

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
最終ヒートシンクへ熱を輸送するための設備のうち，設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，原子灲格納容器フィルタベント系，耐圧強化ベント系及び原子炬補機代替冷却水系を設ける。	＜中略＞ 5．10．2 設計方針 最終ヒートシンクへ熱を輸送するための設備のうち，設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が䨖失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，原子炉格納容器フィルタバント系，耐圧強化ベント系及び原子炬補機代替冷却水系を設ける。	とする。．．． ＜中略＞ 4．2 原子炉格納容器フィルタベント系 4．2．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱 を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生す る前に生ずるものに限る。）を防止するため，最終ヒート シンクへ熱を輸送するために必要な重大事故等対処設備 として，原子炬格納容器フィルタベント系を設ける設計と する。 <中略> 4．3 耐圧強化ベント系 4．3．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱 を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炬心の著しい損傷が発生す る前に生ずるものに限る。）を防止するため，最終ヒート シンクへ熱を輸送するために必要な重大事故等対処設備 として，耐圧強化ベント系を設ける設計とする。 ＜中略＞ 7． 3 原子炉補機代替冷却水系 7．3．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱 を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炬心の著しい損傷が発生す る前に生ずるものに限る。）を防止するため，最終ヒート シンクへ熱を輸送するために必要な重大事故等対処設備 として，原子炬補機代替冷却水系を設ける設計とする。 <中略>		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
炬格納容器内へのスプレイを停止する運用とする。．．．	には，原子炬格納容器内へのスプレイを停止する運用と交	の圧力まで減圧した場合には，原子炬格納容器内へのスプ		
	3．－．	レイを停止する運用を保安規定に定めて管理する。		
而圧強化ベント系使用時の排出経路に設置される隔離	耐圧強化ベント系使用時の排出経路に設置される隔離	耐圧強化ベント系使用時の排出経路に設置される隔離		
弁のらち電動弁（直流）は所内常設萻電式直流電源設備，	弁のらち電動弁（直流）は所内常設萃電式直流電源設備，	弁のらち電動弁（直流）（ドライウェルバント用出口隔離		
常設代替直流電源設備又は可搬型代替直流電源設備から	常設代替直流電源設備又は可搬型代替直流電源設備から	弁（T48－F019）及びサプレッションチェンババント用出口		
の給電による操作が可能な設計とする。また，排出経路に	の給電による操作が可能な設計とする。また，排出経路に	隔鹪尣（T48－F022））侍所内常設萃電式直流電源設備，常		
設置される隔離弁のらち電動弁（交流）については常設代	設置される隔離亣のらち電動弁（交流）については常設代	設代替直流電源設備又は可搬型代替直流電源設備からの		
替交流電源設備又は可搬型代替交流電源設備からの給電	替交流電源設備又は可搬型代替交流電源設備からの給電	給電による操作が可能な設計とする。また，排出経路に設		
による操作が可能な設計とする。	による操作が可能な設計とする。	置される隔離弁のらち電動弁（交流）（原子炉格納容器耐		
		圧強化ベント用連絡配管隔離亣（T48－F043）（ 原子炉格納		
		施設のらち「3．5．1 原子炉格納容器フィルタバント系」の		
		設備を原子炬冷却系統施設のらち「4．3 耐圧強化ベント		
		系」の設備として兼用）及び原子炬格納容器而圧強化ベン		
		卜用連絡配管止め弁（T48－F044）（原子炬格納施設のらち		
		「3．5．1 原子炉格納容器フィルタベント系」の設備を原		
		子炉冷却系統施設のらち「4．3 耐圧強化ベント系」の設備		
		として兼用））については常設代替交流電源設備又は可搬		
		型代替交流電源設備からの給電による操作が可能な設計		
		とする。		
このらち，電動弁（直流）については，遠隔手動弁操作	このらち，電動弁（直流）については，遠隔手動升操作	電動弁（直流）については，遠隔手動弁操作設備（個数		
設備によって人力による操作が可能な設計とし，隔離升の	設備によって人力による操作が可能な設計とし，隔離升の	2）（原子炬格納施設のらち 「3．5．1 原子炉格納容器フィ		
操作における駆動源の多様性を有する設計とする。	操作における駆動源の多様性を有する設計とする。	ルタバント系」の設備を原子炉冷却系統施設のらち「4．3		
		耐圧強化ベント系」の設備として兼用）によって人力によ		
		臬操作が可能な設計とし，隔碓弁の操作における駆動源の		
		多㥞性を有する設計とする。		
木（4）（v）a．－（3）本系統はサプレッションチェンバ及びド	本系統はサプレッションチェンバ及びドライウェルと	压（4）（v）a．－（3）而圧強华ベント系はサプレッションチェ	設計及び工事の計画の	
ライウェルと接続し，いずれからも排気できる設計とす	接続し，いずれからも排気できる設計とする。サプレッシ	シバ及びドライウェルと接続し，いずれからも排気できる	（4）（v）a．－（3）は，設置	
る。サプレッションチェンバ側からの排気ではサプレッシ	ヨンチェンバ側からの排気ではサプレッションチェンバ	設計とする。サプレッションチェンバ側からの排気ではサ	変更許可申請書（本文	
ヨンチェンバの水面からの高さを確保し，ドライウェル側	の水面からの高さを確保し，ドライウェル側からの排気で	プレッションチェンバの水面からの高さを碓保し，ドライ	（五号））の杕（4）（v）a．	
加らの排気では，ドライウェルの床面からの高さを碓保す	は，ドライウェルの床面からの高さを碓保するととも纪有	ウェル側からの排気では，ドライウェルの床面からの高さ	（3）を具体的に記載し	
るとともに有效燃料棒頂部よりも高い位置に接続䉕所を	効燃料棒頂部よりも高い位置に接続簚所を設けることで	を碓保するとともに有効燃料棒頂部よりも高い位置に接	ており整合している。	
設けることで長期的にも溶融炬心及び水没の悪影響を受	長期的にも溶融炝心及び水没の悪影響を受けない設計と	続䈯所を設けることで長期的にも溶融炉心及び水没の悪		
けない設計とする。	する。	影響を受けない設計とする。		
		耐圧強化ベント系を使用した場合に放出される放射性		
而圧強化ベント系を使用した場合に放出される放射性物質	耐压強化ベント系を使用した場合に放出される放射性	物質の放出量に対して，林（4）（v）a．－（4）設置．（弯更）許可に	設計及び工事の計画の	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
性を有するとともに，熱交換器ユニット加ら原子炬補機冷	性を有するとともに，熱交魥器ユニットから原子炬補機冷	性を有するとともに，原子炬補機代替桧却水采熱交換器ユ			
却水系配管との合流点までの系統について，原子炬補機浍	却水系配管との合流点までの系䖻について，原子炬補機冷	二ットから原子炬補機浍却水系配管との合流点までの系			
却水系に対して独立性を有する設計とする。	却水系㲹対して独立性を有する設計とする。	統について，原子炬補機冷却水系に対して独立性を有する			
これらの多様性及び系統の独立性並びに位置的分散に	これらの多椂性及び系統の独立性並びに位置的分散に	設計とする。 これらの多様性及び采統の独立性並びに位置的分散に			
よって，原子炬補機代替冷却水系は，設計基準事故対処設	よって，原子炬補機代替冷却水系は，設計基準事故対処設	よって，原子炬補機代替椧却水系は，設計基準事故対処設			
備である原子炬補機冷却水系（原子炬補機冷却海水采を含	備である原子炬補機冷却水系（原子炬補機冷却海水系を含	備である原子炬補機冷却水系（原子炬補機冷却海水系を含			
边。）に対して重大事故等対処設備としての独立性を有す	违。）に対して重大事故等対処設備としての独立性を有す	违。）に対して重大事故等対処設備としての独立性を有す			
設計とする。	る設計とする。	る設計とする。			
電源設備の多樣性及び独立性，位置的分散については「又（2）（iv）代替電源設備」にて記載する。	䨳源設備の多様性及び独立性，位置的分散については「10．2代替電源設備」にて記載する。		設置変更許可申請書（本文（五号））「ヌ（2）（iv）		
			代替電源設備」に示 す。		
［常設重大事故等対処設備〕	第5．10－1表 最終ヒートシンクへ熱を輸送するための設備の主要機器仕様	【原子炬冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）	「フィルタ装置」，「フ イルタ装置出口側ラプ		
原子炬格納容器フィルタバント系	（1）原子炉格納容器フィルタバント系	4.2 原子炉格納容器フィルタバント系	チャディスク」及び「遠		
フィルタ装置	a．フィルダ装置	4．2．1 系統構成	隔手動弁操作設備」は，		
	第9．3－1表 原子炬格䋉容器の猧圧破損を防止するた	＜中略＞	設置変更許可申請書（本		
防止するための設備」他と兼用）	めの設備の主要機器侍榀に記載する。	残留熱除去系の故障等により最終ヒートシンクい熱を	文（五号））における困		
		輸送する機能が霛失した場合に，炬心の著しい損傷及び原	（4）（ v ）－（5）を設計及び		
		子炉格納容器の破損を防止するための重大事故等対処設	工事の計画における「原		
		備として，原子炉格納容器フィルタバント系は，フィルタ	子炉冷却系統施設」のら		
フィルタ装置出口側压力開放板	b．フィルタ装置出口側压力開放板	装置（フィルタ容器，スクラバ溶液，金属繊維フイルタ，	ち「基本設計方針」に整		
	第9．3－1表 原子炬格納容器の猧压破損を防止するた	放射性よう素フィルタ），フィィルタ装置出口側ラプチャラ゙	理しており整合してい		
防止するための設備」他と兼用）	めの設倎の主要機器仕粶に記載する。．．．	イスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雾囲気ガスを原子炬格納容器調気系等を経由し			
		て，フィルタ装置へ導き，放射性物質を低減させた後に原	設計及び工事の計画の		
		子炉建屋屋上に設ける放出口から排出（系統設計流量	「フィルタ装置出口側		
		$10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））することで，排気中に含まれる	ラプチャディスク」は，		
		放射性物質の環境への放出量を低減しつつ，原子炉格納容	設置変更許可申請書（本		
		器内に蓄積した熱を最終的な熱の逃がし場である大気へ	文（五号））の「フィル		
		輸送できる設計とする。	夕装置出口側圧力開放		
		＜中略＞	板」と同一設備であり整		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
			合している。	
遠隔手動弁操作設備	c．遠隔手動升操作設備	原子炉格納容器フィルタベント系使用時の排出経路に		
	第9，3－1表 原子炬格納容器の過圧破損を防止するた	設置される隔䧺弁は，遼隔手動并操作設備（個数4）（原子		
防止するための設備」と兼用）	めの設備の主要機器仕様に記載する。	炉格納施設のらち「3．5．1 原子炬格納容器フィルタバン		
		卜系」の設備を原子炉洽却系䖻施設のらち「4．2 原子炉格		
		納容器フィルタバント系」の設備として兼用）によって人		
		力により容易かつ碓実に操作が可能な設計とする。		
耐圧強化ベント系 系統数 1 系統設計流量 約 $10.0 \mathrm{~kg} / \mathrm{s}$	（2）耐圧強化ベント系	4.3 而圧強化ベント系	設置変更許可申請書（ ${ }^{\text {a }}$	
	系統数 1.	4．3．1 系統構成	文（五号））の「系統数	
	系統設計流量 約 $10.0 \mathrm{~kg} / \mathrm{s}$	＜中略〉	1」については，添付図	
		残留熱除去系の故障等により最終ヒートシンクー熱を	面第4－3－3－1－3図「【重	
		輸送する機能が喪失した場合に，炬心の著しい損傷及び	大事故等対処設備1耐圧	
		原子炉格納容器の破損を防止するための重大事故等対処	強化ベント系系統図（1	
		設備として，耐圧強化ベント系は，原子炉格納容器内雰	／2）（原子炉格納容器	
		囲気ガスを原子炉格納容器調気系等を経由して，排気筒	調気系その2）」に記載	
		を通して原子炉建屋外に放出（系統設計流量10．0kg／s	しており整合している。	
		（1Pdにおいて））することで，原子炉格納容器内に蓄積		
		した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。		
		＜中略＞		
［可搬型重大事故等対処設備］				
原子炬格納容器フィルタバント系		4.2 原子炉格納容器フィルタバント系	「可搬型室素がス供給	
可搬型空素がス供給装置	d．可搬型空素がス供給装置	4．2．1 系統構成	装置」は，設置変更許可	
	第9．5－1素 水素爆発による原子炬格納容器の破損を	＜中略＞	申請書（本文（五号））	
容器の破損を防止するための設備」他と兼用）	防止するための設備の主要機器侍様に記載する。．．	可搬型坴素力゙ス供給采は，可燃性ガスによる爆発及び原	における床（4）（v）－6	
		子炬格納容器の負圧破損を防止するために，可搬型窒素力゙	を設計及び工事の計画	
		元供給装置を用いて原子炉格納容器内に不活性ガス（窒	における「原子炉冷却系	
		素）の供給が可能な設計とする。	統施設」のらち「基本設	
		可搬型窒素がス供給装置は，車両内に搭載された可般型	計方針」に整理しており	
		室素がス供給装置発電設備により給電できる設計とする。	整合している。	
		＜中略〉		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
原子炉補機代替冷却水系 熱交換器ユニット ウンダリ低圧時に原子炬を冷却するための設備」，「り （3）（ii）b－原子炉格納容器の過圧破損を防止するため の設備」，「リ（3）（ii）c．．原子炬格納容器下部の溶融炉心 を冷却するための設備」及び「こ（3）（ii）使用斎燃料プ ールの冷却等のための設備」と兼用） 㕅（4）（v）－8）台数 2（予備 1） 熱交換器 大（4）（v）－（9）組数 1 㕅（4）（v）－（10 伝熱容量 約 20MW 㕅（4）（v）－（11）（1 組当たり）（海水温度 $26^{\circ} \mathrm{C}$ において） 整合性 －「原子炉補機代替冷却水系」は，設置変更許可申請書（計画における「原子炉冷却系統施設」のうち「原子炉補機 －設計及び工事の計画の术（4）（v）－8 は，設置変更許可申請 している。 －設計及び工事の計画の床（4）（v）－（9）は，「原子炉補機代替換器で構成し，設置変更許可申請書（本文（五号））の －設計及び工事の計画の ${ }^{(1)}(4)(\mathrm{v})$－（10）は，設置変更許可申請 している。 －設置変更許可申請書（本文（五号））における术（4）（ v ）－載事項の設定根拠に関する説明書（原子炉補機冷却系統有	（3）原子炉補機代替冷却水系 a．熱交換器ユニット 兼用する設備は以下のとおり。 －原子炬冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備 - 原子炋格納容器の過圧破損を防止するための設備 - 原子炬格納容器下部の溶融炬心を冷却するための設備 - 使用済燃料プールの冷却等のための設備 台数 2（予備 1） 熱交換器 組数 1 伝熱容量 約20MW（1 組当たり）（海水温度 $26^{\circ} \mathrm{C}$ におい て） $\begin{aligned} & \text { ホ (4) (v) - } 9 \text { (} \\ & \text { ホ (4) (v) - } 8 \end{aligned}$ 本文（五号））における术（4）（v）－7 を を設計及び工事の機冷却設備」に整理しており整合している。 青書（本文（五号））の术（4）（v）－8 と同義であり整合 冷却水系熱交換器ユニット」の1台当たり，3個の熱交木（4）（v）－⑨を詳細に記載しており整合している。 青書（本文（五号））の术（4）（v）－（10）と同義であり整合 －（11）は，設計及び工事の計画の「VI－1－1－4－3 設備別記施設）」に記載しており整合している。	【原子炬冷却采統施設（蒸気タービンを除く。）】 （要目表） ホ(4) (v) -(7) $\begin{aligned} & \text { 注記＊1 } \text { ：公称值を示す。 } \\ & * 2: \text { 重大事故等時における使用時の値 } \\ & \text {＊3 }\end{aligned}$ ＊3：車両 1 台につき 3 個設营する。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
大容量送水ポンプ（タイプI） のための設備」他と兼用）	b．大容量送水ポンプ（タイプI） 第4．3－1素－使用済燃料プールの冷却等のための設備 の主要機器仕様に記載する。	【㧼然料物質の取扱施設及ぴ眝蔵施設】（要目表） 小 (4) (v) - (15)	「大容量送水ポンプ（タ イプI）」は，設置変更許可申請書（本文（五号））における杕（4）（v） －（15）を設計及び工事の計画の主たる登録先と して「核燃料物質の取扱施設及び貯蔵施設」のう ち「使用済燃料貯蔵槽冷却浄化設備」に整理し，設計及び工事の計画の床（4）（v）－（15）は，設置変更許可申請書（本文（五号））の床（4）（v）－（15）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
溶融炬心を冷却するための設備」に記載する。 （b）サプレッションチェンバを水源とした場合に用いる設備 床（4）（vi）－（5）想定される重大事故等時において，原子炬圧力容器及び原子炬格納容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である代替质澴冷却系及び原子炉格納容器下部注水系（常設）（代替循睘冷却ポンプ）並びに重大事故等対処設備（設計基漼拡張）である高圧炬心スプレイ系，低圧炉心スプレイ系，残留熱除去系（低圧注水モード），残留熱除去系（格納容器ス プレイ洽却モード）及び残留熱除去系（サプレッションプ ール水冷却モード）の水源として，サプレシションチェン バを使用する。．．．	b．サプレッションチェンバを水源とした場合に用いる設備 想定される重大事故等時において，原子炉圧力容器及び原子炬格納容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である代替循環冷却系及び原子炬格納容器下部注水系（常設）（代替循環冷却ポ ンプ）並びに重大事故等対処設備（設計基準拡張）である高圧炉心スプレイ系，低圧炬心スプレイ系，残留熱除去系 （低圧注水モード），残留熱除去系（格納容器スプレイ洽却モード）及び残留熱除去系（サプレッションプール水泠却モード）の水源として，サプレッションチェンバを使用 する。 ＜中略＞	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4.4 重大事故等の収束に必要となる水源 < 中略 > 大（4）（vi）－（5）aサプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数 1）は，想定される重大事故等時において，重大事故等対処設備（設計基準拡張）である残留熱除去系（格納容器 スプレイ冷却モード）及び残留熱除去系（サプレッション プール水冷却モード）の水源として使用できる設計とす る． ＜中略＞ 5．10．1 重大事故等の収束に必要となる水源 <中略 > 木（4）（vi）－（5b サプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数1）は，想定される重大事故等時において，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失 した場合の代替手段である代替循環冷却系並びに重大事故等対処設備（設計基準拡張）である高圧炉心スプレイ系，低圧灲心スプレイ系及び残留熱除去系（低圧注水モード） の水源として使用できる設計とする。… ＜中略＞	設備」，「ホ（3）（ii）b． （c）原子炉冷却材圧力 バウンダリ低圧時に発電用原子炉を冷却する ための設備」，「ホ（4） （ii）原子炉隔離時冷却系」，「リ（3）（ii）a．原子炉格納容器内の泠却等のための設備」及び 「リ（3）（ii）c．原子灲格納容器下部の溶融炉心を泠却するための設備」に示す。 設計及び工事の計画の术（4）（vi）－（5）a，术（4） （vi）－（5）b及び木（4）（vi） －（5）cは，設置変更許可申請書（本文（五号））木（4）（vi）－（5）と文章表現は異なるが，内容に相違はないため整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	各系䌆の詳細については，「4．3 使用済燃料プールの洽		設置変更許可申請書（ ${ }^{\text {a }}$		
	却等のための設備」，「5．6原子炬冷却材圧力バウンダり		文（五号））「こ（3）（ii）		
却材圧力バウンダり低压時に発䨍用原子炬を洽却するた	低圧時に登電用原子炬を椧却するための設侐」，「5． 10 最		使用斎然料プールの		
めの設備」，「ホ（4）（v）最終ヒートシンクへ熱を輸送す	終ヒートシンター熱を輸送するための設備」，19．2 2 ，原子		泠却等のための設備」，		
あための設備上，「り（3）（ii）a ，原子炬格納容器内の洽却等	炬格納容器内の洽却等のための設備上，「9．4．${ }^{\text {a }}$ 原子炬格納		「木（3）（ii）b．（c）原		
のための設備」，「リ（3）（ii）c c．原子炬格納容器下部の溶融	容器下部の溶融炬心を渝却するための設備」及ぴ「9．7 発		子炉冷却材圧力バゥン		
炬心を泠却するための設備」及ぴ「り，（3）（ii）e．．発需所外	需所外への放射性物質の掋散を抑制するための設堿」に記		ダリ低圧時に発電用原		
への放射性物質の应散を抑制するための設備」に記載す	載する。		子炉を泠却するための		
3．			設備」，「ホ（4）（v）		
			最終ヒートシンクへ熱		
			を輸送するための設 備」，「リ（3）（ii）a		
			原子炬格納容器内の泠		
			却等のための設備」，「リ		
			（3）（ii）c．原子炉格納		
			容器下部の溶融炬心を泠却するための設備」及		
		【原子炬泠却系統施設（蒸気タービンを除く。）】	び「リ（3）（ii）e．発電		
		（基本設計方針）	所外への放射性物質の		
		5． 10.2 代替水源移送系	抁散を抑制するための		
b．水源へ水を供給するための設備	（2）水源へ水を供給するための設備	設計基準事故対処設備及び重大事故等対処設備に対し	設備」に示す。		
（a）復水貯蔵タンクへ水を供給するための設備	a．復水貯蔵タンクへ水を供給するための設備	て，重大事故等の収束に必要となる十分な量の水を供給す			
		るために必要な設備及び海を利用するために必要な設備			
		として，大容量送水ポンプ（タイプI）及び大容量送水ポ			
		ンプ（タイプII）を設ける設計とする。			
重大事故等の収束に必要な水源である復水貯蔵タンク	重大事故等の収束に必要な水源である復水貯蔵タンク	重大事故等の収束に必要な水源である復水貯蔵タンク			
へ淡水を供給するための重大事故等対処設備として，大容	い淡水を供給するための重大事故等対処設備として，大容	へ淡水を供給するための重大事故等対処設備として，大容			
量送水ポンプ（タイプI）は，代替淡水源である淡水貯水	量送水ポンプ（タイプI）を使用する。	量送水ポンプ（タイプI）は，代替淡水源である淡水眝水			
槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水系等を	大容量送水ポンプ（タイプI）は，代替淡水源である淡	槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水系等を			
経由して復水貯蔵タンクへ供給できる設計とする。	水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水	経由して復水貯蔵タンクへ供給できる設計とする。			
また，淡水が枯渴した場合に，重大事故等の収束に必要	系等を経由して復水貥蔵タンクー供給できる設計とする。 また，淡水が枯渴した場合に，重大事故等の収束に必要	また，淡水が枯渴した場合に，重大事故等の収束に必要			
な水源である復水貯蔵タンクへ海水を供給するための重	な水源である復水貯蔵タンクー海水を供給するための重	な水源である復水貯蔵タンクー海水を供給するための重			
大事故等対処設備として，大容量送水ポンプ（タイプ I）	大事故等対処設備として，大容量送水ポンプ（タイプI）	大事故等対処設備として，大容量送水ポンプ（タイプI）			
は，海水を補給水系等を経由して復水貯蔵タンクへ供給で	を使用する。	は，海水を補給水系等を経由して復水貯蔵タンクへ供給で			

