とする。また，これらの系統は，多重性及び独立性を確保することにより，共通要因により同時に機能が喪失することのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。 ＜中略＞ 3.5 計測制御用電源設備 設計基準対象施設の安全性を確保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とする。 非常用の計測制御用電源設備は，無停電交流 120V 2 母線及び計測母線 120V2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認が可能な設計と する。	設計及び工事の計画の （3）（i）a．（i）－（1）は，設置変更許可申請書（本文（五号））の口（3）（i ） a．（i）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（j）炬心等 設計基準対象施設は，原子炉固有の出力抑制特性を有す るとともに，発電用原子炬の反応度を制御することによ り，核分裂の連鎖反応を制御できる能力を有する設計とす る。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （炉心等）第十五条 適合のための設計方針第1項について （1）沸騰水型原子炉には，通虽運俥時に何らかの原因で出力が上昇することがあっても，炡心内の蒸気量の増大 に伴う大きな負のボイド反応度効果により，出力の上显 を抑える働きがある。 また，沸騰水型原子炉では，低濃縮ウラン燃料を用いて おり，これは，ドップラ効果に基づく負の反応度係数を持 っている。このため，発電用原子炉に急激に反応度が投入 され出力の上昇があった場合でも，二酸化ウラン焼結ペレ ット燃料の熱伝導率が低いこととあいまって，ペレットの温度が急上昇してドップラ効果が有効に働き，核的逸走は自動的に抑えられる。 このように発電用原子炉は固有の負の反応度フィード バック特性を有しており，さらに原子炉停止（原子炉スク ラム）系等の反応度投入の影響を抑制する諸設備を設ける ことにより，発電用原子炉に急激に反応度が投入されたと しても，原子炉固有の安全性とあいまって反応度投入の影響を十分小さく抑えることができる設計とする。 （2）沸騰水型原子炉は，一般に大きな負の出力反応度係数を持ち，制御棒の操作等に起因する反応度の外乱に対 して自己制御性を持っている。 一方，沸騰水型原子炉は正の圧力係数を持つので，発電用原子炉には，蒸気圧力一定制御方式を採用するととも に，再循環流量を調整することによって出力を制御する。 また，発電用原子炉は，強制循環によって水力学的な乱 れを抑え，核的特性とあいまって負荷変動や外乱に対する安定性，あるいは沸騰による中性子束ノイズ特性の向上を図っている。このほか二酸化ウラン焼結ペレット燃料を使用しているので熱伝達時係数は大きく，安定性に寄与して いる。 さらに，選択制御棒挿入機構を設けるとともに安定性制	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉 の反応度を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時においても発電用原子炉固有の出力抑制特性を有するとともに，発電用原子炉の反応度を制御する ことにより，核分裂の連鎖反応を制御できる能力を有する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
炬心は，通常運転時又は運転時の異常な過渡変化時に発電用原子炉の運転に支障が生ずる場合において，原子炉冷却系統，原子炉停止系統，反応度制御系統，計測制御系統及びロ（3）（i）a．（j）－（1）安全保櫵回路（安全保櫵系）の機能 と併せて機能することにより，燃料要素の許容損傷限界を超えない設計とする。 （3）（i）a．（j）－（2）燃料体，減速材及び反射材並びに炉心支持構造物は，通常運転時，運転時の異常な過渡変化時及 び設計基準事故時において，発電用原子炉を安全に停止 し，かつ，停止後に炬心の泠却機能を維持できる設計とす る。	限曲線を設け，低炉心流量高出力領域での運転を制限する ことにより，安定性の余裕を確保するようにしている。 上記のような諸特性により，出力振動に対し，十分な減衰特性を有している。また，たとえ出力振動が生じても，局部出力領域モ二夕等の原子炬核計装采で出力分布を監視し，燃料要素の許容損傷限界を超えないように反応度制御系により調整することができる設計とする。 第2項について （1）燃料の健全性を確保するため，熱水力設計上の燃料要素の許容損傷限界を定め，運転時の異常な過渡変化時 において，この限界値を満足するように通常運転時の熱的制限値を定める。 <中略> （2）想定される反応度投入過渡事象（原子炉起動時にお ける制御棒の異常な引き抜き）時においては「発電用軽水型原子炉施設の反応度投入事象に関する評価指針」に定める燃料エンタルピに関する燃料要素の許容損傷限界を超えることのない設計とする。 （3）原子炉椧却系，原子炉停止系，計測制御系及び安全保護系は，通常運転時及び運転時の異常な過渡変化時に おいて，燃料を碓実に泠却する炉心流量を確保し，燃料 の出力を計測し，プロセス量がある制限値に達したとき には，決められた安全保護動作を開始する設計とする。 第3項について 炬心を構成する燃料棒以外の構成要素及び原子炬圧力容器内で炬心近资に位置する構成要素は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において想定される荷重の組合せに対し，発電用原子炉の安全停止及 び炬心の泠却を確保するために必要な構造及び強度を維持し得る設計とする。 燃料体には燃料棒冷却のための流路を確保するととも に，制御棒をガイドする機能を持つチャンネルボックスを かぶせる。	【原子炉本体】（基本設計方針） 1．炉心等 <中略 > 炬心は，通常運転時又は運転時の異常な過渡変化時に発電用原子炉の運転に支障が生ずる場合において，原子炉冷却系統，原子炉停止系統，反応度制御系統，計測制御系統及びロ（3）（i）a．（j）－（1）安全保櫵装置の機能と併せて機能 することにより燃料要素の許容損傷限界を超えない設計 とする。 <中略 > （ 3 ）（i）a．（j）－（2）燃料体（燃料要素を除く。），，減速材及 び反射材並びに炉心支持構造物は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，発電用原子炬を安全に停止し，かつ，停止後に灯心の泠却機能を維持できる設計とする。 ＜中略＞	設計及び工事の計画の （3）（i）a．（j）－（1）は，設置変更許可申請書（本文（五号））の口（3）（i） a．（j）－（1）と同義であり整合している。 設計及び工事の計画の （3）（i）a．（j）－（2）は，設置変更許可申請書（本文（五号））の日（3）（i） a．（j）－（2）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
燃料体，炉心支持構造物並びに原子炉冷却系統に係る容器，管，ポンプ及び弁は，原子炬冷却材の循環，沸騰その他の原子炬泠却材の挙動により生ずる流体振動又は温度差のある流体の混合その他の原子炉冷却材の挙動により生ずる温度変動により損傷を受けない設計とする。	第4項について 燃料体は，原子炉冷却材の挙動により生じる流体振動に より損傷を受けない設計とする。 炬心支持構造物並びに原子炉冷却系に係る容器，管，ポ ンプ及び弁は，原子炉冷却材の循環，沸騰等により生じる流体振動又は温度差のある流体の混合等により生じる温度変動により損傷を受けない設計とする。 第 5 項及び第 6 項第 1 号について 燃料体は，，発電用原子炉内における使用期間中を通じ，通常運転時及び運転時の異常な過渡変化時においても，燃料棒の内外圧差，，燃料棒及び他の材料の照射，貝荷の変化 により起こる圧力••温度の変化，化学的効果，静的•動的荷重，燃料ペレットの変形，燃料棒内封入がスの組成の変化等を考慮して，各構成要素がっ，十分な強度を有し，その機能が保持できる設計とし，通常運転時及び運転時の異堂 な過渡変化時における発電用原子师内の圧力，自重，附加	3．流体振動等による損傷の防止 燃料体，炉心支持構造物及び原子炉圧力容器は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生 じる流体振動又は温度差のある流体の混合その他の原子炉泠却材の挙動により生じる温度変動により損傷を受け ない設計とする。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 10．流体振動等による損傷の防止 原子炉冷却系統，原子炉冷却材浄化系及び残留熱除去系 （原子炉停止時冷却モード）に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のある流体の混合 その他の原子炉冷却材の挙動により生じる温度変動によ り損傷を受けない設計とする。 管に設置された円柱状構造物で耐圧機能を有するもの に関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（J S M E S 012 ）の規定に基づく手法及び評価フローに従った設計とする。 温度差のある流体の混合等で生じる温度変動により発生する配管の高サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（J SME S 017 ）の規定に基づく手法及び評価フロー に従った設計とする。 【原子炉本体】（基本設計方針） 1．炉心等 ＜中略＞ 然料体，減速材及び反射材並びに灲心支持構造物の材料 は，通常運転時における原子炉運転状態に対応した圧力，温度条件，（3）（i）a．（j）－（3）燃料使用期間中の燃焼度，中性子照射量及び水質の組み合わせのうち想定される最も厳しい条件において，耐放射線性，寸法安定性，耐熱性，．．．核性質及び強度のうち必要な物理的性質並びに，耐食性，．．水素吸収特性及び化学的安定性の亏ち必要な化学的性質 を保持し得る材料を使用する。	設計及び工事の計画の （3）（i）a．（j）－（3）は，設置変更許可申請書（本文（五号））の（3）（i） a．（j）－（3）を具体的に記載しており整合してい る。	

設置変更許可甲請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
然料体は，通常運転時及び運転時の異常な過渡変化時に おける発電用原子炉内の圧力，自重，附加荷重口（3）（i）a． （j）－（4）云の他の燃料体に加わる負荷に耐えるものとし，輸送中又は取扱中において，著しい変形を生じない設計とす る。	葓重，核分裂生成物の薏積による然料被覆管の内压上显，．．．荎底力等の荷重に耐える設計とする。… 燃料体には燃料棒を保護する機能を持つチャンネルボ ックスをかぶせる。 第 6 項第 2 号について 然料体は，輸送及び取扱い中に受ける通虽の荷重に耐え る設計になっており，さらに輸送及び取扱いに当たって は，過度な外力を受けないよう十分配盧して行ら。また，現地搬入後，，然料体の変形の有無等を検查し，その健全性 を確認することとしている。…	<中略> 1．炉心等 < 中略 > 燃料体は，通常運転時及び運転時の異常な過渡変化時に おける発電用原子炉内の圧力，自重，附加荷重，．．回 （3）（i）a．（j）－（4）核分裂生成物の蓄積による燃料被覆管の内圧上昇，熱応力等の荷重に耐える設計とする。また，輸送中又は取扱中において，著しい変形を生じない設計とす る。 < 中略 >	設計及び工事の計画の （3）（i）a．（j）－（4）は，設置変更許可申請書（本文（五号））の（3）（i） a．（j）－（4）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）（i）a．（k）－6 ${ }^{(1)}$ また，燃料体等を必要に応じて貯蔵する ことができる容量を有するとともに， （3）（i）a．（k）－（7）燃料体等が臨界に達するおそれがない設計とする。	第 2 項第 1 号口について 新燃料貯蔵庫の貯蔵能力は，全炉心燃料の約 40% とす る。使用済燃料プールは，2号炉の全炉心燃料の約 400%相当分貯蔵できる容量とする。 第 2 項第 1 号八について （2）新燃料貯蔵ラックは，燃料間距離を十分とることに より，新燃料を貯蔵能力最大に収容した状態で万一新燃料貯蔵庫が水で满たされるという厳しい状態を仮定し ても，実効増倍率を 0.95 以下に保つことができる設計 とする。 なお，実際に起きることは考えられないが，反応度が最 も高くなるような水分雰囲気で満たされた場合を仮定し ても臨界未満にできる設計とする。 （3）使用済燃料プール及び使用済燃料貯蔵ラックは，耐震 S クラスで設計し，使用済燃料プール中の使用済燃料貯蔵ラックは，適切な燃料間距離をとることにより燃料 が相互に接近しないようにする。また，貯蔵能力最大に燃料を収容し，使用済燃料プール水温及び使用済燃料貯蔵ラック内燃料位置等について想定されるいかなる場	合において，放射性物質による晸地外への影響を低減する ため，非常用がス处理系により放射性物質の放出を低減で きる設計とする。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 <中略 > （3）（i）a．（k）－6 新燃料貯蔵庫は，通常時の燃料取替を考盧し，適切な貯蔵能力を有し，全炬心燃料の約 40% を収納できる設計とする。 （3）（i）a．（k）－6 使用済燃料プールは，第2号機の全炉心燃料の約 400% 相当分貯蔵が可能であり，更に放射化さ れた機器等の貯蔵及び取り扱いができるスペースを確保 した設計とする。なお，通常運転中，全炡心の燃料体等を貯蔵できる容量を確保できる設計とする。 <中略 > 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 <中略 > 新燃料貯蔵庫は，原子炉建屋原子炉棟内の独立した区画 に設け，新燃料を新燃料貯蔵ラックで貯蔵できる設計とす る。（3）（i）a．（k）－7 新燃料貯蔵庫は，鉄筋コンクリート構造とし，想定されるいかなる状態においても新燃料が臨界に達することのない設計とする。 新燃料は，堅固な構造 のラックに垂直に入れ，乾燥状態で保管し，新燃料貯蔵庫 には水が充満するのを防止するための排水口を設ける設計とする。 （3）（i）a．（k）－7 新燃料貯蔵庫に設置する新燃料貯蔵 ラックは，貯蔵燃料の臨界を防止するために必要な燃料間距離を保持しったとえ新燃料を貯蔵容量最大で貯蔵した状態でっ万一新然料貯蔵庫が水で満たされるという厳しい浆熊を仮定してもっ，実効増倍率を 0.95 以下に保つ設計とす る。	設計及び工事の計画の （3）（i）a．（k）－6 ${ }^{\text {（ }}$ は，設置変更許可申請書（本文（五号））の回（3）（i ） a．（k）－（6）を具体的に記載しており整合してい る。 設計及び工事の計画の （（3）（i）a．（k）－（7）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（7）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	万
（（3）（i）a．（k）－（11）及びその浄化系を有し， 使用済燃料プールから放射性物質を含む水があふれ，又は屚れないものであって，	また，燃料プール椧却浄化系は，万猧脱塩装置を設置し て使用斎然料プール水の浄化を行ら設計とする。 第2項第2号八について 使用斎燃料プールの耐震設計は，sクラスで設計し，内面はステンレス鋼でライニングし漏えいを防止する。ま た，使用済然料プールには排水口を設けないとともに，使用済然料プールに入る配管には逆止弁を設けサイフォン効果により使用済燃料プール水が流出しない設計とする。	できない場合は，残留熱除寺系を用いて使用斎燃料からの崩壊熱を除寺できる設計とする。．．． （3）（i）a．（k）－（10）燃料プール冷却浄化采熱交換器で除圭した熱は，原子炬補機冷却水奚（原子炬補機冷却海水采 を含む。）を経て，最終ヒートシンクである海へ輸送でき る設計とする。 ＜中略＞ 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4．残留熱除去設備 4.1 残留熱除去系 4．1．5 燃料プール泠却 （3）（i）a．（k）－（1）残留熱除寺系は，使用済燃料からの崩壊熱を除寺できる設計とする。残留熱除圭系熱交換器で除寺した熱は，原子炬補機冷却水系（（原子炬補機冷却海水系 を含む。）を経て，最終ヒートシンクである海へ輸送でき る設計とする。 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 4．使用済燃料貯蔵槽冷却浄化設備 4.5 使用済燃料プールの水質維持 使用済燃料プールは，使用済燃料からの崩壊熱を燃料プ ール冷却浄化系熱交換器で除去して使用済燃料プール水 を泠却するとともに，口（3）（i）a．（k）－（1）燃料体の被覆が著 しく腐食するおそれがないよう，燃料プール冷却浄化系る過脱塩器で使用济燃料プール水をる猧脱塩して，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピッ ト水の純度っ，透明度を維持できる設計とする。．．． 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 <中略> 使用済燃料プールは，鉄筋コンクリート造，ステンレス鋼内張りの水槽であり，使用済燃料プールからの放射性物質を含む水があふれ，又は漏れない構造とする。	載しており整合してい る。 設計及び工事の計画の ■（3）（i）a．（k）－（11）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（11）を具体的に記載しており整合してい る。		

設置変更許可申請書（ ${ }^{\text {a }}$ 本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		使用済燃料プールからの離隔を確保できる重量物につ いては，使用済燃料プールへ落下するおそれがないよう，転倒等を仮定しても使用済燃料プールに届かない距離に設置する。また，転倒防止のため床面や壁面へ固定する設計とする。 原子炉建屋クレーンは，使用済燃料貯蔵ラック上を使用済燃料輸送容器等重量物を吊った状態で走行及び横行で きないように可動範囲を制限するインターロックを設け る設計とする。 原子炉建屋原子炉棟の屋根を支持する屋根トラスは，基準地震動S s に対する発生応力が終局耐力を超えず，使用済燃料プール内に落下しない設計とする。また，屋根につ いては鋼欽（デッキプレート）の上に鉄筋コンクリート造 の床を設けた構造とし，地震による剥落のない構造とす る。また，燃料取替床の床面より上部を構成する壁は，鉄筋コンクリート造の耐震壁であり，燃料取替床の床面より下部の耐震壁と合わせて基準地震動 S s に対して使用済燃料プール内に落下しない設計とする。 燃料交換機及び原子炉建屋クレーンは，基準地震動 S s による地震荷重に対し，燃料交換機本体及び原子炉建屋ク レーン本体の健全性評価及び転倒落下防止評価を行い，使用済燃料プールへの落下物とならない設計とする。 燃料交換機本体及び原子炉建屋クレーン本体の健全性評価においては，想定される使用条件において評価が保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力 が許容応力以下となる設計とする。 燃料交換機の転倒落下防止評価においては，走行レール及び横行レール頭部を抱き込む構造をした燃料交換機の脱線防止装置について，想定される使用条件において評価 が保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力が許容応力以下となる設計とする。 燃料交換機の走行レール及び横行レールの健全性評価 においては，想定される使用条件において，地震時の発生応力が許容応力以下となる設計とする。 原子炉建屋クレーンの転倒落下防止評価においては，走行方向及び横行方向に浮上り代を設けた構造をした原子炉建屋クレーンの脱線防止ラグについて，想定される使用条件において評価が保守的となるよう吊荷の条件を考慮			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ C ）（ i ）a．（k）－（14）使用济焱料プールの機能に影響を及ぽ す重量物については落下しない設計とする。	第 2 項第 2 号ニについて 燃料交換機の燃料つかみ具は，二重のワイヤや種々のイ ンターロックを設け，かつ，ワイヤ，インターロック等は， その使用前に必ず機能試験，検查を実施するので燃料体等取扱中㲹燃料体等が落下することはないと考えるが，使用済燃料プールのライニングは，燃料体等の取报中に想定さ れる燃料体等の落下時及び重量物の落下時においても使用斎燃料プールの機能を失らような損傷は生じない設計 とする。 また，燃料交換機本体等の重量物については，使用済然料プールに落下しない設計とする。 なお，使用済然料輸送容器の落下については，キャスク ピットは使用济燃料プールとは障壁で分離し，かつ，原子炉建屋クレーンは吊り荷の落下防止措置を施すとともに使用済燃料輸送容器を吊った場合は，使用済燃料貯蔵ラッ ク上を走行できない等のインターロックを設ける設計と するので，使用済然料輸送容器が使用済然料プールに落下 することを想定する必要はない。	し，地震時の各部発生応力が許容応力以下となる設計とす る。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 ＜中略＞ 重量物の落下に関しては，使用済燃料プール周辺の状況，現場における作業実績，図面等にて確認することによ り，落下時のエネルギを評価し，落下試験時の燃料体等の落下エネルギ以上となる設備等に対しては，以下のとおり適切な落下防止対策を施し，使用済燃料プールの機能を維持する設計とする。 （3）（i）a．（k）－（11）使用斎燃料プールからの離隔を確保 できる重量物については，使用斎燃料プールへ落下するお それがないよう，転倒等を仮定しても使用斎燃料プールに届かない距離に設置する。また，転倒防止のため床面や壁面へ固定する設計とする。 原子炬建屋クレーンは，使用斎燃料貯蔵ラック上を使用済燃料輸送容器等重量物を吊った状態で走行及び横行で きないように可動範围を制限するインターロックを設け る設計とする。 原子炬建屋原子炬棟の屋根を支持する屋根トラスは，基準地震動 S s に対する発生応力が終局耐力を超えず，使用斎燃料プール内に落下しない設計とする。また，屋根につ いては鋼釷（デッキプレート）の上に鉄筋コンクリート造 の床を設けた構造とし，地震による剥落のない構造とす る。また，燃料取替床の床面より上部を構成する壁は，鉄筋コンクリート造の耐震壁であり，燃料取替床の床面より下部の耐震壁と合わせて基蕉地震憅S S に対して使用済燃料プール内に落下しない設計とする。 燃料交換機及び原子炬建屋クレーンは，基蕉地震動 S s による地震荷重に対し，燃料交換機本体及び原子炬建屋ク レーン本体の健全性評価及び転侀落下防止評価を行い，使用济燃料プールへの落下物とならない設計とする。 ＜中略＞	設計及び工事の計画の （3）（i）a．（k）－（44 は，設置変更許可申請書（本文（五号））の』（3）（i） a．（k）－（44）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ B （ ）（i）a．（k）－（10）使用斎然料プールの水位及び水温普 びに燃料取敃場所の放射線量の異虽を検知し，（3）（i）a． （k）－（6）それを中央制御室に伝えるとともに，	第3項について 使用斎然料プールには，使用斎燃料プールの水位及び水温普ぴに燃料取扱場所の放射線量を監視する設備を設け，異虽が㯖知された場合には，中央制御室に警報を発するこ とが可能な設計とする。	3．計測装置等 （3）（i）a．（k）－（15）使用済燃料プールの水温を計測する装置として燃料貯蔵プール水温度，燃料プール冷却浄化系 ポンプ入口温度及び使用斎燃料プール水位／温度（ガイド パルス式）を設け，（1）（ i ）a．（k）－（16）計測結果を中央制御室に表示できる設計とする。また，燃料貯蔵プール水温度及び燃料プール泠却浄化系ポンプ入口温度は計測結果を記録し，及び保存することができる設計とする。 （3）（i）a．（k）－（55）使用済燃料プールの水位を計測する ための装置として燃料貯蔵プール水位，燃料プールライナ ドレン漏えい及び使用斎燃料プール水位／温度（ガイドパ ルス式）を設け，（3）（i）a．（k）－（16）計測結果を中央制御室 に表示できる設計とする。また，燃料貯蔵プール水位の記録はプロセス計算機から帳票として出力し保存できる設計とする。 ＜中略＞ （3）（i）a．（k）－（15）使用済燃料プールの水温の著しい上昇又は使用济燃料プールの水位の著しい低下の場合に，こ れらを確寒に検出して口（3）（i）a．（k）－（16）自動的に中央制御室に警報（使用斎燃料プール水温高又は使用斎燃料プー ル水位低）を発信する装置を設けるとともに，表示ランプ の点灯，ブザー鳴動等により運転員に通報できる設計とす る。 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1．1 放射線管理用計測装置 ＜中略＞ 排気筒の出口又はこれに近接する箇所における排気中 の放射性物質の濃度，管理区域内において人が常時立ち入 る場所凹（3）（i）a．（k）－（15）その他放射線管理を特に必要と士る場所（燃料取扱場所その他の放射線業務従事者に対す る放射線障害の防止のための措置を必要とする場所をい う。）の線量当量率及び周辺監視区域に隣接する地域にお ける空間線量率が著しく上昇した場合に，これらを確寒に検出して『（3）（i）a．（k）－（16）自憅的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視	設計及び工事の計画の （3）（i）a．（k）－（15）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（国を具体的に記載しており整合してい る。 設計及び工事の計画の （3）（i）a．（k）－（16）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（16）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
外部電源が利用できない場合においても非常用所内電源系からの電源供給により，使用済燃料プールの水位及び水温ロ（3）（i）a．（k）－（17）並びに放射線量を監視することがで きる設計とする。	また，これらの計測設備については非常用所内電源系か ら受䨌し，外部電源が利用できない場合においても，監視 が可能な設計とする。 第4項について 本発電用原子炉施設では，乾式キャスクを用いた使用済燃料の貯蔵設備を設置していない。	区域放射能高）を発信する装置を設ける設計とする。 上記の警報を発信する装置は，表示ランプの点灯，ブザ ー鳴動等により運転員に通報できる設計とする。 ＜中略＞ 1．1．2 エリアモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所口 （3）（i）a．（k）－（15）その他放射線管理を特に必要とする場所 の線量当量率を計測するためのエリアモニタリング設備 を設け，（3）（i）a．（k）－（16 詁 + 測結果を中央制御室に表示で きる設計とする。。また，計測結果を記録し，及び保存する ことができる設計とする。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 3．計測装置等 < 中略 > 燃料貯蔵プール水温度，燃料貯蔵プール水位及び使用済燃料プール水位／温度（ガイドパルス式）は，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，使用済燃料プールの水温及び水位を回 （3）（i）a．（k）－（17）計測することができる設計とする。 ＜中略＞ 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1.1 放射線管理用計測装置 1．1．2 エリアモニタリング設備 < 中略 > エリアモニタリング設備のらち，燃料交換フロア放射線 モニタは，外部電源が使用できない場合においても非常用近内電源系からの電源供給により，回（3）（i）a．（k）－（17）線量当量率を計測することができる設計とする。 < 中略 >	設計及び工事の計画の （3）（i）a．（k）－（17）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（17）を具体的に記載しており整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（1）原子炉冷却材圧力バウンダリ （3）（i）a．（1）－（1）原子炬冷却材圧力バウンダリを構成 する機器（安全施設に属するものに限る。）は，以下を考慮した設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生ずる衝撃，灲心の反応度の変化による荷重の増加 その他の原子炉冷却材圧力バウンダリを構成する機器に加わる負荷に耐えられる設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （原子炉冷却材圧力バウンダリ） 第十七条 適合のための設計方針 第 1 項第 1 号及び第 2 号について 通常運転時において出力運転中，原子炉圧力制御系によ り原子炉圧力を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一定の値以下に抑える等の配慮を する。 タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等による原子炉スクラムのような安全保護回路 を設け，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力である 8．62MPa の 1.1 倍 の圧力 9． 48 MPa を超えない設計とする。 設計基準事故時において，原子炉冷却材圧力バウンダリ の健全性が問題となる可能性があるものとして，制御棒落下事故がある。これについては，「中性子束高」による原子炉スクラムを設け，制御棒落下速度リミッタ，制御棒価値ミニマイザなどの対策と相まって，事故時の燃料の二酸化ウランの最大エンタルピを抑え，原子炉冷却材圧力バウ ンダリの健全性を確保できる設計とする。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 3．原子炉冷却材の循環設備 3.2 原子炉冷却材圧力バウンダリ （3）（i）a．（1）－1 原子炉冷却材圧力バウンダリを構成 する機器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炬心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成 する機器に加わる負荷に耐える設計とする。 ＜中略＞ また，原子炉冷却材圧力バウンダリは，以下に述べる事項を十分満足するように設計，材料選定を行う。 通常運転時において出力運転中，原子炉圧力制御系によ り原子炉圧力を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一定の値以下に抑える等の配慮を する。 タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設けること等によ り，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力 （9．48MPa）を超えない設計とする。 設計基準事故時のらち原子炉冷却材圧力バウンダリの健全性が問題となる可能性がある制御棒落下事象につい ては，「原子炉周期（ペリオド）短」，「中性子束高」等の原子炉スクラム信号を発する安全保護装置を設け，制御棒落下速度リミッタ，制御棒価値ミニマイザなどの対策と相 まって，設計基準事故時の燃料の二酸化ウランの最大エン タルピを抑え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 原子炉冷却材圧力バウンダリを構成する配管及び機器 の材料は，耐食性を考慮して選定する。	設計及び工事の計画の （3）（i）a．（1）－（1）は， 設置変更許可申請書（本文（五号））の ロ（3）（i ） a．（1）－（1）と同義であり整合している。（原子炉冷却材圧カバウンダリ を構成する機器は，すべ て安全施設に属する設備である。）	