設置変更許可甲請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
［常設重大事故等対処設備］ 復水貯蔵タンク 木（4）（vi）－（11）（「又（3）（viii）復水貯蔵タンク」と兼用）	第5．7－1表 重大事故等の収束に必要となる水の供給設備の主要機器仕椂 （1）復水貯蔵タンク 第10．13－1素 補給水系主要機器仕樣に記載于る。	【原子哣冷却系統施設】（要目表） 	「復水貯蔵タンク」は，設置変更許可申請書（本文（五号））における困 （4）（vi）－（1）を設計及び工事の計画における「原子炉冷却采統施設」のう ち「原子炉泠却材補給設備」に整理しており，設計及び工事の計画の困 （4）（vi）－（11）は，設置変更許可申請書（本文（五号））の䢡（4）（vi）－（1）と同義であり整合してい る。	
＊－125				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
大容量送水ポンプ（タイプII） 床（4）（vi）－（15）（「二（3）（iii）－使用斎燃料プールの冷却等の ための設備」及び「り（3）（ii）e．発電所外への放射性物質 の掂散を抑制するための設備」」と兼用） 㕅（4）（vi）－（16）台数 2（予備 1） 容量 約 $1,800 \mathrm{~m}^{3} / \mathrm{h}$（ 1 台当たり） 揚程 約 122 m	（5）大容量送水ポンプ（タイプII） 兼用する設備は以下のとおり。－ - 使用济燃料プールの椧却等のための設備 - 発檽所外への放射性物質の掋散を抑制するための設備 台数 2 （予備 1） 容量 約 $1,800 \mathrm{~m}^{3} / \mathrm{h}$（ 1 台当たり） 揚程 約 122 m	【原子炬格絃施設】（要目表） （次頁一続く） － ＊2：重大事敬等詩における使用時の值。 	「大容量送水ポンプ（タ イプII）」は，設置変更許可申請書（本文（五号））における床（4）（vi） －（6）を設計及び工事の計画の主たる登録とし て「原子炉格納施設」の らち「圧力低減設備その他の安全設備」に整理 し，設計及び工事の計画 の困（4）（vi）－（15）は，設置変更許可申請書（本文 （五号））の术（4）（vi）－ （15）と同義であり整合し ている。 設計及び工事の計画の㕅（4）（vi）－（6）は，設置変更許可申請書（本文（五号））の术（4）（vi）－（6）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置又は保管する。	6.4 計装設備（重大事故等対処設備） 6．4．1 概要 重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置又は保管する。	【計測制御系統施設】（基本設計方針） 2．1．1 通常運転時，運転時の異常な過渡変化時及び重大 事故等時における計測 ＜中略＞ 重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置又は保管する設計とする。 重大事故等が発生し，当該重大事故等に対処するために監視することが必要なパラメータとして，原子炉圧力容器内の温度，圧力及び水位，原子炉圧力容器及び原子炉格納容器への注水量，原子炉格納容器内の温度，圧力，水位，水素濃度及び酸素濃度，原子炬建屋原子炬棟内の水素濃度，未臨界の維持又は監視，最終ヒートシンクの碓保，格納容器バイパスの監視並びに水源の碓保に必要なパラメ一タを計測する装置を設ける設計とする。 <中略〉 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1.1 放射線管理用計測装置 <中略 > 重大事故等が発生し，当該重大事故等に対処するために監視することが必要なパラメータとして，原子炉格納容器内の放射線量率，最終ヒートシンクの確保及び使用済燃料 プールの監視に必要なパラメータを計測する装置を設け る設計とする。 重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置する設計とする。 <中略>		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	設の状態を補助的に監視するパラメータを補助パラメー夕とする。なお，補助パラメータのらち，重大事故等対処設備を活用する手順等の着手の判断基準として用いるパ ラメータについては，重大事故等対処設備とする。重大事故等対処設備の補助パラメータの対象を第6．4－4表に示 す。	発電用原子炉施設の状態を直接監視することはできな いが，電源設備の受電状態，重大事故等対処設備の運転状態及びその他の設備の運転状態により発電用原子炉施設 の状態を補助的に監視するパラメータを補助パラメータ とし，その補助パラメータのらち重大事故等対処設備を活用する手順等の着手の判断基準として用いる6－2F－1母線電圧， $6-2 \mathrm{~F}-2$ 母線電圧， $6-2 \mathrm{C}$ 母線電圧， $6-2 \mathrm{D}$ 母線電圧， $6-2 \mathrm{H}$母線電圧， $4-2 C$ 母線電圧， $4-2 \mathrm{D}$ 母線電圧， 125 直流主母線 $2 A$ 電圧， 125 v直流主母線 $2 B$ 電圧， 125 v直流主母線 $2 A-1$ 電圧， 125V直流主母線2B－1電圧，250V直流主母線電圧，HPCS125V直流主母線電圧，高圧窒素がス供給系ADS入口圧力及び代替高圧窒素ガス供給系窒素ガス供給止め弁入口圧力を計測する装置は，重大事故等対処設備としての設計を行ら。 【放射線管理施設】（基本設計方針） 1.1 放射楾管理用計測装置 ＜中略〉 重大事故等に対処するために監視することが必要なパ ラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炬施設の状態を把握するためのパラメータとし，へ（1）（ii）－（7）計測する装置は「表1 放射線管理施設の主要設備りスト」のプロセ正モニタリング設備に示す重大事故等対処設備，エリアモ ニタリング設備のらち㯈用斎燃料プール上部空閧放射線 モニタ（低線量）及び使用斎然料プール上部空閴放射線モ二多（高線量）とする。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 3．計測装置等 <中略> 重大事故等に対処するために監視することが必要なパ ラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータとし，へ（1）（ii）－（7）計測する装		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1）（ii）－（1）重要監視パラメータ及び重要代替監視パラ メータを計測する設備（重大事故等対処設備）について，．．．設計基準を超える状態における発電用原子炬施設の状態 を把握するための能力（最高計測可能温度等（設計基漼最大值等）をを明碓にする。	6． 4 計装設備（重大事故等対処設備） 6．4．1 概要 < 中略 > 重要監視パラメータ及び重要代替監視パラメータを計測する設備（重太事故等対処設備）について，設計基準を超える状態における発電用原子炉施設の状態を把握する ための能力（最高計測可能温度等（設計基準最大值等）） を明碓にする。計測範囲を第6．4－1表に，設計基準最大値等を第6．4－2表に示す。 <中略>	置は「表1 核燃料物質の取扱施設及び貯蔵施設の主要設備りスト」の「使用斎燃料貯蔵槽の温度，水位及び漏えい を監視する装置」に示す重大事故等対処設備の他，使用済燃料プール監視カメラ（個数1）とする。 ＜中略＞ 【計測制御系統施設】（基本設計方針） 2.3 計測結果の表示，記録及び保存 ＜中略＞ （1）（ii）－（10）炬心損傷防止対策及び格納容器破損防止対策等を成㠫させるために必要な発電用原子炬施設の状熊 を把握するためのパラメータを計測する装置は，設計基準事故等に想定される変動篚囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするとともに，重大事故等が発生し，当該重大事故等に対処するために監視す ることが必要な原子炉圧力容器内の温度，圧力及び水位並 びに原子炉圧力容器及び原子炉格納容器への注水量等の パラメータの計測が困難となった場合又は計測範囲を超 えた場合に，代替パラメータにより推定ができる設計とす る。 また，重大事故等時に設計基準を超える状態における発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等））を明確にするとともに， パラメータの計測が困難となった場合又は計測範囲を超 えた場合の代替パラメータによる推定等，複数のパラメー夕の中から確からしさを考慮した優先順位を保安規定に定めて管理する。 < 中略 > 【放射線管理施設】（基本設計方針） 1.1 放射線管理用計測装置 ＜中略＞ A（1）（ ii）－（10）炬ふ損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炬施設の状態 を把握するためのパラメータを計測する装置は，設計基準	設計及び工事の計画の人（1）（ii）－（10）は，設置変更許可申請書（本文（五号））の（1）（ii ）－（10 と同義であり整合してい る。 設計及び工事の計画の人（1）（ii）－（10）は，設置変更許可申請書（本文（五	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとして，A（1）（ii）b．－ （1）重要監視パラメータ及び重要代替監視パラメータを計測する設備については，温度，圧力，水位及び流量に係る ものについて，乾電池等を電源とした可搬型計測器により計測できる設計とする。 （（1）（ii）b．－（2）なお，可搬型計測器による計測において は，計測対象の選定を行う際の考え方として，同一パラメ ータにチャンネルが複数ある場合は，いずれか 1 つの適切 なチャンネルを選定し計測又は監視するものとする。同一 の物理量について，複数のパラメータがある場合は，いず れか 1 つの適切なパラメータを選定し計測又は監視する ものとする。 c．パラメータ記録時に使用する設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応に必要となる囚 （1）（ii）c．－（1）重要監視パラメータ及び重要代替監視パラ メータは計測又は監視及び記録ができる設計とする。	また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとして，重要監視パラ メータ及び重要代替監視パラメータを計測する設備につ いては，温度，圧力，水位及び流量に係るものについて，乾電池等を電源とした可搬型計測器により計測できる設計とする。 なお，可搬型計測器による計測においては，計測対象の選定を行う際の考え方として，同一パラメータにチャンネ ルが複数ある場合は，いずれか 1 つの適切なチャンネルを選定し計測又は監視するものとする。同一の物理量につい て，複数のパラメータがある場合は，いずれか 1 つの適切 なパラメータを選定し計測又は監視するものとする。 ＜中略＞ 6．4．2 設計方針 （3）パラメータ記録時に使用する設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応に必要となる重要監視パラメータ及び重要代替監視パラメータは計測又は監視及び記録ができる設計とする。 重大事故等の対応に必要となるパラメータは，電磁的に記録，保存し，電源喪失により保存した記録が失われない とともに，帳票が出力できる設計とする。 <中略 >	【計測制御系統施設】（基本設計方針） 2.4 電源喪失時の計測 ＜中略＞ また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとして，A（1）（ii）b．－ （1）炬心損傷防止対策及び格納容器破損防止対策等を成功 させるために必要な発電用原子炬施設の状態を把握する ためのパラメータを計測する設備については，温度，圧力，水位及び流量に係るものについて，乾電池を電源とした可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障を想定した予備1個を含む1セット26個（予備26個（緊急時対策建屋に保管）））（核燃料物質の取扱施設及び貯蔵施設のうち「3．計測装置等」の設備と兼用）により計測 できる設計とし，これらを保管する設計とする。 （1）（ii）b．－（2）なお，可搬型計測器による計測において は，計測対象の設定を行う際の考え方として，同一パラメ ータにチャンネルが複数ある場合は，いずれか 1 つの適切 なチャンネルを選定し計測又は監視するものとする。同一 の物理量について，複数のパラメータがある場合は，いず れか 1 つの適切なパラメータを選定し計測又は監視するも のとする。 【計測制御系統施設】（基本設計方針） 2.3 計測結果の表示，記録及び保存 <中略> 原子炉格納容器内の温度，圧力，水位，水素濃度等想定 される重大事故等の対応に必要となるへ（1）（ii）c．－（1） メータは，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とす る。 重大事故等の対応に必要となるパラメータは，安全パラメ ータ表示システム（SPDS）のうちSPDS伝送装置にて電磁的 に記録，保存し，電源喪失により保存した記録が失われな いとともに帳票が出力できる設計とする。また，記録は必	設計及び工事の計画の人（1）（ii）b．－1 は は，設置変更許可申請書（本文 （五号））の（1）（ii）b． －（1）と同義であり整合 している。 設計及び工事の計画の人（1）（ii）b．－2 ${ }^{2}$ は，設置変更許可申請書（本文 （五号））の＾（1）（ii）b．－ （2）と同義であり整合し ている。 設計及び工事の計画の （1）（ii）c．－1）は，設置変更許可申請書（本文 （五号））の（1）（ii）c． －（1）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
		要な容量を保存できる設計とする。			
		【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針）			
		3．計測装置等			
		＜中略＞			
		重大事故等の対応に必要となるパラメータは，安全パラ			
		メータ表示システム（SPDS）のうちSPDS伝送装置にて電磁			
		的に記録，保存し，電源喪失により保存した記録が失われ			
		ないとともに帳票が出力できる設計とする。また，記録は			
		必要な容量を保存できる設計とする。			
		＜中略＞			
		【放射線管理施設】（基本設計方針）			
		1.1 放射線管理用計測装置			
		＜中略＞			
		原子炉格納容器内の放射線量率等想定される重大事故			
		等の対応に必要となるへ（1）（ii）c．－（1）パラメータは，計測			
		又は監視できる設計とする。また，計測結果は中央制御室			
		に指示又は表示し，記録できる設計とする。			
		重大事故等の対応に必要となるパラメータは，安全パラ			
		メータ表示システム（SPDS）のらちSPDS伝送装置にて電磁			
		的に記録，保存し，電源喪失により保存した記録が失われ			
		ないとともに帳票が出力できる設計とする。また，記録は			
		必要な容量を保存できる設計とする。			
		＜中略＞			
（2）安全保護回路	6.6 安全保護系	【計測制御系統施設】（基本設計方針）			
	6．6．1 概要	3．安全保護装置等			
		3.1 安全保護装置			
		3．1．1 安全保護装置の機能及び構成			
－（2）－（1）安全保護回路（安全保護系）は，（2）－（2）［原子	安全保護采は，発電用原子炉の安全性を損ならおそれの	人（2）－（1）安全保櫵装置は，．．運転時の異常な過渡変化が発	設計及び工事の計画の		
	ある異常な過渡状態や誤動作が生じた場合，あるいは，こ	生する場合又は地震の発生により発電用原子炉の運転に	人（2）－11は，設置変更許		
保護回路（工学的安全施設作動回路）」（構成する。	のような事態の発生が予想される場合に，それを防止ある	支障を生じる場合において，その異常な状態を検知し及び	可申請書（本文（五号））		
	いは抑制するために安全保護動作を起こすなどにより発	原子炉保護系その他系統と併せて機能することにより，燃	の $\begin{gathered}\text {（2）－（1）と同義であ }\end{gathered}$		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（2）－（3）安全保櫵回路は，不正アクセス行為その他の電子計算機に使用目的に沿らべき動作をさせず，又は使用目的に反する動作をさせる行為による被害を防止する設計 とする。	電用原子炉を保護するため纪設ける。この系は，原子炬保護系を作動させるための原子炬保檴系作動回路及び非虽用炬心冾却系等の工学的安全施設を作動させるための工学的安全施設作動回路からなる。 6．6．2 設計方針 （9）安全保檴系は，不正アクセス行為その他の電子計算機に使用目的に沿らべき動作をさせず，又は使用目的に反する動作をさせる行為による被害を防止することが できる設計とする。	料要素の許容損傷限界を超えないようにできるものとす るとともに，設計基準事故が発生する場合において，その異常な状態を検知し，（2）－（2）原子炬保櫵系及び工学的安金施設を自動的に作動させる設計とする。．． 運転時の異常な過渡変化及び設計基準事故時に対処し得る複数の原子炉スクラム信号及びその他の安全保護装置起動信号を設ける設計とする。 ＜中略〉 【計測制御系統施設】（基本設計方針） 3．1．2 安全保護装置の不正アクセス行為等の被害の防止 （2）－（3）安全保櫵装置のうちっ，アナログ回路で構成する機器は，．．．外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作の防止並びに物理的及 び電気的アクセスの制限を設け，システムの据付，更新，試験，保守等で，承認されていない者の操作を防止する措置を講じることで，不正アクセス行為その他の電子計算機 に使用目的に沿らべき動作をさせず，又は使用目的に反す る動作をさせる行為による被害を防止できる設計とする。 （2）－（3）安全保櫵装置のうちっ，一部デジ夕ル演算処理を行ら機器は，．．外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作防止及びウイルス等 の侵入防止並びに物理的及び電気的アクセスの制限を設 け，システムの据付，更新，柕験，保守等で，承認されて いない者の操作及びウイルス等の侵入を防止する措置を講じることで，不正アクセス行為その他の電子計算機に使用目的に沿らべき動作をさせず，又は使用目的に反する動作をさせる行為による被害を防止できる設計とする。 安全保護装置が収納された盤の施鏰によりハードウェ アを直接接続させない措置を実施すること及び安全保護装置のらち一部デジタル演算処理を行ら機器のソフトゥ ェア及びハードウェア回路は設計，製作，試験及び変更管理の各段階で検証と妥当性確認を適切に行うことを保安規定に定め，不正アクセスを防止する。	り整合している。設計及び工事の計画の （2）－（2）は，設置変更許可申請書（本文（五号）） の日（2）－（2）と文章表現 は異なるが，内容に相違 はないため整合してい る。 設計及び工事の計画の （2）－（3）は，設置変更許可申請書（本文（五号）） の $\begin{gathered}\text {（2）－（3）と同義であ }\end{gathered}$ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
（ii）制御材駆動設備の個数及び構造 制御材駆動設備（制御棒駆動系）は，人（3）（ii）－（1）制御棒の位置を調整するために設ける。 a．個数 137 （制御棒駆動機構）	第6．1．2－2表 制御棒駆動系主要仕様 制御棒駆動水ポンプ 2 台（らち 1 台は予備） 流量制御弁 2 個（らち 1 個は予備） 駆動水フィルタ 2 個（らち 1 個は予備） 水圧制御ユニット 137 個 制御䏾駆動機構 137 個 連続挿入•引抜速度 $76 \pm 15 \mathrm{~mm} / \mathrm{s}$ スクラム時挿入時間 1.62 秒以下（全ストロークの 75% 挿入，定格圧力で全炉心平均） 水圧制御ユニット充てん圧力 約 $123 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ スクラム排出容器 2 個	1．計測制御系統施設 1.1 反応度制御系統及び原子炉停止系統共通発電用原子炉施設には，（3）（ii）－（1）制御棒の挿入位置 を調節することによって反応度を制御する制御棒及び制御棒駆動奚と，再循環流量を調整することによって反応度 を制御する再循環流量制御系の独立した原理の異なる反応度制御采統を施設し，計画的な出力変化に伴ら反応度変化を燃料要素の許容損傷限界を超えることなく制御でき る能力を有する設計とする。 ＜中略＞ 【計測制御采統施設】（要目表） 	設計及び工事の計画の （3）（ii）－（1）は，設置変更許可申請書（本文（五 号））の（3）（ii）－（1）を 具体的に記載しており 整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
b．構造 （ 3 ）（ii ）b．－（1）制御棒駆動采は，制御棒駆動機構，水圧制御ユニット，制御棒駆動水ポンプ等で構成する。制御棒駆動機構は，ラッチ付き水圧ピストン・シリンダ方式のも のであり，各制御棒に独立して設ける。（ ${ }^{\text {（3）（ii）b．－（2）}}$ ． の駆動は，，ピストン上部又は下部に駆動水を供給して行 ．う。通常駆動時の駆動源は，ポンプにより加圧された駆動水であり，\wedge（3）（ii）b．－（3）スクラム時の駆動源は，各々の制御棒駆動機構ごとに設ける水圧制御ユニットのアキュ ムレータの高圧窒素により加圧された駆動水である。．．． （3）（ii）b．－（4）ポンプは，各制御棒駆動機構及び水圧制御ユニット共用である。…	6．1．2．4．1 制御棒及び制御棒駆動系 （2）制御棒駆動機構 制御棒駆動機構は，水圧駆動ピストン形式のものであ る。制御棒駆動機構の概要を第6．1．2－7図に示す。この基本構成要素は，カップリング，インデックスチューブと駆動ピストン，コレット集合体，ピストンチューブとストッ プピストン及びシリンダチューブである。制御棒駆動機構 は，原子炉圧力容器下部から延長しているハウジング内に収容する一体構造物であり，ハウジングの下端フランジに ボルト接合する。 また，第6．1．2－6図に示すように制御棒駆動機構と制御棒とのカップリングは必要とする場合以外は外れない構造とする。	【計測制御系統施設】（基本設計方針） 1.2 制御棒及び制御棒駆動系 <中略 > 制御棒の下端には制御棒落下速度リミッタを設けると ともに，（3）（ii）b．－（2）制御棒の駆動は，ピストン上部又 は下部に駆動水を供給することにより，原子炉圧力容器底部から行ら設計とする。 通常駆動時は，制御棒駆動水ポンプにより加圧された駆動水で駆動し，A（3）（ii）b．－（3）原子炬緊急停止時は，各々 の制御棒駆動機構ごとに設ける水圧制御ユニット（アキュ ムレータ）の高圧窒素により加圧された駆動水を供給する ことで制御棒を駆動する設計とする。 < 中略 > 制御䏾駆動機構は，各制御棒に独立して設けられたラッ チ付き水圧ピストン・シリンダ方式のものであり，インデ ックスチューブと駆動ピストン，コレット集合体等で構成 され，制御棒の駆動動力源である制御棒駆動水ポンプによ る水圧が喪失した場合においても，ラッチ機構により制御棒を現状位置に保持し，発電用原子炉の反応度を増加させ る方向に作動させない設計とする。 また，制御棒駆動機構と制御棒とはカップリングを介し て容易に外れない構造とする。	設置変更許可申請書（本文（五号））の（3）（ii） b．－（1）の「制御材駆動設備（制御棒駆動系）」の構成については，添付図面「第5－2－2－1－1図【設計基準対象施設】制御棒駆動水圧系系統図」に記載しており整合してい る。 設計及び工事の計画の （3）（ii）b．－（2）は，設置変更許可申請書（本文 （五号））の（3）（ii）b． －（2）と同義であり整合 している。 設計及び工事の計画の A（3）（ii）b．－（3）は，設置変更許可申請書（本文 （五号））の（3）（ii）b． －（3）と同義であり整合 している。 設置変更許可申請書（本文（五号））の（3（3）（ii） b．－（4）は本工事計画の対象外である。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
c．取付箇所（3）（ii）c．（1）原子炬圧力容器底部 d．插入時間及び駆動速度 $\begin{array}{ll} \text { スクラム挿入時間 } & \begin{array}{l} \text { 全ストロークの } 75 \% \text { 挿入まで } \\ \text { (全炉心平均) } \end{array} \\ & \underline{1.62 \text { 秒以下 (定格圧力時) }} \\ \hline \end{array}$ 通常時駆動速度（3）（ii）d．（1）約 $7.6 \mathrm{~cm} / \mathrm{s}$ （本文十号） スクラム時挿入時間 $\text { 全ストロークの } 75 \% \text { で } 1.84 \text { 秒 }$ 制御棒は，引抜速度の上限値 $9.1 \mathrm{~cm} / \mathrm{s}$ で引き抜かれる とする。 －記載箇所 $\begin{aligned} & \text { イ (2) (i) d. (c) } \\ & \text { 个 (2) (ii) a. (a) c) } \\ & \text { 八 (2) (ii) e. (d) (d-7) } \end{aligned}$	6．1．2．4．1 制御棒及び制御棒駆動系 （3）制御棒駆動水圧系 ＜中略＞ スクラム動作の場合は，水圧制御ユニットのスクラム入口弁とスクラム出口弁を開け，アキュムレータの圧力をピ ストン下部に与え，ピストン上部の冷却材をスクラムディ スチャージボリュームへ逃がす。スクラムディスチャージ ボリュームは，通常運転中は大気圧に保ち，アキュムレー夕との差圧によってスクラム初期に制御棒に大きな加速度を与えるとともに，予想される摩擦力及びそのほかの拘束力に打ち勝つための大きな駆動力を得るようにする。 ス クラム時挿入時間は，全ストロークの 75% 挿入で（定格圧力時において，全炉心平均）1．62秒 ${ }^{(2)}$ 以下である。 < 中略 > 6．1．2．4．1 制御棒及び制御棒駆動系 （1）制御棒 < 中略 > 通常の制御棒引抜速度は， $76 \pm 15 \mathrm{~mm} / \mathrm{s}$ に設定する。… ＜中略＞ －設計及び工事の計画で使用している引抜速度の設定値は，設置変更許可申請書（本文十号）で使用してい る解析条件に整合している。	【計測制御系統施設】（要目表） 4.3 制御材黙動装造 ＊ 2 ：既工事計画書に記載かなないため記栽の適正化を行う。記栽内容は，平成 4 年 1 月 13 日 構の牦度計算書 ＊3：S 1 単位に換算したちのである。 ＊4：重大事故等時における使用時の体。 	設計及び工事の計画の （3）（ii）c．－1）は，設置変更許可申請書（本文 （五号））の（3）（ii）c． －（1）を詳細に記載して おり整合している。 設計及び工事の計画の （3）（ii）d．－（1）は，設置変更許可申請書（本文 （五号））の（3）（ii）d． －（1）を詳細に記載して おり整合している。 $76 \pm 15=61 ~ 91$ $76.2 \times 1.2=91.44$ $76.2 \times 0.8=60.96$	