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
原子炉冷却材の流出を制限するために隔離装置を有す る設計とする。	原子炉冾却村圧力バウンダりとならない部分からの異 停止させるため，。配管系の通常運転時の状態及び使用目的 を考慮し，適切な隔䧺弁を設ける設計とする。	10．流体振動等による損傷の防止 原子炉泠却系統，原子炉冷却材浄化系及び残留熱除去系 （原子炉停止時冷却モード）に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のある流体の混合 その他の原子炉冷却材の挙動により生じる温度変動によ り損傷を受けない設計とする。 管に設置された円柱状構造物で耐圧機能を有するもの に関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（J S M E S 012 ）の規定に基づく手法及び評価フローに従った設計とする。 温度差のある流体の混合等で生じる温度変動により発生する配管の高サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（ J SME S 017 ）の規定に基づく手法及び評価フロー に従った設計とする。 3．原子炉冷却材の循環設備 3.3 原子炉冷却材圧力バウンダリの隔離装置等原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バ ウンダリに接続する配管等が破損することによって，原子炬冷却材の流出を制限するために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁を設ける設計と する。 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおりとする。 （一）通常時開及び設計基準事故時閉となる弁を有するも のは，発電用原子炉側からみて，第一隔離升及び第二隔離弁を対象とする。 （二）通常時開又は設計基準事故時に開となるおそれがあ る通常時閉及び設計基準事故時閉となる弁を有するも のは，発電用原子炉側からみて，第一隔離升及び第二隔離亣を対象とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するも ののらち，（二）以外のものは，発電用原子炉側からみて，第一隔離弁を対象とする。 （四）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心冷却系等も，発電用原子炉側からみて第一隔離弁			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
時及び設計基蕉事故時に瞬䦩的破䀬が生じないよう，十分 な破聼じん性を有する設計とする。	第 1 項第 3 号について 通常運転時，運転時の異常な過渡変化時，保修時，試験時及び設計基準事故時における原子炉冷却材圧カバウン ダリの脆性的挙動及び急速な伝播型破断の発生を防止す るために，フェライト系鋼で製作する機器に対しては，材料選択，設計，製作及び試験に特別の注意を払う。 （使用材料管理） 溶接部を含む使用材料に起因する不具合や欠陥の介在 を防止するため次の管理を行う。 （1）材料仕様 （2）機器の製造•加工•工程 （3）非破壊検查の実施 （4）破壊勒性の確認（関連温度の妥当性の確認，原子炉圧力容器材料のテスト・ピースによる㣫繋試験の実施） （使用圧力•温度制限） フェライト系鋼製機器の非延性破壊や，急速な伝播型破断を防止するため比較的低温で加圧する水圧試験時には加える圧力に応じ，最低温度の制限を加える。 （使用期間中の監視） 供用期間中検查（溶接部等の非破壊検查，耐圧部の耐圧，漏えい試験）を実施し，構成機器の構造や気密の健全性を評価し，また，欠陥の発生の早期発見のため漏えい検出系	及び第二隔離弁を対象とする。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のうち個別に施錠管理を行う弁は，開となるおそれがなく，上記 （三）に該当することから，発電用原子炉側からみて第一隔離弁を対象とする。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.2 材料及び構造等 5．2．1 材料について （2）破壊じん性 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物（クラス 1 管及びクラス 1 弁を支持するものを除 く。），クラス 2 機器，クラス 3 機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炬格納容器支持構造物，炉心支持構造物及び重大事故等クラス 2 機器は，その（3）（i）a．（1）－（2）最低使用温度に対して適切 な破罣じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。重大事故等クラス 2 機器のらち，原子炉圧力容器につい ては，重大事故等時における温度，放射線，荷重その他の使用条件に対して損傷するおそれがない設計とする。 【原子炬泠却系統施設（蒸気タービンを除く。）】 （基本設計方針） 3．原子炬冷却材の循環設備 3.2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生 ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成する機器に加わる負荷に耐える設計とする。 設計における衝撃荷重として，泠却材進失事故に伴うジ エット反力等，安全弁等の開放に伴ら荷重を考慮するとと	設計及び工事の計画の （3）（i）a．（1）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（1）－（2）と文章表現は異なるが，内容に相違は ないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（一）通常時開及び事故時閉となる弁を有するものは，原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （二）通常時又は事故時に開となるおそれがある通常時閉及び事故時閉となる弁を有するものは，原子炉側からみ て，第二隔離弁を含むまでの範囲とする。 （三）通常時閉及び事故時閉となる弁を有するもののう ち，（二）以外のものは，原子炬側からみて，第一隔離弁を含むまでの範囲とする。 （四）通常時閉及び原子炉冷却材喪失時開となる弁を有す る非常用炉心冷却系等も（一）に準ずる。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，事故時閉となる手動弁のらち個別に施錠管理を行ら弁は，開となるおそれがなく，上記（三）に該当するものとする。	れるもの及び制御棒駆動機構ハウジング等） （2）原子炉冷却材系を構成する機器及び配管（主蒸気管及び給水管のらち原子炬側からみて第二隔離弁を含む までの範囲） （3）接続配管 a．通常時開及び事故時閉となる弁を有するものは，原子炬側からみて，第二隔離弁を含むまでの範囲とする。 b ．通常時又は事故時に開となるおそれがある通常時閉及 び事故時閉となる弁を有するものは，原子炉側からみ て，第二隔離弁を含むまでの範囲とする。 c．通常時閉及び事故時閉となる弁を有するもののらち， b．以外のものは，原子炉側からみて，第一隔離弁を含 むまでの範囲とする。 d．通常時閉及び原子炉冷却材喪失時開となる弁を有する非常用炉心冷却系等もa．．．に準ずる。 e ．上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時ロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，事故時閉となる手動弁のうち，個別に施錠管理を行う弁は，開となるおそれがなく，上記 c ．．．に該当するものとする。 原子炉冷却材圧力バウンダリの拡大範囲（以下「拡大範囲」という。）となる残留熱除去系ヘッドスプレイライン，残留熱除去系停止時冷却モード吸込ライン及び残留熱除去系停止時冷却モード戻りラインについては，従来クラス 2 機器としていたが，上記b。に該当するため，原子炉冷却材圧力バウンダリ範囲としてクラス 1 機器における要求を満足することを確認する。 拡大範囲については，クラス 1 機器の供用期間中検査を継続的に行い，健全性を確認する。	れるもの及び制御棒駆動機構ハウジング等） （2）原子炬冷却系を構成する機器及び配管（主蒸気管及 び給水管のうち発電用原子炬側からみて第二隔離弁を含むまでの簐囲） （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有する ものは，発電用原子炉側からみて，第二隔離弁を含むま での範囲とする。 （二）通常時又は設計基蕉事故時に開となるおそれがあ る通常時閉及び設計基集事故時閉となる弁を有するも のは，発電用原子炉側からみて，第二隔離弁を含むまで の範囲とする。 （三）通常時閉及び設計基集事故時閉となる弁を有する もののらち，（二）以外のものは，発電用原子炉側からみ て，第一隔離弁を含むまでの範囲とする。 （四）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心冷却系等も（一）に準ずる。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基集事故時閉となる手動弁のうち個別に施錠管理を行う弁は，開となるおそれがなく，上記 （三）に該当する。	文（五号））の口（3）（i ） a．（1）－（4）を具体的に記載しており整合してい る。 設計及び工事の計画の 「設計基準事故時」は，設置変更許可申請書（本文（五号））の「事故時」 と同義であり整合して いる。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		たときに達する回転速度までの間に発生しない設計とす る。 また，蒸気タービン起動時の危険速度を通過する際には速やかに昇速できる設計とする。 蒸気タービン及びその附属設備の耐圧部分の構造は，最高使用圧力又は最高使用温度において発生する最大の応力が当該部分に使用する材料の許容応力を超えない設計 とする。 蒸気タービンには，その回転速度及び出力が負荷の変動 の際にも持続的に動摇することを防止する調速装置を設 けるとともに，運転中に生じた過回転，発電機の内部故障，復水器真空低下，スラスト軸受の摩耗による設備の破損を防止するため，その異常が発生した場合に蒸気タービンに流入する蒸気を自動的かつ速やかに遮断する非常調速装置及び保安装置を設置する。 また，調速装置は，最大負荷を遮断した場合に達する回転速度を非常調速装置が作動する回転速度未満にする能力を有する設計とする。 なお，過回転については定格回転速度の 1.11 倍を超え ない回転数で非常調速装置が作動する設計とする。 蒸気タービン及びその附属設備であって，最高使用圧力 を超える過圧が生ずるおそれのあるものにあっては，排気圧力の上昇時に過圧を防止することができる容量を有し， かつ，最高使用圧力以下で動作する大気放出板を設置し， その圧力を逃がすことができる設計とする。 蒸気タービンには，設備の損傷を防止するため，以下の運転状態を計測する監視装置を設け，各部の状態を監視す ることができる設計とする。 （1）蒸気タービンの回転速度 （2）主蒸気止め弁の前及び組合せ中間弁の前における蒸気の圧力及び温度 （3）蒸気タービンの排気圧力 （4）蒸気タービンの軸受の入口における潤滑油の圧力 （5）蒸気タービンの軸受の出口における㵎滑油の温度又 は軸受メタル温度 （6）蒸気加減弁の開度 （7）蒸気タービンの振動の振幅			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		蒸気タービンは，振動を起こさないように十分配慮をは らうとともに，万一，振動が発生した場合にも振動監視装置により，警報を発するように設計する。また，運転中振動の振幅を自動的に記録できる設計とする。 蒸気タービン及びその附属設備の構造設計において「発電用火力設備に関する技術基準を定める省令及びその解釈」に規定のないものについては，信頼性が確認され十分 な実績のある設計方法，安全率等を用いるほか，最新知見 を反映し，十分な安全性を持たせることにより保安が確保 できる設計とする。 復水器は，泠却水温度 $15^{\circ} \mathrm{C}$ ，タービン定格出力，大気圧 101 kPa において真空度 96.3 kPa を碓保できる設計とする。 1.2 蒸気タービンの附属設備 ポンプを除く蒸気タービンの附属設備に属する容器及 び管の耐圧部分に使用する材料は，想定される環境条件に おいて，材料に及ぼす化学的及び物理的影響に対し，安全 な化学的成分及び機械的強度を有するものを使用する。 また，蒸気タービンの附属設備のうち，主要な耐圧部の溶接部については，次のとおりとし，使用前事業者検査に より適用基準及び適用規格に適合していることを確認す る。 （1）不連続で特異な形状でないものであること。 （2）溶接による割れが生ずるおそれがなく，かつ，健全 な溶接部の確保に有害な溶込み不良その他の欠陥がな いことを非破壊試験により確認したものであること。 （3）適切な強度を有するものであること。 （4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及び技能を有する溶接士であることをあら かじめ確認したものにより溶接したものであること。 なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のらち水用の容器又は管であって，最高使用温度 $100^{\circ} \mathrm{C}$ 末満のものについては，最高使用圧力 1960 kPa ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管については，最高使用圧力 980 kPa （長手継手の部分にあっては，490kPa）以上の圧力が加えられる部分について溶接を必要とするものをいら。また，蒸気夕			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（n）非常用炉心冷却設備 非常用炉心冷却系口（3）（i）a．（n）－（1）（安全施設に属する ものに限る。）は，原子炬冷却材を喪失した場合において も，燃料被覆材（燃料被覆管）の温度が燃料材の溶融又は燃料体の著しい損傷を生ずる温度を超えて上昇すること を防止できる設計とするとともに，燃料被覆管と冷却材と の反応により著しく多量の水素を生じない設計とする。	5.3 非常用炉心冷却系 5．3．1 通常運転時等 5．3．1．1 概要 非常用炉心冷却系は，冷却材喪失事故時に燃料被覆管の大破損を防止し，ジルコニウム一水反応を極力抑え，䐗壊熱を長期にわたつて除寺する機能を持ち，低圧炉心スプレ イ系，低圧注水系，高圧炬心スプレイ系及び自動減圧系で構成する。 5．3．1．2 設計方針 非常用炉心冷却系は，「軽水型動力炉の非常用炉心冷却系の性能評価指針について」に基づいて冷却材喪失事故の際に燃料被覆管の大破損を防止若しくは抑制するように設計する。 そのため以下のような設計方針に基づいて設計する。 （1）自動起動 非常用炉心冷却系は，冷却材喪失事故時に早急に炉心の冷却をするため自動起動する。なお，必要により手動停止 できるようにする。 （2）単一故障，非常用電源及び物理的分離 非常用炉心冷却系は，動的機器の単一故障及び外部電源喪失を仮定した場合でも所要の安全機能を果たし得るよ らに重複性を有し，かつ一つの系統の事故が他の系統の故障を誘引し安全機能を失わないよう，物理的な分離をする設計とする。 このため，低圧炉心スプレイ系，低圧注水系は，独立 2系統の母線及びディーゼル発電機に（低圧注水系ポンプ （残留熱除去系ポンプ）2台が 1 台のディーゼル発電機 に，残りの低圧注水系ポンプ（残留熱除去系ポンプ）1台 と低圧炉心スプレイ系ポンプ 1 台がもう 1 台のディーゼ ル発電機に）接続する。高圧炉心スプレイ系は，専用のデ ィーゼル発電機に，また，自動減圧系は，蓄電池にそれぞ れ接続する。 また，これらの非常用炬心泠却系は，その起動信号，電源及び原子炉補機泠却系も含めて区分 I，区分IIおよび区	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．非常用灲心冷却設備その他原子灲注水設備 5.1 非常用炉心泠却設備その他原子炉注水設備の機能 非常用炬心泠却設備は，ロ（3）（i）a．（n）－（1）工学的安全施設の一設備であって，高圧炬心スプレイ系，低圧炬心スプ レイ采，残留熱除寺系（低圧注水モード）及び自動減圧系 から構成する。．．． これらの各系統は，冷却材唯失事故等が起こったとき に，サプレッションチェンバのプール水又は復水貯蔵タン クの水を原子炉圧力容器内に注水し，又は原子炉蒸気をサ プレッションチェンバのプール水中に逃がし原子炬圧力 を速やかに低下させるなどにより，炡心を泠却し，燃料被覆管の温度が燃料材の溶融又は燃料体の著しい破損を生 ずる温度を超えて上昇することを防止できる設計とする とともに，燃料の過熱による燃料被覆管の大破損を防ぎ，更にこれに伴らジルコニウムと水との反応を無視しうる程度に抑え，著しく多量の水素を生じない設計とする。 非常用炉心泠却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足 する設計とする。	設計及び工事の計画の （3）（i）a．（n）－（1）は，設置変更許可申請書（本文（五号））の■（3）（i） a．（n）－（1）を具体的に記載しており整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
	（6）非延性破壊の防止 非延性破壊を防止するため最低使用温度より低い温度 で実施した破壊勒性試験に適合する材料を用いる。 （7）共用の排除 安全上重要な系統及び機器は，共用によって安全機能を失らおそれのある場合，発電用原子炉施設間で共用しない よう設計する。 （8）試験可能性非常用炉心冷却系の作動試験が行えるよう設計する。	能する能力を有する設計とする。 非常用炉心泠却設備のうち，復水貯蔵タンクを水源とし て原子炬圧力容器へ注水するために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する設計とする。 非常用炉心泠却設備その他原子炉注水設備のうち，復水貯蔵タンク，ほら酸水注入系貯蔵タンク，淡水貯水槽（No． 1），淡水貯水槽（No．2）又は海を水源として原子炉圧力容器へ注水するために運転するポンプは，復水貯蔵タンク， ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最 も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 自動減圧系を除く非常用炉心泠却設備については，作動性を確認するため，発電用原子炉の運転中に，テストライ ンを用いてポンプの作動試験ができる設計とするととも に，弁については単体で開閉試験ができる設計とする。 自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁の駆動用窒素供給圧力の確認を行うことで，非常用炬心泠却設備の能力の維持状況を確認できる設計 とする。なお，発電用原子炉停止中に，主蒸気逃がし安全弁の作動試験ができる設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
（o）一次冷却材の減少分を補給する設備 （3）（i）a．（o）－（1）発電用原子炬施設には，通虽運車時又 は原子炬冷却材の小規模漏えい時に発生した原子炬冷却材の減少分を補給する設備（安全施設に属するものに限 る。）を設ける設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （一次冷却材の減少分を補給する設備） 第二十条 適合のための設計方針 原子炉泠却材の漏えいが生じた場合，その漏えい量が 10 mm （ $3 / 8$ インチ）径の配管破断に相当する量以下の場合 は制御棒駆動水ポンプで補給できる設計とする。 また，上記を超えた 25 mm （1インチ）径の配管破断に相当する漏えい量以下の場合は，原子炬隔離時冷却系を起動 させ，燃料の許容設計限界を超えることなく発電用原子炉 の泠却を行える設計とする。	【計測制御系統施設】（基本設計方針） 1．計測制御系統施設 1.2 制御棒及び制御棒駆動系 ＜中略＞ （3）（i）a．（o）－（1）原子炉冷却材の漏えいが生じた場合， その漏えい量が 10 mm （ $3 / 8$ インチ）径の配管破断に相当す る量以下の場合は制御棒駆動水ポンプで補給できる設計 とする。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系 （3）（i）a．（o）－（1）原子炬隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炬圧力容器に注入し，水位を維持できる設計とする。 また，冷却材亚失事故に至らない原子炬冷却材圧力バウ ンダりからの小さな漏えい及び原子炉冷却材圧力バウン ダりに接続する小口径配管の破断又は小さな機器の損傷 による原子炬冷却材の漏えいに対し，原子炬冷却材を補給 する能力を有する設計とする。 <中略 >	設計及び工事の計画の （3）（i）a．（o）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（o）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（q）最終ヒートシンクへ熱を輸送することができる設備 最終ヒートシンクへ熱を輸送することができる設備口 （3）（i）a．（q）－（1）（安全施設に属するものに限る。）は，原子炉圧力容器内において発生した残留熱及び重要安全施設において発生した熱を除圭することができる設計とす る。 また，津波，溢水又は発電所敷地若しくはその周辺にお いて想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対して安全性を損なわない設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （最終ヒートシンクへ熱を輸送することができる設備） 第二十二条 適合のための設計方針 第 1 項第 1 号について 通常運転時，運転時の異常な過渡恋化時及び設計基準事故時において発靁用原子炬で発生した熱は以下のように除去し，最終的な熱の逃がし場である海へ確実に伝達でき るように設計する。．．． （1）－通常運転時及びタービンバイパス弁不作動を除く運転時の異常な過渡変化時において，発電用原子炬で発生 する熱は，主復水器を経て循環水系によって，並びに主蒸気逃がし安全弁からサプレッションチェンバ内のプ一ル水中に放出された熱は，残留熱除去系及び原子炬補機冷却系によってっそれぞれ海に伝える設計とする。－ 原子炉停止時において，発電用原子炉で発生する熱は， タービンバイパス系から主復水器を経て循環水系によっ て海に伝える設計とし，原子哣圧力が十分低下した後にお いて，残留熱徐去系を経て原子炬補機冷却系によって海に伝える設計とする。 （2）発電用原子炉が隔離されタービンバイパス系が使用 できなくなるような運転時の異常な過渡変化時には，発電用原子炧で発生する蒸気を主蒸気逃がし安全弁によ りサプレッションチェンバ内のプール水中に逃がして原子媔圧力の過度の上显を防止し，原子炬隔離時冷却采 で原子炬水位を維持する。主蒸気逃がし安全弁から流出 する蒸気によってサプレッションチェンバ内のプール水中に放出された熱は，残留熱除圭系（サプレッション プール水冷却モード）を経て原子炬補機冷却系を経て，海に伝える設計とする。 （3）－原子炬冷却材喪失事故時，，発電用原子炉で発生する熱は，炬心が非常用炬心冷却系によって再冠水された後 は，残留熱除去系及び原子炉補機冷却系によって海に伝	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備回 （3）（i）a．（q）－（1）である原子炬補機冷却水系（原子炬補機冷却海水系を含む。）は，発電用原子炬停止時に残留熱除去系により除圭された原子炉圧力容器内において発生し た残留熱及び重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力檽源喪失時を除いて，最終的な熱の逃がし場で ある海へ輸送が可能な設計とする。 また，津波，溢水又は発電所敷地若しくはその周辺にお いて想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対して安全性を損なわない設計とする。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炬心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とすることにより，非常時に動的機器の単一故障及び外部電源喪失を仮定した場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的な熱の逃が し場である海へ輸送が可能な設計とする。 原子炉補機冷却水系（原子炬補機冷却海水系を含む。） は，淡水ループである原子炉補機冷却水系と，海水系であ る原子炉補機冷却海水系から構成する設計とする。 < 中略 > 7．2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。） 7．2．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備口 （3）（i）a．（q）－（1）である高圧炬心スプレイ補機冷却水系	設計及び工事の計画の （3）（i）a．（q）－（1）は，設置変更許可申請書（本文（五号））の（（3）（i） a．（q）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（3）（i ）a．（s）－（2）安全保護回路を構成する機械若しく は器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。	（2）その他の主要な安全保護系（工学的安全施設作動回路）には，次のようなものを設ける設計とする。 a 。 原子炉水位低，主蒸気管放射能高，主蒸気管圧力低，主蒸気管流量大，主蒸気管トンネル温度高，主復水器真空度低のいずれかの信号による主蒸気隔離弁閉鎖 b．ドライウェル圧力高，原子炉水位低，原子炉建屋原子炉棟放射能高のいずれかの信号による常用換気系の閉鎖と非常用ガス処理系の起動 c．原子炉水位低又はドライウェル圧力高の信号による高圧炬心スプレイ系，低圧炬心スプレイ系及び低圧注水系 の起動 d．原子炉水位低及びドライウェル圧力高の同時信号によ る自動減圧系の作動 e．原子炉水位低又はドライウェル圧力高の信号による高圧炉心スプレイ系ディーゼル発電機及び非常用ディー ゼル発電機の起動 f．原子炉水位低又はドライウェル圧力高の信号による主蒸気隔離弁以外の隔離弁の閉鎖 第 1 項第 3 号について 安全保護系は，十分に信頼性のある少なくとも 2 チャン ネルの保護回路で構成し，機器又はチャンネルの単一故障 が起きた場合，又は使用状態からの単一の取外しを行った場合においても，安全保護機能を失わないように，多重性 を備えた設計とする。 具体例は下記のとおりである。 （1）原子炉保護系は，検出器，トリップ接点，論理回路，主トリップ継電器等で構成し，基本的に二重の「1 out of 2 」方式とする。 安全保護機能を維持するため，原子炉保護系作動回路 は，運転中全て励磁状態にあり，電源の喪失，継電器の断線及び検出器を取り外した場合，回路が無励磁状態で，チ ャンネル・トリップになるようにする。したがって，これ らの単一故障が起きた場合，又は使用状態からの単一の取外しを行った場合においても，その安全保護機能を維持で きる。 核計装系は，安全保護回路として必要な最小チャンネル数よりも一つ以上多いチャンネルを持ち，運転中でもバイ	（3）（i）a．（s）－（2）安全保護装置を構成する機械若しく は器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。	設計及び工事の計画の （3）（i）a．（s）－（2）は， 設置変更許可申請書（本文（五号））の（3）（i） a．（s）－（2）と同義であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
『（3）（i）a．（s）－（3）安全保護回路を構成するチャンネル は，それぞれ互いに分離し，それぞれのチャンネル間にお いて安全保護機能を失わないよう独立性を確保する設計 とする。 駆動源の喪失，系統の遮断その他の不利な状況が発生し た場合においても，発電用原子炬施設をより安全な状態に移行する，又は当該状態を維持することにより，発電用原子炉施設の安全上支障がない状態を維持できる設計とす る。	パスして保守，調整及び校正できる。 したがって，これが故障の場合，故障チャンネルはバイ パスし，残りのチャンネルにより安全保護回路の機能が維持できる。 （2）工学的安全施設を作動させるチャンネル（検出器を含む。）は，多重性をもった構成とする。 したがって，これらの単一故障，使用状態からの単一の取外しを行った場合においても，安全保護機能は維持でき る。 第1項第4号について 安全保護系は，その系を構成するチャンネル相互が分離 されっまた計測制御系からも原則として分離し，独立性を持つ設計とする。 具体例は下記のとおりである。 （1）原子炉格納容器を貫通する計装配管は，物理的に独立した貫通部を有する 2 系列を設ける。 （2）検出器からのケーブル及び電源ケーブルは，独立に中央制御室の各盤に導く。各トリップチャンネルの論理回路は，盤内で独立して設ける。 （3）原子炉保護系作動回路の電源は，分離•独立した母線から供給する。 第 1 項第 5 号について 安全保護系の駆動源として電源あるいは空気圧を使用 する。この系統に使用する弁等は，フェイル・セイフの設計とする，又は故障と同時に現状維持（フェイル・アズ・ イズ）になるようにし，この現状維持の場合でも多重化さ れた他の回路によって保護動作を行うことができる設計 とする。 フェイル・セイフとなるものの主要なものを挙げると以下のとおりである。 （1）電源喪失 a．スクラム b．主蒸気隔離弁閉 c．格納容器ベント弁閉 （2）制御用空気喪失 a．スクラム	（3）（i）a．（s）－（3）安全保護装置を構成するチャンネル は，それぞれ互いに分離し，それぞれのチャンネル間にお いて安全保護機能を失わないよう物理的，電気的に分離 し，独立性を確保する設計とする。 また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 安全保護装置は，駆動源の喪失，系統の遮断その他の不利な状況が発生した場合においても，フェイル・セイフと することで発電用原子炉施設をより安全な状態に移行す るか，又は当該状態を維持することにより，発電用原子炉施設の安全上支障がない状態を維持できる設計とする。 < 中略 >	設計及び工事の計画の口（3）（i）a．（s）－③は， 設置変更許可申請書（本文（五号））の（3）（i ） a．（s）－③と同義であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（t）反応度制御系統及び原子炉停止系統	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の 位置，構造及び設備の基準に関する規則への適合 （反応度制御系統及び原子炉停止系統） 第二十五条 適合のための設計方針 第1項について	【計測制御系統施設】（基本設計方針） 1．計測制御系統施設 1.1 反応度制御系統及び原子炉停止系統共通			
口（3）（ i ）a．（t）－⑱応度制御系統，（原子炬停止系統を含	区応度制御系（原子炉停止系を含む。）は，は，制御棒の插	発電用原子炉施設には，制御棒の口（3）（ i a a．（t）－（2）摟入	設計及び工事の計画の		
み，安全施設に係るものに限る。以下，本項において同じ。）	入度を調節することによって反応度を制御する制御棒及	位置を調節することによって反応度を制御する制御棒及	「制御棒及び制御棒駆		
は，制御棒の口（3）（i）a．（t）－（2）位置を制御することによっ	び制御棒駆動系と再循環流量を調整することによって反	び制御棒駆動系と，再循環流量を調整することによって反	動系」及び「ほら酸水注		
て反応度を制御する制御棒駆動系と回（3）（ i ）a．（ t ）－（3）中	応度を制御する再循環流量制御系，制御棒を緊急挿入する	応度を制御する再循環流量制御系の独立した原理の異な	入系」は，設置変更許可		
性子吸収材を注入することによって反応度を制御するほ	原子哣緊急停止系並びに中性子吸収材を注入して反応度	る反応度制御系統を施設し，計画的な出力変化に伴ら反応	申請書（本文（五号））		
ら酸水注入系口（3）（ i ）a．（t）－（1）の原理の異なる二つの奚	を制御するほう酸水注入系からなる。	度変化を燃料要素の許容損傷限界を超えることなく制御	の回（3）（ i ）a．（t）－（1）を		
統を設ける。		できる能力を有する設計とする。	具体的に記載しており		
	第 2 項について	＜中略＞	整合している。		
	反応度制御系（原子炉停止系を含む。）のうち，制御棒及び制御棒駆動系は，負荷変動，キセノン濃度変化，高温	設置（変更）許可を受けた泠却材喪失その他の設計基準事故時の評価において，制御棒及び制御棒駆動系は，原子	設計及び丁事の計画の		
	及び制御棒駆動系は，負何変動，キセノン浱度変化，高温 から低温までの温度変化，燃料の燃焼によって生じる反応	炉スクラム信号によって，水圧制御ユニット（アキュムレ	(3) (i) a. (t)-(2)は,		
	度変化及び発電用原子炉の出力分布の調整をする。	ータ）の圧力により制御棒を緊急挿入できる設計とすると	設置変更許可申請書（本		
	また，再循環流量制御系は，主としてある限られた範囲内での負荷変動等によって生じる反応度変化を調整する。	ともに，制御棒が確実に挿入され，炉心を臨界未満にでき， かつ，それを維持できる設計とする。	$\begin{aligned} & \text { 文 }(\text { 五号)) の } 9(3)(\mathrm{i}) \\ & \text { a. }(\mathrm{t})-\mathrm{Z}) \text { と同義であり } \end{aligned}$		
	反応度制御系（原子炉停止系を含む。）のらち，制御棒及び制御棒駆動系と再循環流量制御系があいまって所要	＜中略＞	整合している。		
	の運転状態に維持し得る設計とし，計画的な出力変化に伴	1．4 ほう酸水注入系	設計及び工事の計画の		
	う反心度変化を然科要素の計容損傷限界を超えることな く制御できる能力を有する設計とする。さらに，反応度制		設置変更許可申請書（本		
	御系（原子炉停止系を含む。）は，以下の能力を有する設	ほう酸水（五ほう酸ナトリウム）を原子炬内に注入する設	文 (五号)) の (3 (3) (i)		
	計とする。	備であり，単独で定格出力運転中の発電用原子炉を高温状	a．（ t ）－（3）と同義であり		
		態及び低温状態において十分臨界未満に維持できるだけ	整合している。		
	第 2 項第 1 号について	の反応度効果を持つ設計とする。			
	反応度制御系（原子炉停止系を含む。）としては，原理 の全く異なる二つの独立の系である制御棒及び制御棒駆				
	動系並びにほう酸水注入系を設ける。				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
反応度制御系統は，通常運転時の高温状態において，口 （3）（i）a．（t）－（4）二つの独立した系統がそれぞれ発電用原子炬を（3）（i）a．（t）－（5）未臨界に移行し，及び未臨界を維持できるものであり，かつっ，運転時の異常な過渡変化時の高温状態においてもの（3）（i）a．（t）－（6）反応度制御采統の らち少なくとも一つは，燃料要素の許容損傷限界を超える ことなく発電用原子炬を口（3）（i）a．（t）－7 才 未臨界に移行 し，，及び未臨界を維持できる設計とする。 通常運転時及び運転時の異常な過渡変化時における低温状態において，（3）（i）a．（t）－8反応度制御系統のうち少なくとも一つは，（3）（i）a．（t）－（9）発電用原子炉を未臨界に移行し，及び未臨界を維持できる設計とする。	第 2 項第 2 号及び第 3 号について 反応度制御系（原子炉停止系を含む。）に含まれる独立 した系の一つである制御棒及び制御棒駆動系の反応度制御は次のような性能を持つ設計とする。 反応度制御能力 約 $0.18 \Delta \mathrm{k}$（最大過剰増倍率約 $0.14 \Delta \mathrm{k}$ の場合） スクラム時挿入時間（全灯心平均） 全ストロークの 75% 挿入まで 1.62 秒以下（定格圧力時） この性能は，炉心特性とあいまって通常運転時及び運転時の異常な過渡変化時においても，燃料要素の許容設計限界を超えることなく，発電用原子炉を臨界未満にでき，か つ，維持できるものである。 発電用原子炉は，低温状態において反応度が最も高くな り，その状態における発電用原子炉の過剰増倍率は約 0.1 $4 \Delta \mathrm{k}$ 以下である。これに対し，制御棒による系の反応度制御能力は約 $0.18 \Delta \mathrm{k}$ の性能を有し，低温状態において発電用原子炬を十分臨界未满に維持し得るものである。．．． したがって，高温停止を対象とする場合は，更に余裕を持つて未臨界に維持できる。 ほう酸水注入系は，単独で定格出力運転中の発電用原子炬を高温状態及び低温状態において十分未臨界に維持で きるだけの反応度効果を持つように設計する。．．	1.1 反応度制御系統及び原子炉停止系統共通 ＜中略＞ 通常運転時の高温状態において，ロ（3）（i）a．（t）－4）独立 した原子炬停止系統である制御棒及び制御棒駆動系によ る制御䏾の炬心への挿入並びにほう酸水注入系による原子炉冷却材中へのほら酸注入は，それぞれ発電用原子炉を （3）（i）a．（t）－（5）臨界未満にでき，かつっ，維持できる設計 とする。 運転時の異常な過渡変化時の高温状態においても，ロ（3） （i）a．（t）－（6）制御棒及び制御棒駆動系による制御棒の焒心への括入により，燃料要素の許容損傷限界を超えること なく発電用原子炉を口（3）（i）a．（t）－7 臨界未满にでき，か －．．維持できる設計とする。 ＜中略＞ 1.2 制御棒及び制御棒駆動系 <中略 > ロ（3）（i）a．（t）－8 制御䏾及び制御棒駆動采は，，通常運転時及び運転時の異常な過渡変化時における低温状態にお いて，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度添加を制御し，低温状態でロ（3）（i）a． （t）－（9）炬心を未臨界に移行して維持できる設計とする。 ＜中略＞ 1．4 ほう酸水注入系 （3）（i）a．（t）－（6），8）ほう酸水注入系は，，制御棒挿入に よる原子炉停止が不能になった場合，手動で中性子を吸収 するほら酸水（五ほら酸ナトリウム）を原子炉内に注入す る設備であり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において回（3）（i）a．（t）－（7），（9）十分臨界未満に維持できるだけの反底度効果を持つ設計とする。 ＜中略＞	設計及び工事の計画の （3）（i）a．（t）－（4）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ $\mathrm{t)-(4)を}$ を具体的に記載しており整合してい る。 設計及び工事の計画の （3）（i）a．（t）－（5）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ t ）－（5）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （3）（i）a．（t）－（6）は，設置変更許可申請書（本文（五号））の■（3）（i） 載しており整合してい る。 設計及び工事の計画の （3）（i）a．（t）－7）は，設置変更許可申請書（本文（五号））の■（3）（i） a．（t）－（7）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （3）（i）a．（t）－8 は，設置変更許可申請書（本文（五号））のロ（3）（i）	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（t）－（14）制御棒の最大反店度価値及び反応度添加率は，，想定される反応度投入事象に対して，，原子炉冷却材圧力バウンダリを破損せず，かつ，炉心の冷却機能を損ならような炉心，炉心支持構造物及び原子炉圧力容器内部構造物の損壊を起こさない設計とする。 制御棒，（3）（i）a．（t）－（15）液体制御材えの他の反応度を制御する設備は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な口（3）（i）a． （ t ）－（16）物理的及び化学的性質を保持できる設計とする。	の動作可能な制御棒により，高温状態及び低温状態におい て炬心を臨界未満に保持できることを評価確認する。 この確認ができない場合には，原子炉を停止するように運転管理手順を定める。 第 3 項について 反応度が大きく，かつ急激に投入される事象として制御棒落下及び原子炬起動時における制御棒の異常な引き抜 きがある。 これらの事象による影響を小さくするため，零出力ない し低出力においては，運転員の制御棒引抜操作を規制する補助機能として，制御棒価値ミニマイザを設け，これによ って引き抜く制御棒の最大反応度価値を $0.013 \Delta \mathrm{k}$ 以下と なるように制限する。また反応度添加率を抑えるため，制御棒落下に対しては，落下時の制御棒の速度を $0.95 \mathrm{~m} / \mathrm{s}$ 以下沉抑えるために制御愫に落下速度リミッタを設け，原子炉起動時における制御棒の異常な引き抜きに対しては，制御棒引拔速度を $9.1 \mathrm{~cm} / \mathrm{s}$ 以下に抑える設計とする。 さらに，中性子束高による原子炬スクラム信号及び原子炬周期短による原子炬スクラム信号を設ける。 以上の設計を行うことにより，反応度投入事象発生時に燃料の最大エンタルピや原子炬圧力の上昇を低く抑え，原子炉冷却材圧力バウンダリを破損せず，また，炬心冷却を損ならような炬心，炬心支持構造物及び原子炉圧力容器内部構造物の破壊を生じることがないようにする。．． 第 4 項について 制御棒，中性子吸収材その他の反底度を制御する設備 は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計 とする。	べての動作可能な制御棒により，高温状態及び低温状態に おいて炉心を臨界未満に保持できることを評価確認し，確認できない場合には，発電用原子炉を停止するように保安規定に定めて管理する。 反応度が大きく，かつ急激に投入される事象による影響 を小さくするため，制御棒の落下速度を設置（変更）許可 を受けた「制御棒落下」の評価で想定した落下速度に制御棒落下速度リミッタにより制限することで，制御棒引き抜 きによる反応度添加率を抑制する。また，「原子炉起動時 における制御棒の異常な引き抜き」の評価で想定した制御棒引抜速度以下に制限するとともに，零出力ないし低出力 においては，運転員の制御棒引抜操作を規制する補助機能 として，制御棒価値ミニマイザを設けることで，引き抜く制御棒の最大反応度価値を制限する。更に中性子束高及び原子炉周期（ペリオド）短による原子炉スクラム信号を設 ける設計とする。（3）（i）a．（t）－（14）これらにより，想定さ れる反応度投入事象発生時に燃料の最大エンタルピや発電用原子炬圧力の上显を低く抑え，原子炉冷却材圧力バウ ンダリを破損せず，かつ，炉心の泠却機能を損ならような炬心，炉心支持構造物及び原子炬圧力容器内部構造物の破損を生じさせない設計とする。 ＜中略＞ 1．1 反応度制御系統及び原子炉停止系統共通 ＜中略＞ 制御棒及びロ（3）（i）a．（t）－（15）ほらら酸水は，通常運転時に おける圧力，温度及び放射線に起因する最も厳しい条件に おいて，必要な口（3）（i）a．（t）－（16）而放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計 とする。	（3）（i）a．（t）－（13）は，設置変更許可申請書（本文（五号））の（3）（i） a．（t）－（13）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （3）（i）a．（t）－（14）は，設置変更許可申請書（本文（五号））の（3）（i） a．（t）－（14）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （3）（i）a．（t）－（15）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ t ）－（国を具体的に記載しており整合してい る。 設計及び工事の計画の	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（u）中央制御室 中央制御室は，設計基準対象施設の健全性を確認するた めに必要なパラメータを監視できるとともに，発電用原子炬施設の安全性を確保するために必要な操作を手動によ り行うことができる設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （原子炉制御室等） 第二十六条 適合のための設計方針 第 1 項第 1 号及び第 3 号について 中央制御室は，発電用原子炉及び主要な関連設備の運転奖況並びに主要パラメータが監視できるとともに，安全性 を確保するために急速な手動操作を要する場合には，これ を行うことができる設計とする。 （1）発電用原子炉及び主要な関連設備の運転状況の監視及び操作を行うことができる設計とする。 （2）炉心，原子炉冷却材圧力バウンダリ，原子炉格納容器バウンダリ及びそれらの関連する系統の健全性を確保するため，炉心の中性子束，制御棒位置，原子炉冷却材の圧力，温度，流量，原子炉水位，原子炉格納容器内 の圧力，温度等の主要パラメータの監視が可能な設計と する。 （3）事故時において，事故の状態を知り対策を講じるた めに必要なパラメータである原子炉格納容器内の圧力•温度等の監視が可能な設計とする。	【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 中央制御室は以下の機能を有する。 ＜中略＞ 発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポンプの起動•停止状態，発電用原子炉及 び原子炉冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保 するために必要な操作を手動により行うことができる設計とする。 a．中央制御室制御盤等 中央制御室制御盤は，原子炉制御関係，原子灲プラント プロセス計装関係，原子炬保護系関係，原子炉補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するた めに必要なパラメータ（炉心の中性子束，制御棒位置，原子炉冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるとともに，全て のプラント運転状態において，運転員に過度な負担となら ないよう，中央制御室制御盤において監視，操作する対象 を定め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応に必要な操作器，指示計，記録計及び警報装置 （核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。 なお，安全保護装置及びそれにより駆動又は制御される機器については，バイパス状態，使用不能状態について表示すること等により運転員が的確に認知できる設計とす る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，発電用原子炉施設の外部の状況を把握するため，監視カメラ，気象観測設備，ロ（3）（i）a．（u）－（1）公的機関から気象情報を入手できる設備等を設置し，中央制御室から発電用原子炬施設に影響を及ぼす可能性のある自然現象等 を把握できる設計とする。 発電用原子炉施設には，火災その他の異常な状態により中央制御室が使用できない場合において，中央制御室以外 の場所から，発電用原子炉を高温停止の状態に直ちに移行及び必要なパラメータを想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持させるために必要な機能を有する回 （3）（i）a．（u）－（2）装置を設ける設計とする。	第 1 項第 2 号について 発電用原子炉施設に影響を及ぼす可能性のあると想定 される自然現象等に加え，昼夜にわたり発電所構内の状沉 を遠隔操作することにより中央制御室にて把握すること ができる設計とする。 また，津波，童巻等による発電所構内の状況の把握に有効なパラメータは，気象観測設備等にて測定し中央制御室 にて確認できる設計とする。．．． さらに，中央制御室に公的機関から気象情報を入手でき る設備を設置し，地震，津波，竜巻情報等を入手できる設計とする。… 第 2 項について 火災その他の異常な事態により，中央制御室内で原子炬停止操作が行えない場合でも，中央制御室以外の適切な場所から発電用原子炉を直ちに停止するとともに高温停止状態を維持できる設計とする。 （1）中央制御室外において，原子炉緊急停止系作動回路 の電源を遮断すること等により発電用原子炉をスクラ ムさせる。発電用原子炬を直ちに停止した後，中央制御室外原子炬停止装置により，主蒸気逃がし安全弁，原子炬隔離時冷却系，残留熱除圭系等を使用して，発電用原子炬を高温停止状態に安全に維持することができる設計とする。．．． （2）中央制御室外原子炬停止装置により，上記高温停止状態から残留熱除圭系等を使用して，適切な手順により発電用原子炉を低温停止状熊に導くことができる設計 とする。	b．外部状況把握 発電用原子炉施設の外部の状況を把握するため，津波監視カメラ（浸水防護施設の設備を計測制御系統施設の設備 として兼用（以下同じ。）），自然現象監視力又ラ，風向，風速その他の気象条件を測定する気象観測設備（第 1 号機設備，第1，2，3号機共用）等を設置し，津波監視カメラ及び自然現象監視カメラの映像，気象観測設備等のパラメ ータ及びロ（3）（i）a．（u）－（1）公的機関から地震，津波，童巻情報等の入手により中央制御室から発電用原子炉施設に影響を及ぼす可能性のある自然現象等を把握できる設計 とする。 津波監視カメラ及び自然現象監視カメラは暗視機能等 を持ち，中央制御室にて遠隔操作することにより，発電所構内の周辺状況（海側，山側）を昼夜にわたり把握できる設計とする。 ＜中略＞ 【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （2）中央制御室外原子炉停止機能 中央制御室外原子炉停止機能は以下の機能を有する。 火災その他の異常な状態により中央制御室が使用でき ない場合において，中央制御室以外の場所から，発電用原子炉を高温停止の状態に直ちに移行及び必要なパラメー夕を想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持 させるために必要な機能を有する回（3）（i）a．（u）－（2）中央制御室外原子炬停止装置を設ける設計とする。	設計及び工事の計画の 「津波監視カメラ，自然現象監視カメラ」は，設置変更許可申請書（本文 （五号））の「監視カメ ラ」と同一設備であり整合している。 設計及び工事の計画の （3）（i）a．（u）－（1）は，設置変更許可申請書（本文（五号））の（3）（i ） a．（u）－（1）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （3）（i）a．（u）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（u）－（2）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
中央制御室には，炉心の著しい損傷が発生した場合にお いても（3）（i）a．（u）－（7）運転員がとどまるために必要な重大事故等対処設備を設置及び保管する。．．．	6．計測制御系統施設 6． 10 制御室 6．10．2 重大事故等時 6．10．2．2 設計方針 （1）居住性を確保するための設備 重大事故が発生した場合における炉心の著しい損傷後 の原子炉格納容器フィルタベント系を作動させる場合に，放出される放射性雲による運転員の被ばくを低減するた め，中央制御室内に中央制御室待避所を設ける設計とす る。炬心の著しい損傷が発生した場合においても運転員が とどまるために必要な重大事故等対処設備として，可搬型照明（S A），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室遮蔽，中央制御室待避所遮蔽，差圧計，酸素濃度計及び二酸化炭素濃度計を設置する設計とする。	御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉と することにより外気との連絡口を遮断し，中央制御室再循環フィルタ装置入口ダンパ（A），（B）（V30－D302A，B）を開とすることにより中央制御室再循環フィルタ装置を通 る事故時運転モードとし，放射性物質を含む外気が中央制御室に直接流入することを防ぐことができ，運転員を被ば くから防護する設計とする。外部との遮断が長期にわた り，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。 ＜中略＞ 【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の確保 < 中略 > 炉心の著しい損傷が発生した場合においても，回 （3）（i）a．（u）－7 可搬型照琞（SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボ ンベ），中央制御室しゃへい壁，，中央制御室待避所遮蔽，．．．補助しゃへい，2次しゃへい壁，差圧計（中央制御室待避所用），，酸素濃度計（中央制御室用）及び二酸化亚素濃度計（中央制御室用）により，中央制御室内にとどまり必要 な操作ができる設計とする。	設計及び工事の計画の ロ（3）（i）a．（u）－（7）は，設置変更許可申請書（本文（五号））の（3）（i） a．（u）－（7）を具体的に記載しており整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（v）放射性廃棄物の処理施設 （3）（i）a．（v）－（1）放射性廃裹物を処理する施設（安全施設に係るものに限る。）は，周辺監視区域の外の空気中及 び周辺監視区域の境界における水中の放射性物質の濃度 を（3）（i）a．（v）－（2）＋分に低減できるよう，発電用原子炬施設において発生する放射性廃棄物を処理する能力を有 し，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」を満足できる設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の 位置，構造及び設備の基準に関する規則への適合 （放射性廃棄物の処理施設） 第二十七条 適合のための設計方針 第 1 項第 1 号について 放射性気体廃重物及び放射性液体廃重物の処理施設は，．．．周辺公衆の線量を合理的に達成できる限り低く保つ設計 とし，「発電用軽水型原子炬施設周辺の線量目標値に関す る指針」を満足できる設計とする。 放射性気体廃棄物の主なものである蒸気式空気抽出器排ガスを活性炭式希ガスホールドアップ装置に通し排ガ ス中の放射能を十分減衰させ，監視しながら排気筒から大気に放出する。 また，他の排気については下記の対策を講ずることによ り，排気中の放射性物質濃度の低減を図った後，監視しな がら排気筒から放出する。 （1）タービンのグランドシールには，グランド蒸気発生器の蒸気を使用し，かつグランド蒸気発生器への給水に は，復水貯蔵タンク水を使用することにより，グランド蒸気復水器排ガス中の放射性物質を無視できる程度と する。 （2）補助ボイラーによる蒸気を熱源としたグランド蒸気発生器の発生蒸気により駆動される起動停止用空気抽出器を原子炉起動時及び停止時における主復水器の真空度維持に使用し，その排ガスを気体廃棄物処理系で処理することにより，原子炉起動時に運転する真空ポンプ排ガス中に含まれる放射性物質を低減する。 （3）汚染の可能性のある廃棄物処理区域からの換気系の排気については，粒子用フィルタで処理することによ り，排気中に含まれる粒子状放射性物質を低減する。放射性液体廃棄物の処理は，放射性液体廃棄物を分離収集•処理し，廃液の性状により，ろ過，脱塩，蒸発濃縮処理等を行い，放射性物質の濃度がごく低いものを除き，原則として環境には放出せず，できる限り原子炉等の補給水 として回収して再使用し，放射性物質の放出を合理的に達成できる限り低減するようにする。	【放射性廃棄物の廃棄施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1.2 廃棄物処理設備 （3）（i）a．（v）－（1）放射性廃傔物を処理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，ロ（3）（i）a．（v）－2 2 れぞれ，「核原料物質又は㮦燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となるように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。 更に，発電所周辺の一般公衆の線量を合理的に達成でき る限り低く保つ設計とし，「発電用軽水型原子彷施設周辺 の線量目標値に関する指針」を満足する設計とする。 <中略 > 放射性廃棄物を処理する設備は，放射性廃棄物以外の廃棄物を処理する設備と区別し，放射性廃棄物以外の流体状 の廃棄物を流体状の放射性廃棄物を処理する設備に導か ない設計とする。 <中略>	設計及び工事の計画の （（3）（i）a．（v）－（1）は，設置変更許可申請書（本文（五号））のロ（3）（i） a．（v）－（1）と同義であり整合している。 設計及び工事の計画の （3）（i）a．（v）－（2）は，設置変更許可申請書（本文（五号））のロ（3）（i） a．（v）－（2）を具体的に記載しており整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（w）放射性廃棄物の貯蔵施設 （3）（i）a．（w）－（1）放射性廃重物を貯蔵する施設（安全施設に係るものに限る。）は，放射性廃棄物が漏えいし難い設計とするとともに，	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （放射性廃棄物の貯蔵施設） 第二十八条 適合のための設計方針 放射性固体廃棄物を貯蔵する貯蔵槽類の容量は，原子炉冷却材浄化系及び燃料プール泠却浄化系から発生する使用済樹脂並びに復水浄化系復水ろ過装置廃スラッジ及び液体廃棄物処理系ろ過装置廃スラッジを発生量の約 10 年分以上，その他の使用済樹脂を発生量の約 5 年分以上貯蔵 できる容量とする。 サイトバンカ（ 1 号， 2 号及び 3 号炉共用，既設）の容量は使用済制御棒等を発生量の約 10 年分以上貯蔵保管で きる容量とする。 また，ドラム缶詰めした放射性固体廃重物を約 55， 000本（200L ドラム缶）相当貯蔵保管できる能力を持つ固体廃棄物貯蔵所（ 1 号， 2 号及び 3 号炉共用，既設）及び約 $500 \mathrm{~m}^{3}$ の貯蔵保管能力を持つ雑固体廃棄物保管室（1号，2号及 び 3 号炉共用，既設）を設けるが，必要に応じて増設する。	【放射性廃棄物の廃棄施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1.1 廃棄物貯蔵設備 放射性廃棄物を貯蔵する設備の容量は，通常運転時に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定し た設計とする。 （3）（i）a．（w）－（1）放射性廃重物を貯蔵する設備は，放射性廃棄物が漏えいし難い設計とする。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物 に含まれる化学薬品の影響及び不純物の影響により著し く腐食しない設計とする。 1.3 汚染拡大防止 1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏 えいの拡大防止 放射性液体廃衰物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のらち，流体状の放射性廃棄物の漏えいが拡大する おそれがある部分の漏えいし難い構造，漏えいの拡大防止，堰については，次のとおりとする。 （1）漏えいし難い構造 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造とする。また，その貫通部は堰の機能を失わない構造とする。 （3）放射性廃重物処理施設に係る堰の施設 <中略 > 施設外へ漏えいすることを防止するための堰は，処理す る設備に係わる配管について，長さが当該設備に接続され る配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさ の開口を当該設備と当該配管との接合部近傍に仮定した とき，開口からの流体状の放射性廃棄物の漏えい量のらち最大の漏えい量をもってしても，流体状の放射性廃棄物の漏えいが広範囲に拡大することを防止する設計とする。	設計及び工事の計画の （3）（i）a．（w）－（1）は， 設置変更許可申請書（本文（五号））の（3）（i ） a．（w）－（1）を含んでおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	は核燃料物質の製鍊の事業に関する規則等の規定に基づ く線量限度等を定める告示」に定められた限度を超える被 ばくを受けないように，遮蔽を設ける等の放射線防櫵措置 を講じた設計とする。	（3）（i）a．（y）－（1）発電所内における外部放射線による放射線障害を防止する必要がある場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあ いまって，「核原料物質又は核燃料物質の製錬の事業に関 する規則等の規定に基づく線量限度等を定める告示」を满足できる遮蔽設計とする。 生体遮蔽は，主に原子炉しやへい壁，1次しゃへい壁（ド ライウェル外側壁）， 2 次しやへい壁（原子炉建屋原子炉棟外壁），補助しゃへい，中央制御室しやへい壁，中央制御室待避所遮蔽及び緊急時対策所遮蔽から構成し，想定す る通常運転時，運転時の異常な過渡変化時，設計基準事故時及び重大事故等時に対し，地震時及び地震後において も，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止のために，遮蔽性を維持する設計とす る。 生体遮蔽に開口部又は配管その他の貫通部があるもの にあっては，必要に応じて次の放射線漏えい防止措置を講 じた設計とするとともに，自重，附加荷重及び熱応力に耐 える設計とする。 ＜中略＞ 【放射性廃棄物の廃棄施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1.3 污染拡大防止 1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏 えいの拡大防止 ＜中略＞ （2）漏えいの拡大防止 床面は，床面の傾斜又は床面に設けられた溝の傾斜によ り流体状の放射性廃棄物が排液受け口に導かれる構造と し，かつ，気体状のものを除く流体状の放射性廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果 を有するものを施設し，流体状の放射性廃革物の漏えいの拡大を防止する設計とする。 （3）放射性廃棄物処理施設に係る堰の施設放射性廃棄物処理施設外に通じる出入口又はその周辺		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
（3）（i）a．（y）－（2）発電所には，放射線から放射線業務涏事者を防櫵するため放射線管理施設を設け，（3）（i）a． （y）－（3）放射楾管理に必要な情報を中央制御室及びその他当該情報を伝達する必要がある場所に表示できる設備（安全施設に属するものに限る。）を設ける設計とする。	第 2 項について 放射線業務従事者等の出入管理，污染管理を行らため于 ェッタポイント，更衣室，手洗い場，シャワ室，，体表面年一トモ二多等（1号及び2号炬共用，既設）を設け，個人被ばく管理を行らため，ホールボディカウンタ等（1号，．．． 2 另及び 3 另炬共用，既設）を設ける。	部には，堰を施設することにより，流体状の放射性廃棄物 が施設外い漏えいすることを防止する設計とする。 ＜中略＞ （4）放射性廃棄物貯蔵施設に係る堰の施設放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰を施設することにより，流体状の放射性廃妻物 が施設外い漏えいすることを防止する設計とする。 漏えいの拡大を防止するための堰及び施設外へ漏えい することを防止するための堰は，開口を仮定する貯蔵設備 が設置されている区画内の床ドレンファンネルの排出機能を考慮しないものとし，流体状の放射性廃棄物の施設外 への漏えいを防止できる能力をもつ設計とする。 ＜中略〉 2．警報装置等 流体状の放射性廃重物を処理し，又は貯蔵する設備から流体状の放射性廃棄物が著しく漏えいするおそれが発生 した場合（床への漏えい又はそのおそれ（数滴程度の微少漏えいを除く。））を早期に検出するよう，タンクの水位，漏えい検知等によりこれらを確実に検出して自動的に警報（機器ドレン，床ドレンの容器又はサンプの水位）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。 また，タンク水位の検出器，インターロック等の適切な計測制御設備を設けることにより，漏えいの発生を防止で きる設計とする。 ＜中略＞ 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1.1 放射線管理用計測装置 運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備， エリアモニタリング設備及び放射線サーベイ機器（第1号	設計及び工事の計画の （ ${ }^{(3) ~(i) ~ a . ~(y) ~-~(2) は, ~}$設置変更許可申請書（本文（五号））の（3）（i） a．（y）－（2）を具体的に記載しており整合してい	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（aa）原子炉格納施設 原子炉格納容器は，ロ（3）（i）a．（aa）－（1）格納容器スプレ イ冷却系とあいまって原子炉冷却材圧力バウンダリ配管 の最も過酷な破断を想定し，これにより放出される原子炉泠却材のエネルギーによる（3）（i ）a．（aa）－（2）事故時の圧力，温度及び設計上想定された地震荷重に耐えるように設計する。 （3）（i）a．（aa）－（3）また，原子炬冷却材霝失事故が発生 した場合でも，格納容器スプレイ冷却系の作動により，温度及び圧力を速やかに下げ，出入口及び貫通部を含めて原子炬格納容器全体の漏えい率を原子炬格納容器の許容値以下に保ち，原子炉格納容器バウンダリの健全性を保つよ らに設計する。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （原子炉格納施設） 第三十二条 適合のための設計方針 第1項について 原子炉格納容器は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定し，これにより放出される泠却材の エネルギーによる圧力，温度及び設計上想定される地震力 に耐えるように設計する。 また，原子炬格納容器出入口及び貫通部を含めて全体漏 えい率が原子炬格納容器空間部体積の $0.5 \% / \mathrm{d}$ 以下（虽温，空気っ，最高使用圧力の 0.9 倍の圧力において）となるよう にする。 なお，設計基準事故後の圧力，温度を考慮した漏えい率 についても十分安全側になることを解析により確認する。	【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1.1 原子炉格納容器本体等 ＜中略＞ 原子炉格納容器は，口（3）（i）a．（aa）－（1）残留熱除圭系（格納容器スプレイ冷却モード）とあいまって原子炉冷却材圧 カバウンダリ配管の最も過酷な破断を想定し，これにより放出される原子炉冷却材のエネルギによる（3）（i）a．（a （a）－（2）冷却材喪失時の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，泠却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器に生じる動荷重に耐える設計とする。 ＜中略＞ 【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4．残留熱除去設備 4．1． 3 格納容器スプレイ冷却モード （1）系統構成 原子炉泠却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の圧力及び温度の上昇 により原子炉格納容器の安全性を損ならことを防止する ため，原子炉格納容器内において発生した熱を除去する設備として，残留熱除去系（格納容器スプレイ冷却モード） を設ける設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプール水をド ライウェル内及びサプレッションチェンバ内にスプレイ することにより，環境に放出される放射性物質の濃度を減少させる設計とする。	設計及び工事の計画の （3）（i）a．（aa）－1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（1）と同義であ り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（2）と同義であ り整合している。 設計及び工事の計画の （3）（i）a．（aa）－3 は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（3）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炉格納容器バウンダリロ（3）（i）a．（aa）－（4）が脆性的兴動をせず，かつつ，急速な伝播型破断を生じないよう，設計に当たつては，底力解析等を行い，予測される登生底力 による急速な伝播型破断が生じないように設計する。ま た，原子炬格納容器バウンダりを構成する鋼製の機器につ いては，最低使用温度を考慮して非延性破罣を防止するよ うに設計する。	第 2 項について 原子炉格納容器バウンダリが脆性的挙動をせず，かつ急速な偅瀵型破断を生じないよう下記の配慮を行う。．．． 設計に当たつては，庶力解析等を行い，予測される発生底力による急速な伝播型破断が生じないように設計する。 原子願格納容器バウンダりを構成する鋼製の機器につ いては，最低使用温度を考慮して非延性破罣を防止するよ らに設計する。 ＜中略＞	（3）（i）a．（aa）－（3）残留熱除圭系（（格納容器スプレイ洽却モード）は，原子炬冾却材压力バウンダり配管の最も過酷な破断を想定した場合でもっ，放出されるエネルギによる設計基蕉事故時の原子炬格納容器内厓力，温度が最高使田压力っ最高使用温庶を超えないようにし，かつっ，原子炬格納容器の内厓を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 <中略〉 【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1．1 原子炉格納容器本体等 <中略> 原子炉格納容器の開口部である出入口及び貫通部を含 めて原子炉格納容器全体の漏えい率を許容值以下に保ち，椧却材喪失時及び主蒸気逃がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保つ設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，原子炬格納容器バウンダリ（3）（i）a．（a） －（4）を構成する機器は脆性破壊及び㗞断が生じない設計と じん性詞験を行い，規定値を满足した材料を使用する設計 とする。 ＜中略＞ 【原子炬冷却采䖻施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.2 材料及び構造等 5．2．1 材料について （2）破壊じん性 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物（クラス1管及びクラス 1 弁を支持するものを除 く。），クラス 2 機器，クラス 3 機器（工学的安全施設に	設計及び工事の計画の （3）（i）a．（aa）－（4）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（4）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
原子炉格納容器を貫通する配管系には，ロ（3）（i）a．（aa） －（5）原子炬格納容器の機能を確保するために必要な隔離弁 を設ける。 原子炉格納容器を貫通する（3）（i）a．（aa）－（6）計装配管，制御棒駆動機構水圧配管のような特殊な細管であって特に隔離弁を設けない場合には，隔離弁を設置したのと同等の隔離機能を有するように設計する。 （3）（i）a．（aa）－7 主要な配管（事故の収束に必要な采統の配管を除く。）に設ける原子炉格納容器隔離弁は，設計基漼事故時に隔離機能の確保が必要となる場合におい て，自動的かつ確実に閉止される機能を有する設計とす る。	第 3 項について 原子炉格納容器を貫通する配管系には，原子炉格納容器 の機能を確保するために必要な隔離弁を設ける。 原子炉格納容器を貫通する制御棒駆動水圧系配管及び安全上重要な計測を行う配管のような特殊な細管であつ て特に隔離弁を設けない場合には，隔離弁を設置した場合 と同等の隔離機能を有する設計とする。 第4項について （1）原子炉格納容器隔離弁は，以下の場合を除き，自憅隔離弁としっ，隔離機能の確保が可能な設計とする。 a ．原子炬冷却材唯失事故時に作動を必要とする非虽用煙心冷却系及び残留熱除圭系（格納容器スプレイ冷却モー ド）等の配管の隔離弁には自動隔離信号を設けない設計 とする。 これらのらち原子炉冷却材圧力バウンダリに結合して いる配管には，更に少なくとも 1 個の逆止弁を設け自動隔離機能を持たせる設計とする。	属するものに限る。），口（3）（i）a．（aa）－（4）原子炉格納容器，原子炬格納容器支持構造物，烬心支持構造物及び重大事故等クラス 2 機器は，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じ ん性は，寸法っ材質又は破壊じん性試験により確認する。 ＜中略＞ 【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1.2 原子炉格納容器隔離弁 原子炉格納容器を貫通する各施設の配管系に設ける口 （3）（i）a．（aa）－（5）原子炬格納容器隔離弁（以下「隔離弁」 という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キ ーロックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炬格納容器の隔離機能の確保が可能な設計と する。 ＜中略＞ 原子炉格納容器を貫通する口（3）（i）a．（aa）－（6）計測制御系統施設又は制御棒駆動装置に関連する小口径配管であ つて特に隔離弁を設けない場合には，隔離弁を設置したも のと同等の隔離機能を有する設計とする。 （3）（i）a．（aa）－（6）原子炉冷却材圧力バウンダリに接続 される原子炬格納容器を貫通する計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置 し，流出量抑制対策を講じる設計とする。 ＜中略＞ 1.2 原子炉格納容器隔離弁 （3）（i）a．（aa）－7 原子炬格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」と いう。）は，安全保檴装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キー ロックが可能な遠隔操作弁又は隔離機能を有する逆止弁 とし，原子炋格納容器の隔離機能の確保が可能な設計とす る。	設計及び工事の計画の （3）（i ）a．（aa）－（5）は，設置変更許可申請書（本文（五号））の回（3）（i ） a．（aa）－（5）を具体的に記載しており整合して いる。 設計及び工事の計画の （3）（i ）a．（aa）－（6）は，設置変更許可申請書（本文（五号））の（3）（ i ） a．（aa）－（6）を具体的に記載しており整合して いる。 設計及び工事の計画の （3）（i）a．（aa）－7）は，設置変更許可申請書（本文（五号））の口（3）（i ） a．（aa）－（7）を具体的に記載しており整合して いる。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（aa）－（16）格納容器スプレイ冷却系は，原子炬泠却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出されるエネルギーによる設計基準事故時の原子炉格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炬格納容器の内圧を速 やかに下げて低く維持することにより，放射性物質の外部 への漏えいを少なくする設計とする。	本系は，残留熱除去系ポンプ，熱交換器とその泠却系等 からなり，動的機器の単一故障を仮定しても安全機能を果 たし得るよう独立 2 系統を設ける。各系統は，原子炬格納容器内の压力，温度が原子炬格納容器の最高使用圧力，最高使用温度を超えないような除熱容量を持つように設計 する。格納容器スプレイ椧却系は，泠却水であるサプレッ ションチェンバ内のプール水を残留熱除去系熱交換器で泠却し，原子炉格納容器内に設けたスプレイノズルからス プレイレ，原子炉格納容器内の熱を除去する。 熱交換器で除去された熱は，原子炉補機冷却系を経て最終的に海水に伝えられる。	ため，原子炉格納容器内において発生した熱を除去する回 （3）（i）a．（aa）－（11）設備として，ロ（3）（i）a．（aa）－（15）残留熱除圭采（格納容器スプレイ冷却モード）を設ける設計とす る。 ＜中略＞ （ ${ }^{(3)}$（i）a．（aa）－（16）残留熱除寺系（格納容器スプレイ椧却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出されるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 ＜中略＞ 【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材喪失事故後，ドライウェル圧力がサプレッション チェンバ圧力より低下した場合に，ドライウェルとサプレ ッションチェンバ間に設置された 6 個の真空破壊弁が，圧力差により自動的に働き，サプレッションチェンバのプー ル水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしていることなどから，原子炉格納容器外面に受け る圧力が設計を超えることはない。 ＜中略＞	文（五号））の■（3）（i） a．（aa）－（14）を含んでお り整合している。 設計及び工事の計画の ロ（3）（i）a．（aa）－（15）設置変更許可申請書（本文（五号））の回（3）（i） a．（aa）－（15）と同義であ り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（16は，設置変更許可申請書（本文（五号））の回（3）（i） a．（aa）－（16）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
さらに，（3）（i）a．（aa）－（17）格納容器スプレイ偷却系は， （3）（i）a．（aa）－（18）短期開では動的機器の単一故噇を仮定 しても，長期間では動的機辎の単一故障又は想定される静的機器の単一故障のいずれかなを仮定しても，上記の安全機能を満足するよう，格納容器スプレイヘッダを除き多重性及び独立性を有する設計とする。		【原子师冷却系䖻施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基淮対象施設及び重大事故等対処設備 5．1．2 多樣性，位置的分散等 （1）多重性又は多様性及び独立性 （3）（i）a．（aa）－田設置許可基淮規則第 12 条第 2 項に規定される「安全機能を有する系統のうち，安全機能の重要庶が特に高い宾全機能を有するもの」は，当該系統を構成 する機器に「（2）単一故障」にて記載する単一故障が発生した場合であって，外部電源が利用できない場合におい ても，その系統の安全機能を達成できるよう，十分高い信頼性を碓保し，かつ維持し得る設計とし，原則，多重性又 は多樣性及び独立性を備える設計とする。 ＜中略＞ （2）単一故障 安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するものは，当該系統を構成する機器に （3）（i）a．（aa）－（18）短期間では動的機器の単一故障，長期閏では動的機器の単一故障若しくは想定される静的機器 の単一故障のいずれかが生じた場合であって，外部需源が利用できない場合においても，その系統の安全機能を達成 できる設計とする。 （ C ）（i）a．（aa）－（18）短期間と長期間の境界は 24 時閫とす る． ただし，非常用ガス処理系の配管の一部及び非常用ガス処理系フィルタ装置，中央制御室換気空調系のダクトの一部及び中央制御室再循噮フィルタ装置並びに回（3）（i）a． （aa）－（18）线留熱除寺采（格絇容器スプレイ洽却モード）の ドライウェルスプレイ管及びサプレッションチェンバス プレイ管については，設計基観事故が発生した場合に長期闑にわたつて機能が要求される静的機器であるが，単一設計とするため，個別に設計を行ら。	設計及び工事の計画の （3）（i）a．（aa）－（17）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（17）を含んでお り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（18）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（18）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（3）（i）a．（aa）－（19）原子炬格納施設内の雾囲気の浄化系 （安全施設に係るものに限る。）として，非常用ガス処理系を設ける。 非常用ガス処理系は，原子炉冷却材喪失事故時に想定す る原子炉格納容器からの漏えい気体中に含まれるよう素 を除去し，環境に放出される核分裂生成物の濃度を減少さ せる設計とする。	第 7 項について 原子炉格納施設零囲気浄化系としてフィルタ装置，湿分除去装置及びファン等で構成する非常用ガス処理系を設置する。 原子炉冷却材喪失事故等が生じた場合，ドライウェル圧力高，原子炉水位低，原子炉棟放射能高のいずれかの信号 で，自動的に常用換気系を閉鎖し，非常用ガス処理系を作動させる。 非常用がス処理系は，原子炬格納容器から漏えいしてき た放射性物質をフイルタを通してこれを除圭した後，排気筒から放出する。 なお，本系統のよう素除去効率は湿度 70% 以下において 99% 以上になるように設計する。高性能粒子フィルタは，粒子状核分裂生成物の 99.9% 以上を除去するよう設計す る。 以上により原子炉冷却材喪失事故時等において，環境に放出される核分裂生成物及びその他の物質の濃度を減少 させることができる。	【原子灲格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 （ 3 ）（i）a．（aa）－（19）原子炬冷却系統に係る発電用原子炬施設の損壊又は故障の際に原子炬格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炬施設の安全評価に閉する審查指針（平成2年8月30日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備 として非常用ガス処理系を設置する。 非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガス処理系排風機及び高性能エアフィルタ，チャコ ールエアフィルタを含む非常用ガス処理系フィルタ装置等から構成される。 放射性物質の放出を伴う設計基準事故時には，常用換気系を閉鎖し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フ イルタ装置を通して除去•低減した後，排気筒から放出す る設計とする。 非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去 し，環境に放出される放射性物質の濃度を減少させる設計 とする。 非常用ガス処理系のらち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とする。 ＜中略＞ 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．1．2 多様性，位置的分散等 （1）多重性又は多様性及び独立性 （3）（i）a．（aa）－（20）設置許可基準規則第 12 条第 2 項に規定される「安全機能を有する系統のうち，安全機能の重要	設計及び工事の計画の （3）（i）a．（aa）－（19）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（19）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
分その機能を果たせる設計とする。 原子炉冷却材喪失事故後に原子炉格納容器内で発生す る水素及び酸素の反応を防止するため，可燃性ガス濃度制御系を設ける。	第 8 項について 原子炉泠却材喪失事故時に，原子炉格納容器内で発生す る水素及び酸素ガスの反応を防止するため，可燃性ガス濃度制御系を設ける。 中央制御室から本系統を手動にて作動させることによ り，原子炉格納容器内の水素濃度を $4 \mathrm{vol} \%$ 未満又は酸素濃度を $5 \mathrm{vol} \%$ 未満に維持し，可燃限界に達しないように することができる設計とする。	度が特に高い安全機能を有するもの」は，当該系統を構成 する機器に「（2）単一故障」にて記載する単一故障が発生した場合であって，ロ（3）（i）a．（aa）－（21）外部電源が利用 できない場合においてもっその系統の安全機能を達成でき るよう，．．．十分高い信頼性を確保し，かつ維持し得る設計と し，原則，多重性又は多様性及び独立性を備える設計とす る。 < 中略 > 【非常用電源設備】（基本設計方針） 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有 し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持たせ， 3 系統の母線で構成し，工学的安全施設 に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し， （3）（i）a．（aa）－（21）非常用低圧母線（パワーセンタ及びモ ータコントロールセンタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ 3 系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 <中略> 【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炬格納容器内で発生する水素及び酸素の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあいまって，可燃限界に達しないため の制限値である水素濃度 $4 \mathrm{vol} \%$ 未満又は酸素濃度 $5 \mathrm{vo1} \%$未満に維持できる設計とする。	設置変更許可申請書（本文（五号））の（ 3 ）（ i ） a．（aa）－（20）を含んでお り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（21）は，設置変更許可申請書（本文（五号））の（3）（i ） a．（aa）－（21）と同義であ り整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
保安電源設備（安全施設へ電力を供給するための設備を いう。）は，電線路，発電用原子炬施設において常時使用 される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等江保護継電器を設置し，機器の損壊，故障その他の異常を検知するとともに，異常を検知し を場合は，ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止す る設計とする。 特に（3）（i）a．（ab）－（2）重要安全施設においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置するとともに，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。	第3項について 保安電源設備（安全施設へ電力を供給するための設備を いう。）は，電線路，発電用原子炬施設において常時使用 される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，外部電源，非虽用所内電源設僙，その他の関連する霓気系統機器の短絡荐しくは地絡又は母線の低雫圧惹しくは渦靁流等を保護繙電器にて検知できる設計とする。また，故障を検知した場合は，ガス絶䩮開閉装置あるいはメタルク ラッド開閉装置等の遮断器により故障䈯所を隔䮤するこ とによつて，故障による影響を局所化できるとともに，他 の安全機能への影響を限定できる設計とする。	【常用電源設備】（基本設計方針） 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止 安全施設へ電力を供給する保安電源設備は，電線路，発電用原子炉施設において常時使用される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障その他の異常 を検知するとともに，異常を検知した場合は，ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止する設計とする。 特に・（3）（i）a．（ab）－（2）重要安全施設に給電する系統に おいては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 常用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，通常運転時に必要な負荷を各母線に振り分 け給電する。それぞれの母線から動力変圧器を通して降圧 し，常用低圧母線（パワーセンタ及びモータコントロール センタで構成）へ給電する。 共通用高圧母線（メタルクラッド開閉装置で構成）は， 2 母線で構成し，それぞれの母線から動力変圧器を通して降圧し，共通用低圧母線（パワーセンタ及びモータコント ロールセンタで構成）へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響 を局所化できるとともに，他の安全施設への影響を限定で きる設計とする。 常用の直流電源設備は， 250 V 蓄電池， 250 V 充電器， 250 V直流主母線盤等で構成する。 常用の直流電源設備は，タービンの非常用油ポンプ，発電機の非常用密封油ポンプ等へ給電する設計とする。 常用の計測制御用電源設備は，計測母線で構成する。 常用電源設備の動力回路のケーブルは，負荷の容量に応 じたケーブルを使用する設計とし，多重化した非常用電源	設計及び工事の計画の （（3）（i）a．（ab）－（2）は，設置変更許可申請書（本文（五号））の（ 3 ）（i） a．（ab）－（2）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		設備の動力回路のケーブルの系統分離対策に影響を及ぼ さない設計とするとともに，制御回路や計装回路への電気的影響を考慮した設計とする。 【非常用電源設備】（基本設計方針） 1．非常用電源設備の電源系統 1.1 非常用電源系統 （ ${ }^{(3)}$（i）a．（ab）－（2）重要安全施設に給電する系統におい ては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持たせ， 3 系統の母線で構成し，工学的安全施設 に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及びモータコントロールセ ンタで構成）へ給電する。非常用低圧母線も同様に多重性 を持たせ 3 系統の母線で構成し，工学的安全施設に関係す る低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響 を局所化できるとともに，他の安全施設への影響を限定で きる設計とする。 更に，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。 重要安全施設への電力供給に係る電気盤及び当該電気盤に影響を与えるおそれのある電気盤（安全施設（重要安全施設を除く。）への電力供給に係るものに限る。）につい て，遮断器の遮断時間の適切な設定等により，高エネルギ一のアーク放電によるこれらの電気盤の損壊の拡大を防止することができる設計とする。 これらの母線は，独立性を確保し，それぞれ区画分離さ れた部屋に配置する設計とする。 原子炉保護系並びに工学的安全施設に関係する多重性 をもつ動力回路に使用するケーブルは，負荷の容量に応じ たケーブルを使用し，多重化したそれぞれのケーブルにつ いて相互に物理的分離を図る設計とするとともに制御回路や計装回路への電気的影響を考慮した設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，変圧器 1 次側において 3 相のらちの 1 相の電路の が不安定になった場合においては，自動（地絡や過電流に よる保護継電器の動作）若しくは手動操作で，故障箱所の隔離又は非常用母線の健全な電源からの受電—切り替え ることにより安全施設への電力の供給の安定性を回復で きる設計とする。	変圧器 1 次側において 3 相のらちの 1 相の電路の開放 が生じ，安全施設への電力の供給が不安定になった場合に おいては，自憅（地絡や猧需流による保檴紕霓器の動作に より）若しくは手動操作で，故障䈯所の隔堲又は非虽用母線の健全な電源からの受電へ切り替えることにより安全施設への電力の供給の安定性を回復できる設計とする。ま た，送電線は複数回線との接続を碓保し，巡視点検による異常の早期検知ができるよう，送電線引留部の外锥確認が可能な設計とする。 また，保安電源設備は，重要安全施設の機能を維持する ために必要となる電力の供給が停止することがないよう，以下の設計とする。 －送電線の回線数と開閉所の母線数は，供給信頼度の整合が図れた設計とし，電気系統の系䖻分離を考慮し て， 275 kV 母線を 4 母線， 66 kV 母線を 1 母線で構成す る。275kV 送電線は母線連絡遮断器を設置したタイラ インにより起動変圧器を介して， 66 kV 送電線は予備変圧器を介して発電用原子炉施設へ給電する設計とす る。非常用母線を3母線碓保することで，多重性を損 なうことなく，采統分離を考慮して母線を構成する設計とする。 －電気系統を構成する送電線（牡鹿幹線，松島幹線，塚浜支線（鮎川線 1 号を一部含む。）及び万石線），母線，変圧器，非常用所内電源設備，その他関連する機器については，電気学会電気規格調查会にて定められ た規格（J E C）又は日本産業規格（JI S）等で定 められた適切な仕様を選定し，信頼性の高い設計とす る。 －非常用所内電源系からの受電時等の母線切替は，故障 を検知した場合，自動又は手動で容易に切り替わる設計とする。	【常用電源設備】（基本設計方針） 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．2 1 相の電路の開放に対する検知及び電力の安定性 回復 変圧器 1 次側において 3 相のらちの 1 相の電路の開放が生じた（3）（i）a．（ab）－（3）a場合に検知できるよう，変圧器 1 次側の需路は，霉路を筐体に内包する変圧器やガス絻縁開閉装置等により構成し，3 相のちちの1相の電路の開放 が生じた場合に保護䋛電器にて自憅で故障䈯所の隔離及 び非虽用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。 送電線において 3 相のらちの 1 相の電路の開放が生じた場合， 275 kV 送電線は 1 回線での電路の開放時に安全施設 への電力の供給が不安定にならないよう，多重化した設計 とする。 また，電力送電時，保護装置による 3 相の電流不平衡監視にて常時自動検知できる設計とする。 66 kV 送電線は，各相の不足電圧継電器にて常時自動検知 できる設計とする。 更に，（3）（i）a．（ab）－（3b 275 kV 送電線及び 66 kV 送電線 は，保安嫢定に定めている巡視点検を加えることで，保護装置による検知が期待できない場合の 1 相開放故障や，そ の兆候を早期に検知できる設計とする。 275 kV 送電線及び 66 kV 送電線において 1 相の電路の開放 を検知した場合は，自動又は手動で故障箇所の隔離及び非常用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。	設計及び工事の計画の （3）（i）a．（ab）－③ 及 びロ（3）（i）a．（ab）－（3b は，設置変更許可申請書 （本文（五号））の（3） （i）a．（ab）－（3）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（ab）－（4）設計基蕉対象施設に接続する電線路 のらち少なくとも2回線は，それぞれ互いに独立したもの であって，当該設計基準対象施設において受電可能なもの であり，かつっそれにより当馀設計基集対象施設を電力系統に連系するとともに，	第 4 項について 設計基準対象施設は，送受電可能な回線として 275 kV 送電線（牡鹿幹線及び松島幹線）2 ルート各2回線（1号， 2号及び 3 号炉共用，既設）及び受電專用の回路として 6 6 kV 送電線（塚浜支線（鮎川線1号を一部含吉。）））1 ル ート 1 回線（ 1 号， 2 号及び 3 号炉共用，既設）の合計 3 ルート 5 回線にて，電力系統に接続する。 275 kV 送電線（牡鹿幹線）1 ルート 2 回線は，約 28 km 離 れた石巻変電所に，275kV 送電線（松島幹線）1 ルート 2回線は，約 84 km 離れた宫城中央変電所に連系する。また， 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）））1 ル ート 1 回線は約 8 km 離れた女川変電所及び万石線を経由 しその上流接続先である約 22 km 離れた西石巻変電所に連系する。 上記 3 ルート 5 回線の送電線の独立性を確保するため，万一，送電線の上流側接続先である石巻変電所が停止した場合でも，外部電源からの電力供給が可能となるよう，宮城中央変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。また，宮城中央変電所が停止した場合には，石巻変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。さらに，女川変電所が停止した場合に は，石巻変電所又は宮城中央変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。	1.2 電線路の独立性及び物理的隔離 ＜中略＞ （ ${ }^{(3)}$（i）a．（ab）－（4）設計基蕉対象施設は，送受電可能な回線として 275 kV 送電線（東北電力ネットワーク株式会社牡鹿幹線（以下「牡鹿幹線」という。））（第1号機設備，第 $1, ~ 2, ~ 3$ 号機共用（以下同じ。））及び 275 kV 送電線（東北電力ネットワーク株式会社松島倝線（以下「松島幹線」 という。））（第3号機設備，第 $1,2,3$ 号機共用（以下同 じ。））の 2 ルート 4 回線及び受電專用の回線として 66 kV送電線（東北電力ネットワーク株式会社塚浜支線（以下「塚㳋支線」という。）（東北電力ネットワーク株式会社鮎川線 （以下「鮎り線」という。）1号を一部含む。）及び東北電 カネットワーク株式会社万石線（以下「万石線」という。）） （第1号機設備，第 $1,2,2$ ，号機共用（以下同じ。）） 1 ル ート1回線の合計3ルート5回線にて，電力采統に接続す る設計とする。 275 kV 送電線（牡鹿幹線）1 ルート 2 回線は東北電力ネ ットワーク株式会社石兑変電所（以下「石卷変電所」とい う。）， 275 kV 送電線（松島倝線）1 ルート 2 回線は東北電 カネットワーク株式会社豈城中央変電所（以下「富城中央変電所」という。）に連系する設計とする。また，66kV 送霉線（塚浜支線（鮎川線 1 号を一部含む。））1 ルート 1 回線は東北電力ネットワーク株式会社女川変電所（以下「女川変電所」という。）及び万石線を経由し，その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石䄅変電所」という。）に連系する設計とする。 上記 3 ルート 5 回線の送電線の独立性を確保するため，万一，送電線の上流側接続先である石䄅変電所が停止した場合でも，外部電源からの電力供給が可能となるよう，宫城中央恋電所及び女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。また，宫城中央変電所が停止した場合には，石巻変電所及び女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。更に，女川変需所が停止した場合には， 䨌所に電力を供給することが可能な設計とする。．．．	設計及び工事の計画の （3）（i）a．（ab）－（4）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ab）－（4）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
電線路のらち少なくとも 1 回線は，設計基準対象施設にお いて他の回線と物理的に分離して受電できる設計とする。 ロ（3）（i）a．（ab）－（5）設計基準対象施設に接続する電線路 は，同一の発電所内の 2 以上の発電用原子炬施設を電力系統に連系する場合には，いずれの 2 回線が喪失した場合に おいても電力系統からこれらの発電用原子炉施設への電力の供給が同時に停止しない設計とする。	第5 項について 設計基準対象施設に連系する 275 kV 送電線（牡鹿幹線） 2 回線と 275 kV 送電線（松鳥幹線）2 回線及び 66 kV 送電線（塚浜支線（鮎川線1号を一部含然。）及び万石線）1回線は，同一の送電鉄塔に架線しないようっそれぞれに送電鉄塔を備える設計とする。．．． また，送電線は，大規模な盛土の崩壊，大規模な地滑り，急傾斜の崩壊による被害の最小化を図るため，鉄塔基礎の安定性を確保することで，鉄塔の倒壊を防止するととも に，台風等による強風発生時又は着氷雪の事故防止対策を図ることにより，外部電源系からの電力供給が同時に停止 することのない設計とする。 さらに， 275 kV 送電線（牡鹿幹線及び松島幹線）と 66 kV送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線） の接近•交差•併架箇所については，仮に 1 つの鉄塔が倒壊しても，全ての送電線が同時に機能喪失しない絶縁距離及び水平距離を確保する設計とし，水平距離が満足できな い場合は，電線の張力方向によって全ての送電線が同時に機能喪失しない鉄塔の配置となる設計とする。 これらにより，設計基準対象施設に連系する送電線は，互いに物理的に分離した設計とする。 第 6 項について 設計基準対象施設に連系する送電線は，275kV 送電線 4回線と 66 kV 送電線 1 回線とで構成する。 これらの送電線は 1 回線で 2 号炉の停止に必要な電力 を供給し得る容量とし，いずれの 2 回線が喪失しても，発電用原子炉施設が同時に外部電源唯失に至らない構成と する。．．． なお，275kV 送電線は母線連絡遮断器を設置したタイラ インにより起動変圧器を介して， 66 kV 送電線は予備変圧器 を介して発電用原子炉施設へ接続する設計とする。 開閉所からの送受電設備は，十分な支持性能を持つ地盤 に設置するとともに，遮断器等は重心の低いガス絶縁開閉装置を採用する等，耐震性の高いものを使用する。 さらに，防潮堤等により津波の影響を受けないエリアに設置するとともに，塩害を考慮し，275kV 送電線引留部の碍子に対しては，碍子洗浄ができる設計とし，遮断器等に	設計基準対象施設は，電線路のうち少なくとも 1 回線は，同一の送電鉄塔に架線されていない，他の回線と物理的に分離された送電線から受電する設計とする。 また，大規模な盛土の崩壊，大規模な地すべり，急傾斜地の崩壊に対し鉄塔基礎の安定性が確保され，台風等によ る強風発生時及び着氷雪の事故防止対策が図られ，送電線 の接近•交差•併架箇所については，仮に 1 つの鉄塔が倒壊しても，全ての送電線が同時に機能喪失しない離隔距離 が確保された送電線，又は電線の張力方向によって，全て の送電線が同時に機能喪失しないように配置された鉄塔 の送電線から受電できる設計とする。 1.3 発電用原子炉施設への電力供給確保 （3）（i）a．（ab）－（5）設計基準対象施設に接続する電線路 は，いずれの 2 回線が喪失した場合においても電力系統か ら発電用原子炉施設への電力の供給が停止しない設計と L， 275 kV 送電線 4 回線は母線連絡遮断器を設置したタイ ラインにより起動変圧器を介して接続するとともに， 66 kV送嚅線は予備変圧器（第 1 号機設備，第 $1,2,3$ 号機共用） を介して接続する設計とする。 開閉所から主発電機側の送受電設備は，十分な支持性能 を持つ地盤に設置するとともに，耐震性の高い，可とう性 のある懸垂碍子及び重心の低いガス絶縁開閉装置を設置 する設計とする。 更に，防潮堤等により津波の影響を受けないエリアに設置するとともに，塩害を考慮し， 275 kV 送電線引留部の碍子に対しては，碍子洗浄ができる設計とし， 66 kV 送電線引留部の碍子に対しては，絶縁強化を施した碍子を設置し，	設計及び工事の計画の『（3）（i）a．（ab）－5）は，設置変更許可申請書（本文（五号））の口（3）（i） a．（ab）－（5）を含んでお り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
又は保管する。また，重大事故等に対処するために必要な数の要員を収容できる設計とする。		がとどまることができるよう，『（3）（i）a．（ac）－（1）適切な遮蔽設計及び換気設計を行い緊急時対策所の居住性を碓保する。 〈中略〉 b．情報の把握 （3）（i）a．（ac）－（2）緊急時対策所には，原子炬冷却系統 に係る登電用原子炬施設の强壊その他の異虽に対処する ために必要な情報及び重大事故等が発生した場合におい ても当該事故等に対処するために必要な指示ができるよ 5．．重大事故等に対処するために必要な情報を，中央制御室内の連転員を介さずに正確かつ速やかに把握できる設備として，安全パラメータ表示システム（SPDS）を設置す 3．．．． 安全パラメータ表示システム（SPDS）として，事故状熊等の必要な情報を把握するために必要なパラメータタ等を难集し，緊急時対策所内で表示できるようっだータ収集装置，SPDS 伝送装置及びSPDS 表示装置を設置する設計とす 3．－． c．通信連絡 原子炉冷却采統に係る発電用原子炉施設の損壊その他 の異常が発生した場合において，当該事故等に対処するた め，発電所内の関係要員に指示を行らために必要な通信連絡設備及び発電所外関係䈏所と専用であって多栐性を備元た通信回線にて通信連絡できる設計とする。 （3）（i）a．（ac）－③）緊急時対策所には，重大事故等が発生した場合においても発電所の内外の通信連絡をする必要のある場所と通信連絡できる設計とする。 ＜中略＞	設計及び工事の計画の （ ${ }^{\text {（3）（i）a．（ac）－（2）は，}}$設置変更許可申請書（本文（五号））の（3）（i） a．（ac）－（2）を具体的に記載しており整合して いる。 設計及び工事の計画の （3）（i）a．（ac）－（3）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ac）－（3）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ad）通信連絡設備 通信連絡設備は，警報装置，通信連絡設備（発電所内），安全パラメータ表示システム（SPDS），通信連絡設備 （発電所外）及びデータ伝送設備』（3）（i）a．（ad）－（1）から構成される。	10．12 通信連絡設備 10．12．1 通常運転時等 10．12．1．1 概要 設計基準事故が発生した場合において，発電所内の人に対し必要な指示ができるよう，警報装置及び多樣性を確保 した通信連絡設備を設置又は保管する。 また，発電所外の通信連絡をする必要がある場所と通信連絡ができるよう，多樣性を確保した專用通信回線に接続 する。	【計測制御系統施設】（基本設計方針） 4．通信連絡設備 4.1 通信連絡設備（発電所内） 原子炉泠却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人に操作，作業，退避の指示，事故対策のための集合等の連絡をブザー鳴動等により行うことができる設備及び音声等により行うことができる設備として，警報装置及び通信連絡設備（発電所内）を（3）（i）a．（ad）－（1）設置又は保管する設計とする。 警報装置として，十分な数量の送受話器（ページング） （警報装置を含む。）及び多様性を碓保した通信連絡設備 （発電所内）として，十分な数量の送受話器（ページング） （警報装置を含む。），電力保安通信用電話設備（固定電話機，PHS 端末及び FAX），移動無線設備（固定型），移動無線設備（車載型），携行型通話装置，無線連絡設備（固定型），無線連絡設備（携帯型），衛星電話設備（固定型）及 び衛星電話設備（携帯型）を口（3）（i）a．（ad）－（1）設置又は保管する設計とする。．． また，緊急時対策所へ事故状態等の把握に必要なデータ を伝送できる設備として，安全パラメータ表示システム （SPDS）を（3）（i）a．（ad）－（1）設置する設計とする。 ＜中略＞ 4.2 通信連絡設備（発電所外） 設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等により行うことができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び衛星保安電話（固定型）），社内テレビ会議システム，局線加入電話設備（加入電話機及び加入 FAX），専用電話設備（地方公共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用い た通信連絡設備（テレビ会議システム，IP 電話及び IP— FAX）を回（3）（i）a．（ad）－（1）設置又は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（3）（i）a．（ad）－（2）発電用原子炬施設には，設計基準事故が発生した場合において，中央制御室等から人が立ち入 る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の者への必要な操作，作業又は退避の指示等の連絡をブ ザー鳴動等により行うことができる装置及び音声等によ り行らことができる設備として，警報装置及び多様性を確保した通信連絡設備（発電所内）を設置又は保管する設計 とする。また，緊急時対策所へ事故状態等の把握に必要な データを伝送できる設備として，安全パラメータ表示シス テム（ S P D S）を設置する設計とする。 発電用原子炉施設には，設計基準事故が発生した場合に おいて，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等に より行うことができる設備として，通信連絡設備（発電所外）を設置又は保管する設計とする。	10．12．1．2 設計方針 （1）設計基準事故が発生した場合において，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の者への必要な操作，作業又は退避の指示等の連絡をブザー鳴動等により行うことがで きる装置及び音声等により行うことができる設備とし て，警報装置及び多様性を確保した通信連絡設備（発電所内）を設置又は保管する設計とする。また，緊急時対策所へ事故状態等の把握に必要なデータを伝送できる設備として，安全パラメータ表示システム（ S P D S ） を設置する設計とする。 なお，警報装置，通信連絡設備（発電所内）及び安全パ ラメータ表示システム（ S P D S ）は，非常用所内電源設備又は無停電電源装置（充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 （2）設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所 へ事故の発生等に係る連絡を音声等により行うことが できる設備として，通信連絡設備（発電所外）を設置又 は保管する設計とする。	（ERSS）～必要なデータを伝送できる設備として，データ 伝送設備口（3）（i）a．（ad）－（1）を設置する設計とする。．．． ＜中略＞ 4.1 通信連絡設備（発電所内） （ ${ }^{(3) ~(i) ~ a . ~(a d) ~-~(2) ~}$ 原子炬冷却系綕に係る発電用原子炬施設の損壊又は故障その他の異常の際に，中央制御室等か ら人が立ち入る可能性のある原子炬建屋，タービン建屋等 の建屋内外各所の人に操作，作業，退避の指示，事故対策 のための集合等の連絡をブザー鳴動等により行うことが できる設備及び音声等により行うことができる設備とし て，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。 警報装置として，十分な数量の送受話器（ページング） （警報装置を含む。）及び多様性を確保した通信連絡設備 （発電所内）として，十分な数量の送受話器（ページング） （警報装置を含む。），電力保安通信用電話設備（固定電話機，PHS 端末及び FAX），移動無線設備（固定型），移動無線設備（車載型），携行型通話装置，無線連絡設備（固定型），無線連絡設備（携帯型），衛星電話設備（固定型）及 び衛星電話設備（携帯型）を設置又は保管する設計とする。 また，緊急時対策所へ事故状態等の把握に必要なデータ を伝送できる設備として，安全パラメータ表示システム （SPDS）を設置する設計とする。 警報装置，通信連絡設備（発電所内）及び安全パラメー タ表示システム（SPDS）については，非常用所内電源又は無停電電源（充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 〈中略〉 4.2 通信連絡設備（発電所外） 設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等により行うことができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び徫星保安電話（固定型）），社内テレビ会議システム，局線加入電話設備（加入電話機及び加入 FAX），専用電話設備（地方公	設計及び工事の計画の （3）（i ）a．（ad）－2 ${ }^{2}$ は，設置変更許可申請書（本文（五号））の（3）（i） a．（ad）－（2）と文章表現 は異なるが，内容に相違 はないため整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，発電所内から発電所外の緊急時対策支援システム （ER S S）へ必要なデータを伝送できる設備として，デー夕伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した専用通信回線に接続し，輻輳等によ る制限を受けることなく常時使用できる設計とする。 ロ（3）（i ）a．（ad）－3 これらの通信連絡設備については，非常用所内電源設備又は無停電電源装置（充電器等を含 む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 発電用原子炉施設には，重大事故等が発生した場合にお いて，発電所の内外の通信連絡をする必要のある場所と通信連絡を行らために必要な口（3）（i ）a．（ad）－（4）通信連絡設備を設置又は保管する。	また，発電所内から発電所外の緊急時対策支援システム （ER S S）～必要なデータを伝送できる設備として，デ ータ伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した専用通信回線に接続し，輻輳等によ る制限を受けることなく常時使用できる設計とする。 なお，通信連絡設備（発電所外）及びデータ伝送設備は，非常用所内電源設備又は無停電電源装置（充電器等を含 む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 10．12．2 重大事故等時 10．12．2．2 設計方針 （1）発電所内の通信連絡を行らための設備 a．通信連絡設備（発電所内） 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行うための通信連絡設備（発電所内）として，衛星電話設備，無線連絡設備及び携行型通話装置を設置又は保管する設計とする。	共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用い た通信連絡設備（テレビ会議システム，IP 電話及び IP一 FAX）を設置又は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム （ERSS）へ必要なデータを伝送できる設備として，データ伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した通信回線に接続する。 電力保安通信用電話設備（固定電話機，PHS 端末，FAX及び衛星保安電話（固定型）），統合原子力防災ネットワー クを用いた通信連絡設備（テレビ会議システム，IP 電話及 び IP—FAX），専用電話設備（地方公共団体向ホットライ ン），社内テレビ会議システム及びデータ伝送設備は，專用通信回線に接続し，輻輳等による制限を受けることなく常時使用できる設計とする。また，これらの専用通信回線 の容量は，通話及びデータ伝送に必要な容量に対し，十分 な余裕を確保した設計とする。 （3）（i）a．（ad）－（3）通信連絡設備（発電所外）及びデー夕伝送設備については，非常用所内電源又は無停電電源 （充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 <中略> 4.1 通信連絡設備（発電所内） < 中略 > 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行らために必要な回 （3）（i）a．（ad）－（4）通信連絡設備（発電所内）及び計測等を行った特に重要なパラメータを発電所内の必要な場所で共有するために必要な通信連絡設備（発電所内）として，必要な数量の衛星電話設備（固定型）2 ，衛星電話設備．．（携帯型），無線連絡設備（固定型），無線連絡設備（携帯型）及び撨行型通話装置を設置又は保管する設計とする。な お，可搬型については必要な数量に加え，故障を考慮した	設計及び工事の計画の （3）（i ）a．（ad）－（3）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ad）－（3）と同義であ り整合している。 設計及び工事の計画の 設置変更許可申請書（本文（五号））の回（3）（i） a．（ad）－4）を具体的に記載しており整合して いる。	

設置変更許可申請書（ ${ }^{\text {a }}$（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	緊急時対策所へ重大事故等に対処するために必要なデ ータを伝送するための設備として，データ収集装置，S P P D S 伝送装置及びS P D S 表示装置で構成する安全パラ メータ表示システム（SPDS）を設置する設計とする。 < 中略 > （2）発電所外との通信連絡を行うための設備 a．通信連絡設備（発電所外） 重大事故等が発生した場合において，発電所外（社内外） の通信連絡をする必要のある場所と通信連絡を行うため の通信連絡設備（発電所外）として，衛星電話設備及び統合原子力防災ネットワークを用いた通信連絡設備を設置又は保管する設計とする。 重大事故等が発生した場合において，発電所内から発電所外の緊急時対策支援システム（ERSS）へ必要なデー	数量の予備を保管する。 設計とする。 無線連絡設備（携帯型）は，は央制御室及び緊急時対策所内に保管する設計とする。 撨行型通話装置は中央制御室内に保管する設計とする。 中央制御室及び緊急時対策所内に設置する設計とする。 緊急時対策所へ重大事故等に対処するために必要なデ ータを伝送するための設備として，安全パラメータ素示シ ステム（SPDS）のうちデータ収集装置は，制御建屋内に設置L，SPDS 伝送装置及びSPDS 素示装置は，緊急時效策所内胙設置する設計とする。 ＜中略＞ 4.2 通信連絡設備（発電所外） ＜中略〉 重大事故等が発生した場合において，発電所外（社内外） の通信連絡をする必要のある場所と通信連絡を行うため に必要な口（3）（i）a．（ad）－（4）通信連絡設備（発電所外）及 び計測等を行った特に重要なパラメータを発需所外（社内外）の必要な場所で共有するための通信連絡設備（発電所外）として，必要な数量の衛星電詰設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用 いた通信連絡設備（テレビ会議システム，IP 電話及び IP －FAX）を設置又は保管する設計とする。なお，可搬型に ついては必要な数量に加え，故障を考虜した数量の予備を保管まる。 衛星電話設備（鹪带型）は，緊急時対策所内に保管する設計とする。 衛星電話設備（固定型）は，中央制御室及び緊急時対策所内に設置する設計とする。 統合原子力防災ネットワークを用いた通信連絡設備（テ レビ会議システム，IP 需詰及ぴIPーFAX）は，は，緊急時対策所内纪設置する設計とする。 重大事故等が発生した場合において，発電所内から発䨖所外の緊急時対策支援システム（ERSS）へ必要なデータを			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ae）補助ボイラー 発電用原子炬施設には，ロ（3）（i）a．（ae）－（1）タービン，液体廃重物处理系，タタンクの保温用等に必要な蒸気を供給 する能力がある補助ボイラーを設置する。口（3）（i）a．（ae） －（2）補助ボイラー（1号及び 2 号炉共用，既設）は，発電用原子炉施設の安全性を損なわない設計とする。	10.4 加熱蒸気系 10．4． 1 概要 加熱蒸気系は，補助ボイラ及びスチームコンバータ等で構成し，液体廃裹物処理系の蒸発濃縮装置，タンクの保温用等に蒸気を供給するほか，タービングランドのシール及 び起動停止用空気抽出器駆動用の蒸気を発生させるグラ ンド蒸気発生器の加熱用にも蒸気を供給する。	【補助ボイラー】（基本設計方針） 1．補助ボイラー 1． 1 補助ボイラーの機能 発電用原子炉施設には，設計基準事故に至るまでの間に想定される使用条件として，『（3）（i）a．（ae）－（1）液体廃棄物処理系の濃縮装置，排ガス予熱器，．．屋外タンクの保温及 び建屋の暖房用並びに主蒸気が使用できない場合のター ビンのグランドシール及び起動停止用蒸気式空気抽出器 に，必要な蒸気を供給する能力を有する（3）（i）a．（ae） （2）補助ボイラー（第 1,2 号機共用（以下同じ。○））を設置する。 補助ボイラーは，発電用原子炬施設の安全性を損なわな い設計とする。	設計及び工事の計画の （3）（i）a．（ae）－（1）は，設置変更許可申請書（本文（五号））の ロ（3）（i） a．（ae）－（1）を具体的に記載しており整合して いる。 設計及び工事の計画の （3）（i）a．（ae）－（2）は，設置変更許可申請書（本文（五号））の ロ（3）（i） a．（ae）－（2）を具体的に記載しており整合して いる。	

設置变更許可申請書（本文（五品））
b．重大事故等対処施設（発電用原子炉施設への人の不法 な侵入等の防止，中央制御室，監視測定設備，緊急時対策所及び通信連絡を行らために必要な設備は，a．設計基準対象施設に記載）
（a）重大事故等の拡大の防止等
（3）（i）b．（a）－（1）発電用原子㷧施設は，重大事故经至る お巟れがある事故が発生した場合纪おいて，炬心，使用斎燃料プール内の燃料体等及び運転停止中原子炬内の燃料体の著しい損傷を防止するために必要な措置を講じる設計とする。
また，重大事故が登生した場合において，原子炬格納容器の破損及び登電用原子炬施設外への放射性物質の異虽 な水準の放出を防止するために必要な措置を講じる設計 とする。

1．1．7 重大事故等対処設備に関する基本方鉑
発霓用原子炉施設は，重大事故に至るおうそれがある事故 が発生した場合において，炬心，使用済閣料野蔵槽，（使用济燃料貯蔵プール）（以下「使用斎然料プール」といら。）内の燃料体等及び運転停止中における原子炬の然料体の著しい賣傷を防止するために，また，重大事故が登生した場合においても，原子炬格絡容器の破損及び登需所外への放射性物質の異虽な放出を防止するために，重大事故等対处設備を設ける。
これらの設備については，当誩設備が機能を発揮するた めに必要な系統（水源から注入先まで，流路を含き。）ま でを含むものとする
また，設計基準対象施設のらち，想定される重大事故等時にその機能を期待するものは，重大事故等時に設計基準対象施設としての機能を期待する重大事故等対処設備（以下「重大事故等対処設備（設計基準抁張）」といら。）と位置つける。
重大事故等対処設備は，常設のものと可搬型のものがあ り，以下のとおり分類する。
（1）常設重大事故等対処設備
重大事故等対処設備のらち常設のもの
a．常設重大事故防止設備
重大事故に至るおそれがある事故が発生した場合であ って，設計基準事故対处設備の安全機能又は使用済燃料プ ールの泠却機能若しくは注水機能が霛失した場合におい て，その䨤失した機能（重大事故に至るおそれがある事故 に対処するために必要な機能に限る。）を代替することに より重大事故の発生を防止する機能を有する設備（重大事故防止設備）のらち，常設のもの
b．常設耐震重要重大事故防止設備
常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの

設置変更許可申請書（本

文（五号））の（3）（i）
b．（a）－（1）は，設計及び
工事の計画では，これら
を具体的に設置変更許
可申請書（本文（五号））
「二，核燃料物質の取扱
施設及び貯蔵施設の構造及び設備」，「ホ，原子炉冷却系統施設の構造及び設備」，「へ，計測制御系統施設の構造及び設備」，「チ．放射線管理施設の構造及び設備」，「リ．原子炉格納施設の構造及ひ設備」及び「ヌ，その他発電用原子炉の附属施設の構造及び設備」にて示す。

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
	c．常設重大事故緩和設備 重大事故等対処設備のらち，重大事故が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能を有する設備（重大事故緩和設備）のう ち，常設のもの d．常設重大事故防止設備（設計基準拡張） 設計基準対象施設の弓ち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有する上記 a．以外の常設のもの e．常設重大事故緩和設備（設計基準拡張）設計基準対象施設のらち，重大事故等時に機能を期待す る設備であって，重大事故の拡大を防止し，又はその影響 を緩和するための機能を有する上記 c ．以外の常設のもの f．常設重大事故等対処設備のらち防止でも緩和でもない設備 常設重大事故等対処設備のらち，上記 a．，b．，c．， d．，e．以外の常設設備で，防止又は緩和の機能がない もの （2）可搬型重大事故等対処設備 重大事故等対処設備のらち可搬型のもの a．可搬型重大事故防止設備 重大事故防止設備のらち可搬型のもの b．可搬型重大事故緩和設備 重大事故緩和設備のらち可搬型のもの c．可搬型重大事故等対処設備のらち防止でも緩和でもな い設備 可搬型重大事故等対処設備の弓ち，上記 a ，b 以 以外 の可搬型設備で，防止又は緩和の機能がないもの 主要な重大事故等対処設備の設備種別及び設備分類を第1．1．7－1表に示す。 常設重大事故防止設備及び可搬型重大事故防止設備に ついては，当該設備が機能を代替する設計基準対象施設と その耐震重要度分類を併せて示す。 また，主要な重大事故等対処設備の設置場所及び保管場所を第1．1．7－1図から第1．1．7－16図に示す。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（b－1－1）－（1）設計基蕉事故対処設備の配置も考慮して設定 する。 （3）（i）b．（b－1－1）－（2）なおっ「口（3）（i）a．．．（c）（c－1）（c －1－1）火災区域及び火災区画の設定」において，火災の影響軽減の対策として設定する火災区域は，（3）（i）b．（b $-1-1)-33$ 時間以上の耐火能力を有することを確認した耐火壁，天井及び床により隣接する他の火災区域と分離す る設計とする。	リアについて，重大事故等対処施設と設計基漼事故対処設備の配置も考慮して，火災区域及び火災区画を設定する。 建屋内の火災区域は，設計基準対象施設の火災防護に関 する基本方針に基づき設定した火災区域を適用し，他の区域と分離して火災防護対策を実施するために，重大事故等対処施設を設置する区域を，「1．6．2．1（2）火災防護対象機器及び火災防護対象ケーブル」において選定する構築物，系統及び機器と設計基準事故対処設備の配置も考慮し て，火災区域として設定する。 ＜中略＞ 1．6．1 設計基準対象施設の火災防護に関する基本方針 1．6．1．1 基本事項 （1）火災区域及び火災区画の設定 <中略 > 火災の影響軽減の対策が必要な，原子炉の高温停止及び低温停止を達成し，維持するための安全機能を有する構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域は， 3 時間以上の耐火能力を有する耐火壁として， 3 時間耐火 に設計上必要なコンクリート壁厚である 150 mm 以上の壁厚 を有するコンクリート壁や火災耐久試験により 3 時間以上の耐火能力を有することを確認した耐火壁（貫通部シー ル，防火扉，防火ダンパ）により隣接する他の火災区域と分離するように設定する。 また，屋外の火災区域は，他の区域と分離して火災防護対策を実施するために，「（2）安全機能を有する構築物，系統及び機器」において選定する機器を設置する区域を，火災区域として設定する。 また，火災区画は，建屋内及び屋外で設定した火災区域 を系統分離等，機器の配置状況に応じて分割して設定す る。	重要な機器等及び重大事故等対処施設の配置を系統分離 も考慮して設定する。 （ 3 ）（ i ）b．（b－1－1）－（2）建屋内のうち，火災の影響軽減の対策が必要な原子炉の高温停止及び低温停止を達成し，維持するための安全機能を有する構築物，系統及び機器並び に放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域は，回（3）（i）b．（b－1－1）－3 3 時間以上の耐火能力を有する耐火壁として， 3 時間耐火 に設計上必要なコンクリート壁厚である 150 mm 以上の壁厘 を有するコンクリート壁や火災耐久試験により3時間以上 の耐火態力を有することを確認した耐火壁（貫通部シー ル，防火扉，防火ダンパ）により隣接する他の火災区域と分離するように設定する。 火災区域又は火災区画のファンネルは，煙等流入防止装置 の設置によって，他の火災区域又は火災区画からの煙の流入を防止する設計とする。	は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－1－1）－1）を含 んでおり整合している。 設計及び工事の計画の （3）（i）b．（b－1－1）－（2 に示す「火災区域」は，設置変更許可申請書（本文（五号））の ロ（3）（i ） b．（b－1－1）－（2）に示す「火災区域」であり整合 している。 設計及び工事の計画の （3）（i）b．（b－1－1）－③ は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－1－1）－（3）を具体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
屋外の火災区域は，他の区域と分離して火災防護対策を実施するために，重大事故等対処施設を設置する区域を重大事故等対処施設と回（3）（i）b．（b－1－1）－（4）設計基蕉事故対处設備の配置を考慮するとともに，延焼防止を考慮した管理を踏まえて火災区域として設定する。 また，火災区画は，建屋内及び屋外で設定した火災区域 を重大事故等対処施設と設計基準事故対処設備の配置口 （3）（i）b．（b－1－1）－（5）等に応じて分割して設定する。 （b－1－2）火災防護計画 $\mathrm{a}(3)(\mathrm{i}) \mathrm{b} \cdot(\mathrm{~b}-1-2)-1) \text { व }(3)(\mathrm{i}) \mathrm{a} \cdot(\mathrm{c})(\mathrm{c}-1)(\mathrm{c}-1-3)$火災防櫵計画」に定める。	1．6．2 重大事故等対処施設の火災防護に関する基本方針 1．6．2．1 基本事項 （1）火災区域及び火災区画の設定 <中略> 屋外については，海水ポンプ室（補機ポンプエリア）及 び軽油タンクを設置する火災区域は，設計基蕉対象施設の火災防護に関する基本方針に基づき設定した火災区域を適用する。 また，他の区域と分離して火災防檴対策を寒施するため に，重大事故等対処施設を設置する区域を，「1．6．2．1（2） ．．．火災防檴対象機器及び火災防檴対象ケーブル」において選定する構築物，，系統及び機器と設計基蕉事故対処設備の配置も㖈慮して火災区域として設定する。 屋外の火災区域の設定に当たつては，火災区域外への延焼防止を考慮して，資機材管理，火気作業管理，危険物管理，可燃物管理，巡視を行う。本管理については，火災防護計画に定める。 また，火災区画は，建屋内及び屋外で設定した火災区域 を重大事故等対処施設と設計基準事故対処設備の配置も考慮し，分割して設定する。 （2）火災防護対象機器及び火災防護対象ケーブル 重大事故等対処施設のらち常設のもの及び当該設備に使用しているケーブルを火災防護対象とする。 なお，重大事故等対処施設のらち，可搬型のものに対す る火災防護対策については，火災防護計画に定めて実施す る。	屋外の火災区域は，他の区域と分離して火災防護対策を実施するために，口（3）（i）b．（b－1－1）－炎災防護上重要な機器等を設置する区域及び重大事故等対処施設の配置を考慮するとともに，延焼防止を考慮した管理を踏まえた区域を火災区域として設定する。 火災区画は，建屋内及び屋外で設定した火災区域を系統分離の状況及びロ（3）（i）b．（b－1－1）－（5）壁の設置状況並び に重大事故等対処施設と設計基準事故対処設備の配置に応じて分割して設定する。 この延焼防止を考慮した管理については，保安規定に定 めて，管理する。 <中略 > 発電用原子炉施設の火災防護上重要な機器等は，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減 の 3 つの深層防護の概念に基づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定めて管理する。 （3）（i）b．（b－1－2）－（1）重大事故等対処施設は，火災の発生防止，火災の早期感知及び消火の必要な運用管理を含垂火災防檴対策を講じることを保安規定に定めて管理する。 重大事故等対処施設のうち，可搬型重大事故等対処設備 に対する炏災防護対策についても保安規定に定めて管理 する。．．． その他の発電用原子炬施設については，「消防法」，「建築基集洼」「「日本電気協会雼気技術規程•指針」に基づき設備に応じた火災防護対策を講じることを保安規定に定	設計及び工事の計画の （ 3 ）（ i ）b．（b－1－1）－4 は，設置変更許可申請書 （本文（五号））の口（3） （i）b．（b－1－1）－4）を含 んでおり整合している。 設計及び工事の計画の （3）（i）b．（b－1－1）－（5 は，設置変更許可申請書 （本文（五号））の口（3） （i）b．（b－1－1）－（5）を具体的に記載しており整合している。 設置変更許可申請書（本文（五号））の口（3）（i） b．（b－1－2）－（1）は，保安規定にて対応する。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（b－2）火災発生防止 （b－2－1）火災の発生防止対策 火災の発生防止については，口（3）（i）b．（b－2－1）－（1）発火性又は引炎性物質を内包する設備及びこれらの設備を設置する火災区域又は火災区画に対する火災の発生防止対策を講じるほか，	1．6．2．2 火災発生防止 1．6．2．2．1 重大事故等対処施設の火災発生防止 重大事故等対処施設の火災発生防止については，発火性又は引小性物質を内包する設備及びこれらの設備を設置 する火災区域又は火災区画に対する火災の発生防止対策 を講じるほか，	あて，管理する。－ 外部火災については，設計基準対象施設及び重大事故等対处施設を外部火災から防護するための運用等について保安規定に定めて，管理する。 1．火災防護設備の基本設計方針 ＜中略＞ 設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減 のそれぞれを考慮した火伙防護対策を講じる設計とする。 ＜中略＞ 1.1 火災発生防止 1．1．1 火災の発生防止対策 火災の発生防止における発火性又は引火性物質に対す る火災の発生防止対策は，（3）（i）b．（b－2－1）－（1）火災区域又は火災区画に設置する泪滑油又は然料油を内包する設備恶びに水素を内包する設備を対象とする。 沮滑油又は燃料油を内包する設備は，溶接構造，シール構造の採用による漏えいの防止及び防爆の対策を講じる とともに，堰等を設置し，漏えいした潤滑油又は燃料油が抁大することを防止する設計とし，泪滑油又は然料油を内包する設備の火災により発電用原子炬施設の安全機能及 び重大事故等に対処する機能を損なわないよう，壁の設置又は離隔による配置上の考慮を行ら設計とする。 泪滑油又は燃料油を内包する設備を設置する火災区域又は火災区画は，空調機器による機械換気又は自然換気を行ら設計とする。 潤滑油又は燃料油を貯蔵する設備は，貯蔵量を一定時間 の運転に必要な量にとどめる設計とする。 水素を内包する設備のらち気体廃重物处理系設備及び発電機水素がス供給設備の配管等は水素の漏えいを考慮 した溶接構造とし，弁グランド部から水素の漏えいの可能性のある弁は，ベローズ并等を用いて防爆の対策を行ら設計とし，水素を内包する設備の火㷋により，発電用原子炉施設の安全機能及び重大事故等に対处する機能を損なわ ないよう，壁の設置による配置上の考慮を行う設計とす る。	設計及び工事の計画の （3）（i）b．（b－2－1）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－1）－（1）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及びエ事の計画 該当事項	整合性	備 考
なお，放射線分解等により発生する水素の蓄積防止対策 は，ロ（3）（i）b．（b－2－1）－7）水素や酸素の濃度が高い状熊で滞留及び萻積することを防止する設計とする。 （b－2－2）不燃性材料又は難燃性材料の使用 重大事故等対処施設のらち，主要な構造材，	1．6．2．2．1 重大事故等対処施設の火災発生防止 （5）放射線分解等により発生する水素の蓄積防止対策放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策としては，社団法人火力原子力発電技術協会「BWR配管における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10月）」に基づき，蓄積した水素の急速な燃焼によって原子炉の安全性を損なうおそれがある場合には水素の蓄積を防止する設計とする。 蓄電池を設置する火災区域又は火災区画は，「1．6．2．2． 1 （4）水素対策」に示すように，機械換気を行うことによ って水素濃度が燃焼限界濃度以下となるように設計する。 1．6．2．2．2 不燃性材料又は難燃性材料の使用	火災の発生防止のため，放射線分解により水素が発生す る火災区域又は火災区画における，水素の蓄積防止対策と して，（3）（i）b．（b－2－1）－（7）社団法人火力原子力発雷技術協会「BWR 配管における混合がス（水素•酸素）萻積防止 に関するがイドライン（平成 17 年10月）」 等に基づき，原子炉の安全性を損なうおそれがある場合には水素の蓄積を防止する設計とする。 重大事故等時の原子炬格納容器内及び建屋内の水素に ついては，重大事故等対処施設にて，蕫積防止対策を行う設計とする。 1．1 火災発生防止 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能を有するもの（以下「代替材料」 という。）を使用する設計，若しくは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用 が技術上困難な場合は，当該構築物，系統及び機器におけ る火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止する ための措置を講じる設計とする。 火災防護上重要な機器等及び重大事故等対処施設のら ち，機器，配管，ダクト，トレイ，電線管，盤の筐体及び これらの支持構造物の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を確保するため に必要な代替材料の使用が技術上困難であるため，金属で覆われた狭险部に設置し直接火炎に晒されることのない設計とする。 金属に覆われたポンプ及び弁等の駆動部の㵎滑油並び に金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他の火災防護上重要な機器等及び重大事	設計及び工事の計画の （3）（i）b．（b－2－1）－7 は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－1）－（7）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，不燃性材料又は難燃性材料が使用できない場合 は，不燃性材料若しくは難燃性材料と同等以上の性能を有 するものを使用する設計又は 当該口（3）（i）b．（b－2－2）－（1）施設の機能を確保するために必要な（3）（i）b．（b－2－2）－（2）不燃性材料若しくは難燃性材料と同等以上の性能を有するものの使用が技術上困難 な場合には，当該施設における火災に起因して他の重大事故等対処施設及びロ（3）（i）b．（b－2－2）－（3）設計基蕉事故対処設備において火災が発生することを防止するための措置を講じる設計とする。 このうち，重大事故等対処施設に使用するケーブルは，原則，，実証試験により自己消火性及び延焼性を確認した難燃ケーブルを使用する設計とするが，	不燃性材料又は難燃性材料が使用できない場合は，以下の いずれかの設計とする。 －不燃性材料又は難燃性材料と同等以上の性能を有するも の（以下「代替材料」という。）を使用する設計とする。 －重大事故等対処施設の機能を確保するために必要な代替材料の使用が技術上困難な場合には，当該構築物，系統及び機器における火災に起因して他の重大事故等対処施設及び設計基蕉事故対処設備において火災が発生す ることを防止するための措置を講じる設計とする。 1．6．2．2．2 不燃性材料又は難燃性材料の使用 （3）難燃ケーブルの使用 重大事故等対処施設に使用するケーブルには，実証試験 により自己消火性（U L 垂直燃焼試験）及び延焼性（IEEE 383（光ファイバケーブルの場合は IEEE1202）垂直トレイ燃焼試験）を確認した難燃ケーブルを使用する設計とす る。 なお，核計装ケーブルは，微弱電流又は微弱パルスを扱 う必要があり，耐ノイズ性を確保するために高い絶縁抵抗	＜中略＞ 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能を有するもの（以下「代替材料」 という。）を使用する設計，若しくは，当該回 （3）（ i ）b．（b－2－2）－（1）構築物，系統及び機器の機能を確保 するために必要な口（3）（ i ）b．（b－2－2）－（2）岱替材料の使用 が技術上困難な場合は，当該構築物，系統及び機器におけ る火災に起因して他の回（3）（i ）b．（b－2－2）－3 炎災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止するための措置を講じる設計とする。 ＜中略＞ 火災防護上重要な機器等及び重大事故等対処施設に使用するケーブルは，実証試験により自己消火性（UL 垂直燃焼試験）及び耐延焼性（I E E E 3 8 3（光ファイバケ ーブルの場合はI E E E 1 2 0 2 ）垂直トレイ燃焼試験） を確認した難燃ケーブルを使用する設計とする。 ただし，実証試験により耐延焼性が確認できない核計装 ケーブル及び放射線モニタケーブルは，原子炉格納容器外 については専用電線管に収納するとともに，電線管の両端	設計及び工事の計画の （3）（i）b．（b－2－2）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－2）－（1）を具体的に記載しており整合している。 設計及び工事の計画の （3）（i）b．（b－2－2）－（2） は，設置変更許可申請書 （本文（五号））の回（3） （i）b．（b－2－2）－（2）と同義であり整合している。 設計及び工事の計画の （3）（i）b．（b－2－2）－（3） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－2）－（3）を含 んでおり整合している。 設計及び工事の計画の （3）（i ）b．（b－2－2）－4	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
する上で設計上考慮す心゙き自然現象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑 り，火山の影響，生物学的事象，森林火災及び高潮を抽出 した。．．． これらの自然現象のらち，重大事故等時に火災を発生さ せるおそれのある落雷，地震，竜巻（風（台風）を含む。） について，これらの現象によって火災が発生しないよう に，以下のとおり火災防護対策を講じる設計とする。 落雷によって，発電用原子炉施設内の構築物，系統及び機器に火災が発生しないよう，避雷設備の設置及び接地網 の敷設を行ら設計とする。	べき自然現象としては，地震，津波，洪水，風（台風），童巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を抽出した。 ＜中略＞ したがって，落雷，地震，竜巻（風（台風）含む。）に ついて，これらの現象によって火災が発生しないように，以下のとおり火災防護対策を講じる設計とする。 また，森林火災についても，以下のとおり火災防護対策 を講じる設計とする。 （1）落雷による火災の発生防止 重大事故等対処施設の構築物，系統及び機器は，落雷に よる火災発生を防止するため，地盤面から高さ 20 m を超え る建築物には，「建築基準法」に基づき「JIS A4201 建築物等の避雷設備（避雷針）（1992 年度版）」又は「JIS A 4201 建築物等の雷保護（2003 年度版）」に準拠した避雷設備の設置，接地網の敷設を行ら設計とする。 送電線については架空地線を設置する設計とするとと もに，「1．6．2．2．1（6）過電流による過熱防止対策」に示 すとおり，故障回路を早期に遮断する設計とする。 常設代替交流電源設備のガスタービン発電機には，落雷 による火災発生を防止するため，避雷設備を設置する設計 とする。さらに，ガスタービン発電機の制御回路に避雷器 を設置する設計とする。 【避雷設備設置箇所】 - 原子炉建屋 - 制御建屋 - タービン建屋 - 排気筒 - 緊急時対策建屋 - 緊急用電気品建屋 （2）地震による火災の発生防止 重大事故等対処施設は，施設の区分に応じて十分な支持性能をもつ地盤に設置するとともに，自らが破壊又は倒壊	水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を考盧する。 これらの自然現象のらち，火災を発生させるおそれのあ る落雷，地震，竜巻（風（台風）を含む。）及び森林火災 について，これらの現象によって火災が発生しないよう に，以下のとおり火災防護対策を講じる設計とする。 落雷によって，発電用原子炉施設内の構築物，系統及び機器に火災が発生しないよう，避雷設備の設置及び接地網 の敷設を行ら設計とする。 <中略 > 重大事故等対処施設は，施設の区分に応じて十分な支持	（ 3 ）（ i ）b．（b－2－3）－（1） は，設置変更許可申請書 （本文（五号））の口（3） （ i ）b．（b－2－3）－（1）と文 章表現は異なるが，内容 に相違はないため整合 している。 設計及び工事の計画の （3）（i ）b．（b－2－3）－（2）	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
b．（b－2－3）－（2）「設置許可基漼規則」第三十九条に示す要求 を満足するよう，「実用発䨌用原子炬及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」に従い，耐震設計を行ら設計とする。 （ ${ }^{(3) ~(i) ~ b . ~(b-2-3) ~-~ 3 ~}{ }^{\text {竜巻（風（台風）を含む。）につ }}$ いて，重大事故等対処施設は，重大事故等時の童桊（風（台風）を含む○。）の影響により少災が発生することがないよ うに，竜巻防護対策を行う設計とする。 （ ${ }^{(3) ~(i) ~ b . ~(b-2-3) ~-~ 4 ~} 4$ なお，森林火災については，防火帯により，重大事故等対処施設の火災発生防止を講じる設計とする。 （b－3）火災の感知及び消火 火災の感知及び消火については，重大事故等対処施設に対して，早期の火災感知及び消火を行うための火災感知設備及び消火設備を設置する設計とする。 火災感知設備及び消火設備は，「ロ（3）（i ）b 。（b－2－3）自然現象による火災の発生防止」で抽出した自然現象に対して，火災感知設備及び消火設備の機能，性能を維持で きる設計とする。 火災感知設備及び消火設備については，設けられた火災区域又は火災区画に設置された重大事故等対処施設の区分 に応じて，地震に対して機能を維持できる設計とする。	することによる火災の発生を防止する設計とする。 なお，耐震については，「設置許可基準規則」第三十九条 に示す要求を満足するように，「設置許可基漼嫢則の解釈」 に従い耐震設計を行う設計とする。 （3）竜巻（風（台風）含む。）による火災の発生防止屋外の重大事故等対処施設は，重大事故時の童巻（風（台風）を含む。）発生を考慮し，童巻飛来物防護対策設備の設置や固縛等により，火災の発生防止を講じる設計とす る。 （4）森林火災による火災の発生防止 屋外の重大事故等対処施設は，「1．8．9 外部火災防護 に関する基本方針」に基づき外部火災影響評価（発電所敷地外で発生する森林火災の影響評価）を行い，森林火災に よる発電用原子彷施設への延焼防止対策として発電所敷地内に設置した防火帯で囲んだ内側に配置することで，火災の発生を防止する設計とする。．．． 1．6．2．3 火災の感知及び消火 火災の感知及び消火については，重大事故等対処施設に対して，早期の火災感知及び消火を行うため火災感知設備及び消火設備を設置する設計とする。 具体的な設計を「1．6．2．3．1 火災感知設備」から「1．6． 2．3．4 消火設備の破損，誤作動又は誤操作による重大事故等対処施設への影響」に示し， このらち，火災感知設備及び消火設備が，地震等の自然現象に対して，火災感知及び消火の機能，性能が維持され， かつ，重大事故等対処施設の区分に応じて，機能を維持で きる設計とすることを「1．6．2．3．3 自然現象」に示す。	b．（b－2－3）－（2）「菶用発電用原子炬及びその附属施設の技術基準に関する規則の解釈」（平成 25 年 6 月 19 日原子力規制委員会）に従い，耐震設計を行ら設計とする。 火災防護上重要な機器等及び重大事故等対処施設は，．．区 （3）（i）b．（b－2－3）－④ 森林火災から，防火帯による防護に よりっ，火災発生防止を講じる設計とし，口（3）（i）b．（b－2－3） －（3）竜巻（風（台風）を含む。）から，竜巻防護対策設備の設置，固縛等により，火災の発生防止を講じる設計とする。 1.2 火災の感知及び消火 火災区域又は火災区画の火災感知設備及び消火設備は，火災防護上重要な機器等及び重大事故等対処施設に対し て火災の影響を限定し，早期の火災感知及び消火を行う設計とする。 火災感知設備及び消火設備は，「1．1．3 自然現象による火災の発生防止」で抽出した自然現象に対して，火災感知及び消火の機能，性能が維持できる設計とする。 火災感知設備及び消火設備については，火災区域及び火災区画に設置された火災防護上重要な機器等の耐震クラ ス及び重大事故等対処施設の区分に応じて，地震に対して機能を維持できる設計とする。	は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－3）－（2）と同義であり整合している。 設計及び工事の計画の （3）（i）b．（b－2－3）－③ は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－3）－（3）を具体的に記載しており整合している。 設計及び工事の計画の （3）（i ）b．（b－2－3）－4 は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－3）－44を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，消火設備は，破損，誤作動又は誤操作が起きた場合 においても，重大事故等に対処するために必要な機能を回 （3）（i）b．（b－3）－（1）損なわない設計とする。 （b－3－1）火災感知設備 火災感知器は，環境条件や火災の性質を考慮して口（3） （i）b．（b－3－1）－（1）型式を選定し，固有の信号を発する異な る種類を組み合わせて設置する設計とする。	また，消火設備は，破損，誤作動又は誤操作が起きた場合においても，重大事故等に対処する機能を損なわない設計とすることを「1．6．2．3．4 消火設備の破損，誤作動又 は誤操作による重大事故等対処施設への影響」に示す。 1．6．2．3．1 火災感知設備 （2）固有の信号を発する異なる種類の感知器の設置 火災感知設備の火災感知器は，環境条件等を考慮し，火災感知器を設置する火災区域又は火災区画の重大事故等対処施設の種類に応じ，火災を早期に感知し，誤作動を防止するために，固有の信号を発するアナログ式の煙感知器及びアナログ式の熱感知器の異なる種類の感知器を組み合わせて設置する設計とする。ただし，発火性又は引火性 の雰囲気を形成するおそれのある場所及び屋外等は，非ア ナログ式も含めた組み合わせで設置する設計とする。炎感知器は非アナログ式であるが，炎が発する赤外線又は紫外線を感知するため，炎が生じた時点で感知することがで き，火災の早期感知が可能である。 ここで，アナログ式とは「平常時の状況（温度，煙の濃度）を監視し，かつ，火災現象（急激な温度や煙の濃度の上昇）を把握することができる」ものと定義し，非アナロ グ式とは「平常時の状況（温度，煙の濃度）を監視するこ とはできないが，火災現象（急激な温度や煙の濃度の上昇等）を把握することができる」ものと定義する。 <中略 > （4）火災感知設備の電源確保 重大事故等対処施設を設置する火災区域又は火災区画	1．2．2 消火設備 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起きた場合においても，原子炉を安全に停止 させるための機能又は重大事故等に対処するために必要 な機能を有する電気及び機械設備口（3）（i）b．（b－3）－（1）に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火設備又は手動操作による固定式消火設備であるハロンガ ス消火設備及びケーブルトレイ消火設備を設置して消火 を行ら設計とする。 ＜中略＞ 1．2．1 火災感知設備 火災感知設備の火災感知器は，火災区域又は火災区画に おける放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置 する火災区域又は火災区画の火災防護上重要な機器等及 び重大事故等対処施設の（3）（i）b．（b－3－1）－（1）種類に応 じ，火災を早期に感知できるよう，固有の信号を発するア ナログ式の煙感知器及びアナログ式の熱感知器の異なる種類の火災感知器を組み合わせて設置する設計とする。 < 中略 >	設計及び工事の計画の ロ（3）（ i ）b．$(\mathrm{b}-3)-1$ は，設置変更許可申請書 （本文（五号））の（3） （ i ）b．（b－3）－1 と同義 であり整合している。 設計及び工事の計画の口（3）（i ）b．（b－3－1）－（1） は，設置変更許可申請書 （本文（五号））の（3） （ i ）b．（b－3－1）－1）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（13）（i）b．（b－3－2）－（2）固定式の全域ガス消火設備を設置 する場合は，作動前に職員等の退出ができるように警報を発する設計とする。	重大事故等対処施設を設置する火災区域又は火災区画 に設置する消火設備は，当該火災区域又は火災区画が，火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画であるかを考慮して設計する。 c．火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画に設置する消火設備 火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画は，自動又は中央制御室からの手動操作による固定式消火設備である全域が尔消火設備を設置し消火を行ら設計とする。 なお，これらの固定式消火設備に使用するガスは，「消防法施行規則」を踏まえハロゲン化物消火剤とする設計と する。 全域ガス消火設備の自動起動用の煙感知器と熱感知器 は，当該火災区域又は火災区画に設置した「固有の信号を発する異なる種類の感知器」とは別に設置する。 ＜中略＞ d．火災発生時の煙の充満又は放射線の影響により消火活動が困難とならない場所に設置する消火設備 1．6．2．3．2 消火設備 （12）固定式消火設備等の職員退避警報 設計基蕉対象施設の火災防櫵に関する基本方針を適用 する。	な機能を有する電気及び機械設備に影響を与えない設計 とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火設備又は手動操作に よる回（3）（i）b．（b－3－2）－（1）固定式消火設備であるハロン ガス消火設備及びケーブルトレイ消火設備を設置して消火を行ら設計とする。 火災発生時の煙の充満又は放射線の影響により消火活動が困難とならないところは，消火器，移動式消火設備又 は消火栓により消火を行ら設計とする。 なお，消火設備の破損，誤作動又は誤操作に伴う溢水に よる安全機能及び重大事故等に対処する機能への影響に ついては，浸水防護設備の基本設計方針にて確認する。 < 中略 > （5）消火設備の警報 a．消火設備の故障警報 電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポン プ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発する設計とする。 b．ハロンガス消火設備の職員退避警報 ス消火設備は，作動前に職員等の退出ができるように警報又は音声警報を発する設計とする。 ＜中略＞	体的に記載しており整合している。 設計及び工事の計画の （3）（i）b．（b－3－2）－（2） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3－2）－（2）を具 体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
消火用水供給系は，2時間の最大放水量を確保し， （3）（i）b．（b－3－2）－（3）飲料水系等と共用する場合は隔離弁を設置し消火を優先する設計とし， 水源及び消火ポンプは多重性又は多様性を有する設計と する。	1．6．2．3．2 消火設備 （7）消火用水の最大放水量の確保 設計基漼対象施設の火災防櫵に関する基本方針を適用 する。 （8）水消火設備の優先供給 設計基準対象施設の火災防櫵に関する基本方針を適用 する。 1．6．2．3．2 消火設備 （2）消火用水供給系の多重性又は多様性の考慮 設計基漼対象施設の火災防護に関する基本方針を適用 する。	1.2 火災の感知及び消火 1．2．2 消火設備 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。 b．消火用水供給系は， 2 時間の最大放水量を確保する設計とする。 c．屋内消火栓及び屋外消火栓は，「消防法施行令」に基 づく容量を確保する設計とする。 （2）消火設備の系統構成 c．消火用水の優先供給消火用水供給系は，凹（3）（i）b．（b－3－2）－（3）弞料水系や所内用水采等と共用する場合には，隔離弁を設置して遮断す る措置により，消火用水の供給を優先する設計とする。 （2）消火設備の系統構成 a．消火用水供給系の多重性又は多様性 屋内水消火系の水源は，消火水槽（第 1，2号機共用（以下同じ。）），消火水タンクを設置し，屋外水消火系は，屋外消火系消火水タンクを 2 基設置し多重性を有する設計 とする。 屋内水消火系の消火ポンプは，電動機駆動消火ポンプ （第1，2号機共用（以下同じ。））を 2 台設置し，多重性を有する設計とする。 屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプを設置 し，多様性を有する設計とする。 屋外消火系ディーゼル駆動消火ポンプの駆動用燃料は，屋外消火系ディーゼル駆動消火ポンプに付属する燃料夕 ンクに貯蔵する。	設計及び工事の計画の『（3）（i）b．（b－3－2）－（3） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3－2）－（3）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，屋内，屋外の回（3）（i）b．（b－3－2）－4）消少範囲を考慮 し消火栓を配置するとともに， （3）（i）b．（b－3－2）－（5）移動式消少設備を配備する設計と する。 消火設備の消火剤は，想定される火災の性質に応じた士分な容量を配備し，	（3）系統分離に応じた独立性の考慮 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時 に機能喪失しないよう，区分分離や位置的分散を図る設計 とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置する全域ガス消火設備は，上記の区分分離や位置的分散 に応じた独立性を備えた設計とする。 （11）消火栓の配置 設計基準対象施設の火災防護に関する基本方針を適用 する。 （6）移動式消火設備の配備 設計基準対象施設の火災防護に関する基本方針を適用 する。 （5）想定火災の性質に応じた消火剤の容量 設計基準対象施設の火災防櫵に関する基本方針を適用 する。	1．火災防護設備の基本設計方針 1．2 火災の感知及び消火 1．2．2 消火設備 （2）消火設備の系統構成 b．系統分離に応じた独立性 < 中略 > 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時 に機能喪失しないよう，区分分離や位置的分散を図る設計 とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置するハロンガス消火設備は，上記の区分分離や位置的分散に応じた独立性を備えた設計とする。 （4）消火設備の配置上の考慮 c．消火栓の配置 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外の消火栓は，（3）（i）b．（b－3－2）－44消防法施行令」に準拠し，全ての火災区域又は火災区画の消火活動に対処できるよ うに配置する設計とする。 （7）その他 a．移動式消火設備 移動式消火設備は，恒設の消火設備の代替として消火ホ ース等の資機材を備え付けている凹（3）（i）b．（b－3－2）－（5）化学消防自動車を2台及び泡原液搬送車を 1 台配備する設計とする。 1．2．2 消火設備 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた	設計及び工事の計画の （3）（i）b．（b－3－2）－4 は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3－2）－4）を具体的に記載しており整合している。 設計及び工事の計画の （3）（i）b．（b－3－2）－（5） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3－2）－（5）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
管理区域で放出された場合に，管理区域外への流出を防止 する設計とする。 な影響，流出流体等による二次的影響を受けず，重大事故等対处施設に悪影響を及ぽさないよう設置し，	（13）管理区域内からの放出消火剤の流出防止 設計基蕉対象施設の火災防護に関する基本方針を適用 する。 （4）火災に対する二次的影響の考慮 設計基蕉対象施設の火災防護に関する基本方針を適用 する。．．	十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。 （4）消火設備の配置上の考慮 b．管理区域からの放出消火剤の流出防止 管理区域内で放出した消火剤は，放射性物質を含むおそ れがあることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に殹等を設置するとともに，各フロアの建屋内排水系により液体廃棄物処理設備に回収し，処理する設計とする。 （4）消火設備の配置上の考慮 a．火炏による二次的影響の考慮 （3）（i）b．（b－3－2）－6）－ロンガス消火設備（全域）のボ ンベ及び制御縏は，．．．火炎防護上重要な機器等及び重大事故等対处施設に悪影響を及ぼさないよう消火対象となる機器が設置されている火災区域又は水災区画と別の区画に設置する設計とする。 また，ハロンガス消火設備（全域）は，電気絶縁性の高 いがスを採用し，火災の火炎，熱による直接的な嚗響のみ ならず，，煙，流出流体，断線及び爆発等の二次的影響が，火災が発生していない火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。 －ヘロンガス消火設備（局所）及びケーブルトレイ消火設備は，電気絶縁性の高いがスを採用するとともに，ケーブ ルトレイ消火設備及び靁源盤用のハロンガス消火設備（局所）については，ケーブルトレイ内又は電源盤周囲の隔壁内沉消火剤を留める設計とする。 また，消火対象と十分離れた位置にボンべ及び制唒盤を設置することでっ，火災の火炎，熱による直接的な嚗響のあ ならず，熛，流出流体，断線及び爆発等の一次的慙響が，炎災が発生していない火災防護上重要な機器等及び重太事故等対処施設に悪影響を及ぼさない設計とする。 消火設備のボンべは，火炎による熱の影響を受けても破損及び爆発が発生したいよう，ボンべに接続する安全弁に よりボンバの過圧を防止する設計とする。．．．	設計及び工事の計画の （3）（i）b．（b－3－2）－6 は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3－2）－（6）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
全交流動力電源喪失時の電源碓保を図るとともに， 中央制御室に故障警報を発する設計とする。 （3）（i）b．（b－3－2）－7）なおっ，消火設僙を設置した場所へ の移動及び操作を行うため，蓄電池を内蔵する照明器具を設置する設計とする。	（10）消火設備の電源確保 設計基準対象施設の火災防櫵に関する基本方針を適用 する。 （9）消火設備の故障警報 設計基準対象施設の火災防護に関する基本方針を適用 する。 （14）消火用非常照明 設計基準対象施設の火災防護に関する基本方針を適用 する。	1．2 火災の感知及び消火 1．2．2 消火設備 （3）消火設備の電源確保 屋内水消火系の電動機駆動消火ポンプは，外部電源喪失時でも起動できるように非常用電源から受電する設計と する。 屋外水消火系のらち屋外消火系ディーゼル駆動消火ポ ンプは，外部電源喪失時にもディーゼル機関を起動できる ように蓄電池を設け，電源を確保する設計とする。 ハロンガス消火設備は，外部電源䨤失時にも消火ができ るように，非常用電源から受電するとともに，設備の作動 に必要な電源を供給する蓄電池も設け，全交流動力電源喪失時にも電源を確保する設計とする。 ケーブルトレイ消火設備については，作動に電源が不要 な設計とする。 （5）消火設備の警報 a．消火設備の故障警報 電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポン プ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発する設計とする。 b．ハロンガス消火設備の職員退避警報 固定式消火設備であるハロンガス消火設備は，作動前に職員等の退出ができるように警報又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置した ケーブルトレイ内に留まり，外部に有意な影響を及ぼさな いため，消火設備作動前に退避警報を発しない設計とす る。 （7）その他 b．消火用の照明器具 建屋内の口（3）（i）b．（b－3－2）－7消火栓，消火設僙現場盤 の設置場所及び設置場所までの経路には，移動及び消火設	設計及び工事の計画の ロ（3）（i）b．（b－3－2）－7 は，設置変更許可申請書		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（b－4）その他 （3）（i）b．（b－4）－（1）「口（3）（i）b．（b－2）火災発生防步」及び「口（3）（i）b．（b－3）火災の感知及び消火」の ほかっ，重大事故等対处施設のそれぞれの特徴を考慮した火災防櫵対策を講じる設計とする。	1．6．2．4 その他 設計基準対象施設の火災防護に関する基本方針を適用 する。	備の操作を行らため，消防法で要求される消火継続時間 20分に現場への移動等の時間も考慮し，8時間以上の容量の蓄電池を内蔵する照明器具を設置する設計とする。 1.1 火災発生防止 1．1．1 火災の発生防止対策 ＜中略＞ （3）（i）b．（b－4）－（1）蕫電池室の換気設僙が停止した場合には，中央制御室に警報を発する設計とする。また，萻電池室には，直流閉閉装置やインバータを設置しない。 放射性廃棄物処理設備及び放射性廃重物貯蔵設備にお。 いて，䐗壊熱が発生しっ，火災事象に至るような放射性噔带物を貯蔵しない設計とする。 また，放射性物質を含んだ使用済イオン交換樹脂，チャ コールフィルタ及び HEPAフィルタは，固体廃蜳物として処理を行うまでの間，金属容器や不燃シートに包んで保管 することを保安規定に定めて，管理する。 放射性廃裹物処理設備及び放射性廃衰物貯蔵設備を設置する火災区域又は火災区画の換気設備は，火災時に他の火災区域又は火災区画や環境への放射性物質の放出を防 ぐために，換気設備の停止及び風量調整ダンパの閉止によ り，隔離ができる設計とする。 ＜中略＞ 1．2 火災の感知及び消火 1．2．2 消火設備 （7）その他 c． ポンプ室の煙の排気対策 火災発生時の煙の充満により消火腯動が困難となるポ ンプ室には，消火活動によらなくとも迅速に消火できるよ うに固定式消火設備を設置し，鎮火の確認のために自衛消防隊がポンプ室に入る場合については，再発火するおそれ があることからっ，十分に冷却時間を確保した上で扉の開放，換気㝘調采及び可搬型排煙装置により換気が可能な設計とする。	（本文（五号））の（3） （i ）b．（b－3－2）－7）を具体的に記載しており整合している。 設置変更許可申請書（本文（五号））の（3）（i） b．（b－4）－（1）は，工事の計画の『（3）（i）b．（b－ 4）－（1）以降に具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備	考
		d．使用斎然料賏蔵設備及び新㦓料野蔵設備 使用済燃料眝蔵設備は，水中に設置されたラックに燃料 を貯墄することで未臨思性が碓保される設計とする。 新㦓料眝蔵設備については，消火活憅により消火沓が噴䨱され，水分雾囲気に满たされた状熊となっても未臨界性 が碓保される設計とする。 e．- ケーブル处理室 ケーブル処理室は，自動消火設備であるハロンガス消火設備により消火する設計とする。区分I ケーブル処理室及 び区分Iケーブル処理室については，消火活動のため2笽所の入口を設置する設計とする。… なおっ，区分IITーブル処理室は，消火活動のための入口 は1 1 䈯所であるが，部屋の大きさが狭く，室内の可燃物は少量のケーブルトレイのあであるため，火災が発生した場合においても，入口から消火要員による当該室全域の消火活動を行らことが可能な設計とする。．．．			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
対処設備と異なる保管場所に保管する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「口（3）（i）b 。（c－3）環境条件等」に記載する。 地震に対して，屋内の可搬型重大事故等対処設備は，「イ （1）敷地の面積及び形状」に基づく地盤上に設置する建屋等内に保管する。屋外の可搬型重大事故等対処設備は，転倒しないことを確認する，又は必要により固縛等の処置 をするとともに，地震により生ずる敷地下斜面のすべり，液状化又は摇すり込みによる不等沈下，傾斜及び浮き上が り，地盤支持力の不足，地中埋設構造物の損壊等の影響口 （3）（i）b．（c）（c－1－1－2）－①を受けない複数の保管場所に分散して保管する設計とする。 地震及び津波に対して可搬型重大事故等対処設備は，「口（1）（ii）重大事故等対処施設の耐震設計」及び「口 （2）（ii）重大事故等対処施設の耐津波設計」にて考慮さ れた設計とする。 火災に対して可搬型重大事故等対処設備は，「口（3）（i） b．（b）火災による損傷の防止」に基づく火災防護を行 ら。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損なうおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備 と位置的分散を図り複数箇所に分散して保管する設計とす る。	対処設備と異なる保管場所に保管する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「1．1．7．3 環境条件等」に記載する。 風（台風），凍結，降水，積雪及び電磁的障害に対して可搬型重大事故等対処設備は，環境条件にて考慮し機能が損なわれない設計とする。 地震に対して，屋内の可搬型重大事故等対処設備は，「1．10 発電用原子炉設置変更許可申請に係る安全設計 の方針」に基づく地盤上に設置する建屋等内に保管する。屋外の可搬型重大事故等対処設備は，転倒しないことを確認する，又は必要により固縛等の処置をするとともに，地震により生ずる敷地下斜面のすべり，液状化又は摇すり込 みによる不等沈下，傾斜及び浮き上がり，地盤支持力の不足，地中埋設構造物の損壊等の影響を受けない複数の保管場所に分散して保管する設計とする。 地震及び津波に対して可搬型重大事故等対処設備は，「1．4．2 重大事故等対処施設の耐震設計」，「1．5．2重大事故等対処施設の耐津波設計」にて考慮された設計とす る。 火災に対して可搬型重大事故等対処設備は，「1．6．2 重大事故等対処施設の火災防護に関する基本方針」に基づく火災防護を行う。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り複数箇所に分散して保管する設計 とする。	対処設備と異なる保管場所に保管する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「5．1．5 環境条件等」に基づく設計とす る。 可搬型重大事故等対処設備は，風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し機能 が損なわれない設計とする。 地震に対して，屋内の可搬型重大事故等対処設備は，「1．地盤等」に基づく地盤に設置された建屋等内に保管す る。屋外の可搬型重大事故等対処設備は，転倒しないこと を確認する，又は必要により固縛等の処置をするととも に，地震により生ずる敷地下斜面のすべり，液状化又は摇 すり込みによる不等沈下，傾斜及び浮き上がり，地盤支持力の不足，地中埋設構造物の損壊等の影響口（3）（i）b．（c） （c－1－1－2）－（1）により必要な機能を唯失しない位置に保管 する設計とする。 地震及び津波に対して可搬型重大事故等対処設備は，「2．1 地震による損傷の防止」及び「2．2 津波による損傷の防止」にて考慮された設計とする。 火災に対して可搬型重大事故等対処設備は，「3．1 火災 による損傷の防止」に基づく火災防護を行う。 重大事故等対処設備に期待する機能については，溢水影響を受けて設計基準事故対処設備等と同時に機能を損な らおそれがないよう，被水及び蒸気影響に対しては可能な限り設計基準事故対処設備等と位置的分散を図り，没水の影響に対しては溢水水位を考慮した位置に設置又は保管 する。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する設計 とする。	設計及び工事の計画の （3）（i）b．（c－1－1－2） （1）は，設置変更許可申 請書（本文（五号））の （3）（i）b．（c－1－1－2） （1）と同義であり整合し ている。	