設置変更許可甲請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（iii）反応度制御能力 a．反応度制御能力 約 $0.18 \Delta \mathrm{k}$ b．（3）（iii）b．－（1）制御棒が 1 本抜けているときの反底度停止余裕 実効堛倍率 $\mathrm{K}_{\text {off }}<1$ （本文十号） 原子炉のスクラムは，最大反応度価値を有する制御棒 1 本が全引き抜き位置に固着して挿入されないものと する。 －記載箇所 ㅁ (2) (ii)a. (d) 事象発生前の炬心の実効増倍率は1．0とする。 －記載箇所 八(2) (ii) e. (d) (d-2)	－設計及び工事の計画で使用している実行増倍率の設定値は，設置変更許可申請書（本文十号）で使用して いる解析条件に包絡されている。	【計測制御系統施設】（要目表） 4.2 制御材	設計及び工事の計画の （3）（iii）b．－（1）は，設置変更許可申請書（本文 （五号））の \dagger（3）（iii）b． －（1）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
（4）非常用制御設備 （i）制御材の個数及び構造 （4）（i）－（1）韭虽用制御設備としてほう酸水注入系を設 ける。この系は，手動でほう酸水注入系ポンプを起動して中性子を吸収するほう素（五ほら酸ナトリウム溶液）を炬心に注入し，発電用原子炉をへ（4）（i）－（2）停止するもので ある。 （4）（i）－（3）系統数 1 ． （4）（i）－（4）中性子吸収材 ほう素（五ほう酸大トリウ ム溶液）	6．1．2．4．2 ほう酸水注入系 ほう酸水注入系は，制御棒の挿入不能によって発電用原子炉の低温停止ができない場合に，中性子吸収材を灯心底部から注入して毎分0．001 k k以上の負の反応度を与え，発電用原子炉を徐々に低温停止する能力をもっている。予備的計算によれば，ほう酸水注入系は約 30 分間で低温停止に必要な負の反応度を印加する能力を有している。 中性子吸収材としては，発電用原子炬を定格出力運転状態から $0.05 \Delta \mathrm{k}$ 以上の余裕をもって低温停止し，この状熊 に維持することができる濃度の五ほう酸ナトリウム溶液 を使用する。 <中略> 第6．1．2－3表 ほう酸水注入系主要仕様 系 統 数 1 中性子吸収材 ほほう素（五ほう酸ナトリウム溶液濃度約13wt\％） <中略>	【計測制御系統施設】（基本設計方針） 1.4 ほう酸水注入系 ほう酸水注入系へ（4）（i）－（1）は，制御棒挿入による原子炬停止が不能になった場合，手動で中性子を吸収するほう酸水（五ほら酸ナトリウム）を原子炬内に注入する設備で あり，（4）（i）－（2）単独で定格出力運転中の発電用原子炬 を高温状熊及び低温状態において十分臨界未满に維持で きるだけの反応度効果を持つ設計とする。 < 中略 > 【計測制御系統施設】（基本設計方針） 1.4 ほう酸水注入系 ほう酸水注入系は，制御棒挿入による原子炉停止が不能 になった場合，手動で（4）（i）－（4）中性子を吸聂するほう酸水（五ほら酸ナトリウム）を原子炬内に注入する設備で あり，単独で定格出力運転中の発電用原子炉を高温状態及 び低温状態において十分臨界未満に維持できるだけの反応度効果を持つ設計とする。 ＜中略＞	設計及び工事の計画の （4）（i）－（1）は，設置変更許可申請書（本文（五号））の（4）（i）－（1）と文章表現は異なるが，内容に相違はないため整合している。 設計及び工事の計画の （4）（i）－（2）は，設置変更許可申請書（本文（五号））の（4）（i）－（2）と文章表現は異なるが，内容に相違はないため整合している。 設置変更許可申請書（本文（五号））の（4）（i） －（3）の系統数について は，添付図面「第5－3－1 $-1-1$ 図【設計基準対象施設】ほう酸水注入系系統図」に記載しており整合 している。 設計及び工事の計画の （4）（i）－44は，設置変更許可申請書（本文（五号））の（4）（i）－（4）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
（ii）警報回路 中性子束，温度，圧力，流量，水位などのプロセス変数 が異常値になった場合，主蒸気管又は主復水器の空気抽出器排ガス中の へ（5）（ii）－（1）放射能が異虽に高くなった場合，工学的安全施設が作動した場合等に入（5）（ii）－（2）警報 を発する回路を設ける。	6．6．2 設計方針 （8）安全保護系は，監視装置，警報等によりその作動状況が確認できる設計とする。	【計測制御系統施設】（基本設計方針） 2.2 警報装置等 設計基準対象施設は，発電用原子炉施設の機械又は器具 の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（中性子東，温度，圧力，流量，水位等のプロセス変数が異常値に なった場合，工学的安全施設が作動した場合等）に，囚 （5）（ii）－（2）これらを確寒に検出して自動的に警報（原子炉水位低又は高，原子炉圧力高，中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等 により運転員に通報できる設計とする。 発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握できるようポ ンプの運転停止状態及び弁の開閉状態等を表示灯により監視できる設計とする。 【放射線管理施設】（基本設計方針） 1.1 放射線管理用計測装置 <中略> 設計基準対象施設は，発電用原子炉施設の機械又は器具 の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値を超えた場合，主蒸気管又は蒸気式空気抽出器排ガス中の \wedge（ 5 ）（ii）－（1）放射 らを確寒に検出して自動的に警報（原子灯建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とす る。 排気筒の出口又はこれに近接する箇所における排気中 の放射性物質の濃度，管理区域内において人が常時立ち入 る場所その他放射線管理を特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が	設計及び工事の計画の （5）（ii）－（1）は，設置変更許可申請書（本文（五号））の（5）（ii）－（1）と同義であり整合してい る。 設計及び工事の計画の （5）（ii）－（2）は，設置変更許可申請書（本文（五号））の（5）（ii）－（2 と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（iii）制御棒価値ミニマイザ	6．1．3．4 主要設備 （3）制御棒価値ミニマイザ（ RWM ）	【計測制御系統施設】（基本設計方針） 1.2 制御棒及び制御棒駆動系 <中略 >			
－（5）（iii）－（1）起動•停止時における制御棒操作の過程でっ，	制御棒価值ミニマイザは，起動•停止時における制御棒	反応度が大きく，かつ急激に投入される事象による影響	設計及び工事の計画の		
高い制御棒価値を生ずるような制御棒パターンができる	操作の過程で，誤つて高い制御棒価值を生じ得るような制	を小さくするため，制御棒の落下速度を設置（変更）許可	人（5）（iii）－（1）は，設置変		
ことを防止するため，あらがめ定められているシーケン	御棒パターンの形成を防止する補助装置であり，制御棒落	を受けた「制御棒落下」の評価で想定した落下速度に制御	更許可申請書（本文（五		
元を外れないよう。補助装置として制御棒価值ミニマイザ	下速度リミッタの効果と相まって制御棒落下事故の結果	棒落下速度リミッタにより制限することで，制御棒引き抜	号））の へ（ 5 ）（iii）－1		
を設ける。	を十分小さく抑えることを目的としている。	きによる反応度添加率を抑制する。また，「原子炉起動時	と文章表現は異なるが，		
	なお，ある程度出力が上昇し，ボイドが発生するように	における制御棒の異常な引き抜き」の評価で想定した制御棒引抜速度以下に制限するとともに，ム（5）（iii）－（1）零出力	内容に相違はないため整合していろ		
	なると，一般的に制御棒価値は非常に小さくなる傾问にあ る。また，制御棒が落下した場合の反底度印加率も緩やか	ないし低山力においては 運転員の制御棒引抜揊作を規制	整合している。		
	となり，ドップラ効果やボイドによる負の反応度も大きく	する補助機能として 制御棒価値ミニマイザを設けること			
	なるため，事故の結果が大きく軽減されることから，ある	で，引き抜く制御棒の最大反応度価値を制限する。更に中			
	出力以上では制御棒価値ミニマイザによる制御棒パター	性子束高及び原子炉周期（ペリオド）短による原子炉スク			
	ン規制はバイパスされる。	ラム信号を設ける設計とする。これらにより，想定される			
	制御棒価値ミニマイザへの主要な入力信号は，あらかじ	反応度投入事象発生時に燃料の最大エンタルピや発電用			
	め定めた制御棒操作シーケンス・プログラム，運転中時々	原子炉圧力の上昇を低く抑え，原子炉泠却材圧力バウンダ			
	刻々の制御棒位置，操作する制御棒の番号及び原子炉熱出	リを破損せず，かつ，炉心の泠却機能を損ならような炬心，			
	力であり，主要な出力信号は，制御棒価値ミニマイザの規	炉心支持構造物及び原子炉圧力容器内部構造物の破損を			
	制シーケンスを外れている制御棒の確認のための表示及	生じさせない設計とする。なお，制御棒引抜手順について			
	び制御棒操作のインター・ロック信号である。	は，保安規定に定めて管理する。			
		＜中略＞			
（iv）原子炉再循環流量制御系	6．1．1．4．1 原子炉出力制御系	【計測制御系統施設】（基本設計方針）			
	（1）反応度制御系	1.3 原子炉再循環流量制御系			
	c．原子炉再循環流量制御系				
人（5）（iv）－（1）原子炉再循環流量制御系は，原子炬再循環	再循環流量の調整による出力制御の原理は，以下のとお	人（5）（iv）－①再循環流量は，静止型原子炉再循環ポンプ	設計及び工事の計画の		
ポンプ速度を調整することにより原子媔出力を制御する。	りである。	電源装置により電源周波数を変化させ，原子炬再循嘸ポン	人（5）（iv）－（1）は，設置変		
	原子炉出力を増加させるには，炉心流量を増加する。こ	プ速度を調整することにより制御できる設計とする。	更許可申請書（本文（五		
	れにより炉心内のボイドを炉心外にスイープする速度が	また，タービン・トリップ又は発電機負荷遮断直後の原			
	増す。一方，ボイド発生率は，変化しないため，炬心内ボ	子炉出力を抑制するため，主蒸気止め弁閉又は蒸気加減弁	文章表現は異なるが，内		
	イド率は低下し，正の反応度が加えられる。これにより出	急速閉の信号により，原子炉再循環ポンプ2台を同時にト	容に相違はないため整		
	力が増加し，ボイド発生量が増加し，過渡的に加わつた過	リップする機能を設ける設計とする。	合している。		
	剰反応度が打消されるところで平衡に達する。また，出力				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（vi）中央制御室 中央制御室は，設計基準対象施設の健全性を確認するた めに必要なパラメータを監視できるとともに，発電用原子炬施設の安全性を確保するために必要な操作を手動によ り行うことができる設計とする。	6． 10 制御室 6．10．1 通常運転時等 6．10．1．1 概要 計測制御装置のらち，本発電用原子炉の主要な系統の運転•制御に必要な監視及び制御装置は，集中的に監視及び制御が行えるよう中央制御室に設置する。 < 中略 >	【計測制御采統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 中央制御室は以下の機能を有する。 中央制御室は耐震性を有する制御建屋内に設置し，基準地震動S s による地震力に対して機能を喪失しない設計 とするとともに，発電用原子炉の反応度制御系統及び原子炉停止系統に係る設備，非常用灲心泠却設備その他の非常時に発電用原子炉の安全を確保するための設備を操作で きる設計とする。 発電用原子炬及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポンプの起動•停止状態，発電用原子炉及 び原子炉冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炬施設の安全性を確保 するために必要な操作を手動により行うことができる設計とする。 a．中央制御室制御盤等 中央制御室制御盤は，原子炉制御関係，原子炉プラント プロセス計装関係，原子炉保護系関係，原子炉補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基漼対象施設の健全性を確認するた めに必要なパラメータ（炉心の中性子束，制御棒位置，原子炉冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるとともに，全て のプラント運転状態において，運転員に過度な負担となら ないよう，中央制御室制御盤において監視，操作する対象 を定め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応に必要な操作器，指示計，記録計及び警報装置 （核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，発電用原子炉施設の外部の状況を把握するため，監視カメラュ，気象観測設備，$\Delta(5)(\mathrm{vi})-$（1）公的機関から気象情報を入手できる設備等を設置し，中央制御室から発電用原子炉施設に影響を及ぼす可能性のある自然現象等を把握できる設計とする。	6．10．1．2 設計方針 ＜中略＞ （6）昼夜にわたり，発電用原子炉施設に影響を及ぼす可能性のあると想定される自然現象等や発電所構内の状況を把握することができる設計とする。 < 中略 > 6．10．1．4 主要設備 6．10．1．4．1 中央制御室 < 中略 > 発電用原子炉施設に影響を及ぼす可能性のあると想定 される自然現象等や発電所構内の状況を把握するため遠隔操作，暗視機能等を持つた監視カメラを設置しっ中央制御室で監視できる設計とする。 < 中略 > 中央制御室において発電用原子炉施設の外の状況を把握するための設備については，「1．1．1．4 外部からの衝撃による損傷の防止」で選定した発電所敷地で想定される自然現象，発電所敷地又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれ があって人為によるもの（故意によるものを除く。）のう ち，発電用原子炉施設に影響を及ぼす可能性がある事象や発電所構内の状況を把握できるように，以下の設備を設置 する。 a－監視力メラ 想定される自然現象等（地震，津波，風（台風），竜巻，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），近隣工場等の火災及び船舶の衝突）	なお，安全保護装置及びそれにより駆動又は制御される機器については，バイパス状態，使用不能状態について表示すること等により運転員が的確に認知できる設計とす る。 ＜中略＞ b．外部状況把握 発電用原子炉施設の外部の状況を把握するため，津波監視力メラ（浸水防護施設の設備を計測制御系統施設の設備 として兼用（以下同じ。）），自然現象監視力又ラ，風向，風速その他の気象条件を測定する気象観測設備（第 1 号機設備，第1，2，3号機共用）等を設置し，津波監視カメラ及び自然現象監視カメラの映像，気象観測設備等のパラメ ータ及び（5）（vi）－（1）公的機関から地震，津波，童巻情報等の入手により中央制御室から発電用原子炬施設に影響 を及ぼす可能性のある自然現象等を把握できる設計とす る。 津波監視カメラ及び自然現象監視カメラは暗視機能等 を持ち，中央制御室にて遠隔操作することにより，発電所構内の周辺状況（海側，山側）を昼夜にわたり把握できる設計とする。 なお，津波監視カメラは，地震荷重等を考慮し必要な強度を有する設計とするとともに，非常用交流電源設備又は常設代替交流電源設備から給電できる設計とする。	設計及び工事の計画の 「津波監視カメラ」及び「自然現象監視カメラ」 は，設置変更許可申請書 （本文（五号））の「監視カメラ」と同一設備で あり，整合している。 設計及び工事の計画の （5）（vi）－1 は，設置変更許可申請書（本文（五号））の（5）（vi）－（1）と文章表現は異なるが，内容に相違はないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
発電用原子炬施設には，火，火災その他の異常な状態により中央制御室が使用できない場合において，中央制御室以外 の場所から，発電用原子炬を高温停止の状態に直ちに移行及び必要なパラメータを想定される範囲内江制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持させるために必要な機能を有する （5）（vi）－（2）装置を設ける設計とする。	の影響について，昼夜にわたり発電所構内の状況（海側，山側）を把握することができる暗視機能等を持った監視力 メラを設置する。 b．気象観測設備等の設置 風（台風），竜巻，凍結，降水等による発電所構内の状況を把握するため，風向，風速，気温，降水量等を測定す る気象観測設備を設置する。また，津波及び高潮について は，津波監視設備として取水ピット水位計を設置する。 c．公的機関から気象情報を入手できる設備の設置地震，津波，竜巻，落雷等の発電用原子炉施設に影響を及ぼす可能性がある事象に関する情報を入手するため，中央制御室に電話，FAX及び社内ネットワークシステムに接続されたパソコン等の公的機関から気象情報を入手で きる設備を設置する。 <中略 > 6．10．1．1 概要 <中略> また，中央制御室内での操作が困難な場合に，発電用原子炉をスクラム後の高温状態から低温状態に導くことの できる中央制御室外原子炉停止装置を設置する。．．． 6．10．1．2 設計方針 < 中略 > （3）中央制御室内での操作が困難な場合には，中央制御室以外からも，発電用原子炉をスクラム後の高温状熊か ら低温状態に容易に導けるようにする。 <中略> 6．10．1．4．2 中央制御室外原子炉停止装置 中央制御室外原子炬停止装置は，中央制御室から十分離	【計測制御采統施設】（要目表） 4．12．2 中央制御室機能及び中央制御室外原子炬停止機能 （2）中央制御室外原子炉停止機能 中央制御室外原子炉停止機能は以下の機能を有する。 火災その他の異常な状態により中央制御室が使用でき ない場合において，中央制御室以外の場所から，発電用原子炬を高温停止の状態に直ちに移行及び必要なパラメー夕を想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持 させるために必要な機能を有するへ（5）（vi）－（2）中央制御室外原子炬停止装置を設ける設計とする。	設計及び工事の計画の （5）（vi）－（2）は，設置変更許可申請書（本文（五号））の（5）（vi）－（2を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
－（5）（vi）－（9）炬心の著しい損傷が発生した場合において も運転員がとどまるために必要な重大事故等対处設備と Lて，中央制御室換気空調系は，へ（5）（vi）－（10）重大事故等時に炡心の著しい强傷が発生した場合において高性能工 アフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，外気との連絡口を遮断 し，中央制御室再循環フィルタ装置を通る事故時運転モー ドとすることにより，放射性物質を含む外気が中央制御室 に直接流入することを防ぐことができる設計とする。	6．10．2．2 設計方針 （1）居住性を確保するための設備 a．換気空調設備及び遮蔽設備 炬心の著しい損傷が発生した場合においても運転員が とどまるために必要な重大事故等対処設備として，中央制御室及び中央制御室待避所の運転員を過度の放射線被ば くから防護するために，中央制御室送風機，中央制御室排風機，，中央制御室再循環送風機及び中央制御室再循環フィ ルタ装置を使用する。… 中央制御室換気空調系は，重大事故等時に烦心の著しい損傷が発生した場合において高性能エアフィルタ及びチ ャコールエアフィルタを内蔵した中央制御室再循環フィ ルタ装置並びに中央制御室再循環送風機からなる非常用 ラインを設け，外気との連絡口を遮断し，中央制御室再循珵フィルタ装置を通る事故時運転モードとすることによ り，放射性物質を含む外気が中央制御室に直接流入するこ とを防ぐことができる設計とする。	【放射線管理施設】（基本設計方針） 2．2．1 中央制御室換気空調系 ＜中略＞ 中央制御室換気空調系は，通常のラインの他，高性能エ アフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び『 （5）（vi）－（10）重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A），（B）出ロダンパ（V30－D305A，B） を閉とすることにより外気との連絡口を遮断し，中央制御室再循環フィルタ装置入口ダンパ（A），（B）（V30－D302A，B） を閉とすることにより中央制御室再循環フィルタ装置を通る事故時運転モードとし，放射性物質を含む外気が中央制御室に直接流入することを防ぐことができ，へ（5）（vi）－ 9 9 連転員を被ばくから防櫵する設計とする。外部との遮断 が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。 <中略 > 【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の確保 <中略 > 炉心の著しい損傷が発生した場合においても，可搬型照明（SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室しゃへ	設計及び工事の計画の （5）（vi）－（9）は，設置変更許可申請書（本文（五号））の（5）（vi）－（9）具体的に記載しており整合している。 設計及び工事の計画の （5）（vi）－（10）は，設置変更許可申請書（本文（五号））の（5）（vi）－（10t含んでおり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
また，炬心の著しい損傷後の原子炬格納容器フィルタベ ント系を作動させる場合に放出される放射性雲通過時に おいて，中央制御室待避所を中央制御室待避所加圧設備 （空気ボンベ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐこ とができる設計とする。 中央制御室遮蔽及び中央制御室待避所遮蔽は，運転員の	また，炬心の著しい損傷後の原子炉格納容器フィルタベ ント系を作動させる場合に放出される放射性雲通過時に おいて，中央制御室待避所を中央制御室待避所加圧設備 （空気ボンベ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐこ とができる設計とする。	い壁，中央制御室待避所遮蔽，補助しゃへい，2次しゃへ い壁，差圧計（中央制御室待避所用），酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）により，中央制御室内にとどまり必要な操作ができる設計とする。 <中略 > 【放射線管理施設】（基本設計方針） 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 < 中略 > 炉心の著しい損傷後の原子炉格納容器フィルタベント系を作動させる場合に放出される放射性雲通過時に，運転員の被ばくを低減するため，中央制御室内に中央制御室待避所を設け，中央制御室待避所には，遮蔽設備として，中央制御室待避所遮蔽を設ける。中央制御室待避所は，中央制御室待避所加圧設備（空気ボンベ）で正圧化することに より，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐことができる設計とする。 <中略 > 【放射線管理施設】（基本設計方針） 2.3 生体遮蔽装置等 <中略 > 中央制御室しやへい壁，中央制御室待避所遮蔽，緊急時対策所遮蔽，2次しやへい壁及び補助しやへいは，「2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とす る。 <中略 > 【放射線管理施設】（基本設計方針） 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 <中略 > 運転員の被ばくの観点から結果が最も厳しくなる重大			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
被ばくの観点から結果が最も厳しくなる重大事故等時に，	被ばくの観点から結果が最も厳しくなる重大事故等時に	事故等時においても中央制御室に運転員がとどまるため			
中央制御室換気空調系及び中央制御室待避所加压設備，（空	おいて，中央制御室換気空調系及び中央制御室待避所加压	に必要な設備を施設し，中央制御室しやへい壁を透過する			
気ボン心゙）の機能とあいまって，運転員の実効線量が 7 日	設僙．（空気ボン心゙）の機能とあいまって，運転員の実効線	放射線による線量，中央制御室に取り込まれた外気による			
間で 100 mSv を超えない設計とする。	量が 7 日間で100mSVを超えない設計とする。	線量及び入退域時の線量が，全面マスク等の着用及び運転			
また，全面マスク等の着用及び連転員の交替要員体制を	また，全面マスク等の着用及び運転員の交替要員体制を	員の交替要員体制を考虜し，その実施のための体制を整備			
考慮し，その実施のための体制を整備する。	考慮し，その実施のための体制を整備する。	することで，中央制御室の気密性並びに中央制御室換気空			
		調系，中央制御室待避所加压空気供給系，中央制御室しや			
		へい壁，中央制御室待避所遮蔽，2次しやへい壁及び補助			
		で100mSvを超えない設計とする。师心の著しい損傷が発生			
		した場合における居住性に係る被ばく評価では，設計基準			
		事故時の手法を参考にするとともに，炬心の著しい損傷が			
		発生した場合に放出される放射性物質の種類，全交流動力			
		電源喪失時の中央制御室換気空調系の起動運れ等，炬心の			
		著しい損傷が発生した場合の評価条件を適切に考慮する。			
		＜中略＞			
		【放射線管理施設】（基本設計方針）			
		2．2．1 中央制御室換気空調系			
		＜中略＞			
外部との遮断が長期にわたり，室内の雰囲気が悪くなつ	中央制御室換気空調系は，外気との遮断が長期にわた	中央制御室換気空調系は，通常のラインの他，高性能工			
た場合には，外気を中央制御室再循睘フイルタ装置により	り，室内の雰囲気が悪くなった場合には，外気を中央制御	アフィルタ及びチャコールエアフィルタを内蔵した中央			
浄化しながら取り入れることも可能な設計とする。	室再循睘フィルダ装置で浄化しながら取り入れることも	制御室再循環フィルタ装置並びに中央制御室再循環送風			
	可能な設計とする。	機からなる非常用ラインを設け，設計基漼事故時及び重大			
		事故等時には，中央制御室換気空調系の中央制御室外気取			
		入ダンパ（前），（後）（V30－D303，D304），中央制御室			
		少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中			
		央制御室排風機（A），（B）出口ダンパ（V30－D305A，B）			
		を閉とすることにより外気との連絡口を遮断し，中央制御			
		室再循噮フィルタ装置入口ダンパ（A），（B）（V30－D302A，B）			
		を開とすることにより中央制御室再看環フィルタ装置を			
		通る事故时運転もードとし，放射性物質を含む外気が中央			
		制御室に直接流入することを防ぐことができ，運転員を被			
		ばくから防護する設計とする。外部との遮断が長期にわた			
		り，室内の雰囲気が悪くなった場合には，外気を中央制御			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
重大事故等対処設備として，可搬型照明（S A）は，全交流動力電源喪失時においても常設代替交流電源設備から の給電が可能な設計とする。 炬心の著しい損傷が発生した場合においても（5）（vi） （15）運転員がとどまるために必要な重大事故等対処設備と して，A（5）（vi）－（16）中央制御室待避所と中央制御室との間 が正圧化に必要な差圧を確保できていることを把握する ため，差圧計を使用する。．．．	処設備として，可搬型照明（S A）を使用する。 可搬型照明（S A）は，全交流動力電源喪失時において も常設代替交流電源設備からの給電が可能な設計とする。 < 中略 > e．差圧計，酸素濃度計及び二酸化炭素濃度計 炬心の著しい損傷が発生した場合においても運転員が とどまるために必要な重大事故等対処設備として，中央制御室と中央制御室待避所との間が正圧化に必要な差圧を確保できていることを把握するため，差圧計を使用する。．．	電源設備からの給電が可能な設計とする。 ＜中略＞ （5）（vi）－（14）重大事故等時に，中央制御室内及び中央制御室待避所内での操作等に必要な照度の確保は，可搬型照明（SA）（個数6（予備1））によりできる設計とし，身体 サーベイ及び作業服の着替え等に必要な照度の確保は，乾電池内蔵型照明（個数5（予備1））によりできる設計とす る． < 中略 > 【放射線管理施設】（基本設計方針） 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 <中略 > \triangle（5）（vi）－（16）差圧計（中央制御室待避所用）（個数 1 ，計測範囲 $0 \sim 200 \mathrm{~Pa}$ ）により，中央制御室待避所と中央制御室 との間が正圧化に必要な差圧が確保できていることを把握できる設計とする。 < 中略 > 【計測制御系統施設】（要目表） 4．12．2 中央制御室機能及び中央制御室外原子炬停止機能 （1）中央制御室機能 c．居住性の確保 <中略 > 炬心の著しい損傷が発生した場合においても，可搬型照明（SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室しやへ い壁，中央制御室待避所遮蔽，補助しやへい，2次しやへ い壁， A （5）（vi）－（15）差圧計（中央制御室待避所用），酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）により，中央制御室内にとどまり必要な操作ができ る設計とする。 <中略 >	更許可申請書（本文（五号））の 人（5）（vi）－（14）を具体的に記載しており整合している。 設計及び工事の計画の （5）（vi）－（15）は，設置変更許可申請書（本文（五号））の（（5）（vi）－（15 と文章表現は異なるが，内容に相違はないため整合している。 設計及び工事の計画の （5）（vi）－（16）は，設置変更許可申請書（本文（五号））の（5）（vi）－（16 と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあること を把握するため，酸素濃度計及び二酸化炭素濃度計を囚 （5）（vi）－（17）使用する。	また，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあること を把握するため，酸素濃度計及び二酸化炭素濃度計を使用 する。 < 中略 >	A（5）（vi）－（16）差圧計（中央制御室待避所用）により，中央制御室待避所と中央制御室との間が正圧化に必要な差圧が確保できていることを把握できる設計とする。．．． <中略 > 【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の確保 <中略> 設計基準事故時及び炉心の著しい損傷が発生した場合 において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあるこ とを把握できるよう，酸素濃度計（中央制御室用）（個数 1 （予備1））及び二酸化炭素濃度計（中央制御室用）（個数1（予備1））を中央制御室内に（5）（vi）－（17）保管する設計とする。また，酸素濃度計（中央制御室用）（個数1）及び二酸化炭素濃度計（中央制御室用）（個数1）を中央制御室待避所内に保管する設計とする。 <中略> 【放射線管理施設】（基本設計方針） 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 < 中略 > 設計基準事故時及び炉心の著しい損傷が発生した場合 において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあるこ とを把握できるよう，計測制御系統施設の酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）を使用し，中央制御室内及び中央制御室待避所内の居住性を確保できる設計とする。	設計及び工事の計画の （5）（vi）－（17）は，設置変更許可申請書（本文（五号））の $人(5) ~(\mathrm{vi})$－（17）と文章表現は異なるが，内容に相違はないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
重大事故等が発生し，中央制御室の外側が放射性物質に より汚染したような状況下において，運転員が中央制御室 の外側から中央制御室に放射性物質による污染を持ち込迎ことを防止するため，身体サーベイ及び作業服の着替え等を行らための区画を設ける設計とする。身体サーベイの結果，運転員の污染が確認された場合は，運転員の除染を行うことができる区画を，身体サーベイを行ら区画に隣接 して設置する設計とする。（5）（vi）－（18）また，照明につい ては，乾電池内蔵型照明により確保できる設計とする。	6．10．2．2 設計方針 （2）汚染の持込みを防止するための設備 重大事故等が発生し，中央制御室の外側が放射性物質に より汚染したような状況下において，運転員が中央制御室 の外側から中央制御室に放射性物質による汚染を持ち込 むことを防止するため，身体サーベイ及び作業服の着替え等を行うための区画を設ける設計とする。身体サーベイの結果，運転員の汚染が確認された場合は，運転員の除染を行うことができる区画を，身体サーベイを行う区画に隣接 して設置する設計とする。また，照明については，乾電池内蔵型照明により確保できる設計とする。 6．10．2．2 設計方針 （3）運転員の被ばくを低減するための設備	【放射線管理施設】（基本設計方針） 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 <中略 > 重大事故等が発生し，中央制御室の外側が放射性物質に より汚染したような状況下において，運転員が中央制御室 の外側から中央制御室に放射性物質による污染を持込む ことを防止するため，身体サーベイ及び作業服の着替元等 を行らための区画を設ける設計とし，身体サーベイの結果，運転員の污染が確認された場合は，運転員の除染を行 うことができる区画を，身体サーベイを行う区画に隣接し て設置する設計とする。 （5）（vi）－（18）中央制御室及び中央制御室待避所内の区画 の照明は，可搬型照明（SA）を使用し，身体サーベイ及び作業服の着替え等を行うための区画の照明は，乾電池内蔵型照明を使用する。 <中略 > 【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の確保 <中略> 重大事故等が発生し，中央制御室の外側が放射性物質に より汚染したような状況下において，運転員が中央制御室 の外側から中央制御室に放射性物質による污染を持込む ことを防止するため，身体サーベイ及び作業服の着替え等 を行らための区画を設ける設計とする。 ＜中略＞ 【計測制御系統施設】（要目表） 4．12．2 中央制御室機能及び中央制御室外原子炬停止機能	設計及び工事の計画の （5）（vi）－（18）は，設置変更許可申請書（本文（五 文章表現は異なるが，内容に相違はないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