設置変更許可申請書（本文（五号））
設置変更許可申請書（添付書類八）該当事項
設計及び工事の計画 該当事項

（c－1－1－3）可搬型重大事故等対処設備と常設重大事故等対処設備の接続口
原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によっ て接続することができなくなることを防止するため，それ ぞれ互いに異なる複数の場所に設置する設計とする。

環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，その機能を確実に発揮できる設計とするととも に，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については「口 （3）（i）b。（c－3）環境条件等」に記載する。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件に て考慮し，機能が損なわれない設計とする。
地震に対して接続口は，「イ（1）敷地の面積及び形状」 に基づく地盤上の建屋内又は建屋面に複数箇所設置する。

地震，津波及び火災に対して接続口は，「口（1）（ii）重大事故等対処施設の耐震設計」，「口（2）（ii）重大事故等対処施設の耐津波設計」及び「口（3）（i）b 。（b）火災に よる損傷の防止」に基づく設計とする。
溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。

風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，有毒ガス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズムに対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔 した位置に複数箇所設置する。
生物学的事象のうちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等に対処す

設置変更許可申請書（添付書類八）該当事項
c．可搬型重大事故等対処設備と常設重大事故等対処設備 の接続口
原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によっ て接続することができなくなることを防止するため，それ ぞれ互いに異なる複数の場所に設置する設計とする。
なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考慮する必要はない。
環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，その機能を確実に発揮できる設計とするととも に，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については「1．1．7．3 環境条件等」に記載する。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮 し，機能が損なわれない設計とする。
地震に対して接続口は，「1．10 発電用原子炉設置変更許可申請に係る安全設計の方針」に基づく地盤上の建屋内又は建屋面に複数箇所設置する。
地震，津波及び火災に対して接続口は，「1．4．2 重大事故等対処施設の耐震設計」，「1．5．2 重大事故等対処施設の耐津波設計」及び「1．6．2 重大事故等対処施設の火災防護に関する基本方針」に基づく設計とする。
溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。

風（台風），竜巻，落雷，火山の影饗，生物学的事象，森林火災，飛来物（航空機落下），爆発，近㴹工場等の火災，有毒がス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズムに対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔 した位置に複数箇所設置する。
生物学的事象のらちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等に対処す

可搬型重大事故等対処設備と常設重大事故等対処設備の接続口
原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によっ て接続することができなくなることを防止するため，それ ぞれ互いに異なる複数の場所に設置する設計とする。

環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，その機能を確実に発揮できる設計とするととも に，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については，「5．1．5 環境条件等」に基づく設計とする。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件に て考慮し，機能が損なわれない設計とする。

地震に対して接続口は，「1．地盤等」に基づく地盤上 の建屋内又は建屋面に複数箇所設置する。

地震，津波及び火災に対して接続口は，「2．1 地震によ る損傷の防止」，「2．2 津波による損傷の防止」及び「3．1火災による損傷の防止」に基づく設計とする。

溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。
地震，津波，溢水及び火災に対しては，接続口は，建屋内及び建屋面の適切に離隔した隣接しない位置に複数箇所設置する。

風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズムに対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及 び建屋面の適切に離隔した位置に複数箇所設置する。

生物学的事象のらちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等に対処す

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
るために必要な機能が損なわれるおそれのない設計とす	るために必要な機能が損なわれるおそれのない設計とす	るために必要な機能が損なわれるおそれのない設計とす			
る。		る。			
高潮に対して接続口は，高潮の影響を受けない敷地高さ	高潮に対して接続口は，高潮の影響を受けない敷地高さ	高潮に対して接続口は，高潮の影響を受けない敷地高さ			
に設置する。	に設置する。	に設置する。			
また，一つの接続口で複数の機能を兼用して使用する場	また，一つの接続口で複数の機能を兼用して使用する場	また，一つの接続口で複数の機能を兼用して使用する場			
合には，それぞれの機能に必要な容量が確保できる接続口	合には，それぞれの機能に必要な容量が確保できる接続口	合には，それぞれの機能に必要な容量が確保できる接続口			
を設ける設計とする。同時に使用する可能性がある場合	を設ける設計とする。同時に使用する可能性がある場合	を設ける設計とする。同時に使用する可能性がある場合			
は，合計の容量を確保し，状況に応じて，それぞれの系統	は，合計の容量を確保し，状況に応じて，それぞれの系統	は，合計の容量を確保し，状況に応じて，それぞれの系統			
に必要な容量を同時に供給できる設計とする。	に必要な容量を同時に供給できる設計とする。	に必要な容量を同時に供給できる設計とする。			
		5．1．3 悪影響防止等			
（ $\mathrm{c}-1-2$ ）悪影響防止	（2）悪影響防止	（4）悪影響防止			
重大事故等対処設備は，発電用原子炉施設（他号炉を含	重大事故等対処設備は，発電用原子炉施設（他号炉を含	重大事故等対処設備は，発電用原子炬施設（他号機を含			
む。）内の他の設備（設計基準対象施設及び当該重大事故	む。）内の他の設備（設計基漼対象施設及び当該重大事故	む。）内の他の設備（設計基準対象施設及び当該重大事故			
等対処設備以外の重大事故等対処設備）に対して悪影響を	等対処設備以外の重大事故等対処設備）に対して悪影響を	等対処設備以外の重大事故等対処設備）に対して悪影響を			
及ぼさない設計とする。	及ぼさない設計とする。	及ぼさない設計とする。			
他の設備への悪影響としては，重大事故等対処設備使用	他の設備への悪影響としては，重大事故等対処設備使用	他の設備への悪影響としては，重大事故等対処設備使用			
時及び待機時の系統的な影響（電気的な影響を含む。）並	時及び待機時の系統的な影響（電気的な影響を含む。）並	時及び待機時の系統的な影響（電気的な影響を含む。）並			
びにタービンミサイル等の内部発生飛散物による影響を	びにタービンミサイル等の内部発生飛散物による影響を	びにタービンミサイル等の内部発生飛散物による影響を			
考慮し，他の設備の機能に悪影響を及ぼさない設計とす	考慮し，他の設備の機能に悪影響を及ぼさない設計とす	考慮し，他の設備の機能に悪影響を及ぼさない設計とす			
る。	る。	る。			
系統的な影響に対しては，重大事故等対処設備は，弁等	系統的な影響に対しては，重大事故等対処設備は，弁等	系統的な影響に対しては，重大事故等対処設備は，弁等			
の操作によって設計基準対象施設として使用する系統構	の操作によって設計基準対象施設として使用する系統構	の操作によって設計基準対象施設として使用する系統構			
成から重大事故等対処設備としての系統構成とすること，	成から重大事故等対処設備としての系統構成とすること，	成から重大事故等対処設備としての系統構成とすること，			
重大事故等発生前（通常時）の隔離若しくは分離された状	重大事故等発生前（通常時）の隔離若しくは分離された状	重大事故等発生前（通常時）の隔離若しくは分離された状			
態から弁等の操作や接続により重大事故等対処設備とし	態から弁等の操作や接続により重大事故等対処設備とし	態から弁等の操作や接続により重大事故等対処設備とし			
ての系統構成とすること，他の設備から独立して単独で使	ての系統構成とすること，他の設備から独立して単独で使	ての系統構成とすること，他の設備から独立して単独で使			
用可能なこと，設計基準対象施設として使用する場合と同	用可能なこと，設計基準対象施設として使用する場合と同	用可能なこと，設計基準対象施設として使用する場合と同			
じ系統構成で重大事故等対処設備として使用すること等	じ系統構成で重大事故等対処設備として使用すること等	じ系統構成で重大事故等対処設備として使用すること等			
により，他の設備に悪影響を及ぼさない設計とする。	により，他の設備に悪影響を及ぼさない設計とする。	により，他の設備に悪影響を及ぼさない設計とする。			
また，放水砲については，建屋への放水により，当該設	また，放水砲については，建屋への放水により，当該設	放水砲については，建屋への放水により，当該設備の使			
備の使用を想定する重大事故時において必要となる屋外	備の使用を想定する重大事故時において必要となる屋外	用を想定する重大事故時において必要となる屋外の他の			
の他の設備に悪影響を及ぼさない設計とする。	の他の設備に悪影響を及ぼさない設計とする。	設備に悪影響を及ぼさない設計とする。			
内部発生飛散物による影響に対しては，内部発生エネル	内部発生飛散物による影響に対しては，内部発生エネル	内部発生飛散物による影響に対しては，内部発生エネル			
ギーの高い流体を内蔵する弁及び配管の破断，高速回転機	ギーの高い流体を内蔵する弁及び配管の破断，高速回転機	ギの高い流体を内蔵する弁及び配管の破断，高速回転機器			
器の破損，ガス爆発並びに重量機器の落下を考慮し，重大	器の破損，ガス爆発並びに重量機器の落下を考慮し，重大	の破損，ガス爆発並びに重量機器の落下を考慮し，重大事			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
事故等対処設備がタービンミサイル等の発生源となるこ	事故等対処設備がタービンミサイル等の発生源となるこ	故等対処設備がタービンミサイル等の発生源となること			
とを防ぐことで，他の設備に悪影響を及ぼさない設計とす	とを防ぐことで，他の設備に悪影響を及ぼさない設計とす	を防ぐことで，他の設備に悪影響を及ぼさない設計とす			
る。	$\underline{\underline{\partial}}$	$\underline{\underline{Z}}$			
（c－1－3）共用の禁止	（3）共用の禁止	（2）共用			
		＜中略＞			
常設重大事故等対処設備の各機器については， 2 以上の	常設重大事故等対処設備の各機器については， 2 以上の	常設重大事故等対処設備の各機器については， 2 以上の			
発電用原子炬施設において共用しない設計とする。	発電用原子炬施設において共用しない設計とする。	発電用原子炬施設において共用しない設計とする。			
（c－2）容量等	1．1．7．2 容量等	5．1．4 容量等			
（c－2－1）常設重大事故等対処設備	（1）常設重大事故等対処設備	（1）常設重大事故等対処設備			
常設重大事故等対処設備は，想定される重大事故等の収	常設重大事故等対処設備は，想定される重大事故等の収	常設重大事故等対処設備は，想定される重大事故等の収			
束において，想定する事象及びその事象の進展等を考慮	束において，想定する事象及びその事象の進展等を考慮	束において，想定する事象及びその事象の進展等を考慮			
し，重大事故等時に必要な目的を果たすために，事故対応	し，重大事故等時に必要な目的を果たすために，事故対応	し，重大事故等時に必要な目的を果たすために，事故対応			
手段としての系統設計を行う。重大事故等の収束は，これ	手段としての系統設計を行う。重大事故等の収束は，これ	手段としての系統設計を行う。重大事故等の収束は，これ			
らの系統の組合せにより達成する。	らの系統の組合せにより達成する。	らの系統の組合せにより達成する。			
「容量等」とは，ポンプ流量，タンク容量，伝熱容量，	「容量等」とは，ポンプ流量，タンク容量，伝熱容量，	「容量等」とは，ポンプ流量，タンク容量，伝熱容量，			
弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，	弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，	弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，			
作動信号の設定値等とする。	作動信号の設定値等とする。	作動信号の設定値等とする。			
常設重大事故等対処設備のらち設計基準対象施設の系	常設重大事故等対処設備のらち設計基漼対象施設の系	常設重大事故等対処設備のらち設計基準対象施設の系			
統及び機器を使用するものについては，設計基準対象施設	統及び機器を使用するものについては，設計基漼対象施設	統及び機器を使用するものについては，設計基準対象施設			
の容量等の仕様が，系統の目的に応じて必要となる容量等	の容量等の仕様が，系統の目的に応じて必要となる容量等	の容量等の仕様が，系統の目的に応じて必要となる容量等			
に対して十分であることを確認した上で，設計基準対象施	に対して十分であることを確認した上で，設計基準対象施	に対して十分であることを確認した上で，設計基準対象施			
設としての容量等と同仕様の設計とする。	設としての容量等と同仕様の設計とする。	設の容量等の仕様と同仕様の設計とする。			
常設重大事故等対処設備のらち設計基準対象施設の系	常設重大事故等対処設備のらち設計基準対象施設の系	常設重大事故等対処設備のらち設計基準対象施設の系			
統及び機器を使用するもので，重大事故等時に設計基準対	統及び機器を使用するもので，重大事故等時に設計基準対	統及び機器を使用するもので，重大事故等時に設計基準対			
象施設の容量等を補う必要があるものについては，その後	象施設の容量等を補う必要があるものについては，その後	象施設の容量等を補う必要があるものについては，その後			
の事故対応手段と合わせて，系統の目的に応じて必要とな	の事故対応手段と合わせて，系統の目的に応じて必要とな	の事故対応手段と合わせて，系統の目的に応じて必要とな			
る容量等を有する設計とする。	る容量等を有する設計とする。	る容量等を有する設計とする。			
常設重大事故等対処設備のらち重大事故等への対処を	常設重大事故等対処設備のらち重大事故等への対処を	常設重大事故等対処設備のらち重大事故等への対処を			
本来の目的として設置する系統及び機器を使用するもの	本来の目的として設置する系統及び機器を使用するもの	本来の目的として設置する系統及び機器を使用するもの			
については，系統の目的に応じて必要な容量等を有する設	については，系統の目的に応じて必要な容量等を有する設	については，系統の目的に応じて必要な容量等を有する設			
計とする。	計とする。	計とする。			
（c－2－2）可搬型重大事故等対処設備	（2）可搬型重大事故等対処設備	（2）可搬型重大事故等対処設備			
可搬型重大事故等対処設備は，想定される重大事故等の	可搬型重大事故等対処設備は，想定される重大事故等の	可搬型重大事故等対処設備は，想定される重大事故等の			
収束において，想定する事象及びその事象の進展を考慮	収束において，想定する事象及びその事象の進展を考慮	収束において，想定する事象及びその事象の進展を考慮			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
原子炉格納容器内の重大事故等対処設備は，想定される重大事故等時における原子炉格納容器内の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とする。操作は，中央制御室から可能 な設計とする。 原子炉建屋原子炉棟内の重大事故等対処設備は，想定さ れる重大事故等時における環境条件を考慮する。また，地震による荷重を考慮して，機能を損なわない設計とすると ともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所 で可能な設計とする。 原子炉建屋付属棟内，制御建屋内（中央制御室を含む。），緊急用電気品建屋（地下階）内及び緊急時対策建屋内の重大事故等対処設備は，重大事故等時におけるそれぞれの場所の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計とする。 屋外及び緊急用電気品建屋（地上階）の重大事故等対処設備は，重大事故等時における屋外の環境条件を考慮した設計とする。操作は，中央制御室，離れた場所又は設置場所で可能な設計とする。 また，地震，風（台風）及び積雪の影響による荷重を考慮 し，機能を損なわない設計とするとともに，可搬型重大事故等対処設備については，必要により当該設備の落下防	原子炉格納容器内の重大事故等対処設備は，想定される重大事故等時における原子炉格納容器内の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とする。操作は，中央制御室から可能 な設計とする。 原子炉建屋原子炉棟内の重大事故等対処設備は，想定さ れる重大事故等時における環境条件を考慮する。また，地震による荷重を考慮して，機能を損なわない設計とすると ともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所 で可能な設計とする。 原子炉建屋付属棟内，制御建屋内（中央制御室を含む。），緊急用電気品建屋（地下階）内及び緊急時対策建屋内の重大事故等対処設備は，重大事故等時におけるそれぞれの場所の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計とする。 屋外及び緊急用電気品建屋（地上階）の重大事故等対処設備は，重大事故等時における屋外の環境条件を考慮した設計とする。操作は，中央制御室，離れた場所又は設置場所で可能な設計とする。 また，地震，風（台風）及び積雪の影響による荷重を考慮し，機能を損なわない設計とするとともに，可搬型重大事故等対処設備については，必要により当該設備の落下防	＜中略＞ 原子炉格納容器内の重大事故等対処設備は，想定される重大事故等時における原子炉格納容器内の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とする。操作は中央制御室から可能な設計とする。 原子炉建屋原子炉棟内の重大事故等対処設備は，想定さ れる重大事故等時における環境条件を考慮した設計とす る。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要 により当該設備の落下防止，転倒防止又は固縛の措置をと る。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計とする。 原子炉建屋付属棟内，制御建屋内（中央制御室を含む。），緊急用電気品建屋（地下階）内及び緊急時対策建屋内の重大事故等対処設備は，重大事故等時におけるそれぞれの場所の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計とする。 インターフェイスシステム LOCA 時，使用済燃料プール における重大事故に至るおそれのある事故又は主蒸気管破断事故起因の重大事故等時に使用する設備については， これらの環境条件を考慮した設計とするか，これらの環境影響を受けない区画等に設置する。 特に，使用済燃料プール監視カメラは，使用済燃料プー ルに係る重大事故等時に使用するため，その環境影響を考慮して，カメラと一体の冷却装置により泠却することで耐環境性向上を図る設計とする。 屋外及び緊急用電気品建屋（地上階）の重大事故等対処設備は，重大事故等時における屋外の環境条件を考慮した設計とする。操作は，中央制御室，離れた場所又は設置場所で可能な設計とする。 また，地震，風（台風）及び積雪の影響による荷重を考慮し，機能を損なわない設計とするとともに，可搬型重大事故等対処設備については，必要により当該設備の落下防			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
ない設計とする。	等の火災，有毒ガス，船舶の衝突，電磁的障害，故意によ				
	る大型航空機の衝突その他のテロリズム等の事象を考盧				
	する。これらの事象のらち，発電所敷地及びその周辺での				
	発生の可能性，重大事故等対処設備への影響度，事象進展				
	速度や事象進展に対する時聞余裕の観点から，重大事故等				
	対処設備に影響を与えるおそれがある事象として選定す				
	る電磁的障害に対しては，重大事故等対処設備は，重大事				
	故等時においても電磁波により機能を損なわない設計と				
	する。				
		（4）周辺機器等からの悪影響			
		＜中略＞			
重大事故等対処設備は，事故対応のために配置•配備し	重大事故等対処設備は，事故対応のために配置•配備し	重大事故等対処設備は，事故対応のために配置•配備し			
ている自主対策設備を含む周辺機器等からの悪影響によ	ている自主対策設備を含む周辺機器等からの悪影響によ	ている自主対策設備を含む周辺機器等からの悪影響によ			
り機能を損なわない設計とする。周辺機器等からの悪影響	り機能を損なわない設計とする。周辺機器等からの悪影響	り機能を損なわない設計とする。周辺機器等からの悪影響			
としては，地震，火災及び溢水による波及的影響を考慮す	としては，地震，火災及び溢水による波及的影響を考慮す	としては，地震，火災及び溢水による波及的影響を考慮す			
る。	る。	る。			
溢水に対しては，重大事故等対処設備は，想定される溢	溢水に対しては，重大事故等対処設備は，想定される溢	溢水に対しては，重大事故等対処設備は，想定される溢			
水により機能を損なわないように，重大事故等対処設備の	水により機能を損なわないように，重大事故等対処設備の	水により機能を損なわないように，重大事故等対処設備の			
設置区画の止水対策等を実施する。	設置区画の止水対策等を実施する。	設置区画の止水対策等を実施する。			
	地震による荷重を含む耐震設計については，「1．4．2 重	地震による荷重を含む耐震設計については，「2．1 地震			
	「1．6．2 重大事故等対処施設の火災防護に関する基本方	による損傷の防止」に基づく設計とし，それらの事象によ			
	針」に示す。	る波及的影響により重大事故等に対処するために必要な			
		機能を損なわない設計とする。			
（ c －3－2）重大事故等対処設備の設置場所	（2）重大事故等対処設備の設置場所	（5）設置場所における放射線の影響			
重大事故等対処設備は，想定される重大事故等が発生し	重大事故等対処設備は，想定される重大事故等が発生し	重大事故等対処設備は，想定される重大事故等が発生し			
た場合においても操作及び復旧作業に支障がないように，	た場合においても操作及び復旧作業に支障がないように，	た場合においても操作及び復旧作業に支障がないように，			
放射線量の高くなるおそれの少ない設置場所の選定，当該	放射線量の高くなるおそれの少ない設置場所の選定，当該	放射線量の高くなるおそれの少ない設置場所の選定，当該			
設備の設置場所への遮蔽の設置等により，当該設備の設置	設備の設置場所への遮蔽の設置等により当該設備の設置	設備の設置場所への遮蔽の設置等により当該設備の設置			
場所で操作可能な設計，放射線の影響を受けない異なる区	場所で操作可能な設計，放射線の影響を受けない異なる区	場所で操作可能な設計，放射線の影響を受けない異なる区			
画若しくは離れた場所から遠隔で操作可能な設計又は中	画若しくは離れた場所から遠隔で操作可能な設計，又は中	画若しくは離れた場所から遠隔で操作可能な設計，又は中			
央制御室遮蔽区域内である中央制御室から操作可能な設	央制御室遮蔽区域内である中央制御室から操作可能な設	央制御室遮蔽区域内である中央制御室から操作可能な設			
計とする。	計とする。	計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（c－3－3）可搬型重大事故等対処設備の設置場所 可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等によ り，当該設備の設置及び常設設備との接続が可能な設計と する。 （c－4）操作性及び試験•検査性 （c－4－1）操作性の確保 （ $\mathrm{c}-4-1-1$ ）操作の確実性 重大事故等対処設備は，想定される重大事故等が発生し た場合においても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 操作する全ての設備に対し，十分な操作空間を確保する とともに，確実な操作ができるよう，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。	（3）可搬型重大事故等対処設備の設置場所 可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等によ り，当該設備の設置及び常設設備との接続が可能な設計と する。 1．1．7．4 操作性及び試験•検査性 （1）操作性の確保 a ．操作の確実性 重大事故等対処設備は，想定される重大事故等が発生し た場合においても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 操作する全ての設備に対し，十分な操作空間を確保する とともに，確実な操作ができるよう，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。	可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等によ り，当該設備の設置及び常設設備との接続が可能な設計と する。 （6）原子炉冷却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準を定 めて水質を管理することにより異物の発生を防止する設計とする。 安全施設及び重大事故等対処設備は，系統外部から異物 が流入する可能性のある系統に対しては，ストレーナ等を設置することにより，その機能を有効に発揮できる設計と する。 5．1．6 操作性及び試験•検査性 （1）操作性の確保 重大事故等対処設備は，手順書の整備，訓練•教育によ り，想定される重大事故等が発生した場合においても，確実に操作でき，設置変更許可申請書「十 発電用原子炉の炉心の著しい損傷その他の事故が発生した場合における当該事故に対処するために必要な施設及び体制の整備に関する事項」ハで考慮した要員数と想定時間内で，アク セスルートの確保を含め重大事故等に対処できる設計と する。これらの運用に係る体制，管理等については，保安規定に定めて管理する。 重大事故等対処設備は，想定される重大事故等が発生し た場合においても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 重大事故等対処設備は，操作する全ての設備に対し，土分な操作空間を確保するとともに，確実な操作ができるよ う，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
現場操作において工具を必要とする場合は，一般的に用	現場操作において工具を必要とする場合は，一般的に用	現場操作において工具を必要とする場合は，一般的に用			
いられる工具又は専用の工具を用いて，確実に作業ができ	いられる工具又は専用の工具を用いて，確実に作業ができ	いられる工具又は専用の工具を用いて，確実に作業ができ			
る設計とする。工具は，作業場所の近傍又はアクセスルー	る設計とする。工具は，作業場所の近傍又は想定される重	る設計とする。工具は，作業場所の近傍又はアクセスルー			
トの近傍に保管できる設計とする。	大事故等の対処に必要な可搬型重大事故等対処設備の保	トの近傍に保管できる設計とする。可搬型重大事故等対処			
	管場所から設置場所及び接続場所まで運搬するための経	設備は，運搬，設置が確実に行えるように，人力又は車両			
	路又は他の設備の被害状況を把握するための経路（以下	等による運搬，移動ができるとともに，必要により設置場			
	「アクセスルート」という。）の近傍に保管できる設計と	所にてアウトリガの張り出し，輪留めによる固定等が可能			
	する。	な設計とする。			
可搬型重大事故等対処設備は運搬•設置が確実に行えるよ	可搬型重大事故等対処設備は連搬•設置が確実に行える				
らに，人力又は車両等による運搬，移動ができるとともに，	ように，人力又は車両等による運搬，移動ができるととも				
必要により設置場所にてアウトリガの張り出し，輪留めに	に，必要により設置場所にてアウトリガの張り出し，輪留				
よる固定等が可能な設計とする。	めによる固定等が可能な設計とする。				
現場の操作スイッチは運転員等の操作性を考慮した設	現場の操作スイッチは運転員等の操作性を考慮した設	現場の操作スイッチは運転員等の操作性を考慮した設			
計とする。また，電源操作が必要な設備は，感電防止のた	計とする。また，電源操作が必要な設備は，感電防止のた	計とする。また，電源操作が必要な設備は，感電防止のた			
め露出した充電部への近接防止を考慮した設計とする。	め露出した充電部への近接防止を考慮した設計とする。	め露出した充電部への近接防止を考慮した設計とする。			
現場において人力で操作を行ら弁は，手動操作が可能な	現場において人力で操作を行う弁は，手動操作が可能な	現場において人力で操作を行う弁は，手動操作が可能な			
設計とする。	設計とする。	設計とする。			
現場での接続操作は，ボルト・ネジ接続，フランジ接続	現場での接続操作は，ボルト・ネジ接続，フランジ接続	現場での接続操作は，ボルト・ネジ接続，フランジ接続			
又はより簡便な接続方式等，接続方式を統一することによ	又はより簡便な接続方式等，接続方式を統一することによ	又はより簡便な接続方式等，使用する設備に応じて接続方			
り，確実に接続が可能な設計とする。	り，確実に接続が可能な設計とする。	式を統一することにより，確実に接続が可能な設計とす			
また，重大事故等に対処するために迅速な操作を必要と	また，重大事故等に対処するために迅速な操作を必要と	る。			
する機器は，必要な時間内に操作できるように中央制御室	する機器は，必要な時間内に操作できるように中央制御室	また，重大事故等に対処するために迅速な操作を必要と			
での操作が可能な設計とする。制御盤の操作器は運転員の	での操作が可能な設計とする。制御盤の操作器は運転員の	する機器は，必要な時間内に操作できるように中央制御室			
操作性を考慮した設計とする。	操作性を考慮した設計とする。	での操作が可能な設計とする。制御盤の操作器は連転員の			
想定される重大事故等において操作する重大事故等対	想定される重大事故等において操作する重大事故等対	操作性を考慮した設計とする。			
処設備のうち動的機器については，その作動状態の確認が	処設備のらち動的機器については，その作動状態の確認が	想定される重大事故等において操作する重大事故等対			
可能な設計とする。	可能な設計とする。	処設備のらち動的機器については，その作動状態の確認が			
		可能な設計とする。			
（c－4－1－2）系統の切替性	b．系統の切替性				
重大事故等対処設備のらち，本来の用途以外の用途とし	重大事故等対処設備のらち，本来の用途以外の用途とし	重大事故等対処設備のらち，本来の用途以外の用途とし			
て重大事故等に対処するために使用する設備は，通常時に	て重大事故等に対処するために使用する設備は，通常時に	て重大事故等に対処するために使用する設備は，通常時に			
使用する系統から速やかに切替操作が可能なように，系統	使用する系統から速やかに切替操作が可能なように，系統	使用する系統から速やかに切替操作が可能なように，系統			
に必要な弁等を設ける設計とする。	に必要な弁等を設ける設計とする。	に必要な弁等を設ける設計とする。			
（c－4－1－3）可搬型重大事故等対処設備の常設設備との接続性	c．可搬型重大事故等対処設備の常設設備との接続性				
可搬型重大事故等対処設備を常設設備と接続するもの	可搬型重大事故等対処設備を常設設備と接続するもの	可搬型重大事故等対処設備を常設設備と接続するもの			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
屋外及び屋内アクセスルートに対する発電所敷地又は その周辺において想定される発電用原子炉施設の安全性 を損なわせる原因となるおそれがある事象であって人為 によるものについては，屋外アクセスルートに影響を与え るおそれがある事象として選定する飛来物（航空機落下）， ダムの蕂壊，，爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他 のテロリズムに対して，迂回路も考慮した複数のアクセス ルートを確保する設計とする。 なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考䲣する必要はない。 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はな い。 電磁的障害に対しては，道路面が直接影響を受けること はないことからアクセスルートへの影響はない。 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ及 びバックホウをそれぞれ 1 台（予備 1 台）保管，使用する。	する。 屋外及び屋内アクセスルートに対する発電所敷地又は その周辺において想定される発電用原子炉施設の安全性 を損なわせる原因となるおそれがある事象であって人為 によるものについては，網羅的に抽出するために，発電所敷地及びその周辺での発生実績の有無に関わらず，国内外 の基準や文献等に基づき収集した飛来物（航空機落下等）， ダムの崩壊，爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害，故意による大型航空機の衝突その他の テロリズム等の事象を考慮する。これらの事象のうち，発電所敷地及びその周辺での発生の可能性，屋外アクセスル ートへの影響度，事象進展速度や事象進展に対する時間余裕の観点から，屋外アクセスルートに影響を与えるおそれ がある事象として選定する飛来物（航空機落下），ダムの腋壊，爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他のテ ロリズムに対して，迂回路も考慮した複数のアクセスルー トを確保する設計とする。 なお，洪水，地滑り及びダムの䐗壊については，立地的要因により設計上考䲣する必要はない。．． 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はな い。 電磁的障害に対しては，道路面が直接影響を受けること はないことからアクセスルートへの影響はない。 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ及 びバックホウをそれぞれ 1 台使用する。ブルドーザの保有数は1台，故障時及び保守点検による待機除外時のバック アップ用として 1 台の合計 2 台を分散して保管する設計 とする。また，バックホウの保有数は 1 台，故障時及び保	屋外及び屋内アクセスルートに対する人為事象につい ては，屋外アクセスルートに影響を与えるおそれがある事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他のテ ロリズムに対して，迂回路も考慮した複数のアクセスルー トを確保する設計とする。 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はな い。 電磁的障害に対しては，道路面が直接影響を受けること はないことからアクセスルートへの影響はない。 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ （台数1（予備 1））及びバックホウ（台数 1（予備 1）） を保管，使用する。	洪水，地滑り及びダムの崩壊については，設置変更許可申請書で設計上 の考慮を不要としてい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
また，地震による屋外タンクからの溢水及び降水に対し ては，道路上への自然流下も考慮した上で，通行への影響 を受けない箇所にアクセスルートを確保する設計とする。 津波の影響については，基準津波に対し余裕を考慮した高さの防潮堤及び防潮壁で防護することにより，複数のア クセスルートを確保する設計とする。 また，高潮に対しては，通行への影響を受けない敷地高 さにアクセスルートを確保する設計とする。 森林火災については，通行への影響を受けない距離にア クセスルートを確保する。 飛来物（航空機落下），爆発，近隣工場等の火災及び有毒ガスに対しては，迂回路も考慮した複数のアクセスルー トを確保する設計とする。落雷に対しては，道路面が直接影響を受けることはないため，さらに生物学的事象に対し ては，容易に排除可能なため，アクセスルートへの影響は ない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達す ることを想定した上で，可搬型重大事故等対処設備の運搬 に必要な幅員を確保することにより通行性を確保できる設計とする。また，不等沈下等に伴う段差の発生が想定さ れる箇所においては，これらがアクセスルートに影響を及 ぼす可能性がある場合は段差緩和対策の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，考慮すべき自然現象のらち，凍結及び積雪に対して，道路については融雪剤を配備し，車両については常時スタッドレスタイヤを装着することに より，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とす る。	守点検による待機除外時のバックアップ用として 1 台の合計 2 台を分散して保管する設計とする。 また，地震による屋外タンクからの溢水及び降水に対し ては，道路上への自然流下も考慮した上で，通行への影響 を受けない箇所にアクセスルートを確保する設計とする。 津波の影響については，基準津波に対し余裕を考慮した高さの防潮堤及び防潮壁で防護することにより，複数のア クセスルートを確保する設計とする。 また，高潮に対しては，通行への影響を受けない敷地高 さにアクセスルートを確保する設計とする。 森林火災については，通行への影響を受けない距離にア クセスルートを確保する設計とする。 飛来物（航空機落下），爆発，近隣工場等の火災及び有毒ガスに対しては，迂回路も考慮した複数のアクセスルー トを確保する設計とする。落雷に対しては，道路面が直接影響を受けることはないため，さらに生物学的事象に対し ては，容易に排除可能なため，アクセスルートへの影響は ない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達す ることを想定した上で，可搬型重大事故等対処設備の運搬 に必要な幅員を確保することにより通行性を確保できる設計とする。また，不等沈下等に伴ら段差の発生が想定さ れる箇所においては，これらがアクセスルートに影響を及 ぼす可能性がある場合は段差緩和対策の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，考慮すべき自然現象のうち，凍結及び積雪に対して，道路については融雪剤を配備し，車両については常時スタッドレスタイヤを装着することに より，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とす る。 なお，融雪剤の配備等については「添付書類十 5.1 重大事故等対策」に示す。 大規模な自然災害又は故意による大型航空機の衝突そ の他のテロリズムによる大規模損壊発生時の消火活動等 については，「添付書類十 5.2 大規模な自然災害又は故	また，地震による屋外タンクからの溢水及び降水に対し ては，道路上への自然流下も考慮した上で，通行への影響 を受けない箇所にアクセスルートを確保する設計とする。 津波の影響については，基準津波に対し余裕を考慮した高さの防潮堤及び防潮壁で防護することにより，複数のア クセスルートを確保する設計とする。 また，高潮に対しては，通行への影響を受けない敷地高 さにアクセスルートを確保する設計とする。 森林火災については，通行への影響を受けない距離にア クセスルートを確保する設計とする。 屋外アクセスルートは，人為事象のうち飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両及び有毒ガスに対しては，迂回路も考慮した複数のアクセ スルートを確保する設計とする。落雷に対しては，道路面 が直接影響を受けることはないため，さらに生物学的事象 に対しては，容易に排除可能なため，アクセスルートへの影響はない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達す ることを想定した上で，可搬型重大事故等対処設備の運搬 に必要な幅員を確保することにより通行性を確保できる設計とする。また，不等沈下等に伴う段差の発生が想定さ れる箇所においては，段差緩和対策の実施，迂回又は砕石 による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，自然現象のらち，凍結及び積雪 に対して，道路については融雪剤を配備し，車両について は常時スタッドレスタイヤを装着することにより，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とする。			

（k）原子炉格納容器下部の溶融炉心を泠却するための設備

炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炬格納容器の下部に落下した炉心を冷却するために必要な重大事故等対処設備を設置及び保管する。
原子炬格納容器下部に落下した溶融烬心を冷却するこ とでっ，溶融炬心・コンクリート相互作用（MCCI）を抑制し，溶融炬心が原子炬格納容器バウンダリに接触するこ とを防止する。
（1）水素爆発による原子炉格納容器の破損を防止するた めの設備

炬心の著しい損傷が発生した場合において原子炬格納容器内における水素による爆発（以下「水素爆発」という。） による破損を防止する必要がある場合には，水素爆発によ る原子炬格納容器の破損を防止するために必要な重大事故等対処設備を設置及び保管する。
（m）水素爆発による原子炉建屋等の損傷を防止するため の設備

炬心の著しい損傷が発生した場合において原子炬建屋等の水素爆発による損傷を防止するために必要な重大事故等対処設備を設置する。
（n）使用済燃料プールの泠却等のための設備

使用済燃料プールの冷却機能又は注水機能が啔失し，又 は使用斎燃料プールからの水の漏えいその他の要因によ り当該使用斎燃料プールの水位が低下した場合において使用斎燃料プール内燃料体等を冷却し，放射線を遮蔽し，

9．4 原子炉格納容器下部の溶融炉心を泠却するための設備 9．4．1 概要

炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炬格納容器の下部に落下した炉心を冷却するために必要な重大事故等対処設備を設置及び保管する。
原子炬格納容器下部に落下した溶融炬心を冷却するこ とでっ，溶融炬心・コンクリート相互作用（MCCI）を抑制し，溶融炬心が原子炬格納容器バウンダリに接触するこ とを防止する。
＜中略＞
9.5 水素爆発による原子炉格納容器の破損を防止するた めの設備
9．5．1 概要
炉心の著しい損傷が発生した場合において原子炉格納容器内における水素による爆発（以下「水素爆発」という。） による破損を防止する必要がある場合には，水素爆発によ る原子炉格納容器の破損を防止するために必要な重大事故等対処設備を設置及び保管する。
＜中略＞
9.6 水素爆発による原子炉建屋等の損傷を防止するため の設備
9．6．1 概要
炬心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために必要な重大事故等対処設備を設置する。
＜中略＞
4.3 使用済燃料プールの泠却等のための設備

4．3．1 概要
使用済燃料プールの冷却機能又は注水機能が喪失し，又 は使用済燃料プールからの水の漏えいその他の要因によ り当該使用斎燃料プールの水位が低下した場合において使用済燃料プール内燃料体等を冷却し，放射線を遮蔽し，

設置変更許可申請書（本
文（五号））「リ（3）（ii）
c．原子炉格納容器下部
の溶融炬心を泠却する
ための設備」に示す。

設置変更許可申請書（本文（五号））「リ（3）（ii）
d．水素爆発による原子炉格納容器の破損を防止するための設備」に示 す。

設置変更許可申請書（本文（五号））「リ（4）（iii）水素爆発による原子炉建屋等の損傷を防止す るための設備」に示す。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
及び臨界を防止するために必要な重大事故等対処設備を設置及び保管する。．．． 使用斎燃料プールからの大量の水の漏えいその他の要因により使用済燃料プールの水位が異常に低下した場合 において，使用斎燃料プール内燃料体等の著しい損傷の焦行を緩和し，及び臨界を防止するために必要な重大事故等対処設備を設置及び保管する。 （o）発電所外への放射性物質の拡散を抑制するための設備 炬心の著しい損傷及び原子炬格納容器の破損又は使用済燃料プール内の燃料体等の著しい損傷に至つた場合に おいて，発雫所外への放射性物質の拡散を抑制するために必要な重大事故等対処設備を保管する。 （p）重大事故等の収束に必要となる水の供給設備 設計基準事故の収束に必要な水源とは別に，重大事故等 の収束に必要となる十分な量の水を有する水源を確保す ることに加えて，発電用原子炬施設には，設計基蕉事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な量の水を供給するために必要な重大事故等対処設備を設置及び保管する。 （q）代替電源設備 設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において炬心の著しい損傷，原子炉格納容器の破損，，使用済燃料プール内の燃料体等の著し い損傷及び運転停止中原子炬内燃料体の著しい損傷を防止するため，必要な電力を確保するために必要な重大事故等対処設備を設置及び保管する。．．．	及び臨界を防止するために必要な重大事故等対処設備を設置及び保管する。－． 使用済燃料プールからの大量の水の漏えいその他の要因により使用斎燃料プールの水位が異常に低下した場合 において，使用済燃料プール内燃料体等の著しい損傷の焦行を緩和し，及び臨界を防止するために必要な重大事故等対処設備を設置及び保管する。－ ＜中略＞ 9.7 発電所外への放射性物質の拡散を抑制するための設備 9．7．1 概要 炬心の著しい損傷及び原子炬格納容器の破損又は使用济燃料プール内の燃料体等の著しい損傷に至った場合に おいて，発電所外への放射性物質の拡散を抑制するために必要な重大事故等対処設備を保管する。．． ＜中略＞ 5.7 重大事故等の収束に必要となる水の供給設備 5．7．1 概要 設計基漼事故の収束に必要な水源とは別に，重大事故等 の収東に必要となる十分な量の水を有する水源を確保す ることに加えて，発電用原子炇施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な量の水を供給するために必要な重大事故等対処設備を設置及び保管する。 < 中略 > 10．2 代替電源設備 10．2．1 概要 設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合に出いて炡心の著しい損傷，原子炋格納容器の破損，使用斎燃料プール内の燃料体等の著し い損傷及び運転停止中原子炬内燃料体の著しい損傷を防止するため，必要な電力を確保するために必要な重大事故等対処設備を設置及び保管する。 ＜中略＞		設置変更許可申請書（本文（五号））「二（3）（ii）使用済燃料プールの泠却等のための設備」に示 す。 設置変更許可申請書（本文（五号））「リ（3）（ii） e．発電所外への放射性物質の拡散を抑制する ための設備」に示す。 設置変更許可申請書（本文（五号））「ホ（4）（vi）重大事故等の収束に必要となる水の供給設備」 に示す。 設置変更許可申請書（本文（五号））「又（2）（iv）代替電源設備」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
また，燃料集合体は「（1）（i）－2 炉心シュラウド，上部格子板，炬心支持板，燃料支持金具及び制御棒案内管で構成する炉心支持構造物で支持され，その荷重は原子炉圧力容器に伝えられる。 （1）（i）－（3）洽却材は，燃料集合体周困のチャンネルボ ックスが形成した泠却材流路を炉心下方から上方向に流 れる。	炬心を構成する燃料集合体は，4体を1組として，制御棒案内管頂部に設ける中央燃料支持金具によって支える。．． ＜中略＞	あり，各制御棒は4体の燃料体の中央に，炬心全体にわた ってー様に配置する設計とする。 制御棒の下端には制御棒落下速度リミッタを設けると ともに，制御棒の駆動は，ピストン上部又は下部に駆動水 を供給することにより，原子炉圧力容器底部から行ら設計 とする。 通常駆動時は，制御棒駆動水ポンプにより加圧された駆動水で駆動し，原子炉緊急停止時は，各々の制御棒駆動機構ごとに設ける水圧制御ユニット（アキュムレータ）の高圧窒素により加圧された駆動水を供給することで制御棒 を駆動する設計とする。 < 中略 > 【原子炉本体】（基本設計方針） 1．炉心等 < 中略 > 然料体は入（1）（i）－（2）炬心支持構造物で支持され，その荷重は原子炉圧力容器に伝えられる設計とする。 <中略 > 炬心支持構造物は，最高使用圧力，自重，附加荷重及び地震力に加え，熱応力の荷重に耐える設計とする。 <中略 > 2．原子炉圧力容器 2.1 原子炉圧力容器本体 <中略 > （1）（i）－3原子炉圧力容器内の原子炉冷却材の流路 は，原子炉再循環ポンプにより，再循環水入口ノズルから原子哣圧力容器内に導かれ，ジェットポンプによりチャン ネルボックスが形成した原子炬冷却材の流路を炉心の下方から上方向に流れ，主蒸気出口ノズルから出る設計とす る。－	更許可申請書（本文（五号））の（1）（i）－（1）を具体的に記載しており整合している。 設計及び工事の計画の （1）（i）－（2）は，設置変更許可申請書（本文（五号））の 1 （1）（i ）－（2）の設備を総括して記載し ており整合している。 設計及び工事の計画の ハ（1）（i）－3 は，設置変更許可申請書（本文（五号））の（1）（i ）－3 を具体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項		設計及び工事の計画 該当事項		整合 性	備	考
b．厄（1）（iv）b．－（1）燃料棒最大線出力密度 $\text { 44. } 0 \mathrm{~kW} / \mathrm{m}$			【原子炉本体】 （基 1．炉心等 八（1）（iv）b．－（1）㦓 むo．）は，設置（変設計とする。	十方針） （燃料要素及びその他の部品を含午可を受けた仕様となる構造及び	設置変更許可申請書（本 文（五号））の（1）（iv） b．－（1）は，設計及び工事 の計画の r （1）（iv）b．		
（本文十号） 燃料棒最大線出力密度（以下「最大線出力密度」とい う。）は $44.0 \mathrm{~kW} / \mathrm{m}$ を仮定している。 －記載箇所 ```\(2)(i)a. \(2)(ii)a.(b)a) \square(2) (i) b. (c) \square(2) (i) c. (c) 八(2)(ii)a.(b) (b-1) (b-1-1) (b-1-1-1) 八 (2)(ii)a.(b) (b-1) (b-1-1) (b-1-1-2)```	第3．2－1表 燃料の主要仕			中略>	（1）において設置許可を受けた仕様となる構造及び設計としており整合している。		
（本文十号） 解析に用いる燃料棒の最大線出力密度は，通常運転時 の熱的制限値である $44.0 \mathrm{~kW} / \mathrm{m}$ の 102% であるとする。 －記載箇所 ㅁ（2）（i）a．（b）			${ }_{\text {\％}}{ }_{\text {\％}} 0.96 \mathrm{cmm}$	約 0.94 cm約 1.0 cm			
	ペレット室度		理綱宓度の約 97%				
	ペレット材	UO_{2} ， $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	UO_{2} ， $\mathrm{UO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3}$	$\begin{aligned} & \mathrm{UO}_{2} \\ & \mathrm{VO}_{2}-\mathrm{Gd}_{2} \mathrm{O}_{3} \end{aligned}$			
		\％ 11.23 cm	， 1.12 cm	約 1.10 cm			
	䘸䍃管厚を			約 0.70 mm （らちジルコニウム内張約 0.1 mm ）			
	被緮管材料	$\begin{aligned} & \text { ジルカロイー2 } \\ & \text { (ジルコニウム掁) } \end{aligned}$	$\begin{aligned} & \text { ジルカロイー2 } \\ & \text { (ジルコニウム内脹) } \end{aligned}$	$\begin{aligned} & \text { ジルカロイー2 } \\ & \text { (ジルコニウム内張) } \end{aligned}$			
	鿭料准合体全長 （つかみ部分を含む）	約4．47m	約4．47m	約4．47m			
		約 3.71 m	標鷕燃料棒 部分約 3.7 lm 繎料棒 約 2.16 m	絇 3.71 m			
			隹				
	プレナム体績比						
	ウラン㵋縮度 初装荷燃料集合体平均 取替燃料集合体平均		約 $3.7 \mathrm{wt} \%$				
	燃焼度 初装荷燃料集合体平均取替燃料集合体平均燃料集合体最高	約 $27,000 \mathrm{WWd} / \mathrm{t}$ 約 $39,500 \mathrm{WWd} / \mathrm{t}$ 50,000 WWd $/ \mathrm{t}$	約 $45,000 \mathrm{MWd} / \mathrm{t}$ $55,000 \mathrm{MWd} / \mathrm{t}$	約 $45,000 \mathrm{NWd} / \mathrm{t}$ $55,000 \mathrm{NW} / \mathrm{t}$			
		$44.0 \mathrm{~kW} / \mathrm{m}$					
		${ }_{1} 11,650^{\circ} \mathrm{C}\left(6.5 w t \%\right.$ Gd 0_{3} 入り ${ }^{\text {a }}$					
		$7.5 \mathrm{st} \%$ 以下 ${ }^{\text {\％}}$		3．0～5．0ut \％$\%$ 程度			
	｜	暞3．40cm					

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
「（4）（i）a．－（1）また，供用期間中定期的にその健全性に関する検查を行い得るような寨造とする。．．．	（使用圧力•温度制限） <中略 > 供用期閴中検查（溶接部等の韭破罣検查，耐圧部の耐圧，漏えい詞験）を寒施し，構成機器の横造や気密の健全性を評価し，キた，尔䘏の発生の早期発見のため漏えい検出系計装を設置して監視を行えるよう設計する。 <中略 >	2.2 監視試験片 （4）（i）a．－（1） 1 又が電子ボルト以上の中性子の照射を受ける原子炬圧力容器は，当該容器が想定される運転状熊 において脆性破壊を引き起こさないようにするために，施設時に適用された告示「発電用原子力設備に関する構造等 の技術基集（昭和55年通商産業省告示第501号）」を满足 L，機械的強度及び破壊じん性の変化を確認できる個数の監視試験片を原子炬圧力容器内部に插入することにより，－照射の影響を確認できる設計とする。．．． 監視試験片は，適用可能な日本電気協会「原子炉構造材 の監視試験方法」（J E A C 4 2 0 1）により，取り出し及び監視試験を実施する。 【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5．2 材料及び構造等 5．2．1 材料について ＜中略＞ （2）破壊じん性 a．クラス1容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 原子炉圧力容器については，原子炉圧力容器の脆性破壊 を防止するため，中性子照射脆化の影響を考慮した最低試験温度を確認し，適切な破壊じん性を維持できるよう，原子炬冷却材温度及び圧力の制限範囲を設定することを保安規定に定めて管理する。	設計及び工事の計画の （4）（i）a．－1）は，設置変更許可申請書（本文 （五号））の 1 （4）（i）a． －（1）を具体的に記載し ており整合している。	

			亦更前	変	更
監椇此欵片	诲	－	${ }^{12}$		
	初装监佃数	－	$\square \square^{* 12}$		理を
	取付苗所	－			，

 － I リ

 5 水水系优优を代巷

付 3 3

20
 （N8）の応力が算晝」によ

28 ：

澅によう

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
d． 1 （4）（i）d．－（1）主要ノズル取付位置		【原子炉本体】（基本設計方針）	設計及び工事の計画の		
再循環水出口ノズル 胴下部2䈯所		2.1 原子炉圧力容器本体	入（4）（i）d．－（1）は，設置		
再循環水入口ノズル 胴下部10簂所		＜中略＞	変更許可申請書（本文		
蒸気出口ノズル 胴上部4箇所		原子炬圧力容器は，円筒形の胴部に半球形の下鏡を付し			
給水ノズル 胴中央部4箇所		た鋼製容器に，半球形の鋼製上部ふたをボルト締めする構	－（1）と，文章表現は異な		
		造であり，入（4）（i）d．－（1）再循環水出ロノズル，再循環水	るが，内容に相違はない		
		入口ノズル，主蒸気出口ノイズル，給水ノズル等を取り付け	ため整合している。		
		る設計とする。			
		＜中略＞	設計及び工事の計画の		
			「主蒸気出口ノズル」		
			は，設置変更許可申請書		
			（本文（五号））の「蒸		
			気出ロノズル」と同一設		
			備であり整合している。		
e．\times（4）（ i ）e．－（1）支持方法		入（4）（i）e．－（1）原子炬圧力容器の支持方法は，原子炬压	設計及び工事の計画の		
下部 円笥スカート支持		力容器支持スカートで下端を固定し，原子炉圧力容器スタ	入（4）（i）e．－（1）は，設置		
上部		ビライザによって水平方向に支持する設計とする。	変更許可申請書（本文		
ルを介してドライウェル外周の壁に支持			（五号））のr（4）（ i ）e．		
			－（1）と，文章表現は異な		
			るが，内容に相違はない		
			ため整合している。		
	1．10．3 発電用原子炉設置変更許可申請（平成25年12月27				
	日申請）に係る実用発電用原子炉及びその附属施設の位				
	置，構造及び設備の基準に関する規則への適合				
	（原子炉冷却材圧力バウンダリ）				
	第十七条				
	適合のための設計方針				
	第 1 項第 3 号について				
	（4）破壊靭性の確認（関連温度の妥当性の確認，原子炉				
	圧力容器材料のテスト・ピースによる衝撃試験の実施）				
f．非延性破壊に対する考慮	（使用圧力•温度制限）				
原子炬圧力容器は，ハ（4）（i）f．－（1）非延性破罴防止の観	フェライト系鋼製機器の非延性破罴や，，急速な伝播型破	原子炉圧力容器は，（4）（ i ）f．－（1）最低使用温度を $10^{\circ} \mathrm{C}$ に	設計及び工事の計画の		
点から，原子力規制委員会規則等に基づき破壊勒性を確認	断を防止するため比較的低温で加圧する水圧試験時には	設定し，関連温度（初期）を－35 ${ }^{\circ} \mathrm{C}$ 以下に設定することで，	入（4）（i）f．－（1）は，設置		
し，適切な温度で使用する。	加える圧力に応じ，，最低温度の制限を加える。	脆性破壊が生じない設計とする。．．．	変更許可申請書（本文		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ii）最高使用圧力及び最高使用温度 圧力（4）（ii）－（1） $87.9 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ 温度 $\quad 302^{\circ} \mathrm{C}$	1.2 発電用軽水型原子炉施設に関する安全設計審査指針 への適合 指針 35 ．原子炉冷却材圧力バウンダリの健全性適合のための設計方針 <中略> タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め升閉」，「主蒸気隔離弁閉」等による原子灲スクラムのような安全保護回路 を設け，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力である $87.9 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ の 1.1倍の圧力 $96.7 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ を超えない設計とする。 < 中略 >	【原子炉本体】（要目表）	設計及び工事の計画の （4）（ii ）－（1） \square \square $=87.9 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（5）放射性遮蔽体の構造 主要な放射線遮蔽体は，原子炬圧力容器周柬及び原子炬格納容器外周のコンクリート壁である。 （6）その他の主要な事項 なし		【放射線管理施設】（要目表） 		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
二 核燃料物質の取扱施設及び貯蔵施設の構造及び設備			設置変更許可申請書（本文（五号））二項におい て，設計及び工事の計画 の内容は，以下のとおり整合している。		
（1）核燃料物質取扱設備の構造	4．核燃料物質の取扱施設及び貯蔵施設 4.1 燃料体等の取扱設備及び貯蔵設備 4．1．1 通常運転時等 4．1．1．1 概要	【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 1．燃料取扱設備 1.1 燃料取扱設備の基本方針			
E（1）－（1）楼燃料物質取扱設備（燃料取扱設備）は，燃料	燃料体等の取扱設備及び貯蔵設備は，新燃料貯蔵庫，．．使	E（1）－（1）燃料体等の取扱設備は，燃料交換機（第1，2号	設計及び工事の計画日		
交換機（1号及び2 号炉共用（既設）），原子炉建屋クレ	用済燃料プール（1号及び2号炬共用，既設），，燃料交換	機共用（以下同じ。）），原子炬建屋クレーン（第1，2号	（1）－（1）は，設置変更許		
ーン（1号及び2号炉共用（既設））等で構成する。	機（1号及び2号炬共用，既設），原子炬建屋クレーン（1	機共用（以下同じ。））及び燃料チャンネル差脱機（第12．	可申請書（本文（五号））		
	号及び 2 号炉共用，既設），キャスク洗浄ピット（ 1 号及	2号機共用（以下同じ。））で構成し，新燃料を原子炉建	の $=(1)$－（1）を具体的に		
	び2号炉共用，既設）等で構成する。	屋原子炉棟に搬入してから原子炉建屋原子炉棟外 —搬出	記載しており整合して		
	なお，使用済燃料の搬出には，使用済燃料輸送容器を使用する。	するまで，燃料体等を安全に取り扱うことができる設計と する。	いる。		
	＜中略＞				
新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫	燃料体等の取扱設備及び貯蔵設備は，新燃料を原子炉建	新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫	設計及び工事の計画の		
から原子炬建屋クレーン（1）－（2）等で使用済燃料プールに	屋原子炉棟に搬入してから炬心に装荷するまで及び使用	から原子炬建屋クレーン（1）－（2）及び燃料チヤンネル着脱	E（1）－2）は，設置変更許		
移し，燃料交換機により炬心に挿入する。	済燃料を炉心から取り出し原子炉建屋原子炉棟から搬出	機を介して使用済燃料プール（設計基準対象施設としての	可申請書（本文（五号））		
	までの貯蔵並びに取扱いを行らものである。	み第1，2号機共用（以下同じ。））に移し，燃料交換機に	の日（1）－（2）を具体的に		
	＜中略＞	より炉心に挿入できる設計とする。	記載しており整合して いる。		
	4．1．1．2 設計方針 （4）遮蔽				
燃料の取替えは，原子炉上部の $=(1)-$ ③ ウェルに水を張	<中略 > 燃料体等の取扱設備は，使用済燃料の炬心から使用済燃	また，燃料の取替えは，原子炉上部の $=(1)-$－ 3 原子炉ウ	設計及び工事の計画の		
り，水中で燃料交換機を用いて行ら。	料プールへの移送操作，使用斎燃料プールから炬心への移	ェルに水を張り，水中で燃料交換機を用いて行うことがで	E（1）－（3）は，設置変更許		
	送操作，使用斎燃料輸送容器への収容操作等が，使用斎燃	きる設計とする。	可申請書（本文（五号））		
	料の遮蔽に必要な水深を確保した状態で，水中で行うこと		のE（1）－（3）と同一設備		
	ができる設計とする。		であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
使用済燃料は，遮蔽に必要な水深を確保した状態で，日 （1）－4）水中で燃料交換機により移送し，原子炬建屋原子炉棟内の使用済燃料プール（1 号及び 2 号炉共用（既設）） の水中に貯蔵する。 燃料交換機は，＝（1）－（5）燃料取扱時において燃料が臨界 に達することのない設計とする。 E（1）－（6）また，燃料体等の取扱中における燃料体等の落下を防止する設計とするとともに，使用済燃料プール周辺 の設備状況等を踏まえて，使用済燃料プールの機能に影響 を及ぼす重量物については落下を防止できる設計とする。	4．1．1．2 設計方針 （4）遮蔽 使用済燃料プール内の壁面及び底部は，コンクリート壁 による遮蔽を施すとともに，燃料体等の上部には十分な遮蔽効果を直する水深を確保する設計とする。 ＜中略＞ 4．1．1．2 設計方針 （1）未臨界性 燃料体等の取扱設備及び貯蔵設備は，幾何学的な安全配置又は適切な手段により，臨界を防止できる設計とする。 燃料体等の貯蔵設備は，燃料体等を貯蔵容量最大に収容 した場合でも通虽時はもちろん，想定されるいかなる場合 でも，未臨界性を確保できる設計とする。また，燃料体等 の取扱設備は，燃料体等を直接取り扱う場合には，一体ず つ取り扱ら構造とし，臨界を防止する設計とする。 （7）落下防止 落下時に使用斎燃料プールの機能に影響を及ぼす重量物については，使用済燃料プール周辺の状況，現場におけ る作業実績，図面等にて確認することにより，落下時のエ ネルギーを評価し，気中落下試験時の模擬燃料集合体（チ ャンネルボックス含む）の落下エネルギー（15．5kJ）以上 となる設備等を抽出する。床面や壁面へ固定する設備等に ついては，使用済燃料プールからの離隔を確保するため，．．．使用斎燃料プールへ落下するおそれはない。 4．1．1．4 主要設備 （1）燃料交換機 燃料交換機（ 1 号及び 2 号炉共用，既設）は，原子炉ウ エル，使用済燃料プール及び蒸気乾燥器•気水分離器ピッ ト上を水平に移動するブリッジ並びにその上を移動する トロリで構成する。 また，燃料つかみ具は二重のワイヤや燃料体等を確実に	使用済燃料は，遮蔽に必要な水深を確保した状態で，日 （1）－4）燃料交換機により水中移送し，原子炉建屋原子炉棟内の使用済燃料プールの使用済燃料貯蔵ラック（設計基準対象施設としてのみ第1，2号機共用（以下同じ。））に貯蔵できる設計とする。－． ＜中略＞ 燃料交換機及び燃料チャンネル着脱機は，E（1）－（5）燃料体等を一体ずつ取り扱う構造とすることにより，臨界を防止する設計とし，燃料体等の検査等を行う際に水面に近づ いた状態であっても，燃料体等からの放射線の遮蔽に必要 な水深を確保できる設計とする。 < 中略 > 原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱ら主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープを二重化す ることにより，燃料体等の重量物取り扱い中に落下を防止 できる設計とする。また，想定される使用済燃料プール内 への落下物によって使用済燃料プール内の燃料体等が破損しないことを計算により確認する。 なお，ワイヤロープ及びフックは，それぞれ「クレーン構造規格」，「クレーン等安全規則」の規定を満たす安全率を有する設計とする。 E（1）－（6）燃料交換機の燃料つかみ具は，昇降を安全かつ確実に行うため，定格荷重を保持でき，必要な安全率を有 するワイヤロープの二重化，フック部の外れ止めを有し， グラップルヘッドには機械的インターロックを設ける設計とする。 燃料チャンネル着脱機は，下限リミットスイッチによる	設計及び工事の計画の E（1）－（4）は，設置変更許可申請書（本文（五号）） の日（1）－4）を具体的に記載しており整合して いる。 設計及び工事の計画の E（1）－（5）は，設置変更許可申請書（本文（五号）） の日（1）－（5）を具体的に記載しており整合して いる。 設計及び工事の計画の E（1）－（6）$, ~ E(1)-(6) b, ~ 日$ （1）－（6） c, \quad E（1）－（6）d及び E（1）－（6） e は，設置変更許可申請書（本文（五号））の E（1）－（6）を具体的に記載しており整合 している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
なお，使用済燃料の搬出には，使用済燃料輸送容器を使用する。	つかんでいない場合には，吊上げができない等のインター ロックを設け，圧縮空気が喪失した場合にも，燃料体等が外れない設計とする。 燃料取替作業による放射線業務従事者の被ばくを低減 するため，燃料交換機は遠隔自動で運転できる設計とす る。 （2）原子炉建屋クレーン 原子炉建屋クレーン（ 1 号及び 2 号炉共用，既設）は，新燃料，使用済燃料輸送容器の運搬に使用するとともに，原子炉遮蔽体，原子炉格納容器上蓋，原子炉圧力容器上蓋，蒸気乾燥器，気水分離器等の取外し，運搬及び取付けに使用する。 また，原子炉建屋クレーン（ 1 号及び 2 号炉共用，既設） の主要要素は，種々の二重化を行うとともに重量物を吊つ た状態で使用済燃料貯蔵ラック上を通過できないようイ ンターロックを設ける。 4．1．1．1 概要 < 中略 > なお，使用済燃料の搬出には，使用済燃料輸送容器を使用する。	インターロック及び燃料体等を上部で保持する固定具に より燃料体等の使用済燃料プール床面への落下を防止で きる設計とする。 E（1）－（6）b燃料交換機は，燃料体等の取り扱い中に過荷重 となった場合に上昇を阻止するインターロックを設ける とともに荷重監視を行うことにより，過荷重による燃料体等の落下を防止できる設計とする。 E（1）－（6）燃料交換機は，地震時にも転倒することがない ように，走行しール及び横行レール頭部を抱き込む構造を した転倒防止装置を設ける。．．． 原子炉建屋クレーンは，地震時にも転倒することがない ように走行方向及び横行方向に対して，クレーン本体等の浮上り量を考慮し，脱線防止ラグを設けることで，クレー ン本体等の車輪がレール上から落下しない設計とする。 また，原子炉建屋クレーンは，使用済燃料輸送容器等の重量物を吊った状態では，使用済燃料貯蔵ラック上を走行 できないようにインターロックを設ける設計とする。 ＜中略＞ E（1）－（6）燃料交換機の燃料つかみ具は空気作動式とし，燃料体等をつかんだ状態で圧縮空気が垔失した場合にも， つかんだ状態を保持し，燃料体等が外れない設計とする。 E（1）－（6）燃料交換機，原子炉建屋クレーン及び燃料チャ ンネル着脱機は，動力䨌源唯失時に䨌磁ブレーキによる保持機能により，燃料体等の落下を防止できる設計とする。 1．燃料取扱設備 1.1 燃料取扱設備の基本方針 <中略 > 使用済燃料の発電所外への搬出には，使用済燃料輸送容器を使用する。 また，使用済燃料輸送容器に収納された使用済燃料を発電所外一搬出する場合には，キャスクピット（第1，2号機共用）で使用済燃料輸送容器に収納し，キャスク洗浄ピッ ト（第1，2号機共用）で使用済燃料輸送容器の除染を行い発電所外へ搬出する。			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	交換機本体の健全性評価及び転倒落下防止評価を行い，使	による地震荷重に対し，燃料交换機本体及び原子炬建屋ク			
	用済燃料プールへの落下物とならないよう，以下を满足す	レーン本体の健全性評価及び転倒落下防止評価を行い，使			
	る設計とする。また，燃料交換機は，ワイヤロープの二重	用済燃料プールへの落下物とならない設計とする。			
	化，フック部の外れ止め及び動力電源喪失時の保持機能に より，落下防止対策を講じた設計とする。				
	（a）燃料交換機本体の健全性評価においては，想定され	燃料交換機本体及び原子炬建屋クレーン本体の健全性			
	る使用条件において評価が保守的となるよう最大質量	評価においては，想定される使用条件において評価が保守			
	の吊荷を吊った状態を考慮し，基準地震動S s に対して	的になるよう吊荷の条件を考慮し，地震時の各部発生応力			
	燃料交換幾本体（ 構造物フレーム）に発生する応力が許	が許容応力以下となる設計とする。			
	容応力以下であること。				
	（b）転倒落下防止評価においては，走行レール及び横行	燃料交换幾の転倒落下防止評価においては，走行レール			
	レール頭部を抱き込む構造をした燃料交换機の転倒防	及び横行レール頭部を抱き込む構造をした燃料交換機の			
	止装置について，想定される使用条件において評価が保	脫線防止装置について，想定される使用条件において評価			
	守的となるよう最大質量の吊荷を吊った状態を考慮し，	が保守的になるよう吊荷の条件を考慮し，地震時の各部発			
	基準地震動S s に対して転倒防止装置及び取付ボルト	生応力が許容応力以下となる設計とする。			
	に発生する応力が許容応力以下であること。				
	（c）走行レールの健全性評価においては，想定される使	燃料交換機の走行レール及び横行レールの健全性評価に			
	用条件において評価が保守的となるよう最大質量の吊	おいては，想定される使用条件において，地震時の発生応			
	荷を吊った状態を考慮し，基準地震動S s に対して走行	力が許容応力以下となる設計とする。			
	レール及びレールクリップボルトに発生する応力が許	＜中略〉			
	容応力以下であるこ				
		1.1 燃料取扱設備の基本方針			
	c．原子炬建屋クレーン	＜中略〉			
	原子炬建屋クレーンは，基漼地震動による地震荷重に対	原子炬建屋クレーンは，フック部の外れ止めを有し，使			
	し，クレーン本体の健全性評価及び転倒落下防止評価を行	用済燃料輸送容器等を取り扱う主巻フックは，定格荷重を			
	い，使用斎然料プールへの落下物とならないよう，以下を	保持でき，必要な安全率を有するワイヤローブを二重化す			
	満足する設計とする。また，原子炬建屋クレーンは，ワイ	ることにより，燃料体等の重量物取り扱い中汇落下を防止			
	ヤロープニ重化，フック部の外れ止め及び動力電源蔉失時	できる設計とする。			
	の保持機能により落下防止対策を施すとともに，使用済然	また，想定される使用済燃料プール内への落下物によっ			
	料輸送容器を吊った場合は，使用斎燃料貯蔵ラック上を走	て使用済燃料プール内の燃料体等が破損しないことを計			
	行できない等のインターロックを設ける設計とする。さら	算により碓認する。			
	に，重量物の移送時には，走行範囲を制限する措置を講ず	なお，ワイヤロープ及びフックは，それぞれ「クレーン			
	ることで，仮に原子炬建屋クレーンが走行レールから脫落	構造規格」，「クレーン等安全規則」の規定を満たす安全			
	したとしても，クレーン本体及び吊荷が使用済然料プール	率を有する設計とする。			
	に落下しない設計とする。				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（ii）使用済燃料プールの泠却等のための設備	4.3 使用済燃料プールの泠却等のための設備				
	4．3．1 概要	4.2 燃料プール代替注水系			
使用済燃料プールの泠却機能又は注水機能が喪失し，又	使用済燃料プールの泠却機能又は注水機能が喪失し，又	使用済燃料プールの泠却機能又は注水機能が喪失し，又	設計及び工事の計画の		
は使用済燃料プールからの水の漏えいその他の要因によ	は使用済燃料プールからの水の漏えいその他の要因によ	は使用済燃料プールからの水の漏えいその他の要因によ	E（3）（ ii ）－（1）は，設置変		
り当該使用済燃料プールの水位が低下した場合において	り当該使用済燃料プールの水位が低下した場合において	り当該使用済燃料プールの水位が低下した場合において	更許可申請書（本文（五		
使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，	使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，	使用斎燃料プール内の燃料体等を泠却し，放射線を遮蔽	号））の日（3）（ii）－1家を		
及び臨界を防止するために必要な重大事故等対処設備日	及び臨界を防止するために必要な重大事故等対処設備を	L，及び臨界を防止するために必要な重大事故等対処設備	具体的に記載しており		
（3）（ii）－（1）を設置及び保管する。	設置及び保管する。	E（3）（ii）－（1）として，燃料プール代替注水系を設ける設計	整合している。		
		＜中略＞			
使用済燃料プールからの大量の水の漏えいその他の要	使用済燃料プールからの大量の水の漏えいその他の要	4.3 燃料プールスプレイ系使用済燃料プールからの大量の水の漏えいその他の要	設計及び工事の計画の		
因により使用済燃料プールの水位が異常に低下した場合	因により使用済燃料プールの水位が異常に低下した場合	因により使用済燃料プールの水位が異常に低下した場合	E（3）（ii）－（2）は，設置変		
において，使用済燃料プール内燃料体等の著しい損傷の進	において，使用済燃料プール内燃料体等の著しい損傷の進	において，使用済燃料プール内の燃料体等の著しい損傷の	更許可申請書（本文（五		
行を緩和し，及び臨界を防止するために必要な重大事故等	行を緩和し，及び臨界を防止するために必要な重大事故等	進行を緩和し，及び臨界を防止するために必要な重大事故	号））のE（3）（ii）－（2）を		
対処設備（3）（ ii ）－2 を設置及び保管する。	対処設備を設置及び保管する。	等対処設備 $=(3)$（ii）－（2）として燃料プールスプレイ系を設	具体的に記載しており		
	＜中略＞	ける設計とする。	整合している。		
	4．3．2 設計方針	4.2 燃料プール代替注水系			
E（3）（ ii ）－3使用済燃料プールの玲却等のための設備の	使用斎燃料プールの冷却等のための設備のらちゃ．．使用済	E（3）（ ii ）－（3）使用済燃料プールの泠却機能又は注水機能	設計及び工事の計画の		
らち，使用済燃料プールの泠却機能又は注水機能が喪失	燃料プールの泠却機能又は注水機能が喪失し，又は使用斎	が喪失し，又は使用済燃料プールからの水の漏えいその他	E（3）（ii）－3 ${ }^{\text {a }}$ は，設置変		
し，又は使用済燃料プールからの小規模な水の漏えいその	燃料プールからの小規模な水の漏えいその他の要因によ	の要因により当該使用済燃料プールの水位が低下した場	更許可申請書（本文（五		
他の要因により使用済燃料プールの水位が低下した場合	り使用済燃料プールの水位が低下した場合においても使	合において使用済燃料プール内の燃料体等を冷却し，放射	号））の日（3）（ii）－3 と		
においても使用済燃料プール内燃料体等を泠却し，放射線	用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，及	線を遮蔽し，及び臨界を防止するために必要な重大事故等	文章表現は異なるが，内		
を遮蔽し，及び臨界を防止できるよう使用斎燃料プールの	び臨界を防止できるよう使用斎燃料プールの水位を維持	対処設備として，燃料プール代替注水系を設ける設計とす	容に相違はないため整		
水位を維持するための設備として，燃料プール代替注水系	するための設備として，燃料プール代替注水系（常設配管）	る。	合している。		
（常設配管）及び燃料プール代替注水系（可搬型）を設け	及び燃料プール代替注水系（可搬型）を設ける。	＜中略＞			
$\underline{\text { る。 }}$					
E（3）（ ii ）－4）また，使用済燃料プールの玲却等のための	また，使用斎燃料プールの泠却等のための設備のうち，	4.3 燃料プールスプレイ系 使用済燃料プールからの大量の水の漏えいその他の要	設計及び工事の計画の		
設備のうち，使用済燃料プールからの大量の水の漏えいそ	使用済燃料プールからの大量の水の漏えいその他の要因	因により使用済燃料プールの水位が異常に低下した場合	E（3）（ ii ）－（4）は，設置変		
の他の要因により使用済燃料プールの水位が異常に低下	により使用済燃料プールの水位が異常に低下した場合に	において，使用済燃料プール内の燃料体等の著しい損傷の	更許可申請書（本文（五		
した場合においても使用済燃料プール内燃料体等の著し	おいても使用済燃料プール内燃料体等の著しい損傷を緩	進行を緩和し，及び	号））の日（3）（ii）－4 と		
い損傷を緩和し，及び臨界を防止するための設備として，	和し，及び臨界を防止するための設備として，燃料プール	要な重大事故等対処設備として燃料プールスプレイ系を	文章表現は異なるが，内		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		4.7 重大事故等の収束に必要となる水源 代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽 （No．2）を設ける設計とする。 また，淡水が枯渴した場合に，海を水源として利用でき る設計とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽 （No．2）は，想定される重大事故等時において，使用済燃料プールの泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型）の水源として使用できる設計とする。 海は，想定される重大事故等時において，淡水が枯渴し た場合に，使用済燃料プールの泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段であ る燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型）の水源として，更に，放水設備（大気への拡散抑制設備）の水源として利用できる設計とする。			
（a－2）燃料プール代替注水系（可搬型）による使用済燃料プールへの注水 残留熱除去系（燃料プール水の泠却）及び燃料プール冷	（b）燃料プール代替注水系（可搬型）による使用済燃料 プールーの注水 残留熱除去系（燃料プール水の泠却）及び燃料プール冷	4．2．2 燃料プール代替注水系（可搬型）による使用済燃料プールへの注水 残留熱除去系（燃料プール水の冷却）及び燃料プール冷			
却浄化系の有する使用斎燃料プールの浍却機能啔失又は	却浄化系の有する使用斎燃料プールの泠却機能需失又は	却浄化系の有する使用斎燃料プールの泠却機能需失若し			
残留熱除去系ポンプによる使用消然料プールーの補給機	残留熱除去系ポンプによる使用济然料プールへの補給幾	くは残留熱除去系ポンプによる使用斎燃料プールへの補			
能が哀失し，又は使用斎然料プールに接続する配管の破損	能が喪失し，又は使用济燃料プールに接続する配管の破損	給機能が䨤失し，又は使用斎然料プールに接続する配管の			
等により使用消燃料プール水の小規模な漏えいにより使	等により使用斎燃料プール水の小規模な漏えいにより使	破損等により使用斎燃料プール水の小規模な漏えいによ			
用消燃料プールの水位が低下した場合に，使用済燃料プー	用济燃料プールの水位が低下した場合に，使用済燃料プー	使用済燃料プールの水位が低下した場合に，使用斎燃料			
ル内燃料体等を椧却し，放射線を遮蔽し，及び臨界を防止	ル内然料体等を洽却し，放射線を遮蔽し，及び臨界を防止	プール内の然料体等を洽却し，放射線を遮蔽し，及び臨界			
するための重大事故等対処設備として，燃料プール代替注	するための重大事故等対処設備として，然料プール代替注	を防止するための重大事故等対処設備として，燃料プール			
水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水をホース等を経由して使用済燃料プール	水系（可搬型）を使用する。 然料プール代替注水系（可搬型）は，大容量送水ポンプ	代替注水系（可搬型）を設ける設計とする。 然料プール代替注水系（可搬型）は，大容量送水ポンプ			
へ注水することで，使用済然料プールの水位を維持できる設計とする。	（タイプI），ホース，計測制御装置等で構成し，大容量送水ポンプ（タイプI）により，代替淡水源の水をホース	（タイプI）により代替淡水源の水をホース等を経由して使用済燃料プール～注水することにより，使用済燃料プー			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
を緩和するとともに，燃料損傷時には使用济燃料プール内	を緩和するとともに，燃料損傷時には使用斎燃料プール内	を緩和するとともに，燃料損傷時には使用㵒然料プール内			
然料体等の上部全面にスプレイすることによりできる限	然料体等の上部全面にスプレイすることによりできる限	の燃料体等の上部全面にスプレイすることによりできる			
り環境への放射性物質の放出を低減するための重大事故	り環境への放射性物質の放出を低滅するための重大事故	限り環境への放射性物質の放出を低澸するための重大事			
等対処設備として，然料プールスプレイ系（可搬型）は，	等対処設備として，然料プールスプレイ系（可搬型）を使	故等対処設備として，燃料プールスプレイ系（可搬型）を			
大容量送水ポンプ（タイプI）により，代替淡水源の水を	用する。	設ける設計とする。			
ホース等を経由してスプレイノズルから使用㵒然料プー	然料プールスプレイ系（可䇥型）は，大容量送水ポンプ	然料プールスプレイ系（可搬型）は，大容量送水ポンプ			
ル内燃料体等に直接スプレイすることで，燃料損傷を緩和	（タイプI），スプレイノズル，ホース，計測制御装置等	（タイプI）により，代替炎水源の水をホース等を経由し			
さるとともに，環境への放射性物質の放出をできる限り低	で構成し，大容量送水ポンプ（タイプI）により，代替淡	てスプレイノズルから使用斎燃料プール内の燃料体等に			
減できる設計とする。	水源の水をホース等を経由してスプレイノズルから使用	直接スプレイすることで，燃料損傷を緩和するとともに，			
	㸚燃料プール内燃料体等に直接スプレイすることで，燃料	環境への放射性物質の放出をできる限り低澸できるよう			
	損傷を緩和するとともに，環境への放射性物質の放出をで	使用斎燃料プール内燃料体等の上部全面に向けてスプレ			
	きる限り低減できる設計とする。	イレ，使用済然料プール内燃料体等からの崩噮熱による蒸			
		散量を上回る量をスプレイできる設計とする。			
E（3）（ii）－（11） また，スプレイや蒸気擐境下でも臨界にな	また，スプレイや蒸気擐境下でも臨界にならないよう配	E（3）（ii）－（11）使困済燃料プールは，燃料プールスプレイ	設計及び工事の計画の		
らないよう配慮したラック形状によって，臨界を防止する	慮したラック形状によって，臨界を防止することができる		E（3）（ii）－（11）は，設置変		
ことができる設計とする。	設計とする。	洽却し，盬界にならないように配慮したラック形状及び燃	更許可申請書（本文（五		
		料配置において，いかなる一様な水蜜度であっても塞効墳	号））の $=(3)$（ii）－（11）を		
		倍率は不碓定性を含めて0．95以下で臨界を防止できる設	具体的に記載しており		
		計とする。	整合している。		
燃料プールスプレイ系（可搬型）は，代替淡水源が枯渴	然料プールスプレイ系（可搬型）は，代替淡水源が枯渴	然料プールスプレイ系（可搬型）は，代替淡水源が枯渴			
した場合において，重大事故等の収束に必要となる水の供	した場合において，重大事故等の収束に必要となる水の供	した場合において，重大事故等の収束に必要となる水の供			
給設備である大容量送水ポンプ（タイプI）により海を利	給設備である大容量送水ポンプ（タイプI）により海を利	給設備である大容量送水ポンプ（タイプI）により海を利			
用できる設計とする。また，大容量送水ポンプ（タイプ I）	用できる設計とする。また，大容量送水ポンプ（タイプI）	用できる設計とする。			
は，空泠式のディーゼルエンジンにより駆動できる設計	は，空冷式のディーゼルエンジンにより駆動できる設計と	大容量送水ポンプ（タイプI）は，空泠式のディーゼル			
とする。	さる。	エンジンにより駆動できる設計とする。			
	＜中略＞	燃料プールスプレイ系（可搬型）に使用するホースの敷			
		設等は，ホース延長回収車（台数 4（予備 1））（核燃料物			
		質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替			
		注水系」の設備を核然料物質の取扱施設及び貯蔵設備のら			
		ち「4．3 燃料プールスプレイ系」の設備として兼用）に			
		より行ら設計とする。			
		燃料プールスプレイ系（可搬型）の流路として，設計基			
		準対象施設である使用済燃料プール，使用済燃料貯蔵ラッ			
		ク及び制御埲•破損燃料貯蔵ラックを重大事故等対処設備			
		として使用することから，流路に係る機能について重大事			

設置変更許可甲請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
		＜中略＞ 放水設備（大気への拡散抑制設備）に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を核燃料物質の取扱施設及び貯蔵設備の らち「4．4 放射性物質拡散抑制系」の設備として兼用） により行ら設計とする。		
本系統の詳細については，「リ）（3）（iii）e．発電所外ーの放射性物質の拡敬を抑制するための設備」に記載する。	本系統の詳細については，「9．7 発電所外への放射性物質の应散を抑制するための設備」に記載する。	4.7 重大事故等の収束に必要となる水源 代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽 （No．2）を設ける設計とする。 また，淡水が枯渴した場合に，海を水源として利用でき る設計とする。 < 中略 > 海は，想定される重大事故等時において，淡水が枯渴し た場合に，使用済燃料プールの泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段であ る燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型）の水源として，更に，放水設備（大気への拡散抑制設備）の水源として利用できる設計とする。	設置変更許可申請書（本文（五号））「リ（3）（iii） e．発電所外への放射性物質の挔散を抑制する ための設備」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
［可搬型重大事故等対処設備］ 燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型） 大容量送水ポンプ（タイプI） E（3）（ii）－（20）（「ホ（3）（ii）b．．．．．（c））原子炬冷却材圧力バ ウンダり低圧時に発電用原子炬を冷却するための設備」，「ホ（4）（v）最終ヒートシンクへ熱を輸送するための設備」，「り（3）（ii）a－．原子炉格納容器内の冷却等のための設備」，「り（3）（ii）b．．原子炬格納容器の過圧破損を防止 するための設備」，「り（3）（ii）c．．原子炉格納容器下部の溶融炉心を冷却するための設備」及び「ホ（4）（vi）重大事故等の収束に必要となる水の供給設備」と兼用）．．． （本文十号） 燃料プール代替注水系（可搬型）を使用した使用済燃料プールへの注水は，大容量送水ポンプ（タイプ I ） 1 台を使用するものとし， $114 \mathrm{~m}^{3} / \mathrm{h}$ の流量で注水する。 －記載箇所 $\begin{aligned} & \text { 八 (2) (ii) d. (a) (a-6) } \\ & \text { 八 (2) (ii)d. (b) (b-8) } \end{aligned}$	第4．3－1表 使用済燃料プールの泠却等のための設備の 主要機器仕様 （1）燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型） a．大容量送水ポンプ（タイプI） 兼用する設備は以下のとおり。 －原子炬冷却材圧力バウンダり低圧時に登電用原子炉を冷却するための設備 - 最終ヒートシンクへ熱を輸送するための設備 - 原子炬格納容器内の冷却等のための設備 - 原子炉格納容器の過圧破損を防止するための設備 - 原子炬格納容器下部の溶融炬心を冷却するための設備 - 重大事故等の収束に必要となる水の供給設備 - 設置変更許可申請書（本文十号）で使用している大容量送水ポンプ（タイプI）の注水流量は，工事計画 で使用している大容量送水ポンプ（タイプI）の容量 と整合しており，設置変更許可申請書（本文十号）で使用している解析条件に包絡される。	【核燃料物質の取扱施設及び貯蔵施設】（要目表） 2.4 使用済燃料眝蔵槽椧却浄化設備 	「大容量送水ポンプ（タ イプI）」は，設置変更許可申請書（本文（五号）における －（20）を設計及び工事の計画の E（3）（ ii ）－（20）に整理しており整合して いる。 設計及び工事の計画の E（3）（ii）－（21）は，設置変更許可申請書（本文（五号））の $=(3)$（ii）－（21）と同義であり整合してい る。	

\％W．

取 付 道 関

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
放水設備（大気への拡散抑制設備） 大容量送水ポンプ（タイプII） E（3）（ii）－（22）（「ホ（4）（vi））重大事故等の収束に必要となる水 の供給設備」他と兼用）	（2）放水設備（大気への拡散抑制設備） a．大容量送水ポンプ（タイプII） 第5．7－1表 ．重大事故等の収束に必要となる水の供給設備の主要機器仕樣に記載する。	【原子炬格納施設】（要目表） ： ＊2：：\＃ifex 	「大容量送水ポンプ（タ イプII）」は，設置変更許可申請書（本文（五号））における －（22）を設計及び工事の計画のE（3）（ii）－（22）に整理しており整合して いる。	