炬心の著しい損傷が発生した場合において，$\triangle(5)(\mathrm{vi})-$ （19運転員の被ばくを低減するための重大事故等対処設備 として，非常用ガス処理系及び原子炬建屋ブローアウトパ ネル閉止装置を使用する。 A（5）（vi）－（20非常用ガス処理系 は，非常用ガス処理系排風機，配管•弁類，計測制御装置等で構成し，非常用ガス処理系排風機により原子炉建屋原子炉棟内を負圧に維持するとともに，原子炉格納容器から原子炉建屋原子炬棟内に漏えいした放射性物質を含む気体を排気筒から排気することで，人（5）（vi）－（21）中央制御室 の運転員の被ばくを低減することができる設計とする。	炬心の著しい損傷が発生した場合において，運転員の被 ばくを低減するための重大事故等対处設備として，韭常用 ガス处理系及び原子炬建屋ブローアウトパネル閉止装置 を使用する。 非常用ガス処理系は，非常用ガス处理系排風機，配管：弁類，計測制御装置等で構成し，非常用ガス処理系排風機 により原子炉建屋原子炬棟内を負圧に維持するとともに，原子炬格納容器から原子炬建屋原子炉棟内に漏えいした放射性物質を含む気体を排気筒から排気することで，中央制御室の運転員の被ばくを低澸することができる設計と する。なわっ，本系統を使用することにより重大事故等対応要員の被ばくを低減することも可能である。	（1）中央制御室機能 c．居住性の確保 ＜中略＞ 炬心の著しい損傷が発生した場合においても，可搬型照明（SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室しゃへ い壁，中央制御室待避所遮蔽，補助しゃへい，2次しゃへ い壁，差圧計（中央制御室待避所用），酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）により，中央制御室内にとどまり必要な操作ができる設計とする。炬心の著しい損傷が発生した場合において，原子炉格納施設の（5）（vi）－（19）非常用ガス処理系及び原子炉建屋ブロ ーアウトパネル閉止装置により，運転員の被ばくを低減で きる設計とする。 ＜中略＞ 炉心の著しい損傷が発生した場合に，非常用ガス処理系 は，非常用ガス処理系排風機により原子炉建屋原子炬棟内 を負圧に維持するとともに，原子炉格納容器から原子炬建屋原子炉棟内に漏えいした放射性物質を含む気体を排気筒から排気し，原子炉格納容器から漏えいした空気中の放射性物質の濃度を低減させることで，，（5）（vi）－（21）中央制御室にとどまる運転員を過度の被ばくから防護する設計 とする。 <中略 > 【放射線管理施設】（基本設計方針） 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 <中略> （5）（vi）－（19）炬心の著しい損傷が発生した場合におい て，原子炬格納施設の非常用ガス処理系及び原子炉建屋ブ ローアウトパネル閉止装置により，運転員の被ばくを低減 できる設計とする。 ＜中略＞	設計及び工事の計画の （5）（vi）－（19）は，設置変更許可申請書（本文（五号））の（5）（vi）－（19）と文章表現は異なるが，内容に相違はないため整合している。 設計及び工事の計画の （5）（vi）－（20）は，設置変更許可申請書（本文（五号））の（5）（vi）－（20）と文章表現は異なるが，内容に相違はないため整合している。 設計及び工事の計画の （5）（vi）－（21）は，設置変更許可申請書（本文（五号））の（5）（vi）－（21）と文章表現は異なるが，内容に相違はないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		【原子炬格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 ＜中略＞ －（5）（vi）－（20）非常用ガス処理系は，非常用がス処理系空気倝燥装置，非常用ガス処理系排風機及び高性能エアフィ ルタ，チャコールエアフィルタを含す非常用ガス处理系フ イルタ装置等から構成される。 放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フ ィルタ装置を通して除去•低減した後，排気筒から放出す る設計とする。 非常用ガス処理系は，泠却材战失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去 し，環境に放出される放射性物質の濃度を減少させる設計 とする。 ＜中略＞ 炉心の著しい損傷が発生した場合に，非常用ガス処理系 は，非常用ガス処理系排風機により原子炉建屋原子炉棟内 を負圧に維持するとともに，原子炉格納容器から原子炉建屋原子炉棟内に漏えいした放射性物質を含む気体を排気筒から排気し，原子炉格納容器から漏えいした空気中の放射性物質の濃度を低減させることで，中央制御室にとどま る運転員を過度の被ばくから防櫵する設計とする。 <中略> 非常用ガス処理系の流路として，設計基準対象施設であ る非常用ガス処理系空気乾燥装置，非常用ガス処理系フィ ルタ装置，排気筒，原子炉建屋原子炉棟，原子炉建屋大物搬入口及び原子炉建屋エアロックを重大事故等対処設備 として使用することから，流路に係る機能について重大事			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
原子炉建屋原子炉棟の気密バウンダリの一部として原子炉建屋に設置する原子炬建屋ブローアウトパネルは，閉状態を維持できる，又は開放時に容易かつ確実に原子炉建屋ブローアウトパネル閉止装置により開口部を閉止でき る設計とする。また，原子炉建屋ブローアウトパネル閉止装置は，現場において，人力により操作できる設計とする。	原子炉建屋原子炉棟の気密バウンダリの一部として原子炬建屋に設置する原子炉建屋ブローアウトパネルは，閉状態を維持できる，又は開放時に容易かつ確実に原子炉建屋ブローアウトパネル閉止装置により開口部を閉止でき る設計とする。また，原子炉建屋ブローアウトパネル閉止装置は，現場において，人力により操作できる設計とする。 ＜中略＞	故等対処設備としての設計を行ら。 【計測制御系統他設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の碓保 ＜中略＞ 炬心の著しい損傷が発生し，非常用がス処理系を起動す る際に，原子炬建屋ブローアウトパネルを閉止する必要が ある場合には，中央制御室から原子炬建屋ブローアウトパ ネル閉止装置を操作し，容易かつ確穾に開口部を閉止でき百設計とする。また，原子炬建屋ブローアウトパネル閉止装置は現場においても，人力により操作できる設計とす る。 ＜中略＞ 【原子炉格納施設】（基本設計方針） 2．原子炉建屋 2.1 原子炉建屋原子炉梀等 ＜中略〉 原子炉建屋原子炬楝は，重大事故等時においても，非常用がス処理系により，内部の負圧を碓保することができる設計とする。原子炬建屋原子炉棟の気密バウンダリの一部 として原子炬建屋原子炬棟に設置する原子炬建屋ブロー アウトパネル（原子炉椧却采統施設のらち「5．2 高圧炉心スプレイ系」，浸水防護施設と兼用）（以下同じ。）は，閉状態の維持又は開放時に容易かつ確実に原子炬建屋ブ ローアウトパネル閉止装置により開口部を閉止可能な設計とする。 3．3．1 非常用ガス処理系 ＜中略＞ 炬心の著しい損傷が発生し，非常用ガス処理系を起動す る際に，原子炉建屋ブローアウトパネルを閉止する必要が ある場合には，中央制御室から原子炬建屋ブローアウトパ ネル閉止装置（個数1）を操作し，容易かつ碓実に開口部		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
非常用ガス処理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。ま た，原子炉建屋ブローアウトパネル閉止装置は，常設代替交流電源設備からの給電が可能な設計とする。	非常用ガス处理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。ま た，原子灯建屋ブローアウトパネル閉止装置は，常設代替交流電源設備からの給電が可能な設計とする。 <中略〉	を閉止できる設計とする。また，原子炬建屋ブローアウト パネル閉止装置は現場においても，人力により操作できる設計とする。 ＜中略＞ 【計測制御系統施設】（要目表） 4．12．2 中央制御室機能及び中央制御室外原子炬停止機能 （1）中央制御室機能 c．居住性の確保 <中略> 非常用ガス処理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 可搬型照明（SA）及び原子炉建屋ブローアウトパネル閉止装置は，全交流動力電源喪失時においても常設代替交流電源設備からの給電が可能な設計とする。 <中略 > 【放射線管理施設】（基本設計方針） 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 < 中略 > 非常用ガス処理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 可搬型照明（SA）及び原子炉建屋ブローアウトパネル閉止装置は，全交流動力檽源露失時においても常設代替交流電源設備からの給電が可能な設計とする。 <中略 > 【原子炬格納施設】（基本設計方針） 3．3．1 非常用ガス処理系 <中略> 非常用ガス処理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 また，原子炉建屋ブローアウトパネル閉止装置は，常設代替交流電源設備からの給電が可能な設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（b）原子炉再循環ポンプ停止による原子炉出力抑制 発電用原子炉が運転を緊急に停止していなければなら ない状況にもかかわらず，原子炉出力，原子炉圧力等のパ ラメータの変化から緊急停止していないことが推定され る場合の重大事故等対処設備として，A T W S 緩和設備 （代替原子炉再循環ポンプトリップ機能）は，原子炉圧力高又は原子炉水位低（レベル 2 ）の信号により原子炉再循環ポンプ 2 台を自動停止させて，発電用原子炉の出力を抑制できる設計とする。 また，ATWS緩和設備（代替原子炬再循環ポンプトリ シプ機能）は，自動で停止しない場合に，中央制御室の操作スイッチを手動で操作することで，原子炉再循環ポンプ を停止させることができる設計とする。 （本文十号） 再循環ポンプ全台トリップ設定点 原子炉水位低 セパレータスカート下端から -62 cm （レベル2） 原子炉圧力高 原子炉圧力 7．35MPa［gage］ －記載箇所	b．原子炉再循環ポンプ停止による原子炉出力抑制 発電用原子炉が運転を緊急に停止していなければなら ない状況にもかかわらず，原子炉出力，原子炉圧力等のパ ラメータの変化から緊急停止していないことが推定され る場合の重大事故等対処設備として，ATWS緩和設備 （代替原子炉再循環ポンプトリップ機能）を使用する。．．． A TW S 緩和設備（代替原子炉再循環ポンプトリップ機能）は，検出器（原子炉圧力及び原子炉水位），論理回路，代替原子炉再循環ポンプトリップ遮断器等で構成し，原子炉圧力高又は原子炉水位低（レベル 2）の信号により原子炉再循環ポンプ 2 台を自動停止させて，発電用原子炉の出力を抑制できる設計とする。 また，ATWS緩和設備（代替原子炉再循環ポンプトリ ップ機能）は，自動で停止しない場合に，中央制御室の操作スイッチを手動で操作することで，原子炬再循環ポンプ を停止させることができる設計とする。 ＜中略＞ －設計及び工事の計画で使用している工学的安全施設等の起動信号の A TW S 緩和設備（代替再循環系ポン プトリップ機能）の原子炉水位低及び原子炉圧力高の設定値は，設置変更許可申請書（本文十号）で使用し ている解析条件に包絡されている。	【計測制御系統施設】（基本設計方針） 3．3 ATWS緩和設備（代替原子炉再循環ポンプトリップ機能） < 中略 > 発電用原子炉が運転を緊急に停止していなければなら ない状況にもかかわらず，原子炉出力，原子炉圧力等のパ ラメータの変化から緊急停止していないことが推定され る場合の重大事故等対処設備として，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）は，原子炉圧力高又は原子炉水位低（レベル2）の信号により，原子炉再循環ポ ンプ2台を自動停止させて，発電用原子炉の出力を抑制で きる設計とする。 また，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）は，自動で停止しない場合に，中央制御室の操作ス イッチを手動で操作することにより，代替原子炉再循環ポ ンプトリップ遮断器を開放し，原子炉再循環ポンプを停止 させることができる設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（ x iii）原子炉冷却材圧力バウンダリを減圧するための 設備 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダ リを減圧するために必要な重大事故等対処設備を（5）（x （iii）－（1）設置及び保管する。．．．	6.8 原子炉冷却材圧力バウンダリを減圧するための設備 6．8．1 概要 原子炉泠却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダ リを減圧するために必要な重大事故等対処設備を設置及 び保管する。 原子炉冷却材圧力バウンダリを減圧するための設備の説明図及び系統概要図を第6．8－1図から第6．8－3図に示 す。	【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針） 3．4．4 代替自動減圧回路（代替自動減圧機能） 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉泠却材圧力バウンダ リを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能）を（5）（ x iii）－（1）設ける設計とする。 ＜中略＞ 【計測制御系統施設】（基本設計方針） 3.5 代替自動減圧回路（代替自動減圧機能） 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炬の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉泠却材圧力バウンダ リを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能）を（5）（x iii）－（1）設ける設計とする。 ＜中略＞ 5．制御用空気設備 5.2 高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダ リを減圧するために必要な重大事故等対処設備として，高圧窒素ガス供給系（非常用）を \＆（5）（ x iii）－（1）設ける設計 とする。	設計及び工事の計画の人（5）（x iii）－（1）は，設置変更許可申請書（本文 （五号））の（5）（ x iii） －（1）と文章表現は異な るが，内容に相違はない ため整合している。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
原子炉冷却材圧力バウンダリを減圧するための iii）－（2）設備のらち，原子炉冷却材圧力バウンダリが高圧時 に炬心の著しい損傷及び原子炬格納容器の破損を防止す るための（5）（x iii）－（2）設備として，主蒸気逃がし安全弁 を作動させる代替自動減圧回路（代替自動減圧機能），高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系 を設ける。	6．8．2 設計方針 原子炉冷却材圧力バウンダリを減圧するための設備の うち，原子炉冷却材圧カバウンダリが高圧時に炬心の著し い損傷及び原子炉格納容器の破損を防止するための設備 として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能），高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系を設ける。	5.3 代替高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダ リを減圧するために必要な重大事故等対処設備として，代替高圧窒素ガス供給系を（5）（x iii）－（1）設ける設計とす る。 ＜中略＞ 【計測制御系統施設】（基本設計方針） 3.5 代替自動減圧回路（代替自動減圧機能） 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉泠却材圧力バウンダ リを減圧するために「（5）（x iii）－（2）必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能）を設ける設計とする。 <中略 > 5． 2 高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダ リを減圧するためにへ（5）（x iii）－（2）必要な重大事故等対処設備として，高圧窒素がス供給系（非常用）を設ける設計 とする。 ＜中略＞ 5.3 代替高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炬心の著しい損傷及び原子炉格	設計及び工事の計画の （5）（x iii）－2 は は，設置変更許可申請書（本文 （五号））の $人$（5）（ x iii） －（2）と文章表現は異な るが，内容に相違はない ため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
緩和設備（自動減圧系作動阻止機能）により自動減圧系及	緩和設備（自動減圧系作動阻止機能）により自動減圧系及	動減圧系作動阻止機能）により自動減圧系及び代替自動減			
び代替自動減圧回路（代替自動減圧機能）による自動減圧	び代替自動減圧回路（代替自動減圧機能）による自動減圧	圧回路（代替自動減圧機能）による自動減圧を阻止できる			
を阻止する。	を阻止する。	設計とする。			
	＜中略＞	＜中略＞			
b．サポート系故障時に用いる設備	（2）サポート系故障時に用いる設備	【計測制御系統施設】（基本設計方針）			
（a）主蒸気逃がし安全弁の作動に必要な窒素喪失時の減圧	a ．主蒸気逃がし安全弁の作動に必要な窒素喪失時の減圧	5.2 高圧窒素ガス供給系			
（a－1）高圧窒素ガス供給系（非常用）による窒素確保	（a）高圧窒素ガス供給系（非常用）による窒素確保	＜中略＞			
原子炉泠却材圧力バウンダリを減圧するための設備の	原子炉泠却材圧力バウンダリを減圧するための設備の	原子炉泠却材圧力バウンダリを減圧するための設備の			
うち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，高圧窒素ガス供給系（非常用）は，主蒸	対処設備として，高圧窒素ガス供給系（非常用）を使用す。	対処設備として，高圧窒素ガス供給系（非常用）は，主蒸			
気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃が	る。	気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃が			
し弁機能用アキュムレータ及び主蒸気逃がし安全弁自動	高圧窒素ガス供給系（非常用）は，主蒸気逃がし安全弁	し弁機能用アキュムレータ及び主蒸気逃がし安全弁自動			
減圧機能用アキュムレータの充填圧力が喪失した場合に	の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキ	減圧機能用アキュムレータの交填圧力が喪失した場合に			
おいて，主蒸気逃がし安全弁の作動に必要な窒素を供給で	ユムレータ及び主蒸気逃がし安全弁自動減圧機能用アキ	おいて，主蒸気逃がし安全弁（6個）の作動に必要な窒素			
きる設計とする。	ユムレータの充填圧力が喪失した場合において，主蒸気逃	を高圧窒素がスボンべにより供給できる設計とする。			
なお，高圧窒素ガスボンべの圧力が低下した場合は，現	がし安全弁の作動に必要な窒素を供給できる設計とする。	高圧窒素ガスボンベの圧力が低下した場合は，現場で高			
場で高圧窒素ガスボンべの切替え及び取替えが可能な設	なお，高圧窒素ガスボンべの圧力が低下した場合は，現	圧窒素ガスボンべの切替え及び取替えが可能な設計とす			
計とする。	場で高圧窒素ガスボンべの切替え及び取替えが可能な設	$\underline{\underline{3}}$			
	計とする。	高圧窒素がス供給系（非常用）の流路として，設計基準			
	＜中略＞	対象施設である主蒸気逃がし安全弁自動減圧機能用アキ			
		ユムレータ及び主蒸気逃がし安全弁を重大事故等対処設			
		備として使用することから，流路に係る機能について重大			
		事故等対処設備として設計する。			
（a－2）代替高圧窒素ガス供給系による原子炉減圧	（b）代替高圧窒素ガス供給系による原子炉減圧	【計測制御系統施設】（基本設計方針） 5.3 代替高圧窒素ガス供給系			
		＜中略＞			
原子炉冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の			
うち，主蒸気逃がし安全弁の機能回復のための重大事故等	弓ち，主蒸気逃がし安全弁の機能回復のための重大事故等	うち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，代替高圧室素ガス供給系は，主蒸気逃が	対処設備として，代替高圧窒素ガス供給系を使用する。	対処設備として，代替高圧窒素ガス供給系は，主蒸気逃が			
し安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機	代替高圧窒素ガス供給系は，主蒸気逃がし安全弁の作動	し安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機			
能用アキュムレータ及び主蒸気逃がし安全弁自動減圧機	に必要な主蒸気逃がし安全弁逃がし升機能用アキュムレ	能用アキュムレータ及び主蒸気逃がし安全弁自動減圧機			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
能用アキュムレータの充填圧力が喪失した場合において，主蒸気逃がし安全弁のアクチュエータに直接窒素を供給 することで，主蒸気逃がし安全弁（4個）を一定期間にわ たり連続して開状態を保持できる設計とする。 なお，高圧窒素ガスボンべの圧力が低下した場合は，現場で高圧窒素ガスボンべの取替えが可能な設計とする。	ータ及び主蒸気逃がし安全弁自動減圧機能用アキュムレ ータの充填圧力が喪失した場合において，主蒸気逃がし安全弁のアクチュエータに直接窒素を供給することで，主蒸気逃がし安全弁（4個）を一定期間にわたり連続して開状態を保持できる設計とする。 なお，高圧窒素ガスボンべの圧力が低下した場合は，現場で高圧窒素ガスボンべの取替えが可能な設計とする。 <中略 > 本系統の流路として，代替高圧窒素ガス供給系の配管，弁及びホースを重大事故等対処設備として使用できる設計とする。 < 中略 >	能用アキュムレータの充填圧力が喪失した場合において，主蒸気逃がし安全弁のアクチュエータに高圧窒素ガスボ ンべにより直接窒素を供給することで，主蒸気逃がし安全弁（4個）を一定期間にわたり連続して開状態を保持でき る設計とする。 高圧窒素ガスボンベの圧力が低下した場合は，現場で高圧窒素ガスボンべの取替えが可能な設計とする。 代替高圧窒素ガス供給系の流路として，設計基準事故対処設備である主蒸気逃がし安全弁を重大事故等対処設備 として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
統の処理済液は，原則として復水貯蔵タンクに回収して再使用するがっ一部については放射性物質濃度が低いこ とを確認して，復水器冷却水放水路に放出する場合があ る． c．ランドリドレン処理系（1号及び2号炉共用，既設）の主要な設備はドレンタンク，前処理装置，蒸発濃縮装置2， サンプルタンク，再生純水タンクである。．．． 本系統の処理斎液は，できるだけ再使用する。	（2）液体廃棄物処理系の系統処理容量及び系統の系列構成は，発生廃液量が最大と予想される場合に対して十分対処できるようにする。 なお，液体廃棄物処理系の機器は廃液の性状を考慮し，適切な材料を使用する。 （3）液体廃重物の処理施設及びこれに関連する施設は， これらの施設から液体状の放射性物質の漏えいの防止及び敷地外への管理されない放出を防止するため，次の各項を考慮した設計とする。 a．漏えいの発生を防止するため，処理設備には適切な材料を使用するとともに，タンク水位の検出器，インタ ー・ロック回路等を設ける。 b 。系外へ開放するドレン管，ベント管などは，閉止キャ ップ等を施すことを原則とするが，使用頻度の多いもの等は，ドレン，ベントをタンク，サンプピット等へ導く。 c．放射性液体が漏えいした場合は，漏えいの早期検出を可能にするとともに，漏えい液体の除去，除染を容易に行えるようにする。 d．液体廃棄物処理系の機器は，独立した区画内に設ける か，周辺にせきを設け施設内での漏えいの拡大を防止 し，施設外に通じる出入口等にはせきを設け，施設外へ の漏出を防止する。 また，屋外設備，屋外配管は，漏えい液体を遮蔽壁，配管ダクト等の施設内に留めるようにする。液体状の放射性廃棄物が留まる恐れのある施設の床および壁面は，漏えい し難い構造とする。 e．タンク水位，漏えい検知器等の警報については，廃竦物処理系制御室又は中央制御室に表示し，異常を確実に運転員に伝え適切な措置をとれる設計とし，中央制御室 においては，これを監視できるようにする。 f．敷地外へ管理されない排水を排出する排水路上には施設内部の床面がないように施設する。また，関連する施設内には管理されない排水路に通じる開口部を設けな い設計とする。 （4）液体廃棄物処理系（ランドリドレン処理系は除く。）	5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 （2）通常運転時に漏えいを許容する場合の措置 設計基準対象施設は，通常運転時において，放射性物質 を含む液体を内包する容器，配管，ポンプ，弁その他の設備から放射性物質を含む液体があふれ出た場合において は，系統外に漏えいさせることなく，各建屋等に設けられ た機器ドレン，床ドレン等のサンプ又はタンクに収集し，液体廃葉物処理設備に送水する設計とする。 【放射性廃棄物の廃棄施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1.2 廃棄物処理設備 ＜中略＞ 放射性物質を含む原子炉冷却材を通常運転時において原子炉冷却系統外に排出する場合は，床ドレン・化学廃液系及び機器ドレン系のサンプを介して，液体廃妻物処理系 へ導く設計とする。 ＜中略＞ 流体状の放射性廃裹物は，管理区域内で処理することと し，流体状の放射性廃棄物を管理区域外において運搬する ための容器は設置しない。 ＜中略＞ 1.4 排水路 液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連する施設を設ける建屋の床面下には，発電所外に管理 されずに排出される排水が流れる排水路を施設しない設計とする。 また，液体廃棄物処理設備，液体廃棄物貯蔵設備及びこ れらに関連する施設を設ける建屋内部には発電所外に管理されずに排出される排水が流れる排水路に通じる開口部を設けない設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（ii）廃棄物の処理能力 ト（2）－（2）液体廃裹物処理系の各タンク類の容量及び脱塩装置っ，蒸発濃縮装置等の処理容量は，発電用原子炬の起動，停止の態様を考慮して発生廃液量が最大と予想される場合に対して十分対処できる大きさとする。蒸発濃縮装置，脱塩装置等の除染能力は，廃液の発電所内再使用あるいは所外放出を可能とするのに十分な性能を有するものとす る．－． （iii）排水口の位置 排水口は，東防波堤外側にある復水器冷却水放水口であ る。 （3）固体廃棄物の廃棄設備 （i）構造 ト（3）（ i ）－（1）固体廃棄物の廃棄設備（固体廃棄物処理系） は，廃棄物の種類に応じて処理又は貯蔵保管するため，内 （3）（ i ）－（2）濃縮廃液貯蔵タンク（床ドレン・化学廃液）濃縮廃液貯蔵タンク（ランドリドレン）（1号及び2号炉共用），，使用斎樹脂貯蔵槽，，浄化系沈降分離槽，，－ランドリ系沈降分離槽（ 1 号及び 2 号炉共用），セメント固化式固化装置（ 1 号及び 2 号炉共用），プラスチック固化式固化装置（1号及び 2 号炉共用），固体廃棄物焼却設備（ 1 号， 2号及び 3 号炉共用），減容装置（1号，2号及び 3 号炉共用，一部既設），サイトバン力（1号，2号及び3号炉共用），雑固体廃棄物保管室（1 号，2号及び 3 号炉共用），固体廃裹物貯蔵所（1号，2号及び 3 号炬共用）等で構成 する。	は，廃棄物処理系制御室において集中監視制御できるよ うにする。 7．2．1 概要 液体廃誱物処理系は，発電用原子哣施設で発生する放射性廃液及び潜在的に放射性物質による汚染の可能性のあ る廃液をっその性状により分離収集し，处理する。．．． 液体廃液処理系により処理した後の処理済液は，原則と して回収して再使用するがって試料採取分析を行い，放射性物質の濃度の低いことを確認して放出する場合もある。．．． <中略 > 7.3 固体廃棄物処理系 7．3．1 概要 固体廃棄物処理系は，廃棄物の種類に応じて，処理又は貯蔵保管するため，濃縮廃液貯蔵タンク（床ドレン・化学廃液），濃縮廃液貯蔵タンク（ランドリドレン）（1号及 び 2 号炉共用），使用済樹脂貯蔵槽，浄化系沈降分離槽， ランドリ系沈降分離槽（1 号及び2号炉共用），セメント固化式固化装置（1号及び2号炉共用），プラスチック固化式固化装置（1号及び 2 号炉共用），焼却設備（ 1 号， 2 号及び 3 号炉共用），減容装置（ 1 号， 2 号及び 3 号炉共用，一部既設），サイトバンカ（ 1 号， 2 号及び 3 号炉共用），雑固体廃重物保管室（ 1 号， 2 号及び 3 号炉共用），固体廃棄物貯蔵所（1号，2号及び3号炉共用）等で構成 する。	1．2 廃棄物処理設備 ト（2）－（2）放射性廃棄物を処理する設備は，周辺監視区域 の外の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となるよう に，発電用原子炉施設において発生する放射性廃重物を処理する能力を有する設計とする。．．． ＜中略＞ ト（3）（ i ）－（1）固体廃衷物処理系は，廃棄物の種類に応じ て，卜（3）（ i ）－（2）濃縮廃液，使用斎樹脂及び廃スラッジを固型化するプラスチック固化式固化装置（第1，2号機共用），濃縮廃液を固型化するセメント固化式固化装置（第 1号機設備，第1，2号機共用（以下同じ。）））及び可燃性雑固体廃棄物，脱塩装置から発生する使用斎樹脂及びラン ドリ廃スラッジを焼却する固体廃棄物焼却設備（第1号機設備，第1，2，3号機共用（以下同じ。）），並びに不燃性雑固体廃棄物を圧縮する減容装置（「第1号機設備，第1， 2，3号機共用」，「第1，2，3号機共用」及び「第3号機設備，第1，2，3号機共用」（以下同じ。））及び固型化処理用減容機（第3号機設備，第1，2，3号機共用（以下同じ。）） で処理する設計とする。．．． 原子炉冷却材圧力バウンダリ内に施設されたものから	設計及び工事の計画の ト（2）－（2）は，設置変更許可申請書（本文（五号）） の厇（2）－（2）と文章表現 は異なるが，内容に相違 はないため整合してい る。 設置変更許可申請書（本文（五号））において許可を受けた「排水口の位置」については，本工事計画の対象外である。 設計及び工事の計画の ト（3）（i）－（1）は，設置変更許可申請書（本文（五号））の中（3）（ i ）－（1）と同義であり整合してい る。 設計及び工事の計画の ト（3）（i）－（2）は，設置変更許可申請書（本文（五号））の ト（3）（i ）－（2）を総括して記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
ト（3）（i ）－3 床ドレン・化学廃液系の蒸発濃縮装置から発生する濃縮廃液は，タンクで放射能を減衰させた後，プ ラスチック固化式固化装置で固化材（プラスチック）と混合してドラム缶内に固化し貯蔵保管する。 ト（3）（i）－（3）ランドリドレン処理系の蒸発濃縮装置から発生する濃縮廃液は，タンクで放射能を減衰させた後っセ メント固化式固化装置又はプラスチック固化式固化装置 で固化材（セメント又はプラスチック）と混合してドラム缶内に固化し貯蔵保管する。	7．3．3 主要設備 （1）濃縮廃液の処理 < 中略 > 床ドレン・化学廃液系の蒸発濃縮装置から発生する濃縮廃液は，濃縮廃液貯蔵タンク（床ドレン・化学廃液）に集 め放射能を減衰させた後，プラスチック固化式固化装置 （1号及び2号炉共用）で固化材（プラスチック）と混合 してドラム缶内に固化し貯蔵保管する。 ランドリドレン処理系の蒸発濃縮装置から発生する濃縮廃液は，濃縮廃液貯蔵タンク（ランドリドレン）（1号及び 2 号炉共用）に集め放射能を減衰させた後，セメント固化式固化装置（ 1 号及び 2 号炉共用）又はプラスチック固化式固化装置（1号及び 2 号炉共用）で固化材（セメン ト又はプラスチック）と混合してドラム缶内に固化し貯蔵保管する。 固化装置は必要に応じて独立した区画内に設けるか，あ	発生する高放射性の固体状の放射性廃妻物（放射能量が科技庁告示第 5 号第 3 条第 1 号に規定するA1値又はA2値を超え るもの（除染等により線量低減ができるものは除く））を管理区域外において運搬するための固体廃棄物移送容器 （第1号機設備，第1，2，3号機共用（以下同じ。））は，容易かつ安全に取扱うことができ，かつ，運搬中に予想さ れる温度及び内圧の変化，振動等により，亀裂，破損等が生じるおそれがない設計とする。 また，固体廃棄物移送容器は，放射性廃棄物が漏えいし難い構造であり，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食しない設計とする。 固体廃棄物移送容器は，内部に放射性廃重物を入れた場合に，放射線障害を防止するため，その表面の線量当量率及びその表面から1mの距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」 に定められた線量当量率を超えない設計とする。 ＜中略＞ 1．2 廃棄物処理設備 ＜中略＞ ト（3）（i ）－3 固体廃裹物処理系は，廃重物の種類に応じ て，濃縮廃液，使用済樹脂及び廃スラッジを固型化するプ ラスチック固化式固化装置（第1， 2 号機共用），濃縮廃液 を固型化するセメント固化式固化装置（第1号機設備，第1， 2号機共用（以下同じ。））及び可燃性雑固体廃棄物，脱塩装置から発生する使用済樹脂及びランドリ廃スラッジ を焼却する固体廃裹物焼却設備（第1号機設備，第1，2，3号機共用（以下同じ。）），並びに不燃性雑固体廃妻物を圧縮する減容装置（「第1号機設備，第1，2，3号機共用」，「第1，2，3号機共用」及び「第3号機設備，第1，2，3号機共用」（以下同じ。））及び固型化処理用減容機（第3号機設備，第1，2，3号機共用（以下同じ。））で処理す る設計とする。	設計及び工事の計画囚 （3）（i ）－3 は，設置変更許可申請書（本文（五号））の（3）（i ）－（3）を総括して記載しており整合している。		