$=(3)$（ii ）－（26

5 ：

－
$6:$ ：

 （1）

 －
＊14：\＆

 －

＊16：党

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
㕅（1）（ii）－（2）主復水器で凝縮した復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，原子炉給水ポンプにより給水として原子炉圧力容器にもどす。 （1）（ii）－（3）蒸気タービンは，想定される環境条件にお いて材料に及ぼす化学的及び物理的影響に対し，耐性を有 する材料が用いられ，かつ，蒸気タービンの振動対策及び過速度対策を含みっ十分な構造強度を有する設計とし，そ の運転状態を中央制御室及び現場において監視可能な設備を設ける。．．	5．12 タービン設備 5．12．1 概要 5．12．2 設計方針 <中略 > （4）復水•給水系には，復水浄化系を設け，高純度の給水 を発電用原子炉へ供給できるようにする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できるような設計 とする。 < 中略 >	3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 木（1）（ii）－（1）b 炬心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気 タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付ける設計とする。 木（1）（ii）－（2）蒸気タービンを出た蒸気は復水器で復水す る． り，給水ポンプにより発電用原子炉に戻す設計とする。蒸気管には，タービンバイパス系を設け，蒸気を復水器へ バイパスできる設計とする。 復水給水系には復水中の核分裂生成物及び腐食生成物 を除去するために復水浄化系を設け，高純度の給水を発電用原子炉へ供給できる設計とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉へ の適切な給水温度を確保できる設計とする。 ＜中略＞ 【蒸気タービン】（基本設計方針） 1．蒸気タービン （1）（ii）－（3）設計基集対象施設に施設する蒸気タービン及び蒸気タービンの附属設備は，想定される環境条件にお いて，材料に及ぼす化学的及び物理的影響を煮慮した設計 とする。 また，振動対策，過速度対策等各種の保檴装置及び監視制御装置により，中央制御室及び現場において運転状態の監視を行い，発電用原子炬施設の安全性を損なわないよ ら，以下の事項を考慮して設計する。．．． 1.1 蒸気タービン本体 蒸気タービンの定格出力は，復水器真空度 96.3 kPa ，補	と同義であり整合して いる。 設計及び工事の計画の床（1）（ii）－（2）は，設置変更許可申請書（本文（五号））の床（1）（ii）－（2）と同義であり整合してい る。 設計及び工事の計画の床（1）（ii）－（3）は，設置変更許可申請書（本文（五号））の困（1）（ii）－（3）と文章表現は異なるが，内容に相違はないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		給水率 0% にて，発電端で 825000 kW となる設計とする。 定格熱出力一定運転の実施においても，蒸気タービン設備の保安が確保できるように定格熱出力一定運転を考慮 した設計とする。 蒸気タービンは，非常調速装置が作動したときに達する回転速度並びに蒸気タービンの起動時及び停止過程を含 む運転中に主要な軸受又は軸に発生しうる最大の振動に対して構造上十分な機械的強度を有する設計とする。 また，蒸気タービンの軸受は，主油ポンプ，ターニング油ポンプ，非常用油ポンプ等の軸受潤滑設備を設置するこ とにより，運転中の荷重を安定に支持でき，かつ，異常な摩耗，変形及び過熱が生じない設計とする。 蒸気タービン及び発電機その他の回転体を同一軸上に結合したものの危険速度は，速度調定率で定まる回転速度 の範囲のらち最小の回転速度から，非常調速装置が作動し たときに達する回転速度までの間に発生しない設計とす る。 また，蒸気タービン起動時の危険速度を通過する際には速やかに昇速できる設計とする。 蒸気タービン及びその附属設備の耐圧部分の構造は，最高使用圧力又は最高使用温度において発生する最大の応力が当該部分に使用する材料の許容応力を超えない設計 とする。 蒸気タービンには，その回転速度及び出力が負荷の変動 の際にも持続的に動摇することを防止する調速装置を設 けるとともに，運転中に生じた過回転，発電機の内部故障，復水器真空低下，スラスト軸受の摩耗による設備の破損を防止するため，その異常が発生した場合に蒸気タービンに流入する蒸気を自動的かつ速やかに遮断する非常調速装置及び保安装置を設置する。 また，調速装置は，最大負荷を遮断した場合に達する回転速度を非常調速装置が作動する回転速度未満にする能力を有する設計とする。 なお，過回転については定格回転速度の 1.11 倍を超え ない回転数で非常調速装置が作動する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		蒸気タービン及びその附属設備であって，最高使用圧力 を超える過圧が生ずるおそれのあるものにあっては，排気圧力の上昇時に過圧を防止することができる容量を有し， かつ，最高使用圧力以下で動作する大気放出板を設置し， その圧力を逃がすことができる設計とする。 蒸気タービンには，設備の損傷を防止するため，以下の運転状態を計測する監視装置を設け，各部の状態を監視す ることができる設計とする。 （1）蒸気タービンの回転速度 （2）主蒸気止め弁の前及び組合せ中間弁の前における蒸気 の圧力及び温度 （3）蒸気タービンの排気圧力 （4）蒸気タービンの軸受の入口における潤滑油の圧力 （5）蒸気タービンの軸受の出口における潤滑油の温度又は軸受メタル温度 （6）蒸気加減弁の開度 （7）蒸気タービンの振動の振幅 蒸気タービンは，振動を起こさないように十分配慮をは らうとともに，万一，振動が発生した場合にも振動監視装置により，警報を発するように設計する。また，運転中振動の振幅を自動的に記録できる設計とする。 蒸気タービン及びその附属設備の構造設計において「発電用火力設備に関する技術基準を定める省令及びその解釈」に規定のないものについては，信頼性が確認され十分 な実績のある設計方法，安全率等を用いるほか，最新知見 を反映し，十分な安全性を持たせることにより保安が確保 できる設計とする。 復水器は，冷却水温度 $15^{\circ} \mathrm{C}$ ，タービン定格出力，大気圧 101 kPa において真空度 96.3 kPa を確保できる設計とする。 1.2 蒸気タービンの附属設備 ポンプを除く蒸気タービンの附属設備に属する容器及 び管の耐圧部分に使用する材料は，想定される環境条件に おいて，材料に及ぼす化学的及び物理的影響に対し，安全 な化学的成分及び機械的強度を有するものを使用する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	5．12．4．1 蒸気タービン （4）タービンバイパス系	また，蒸気タービンの附属設備のらち，主要な耐圧部の溶接部については，次のとおりとし，使用前事業者検査に より適用基準及び適用規格に適合していることを確認す る。 （1）不連続で特異な形状でないものであること。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないこ とを非破壊試験により確認したものであること。 （3）適切な強度を有するものであること。 （4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及び技能を有する溶接士であることをあらか じめ碓認したものにより溶接したものであること。 なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のらち水用の容器又は管であって，最高使用温度 $100^{\circ} \mathrm{C}$ 未満のものについては，最高使用圧力 $1,960 \mathrm{kPa}$ ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管については，最高使用圧力 980 kPa （長手継手の部分にあっては，490kPa）以上の圧力が加え られる部分について溶接を必要とするものをいう。また，蒸気タービンに係る外径 150 mm 以上の管のらち，耐圧部に ついて溶接を必要とするものをいう。 蒸気タービンの附属設備の機器仕様は，運転中に想定さ れる最大の圧力•温度，必要な容量等を考慮した設計とす る。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 3．原子炉冷却材の循環設備 3.1 主蒸気系，復水•給水系等			

㕅（1）（ii）－（4）主蒸気管には，タービンバイパス系を設け，
蒸気を主復水器へバイパスできるようにする。…

タービンバイパス系は，主烝気をタービンを通さずに直
接主復水器ヘ放出させる配管及び弁で構成し，定格蒸気流量の約 25% を処理する能力があり，原子炉起動時，停止時，通常運転時及び過渡状態時に主蒸気圧力の調整を行う。

5．1 原子炉圧力容器及び一次冷却材設備
5．1．1 通常運転時等
5．1．1．4 主要設備
5．1．1．4．3 主蒸気系
5．1．1．4．3．3 主蒸気逃がし安全弁
主蒸気逃がし安全弁は，原子炉泠却材圧力バウンダリの過度の圧力上昇を防止するため原子炉格納容器内の主蒸気管に取付ける。排気は，排気管によりサプレッションチ エンバ内のプール水面下に導き凝縮するようにする。主蒸気逃がし安全弁は，バネ式（アクチュエータ付）で，アク チュエータにより逃がし弁として作動させることもでき るバネ式安全弁である。

すなわち，主蒸気逃がし安全弁は，バネ式の安全弁に，外部から強制的に開閉を行うアクチュエータを取付けた もので，蒸気圧力がスプリングの設定圧力に達すると自動開放するほか，外部信号によってアクチュエータのピスト ンに窒素を供給して弁を強制的に開放することができる。
主蒸気逃がし安全弁は，11個からなり，次の機能を有し ている。

（1）逃がし弁機能

本機能における主蒸気逃がし安全弁は，原子炉泠却材圧 カバウンダリの過度の圧力上昇を抑えるため，原子炉圧力高の信号によりアクチュエータのピストンを駆動して強制的に開放する。11個の主蒸気逃がし安全弁は，すべてこ の機能を有している。
（2）安全并機能

木（1）（ii）－44タービンバイパス系は，原子炬起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炬定格蒸気流量の約 25% な処理できる設計とする。
3.4 主蒸気逃がし安全弁の機能

3．4．3 主蒸気逃がし安全弁の容量

主蒸気逃がし安全弁は，ベローズと補助背圧平衡ピスト ンを備えたバネ式の平衡形安全弁に，外部から強制的に開閉を行らアクチュエータを取付けたもので，蒸気圧力がス プリングの設定圧力に達すると自動開放するほか，外部信号によってアクチュエータのピストンに窒素圧力を供給 して弁を強制的に開放することができるものを使用し，サ プレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定圧力に影響を与えない設計とする。なお，主蒸気逃がし安全弁は，11個設置する設計とする。
主蒸気逃がし安全弁の排気は，排気管によりサプレッシ ョンチェンバのプール水面下に導き凝縮する設計とする。

設計及び工事の計画の木（1）（ii）－44は，設置変更許可申請書（本文（五号））床（1）（ii）－（4）と同義であり整合している。

備 考

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	5.4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を泠却するための設備 5．4．2 設計方針 （1）フロントライン系故障時に用いる設備 a．高圧代替注水系による発電用原子炉の泠却 ＜中略＞ 本系統の流路として，高圧代替注水系，高圧炉心スプレ イ系，原子炉隔離時冷却系及び主蒸気系の配管及び弁，原子炬泠却材浄化系及び補給水系の配管，燃料プール補給水系の弁並びに復水給水系の配管，弁及びスパージャを重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炬圧力容器を重大事故等対処設備として使用する。 （2）サポート系故障時に用いる設備 a ．原子炉隔離時冷却系の現場操作による発電用原子炉の泠却 <中略 > その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る原子炉隔離時冷却系を重大事故等対処設備（設計基準拡張）として使用さる。 b．代替電源設備による原子炬隔離時冷却系の復旧 < 中略 > その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る原子炉隔離時冷却系を重大事故等対処設備（設計基準拡張）として使用する。 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備 5．6．2 設計方針	5.4 高圧代替注水系 <中略> 高圧代替注水系の流路として，設計基準対象施設である木（1）（ii）－（11）原子炬圧力容器，炬心支持構造物及び原子炬压力容器内部構造物を重大事故等対処設借として使用す ることから，流路に係る機能について重大事故等対処設備 としての設計を行う。 5.5 原子炉隔離時冷却系 5．5．1 系統構成 <中略> 原子炉隔離侍冷却系の流路として，設計基準対象施設で ある杕（1）（ii）－（11）原子炬圧力容器，焒心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	る非常用交流電源設備を重大事故等対処設備（設計基準抁	して使用することから，流路に係る機能について重大事故			
	張）として使用する。	等対处設備としての設計を行う。			
		5.7 代替循環冷却系			
		<中略> 代替循環冷却系の流路として，設計基準対象施設であ			
		万残留熱除去系熱交換器，杕（1）（ ii ）－（1）原子炬圧力容器，			
		炬心支持構造物及び原子炬圧力容器内部横造物を重大事			
		故等対処設備として使用することから，流路に係る機能			
		について重大事故等対処設備としての設計を行ら。			
		5.8 ほう酸水注入系			
		<中略>			
		ほら酸水注入系の流路として，設計基漼対象施設であ る床（1）（ii）－（11）原子炉圧力容器，炬心支持構造物及び原子			
		焒压力容器内部棘造物を重大事故等対処設備として使用			
		することから，流路に係る機能について重大事故等対処			
		設備としての設計を行ら。			
	b．サポート系故障時に用いる設備				
	（c）常設代替交流電源設備による残留熱除去系（低圧注	5.9 残留熱除去系（低圧注水モード）			
	水モード）の復旧	5．9．1 系統構成			
	＜中略＞	＜中略＞			
	その他，設計基漼対象施設である原子炉圧力容器を重大	残留熱除去系（低圧注水モード）の流路として，設計			
	事故等対処設備として使用し，設計基漼事故対処設備であ	基準対象施設である残留熱除去系熱交換器，䢡（1）（ii）－（11）			
	万残留熱除去系（低圧注水モード）及び原子炉補機泠却水	原子炬圧力容器，炬心支持構造物及び原子炬压力容器内			
	系（原子炉補機冷却海水系を含む。）を重大事故等対処設	部構造物を重大事故等対処設備として使用することか			
	備（設計基漼拡張）として使用する。	ら，流路に係る機能について重大事故等対処設備として			
		の設計を行ら。			
		【原子炬格納施設】（基本設計方針）			
	（2）原子炉停止中の場合に用いる設備	3．2．4 代替循澴洽却系			
	b．サポート系故障時に用いる設備	（1）系統構成			
	（c）常設代替交流電源設備による残留熱除去系（原子炉	＜中略＞			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
木（1）（ii）b．－（6）主蒸気隔離弁 個数 㕅（1）（ii）b．－7 2（主蒸気管1本当たり） 床（1）（ii）b．－8 取付位置 ドライウェル貫通部前後 大（1）（ii）b．－9）閉鎖時間 $3 \sim 5$ 秒 漏えい率 $10 \% / \mathrm{d} /$ 個以下（主蒸気逃がし安全弁最低設定圧力において，原子炉圧力容器気相の体積 に対し，飽和蒸気で） 整合性 －設計及び工事の計画の困（1）（ii）b．－（6）a 及び ${ }^{\text {a }}$（1）（ii の困（1）（ii）b．－（6）と同一設備であり整合している。 －設計及び工事の計画の㕅（1）（ii）b．－（7）a 及び䢞（1）（ii の困（1）（ii）b．－7 と と同義であり整合している。 2 個 \times 主蒸気管本数 4 本 $=8$ 個 －設置変更許可申請書（本文（五号））の困（1）（ii）b．－（8）基準対象施設】主蒸気系系統図（1／2）（主蒸気系 －設計及び工事の計画の床（1）（ii）b．－（9）a及び述（1）（ii） の困（1）（ii）b．－（9）と同義であり整合している。 （本文十号） 主蒸気隔離弁閉止時間 3 秒 －記載箇所 $\begin{aligned} & \text { 个(2)(i)d. (c) } \\ & \text { 个 (2) (ii)c. (b) a) } \\ & \text { 八 (2) (ii)b. (e) (e-5) } \end{aligned}$ （本文十号） 主蒸気隔離弁は，主蒸気管流量大の信号により 0.5 秒 の動作遅れ時間を含み，事故後 5.5 秒で全閉するもの とする。 －記載箇所 $\begin{aligned} & \text { ㅁ (2) (iii) b. (c) } \\ & \text { ㅁ(2) (iii) e. (h) } \end{aligned}$	（3）主蒸気隔離弁 形式 玉 形 弁 個数 2（主蒸気管1本当たり） 駆動方式 窒素又は空気及びスプリング 閉鎖時間 $\quad 3 \sim 5$ 秒 漏えい率 $10 \% / \mathrm{d} /$ 個以下 $\binom{\text { 主蒸気逃がし安全弁最低設定圧力において, }}{\text { 圧力容器気相の体積に対し, 飽和蒸気で }}$ ）b．－（6bbは，設置変更許可申請書（本文（五号）） ）b．－（7bbは，設置変更許可申請書（本文（五号）） 8）については，添付図面第4－2－1－1－1図「設計 その1）」に記載しており整合している。 ）b．－（9bbは，設置変更許可申請書（本文（五号）） －設置変更許可申請書（本文十号）で使用している主蒸気隔離弁の閉止時間は下限値であり，設計及び工事 の計画で使用している主蒸気隔離弁の閉止時間は，設置変更許可申請書（本文十号）で使用している解析条件に包絡されている。 －設置変更許可申請書（本文十号）で使用している主蒸気隔離弁の閉止時間は上限値 $(0.5$ 秒 +5.0 秒 $=5.5$秒）であり，設計及び工事の計画で使用している主蒸気隔離弁の閉止時間（5．0秒）は，設置変更許可申請書（本文十号）で使用している解析条件に包絡されて いる。	【原子炉泠却系統施設（蒸気タービンを除く。）】 （要目表） ＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊4：記載の邂正化を行う。既工事計画書には「（呼び坆A）」と記載。 ＊5：祋載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（本文十号） 逃がし安全弁（逃がし弁機能）にて，原子炉冷却材圧力 バウンダリの過度の圧力上昇を抑えるものとする。 －記載箇所				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（iii）冾却材の温庶及び圧力				
原子炬入口給水温度（（ 定格出力時））約 $2166^{\circ} \mathrm{C}$				
原子炬入口給水压力（定格出力時）約 $72 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$			設置変更許可申請書（	
原子炬出口主蒸気温度（定格出力時）約 $286^{\circ} \mathrm{C}$			文（五号））の「泠却材	
（本文十号）			の温度及び圧力」は，本	
給水温度の初期值は約 $216^{\circ} \mathrm{C}$ とする。			工事計画の対象外であ	
－記載綯所				
八（2）（ii）a．（b）（b－1）（b－1－1）（b－1－1－2）				
（2）二次泠却設備なㄴ．				
		【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）		
（3）非常用泠却設備				
（i）椧却材の種頪		1．原子炬冷却材㕅（3）（i）－1）原子炻冷却才は，通常運転時における压力，		
㕅（3）（i）－（1）鈘水			設計及び工事の計画の	
		大（3）（i）－（1）原子炬冷却村は，通常運転時における压力，温度及び放射線によって起こる最も厳しい条件において，	「原子炬冷却材」は，設	
		溙的性質として核反応断面積が核反応維持のために適切		
		であり，熱水力的性質として冾却能力が適切であることを保持し，かつっ，然料体及び構造材の健全性を妨げることの	（五号））の「椧却材の	
			種類」と同義であり整合	
		ない性質であり，通常連輲時において放射線に対して化学的に安定であることを保持する設計とする。	している。	
			設計及び工事の計画の	
			木（3）（i）－（1）は，設置変	
			更許可申請書（本文（五	
			号））の㕅（3）（i）－（1）を	
			具体的に記載しており	
			整合している。	
（ii）主要な機器及び管の個数及び構造 a．非常用炬心泠却系	5．原子炉冷却系統施設			
	5.3 非常用炉心冷却系	5.1 非常用炉心泠却設備その他原子炉注水設備の機能		
	5．3．1 通常運転時等			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
韭常用炬心泠却系は，工学的安全施設の一設備であつ て，低圧炬心スプレイ系，低圧注水系，高圧炉心スプレイ系及び自動減圧系から構成する。これらの各系統は，泠却材喪失事故等が起こったときは，復水貯蔵タンク水又はサ プレッションチェンバ内のプール水を原子炉に注入し，又 は原子炬蒸気をサプレッションチェンバ内のプール水中江逃がし原子炬圧力を速やかに低下させるなどにより，困 （3）（ii）a．－（1）炬心を洽却することができる。 大（3）（ii）a．－（2）また，低压炬ふスプレイ采，低压注水采，高压炬ふスプレイ系及び杕（3）（ii）a．－（3）自動減圧采は，想定される重大事故等時においても使用する。	5．3．1．1 概要 非常用炉心泠却系は，冷却材對失事故時に燃料被覆管の大破損を防止し，ジルコニウムー水反応を極力抑え，㴯壊熱を長期にわたつて除圭する機能を持ち，低圧炬心スプレ イ系，低圧注水系，高圧炝心スプレイ系及び自動減圧系で構成する。 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備 5．6．1 概要 < 中略 > また，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（低圧注水モード），残留熱除去系（原子炉停止時冷却モード）及び低圧炬心スプレイ系が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用する。残留熱除去系（低圧注水モード）及 び残留熱除去系（原子炉停止時冷却モード）については，「5．2 残留熱除去系」に記載する。低圧灲心スプレイ系に ついては，「5．3 非常用炝心冷却系」に記載する。	非常用炬心冷却設備は，工学的安全施設の一設備であつ て，高圧炉心スプレイ系，低圧炬心スプレイ系，残留熱除圭系（低压注水モード）及び自動减圧系から構成する。 これらの各系統は，椧却材䨖失事故等が起こったとき に，サプレッションチェンバのプール水又は復水貯蔵タン クの水を原子炬圧力容器内に注水し，又は原子炬蒸気を少 プレッションチェンバのプール水中に逃がし原子炬圧力 を速やかに低下させるなどにより，床（3）（ii）a．－（1）炬心を湁却し，䔳料被覆管の温度が燃料村の溶融又は然料体の著 しい破損を生ずる温度を超えて上星することを防止でき る設計とするとともに，燃料の過熱による燃料被覆管の太破損を防ぎ，更にこれに伴らジルコニウムと水との反底を無視しうる程度に抑え，著しく多量の水素を生じない設計 とする。 ＜中略＞ 5.3 低圧炉心スプレイ系 5．3．1 系統構成 低圧炬心スプレイ采は，大破断の椧却材㖶失事故時には残留熱除去系（低圧注水モード）及び高圧炬心スプレイ系 と連携して，中小破断の椧却材喪失事故時には高圧炉心ス プレイ系あるいは自動減圧系と連携して炬心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポ ンプにより，サプレッションチェンバのプール水を，炬心上部に取付けられた低圧炉心スプレイスパージャのノズ ルから炉心にスプレイする設計とする。 木（3）（ii）a．－（2）原子炬冷却村圧力バゥンダり低圧時に発䨌用原子炬を渝却するための設備として，想定される重大事故等時において，設計基蕉事故対处設備である低压炬心 スプレイ系が使用できる場合は，重大事故等対処設備（設計基蕉捬張）として使用できる設計とする。	設計及び工事の計画の「残留熱除去系（低圧注水モード）」は設置変更許可申請書（本文（五号））の「低圧注水系」 と同一設備であり整合 している。以下同じ。 設計及び工事の計画の木（3）（ii）a．－（1）は，設置変更許可申請書（本文 （五号））の ${ }^{(1)}$（3）（ii）a． －（1）を具体的に記載し ており整合している。 設計及び工事の計画の木（3）（ii）a．－（2）は，設置変更許可申請書（本文 （五号））の木（3）（ii）a． －（2）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備 5．6．1 概要 ＜中略＞ また，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（低圧注水モード），残留熱除去系（原子炉停止時冷却モード）及び低圧炉心スプレイ系が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用する。残留熱除去系（低圧注水モード）及 び残留熱除去系（原子炉停止時冷却モード）については， 「5．2 残留熱除去系」に記載する。低圧炉心スプレイ系に ついては，「5．3 非常用炉心泠却系」に記載する。 5.4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を泠却するための設備 5．4．1 概要 また，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用する。高圧炉心スプレイ系については，「5．	5.9 残留熱除去系（低圧注水モード） 5．9．1 系統構成 木（3）（ii）a．－（2）原子炬冷却材圧力バウンダリ低圧時に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基蕉事故対処設備である残留熱除寺系（低圧注水モード）が使用できる場合は，重大事故等対処設備（設計基漼拡張）として使用できる設計とする。 ＜中略＞ 5．9．2 多様性，位置的分散等 残留熱除去系（低圧注水モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するた め，重大事故等対処設備としての基本方針に示す設計方針 を適用する。ただし，多様性及び独立性並びに位置的分散 を考慮すべき対象の設計基準事故対処設備はないことか ら，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 5.2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の泠却材喪失事故時には低圧炉心スプレイ系及び残留熱除去系（低圧注水モード） と連携し，中小破断の泠却材喪失事故時には単独で炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タンクの水又はサプレッシ ョンチェンバのプール水を炉心上部に取付けられた高圧炉心スプレイスパージャのノズルから炬心にスプレイす る設計とする。 大（3）（ii）a．－（2）原子炬冷却材圧力バウンダり高圧時に発䨌用原子炬を冷却するための設備として，想定される重大事故等時において，設計基集事故対処設備である高圧炬心 スプレイ系が使用できる場合は重大事故等対処設備（設計		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
b．重大事故等対処設備 （a）原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を泠却するための設備 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷を防止するた めに必要な（3）（ii）b．（a）－（1）重大事故等対処設備を設置 する。	5.4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を泠却するための設備 5．4．1 概要 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炉心の著しい損傷を防止するた めに必要な重大事故等対処設備を設置する。．．． <中略> また，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用する。高圧炉心スプレイ系については，「5． 3 非常用炉心椧却系」，原子炉隔離時冷却系については，「5．8 原子炉隔離時冷却系」に記載する。 5．4．2 設計方針 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を椧却するための設備のらち，炉心を泠却するための設備と して，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系 が全交流動力電源及び常設直流電源系統の機能喪失によ り起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炬隔離時冷却系を現場操作により起動させる。．．．	【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．非常用炉心泠却設備その他原子炉注水設備 5.2 高圧炉心スプレイ系 5．2．1 系統構成 ＜中略＞ 大（3）（ii）b．（a）－（1）原子炬冷却材压力バウンダり高圧時 に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基蕉事故対処設備である高圧炬心スプレイ系が使用できる場合は重大事故等対処設備 （設計基準应張）として使用できる設計とする。 ＜中略＞ 5．2．2 多様性，位置的分散等 高圧炉心スプレイ系は，設計基準事故対処設備であると ともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 5.4 高圧代替注水系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷を防止するた めに必要な（3）（ii）b．（a）－（1）重大事故等対処設備として，高圧代替注水系を設ける設計とする。 また，設計基準事故対処設備である高圧炬心スプレイ系及び原子炬隔離時冷却系が全交流憅力靁源及び虽設直流電源系統の機能霝失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合 に，高圧代替注水系を現場操作により起動できる設計とす る。	設計及び工事の計画の木（3）（ii）b．（a）－（1）は，設置変更許可申請書（本文（五号））の㕅（3）（ii） b．（a）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
木（3）（ii）b．（a）－（2）原子炬冷却材圧力バウンダり高圧時 に発電用原子炬を椧却するための設備のうち，炬心を冷却 するための設備として，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔催時冷却系が全交流動力電源及び常設直流電源系統の機能趡失により起動できない，かつ，中央制御室から の操作により高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炉隔催時冷却系を現場操作により起動させる。．．	5． 4.1 概要 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炬心の著しい損傷を防止するた めに必要な重大事故等対処設備を設置する ＜中略＞ 5．4．2 設計方針 原子炬冷却材圧力バウンダり高圧時に発電用原子炉を冷却するための設備のうち，焾心を泠却するための設備と して，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系 が全交流動力電源及び常設直流電源系統の機能喪失によ り起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炉隔離時冷却系を現場操作により起動させる。	5.4 高圧代替注水系 㕅（3）（ii）b．（a）－（2 原子炬冷却材压力バウンダりが高圧 の状態であって，設計基蕉事故対処設備が有する発電用原子哣の冷却機能が喪失した場合においても炬心の著しい損傷を防止するために必要な重大事故等対処設備として，高圧代替注水系を設ける設計とする。 また，設計基準事故対処設備である高圧灲心スプレイ系及び原子炬隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合 に，高圧代替注水系を現場操作により起動できる設計とす る。 ＜中略＞ 5.5 原子炉隔離時冷却系 5．5．1 系統構成 原子灲冷却材圧力バウンダリ高圧時に発電用原子炉を冷却するための設備として，㕅（3）（ii）b．（a）－（2）想定される重大事故等時において，設計基蕉事故対処設僙である原子炬隔離時冷却系が使用できる場合は重大事故等対処設備 （設計基漼掋張）として使用できる設計とする。．． 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炬心の著しい損傷を防止するた めに必要な重大事故等対処設備として，設計基準事故対処設備である高圧炬心スプレイ系及び原子炉隔離時冷却系 が全交流動力電源及び常設直流電源系統の機能喪失によ り起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，原子炉隔離時冷却系を現場操作により起動できる設計とする。．．． ＜中略＞		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合にお いても，現場での人力による床（3）（ii）b．（a）－（3）弁の操作に より，原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧カバウンダリ低圧時の泠却対策の準備が整うま での期間にわたり，発電用原子炉の泠却を継続できる設計 とする。 なお，人力による措置は容易に行える設計とする。	また，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合にお いても，現場での人力による弁の操作により，原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウ ンダリ低圧時の泠却対策の準備が整らまでの期間にわた り，発電用原子炉の泠却を継続できる設計とする。なお，人力による措置は容易に行える設計とする。 <中略>	【原子炉格納施設】（基本設計方針） 3．2．5 高圧代替注水系 < 中略 > 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により中央制御室からの操作が可能な設計とする。 <中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5.4 高圧代替注水系 <中略> 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合においても，現場で の人力による㦿（3）（ii）b．（a）－（3）原子炬隔離時冷却采蒸気供給ライン分離弁（E51－F082）（原子炬冷却系統施設のう ち「5．5 原子炬隔離時冷却系」の設備を原子炬冷却系統施設のらち「5．4 高圧代替注水系」の設備として兼用），高圧代替注水系注入弁（E61－F003），高圧代替注水系タービ ン止め弁（E61－F050）及ぴ燃料プール補給水系ポンプ吸込弁（P15－F001）の操作により，原子炉冷却材圧力バウンダ リの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の冷却対策の準備が整うまでの期間にわたり，発電用原子炬 の椧却を継続できる設計とする。なお，人力による措置は現場にハンドルを設置することで容易に行える設計とす る。	設計及び工事の計画の木（3）（ii）b．（a）－（3）は，設置変更許可申請書（本文（五号））の床（3）（ii） b．（a）－（3）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－2）サポート系故障時に用いる設備	（2）サポート系故障時に用いる設備	5．5 原子炬隔雀時冷却系		
（a－2－1）原子炬隔離時冷却系の現場操作による発電用原	a．原子炬隔離㫿泠却系の現場操作による発電用原子炉の	5．5．1 系統構成		
子炉の泠却	泠却	＜中略〉		
全交流動力電源及び常設直流電源系統の機能霛失によ	全交流動力電源及び常設直流電源系䖻の機能䨍失によ	原子炬冷却材圧カバウンダリが高圧の状態であって，設	設計及び工事の計画の	
り，高圧炬心スプレイ系及び原子炬隔離時洽却系困	り，高圧炬心スプレイ系及び原子炬隔離倠泠却系での発電	計基準事故対処設備が有する発電用原子炬の泠却機能が	㕅（3）（ii）b．（a）－（4）は，	
（3）（ii）b b（a）－（4）	用原子炬の冷却ができない場合であって，中央制御室から	喪失した場合においても炬心の著しい損傷を防止するた	設置変更許可中請書（ 本	
であって，中央制御室からの操作により高圧代替注水系が	の操作により高圧代替注水系が起動できない場合の重大	めに必要な重大事故等対処設備として，設計基準事故対処	文（五号））の术（3）（ii）	
起動できない場合の重大事故等対处設備として，原子炬隔	事故等対处設備として，原子炬隔離時冷却系を現場操作に	設備である高圧炉心スプレイ系及び原子炬隔離時洽却系	b．（a）－（4）と同義であり	
離时冷却系を現場操作により起動させて使用する。	より起動させて使用する。	が全交流動力電源及び常設直流電源系統の機能喪失によ	整合している。	
		り杕（3）（ii）b．（a）－（4）䖯動できない，かつ，中央制御室から		
		の操作により高圧代替注水系を起動できない場合に，．原子		
原子炬隔離時冷却系は，全交流動力電源及び常設直流電	原子炬隔離时泠却系は，全交流動力電源及び常設直流電	原子炬隔離時冷却系は，全交流動力電源及び常設直流電	設計及び工事の計画の	
源系統が機能震失した場合においても，現場で困	源系䖻が機能震失した場合においても，現場で弁を人力操	源系統が機能喪失した場合においても，現場で困	木（3）（ii）b．（a）－（5）は，	
（3）（ii）b．（a）－（5）tyを力力操作することにより起動し，蒸	作することにより起動し，蒸気タービン駆動ポンプにより	（3）（ii）b．（a）－（5）原子炬隔瞿時冷却系注入台（E51－FO03）2．	設置変更許可中請書（ 本	
気タービン駆動ポンプにより復水貯蔵タンクの水を原子	復水貯蔵タンクの水を原子炬圧力容器へ注水することで	原子炬隔離時冾却系タービン入口蒸気ライン第二隔離弁	文（五号））の床（3）（ii）	
炬圧力容器へ注水することで原子炬冷却材圧力バウンダ	原子炬冷却材圧力バウンダリの減压対策及び原子炬冷却	（E51－F008）（原子炬冾却系統施設のうち「6．1 原子炬隔	b．（a）－（5）を具体的に記	
リの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の	材圧力バウンダリ低圧時の浍却対策の準備が整うまでの		載しており整合してい	
冷却対策の準備が整うまでの期間にわたり，発電用原子炬	期間にわたり，発電用原子炬の椧却を継続できる設計とす	子炬隔䡙时冷却系」」の設備として兼用），，原子炬隔鸇时冷	る。	
の椧却を継続できる設計とする。	る。なおっ，人力による措置は容易に行える設計とする。	却系タービン止め弁（E551－F009），，原子炬隔離時冷却系冷		
なお」，人力による措置は容易に行える設計とする。	＜中略＞			
		供給ライン分離方（E51－F082）（ ）原子炬冾却系統施設のう		
		ち「5．4 高压代替注水采」の設備と兼用），，原子炬隔離時		
		冷却系真空タンクドレン弁（E51－F536）及び高压代替注水		
		により起動し，蒸気タービン駆動ポンプにより復水貯蔵夕		
		ンクの水を原子炉圧力容器へ注水することで原子炉泠却		
		材圧力バウンダリの減压対策及び原子炉冷却材圧力バゥ		
		ンダリ低圧時の椧却対策の準備が整うまでの期間にわた		
		り，発電用原子炬の椧却を継続できる設計とする。なおう，		
		人力による措置は現場にハンドルを設置することで容易		
（a－2－2）代替電源設備による原子炬隔雀時冷却系の復日	b．代替電源設備による原子炬隔離時冷却系の復旧	に行える設計とする。		
全交流動力電源が哀失し，原子炬隔離時冷却系の起動又	全交流動力電源が亭失し，原子炬隔離㫿冷却系の起動又			
は運転継続に必要な直流電源を所内常設蓄電式直流電源	は運転継続に必要な直流電源を所内常設蓄電式直流電源	全交流動力電源が喪失し，原子炬隔離㫿洽却系の起動又		
設備により給電している場合は，所内常設畄電式直流電源	設備により給電している場合は，所内常設蓄電式直流電源	は運転継続に必要な直流電源を所内常設苗電式直流電源		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	5．5．2 設計方針	【原子炉冷却系統施設（蒸気タービンを除く。）】			
	（2）サポート系故障時に用いる設備	（基本設計方針）			
（b－2－2）主蒸気逃がし安全弁の作動に必要な窒素喪失時	b．主蒸気逃がし安全弁の作動に必要な窒素喪失時の減圧	3．4．5 主蒸気逃がし安全弁の機能回復			
の減圧					
原子炉冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，高圧窒素がス供給系（非常用）及び代替	対処設備として，高圧窒素ガス供給系（非常用）及び代替	対処設備として，主蒸気逃がし安全弁の作動に必要な窒素			
高圧窒素がス供給系を使用する。	高圧室素ガス供給系を使用する。	ガスが喪失した場合においても，高圧窒素がス供給系（非			
	＜中略＞	常用）及び代替高圧窒素ガス供給系を使用できる設計とす			
		る。			
		＜中略＞			
		【計測制御系統施設】（基本設計方針）			
（b－2－2－1）高圧窒素ガス供給系（非常用）による窒素確保	（a）高圧窒素ガス供給系（非常用）による窒素確保	5.2 高圧窒素ガス供給系			
		＜中略＞			
原子炉冷却材圧力バウンダリを減圧するための設備の	原子炉泠却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，高圧窒素ガス供給系（非常用）は，主蒸	対処設備として，高圧窒素ガス供給系（非常用）を使用す	対処設備として，高圧窒素ガス供給系（非常用）は，主蒸			
気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃が	る。	気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃が			
し弁機能用アキュムレータ及び主蒸気逃がし安全弁自動	高圧窒素ガス供給系（非常用）は，主蒸気逃がし安全弁	し弁機能用アキュムレータ及び主蒸気逃がし安全弁自動			
減圧機能用アキュムレータの充填圧力が喪失した場合に	の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキ	減圧機能用アキュムレータの充填圧力が喪失した場合に			
おいて，主蒸気逃がし安全弁の作動に必要な窒素を供給で	ュムレータ及び主蒸気逃がし安全弁自動減圧機能用アキ	おいて，主蒸気逃がし安全弁（6個）の作動に必要な窒素			
きる設計とする。	ユムレータの充填圧力が䨤失した場合において，主蒸気逃	を高圧窒素ガスボンべにより供給できる設計とする。			
なお，高圧窒素ガスボンべの圧力が低下した場合は，現	がし安全弁の作動に必要な窒素を供給できる設計とする。 なお，高圧窒素ガスボンべの圧力が低下した場合は，現	高圧窒素がスボンべの圧力が低下した場合は，現場で高			
場で高圧窒素ガスボンべの切替え及び取替えが可能な設	場で高圧窒素ガスボンべの切替え及び取替えが可能な設	圧窒素ガスボンべの切替え及び取替えが可能な設計とす			
計とする。	計とする。	る。			
	＜中略＞	＜中略＞			
（b－2－2－2）代替高圧窒素ガス供給系による原子炉減圧	（b）代替高圧窒素ガス供給系による原子炉減圧	5.3 代替高圧窒素ガス供給系			
		＜中略＞			
原子炬冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，代替高圧窒素がス供給系は，主蒸気逃が	対処設備として，代替高圧窒素ガス供給系を使用する。	対処設備として，代替高圧窒素がス供給系は，主蒸気逃が			
し安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機	代替高圧窒素ガス供給系は，主蒸気逃がし安全弁の作動	し安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
木（3）（ii）b．（b）－（3）HPCS S 注入隔離弁は，現場で弁を操作することにより原子炉泠却材の漏えい箇所を隔離でき る設計とする。 主蒸気逃がし安全弁は，想定される重大事故等時に確実 に作動するように，原子炉格納容器内に設置し，制御用空気が䨤失した場合に使用する高圧窒素がス供給系（非常用）及び代替高圧窒素ガス供給系の高圧窒素ガスボンべの容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。操作は，中央制御室で可能 な設計とする。	HPCS注入隔離弁は，現場で弁を操作することにより原子炬冷却材の漏えい箇所を隔離できる設計とする。 <中略> 5．5．2．4 環境条件等 <中略> 主蒸気逃がし安全弁は，想定される重大事故等時に確実 に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する高圧窒素がス供給系（非常用）の高圧窒素ガスボン心゙の容量の設定も含めて，想定さ れる重大事故等時における環境条件を考慮した設計とす る。 主蒸気逃がし安全弁の操作は，想定される重大事故等時 において中央制御室で可能な設計とする。 代替高圧窒素ガス供給系で使用する主蒸気逃がし安全弁は，想定される重大事故等時に確実に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する代替高圧窒素ガス供給系の高圧窒素ガスボンベ の容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。 <中略>	棟内へ漏えいして蒸気となり，原子炬建屋原子炬棟内の圧 カが上昇した場合において，外気との差圧により自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下させ ることができる設計とする。 5．2 高圧炉心スプレイ系 5．2．1 系統構成 <中略 > インターフェイスシステムLOCA発生時の重大事故等対処設備として，木（3）（ii）b．（b）－③高圧炬心スプレイ系注入隔離弁（E22－F003）は，現場で弁を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。 なお，設計基準事故対処設備である高圧灲心スプレイ系注入隔離弁（E22－F003）を重大事故等対処設備（設計基準拡張）として使用できる設計とする。 ＜中略＞ 3.4 主蒸気逃がし安全弁の機能 3．4．2 環境条件等 主蒸気逃がし安全弁は，想定される重大事故等時に確実 に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系の高圧窒素ガスボンベの容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。操作は，中央制御室で可能 な設計とする。	設計及び工事の計画の木（3）（ii ）b．（b）－（3）は，設置変更許可申請書（本文（五号））の㕅（3）（ ii ） b．（b）－（3）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項			整合性	備	考
主蒸気逃がし安全弁逃がし弁機能用アキュムレータ 個数 11 容量 約 15L（1個当たり） 主蒸気逃がし安全弁自動減圧機能用アキュムレータ 個数 6 容量 約 200L（1 個当たり）	（2）主蒸気逃がし安全弁逃がし弁機能用アキュムレータ 個数 11 容量 約15L（1個当たり） （3）主蒸気逃がし安全弁自動減圧機能用アキュムレータ個数 6 容量 約200L（1個当たり）	【原子炉冷却系統施設 （要目表） ＊4 ：朁工事計画書に記䡛 付3盗守第10518号にて認が，	気タービンを陵 或の適正化を行う。記載｜ 載の適正化を行う。记䡙 －強度計筧書」による の強度計莀書」による	（。）】 変 更 後 変更なし 士，設計龱昌によろ。 は，平成 4 年1月13日 －2－1－2 主蒸気逃がし安 雰更なし と兼用。 は，設計図書による は，平成 4 年 1 月 13 日 －2－1－3 主䒱気逃がし安			
		＊－56					