設置変更許可申請書（本文（五号））
ら過装置から発生する廃スラッジは，浄化系沈降分離棈に貯蔵保管するかっプラスチック固化式固化装置で固化材 （プラスチック）と混合してドラム缶内に園化し貯蔵保管寺る。

（2）使用済樹脂及び廃スラッジの処理
＜中略＞
原子炉泠却材浄化系及び燃料プール泠却浄化系のろ過脱塩装置から発生する使用済樹脂，並びに復水浄化系の復水ろ過装置及び液体廃棄物処理系のろ過装置から発生す る廃スラッジは，発生量の約 10 年分以上の貯蔵容量を有 する浄化系沈降分離槽に貯蔵するか，又は貯蔵し放射能を減衰させた後，プラスチック固化式固化装置で固化材（プ ラスチック）と混合してドラム缶内に固化し貯蔵保管す る。
（3）（i）－（3）復水脱塩装置，機器ドレン系及び床ドレ ン・化学廃液系の脱塩装置から発生する使用済樹脂は，使用斎樹脂貯蔵槽に貯蔵し放射能を減衰させた後，プラスチ ック固化式固化装置で固化材（プラスチック）と混合して ドラム缶内に固化し貯蔵保管するかっ又は固体廃寁物焼却設備で焼却し，焼却圧はドラム缶に詰めて貯蔵保管する。
（3）（ i ）－（3）前処理装置から発生するランドリ廃スラッ ジは，ランドリ系沈降分離槽に貯蔵後，固体廃棄物焼却設備で焼却し，焼却圧はドラム缶に詰めて貯蔵保管する。．．

ト（3）（i ）－3 可燃性雑固体廃棄物は，．．固体廃棄物焼却設備で焼却し，焼却圧はドラム缶に詰めて貯蔵保管する。

F（3）（i）－（3）不燃性雑固体廃噰物は，圧縮可能なものは
復水浄化系の復水脱塩装置，機器ドレン系及び床ドレ ン・化学廃液系の脱塩装置から発生する使用済樹脂は，発生量の約 5 年分以上の貯蔵容量を有する使用済樹脂貯蔵槽に貯蔵し，放射能を減衰させた後，プラスチック固化式固化装置で固化材（プラスチック）と混合してドラム缶内 に固化し貯蔵保管するか，又は固体廃棄物焼却設備で焼却 し，焼却灰はドラム缶に詰めて貯蔵保管する。

ランドリドレン処理系の前処理装置から発生するラン ドリ廃スラッジは，ランドリ系沈降分離槽（1号及び2号炉共用）に貯蔵し，固体廃棄物焼却設備で焼却し，焼却灰 はドラム缶に詰めて貯蔵保管する。
（3）雑固体廃棄物の処理
＜中略＞
可燃性雑固体廃棄物は，固体廃棄物焼却設備で焼却し，焼却灰は，ドラム缶に詰めて貯蔵保管する。固体廃棄物焼却設備の排ガスはセラミックフィルタ及び高性能粒子フ イルタを通すので（采統全体除染係数 10^{5} 以上 ${ }^{(1)}$ ），排か ス中の放射性物質の濃度は無視できる。この排ガスは，放射性物質の濃度を監視しながら焼却炉建屋排気口から放出する
不燃性雑固体廃棄物は，仕分けし，可能なものは破砕，圧縮減容し，ドラム缶等に詰めて貯蔵保管するかっ，固型化

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（ii）試料分析関係設備（1号及び2号炬共用，一部既設）	8．1．1．4．2 試料分析関係設備（1号及び 2 号炉共用，一部既設）		設計及び工事の計画の f（1）（ii）－（1）は，設置変		
各系統の試料及び放射性廃棄物の放出管理用試料甲	原子炬冷却采，廃重物処理系，その他各系統の試料及び	（1）及び環境試料の化学分析並びに放射能測定を行らため，			
（1）（ii）－（1）等の化学分析並びに放射能測定を行うため，化	放射性廃棄物の放出管理用試料の化学分析並びに放射能				
学分析室，放射能測定室を設け測定機器を備える。	測定を行らために次の設備を設ける。	化学分析室（第 1 号機設備，第 $1, ~ 2$ 号機共用），放射能測	更許可申請書（本文（五		
	（1）分析室	定室（第 1 号機設備，第 1,2 号機共用（以下同じ。））に	号））の毛（1）（ii）－（1）を		
	発電所内の原子炉泠却系，補機玲却系，廃妻物処理系，	$\frac{\text { 測定機器を設ける設計とする。 }}{\text { 为 }}$	具体的に記載してお		
	その他各系統の液体及び気体の試料の分析を行うため分	＜中略＞	整合している。		
	析室を設け必要な機器を設置する。 （2）放射能測定室				
	各種系統及び作業環境の試料の放射能測定を行うため放射能測定室を設け必要な機器を設置する。				
（iii）放射線監視設備	8．1．1．2 設計方針	1.1 放射線管理用計測装置	設計及び工事の計画の团		
各系統の放射性物質の濃度，管理区域内等の主要箇所の	（2）発電所内外の外部放射線量率，放射性物質の濃度等	発電用原子炉施設には，通常運転時，運転時の異常な過			
外部放射線量率等を監視，測定するために，チ（1）（iii）－（1）プ	を測定，監視し，必要な情報を中央制御室又は適切な場	渡変化時及び設計基準事故時において，当該発電用原子炉	（1）（iii）－（1）は，設置変更		
ロセス放射線モ二タリング設備，エリア放射線モニタリン	所に表示できる設計とする。	施設における各系統の放射性物質の濃度，管理区域内等の			
グ設備及び放射線サーベイ機器（1号及び2号炉共用，既		るために, f(1) (iii)-1)プロセスモニタリング設備, エリア			
設）を設ける。	（4）中央制御室及び緊急時对策所に必要な情報の通報が 可能である設計とする。		あり整合している。		
		モニタリング設備及び放射線サーベイ機器（第1号機設備，			
	（5）通常運転時の放射性物質放出に係る放射線監視設備	第1，2，3号機共用）を設ける設計とする。			
（1）（iii）－17プロカス故射線モータリング設備及びエリ	は，「発電用軽水型原子炉施設における放出放射性物質 の測定に関する指針」に適合する設計とする。	＜中略＞ f（1）（iii）－（1）プロセスモニタリング設備，エリアモニタリ			
f（1）（iii）－18		f（1）（iil）－（1）゚ロセスモニタリング設僙，エリアモニタリ			
ア放射線モニタリング設備については，設計基準事故時に	（6）設計基準事故時に必要な放射線監視設備は，「発電	ング設備及び固定式周辺モニタリング設備については，設			
おける迅速な対応のために必要な情報を中央制御室及び	用軽水型原子炉施設における事故時の放射線計測に関	計基準事故時における迅速な対応のために必要な情報を			
緊急時対策所に表示できる設計とする。	する審査指針」に適合する設計とする。	$\frac{\text { 中央制御室及び緊急時対策所に表示できる設計とする。 }}{\text { <中略> }}$			
	8．1．1．4 主要設備				
	8．1．1．4．3 放射線監視設備	1．1．1 プロセスモニタリング設備			
	放射線監視設備は，プロセス放射線モニタリング設備，	通常運転時，運転時の異常な過渡変化時及び設計基準事			
	エリア放射線モニタリング設備，周辺モニタリング設備及	故時において，原子炉格納容器内の放射性物質の濃度及び			
	び放射線サーベイ機器からなり次の機能を持つ。	線量当量率，主蒸気管中及び空気抽出器その他の蒸気ター			
	（a）各系統及び各領域における放射能異常を早期に検出	ビン又は復水器に接続する放射性物質を内包する設備の			
	し警報する。	排ガス中の放射性物質の濃度，排気筒の出口又はこれに近			
	（b）発電所外へ制御しながら放出する放射性物質を常時	接する箇所における排気中の放射性物質の濃度，排水口近			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	監視する。	傍における排水中の放射性物質の濃度及び管理区域内に			
	（c）格納容器雰囲気放射線モニタは，事故時においても	おいて人が常時立ち入る場所その他放射線管理を特に必			
	対応し得るよう多重性，独立性を有し，格納容器エリア	要とする場所の線量当量率を計測するためのプロセスモ			
	放射線量率を監視する。	ニタリング設備を設け，計測結果を中央制御室に表示でき			
	（1）プロセス放射線モニタリング設備	る設計とする。また，計測結果を記録し，及び保存するこ			
	プロセス放射線モニタは，連続的に放射線を測定し，中	とができる設計とする。			
	央制御室又は廃车物処理系制御室又は焼却炉建屋制御室	原子炉冷却材の放射性物質の濃度，排気筒の出口又はこ			
	若しくは，サイトバンカ建屋制御盤室で記録，指示を行い，	れに近接する箇所における排気中の放射性物質の濃度及			
	放射線レベル基準設定値を超えたときは警報を発する。	び排水口又はこれに近接する箇所における排水中の放射			
	主なプロセス放射線モニタとして次のものがあり，その	性物質の濃度は，試料採取設備により断続的に試料を採取			
	配置図を第8．1－1図に示す。	し分析を行い，測定結果を記録し，及び保存する。			
	a ．格納容器雰囲気放射線モニタ	放射性物質により污染するおそれがある管理区域内に			
	事故時における放射性物質に対する放射能障壁の健全	開口部がある排水路を施設しないことから，排水路の出口			
	性を把握するため，格納容器エリア放射線量率の監視を行	近傍における排水中の放射性物質の濃度を計測するため			
	う。検出器には電離箱を使用する。	の設備を設けない設計とする。			
	b．スタック放射線モニタ	プロセスモニタリング設備のらち，原子炬格納容器内の			
	排気筒から放出される放射性ガスの監視を行ら。検出器	線量当量率を計測する格納容器内雰囲気放射線モニタ			
	にはNaI シンチレータ及び電離箱を使用する。また，よう	（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は，そ			
	素用フィルタ，粒子用フィルタ及びトリチウム捕集装置を	れぞれ多重性，独立性を確保した設計とする。			
	設けて放射性よう素，粒子状放射性物質及びトリチウムを	プロセスモニタリング設備のらち，原子炬建屋原子炉棟			
	連続的に捕集し，定期的に回収，測定する。	排気放射線モニタ及び燃料取替エリア放射線モニタは，外			
	c．焼却炉建屋排気口モニタ（1号及び2号炉共用，既設）	部電源が使用できない場合においても非常用所内電源系			
	焼却炉建屋排気口から放出される放射能を監視する。検	からの電源供給により，線量当量率を計測することができ			
	出器にはNaI シンチレータを使用する。	る設計とする。			
	d．蒸気式空気抽出器排ガスモニタ	＜中略＞			
	烝気式空気抽出器排ガス中の放射性ガスを監視する。検				
	出器には電離箱を使用する。	1．1．2 エリアモニタリング設備			
	e．活性炭式希ガスホールドアップ装置排ガスモニタ	通常運転時，運転時の異常な過渡変化時及び設計基準事			
	活性炭式希ガスホールドアップ装置通過後の蒸気式空	故時に，管理区域内において人が常時立ち入る場所その他			
	気抽出器排ガス中の放射性ガスを監視する。検出器には	放射線管理を特に必要とする場所の線量当量率を計測す			
	NaI シンチレータを使用する。	るためのエリアモニタリング設備を設け，計測結果を中央			
	f．タービングランド蒸気排ガスモニタ	制御室に表示できる設計とする。また，計測結果を記録し，			
	グランド蒸気復水器及び起動用真空ポンプから排出さ	及び保存することができる設計とする。			
	れる放射性ガスの監視を行う。検出器にはNaI シンチレー	＜中略＞			
	夕を使用する。				