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
原子炉建屋ブローアウトパネル 木（3）（ ii ）b．（b）－（5）個数 1 ［可搬型重大事故等対処設備］主蒸気逃がし安全弁用可搬型蓄電池 個数 1 （予備1） 容量 約 24Ah （c）原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を冷却するための設備	（5）原子炉建屋ブローアウトパネル 個数 1 取付箇所 原子炉建屋地上 3 階 （4）主蒸気逃がし安全弁用可搬型蓄電池 型式 小型制御弁式鉛蓄電池 個数 1 （予備1） 容量 約 24 Ah 電圧 120 V 使用箇所 制御建屋地上 2 階 保管場所 制御建屋地上2階 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を冷却するための設備 5．6．1 概要	【浸水防護施設】（基本設計方針） 2．発電用原子炉施設内における溢水等による損傷の防止 2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関する溢水評価及び防護設計方針 2．5．3 蒸気影響に対する評価及び防護設計方針 ＜中略＞ また，主蒸気管破断事故時等には，原子炉建屋原子炉棟内外の差圧による原子炉建屋ブローアウトパネル（困 （3）（ii）b．（b）－（5）設置枚数 1 枚，開放差圧 4.4 kPa 以下）（原子炉格納施設の設備を浸水防護施設の設備として兼用）の開放により，溢水防護区画内において蒸気影響を軽減する設計とする。 【非常用電源設備】（要目表） 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4．残留熱除去設備 4．1 残留熱除去系 4．1．2 原子炉停止時冷却モード （1）系統構成	設計及び工事の計画の床（3）（ii）b．（b）－（5）は，設置変更許可申請書（本文（五号））の术（3）（ii） b．（b）－（5）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の椧却機能が喪失した場合においても炬心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炬を冷却するた めに必要な（3）（ii）b．（c）－（1）重大事故等対処設備を設置及び保管する。	原子炬冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炉を冷却するた めに必要な重大事故等対処設備を設置及び保管する。．．． ＜中略＞ また，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（低圧注水モード），残留熱除去系（原子炉停止時冷却モード）及び低圧炉心スプレイ系 が使用できる場合は，重大事故等対処設備（設計基準拡張） として使用する。残留熱除去系（低圧注水モード）及び残留熱除去系（原子炉停止時冷却モード）については，「5．2 残留熱除去系」に記載する。低圧炉心スプレイ系につい ては，「5．3 非常用炉心泠却系」に記載する。 5．6．2 設計方針 原子炉冷却材圧力バウンダリが低圧時に発電用原子炬 を泠却するための設備のらち，発電用原子炉を泠却し，炬	＜中略＞ 㕅（3）（ii）b．（c）－（1）原子炬冷却材圧力バウンダり低圧時 に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基蕉事故対処設備である残留熱除圭系（原子炬停止時冷却モード）が使用できる場合は，重大事故等対処設備．（設計基集捻張）として使用できる設計とする。… ＜中略＞ 5．非常用炉心椧却設備その他原子炉注水設備 5.3 低圧炉心スプレイ系 5．3．1 系統構成 ＜中略＞ 㕅（3）（ii）b．（c）－（1）原子炬冷却材圧力バウンダリ低圧時 に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基蕉事故対処設備である低圧炬心スプレイ系が使用できる場合は，重大事故等対処設備 （設計基漼㨩張）として使用できる設計とする。 ＜中略＞ 5．3．2 多様性，位置的分散等 低圧炉心スプレイ系は，設計基準事故対処設備であると ともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多樣性，位置的分散等」に示す設計方針は適用しない。 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炬注水 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が	設計及び工事の計画の床（3）（ii）b．（c）－（1）は， 設置変更許可申請書（本 文（五号））の术（3）（ii） b．（c）－（1）を具体的に記 載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
木（3）（ii）b．（c）－（2）原子炬冾却村圧力バウンダりが低压時に発電用原子炬を涂却するための設備のらち，発䨖用原子炬を冾却し，炬心の著しい損傷及び原子炬格納容器の破損を防止するための設備として，低圧代替注水系（可般型） を設ける。また，炬心の著しい損傷に至るまでの時間的余裕のない場合に対応するため，低圧代替注水系（常設）を設ける。	5．6．1 概要 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炉を泠却するた めに必要な重大事故等対処設備を設置及び保管する。 < 中略 > 5．6．2 設計方針 原子炉冷却材圧力バウンダリが低圧時に発電用原子炉 を冷却するための設備のらち，発電用原子炉を冷却し，炬心の著しい損傷及び原子炉格納容器の破損を防止するた めの設備として，低圧代替注水系（可搬型）を設ける。ま た，炬心の著しい損傷に至るまでの時間的余裕のない場合 に対応するため，低圧代替注水系（常設）を設ける。 <中略 >	5．9．1 系統構成 㕅（3）（ii）b．（c）－（1）原子炬冷却材圧力バウンダリ低圧時 に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除寺采（低压注水モード）が使用できる場合は，重大事故等対処設備（設計基蕉摭張）として使用できる設計とす る． ＜中略＞ 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炬注水 木（3）（ii）b．（c）－（2）原子炬冷却材圧力バウンダリが低圧 の状態であって，設計基蕉事故対処設備が有する発電用原子炬の冷却機能が霛失した場合においても炬心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炉を椧却するために必要な重大事故等対処設備として，炬心の著しい損傷に至るまでの時間的余裕のない場合に対応するための低圧代替注水系（常設）（復水移送ポンプ） を設ける設計とする。 5．6．2 低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子炬注水 㕅（3）（ii）b．（c）－（2）原子炬冷却材圧力バウンダりが低圧 の状態であって，設計基蕉事故対処設備が有する発電用原子炬の冷却機能が霛失した場合においても炬心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炉を冷却するために必要な重大事故等対処設備として，炬心の著しい損傷に至るまでの時間的余裕のない場合に対応するための低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）を設ける設計とする。 5．6． 3 低圧代替注水系（可搬型）による原子炉注水 床（3）（ii）b．（c）－（2）原子炬冷却材圧力バウンダリが低圧	設計及び工事の計画の木（3）（ii）b．（c）－（2）は，設置変更許可申請書（本文（五号））の㕅（3）（ ii ） b．（c）－（2）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ $\mathrm{c}-1$ ）原子炉運転中の場合に用いる設備 （ $c-1-1$ ）フロントライン系故障時に用いる設備 （c－1－1－1）低圧代替注水系（常設）（復水移送ポンプ）に よる発電用原子炉の冷却 残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系の機能が䨤失した場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポン プにより，復水貯蔵タンクの水を残留熱除去系等を経由し て原子炉圧力容器へ注水することで炉心を泠却できる設計とする。	5．6．2 設計方針 （1）原子炉運転中の場合に用いる設備 a．フロントライン系故障時に用いる設備 （a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）を使用する。 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送 ポンプ，配管•弁類，計測制御装置等で構成し，復水移送 ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで炉心を泠却でき る設計とする。	の状熊であって，設計基蕉事故対处設備が有する発霊用原子炬の冷却機能が霛失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子灯を冷却するために必要な重大事故等対処設備として，低圧代替注水系（可搬型）を設ける設計とする。 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 ＜中略＞ 残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系の機能が喪失した場合並びに全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系による発電用原子炉 の泠却ができない場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプ により，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで炉心を冷却できる設計 とする。 ＜中略＞ 【原子炉格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （1）低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 < 中略 > 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送 ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炉心を泠却 できる設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。	低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供殓設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。	て原子炉圧力容器へ注水することで溶融炉心を泠却でき る設計とする。 < 中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5.6 低圧代替注水系 5．6．3 低圧代替注水系（可搬型）による原子炉注水 <中略 > 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。 <中略 > 【原子炉格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （2）低圧代替注水系（可搬型）による原子炉注水 <中略 > 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。 < 中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5． 10 水源，代替水源移送系 5．10．1 重大事故等の収束に必要となる水源 <中略 > 海は，想定される重大事故等時において，淡水が枯渇し た場合に，復水貯蔵タンクへ水を供給するための水源であ るとともに，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型）の水源として利用できる設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
低圧代替注水系（可搬型）は，非常用交流電源設備に加 えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。また，大容量送水ポンプ（タイプI）は，空泠式の ディーゼルエンジンにより駆動できる設計とする。	低圧代替注水系（可搬型）は，非常用交流電源設備に加元て，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。また，大容量送水ポンプ（タイプI）は，空椧式の ディーゼルエンジンにより駆動できる設計とする。燃料 は，燃料補給設備である軽油タンク又はガスタービン発電設備軽油タンク及びタンクローリにより補給できる設計 とする。 ＜中略＞	5．10．2 代替水源移送系 <中略> また，淡水が枯渴した場合に，重大事故等の収束に必要 な水源である復水貯蔵タンクへ海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI） は，海水を補給水系等を経由して復水貯蔵タンクへ供給で きる設計とする。 < 中略 > 5．6．3 低圧代替注水系（可搬型）による原子炉注水 <中略 > 低圧代替注水系（可搬型）は，非常用交流電源設備に加 えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。 大容量送水ポンプ（タイプI）は，空冷式のディーゼル エンジンにより駆動できる設計とする。 <中略> 【原子炉格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （2）低圧代替注水系（可搬型）による原子炬注水 <中略 > 低圧代替注水系（可搬型）は，非常用交流電源設備に加 えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。 大容量送水ポンプ（タイプI）は，空泠式のディーゼル エンジンにより駆動できる設計とする。 <中略>		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	合性	備 考
（c－1－2）サポート系故障時に用いる設備 （c－1－2－1）低圧代替注水系（常設）による発電用原子炉の 冷却 全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障 により，残留熱除去系（低圧注水モード）及び低圧炉心ス プレイ系が起動できない場合の重大事故等対処設備とし て本（3）（ii）b．（c）－（3）使用する低圧代替注水系（常設）は，「ホ（3）（ii）b．（ $\mathrm{c}-1-1-1$ ）低圧代替注水系（虽設）（復水移送ポンプ）による発電用原子炉の冷却」及び「ホ（3）（ii） b．（ $\mathrm{c}-1-1-2$ ）低圧代替注水系（虽設）（直流駆動低圧注水系ポンプ）による発電用原子炉の冷却」と同じである。	b．サポート系故障時に用いる設備 （a）低圧代替注水系（常設）による発電用原子炉の冷却 全交流動力電源喪失又は原子炬補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障 により，残留熱除去系（低圧注水モード）及び低圧灯心ス プレイ系が起動できない場合の重大事故等対処設備とし て使用する低圧代替注水系（虽設）は，「（1）a．．．（a）低圧代替注水系（虽設）（復水移送ポンプ）による発電用原子炬 の泠却」及び「（1）a．（b）－低圧代替注水系（常設）（直流駆動低圧注水采ポンプ）による発電用原子炬の冷却」と同 じである。	【原子炬洽却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系の機能が喪失した場合並びに全交流動力電源喪失又は原子炬補機冷却水采（原子炬禣機冷却海水系を含む。）機能啔失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系による発電用原子炬 の冷却ができない場合の重大事故等対処設備として，困 （3）（ii）b．（c）－（3）低压代替注水系（虽設）（復水移送ポンプ） は，復水移送ポンプにより，復水賰蔵タンクの水を残留熱除去系等を経由して原子炬圧力容器へ注水することで炬心を椧却できる設計とする。 ＜中略＞ 5．6．2 低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子师注水 残留熱除去系（低圧注水モード）及び低圧炬心スプレィ系の機能が喪失した場合並びに全交流動力電源表失又は原子炬補機冷却水系（原子炬補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系による発電用原子炬 の冷却ができない場合の重大事故等対処設備として，困 （3）（ii）b．（c）－（3）低压代替注水系（虽設）（直流駆動低圧注水系ポンプ）は，直流駆動低圧注水系ポンプにより，復水貯蔵タンクの水を高压炬心スプレイ系等を経由して原子炬圧力容器へ蕉水することで炬心を喻却できる設計とす 3． ＜中略＞ 5.6 低圧代替注水系 5．6．3 低圧代替注水系（可搬型）による原子炉注水	設計及び工事の計画の木（3）（ii）b．（c）－③は， 設置変更許可申請書（本文（五号））の困（3）（ii） b．（c）－（3）を具体的に記載しており整合してい る。	「ホ（3）（ii）b． （ $\mathrm{c}-1-1-1$ ）」につ いてはP．木－60に記載。 「ホ（3）（ii）b ． （ $\mathrm{c}-1-1-2$ ）」につ いてはそれぞれ P．木－62に記載。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
压代替注水系（㬝設）（復水移送ポンプ）による発霓用原子炬の桧却」に記載する。 （ c －1－3－2）低圧代替注水系（可搬型）による残留溶融炉心 の冷却 炉心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融炉心が存在する場合に，溶融炉心を冷却し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とす る。 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプII）により海を利用でき る設計とする。	（虽設）（復水移逮ポンプ）による登電用原子炬の冷却」に記載する。．．． （b）低圧代替注水系（可搬型）による残留溶融炬心の冷却 炬心の著しい損傷，溶融が発生した場合において，原子炬圧力容器内に溶融炬心が存在する場合に，溶融炬心を泠却し，原子炬格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）を使用する。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイ プI），配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプ I）により，代替淡水源の水を残留熱除去系等を経由して原子炬圧力容器へ注水するこ とで原子炬圧力容器内に存在する溶融炉心を椧却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。	5．6．3 低圧代替注水系（可搬型）による原子炉注水 <中略> 炬心の著しい損傷，溶融が発生した場合において，原子炬圧力容器内に溶融炉心が存在する場合に，溶融炉心を泠却し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプ I）により，代替淡水源の水を残留熱除去系等を経由して原子炬圧力容器に注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とす る。 ＜中略＞ 低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。 ＜中略＞ 5． 10 水源，代替水源移送系 5．10．1 重大事故等の収束に必要となる水源 <中略> 海は，想定される重大事故等時において，淡水が枯渇し た場合に，復水貯蔵タンクへ水を供給するための水源であ るとともに，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型）の水源として利用できる設計とする。 5．10．2 代替水源移送系	文（五号））「ホ（3）（ii） b．（ $c-1-1-1$ ）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炬の冷却」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
3 溶融炬心を椧却できる設計とする。	た，サプレッションチェンバのプール水を残留熱除去系を	3溶融炬心を洽却できる設計とする。		
	経由して原子炉圧力容器へ注水することで原子炬圧力容	また，本系統に使用する洽却水は，原子炬補機冷却水系		
	器内江存在する溶融炬心を泠却できる設計とする。	（ 原子炉補機冷却海水系を含む。）又は原子炉補機代替冷		
		却水系から供給できる設計とする。		
		代替循環冷却系は，非常用交流電源設備に加えて，代替		
		所内電気設備を経由した常設代替交流電源設備からの給		
		電が可能な設計とする。		
		＜中略＞		
本系統の詳細については，「り（3）（ii）b．原子炬格䋑容器の猧圧破損を防止するための設備」に記載する。	本系統の詳細については，「9．3 3 原子饬格紿容器の過压破損を防止するための設備」に記載する。		設置変更許可申請書（本文（五号））「リ（3）（ii） b．原子炬格納容器の過	
（c－2）原子炉停止中の場合に用いる設備 （c－2－1）フロントライン系故障時に用いる設備	（2）原子炉停止中の場合に用いる設備		圧破損を防止するため	
	a．フロントライン系故障時に用いる設備 （a）低圧代替注水系（常設）による発電用原子炉の洽却	5.6 低圧代替注水系	の設備」に示す。	
（c－2－1）フロントライン系故障時に用いる設備 （ $c-2-1-1$ ）低圧代替注水系（常設）による発電用原子炉の		5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による		
泠却		原子炉注水		
		＜中略〉		
発電用原子炉停止中において残留熱除去系（原子炉停止	発電用原子炬停止中汇おいて残留熱除去系（原子炬停止	発電用原子炬停止中において残留熱除去系（原子炉停止	設計及び工事の計画の	「ホ（3）（ii）b．
時泠却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が䨤失した場合及び発電用原子炉停	㕅（3）（ii）b．（c）－（5）は，	（c－1－1－1）」につ
備として床（3）（ii）b．（c）－（5）使用する低压代替注水系（虽	備として使用する低压代替注水奚（虽設）は，「（1）a－（a）	止中において全交流動力電源喪失又は原子炉補機泠却水	設置変更許可申請書（本	いてはP．ホ－60に
設）は，「ホ（3）（ii）b－（c－1－1－1），低圧代賛注水系（虽設） （復水移送ポンプ）による登電用原子炬の冷却」と同じで	低压代替注水采（當設）（ 復水移送ポンプ）によう登霉用	系（原子炬補機冷却海水系を含む。）機能啔失によるサポー	文（五号））の术（3）（ii）	記載
	原子炬の冷却」と同じである。	卜系の故障により，残留熱除去系（原子炉停止時冷却モー	b．（c）－（5）を具体的に記	
ある。		ド）が起動できない場合の重大事故等対処設備として困	載しており整合してい	
		（3）（ii）b．（c）－（5），，低压代替注水采．（党誥）（復水移送ポン		
		プ）は，復水移送ポンプにより，復水貯蔵タンクの水を残		
		留熱除去系等を経由して原子炬圧力容器へ注水すること		
		で炬心を椧却できる設計とする。		
		＜中略＞		
（c－2－1－2）低圧代替注水系（可搬型）こよる発電用原子炉	（b）低圧代替注水系（可搬型）とよる発電用原子炉の泠却	5．6．3 低圧代替注水系（可搬型）による原子炬注水		
の泠却		＜中略＞		
発電用原子炬停止中において残留熱除去系（原子炬停止	発電用原子炬停止中において残留熱除去系（原子炬停止	発電用原子炬停止中において残留熱除去系（原子炉停止	設計及び工事の計画の	「ホ（3）（ii）b
時洽却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が喪失した場合及び発電用原子炬停	（3）（ii）b．（c）－（6）は，	（c－1－1－3）」につ
備として床（3）（ii）b．（c）－6）使用する低压代替注水系（可搬	備として使用する低压代替注水奚（可搬型）は，は，「．．1）a ．	止中において全交流動力電源震失又は原子炉補機泠却水	設置変更許可申請書（ （本	いてはP． $\begin{gathered}\text {－63に }\end{gathered}$

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
型）は，「ホ（3）（ii）b．（c－1－1－3）－低圧代替注水系（可搬型）による発電用原子炉の冷却」と同じである。	（c）低圧代替注水系（可船型）による発䨌用原子炉の冷却」と同じである。	系（原子炉補機冷却海水系を含む。）機能喪失によるサポー ト系の故障により，残留熱除去系（原子炉停止時冷却モー ド）が起動できない場合の重大事故等対処設備として困 （3）（ii）b．（c）－（6），低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除圭系等を経由して原子炉圧力容器に注水することで哣心 を冷却できる設計とする。 <中略 >	文（五号））の床（3）（ii） b．（c）－（6）を具体的に記載しており整合してい る。	記載
（ $\mathrm{c}-2-2$ ）サポート系故障時に用いる設備 （c－2－2－1）低圧代替注水系（常設）による発電用原子炉の冷却	b．サポート系故障時に用いる設備 （a）低圧代替注水系（常設）による発電用原子炉の泠却	5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 < 中略 >		
発電用原子炉停止中において全交流動力電源䨤失又は	発電用原子炉停止中において全交流動力電源喪失又は	発電用原子炉停止中において残留熱除去系（原子炉停止	設計及び工事の計画の	「ホ（3）（ii）b ．
原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能	原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機	時冷却モード）の機能が喪失した場合及び発電用原子炉停	木（3）（ ii ）b．（c）－（7）は，	（ $\mathrm{c}-1-1-1$ ）」につ
喪失によるサポート系の故障により，残留熱除去系（原子	態喪失によるサポート系の故障により，残留熱除去系（原	止中において全交流動力電源喪失又は原子炉補機冷却水	設置変更許可申請書（本	いてはP．ホ－60に
炬停止時冷却モード）が起動できない場合の重大事故等対	子炉停止時冷却モード）が起動できない場合の重大事故等	系（原子炉補機冷却海水系を含む。）機能喪失によるサポー	文（五号））の术（3）（ii）	記載
処設備として㕅（3）（ii）b．（c）－（7）使用する低圧代替注水系	対処設備として使用する低圧代替注水系（常設）は，「（1）	ト系の故障により，残留熱除去系（原子炉停止時冷却モー	b．（c）－（7）を具体的に記	
（党設）は，「ホ（3）（ii）b ，（c－1－1－1）低圧代替注水系（當	a． （a）低圧代替注水系（常設） （復水移送ポンプ）によ	ド）が起動できない場合の重大事故等対処設備として困	載しており整合してい	
設）（復水移送ポンプ）による発電用原子炉の泠却」と同じ	る登電用原子炉の冷却」と同じである	（3）（ii ）b．（c）－7，，低圧代替注水采．．．（常設）（復水移送ポン	る	
である。		プ）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炬圧力容器へ注水すること で烸心を冷却できる設計とする。．．． < 中略 >		
（c－2－2－2）低圧代替注水系（可搬型）による発電用原子炉 の泠却	（b）低圧代替注水系（可搬型）こよる発電用原子炉の泠却	5．6． 3 低圧代替注水系（可搬型）による原子炉注水 <中略>		
発電用原子炉停止中において全交流動力電源喪失又は	発電用原子炬停止中において全交流動力電源喪失又は	発電用原子炉停止中において残留熱除去系（原子炉停止	設計及び工事の計画の	「ホ（3）（ii）b ．
原子炉補機泠却水系（原子炉補機冷却海水系を含む。）機能	原子炉補機冷却水系（原子炬補機冷却海水系を含む。）機	時冷却モード）の機能が喪失した場合及び発電用原子灯停	※（3）（ii）b．（c）－8）は，	（ $\mathrm{c}-1-1-3)$ 」につ
喪失によるサポート系の故障により，残留熱除去系（原子	態喪失によるサポート系の故障により，残留熱除去系（原	止中において全交流動力電源喪失又は原子炉補機冷却水	設置変更許可申請書（本	いてはP．末－63に
炬停止時冷却モード）が起動できない場合の重大事故等対	子炉停止時冷却モード）が起動できない場合の重大事故等	系（原子炉補機冷却海水系を含む。）機能喪失によるサポー	文（五号））の术（3）（ ii ）	
処設備として术（3）（ ii ）b．（c）－8使用する低圧代替注水系		ト系の故障により，残留熱除去系（原子炉停止時冷却モー	b．（c）－（8）を具体的に記	
（可船型）は，「ホ（3）（ii）b。（ $\mathrm{c}-1-1-3$ ）低圧代替注水采 （可搬型）による発電用原子炬の冷却」と同じである。	a．（c）（低圧代替注水采（可搬型）による発電用原子炉の冷却」と同じである。	ド）が起動できない場合の重大事故等対処設備として，困 （3）（ii）b．（c）－（8）低圧代替注水系（可搬型）は，大容量送水 ポンプ（タイプI）により，代替淡水源の水を残留熱除去	載しており整合してい る。	

設置変更許可申請書（本文（五号）低圧炬心スプレイ系と共通要因によって同時に機能を損 なわないよう，復水移送ポンプを代替所内電気設備を経由 した常設代替交流電源設備又は可搬型代替交流電源設備 からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モー ド及び原子炉停止時冷却モード）及び低圧炉心スプレイ系 ポンプを用いた低圧炬心スプレイ系に対して多様性を有 する設計とする。

低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設） （復水移送ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。また，電動弁（直流）は，ハンドルを設けて手動操作を可能とするこ とで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。

また，低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェン バを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系に対して異なる水源を有する設計とする。

設置変更許可申請書（添付書類八）該当事項
び低圧炉心スプレイ系と共通要因によって同時に機能を損なわないよう，復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備 を経由した非常用交流電源設備からの給電により駆動す る残留熱除去系ポンプを用いた残留熱除去系（低圧注水モ ード及び原子炉停止時冷却モード）及び低圧炬心スプレイ系ポンプを用いた低圧炉心スプレイ系に対して多様性を有する設計とする。

低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設） （復水移送ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。また，電動弁（直流）は，ハンドルを設けて手動操作を可能とするこ とで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。

また，低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系に対して異なる水源を有する設計とす る。

低圧炉心スプレイ系と共通要因によって同時に機能を損 なわないよう，復水移送ポンプを代替所内電気設備を経由 した常設代替交流電源設備又は可搬型代替交流電源設備 からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モー ド及び原子炉停止時冷却モード）及び低圧炬心スプレイ系 ポンプを用いた低圧炉心スプレイ系に対して多様性を有 する設計とする。
低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設） （復水移送ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。
低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作 に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統において，独立し た電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり， 125 V 代替蓄電池から 125 V 直流主母線盤まで の系統において，独立した電路で系統構成することによ り，非常用ディーゼル発電機の交流を直流に変換する電路 に対して，独立性を有する設計とする。
低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵 タンクを水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心ス プレイ系に対して異なる水源を有する設計とする。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
復水移送ポンプは，原子炉建屋原子炬棟内の残留熱除去	復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去	復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去			
系ポンプ及び低圧炉心スプレイ系ポンプと異なる区画に	系ポンプ及び低圧灲心スプレイ系ポンプと異なる区画に	系ポンプ及び低圧炉心スプレイ系ポンプと異なる区画に			
設置することで，共通要因によって同時に機能を損なわな	設置することで，共通要因によって同時に機能を損なわな	設置することで，共通要因によって同時に機能を損なわな			
いよう位置的分散を図る設計とする。	いよう位置的分散を図る設計とする。	いよう位置的分散を図る設計とする。			
復水貯蔵タンクは，屋外に設置することで，原子炉建屋	復水貯蔵タンクは，屋外に設置することで，原子炉建屋	復水貯蔵タンクは，屋外に設置することで，原子炉建屋			
原子炉棟内のサプレッションチェンバと共通要因によっ	原子炉棟内のサプレッションチェンバと共通要因によっ	原子炉棟内のサプレッションチェンバと共通要因によっ			
て同時に機能を損なわないよう位置的分散を図る設計と	て同時に機能を損なわないよう位置的分散を図る設計と	て同時に機能を損なわないよう位置的分散を図る設計と			
する。	する。	する。			
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，			
残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系	は，残留熱除去系（低圧注水モード）及び低圧灯心スプレ	残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系			
と共通要因によって同時に機能を損なわないよう，直流駆	イ系と共通要因によって同時に機能を損なわないよう，直	と共通要因によって同時に機能を損なわないよう，直流駆			
動低圧注水系ポンプを常設代替直流電源設備からの給電	流駆動低圧注水系ポンプを常設代替直流電源設備からの	動低圧注水系ポンプを常設代替直流電源設備からの給電			
により駆動することで，非常用交流電源設備からの給電に	給電により駆動することで，非常用交流電源設備からの給	により駆動することで，非常用交流電源設備からの給電に			
より駆動する残留熱除去系ポンプを用いた残留熱除去系	電により駆動する残留熱除去系ポンプを用いた残留熱除	より駆動する残留熱除去系ポンプを用いた残留熱除去系			
（低圧注水モード）及び低圧炉心スプレイ系ポンプを用い	去系（低圧注水モード）及び低圧炉心スプレイ系ポンプを	（低圧注水モード）及び低圧炉心スプレイ系ポンプを用い			
た低圧炉心スプレイ系に対して多様性を有する設計とす	用いた低圧炉心スプレイ系に対して多様性を有する設計	た低圧炉心スプレイ系に対して多様性を有する設計とす			
る。	とする。	る。			
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の			
電動弁（直流）は，ハンドルを設けて手動操作を可能とす	の電動弁（直流）は，ハンドルを設けて手動操作を可能と	電動异（直流）は，ハンドルを設けて手動操作を可能とす			
ることで，所内常設蓄電式直流電源設備又は常設代替直流	することで，所内常設蓄電式直流電源設備又は常設代替直	ることで，所内常設蓄電式直流電源設備又は常設代替直流			
電源設備からの給電による遠隔操作に対して多様性を有	流電源設備からの給電による遠隔操作に対して多様性を	電源設備からの給電による遠隔操作に対して多様性を有			
する設計とする。	有する設計とする。	する設計とする。また，低圧代替注水系（常設）（直流駆動			
		低圧注水系ポンプ）の電動弁（直流）は， 125 V 蓄電池から			
		125 V 直流主母線盤までの系統において，独立した電路で系			
		統構成することにより，非常用ディーゼル発電機の交流を			
		直流に変換する電路に対して，独立性を有する設計とす			
		る。さらに， 125 V 代替蓄電池から 125 V 直流主母線盤まで			
		の系統において，独立した電路で系統構成することによ			
		り，非常用ディーゼル発電機の交流を直流に変換する電路			
		に対して，独立性を有する設計とする。			
また，低圧代替注水系（常設）（直流駆動低圧注水系ポン	また，低圧代替注水系（常設）（直流駆動低圧注水系ポ	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，			
プ）は，復水貯蔵タンクを水源とすることで，サプレッシ	ンプ）は，復水貯蔵タンクを水源とすることで，サプレッ	復水貯蔵タンクを水源とすることで，サプレッションチェ			
ヨンチェンバを水源とする残留熱除去系（低圧注水モー	ションチェンバを水源とする残留熱除去系（低圧注水モー	ンバを水源とする残留熱除去系（低圧注水モード）及び低			
ド）及び低圧炉心スプレイ系に対して異なる水源を有する	ド）及び低圧炉心スプレイ系に対して異なる水源を有する	圧炉心スプレイ系に対して異なる水源を有する設計とす			
設計とする。	設計とする。	る。			

設置変更許可申請書（本文（五号））
直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置することで，原子炉建屋原子炬棟内の残留熱除去系ポン プ及び低圧炉心スプレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。

復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炬棟内のサプレッションチェンバと共通要因によっ て同峙に機能を損なわないよう位置的分散を図る設計と这。
低圧代替注水系（可般型）は，残留期除去系（低圧注水 モード及び原子炬信止時洽却モード），低主炬ふスプレイ恶及び低府代澘注水系（常設）と共通要因によって同時で機能を損なかないよう，大容量送水ポンブ（タイプI）を缶洽きのデイーゼルエンジンにより騳動することで，電動
 ード及び原子炬停止時给却モード），低压疤ふスプレイ系及び低厌代替注水系（常設）に対して多聪性を有する設䛠 とする。
低圧代替注水系（可般型）の電動弁は，ハンドルを設け て手雨撕作を可能とすることで，非常用交流電源設偳から の給電による遠隔提作に対して多粎性を有する設計とす る。また，低厈代替注水采（可般型）の電霉弁性，代替所内電気設椫を徐由して給電する系䖻におおいて，独立した電
 して給電する系䖻に対してて独立性を有する設計とさる。

また，低圧代替注水系（可搬型）は，代替淡水源を水源 とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系並び に復水販蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。
大容量送水ポンプ（タイプI）は，原子炉建屋から離れ た屋外に分散して保管することで，原子炬建屋原子炬棟内 の残留熱除去系ポンプ，低圧炬心スプレイ系ポンプ及び復水移送ポンプ並びに原子炬建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわな

設置変更許可申請書（添付書類八）該当事項
直流駆動低圧注水系ポンプは，原子炬建屋付属棟内に設置することで，原子炬建屋原子炬棟内の残留熱除去系ポン プ及び低圧炬心スプレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。復水貥蔵タンクは，屋外記設置することで，原子炬建屋原子炬棟内のサプレッションチェンバと共通要因によっ て同時に機能を損なわないよら位置的分散を図る設計と さる。
低圧代替注水系（可搬型）は，残留熱除去系（低圧注水 モード及び原子炬停止時冷却モード），低圧炬心スプレイ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプI）を空泠式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モ ード及び原子炬停止時洽却モード），低压炬心スプレイ系及び低圧代替注水系（常設）に対して多㨾性を有する設計 とする。
低圧代替注水系（可搬型）の電動弁は，ハンドルを設け て手動操作を可能とすることで，非常用交流電源設備から の給電による遠隔操作に対して多様性を有する設計とす る。また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由 して給電する系統に対して独立性を有する設計とする。

また，低圧代替注水系（可搬型）は，代替淡水源を水源 とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系並び に復水貯蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。
大容量送水ポンプ（タイプI）は，原子炻建屋から皠れ た屋外に分散して保管することで，原子炬建屋原子炉棟内 の残留熱除去系ポンプ，低圧炬ふスプレイ系ポンプ及び復水移送ポンプ並びに原子炉建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわな

設計及び工事の計画 該当事項
直流駆動低圧注水系ポンプは，原子炬建屋付属棟内に設置することで，原子炬建屋原子炉棟内の残留熱除去系ポン プ及び低圧炬心スプレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。復水貯蔵タンクは，屋外化設置することで，原子炬建屋原子炉棟内のサプレッションチェンバと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と さる。
低圧代替注水系（可搬型）は，残留熱除去系（低圧注水 モード及び原子炉停止時冷却モード），低圧炉心スプレイ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプI）を空椧式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モ ード及び原子炬停止時冷却モード），低圧炬心スプレイ系及び低圧代替注水系（常設）に対して多様性を有する設計 とする。
低圧代替注水系（可搬型）の電動弁は，ハンドルを設け て手動操作を可能とすることで，非常用交流電源設備から の給電による遠隔操作に対して多樣性を有する設計とす る。
また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路 で系統構成することにより，非常用所内電気設備を経由し て給電する系統に対して独立性を有する設計とする。
低圧代替注水系（可搬型）は，代替淡水源を水源とする ことで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系並びに復水貝蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。
大容量送水ポンプ（タイプI）は，原子炬建屋から離れ を屋外に分散して保管することで，原子炬建屋原子炬棟内 の残留熱除去系ポンプ，低圧炬心スプレイ系ポンプ及び復水移送ポンプ並びに原子炬建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわな

整 合 性

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
いよう位置的分散を図る設計とする。	いよら位置的分散を図る設計とする。	いよら位置的分散を図る設計とする。			
大容量送水ポンプ（タイプI）の接続口は，共通要因に	大容量送水ポンプ（タイプI）の接続口は，共通要因に	大容量送水パンプ（タイプI）の接続口は，共通要因に			
よって接続できなくなることを防止するため，位置的分散	よって接続できなくなることを防止するため，位置的分散	よって接続できなくなることを防止するため，位置的分散			
を図った複数箇所に設置する設計とする。	を図った複数箇所に設置する設計とする。	を図った複数箇所に設置する設計とする。			
低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替	低圧代替注水系（常設）（復水移送ポンプ）及び低圧代	低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替			
注水系（可搬型）は，残留熱除去系及び低圧炬心スプレイ	替注水系（可搬型）は，残留熱除去系及び低圧炬心スプレ	注水系（可搬型）は，残留熱除去系及び低圧炬心スプレイ			
系と共通要因によって同時に機能を損なわないよう，水源	イ系と共通要因によって同時に機能を損なわないよう，水	系と共通要因によって同時に機能を損なわないよう，水源			
加ら残留熱除去系配管との合流点までの采統について，残	源から残留熱除去系配管との合流点までの系統について，	から残留熱除去系配管との合流点までの系䖻について，残			
留熱除去系に対して独立性を有する設計とする。	残留熱除去系に対して独立性を有する設計とする。	留熱除去系に対して独立性を有する設計とする。			
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，			
残留熱除去系及び低圧炬心スプレイ系と共通要因によっ	は，残留熱除去系及び低圧炬心スプレイ系と共通要因によ	残留熱除去系及び低圧炬心スプレイ系と共通要因によっ			
て同時に機能を損なわないよう，流路を独立することで独	つて同時に機能を損なわないよう，流路を独立することで	て同時に機能を損なわないよう，流路を独立することで独			
立性を有する設計とする。	独立性を有する設計とする。	立性を有する設計とする。			
これらの多樣性及び系統の独立性並びに位置的分散に	これらの多様性及び系統の独立性並びに位置的分散に	これらの多樣性及び系統の独立性並びに位置的分散に			
よって，低圧代替注水系（常設）及び低圧代替注水系（可	よって，低圧代替注水系（常設）及び低圧代替注水系（可	よって，低圧代替注水系（常設）及び低圧代替注水系（可			
搬型）は，設計基漼事故対処設備である残留熱除去系（低	搬型）は，設計基準事故対処設備である残留熱除去系（低	搬型）は，設計基漼事故対処設備である残留熱除去系（低			
圧注水モード及び原子炬停止時泠却モード）及び低圧炉心	圧注水モード及び原子炬停止時冷却モード）及び低圧炬心	圧注水モード及び原子炬停止時冷却モード）及び低圧炬心			
スプレイ系に対して重大事故等対処設備としての独立性	スプレイ系に対して重大事故等対処設備としての独立性	スプレイ系に対して重大事故等対処設備としての独立性			
を有する設計とする。	を有する設計とする。	を有する設計とする。			
電源設備の多漛性及び独立性，位置的分散については「又（2）（iv）代替電源設備」に記載する。	電源設備の多様性及び独立性，位置的分散については「102 2 代賛電源設備」に記載する。…		設置変更許可申請書（本文（五号））「又（2）（iv）		
			代替電源設備」に示 す。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
［常設重大事故等対処設備］ 低圧代替注水系（常設） 復水移送ポンプ 木（3）（ii）b．（c）－⑨（「y（3）（ii）a－原子炉格納容器内の 渝却等のための設備」及び「リ（3）（ii）c．原子炉格納容 器下部の溶融炉心を冷却するための設備」と兼用）． 木（3）（ii）b．（c）－（10）台 数 2（予備1） 容 量 約 $100 \mathrm{~m}^{3} / \mathrm{h}$（1台当たり） 大（3）（ii）b．（c）－（11）全掦程 約 85 m （本文十号） 低圧代替注水系（常設）（復水移送ポンプ）流量 $199,130,100 \mathrm{~m}^{3} / \mathrm{h}$ －記載箇所	第 5．6－1 表 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を泠却するための設備の主要機器仕様 （1）低圧代替注水系（常設） a ．復水移送ポンプ 兼用する設備は以下のとおり。 - 原子炬格納容器内の椧却等のための設備 - －原子炬格納容器下部の溶融炉心を冷却するための設備 台 数 2（予備1） 容 量 約 $100 \mathrm{~m}^{3} / \mathrm{h}$（ 1 台当たり） 全揚程 約 85 m －設置変更許可申請書（本文十号）で使用している復水移送ポンプの注水流量は，設計及び工事の計画で使用 している復水移送ポンプの容量と整合しており，設置変更許可申請書（本文十号）で使用している解析条件に包絡されている。	【原子炬洽却采統施設（蒸気タービンを除く。）】 （要目表）\quad（3）（ii）b．（c）－（9） （1）解給水系 上兼用。 ＊2 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。 ＊3：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，設計図書 ＊4：による。 ＊5 ：：公大事事故等時における，非常用炉心治却設備その他原子炉注水設犕（低圧代㚘注水系）及び原子炉格納施設のらち圧力低域設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）で使用する場合の值（ポンプ1台運転時）。 ＊6 ：重大事故等時における，非常用炉心汾却設備その他原子炉注水設備（低圧代替 $* 7$ 注水系）で使用する坞合の値（ポンプ2台運転時）。 ＊7 ：重大事故等時における，原子妒格納施設のうち圧力低裁設備その他の安全設備 の原子炉格納容器安全設備（原子炉格納容器代替スプレイ椧却系）で使用する場合の値（ポンプ2台運転時） ＊8：重大事故等時における，原子妒格納施設のうち圧力低裁設備その他の安全設備 の原子炉格納容器安全設備（原子炉格納容器下部注水采）で使用小る场合の值 （事前水張り：ボンプ台運転時）。 ＊9 ：重大事故等時における，原子炉格納施設のうち圧力低践設備その他の安全設備 の原子妒格納容器安全設備（原子炉格納容器下部注水系）で使用する場合の值 ＊10：記載の適正化を行う。既工事計画書には「定格場屋」と記載。 ＊11：既工事計画書に記載かかないため，記載の適正化を行う。記載内容は，平成4年4月3日付け4㖟庁第1992号にて認可された工事計画の添付書疑「第2－2－3図 復水移送ボンブ構造図」による ＊ 12 ：非常用炉心冾却設備その他原子妒注水設備及び原子炉格納施設のうち圧力低淇設備その他の安全設犕の原子炉格納容器安全設備で使用する烫合の記載事項。	「復水移送ポンプ」は，設置変更許可申請書（本文（五号））における困 （3）（ii）b．（c）－（9）を設計及び工事の計画の主 たる登録先として「原子炉冷却系統施設」のうち 「原子炉冷却材補給設備」に整理し，設計及び工事の計画の术（3）（ii） b．（c）－（9）は，設置変更許可申請書（本文（五号））の床（3）（ii）b．（c） －（9）と同義であり整合 している。 設計及び工事の計画の木（3）（ii）b．（c）－（10は，設置変更許可申請書（本文（五号））の木（3）（ii） b．（c）－（10）と同義であり整合している。 設計及び工事の計画の木（3）（ii）b．（c）－（11）は，設置変更許可申請書（本文（五号））の ${ }^{\text {木（3）（ii）}}$ b．（c）－（11）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（4）その他の主要な事項 㕅（4）－（1）その他主要な設備として，以下のものを設置す 흥․․ （i）残留熱除去系 この系は，その運転方法（モード）により次の各機能を持たせる。すなわち，床（4）（i）－（1）原子炬停止後の炬心の崩壊熱及び原子炬圧力容器，，配管，，冷却材中の保有熱を除去 する原子炉停止時冷却モード，非虽用冷却設備としての低圧注水モード，，原子炬格納容器の補助系としての格納容器 スプレイ冷却モード等の各機能を持っており，ポンプ。，熱交換器等からなる。．．． また，本系統は，想定される重大事故等時においても使用する。	5.2 残留熱除去系 5．2．1 通常運転時等 5．2．1．1 概要 5．2．1．1．2 設備の機能 残留熱除去采は，通輝の原子炬停止時及び原子炬隔離時 の䐗壊熱及び残留熱の除去っ冷却材霝失事故封の炬心椧却等を目的とし，弁の切賛操作によって以下の4モードと－ つの禣助機能を有する。．．． （1）原子炬停止時冷却モード（2 ループ） （2）低圧注水モード（3ループ） （3）格納容器スプレイ椧却モード（2ループ） （4）サプレッションプール水椧却モード（2 ループ） （5）燃料プール椧却（2ループ）	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4.1 残留熱除去系 4．1．2 原子炬停止時洽却モード （1）系統構成 木（4）（i）－（1）発電用原子炬を停止した場合において，燃料要素の許容損傷限界及び原子炬冷却材圧力バウンダり の健全性を維持するために必要なパラメータが設計値を超えないようにするため，原子焒圧力容器内において発生 した残留熱を除寺することができる設備として残留熱除圭系を設ける設計とする。 残留熱除去系の冷却速度は，原子炬冾却材厈力バウン多 りの加熱•冾却速度の制限值（ $\left.55^{\circ} \mathrm{C} / \mathrm{h}\right)$ を超えないように制限できる設計とする。 原子炬冾却材压力バウンダり低圧時に発電用原子炬を洽却するための設備として，想定される重大事故等時にお いて，設計基準事故対处設備である残留熱除去系（原子炬停止時冷却モード）が使用できる場合洔，重太事故等対処設備（設計基漼应）張）として使用できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基蕉事故対处設備で ある歹残留熱除去系（原子焒停止時冷却モード）が使用でき予場合は重大事故等対处設備（設計基集拡張）として使用 できる設計とする。 ＜中略＞ （2）多樣性，位置的分散等 残留熱除去系（原子炉停止時冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多樣性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はな いことから，重大事故等対処設備の基本方針のらち「5．1．2多様性，位置的分散等」に示す設計方針は適用しない。	設置変更許可申請書（本文（五号））の困（4）－（1） は，以下で示す。 設計及び工事の計画の木（4）（i）－（1），，木（4） （i）－（1）b，木（4）（i）－（1） c及及び木（4）（i）－（1）d． は，設置変更許可申請書 （本文（五号））の杕（4） （i）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		4．1． 1 低圧注水モード 残留熱除去系（低圧注水モード）㕅（4）（i）－（1）bは，大破断の冷却材霍失事故時には低圧炬心スプレイ采及び高圧炬心スプレイ采と連携して，中小破断の椧却材唯失事故時 には高压焾スプレイ采あるいは自動減圧系と連撨して炬心を泠却する機能を有し，非虽用交流電源設備に結ばれ た電動機駆動ポンプにより，サプレッションチェンバのプ一ル水を直接烼心シュラウド内に注水する設計とする。．．． 4．1．3 格納容器スプレイ椧却モード （1）系統構成 㕅（4）（i）－（1）原子炉冷却系統に係る発電用原子炬施設 の損壊又は故障の際に生ずる原子炬格納容器内の圧力及 び温度の上昇により原子炬格納容器の安全性を損なうこ とを防止するため，原子炬格納容器内において発生した熱 を除寺する設備として，残留熱除圭系（格納容器スプレイ冷却モード）を設ける設計とする。 <中略> 残留熱除寺系（格納容器スプレイ椧却モード）は，は，原子炬冷却材圧力バウンダリ配管の最も過酷な破断を想定し た場合でも，放出されるエネルギによる設計基漼事故時の原子炬格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにしっかつ，原子炬格納容器の内圧を速 やかに下げて低く維持することにより，放射性物質の外部 への漏えいを少なくする設計とする。．．． 残留熱除寺設備の亏ち，サプレッションチェンバのプー ル水を水源として原子炬格納容器除熱のために運転する ポンプは，原子炉格納容器内の圧力及び温度並びに原子炬泠却材中の異物の影響について「非虽用炬心泠却設備又は格納容器熱除寺設備に係る万過装置の性能評価等につい て（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成20年2月 27日原子力安全•保安院制定））による万過装置の性能評価により，設計基蕉事故時に想定される最も小さい有効吸込水頭においても，正虽に機能する能力を有する設計とす る。			

設置変更許可申請書（ ${ }^{\text {a }}$ 本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		残留熱除圭系（格納容器スプレイ洽却モード）の供様は，設置（弯更）許可を受けた設計基蕉事故の評価の条件を满足する設計とする。… 残留熱除柰系．．．格納容器スプレイ洽却モード）．は，テス トラインを構成することにより，登電用原子淿の運転中に試験ができる設計とする。また。設計基蕉事故時に憅作す る弁については，残留熱除寺系ポンプがか停止中に閔閉試験 ができる設計とする。 最終ヒートシンクへへ熱を輸送するための設備として，想定される重大事故等時において，設計基集事故対处設備で ある畐残留熱除幸系（格納容器スプレイ椧却モード）が使用 できる場合は重大事故等対処設備（設計基漼应掁）として使用できる設計とする。．．． 残留熱除去系（格納容器スプレイ椧却モード）の流路と して，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。 （2）多樣性，位置的分散等 残留熱除去系（格納容器スプレイ椧却モード）は，設計基準事故対処設備であるとともに，重大事故等時において も使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多㥞性及び独立性並び に位置的分散を考慮すべき対象の設計基準事故対処設備 はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多栐性，位置的分散等」に示す設計方針は適用し ない。 4．1．4 木（4）（i）－（1）dサプレツションプール水冷却モード （1）系統構成 残留熱除去系（サプレッションプール水冾却モード）は， サプレッションチェンバのプール水温庶を所定の温度以下に冾却できる設計とする。．．． 最終ヒートシンクへへ熱を輸送するための設備として，想定される重大事故等時において，設計基淮事故対処設備で			