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
線モニタについては，「リ）（3）（ii）d．－水素爆発による原子	線モ二タについては，「9．5 水素爆発による原子炬格納		d．水素爆発による原		
炬格納容器の破損を防止するための設備」に記載する。	容器の破損を防止するための設備」に記載する。重大事故		子炉格納容器の破損を		
	等時の耐圧強化ベント系の放射線量率を測定するための		防止するための設備」に		
	耐圧強化ベント系放射線モニタについては，「6．4 計装		示す。		
	設備（重大事故等対処設備）」に記載する。				
		1.1 放射楾管理用計測装置			
		＜中略＞			
重大事故等時のf（1）（iii）－（3）耐压強化ベント系の放射線		重大事故等が発生し，当該重大事故等に対処するために	設計及び工事の計画の团		
量率を測定するための耐压強化ベント系放射線モ二夕を		監視することが必要なパラメータとして，原子炬格納容器	（1）（iii）－（3）は，設置変更		
設ける。		内の放射線量率，千（1）（iii）－③最終七ートンンクの碓保及び	許可申請書（本文（五号））		
		使用済燃料プールの監視に必要なパラメータを計測する	の缷（1）（iii）－（3）を含んで		
		装置を設ける設計とする。	おり整合している。		
		重大事故等が発生し，計測機器（非常用のものを含む。）			
		の故障により，当該重大事故等に対処するために監視する			
		ことが必要なパラメータを計測することが困難となった			
		場合において，当該パラメータを推定するために必要なパ			
		ラメータを計測する設備を設置する設計とする。			
		重大事故等に対処するために監視することが必要なパ			
		ラメータは，炬心損傷防止対策及び格納容器破損防止対策			
		等を成功させるために必要な発電用原子炬施設の状態を			
		把握するためのパラメータとし，チ（1）（iii）－（3）誈測する装置			
		は「素11放射線管理施設の主票設備りスト」のプロセス			
		モニタリング設備に示す重大事故等対处設備，エリアモニ			
		タリング設備のらち使用済燃料プール上部空間放射線モ			
		ニ夕（低線量）及び使用済然料プール上部空間放射線モニ夕（高線量）とする。			
		＜中略＞			
	（7）緊急時対策所の放射線量の測定に用いる設備				
緊急時対策所内への希がス等の放射性物質の侵入を低	緊急時対策所内への希がス等の放射性物質の侵入を低		設置変更許可申請書（ ${ }^{\text {a }}$		
減又は防止するための加庣判断ができるよう，放射線量を	減入は防止するための加压判断ができるよう，放射線量を		文（五号））「又（3）（vi）		
監視，測定するための緊急時対策所可搬型工少アモニタル	監視，測定するための緊急時対策所可般型工帰アモ二タに		緊急時対策所」に示す。		
ついては，「又（3）（vi）緊急時対策所」に記載する。	ついては，「10．9 緊急時対策所」に記載する。				

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
f（1）（v）a．－77中央制御室遮蔽は，設計基準事故時及び重大事故等時ともに使用する。 中央制御室待避所遮蔽 千（1）（v）a．－8（「へ（5）（vi）中央制御室」 と兼用） 千（1）（v）a．－9 \quad－．－式	（2）中央制御室待避所遮蔽 兼用する設備は以下のとおり。 －中央制御室（重大事故等時） 	【放射線管理施設】（基本設計方針） 2.3 生体遮蔽装置等 <中略> チ（1）（v）a．－7 中 中央制御室しやへい壁は，設計基集事故対処設備であるとともに，重大事故等時においても使用す尚ため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないこ とから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 【放射線管理施設】（要目表） 6.3 生体遮蔽装置	設計及び工事の計画の チ（1）（v）a．－（7）は，設置変更許可申請書（本文 （五号））の尾（1）（v）a． －（7）と同義であり整合 している。 （1）（ v ）a．－（9） \qquad 「中央制御室待避所遮蔽」は，設置変更許可申請書（本文（五号））の团 （1）（v）a．－8 を設計及 び工事の計画の「放射線管理施設」のらち「生体遮蔽装置」に整理してお り整合している。 設計及び工事の計画の f（1）（v）a．－（9）は，設置変更許可申請書（本文 （五号））の手（1）（v）a． －（9）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（vi）換気空調設備 通常運転時，運転時の異常な過渡変化時，設計基準事故時及び重大事故等時に発電所従業員に新鮮な空気を送る とともに，空気中の放射性物質の除去低減が可能な干 （1）（vi）－（1）換気空調設備を設ける。	8.2 換気空調設備 8．2．1 概要 換気空調設備は，建屋内に清浄な空気を供給し建屋内の空気を加熱あるいは泠却して温度を制御するとともに，こ れら供給空気の流れを適切に保ち，建屋内の清浄区域の活染を防止するために設けるものである。－ 換気空調設備は，原子炉建屋原子炉棟（以下 8 。では「原子炉棟」という。）換気空調系，タービン建屋換気空調系，中央制御室換気空調系，廃棄物処理区域換気空調系等から構成し，それぞれ独立な系統とする。 これらの各系統には必要に応じてフィルタ，加熱コイ ル，冷却コイル等を設ける。 また，ドライウェル内にはドライウェル内ガス泠却装置 を設ける。 ＜中略＞ 8．2．4 主要設備 運転員等が滞在する中央制御室，廃棄物処理系制御室 は，換気空調系により，約 $21^{\circ} \mathrm{C} \sim 26^{\circ} \mathrm{C}$ に温度調節する。そ の他の一般区域は，約 $10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$ とするが特にその必要が ない区域は，必ずしも上記温度に保たない場合もある。 換気回数は，運転員等が滞在する中央制御室，廃棄物処理系制御室は 10 回／h 以上，その他の区域は $0.3 \sim 5$ 回 $/ \mathrm{h}$ の換気回数を確保する。	【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.2 換気設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，放射線障害を防止するため，発電所従業員 に新鮮な空気を送るとともに，空気中の放射性物質の除去•低減が可能な $\boldsymbol{q}^{(1)}$（ vi ）－（1）換気設備を設ける設計とす る。 ＜中略＞ 2．2．1 中央制御室換気空調系 ＜中略＞ 中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モードに切替 えることが可能な設計とする。 中央制御室換気空調系は，通常のラインの他，高性能エ アフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉とする ことにより外気との連絡口を遮断し，中央制御室再循環フ ィルタ装置入ロダンパ（A），（B）（V30－D302A，B）を開とす ることにより中央制御室再循環フィルタ装置を通る事故時運転モードとし，放射性物質を含む外気が中央制御室に直接流入することを防ぐことができ，運転員を被ばくから防護する設計とする。外部との遮断が長期にわたり，室内 の雰囲気が悪くなった場合には，外気を中央制御室再循環 フィルタ装置で浄化しながら取り入れることも可能な設計とする。	設計及び工事の計画の モ（1）（vi）－（1）は，設置変更許可申請書（本文（五号））の毛（1）（vi）－（1）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
モ（1）（vi）－（2）中央制御室には，炬心の著しい損傷が発生 した場合においても運転員がとどまるために必要な重大事故等対処設備を設置及び保管する。 a ．原子炉建屋原子炉棟換気空調系及びタービン建屋換気空調系 原子炉建屋原子炉棟換気空調系及びタービン建屋換気空調系は，ச（1）（vi）a．－（1）それぞれ原子炉建屋及びタービ こ建屋に外気を供給し，その排気をフィルタを通して排気筒から大気一放出する。	8．2．1 概要 ＜中略＞ 中央制御室には，炬心の著しい損傷が発生した場合にお いても運転員がとどまるために必要な重大事故等対処設備を設置及び保管する。 ＜中略＞ 8．2．4 主要設備 （1）原子炉棟換気空調系 原子炉棟換気空調系は，給気ファン，排気ファン，フィ ルタ等で構成する。 原子炉棟換気空調系系統概要図を第8．2－1図に示す。 汚染の可能性のある区域は，給•排気量を適切に設定す ることによって，清浄区域より負圧に保つ。 棟内に供給された空気は，フィルタを通した後，排気フ アンにより排気筒から大気に放出する。 給気及び排気ダクトには，それぞれ 2 個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなった場合自動閉鎖し，本換気空調系から非常用ガス処理系に切り換 えて，放射性ガスの放出を防ぐ。	2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 ＜中略＞ f（1）（vi）－（2）運転員の被ばくの観点から結果が最も厳し くなる重大事故等時においても中央制御室に運転員がと どまるために必要な設備を施設し，中央制御室しゃへい壁 を透過する放射線による線量，中央制御室に取り込まれた外気による線量及び入退域時の線量が，全面マスク等の着用及び運転員の交替要員体制を考慮し，その実施のための体制を整備することで，中央制御室の気密性並びに中央制御室換気空調系，中央制御室待避所加圧空気供給系，中央制御室しやへい壁，中央制御室待避所遮蔽，2 次しやへい壁及び補助しやへいの機能とあいまって，運転員の実効線量が 7 日間で 100 mSv を超えない設計とする。炉心の著し い損傷が発生した場合における居住性に係る被ばく評価 では，設計基準事故時の手法を参考にするとともに，炉心 の著しい損傷が発生した場合に放出される放射性物質の種類，全交流動力電源喪失時の中央制御室換気空調系の起動遅れ等，炉心の著しい損傷が発生した場合の評価条件を適切に考慮する。 ＜中略＞ 2．2．3 原子炉建屋原子炉棟換気空調系 原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟も （1）（vi）a．－（1）の換気を行う。汚染の可能性のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保つ。供給された空気は，フィルタを通した後，排風機により排気筒から放出する。 給気及び排気ダクトには，それぞれ2個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなった場合等に自動閉鎖し，本換気空調系から非常用ガス処理系に切 り換わることで放射性ガスの放出を防ぐ設計とする。	設計及び工事の計画の モ（1）（vi）－（2）は，設置変更許可申請書（本文（五号））の田（1）（vi）－（2）を具体的に記載しており整合している。 設計及び工事の計画の モ（1）（vi）a．－1）は，設置変更許可申請書（本文 （五号））の手（1）（vi）a． －（1）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
b。中央制御室換気空調系 チ（1）（vi）b．－（1）中央制御室等の換気及び冷暖房を行うた めの中央制御室換気空調系を設ける。 中央制御室換気空調系には，通常のラインの他，高性能 エアフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時には外気との連絡口を遮断し，中央制御室再循環フィルタ装置を通る事故時運転モードとし，運転員を放射線被ばくから防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フ ィルタ装置で浄化しながら取り入れることも可能な設計 とする。	また，非常用炉心冷却系の各ポンプ室，残留熱除去系ポ ンプ室，原子炬隔離時冷却系ポンプ室等非常時に作動を要求される機器の設置される部屋は，外部電源喪失時に非常用電源から供給を受ける空気冷却装置で泠却除熱する。 （2）タービン建屋換気空調系 タービン建屋換気空調系は，建屋内の空気の流れを適正 に保ち，清浄区域の汚染を防止する。換気空調系は給気フ アン，排気ファン，フィルタ等で構成する。 タービン建屋換気空調系系統概要図を第 8．2－2 図に示 す。 建屋内に供給された空気は，フィルタを通した後，排気 ファンにより排気筒から大気に放出する。 （3）中央制御室換気空調系 中央制御室換気空調系の系統概要図を第8．2－3 図に示 す。 中央制御室換気空調系は，設計基準事故時に放射線業務従事者等を内部被ばくから防護し，必要な運転操作を継続 することができるようにするため，他の換気系とは独立に して，外気との連絡口を遮断し，高性能エアフィルタ及び チャコールエアフィルタを内蔵した中央制御室再循環フ イルタ装置を通して再循環することができ，また，必要に応じて外気を中央制御室再循環フィルタ装置を通して取 り入れることができる設計とする。 炬心の著しい損傷が発生した場合においても，中央制御室に運転員がとどまるために必要な換気空調設備として，中央制御室換気空調系を設ける。本設備については，「6．10制御室」に記載する。	2．2．4 タービン建屋換気空調系 タービン建屋換気空調系はタービン建屋送風機，タービ ン建屋排風機等から構成され，千（1）（vi）a．－（1）建屋内の空気の流れを適正に保ち，清浄区域の汚染を防止する。 建屋内に供給された空気は，フィルタを通した後，排風機により排気筒から放出する設計とする。 2．2．1 中央制御室換気空調系 モ（1）（vi）b．－（1）中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フイルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。．．． < 中略 > 中央制御室換気空調系は，通常のラインの他，高性能エ アフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉とする ことにより外気との連絡口を遮断し，中央制御室再循環フ イルタ装置入口ダンパ（A），（B）（V30－D302A，B）を開とす ることにより中央制御室再循環フィルタ装置を通る事故時運転モードとし，放射性物質を含む外気が中央制御室に直接流入することを防ぐことができ，運転員を被ばくから防護する設計とする。外部との遮断が長期にわたり，室内 の雰囲気が悪くなった場合には，外気を中央制御室再循環	設計及び工事の計画の チ（1）（vi）b．－（1）は，設置変更許可申請書（本文 （五号））の手（1）（vi）b． －（1）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
中央制御室外の火災等により発生する燃焼がス，ばい煙，有毒がス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モードに切り替えることが可能な設計とする。	（5）廃棄物処理区域換気空調系 廃革物処理区域換気空調系は，建屋内の空気の流れを適正に保ち，清浄区域の污染を防止する。換気空調系は，給気ファン，排気ファン，フィルタ等で構成する。 廃枽物処理区域換気空調系の系統概要図を第 8．2－4 図 に示す。 廃妻物処理区域内に供給された空気は，フィルタを通し た後，排気ファンにより排気筒から大気に放出する。 （6）ドライウェル内ガス泠却装置 ドライウェル内ガス泠却装置は，通常運転中ドライウェ ル内のガスを循環冷却するためのもので，ファン及び泠却装置を設け，通常運転中のドライウェル内の温度を約 $57^{\circ} \mathrm{C}$ に維持する。 なお，本系統の電源は，外部電源喪失時に非常用電源に切替えられる。	フィルタ装置で浄化しながら取り入れることも可能な設計とする。 ＜中略＞ 中央制御室外の火災等により発生する燃焼がス，ばい煙，有毒ガス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モードに切替 えることが可能な設計とする。 2． 2.5 原子炉建屋廃重物処理区域換気空調系 原子炉建屋廃棄物処理区域換気空調系は，廃棄物処理区域送風機，廃棄物処理区域排風機等で構成され，建屋内の空気の流れを適正に保ち，清浄区域の汚染を防止する。 廃裹物処理区域内に供給された空気は，フィルタを通し た後，排風機により排気筒から大気に放出する設計とす る。 【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1.1 原子炉格納容器本体等 <中略 > 原子炉格納容器にはドライウェル内のガスを循環冷却 するための設備として，冷却装置及び送風機からなるドラ イウェル冷却系（個数 4（予備 2））を設ける設計とする。 <中略 > 【放射線管理施設】（基本設計方針） 2．2．6 制御建屋換気系 制御建屋換気系は， C / B 污染区域送風機（第 1 号機設備，第 1， 2 号機共用），C / B 汚染区域排風機（第 1 号機設備，第 1,2 号機共用）等で構成する。			

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
中央制御室再循環フィルタ装置 E（1）（vi）－（9）（「へ（5）（vi）中央制御室」と兼用） f（1）（vi）－（10）基数 $\underline{1}$ $\begin{aligned} \text { 于(1) (vi) -(1) 粒子除去効率 } & \underline{99.9 \% \text { 以上 (直径 } 0.5 \mu \mathrm{~m} \text { 以 }} \\ & \text { 上の粒子) } \end{aligned}$ モ（1）（vi）－（12）系統よう素除寺効率 90\％以上（相対湿度 70% 以下において）	d．中央制御室再循環フィルタ装置 基 処理容量 約 $8,000 \mathrm{~m}^{3} / \mathrm{h}$ チャコールエアフイルタベッド厚さ 約 5 cm 粒子除去効率 99.9% 以上（直径 $0.5 \mu \mathrm{~m}$ 以上の粒子） 系統よう素除寺効率 90\％以上（相対湿度 70\％以下に おいて）	【放射線管理施設】（要目表） 6.2 換気設備（中央制御室，緊急時制御室及び緊急時対策所に設置するもの（非常用のものに限る。）並びに放射性物質により污染された空気による放射線障害を防止する目的で給気又は排気設備として設置するもの。時的に設置する可搬型のものを除く。） $* 2$	「中央制御室再循環フィ ルタ装置」は，設置変更許可申請書（本文（五号）） における戸（1）（vi）－（9）を設計及び工事の計画の「放射線管理施設」のう ち「換気設備」に整理し ており整合している。 設計及び工事の計画の f（1）（vi）－（101は，設置変更許可申請書（本文（五号））のモ（1）（vi）－（10）と同義であり整合してい る。 設計及び工事の計画の チ（1）（vi）－（11）は，設置変更許可申請書（本文（五号））の毛（1）（vi）－（11）と同義であり整合してい る。 設計及び工事の計画の f（1）（vi）－（12）は，設置変更許可申請書（本文（五号））の手（1）（vi）－（12）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
c．中央制御室待避所加圧設備（空気ボンベ） f（1）（vi）c．－（1）炉心の著しい損傷後の原子炉格納容器フ ィルタベント系を作動させる場合に放出される放射性雲 による運転員の被ばくを低減するため，中央制御室待避所 を正圧化し，放射性物質が中央制御室待避所に流入するこ とを一定時間完全に防ぐために必要な換気空調設備とし て，中央制御室待避所加圧設備（空気ボン心゙）を設ける。	6．計測制御系統施設 6． 10 制御室 6．10．2 重大事故等時 6．10．2．2 設計方針 （1）居住性を確保するための設備 a．換気空調設備及び遮蔽設備 <中略 > また，炬心の著しい損傷後の原子炉格納容器フィルタ心゙ ント系を作動させる場合に放出される放射性雲通過時に おいて，中央制御室待避所を中央制御室待避所加圧設備 （空気ボンベ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐこ とができる設計とする。 中央制御室遮蔽及び中央制御室待避所遮蔽は，運転員の被ばくの観点から結果が最も厳しくなる重大事故等時に おいて，中央制御室換気空調系及び中央制御室待避所加圧設備（空気ボンベ）の機能とあいまって，運転員の実効線量が 7 日間で 100 mSv を超えない設計とする。 <中略> 8．放射線管理施設 8．2 換気空調設備 8．2．4 主要設備 （4）中央制御室待避所加圧設備（空気ボン心゙） 炉心の著しい損傷後の原子炉格納容器フィルタベント系を作動させる場合に放出される放射性雲による運転員 の被ばくを低減するため，中央制御室待避所を正圧化し，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐために必要な換気空調設備として，中央制御室待避所加圧設備（空気ボンベ）を設ける。本設備につい ては，「6．10 制御室」に記載する。	【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 < 中略 > f（1）（vi）c．－（1）炬心の著しい損傷後の原子炬格納容器フ イルタベント系を作動させる場合に放出される放射性雲通過時に，運転員の被ばくを低減するため，中央制御室内 に中央制御室待避所を設け，中央制御室待避所には，遮蔽設備として，中央制御室待避所遮蔽を設ける。中央制御室待避所は，中央制御室待避所加圧設備（空気ボンベ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐことができる設計とす る。 <中略>	設計及び工事の計画の モ（1）（vi）c．－（1）は，設置変更許可申請書（本文 （五号））の尾（1）（vi）c． －（1）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
［可搬型重大事故等対処設備］ 中央制御室待避所加圧設備（空気ボンベ） モ（1）（vi）c．－（3）（「～（5）（vi）中央制御室」と兼用） 民（1）（vi）c．－（4）本数 40 （予備 40） チ（1）（vi）c．－（6）充填圧力 約 19.6 MPa ［gage］	第 8．2－3 表 換気空調設備（重大事故等時）（可搬型） の主要機器仕様 （1）中央制御室待避所加圧設備（空気ボンベ）兼用する設備は以下のとおり。 －中央制御室（重大事故等時） 本…．．．数 40（予備 40） 容 量 約47L（1本当たり） 充填圧力 約 19．64Pa［gage］	【放射線管理施設】（要目表） 6.2 換気設備（中央制御室，緊急時制御室及び緊急時対策所に設置するもの（非常用のものに限る。）並びに放射性物質により污染された空気による放射線障害を防止する目的で給気又は排気設備として設置するもの。時的に設置する可搬型のものを除く。） 6．2．3中央制御室待避所加圧空気供給系	「中央制御室待避所加圧設備（空気ボンベ）」は，設置変更許可申請書（本文（五号））における （vi）c．－（3）を設計及び工事の計画の「放射線管理施設」のらち「換気設備」 に整理しており整合し ている。 設計及び工事の計画の团 （1）（vi）c．－（4）は，設置変更許可申請書（本文（五号））の f（1）（vi）c．－（4）と同義であり整合してい る。 設計及び工事の計画の チ（1）（vi）c．－（5）は，設置変更許可申請書（本文 （五号））のモ（1）（vi）c． －（5）を詳細に記載して おり整合している。 設計及び工事の計画の团 （1）（vi）c．－66は，設置変更許可申請書（本文（五号））のモ（1）（vi）c．－（6）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
d．緊急時対策所換気空調系及び緊急時対策所加圧設備 f（1）（vi）d．－（1）緊急時対策所の緊急時対策所換気空調系及び緊急時対策所加圧設備は，重大事故等時において，緊急時対策所内への希ガス等の放射性物質の侵入を低減又 は防止するため適切な換気設計を行い，緊急時対策所の気密性及び緊急時対策所遮蔽の性能とあいまって，居住性に係る判断基準である緊急時対策所にとどまる要員の実効線量が 7 日間で 100 mSv を超えない設計とする。 なお，緊急時対策所換気空調系及び緊急時対策所加圧設備の設計にあたつては，緊急時対策所の建物の気密性に対 して十分な余裕を考慮した設計とする。また，緊急時対策所外の火災により発生するばい煙又は有毒ガスに対する換気設備の隔離及びその他の適切に防護するための設備 を設ける設計とする。	8．2．4 主要設備 （9）緊急時対策所換気空調系及び緊急時対策所加圧設備 緊急時対策所換気空調系及び緊急時対策所加圧設備は，．．．重大事故等が発生した場合において，緊急時対策所の気密性及び緊急時対策所遮蔽の機能とあいまって，緊急時対策所にとどまる要員の実効線量が 7 日間で 100 mSv を超えな い設計とする。 緊急時対策所の緊急時対策所換気空調系及び緊急時対策所加圧設備として，緊急時対策所非常用送風機，緊急時対策所非常用フィルタ装置及び差圧計を設置するととも に，緊急時対策所加圧設備（空気ボンベ）を保管する設計 とする。 これらの設備については，「10．9 緊急時対策所」に記載する。	【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 < 中略 > 千（1）（vi）d．－（1）緊急時対策所換気空調系である緊急時対策所非常用送風機は，非虽用給排気配管を介して緊急時対策所を含む緊急時対策建屋地下階を正圧化し，放射性物質の侵入を低減できる設計とする。また，緊急時対策所加圧空気供給系は，放射性雲通過時において，緊急時対策所等を正圧化し，希がスを含む放射性物質の侵入を防止でき る設計とする。 差圧計（緊急時対策所用）（個数 1 ，計測範囲 $-100 \sim 500 \mathrm{~Pa}$ ） は，緊急時対策所等が正圧化された状態であることを監視 できる設計とする。 緊急時対策所遮蔽，2次しゃへい壁及び補助しゃへいは，重大事故等が発生した場合において，緊急時対策所の気密性，緊急時対策所換気空調系及び緊急時対策所加圧空気供給系の機能とあいまって，緊急時対策所にとどまる要員の実効線量が7日間で 100 mSv を超えない設計とする。 2．2．2 緊急時対策所換気空調系 < 中略 > 緊急時対策所換気空調系及び緊急時対策所加圧空気供給系の設計にあたっては，緊急時対策所の建物の気密性に対して十分な余裕を考慮した設計とする。また，緊急時対策所外の火災により発生する燃焼ガス又はばい煙，有毒ガ ス及び降下火砕物に対する換気設備の隔離及びその他の適切に防護するための設備を設ける設計とする。 緊急時対策所の緊急時対策所換気空調系及び緊急時対策所加圧空気供給系は，基準地震動S s による地震力に対 し，機能を喪失しないようにするとともに，緊急時対策所 の気密性とあいまって緊急時対策所の居住性に係る判断基準を満足する設計とする。	設計及び工事の計画の モ（1）（vi）d．－（1）は，設置変更許可申請書（本文 （五号））の毛（1）（vi）d． －（1）と文章表現は異な るが，内容に相違はない ため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（2）屋外管理用の主要な設備の種類 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，発電所外へ放出す る放射性物質の濃度，千（2）－（1）発電所敷地内外の放射線等 を監視するためにチ（2）－（2）スタック放射線モ二タ，放射性廃棄物放出水モ二タ，チ（2）－（3）気象観測設備（1 号，2 号及び3号炉共用，既設），チ（2）－4周辺モニタリング設備（1号，2号及び 3 号哣共用，既設）及び于（2）－（5）放射能観測車（1号，2号及び3号哣共用，既設）を設ける。 チ（2）－（6）スタック放射線モニタ，放射性廃棄物放出水王 ニタ並びに周辺モニタリング設備のうちモニタリングポ ストについては，設計基準事故時における迅速な対応のた めに必要な情報を中央制御室及び緊急時対策所に表示で きる設計とする。	8．1．1．4 主要設備 8．1．1．4．3 放射線監視設備 （1）プロセス放射線モニタリング設備 プロセス放射線モニタは，連続的に放射線を測定し，中央制御室又は廃育物処理系制御室又は焼却炉建屋制御室若しくは，サイトバンカ建屋制御盤室で記録，指示を行い，放射線レベル基準設定値を超えたときは警報を発する。 主なプロセス放射線モニタとして次のものがあり，その配置図を第8．1－1図に示す。 b．スタック放射線モニタ 排気筒から放出される放射性ガスの監視を行う。検出器 にはNaI シンチレータ及び電離箱を使用する。また，よう素用フィルタ，粒子用フィルタ及びトリチウム捕集装置を設けて放射性よう素，粒子状放射性物質及びトリチウムを連続的に捕集し，定期的に回収，測定する。 k 。放射性廃棄物放出水モニタ 液体廃棄物処理設備の放出液中の放射能監視を行う。検出器にはNaIシンチレータを使用する。 （3）周辺モニタリング設備（1号，2号及び 3 号炉共用，既設） a．固定モニタリング設備 周辺監視区域境界付近に空間放射線量率の連続監視を行らためのモニタリングポスト 6 台及び空間放射線量測定のため適切な間隔でモニタリングポイントを設定し，蛍光ガラス線量計を配置する。 モニタリングポストは，非常用交流電源設備に接続し，電源復旧までの期間，電源を供給できる設計とする。さら に，モニタリングポストは，専用の無停電電源装置を有し，電源切替時の短時間の停電時に電源を供給できる設計と	【放射線管理施設】（基本設計方針） 1．放射線管理施設 1．1 放射線管理用計測装置 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定す るために，プロセスモニタリング設備，エリアモニタリン グ設備及び放射線サーベイ機器（第1号機設備，第1，2，3号機共用）を設ける設計とする。 ＜中略＞ 発電所外へ放出する放射性物質の濃度，千（2）－（1）周辺監視区域境界付近の空間線量率等を監視するためにチ（2）－（2）プ口セスモニタリング設備，チ（2）－4）固定式周辺モニタリン グ設備及ぴモ（2）－（5）移動式周辺モ二タリング設備を設ける設計とする。また，風向，風速その他の気象条件を測定す るため，千（2）－（3）環境測定装置を設ける。 チ（2）－（6）プロセスモニタリング設備，エリアモニタリン グ設備及び固定式周辺モニタリング設備については，設計基準事故時における迅速な対応のために必要な情報を中央制御室及び緊急時対策所に表示できる設計とする。 ＜中略＞ 1．1．3 固定式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区域境界付近の空間線量率を監視及び測定するための固定式周辺モニタリング設備として モニタリングポスト（第1号機設備，第1，2，3号機共用（以下同じ。））を設け，計測結果を中央制御室及び緊急時対策所に表示できる設計とする。また，計測結果を記録し，及び保存することができる設計とする。 モニタリングポストは，外部電源が使用できない場合に おいても，非常用交流電源設備により，空間線量率を計測 することができる設計とする。更に，モニタリングポスト は，専用の無停電電源装置を有し，電源切替時の短時間の	設計及び工事の計画の チ（2）－（1）は，設置変更許可申請書（本文（五号）） の尾（2）－（1）と同義であ り整合している。 設計及び工事の計画の チ（2）－（2）は，設置変更許可申請書（本文（五号）） のチ（2）－（2）を含んでお り整合している。 設計及び工事の計画の チ（2）－（3）は，設置変更許可申請書（本文（五号）） のモ（2）－③を含んでお り整合している。 設計及び工事の計画の £（2）－44は，設置変更許可申請書（本文（五号）） の厍（2）－（4）を含んでお り整合している。 設計及び工事の計画の チ（2）－（5）は，設置変更許可申請書（本文（五号）） のモ（2）－（5）を含んでお り整合している。 設計及び工事の計画の チ（2）－6は，設置変更許	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	する。 モニタリングポストで測定したデータの伝送系は，モニ タリングポスト設置場所から中央制御室及び中央制御室 から緊急時対策建屋間において有線系回線及び無線系回線により多様性を有し，指示值は，中央制御室で監視し，現場等で記録を行らことができる。また，緊急時対策所で も監視することができる。 モニタリングポストは，その測定值が設定値以上に上昇 した場合，直ちに中央制御室に警報を発信する設計とす る。 c．放射能観測車 事故時等に発電所敷地周辺の空間放射楾量率及び空気中の放射性物質の瀑度を迅速に測定するために，フィール ドモニタ，放射性ダスト測定装置，放射性よう素測定装置等を搭載した移動無線設備付の放射能観測車を備える。 d．気象観測設備 放射性気体廃妻物の放出管理及び発電所周辺の一般公衆の線量評価並びに一般気象デー夕収集のため，発電所敷地内で風向，風速，日射量，放射収支量等を測定及び記録 する設備を設ける。	停電時に電源を供給できる設計とし，重大事故等が発生し た場合には，非常用交流電源設備に加えて，代替電源設備 である常設代替交流電源設備から給電できる設計とする。 モニタリングポストで計測したデータの伝送系は，モニ タリングポスト設置場所から中央制御室及び中央制御室 から緊急時対策所建屋間において有線系回線及び無線系回線により多様性を有する設計とする。 周辺監視区域境界付近の放射性物質の濃度は，構内ダス トモニタ（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。）） により断続的に試料を採取し分析を行い，測定結果を記録 し，及び保存する。 1．1．4 移動式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区域境界付近の放射性物質の濃度 を測定するための移動式周辺モニタリング設備として，空気中の放射性粒子及び放射性よう素の濃度を測定するサ ンプラと測定器を備えた放射能観測車（第 1 号機設備，第 1 ， 2，3号機共用，屋外に保管（以下同じ。））を設け，測定結果を表示し，記録し，及び保存することができる設計と する。ただし，放射能観測車による断続的な試料の分析は，従事者が計測結果を記録し，及びこれを保存し，その記録 を確認することをもって，これに代えるものとする。 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度（空気中，水中，土壌中）及 び放射線量を監視するための移動式周辺モニタリング設備として，γ 線サーベイメータ，β 線サーベイメータ，α線サーベイメータ及び電離箱サーベイメータを設け，測定結果を記録し，保存できるように測定値を表示できる設計 とし，可搬型ダスト・よう素サンプラ（個数 2 （予備 1 ）），小型船舶（個数1（予備1））を保管する設計とする。 放射能観測車のダスト・よう素サンプラ，放射性よう素	可申請書（本文（五号）） の庫（2）－（6）を含んでお り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
		測定装置又は放射性ダスト測定装置が機能喪失した場合 にその機能を代替する重大事故等対処設備として，可搬型 ダスト・よう素サンプラ，γ 線サーベイメータ及び β 線サ ーベイメータを設け，重大事故等が発生した場合に，発電所及びその周辺において，発電用原子炉施設から放出され る放射性物質の濃度（空気中）を監視し，及び測定し，並 びにその結果を記録し，保存できるように測定値を表示で きる設計とし，放射能䚁測車を代替し得る十分な個数を保管する設計とする。 モニタリングポストが機能霛失した場合にその機能を代替する移動式周辺モニタリング設備として，可搬型モニ タリングポストを設け，重大事故等が発生した場合に，発電所敷地境界付近において，発電用原子炉施設から放出さ れる放射線量を監視し，及び測定し，並びにその結果を記録できる設計とする。 可搬型モニタリングポストで測定した放射線量は，電磁的に記録，保存し，電源霛失により保存した記録が失われ ず，必要な容量を保存できる設計とする。 可搬型モニタリングポストは，モニタリングポストを代替し得る十分な個数を保管する設計とする。また，指示値 は，衛星系回線により伝送し，緊急時対策所で可般型モニ タリングポストデータ処理装置にて監視できる設計とす る。 可搬型モニタリングポストは，重大事故等が発生した場合に，発電所海側及び敬急時対策建屋屋上において，発電用原子炉施設から放出される放射線量を監視し，及び測定 し，並びにその結果を記録できる設計とするとともに，緊急時対策所内への希ガス等の放射性物質の侵入を低減又 は防止するための碓実な判断に用いる設計とする。 これらの設備は，炬心の著しい損傷及び原子炉格納容器 の破損が発生した場合に放出されると想定される放射性物質の濃度及び放射線量を測定できる設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（2）－8 モニタリングポストから中央制御室及び中央制御室から緊急時対策所までのデータ伝送系は，多様性を有 する設計とする。居（2）－（9）指示値は，中央制御室で監視し，現場等で記録を行うことができる設計とする。また，緊急時対策所でも監視することができる設計とする。．．． モ（2）－（10）モニタリングポストは，その測定値が設定値以上に上昇した場合，直ちに中央制御室に警報を発信する設計とする。…	モニタリングポストで測定したデータの伝送系は，モニ タリングポスト設置場所から中央制御室及び中央制御室 から緊急時対策建屋間において有線系回線及び無線系回線により多様性を有し，指示値は，，中央制御室で監視し，．．．現場等で記録を行うことができる。また，緊急時対策所で も監視することができる。 モニタリングポストは，その測定值が設定值以上に上㫷 した場合，直ちに中央制御室に警報を発信する設計とす る．．．	が発生した場合には，非常用交流電源設備に加えて，代替電源設備である常設代替交流電源設備から給電できる設計とする。 <中略 > 1．1．3 固定式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区域境界付近の空間線量率を監視及び測定するための固定式周辺モニタリング設備として モニタリングポスト（第 1 号機設備，第 1 ，2， 3 号機共用（以下同じ。））を設け，千（2）－（9）計測結果を中央制御室及び緊急時対策所に表示できる設計とする。また，計測結果を記録し，及び保存することができる設計とする。．．． < 中略 > チ（2）－8 8 モニリングポストで計測したデータの伝送系 は，モニタリングポスト設置場所から中央制御室及び中央制御室から緊急時対策所建屋間において有線系回線及び無線系回線により多様性を有する設計とする。 <中略 > 1．1 放射線管理用計測装置 <中略> 排気筒の出口又はこれに近接する箇所における排気中 の放射性物質の濃度，管理区域内において人が常時立ち入 る場所その他放射線管理を特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及びチ（2）－（1）周辺監視区域に隣接する地域における空閴線量率が著しく上显した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線 モニタ放射能高及び周辺監視区域放射能高）を発信する装置を設ける設計とする。 <中略 >	設計及び工事の計画の チ（2）－8 は，設置変更許可申請書（本文（五号）） のモ（2）－8と同義であ り整合している。 設計及び工事の計画の f（2）－9）は，設置変更許可申請書（本文（五号）） のモ（2）－9と同義であ り整合している。 設計及び工事の計画の チ（2）－（10は，設置変更許可申請書（本文（五号）） のチ（2）－（10）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において発電用原子炬施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するためにチ（2）－（11）必要な重大事故等対処設備を保管する。 重大事故等が発生した場合に発電所において風向，風速 その他の気象条件を測定し，及びその結果を記録するため にモ（2）－（12）必要な重大事故等対処設備を保管する。 重大事故等が発生した場合にチ（2）－（13）発電所及びその周辺（発需所の周辺海域を含む。）において発電用原子炬施設から放出される放射性物質の濃度及び放射線量を監視 し，千（2）－（14）及び測定し，並びにその結果を記録するため の設備として，可搬型モニタリングポスト，可搬型放射線計測装置及び小型船舶を設ける。．．．	8．1．2 重大事故等時 8．1．2．1 概要 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において発電用原子炉施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するために必要な重大事故等対処設備を保管する。重大事故等が発生した場合に発電所 において風向，風速その他の気象条件を測定し，及びその結果を記録するために必要な重大事故等対処設備を保管 する。 ＜中略＞ 8．1．2．2 設計方針 （1）放射性物質の濃度及び放射線量の測定に用いる設備 a．可搬型モニタリングポストによる放射線量の測定及び代替測定 < 中略 > また，可搬型モニタリングポストは，重大事故等が発生 した場合に，発電所海側及び緊急時対策建屋屋上におい て，発電用原子炬施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とする。 < 中略 >	重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するために，千（2）－（11）移勲式周辺モ二タリング設備を保管する設計とする。 重大事故等が発生した場合に発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録するた めに，チ（2）－（12）睘境測定装置を保管する設計とする。 ＜中略＞ 1．1．4 移動式周辺モニタリング設備 ＜中略＞ 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度（空気中，水中，土壌中）及 び放射線量を監視するためのチ（2）－（14）移勲式周辺モ二タリ ング設備として，γ 線サーベイメータ，β 線サーベイメー タ，α 線サーベイメータ及び電離箱サーベイメータを設 け，測定結果を記録し，保存できるように測定値を表示で きる設計とし，可搬型ダスト・よう素サンプラ（個数 2 （予備1））2．．小型船舶（個数1（予備1））を保管する設計と する。 <中略 > 可搬型モニタリングポストは，重大事故等が発生した場合に，チ（2）－（13）発電所海側及び緊急時対策建屋屋上におい て，発電用原子炉施設から放出される放射線量を監視し，	設計及び工事の計画の f（2）－（11）は，設置変更許可申請書（本文（五号）） の手（2）－（11）を具体的に記載しており整合して いる。 設計及び工事の計画の f（2）－（12）は，設置変更許可申請書（本文（五号）） のモ（2）－（12）を具体的に記載しており整合して いる。 設計及び工事の計画の f（2）－（13）は，設置変更許可申請書（本文（五号）） の手（2）－（13）を具体的に記載しており整合して いる。 設計及び工事の計画の モ（2）－（14）は，設置変更許可申請書（本文（五号）） のモ（2）－（14）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
モニタリングポストが機能喪失した場合にその機能を代替するチ（2）－（15）重大事故等対処設備として，可搬型モニ タリングポストは，重大事故等が発生した場合に，発電所敷地境界付近において，発電用原子炉施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録で きる設計とし，モニタリングポストを代替し得る十分な台数を保管する。 また，可搬型モニタリングポストは，重大事故等が発生 した場合に，発電所海側及び緊急時対策建屋屋上におい て，発電用原子炬施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とする。 可搬型モニタリングポストの指示値は，衛星系回線によ り伝送し，緊急時対策所で監視できる設計とする。	8．1．2．2 設計方針 （1）放射性物質の濃度及び放射線量の測定に用いる設備 a．可搬型モニタリングポストによる放射線量の測定及び 代替測定 モニタリングポストが機能鋉失した場合にその機能を代替する重大事故等対処設備として，可搬型モニタリング ポストを使用する。．． 可搬型モニタリングポストは，重大事故等が発生した場合に，発電所敷地境界付近において，発電用原子炉施設か ら放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とし，モニタリングポストを代替し得る十分な台数を保管する。 また，可搬型モニタリングポストは，重大事故等が発生 した場合に，発電所海側及び緊急時対策建屋屋上におい て，発電用原子炉施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とする。 なお，可搬型モニタリングポストは，発電用原子炉施設 から放出される放射線量を測定できるように適切な位置 に設置する。 可搬型モニタリングポストの指示値は，衛星系回線によ り伝送し，緊急時対策所で監視できる設計とする。可搬型 モニタリングポストで測定した放射線量は，電源喪失によ り保存した記録が失われないよう，電磁的に記録，保存す る設計とする。また，記録は必要な容量を保存できる設計 とする。	及び測定し，並びにその結果を記録できる設計とするとと もに，緊急時対策所内への希ガス等の放射性物質の侵入を低減又は防止するための確実な判断に用いる設計とする。 <中略 > 1．1．4 移動式周辺モニタリング設備 <中略 > モニタリングポストが機能喪失した場合にその機能を代替するチ（2）－（15）移動式周辺モ二タリング設備として，可搬型モニタリングポストを設け，重大事故等が発生した場合に，発電所敷地境界付近において，発電用原子炉施設か ら放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とする。 < 中略 > 可搬型モニタリングポストは，モニタリングポストを代替し得る十分な個数を保管する設計とする。 < 中略 > 可搬型モニタリングポストは，重大事故等が発生した場合に，発電所海側及び緊急時対策建屋屋上において，発電用原子炬施設から放出される放射線量を監視し，及び測定 し，並びにその結果を記録できる設計とするとともに，緊急時対策所内への希ガス等の放射性物質の侵入を低減又 は防止するための確実な判断に用いる設計とする。 <中略 > また，指示値は，衛星系回線により伝送し，緊急時対策所で可搬型モニタリングポストデータ処理装置にて監視 できる設計とする。	設計及び工事の計画の モ（2）－（15）は，設置変更許可申請書（本文（五号）） のモ（2）－（15）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
放射能観測車のダスト・よう素サンプラ，放射性よう素測定装置又は放射性ダスト測定装置が機能喪失した場合 にその機能を代替する重大事故等対処設備として，千（2）－ （16）可船型放射線計測装置は，重大事故等が発生した場合 に，発電所及びその周辺において，発電用原子炉施設から放出される放射性物質の濃度（空気中）を監視し，及び測定し，並びにその結果を記録できるように測定値を表示す る設計とし，放射能観測車を代替し得る十分な台数を保管 する。 放射性物質の濃度及び放射線量を測定するためのチ（2）－ （17）重大事故等対処設備として，チ（2）－（18）可搬型放射線計測装置は，．．重大事故等が発生した場合に，発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度（空気中，水中，土壌中）及び放射線量を監視し，チ（2）－（19）及び測定し，並び にその結果を記録できるように測定値を表示する設計と する。発電所の周辺海域においては，小型船舶をチ（2）－（20）用いる設計とする。	b。可搬型放射線計測装置による空気中の放射性物質の濃度の代替測定 放射能観測車のダスト・よう素サンプラ，放射性よう素測定装置又は放射性ダスト測定装置が機能喪失した場合 にその機能を代替する重大事故等対処設備として，可搬型放射線計測装置（ダスト・よう素サンプラの代替として可搬型ダスト・よう素サンプラ，放射性よう素測定装置の代替として y 線サーベイメータ，放射性ダスト測定装置の代替として β 線サーベイメータ）を使用する。 可搬型放射線計測装置は，重大事故等が発生した場合 に，発電所及びその周辺において，発電用原子炉施設から放出される放射性物質の濃度（空気中）を監視し，及び測定し，並びにその結果を記録できるように測定値を表示す る設計とし，放射能観測車を代替し得る十分な台数を保管 する。 ＜中略＞ c．可搬型放射線計測装置等による放射性物質の濃度及び放射線量の測定 重大事故等が発生した場合に，発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炬施設か ら放出される放射性物質の濃度（空気中，水中，土壌中）及び放射線量を測定するための重大事故等対処設備とし て，可搬型放射線計測装置及び小型船舶を使用する。 可搬型放射線計測装置は，重大事故等が発生した場合 に，発電所及びその周辺（発電所の周辺海域を含む。）に おいて，発電用原子炬施設から放出される放射性物質の濃度（空気中，水中，土壌中）及び放射線量を監視し，及び測定し，．．．並びにその結果を記録できるように測定値を表示 する設計とする。発電所の周辺海域においては，小型船舶 を用いる設計とする。	1．1．4 移動式周辺モニタリング設備 ＜中略＞ 放射能観測車のダスト・よう素サンプラ，放射性よう素測定装置又は放射性ダスト測定装置が機能喪失した場合 にその機能を代替する重大事故等対処設備として，千（2）－ （16）可搬型ダスト・よう素サンプラ $2 . .1$ 線サーベイメータ及 び β 線サーベイメータを設け，重大事故等が発生した場合 に，発電所及びその周辺において，発電用原子炉施設から放出される放射性物質の濃度（空気中）を監視し，及び測定し，並びにその結果を記録し，保存できるように測定値 を表示できる設計とし，放射能観測車を代替し得る十分な個数を保管する設計とする。 ＜中略＞ 1.1 放射線管理用計測装置 <中略 > 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するために，千（2）－（17）移憅式周辺モニタリング設備を保管する設計とする。 <中略 > 1．1．4 移動式周辺モニタリング設備 <中略 > 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度（空気中，水中，土壌中）及 び放射線量を監視するための于（2）－（18）移動式周辺モ二タり ング設備として，γ 線サーベイメータ，β 線サーベイメー夕，α 線サーベイメータ及び電離箱サーベイメータを設 け，民 \＆（2）－（19）測定結果を記録し，保存できるように測定値	設計及び工事の計画の モ（2）－（16）は，設置変更許可申請書（本文（五号）） の手（2）－（16）を具体的に記載しており整合して いる。 設計及び工事の計画の チ（2）－17 は，設置変更許可申請書（本文（五号）） の毛（2）－（17）を具体的に記載しており整合して いる。 設計及び工事の計画の チ（2）－18は，設置変更許可申請書（本文（五号）） の手（2）－（18を具体的に記載しており整合して いる。 設計及び工事の計画の モ（2）－19は，設置変更許	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
リ）原子炬格納施設の構造及び設備			設置変更許可申請書（本文（五号））リ項におい て，設計及び工事の計画 の内容は，以下のとおり整合している。		
（1）原子炬格納容器の構造	9．原子炉格納施設 9.1 原子炉格納施設 9．1．1 通常運転時等 9．1．1．1 概要	【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1．1 原子炉格納容器本体等			
原子炬格納施設は，原子炬格納容器及び禣助系（1）（1）	原子炬格納施設は，冷却材喪失事故時に発生する放射性	原子炬格納施設は，設計基準対象施設として，『（1）－③	設計及び工事の計画の		
（1）1格納容器内ガス濃度制御系，．．（1）－（2）絡納容器スプレイ	物質を原子炉格納容器で隔離し，所定の漏えい量以下に抑	原子炬洽却系統に係る登電用原子炬施設の損壊又は故障	（1）－（1）は，設置変更許		
冾却奚）（1）－句からなる一次格納施設並びに原子炬建屋	えることによりその放射性物質の大気への放出を十分低	の際に漏えいする放射牲物質が公衆に放射綵障害を及時	可申請書（本文（五号））		
原子炉棟及び非常用がス処理系り（1）－匂からなる三次格納	い量に抑制する機能を持ち，原子炉格納容器及び補助系	すおそれがない設計とする。	の年（1）－（1）と同一設備		
施設で桠成する。	（格納容器内ガス濃度制御采，格納容器スプレイ洽却系） で構成する一次格納施設並びに原子炬建屋原子炬棟（以下	＜中略＞	であり整合している。		
	9．では「原子炉棟」という。）及び非常用がス处理系で構	1．1 原子炉格納容器本体等	設計及び工事の計画の		
	咸する二次格納施設がある。	<中略〉	リ（1）－2）は，設置変更許		
		原子炉格納容器は，残留熱除去系（格納容器スプレイ洽	可申請書（本文（五号））		
		却モード）とあいまって原子炬椧却材圧力バウンダリ配管	の（1）－（2）と同一設備		
		の最も過酷な破断を想定し，これにより放出される原子炉	であり整合している。		
		泠却材のエネルギによる泠却材喪失時の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却	設計及び工事の計画の		
		材喪失時及び主蒸気逃がし安全弁作動時において，原子炉	（1）（1）－（3）は，設置変更許		
		格納容器に生じる動荷重に耐える設計とする。	可申請書（ 本文（五号））		
		＜中略＞	の（1）－（3）を具体的に		
			記載しており整合して		
		3．圧力低減設備その他の安全設備	いる。		
		3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	設計及び工事の計画の		
		3．3．2 可燃性ガス浱度制御系	0（1）－（4）は，設置変更許		
		泠却材喪失事故時に原子炉格納容器内で発生する水素	可申請書（本文（五号））		
		及び酸素の反応を防止するため，（1）－（1）可燃性が大潧度	の）（1）－（4）を具体的に		
		制御系を設け，原子炉格納容器調気系により原子炉格納容	記載しており整合して		
		器内に窒素を充填することとあいまって，可燃限界に達し	いる。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考	
原子涙格納容器は，（1）－（5）上下部半球円筒形のドライ ウェル及び円環形のサプレッションチェンバ包（1）－（6）等か らなる圧力抑制形であり，その基盤は真接宸盤で支持す る。	9．1．1．4．1 一次格納施設 9．1．1．4．1．1 原子炉格納容器 原子炉格納容器は，原子炉圧力容器，原子炉再循環ルー プ等を取り囲む上下部半球円筒形ドライウェル，円環形サ プレッションチェンバ及びこれを連絡するベント管，ベン トヘッダ及びダウンカマで構成し更に，原子炉格納容器に は真空破壊装置，原子炉格納容器貫通部及び隔離弁を設け る。 <中略 >	障の際に原子炉格納容器から気体状の放射性物質が漏え いすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成2年8月30日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として韭常用ガス処理系を設置する。 ＜中略＞ 【原子炉格納施設】（要目表） 7．原子炉格納施設 7.1 原子炉格納容器 （1）原子炉格納容器本体	設計及び工事の計画の （1）－（5）は，設置変更許可申請書（本文（五号）） の（1）（1）（5）を具体的に記載しており整合して いる。 設計及び工事の計画の （1）（1）－6a，リ（1）－（6b， V（1）－（6）,$~ \\|(1)-$（6）d， （1）－（6）,$~(1)-(6) \mathrm{f}$ 及 びり（1）－（6） g は，設置変更許可申請書（本文（五号））の（1）－（6 を具体的に記載しており整合 している。 設置変更許可申請書（本文（五号））の「原子炉格納容器の基盤」は，本工事計画の対象外であ る。		

リ－4

リ－5

（1）－（7）格納容器バウンダりは，非延性破罣を防止する䧻点から原子力規制委員会規則等に基づき破壊勒性詞験 を行い，これに適合する材料を使用する。原子焒格納容器 の最低使用温庶は， $10^{\circ} \mathrm{C}$ とする。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1）－（7）格納容器バウンダりは，韭延性破㯖を防止する歓点から原子力規制委員会嫢則等に基づき破壊勒性試験 を行いっこれに適合する材料を使用する。 原子炬格納容器 の最低使用温度は， $10^{\circ} \mathrm{C}$ とする。．．．	9．原子炉格納施設 9.1 原子炬格納施設 9．1．1 通常運転時等 9．1．1．2 設計方針 （9）非延性破壊の防止 非延性破壊防止のため，原子炬格納容器については最低使用温度（ $10^{\circ} \mathrm{C}$ ）より $17^{\circ} \mathrm{C}$ 以上低い温度でっ，原子炬格納容器バウンダりに属する配管等は，最低使用温度以下で，そ れぞれ実施した破壊勒性試験に適合する材料で製作する。	【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1.1 原子炉格納容器本体等 <中略 > 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，リ（1）－7原子炬格納容器バウンダりを構成士る機器は脆性破壊及び破断が生じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊じん性試験 を行い，規定値を満足した材料を使用する設計とする。 < 中略 >	設計及び工事の計画の リ（1）－7 は，設置変更許可申請書（本文（五号）） の 1 （1）－（7）と同義であ り整合している。	

＊界䉼										＊要佼							
		整衰佼男		\％				办 \＃			筀交䊽男			経		$\text { 䯿 }^{\text {1才 }}$	
				スリーナ	2620	¢	2744^{*}	scry9									
		\％es	${ }^{171}$	䞯	72.0	］	－	Scru9			絓かし						
	2			$\stackrel{\text { x }-x}{ }$	885.0		－	${ }_{\text {stssicl }}$	${ }_{\substack{\text { x－338 }}}^{\substack{\text { x－3 }}}$	如曲く					紻发し		
			${ }^{302}$	知标	${ }^{72} 2.0$	\square	－	sfrce									
		8.828 （1）${ }^{\text {a }}$	${ }^{302}$	筥	${ }_{355} 3$	T	－	srucz			10．34（u）	${ }_{3}$					
				${ }^{\text {xy }}$－	${ }^{71.2}$	T	2704＊	Sctu9									
			${ }^{171}$	锱	${ }^{71.2}$	，	－	scras			朿如ない	${ }_{200}$					
${ }^{\text {cosen }}$	2	427（4）		＊\times－${ }^{\text {a }}$	835.0		－	StIs3ele	${ }_{\substack{x \\ x-328}}^{\substack{\text { and }}}$	如如ち					如厸		$\underbrace{\substack{\text { a }}}_{\substack{x-32 \lambda \\ x-328}}$
			302	称	${ }^{71.2}$	T1，	－	sfrez									
			${ }^{302}$	曾	318.5	，	－	sfrez			㡎糺し	，					
				${ }^{\text {xy }}$－	880.4	T	$2592 \times$	ssu9									
		12700）	${ }^{171}$	鲜	60.4	T	－	scu9									
				＊\quad－${ }^{\text {a }}$	185.0		－	stssict	${ }^{\text {x－31 }}$						如なって		$x^{\text {x－31／}}$
			${ }^{302}$	鴙柘	680.4	，	－	sfrce									
			${ }^{302}$	䅧	207.4	T	－	sfrces		婦かし	（3）						
可可和	$\stackrel{\text { c }}{ }$			${ }^{\text {x }}$－-7	80.4	5	$280^{\circ+1}$	spu9									
			${ }^{121}$	鲜	860.4	＂	－	Sove				${ }^{20} 5$					
				＜\times－${ }^{\text {a }}$	185.0		－	stssict	${ }^{\text {x－318 }}$								${ }^{\text {x－31B }}$
－${ }_{\text {cki }}$			${ }^{302}$	淘	660.4	，	－	sfrce									
（）		8.828 （10）${ }^{\text {a }}$	302	曾	20.4	¢	－	sfrez				迷					

（10）	既	䈨㐫供男		\％${ }^{\text {a }}$				\＃\＃					＂	理推（ ${ }_{\text {（m）}}$				
	23	${ }^{42}\left(\mathrm{~Pa}_{8}\right)^{2}$	${ }^{171}$	－	406.4	\square	2834	ST42			（e）		㛐なし					
			${ }^{302}$	敏取	907．0	\square	－	${ }^{\text {sts3cte}}$										
			${ }^{171}$	スリー7	＊0． 4	T	2887^{*}	sist 2										
			${ }_{302}$	笏耻	487.0		－	${ }^{\text {stssack }}$	$\underbrace{\substack{\text { a }}}_{\substack{x-1378 \\ \chi-137}}$									
			${ }^{121}$	${ }^{\text {xy }}$－ 7	406． 4		$2397{ }^{\circ}$	SIS42	$\underbrace{\substack{\text { che }}}_{\substack{x-1374 \\ x-130}}$									
			${ }^{302}$	罭	407．0		－	${ }^{\text {stssatel }}$										
				（xリーフ	\％0．4		2887	stst2	${ }^{\text {x－1908 }}$									
					407.0		－	Ssu9										
			${ }^{171}$	xy，	406.4		${ }^{2882}$	sts42	${ }^{x-1998}$									
					400．0．4		${ }^{\text {2784＊}}$	${ }^{\text {STIS92 }}$										
				${ }^{\text {\％}}$（1）	407.0		－	Ssu9										
					318.5	T	${ }^{318 \times}$	sist2										
晾程		，．	111	敏极	319.0		－	stsale	${ }_{x-153}$	㛐なっし								
絞	＜${ }_{\text {＜}}$			如－7	318.5		${ }^{32000}$	${ }_{\text {STIS2 }}$		奴如し								
＜				喓	319.0	D	－	stssate										

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炉格納容器は，重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える （2）－（2）ことが想定されるが，重大事故等時においては設計基準対象施設としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度以下で閉じ込め機能を損なわない設計とす る。	9．1．2 重大事故等時 9．1．2．1 原子炉格納容器 9．1．2．1．1 概要 原子炉格納容器は，想定される重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える可能性があるが，設計基準対象施設としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度以下で閉じ込め機能を損なわない設計とする。 また，原子炉格納容器内に設置される真空破壊装置は，想定される重大事故等時において，ドライウェル圧力がサ プレッションチェンバ圧力より低下した場合に圧力差に より自動的に働き，サプレッションチェンバのプール水の ドライウェルへの逆流及びドライウェルの破損を防止で きる設計とする。 9．原子炉格納施設 9.1 原子炉格納施設 9．1．1 通常運転時等 9．1．1．4 主要設備 9．1．1．4．1 一次格納施設 9．1．1．4．1．1 原子炉格納容器 （3）真空破壊装置 真空破壊装置は，泠却材喪失事故後のドライウェル内蒸気の凝縮がすすみ，ドライウェル圧力がサプレッションチ ェンバ圧力より下がった場合に，圧力差により自動的に働 き，サプレッションチェンバ内のプール水のドライウェル への逆流，あるいは，ドライウェルの破損を防止するため のものである。	【原子灲格納施設】（基本設計方針） 1．原子炉格納容器 1．1 原子炉格納容器本体等 <中略 > 原子炉格納容器は，想定される重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える（2）－（2）可能性があるがっ設計基準対象施設と しての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度で閉じ込め機能を損なわない設計とする。 3．圧力低減設備その他の安全設備 3.1 真空破壊装置 < 中略 > 想定される重大事故等時において，ドライウェル圧力が サプレッションチェンバ圧力より低下した場合に，ドライ ウェルとサプレッションチェンバ間に設置された6個の真空破壊弁が，圧力差により自動的に働き，サプレッション チェンバのプール水のドライウェルへの逆流及びドライ ウェルの破損を防止できる設計とする。	設計及び工事の計画の （2）－（2）は，設置変更許可申請書（本文（五号）） の 1 （2）－（2）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）非常用格納容器保護設備の構造 （i）設計基準対象施設 a．格納容器内ガス濃度制御系 D（3）（i）a．－（1）原子炬冷却材喪失事故時に原子炉格納容器内で発生するおそれのある水素及び酸素の燃焼反応を防止するため，可燃性ガス濃度制御系を設け，水素及び酸素濃度を制御する。子炉格納容器調気系により，原子炬格納容器内に窒素がス を充填しておく。	9．1．1．4．1．2 格納容器内ガス濃度制御系 本系統は，可燃性ガス濃度制御系と原子炉格納容器調気系で構成し，冷却材喪失事故時に，原子炉格納容器内で発生する水素及び酸素ガスの反応を防止するために設ける設備である。 格納容器内ガス濃度制御系主要仕様を第9．1－2表に示 す。 （1）可燃性ガス濃度制御系 本系統は，1系統が 100% 処理容量をもつ独立な 2 系統 で構成する。各系統は，ブロワ，加熱器，熱反応式再結合器，冷却器，配管•弁類及び計測制御装置で構成する。第 9．1－2図に系統図を示す。 本系統は，中央制御室から手動操作により再結合器の加熱を開始し，加熱開始後 3 時間以内に暖機運転が完了し系統機能を発揮する。 すなわち，ドライウェルのガスをブロワによって吸気 し，電気加熱器で加熱し，再結合器でガス中の水素と酸素 を再結合させる。再結合器内のガスは，加熱器からの入熱及び再結合器内の水素及び酸素の反応熱を受けることに より加熱され， $718^{\circ} \mathrm{C} ~\left(1,325^{\circ} \mathrm{F}\right)$ に制御される。再結合器を出たガス及び再結合反応により生じた水蒸気は，泠却器で泠却凝縮した後，サプレッションチェンバにもどすよ らに設計する。 本系統の作動により，ドライウェルのガスがサプレッシ ョンチェンバに移行することとなるが，サプレッションチ エンバの圧力が上昇すると真空破壊装置が自動的に作動 し，再びドライウェルにガスがもどるようになっている。 なお，泠却器の泠却水は，残留熱除去系の水を使用する。本系統に必要な電力は，外部電源喪失時に非常用電源か ら供給することができる。 1 系統の処理量は，約 $255 \mathrm{Nm}^{3} / \mathrm{h}$ であり， 1 系統を作動す ることによって原子炬格納容器調気系と相まって，事故後 の原子涙格納容器内の酸素濃度を $5 \mathrm{vo} 1 \%$ 未満又は水素濃	3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．2 可燃性ガス濃度制御系 リ（3）（i）a．－（1）冷却材喪失事故時に原子炉格納容器内で発生する水素及び酸素の反応を防止するため，可燃性ガス濃度制御系を設け，リ（3）（i）a．－（2）原子炉格納容器調気系 により原子炉格納容器内に窒素を充填することとあいま ○て，可燃限界に達しないための制限値である水素濃度 $4 \mathrm{Vol} \%$ 未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計と する。	設計及び工事の計画の （3）（i）a．－1 は，設置変更許可申請書（本文 （五号））の（3）（i）a． －（1）と同義であり整合 している。 設計及び工事の計画の （3）（i）a．－2 2 は，設置変更許可申請書（本文 （五号））の（3）（i）a． －（2）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
喪失した場合において炬心の著しい損傷を防止するため	喪失した場合において炬心の著しい損傷を防止するため	喪失した場合において炬心の著しい損傷を防止するため			
に原子炉格納容器内の圧力及び温度を低下させるため，ま	に原子炉格納容器内の圧力及び温度を低下させるため，ま	に原子炉格納容器内の圧力及び温度を低下させるため，ま			
た，炉心の著しい損傷が発生した場合において原子炉格納	た，炉心の著しい損傷が発生した場合において原子炉格納	た，炉心の著しい損傷が発生した場合において原子炉格納			
容器の破損を防止するために原子灯格納容器内の圧力及	容器の破損を防止するために原子炉格納容器内の圧力及	容器の破損を防止するために原子炉格納容器内の圧力及			
び温度並びに放射性物質の濃度を低下させるための設備	び温度並びに放射性物質の濃度を低下させるための設備	び温度並びに放射性物質の濃度を低下させるための重大			
として，原子炬格納容器代替スプレイ冷却系（常設）及び	として，原子炉格納容器代替スプレイ泠却系（常設）及び	事故等対処設備として，原子炉格納容器代替スプレイ泠却			
原子炬格納容器代替スプレイ冷却系（可搬型）を設ける。	原子炬格納容器代替スプレイ冷却系（可搬型）を設ける。	系（常設）及び原子炉格納容器代替スプレイ冷却系（可搬			
		型）を設ける設計とする。			
		＜中略＞			
（a）炉心の著しい損傷を防止するための原子炉格納容器内冷却に用いる設備	（1）炉心の著しい損傷を防止するための原子炉格納容器内冷却に用いる設備	3．2．3 原子炉格納容器代替スプレイ冷却系 （1）原子炬格納容器代替スプレイ冷却系（常設）による			
（a－1）フロントライン系故障時に用いる設備	a．フロントライン系故障時に用いる設備	代替格納容器スプレイ			
（ $\mathrm{a}-1-1$ ）原子炉格納容器代替スプレイ泠却系（常設）に	（a）原子炉格納容器代替スプレイ泠却系（常設）による				
よる原子炉格納容器の泠却	原子师格納容器の泠却				
残留熱除去系（格納容器スプレイ冷却モード）が機能鋉	残留熱除去系（格納容器スプレイ泠却モード）が機能䛧	炉心の著しい損傷防止のための原子炉格納容器内泠却			
失した場合の重大事故等対処設備として，原子炉格納容器	失した場合の重大事故等対処設備として，原子炉格納容器	に用いる設備のらち，残留熱除去系（格納容器スプレイ冷			
代替スプレイ冷却系（常設）は，復水移送ポンプにより，	代替スプレイ泠却系（常設）を使用する。	却モード）が機能喪失した場合及び全交流動力電源喪失又			
復水貯蔵タンクの水を残留熱除去系等を経由して原子炬	原子炉格納容器代替スプレイ冷却系（常設）は，復水移	は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）			
格納容器内のスプレイ管からドライウェル内にスプレイ	送ポンプ，配管•弁類，計測制御装置等で構成し，復水移	機能喪失によるサポート系の故障により，残留熱除去系			
することで，原子炬格納容器内の圧力及び温度を低下させ	送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を	（格納容器スプレイ泠却モード）及び残留熱除去系（サプ			
ることができる設計とする。	経由して原子炉格納容器内のスプレイ管からドライウェ	レッションプール水冷却モード）が起動できない場合の重			
	ル内にスプレイすることで，原子炉格納容器内の圧力及び	大事故等対処設備として，原子炉格納容器代替スプレイ冷			
	温度を低下させることができる設計とする。	却系（常設）は，復水移送ポンプにより，復水貯蔵タンク			
		の水を残留熱除去系等を経由して原子炉格納容器内のド			
		ライウェルスプレイ管からドライウェル内にスプレイす			
		ることで，原子炉格納容器内の圧力及び温度を低下させる			
		ことができる設計とする。			
		＜中略＞			
		3．2．3 原子炉格納容器代替スプレイ冷却系			
		（1）原子炉格納容器代替スプレイ泠却系（常設）による代替格納容器スプレイ			
		＜中略＞			
原子炬格納容器代替スプレイ泠却系（常設）は，非常用	原子炉格納容器代替スプレイ冷却系（常設）は，非常用	原子炉格納容器代替スプレイ泠却系（常設）は，非常用			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
原子炉格納容器代替スプレイ泠却系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，大容量送水ポンプ（タイ プI）は，空冷式のディーゼルエンジンにより駆動できる設計とする。 （a－2）サポート系故障時に用いる設備 （a－2－1）原子炉格納容器代替スプレイ泠却系（常設）に よる原子炉格納容器の泠却 全交流動力電源喪失又は原子炬補機冷却水系（原子炬補機冷却海水系を含む。）機能喪失によるサポート系の故障 により，残留熱除去系（格納容器スプレイ泠却モード）及 び残留熱除去系（サプレッションプール水泠却モード）が起動できない場合の重大事故等対処設備として使用する原子炉格納容器代替スプレイ冷却系（常設）は，四 （3）（ii）a．－2（y（3）（ii）a．（ $\mathrm{a}-1-1$ ）原子炬格納容器代替スプレイ冷却系（虽設）による原子炬格納容器の冷却」 と同じである。	原子炉格納容器代替スプレイ冷却系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，大容量送水ポンプ（タイ プI）は，空冷式のディーゼルエンジンにより駆動できる設計とする。燃料は，燃料補給設備である軽油タンク又は ガスタービン発電設備軽油タンク及びタンクローリによ り補給できる設計とする。 ＜中略＞ b．サポート系故障時に用いる設備 （a）原子炉格納容器代替スプレイ冷却系（常設）による 原子炉格納容器の泠却 全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障 により，残留熱除去系（格納容器スプレイ冷却モード）及 び残留熱除去系（サプレッションプール水冷却モード）が起動できない場合の重大事故等対処設備として使用する原子炬格納容器代替スプレイ冷却系（常設）は，「（1）a．．．． （a）－原子炬格納容器代替スプレイ冷却系（虽設）による原子涙格納容器の冷却」と同じである。	3．2．3 原子炉格納容器代替スプレイ泠却系 （2）原子炉格納容器代替スプレイ冷却系（可搬型）によ る代替格納容器スプレイ ＜中略＞ 原子炬格納容器代替スプレイ泠却系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 また，大容量送水ポンプ（タイプI）は，空冷式のディ ーゼルエンジンにより駆動できる設計とする。 ＜中略＞ 3．2．3 原子炉格納容器代替スプレイ冷却系 （1）原子炉格納容器代替スプレイ冷却系（常設）による代替格納容器スプレイ 炉心の著しい損傷防止のための原子炉格納容器内泠却 に用いる設備のうち，残留熱除去系（格納容器スプレイ冷却モード）が機能喪失した場合及び全交流動力電源喪失又 は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系 （格納容器スプレイ椧却モード）及び残留熱除去系（サプ レッションプール水泠却モード）が起動できない場合の重大事故等対処設備として，原子炬格納容器代替スプレイ冷却系（常設）は，リ（3）（ii）a．－（2）復水移送ポンプにより，復水貯蔵タンクの水を残留熱除圭系等を経由して原子炬格納容器内のドライウェルスプレイ管からドライウェル内にスプレイすることで，原子炬格納容器内の圧力及び温度を低下させることができる設計とする。 <中略 > 原子炉格納容器代替スプレイ泠却系（常設）の流路とし て，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につい て重大事故等対処設備としての設計を行う。	設計及び工事の計画の （3）（ii）a．－（2）は，設置変更許可申請書（本文 （五号））の（3）（ii）a． －（2）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（a－2－2）原子炉格納容器代替スプレイ冷却系（可搬型） による原子炉格納容器の冷却 全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障 により，残留熱除去系（格納容器スプレイ冷却モード）及 び残留熱除去系（サプレッションプール水泠却モード）が起動できない場合の重大事故等対処設備として使用する原子炉格納容器代替スプレイ冷却系（可搬型）は，四 （3）（ii）a．－（3）「リ（3）（ii）a．（a－1－2）原子炬格納容器代替スプレイ冷却系（可搬型）による原子炬格納容器の冷却」 と同じである。	（b）原子炉格納容器代替スプレイ泠却系（可搬型）によ る原子炉格納容器の泠却 全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障 により，残留熱除去系（格納容器スプレイ泠却モード）及 び残留熱除去系（サプレッションプール水泠却モード）が起動できない場合の重大事故等対処設備として使用する原子炉格納容器代替スプレイ冷却系（可搬型）は，「（1）a a－ （b）原子炬格納容器代替スプレイ冷却采（可搬型）による原子炬格納容器の冷却」と同じである。	原子炉格納容器代替スプレイ泠却系（常設）は，炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として兼用する設計とする。 原子炉格納容器安全設備のうち，復水貯蔵タンクを水源 として原子炉格納容器冷却のために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する設計とする。 3．2．3 原子炉格納容器代替スプレイ泠却系 （2）原子炉格納容器代替スプレイ泠却系（可搬型）によ る代替格納容器スプレイ 炉心の著しい損傷防止のための原子炉格納容器内冷却 に用いる設備のうち，残留熱除去系（格納容器スプレイ冷却モード）の機能が喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系 （格納容器スプレイ冷却モード）及び残留熱除去系（サプ レッションプール水泠却モード）が起動できない場合の重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系（可搬型）は，リ（3）（ii）a．－（3）大容量送水ポンプ（タ イプI）により，代替淡水源の水を残留熱除寺系等を経由 して原子炬格納容器内のドライウェルスプレイ管からド ライウェル内にスプレイすることで，原子炬格納容器内の圧力及び温度を低下させることができる設計とする。 ＜中略＞ 原子炉格納容器代替スプレイ泠却系（可搬型）に使用す るホースの敷設等は，ホース延長回収車（台数 4 （予備 1 ）） （核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料 プール代替注水系」の設備を原子炉格納施設のらち「3．2．3原子炉格納容器代替スプレイ泠却系」の設備として兼用） により行ら設計とする。 原子炉格納容器代替スプレイ泠却系（可搬型）の流路と して，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ	設計及び工事の計画の （3）（ii）a．－3 は，設置変更許可申請書（本文 （五号））の（3）（ii）a． －（3）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
残留熱除去系（格納容器スプレイ泠却モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及びり（3）（ii）a．一44熱交換器によりサプレッ ションチェンバのプール水をドライウェル内及びサプレ ッションチェンバ内にスプレイすることで原子炬格納容器を椧却できる設計とする。 本系統に使用する泠却水は，原子炉補機冷却水系（原子炬補機冷却海水系を含む。）又は原子炉補機代替冷却水系 から供給できる設計とする。	残留熱除去系（格納容器スプレイ泠却モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及び熱交換器によりサプレッションチェン バのプール水をドライウェル内及びサプレッションチェ シバ内にスプレイすることで原子炉格納容器を泠却でき る設計とする。 本系統に使用する泠却水は，原子炉補機冷却水系（原子炬補機冷却海水系を含む。）又は原子炬補機代替冷却水系 から供給できる設計とする。	＜中略＞ 炉心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系 を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備 を使用し，残留熱除去系（格納容器スプレイ冷却モード） を復旧できる設計とする。 残留熱除去系（格納容器スプレイ泠却モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及びり（3）（ii）a．一（4）残留熱除圭系熱交換器に よりサプレッションチェンバのプール水をドライウェル内及びサプレッションチェンバ内にスプレイすることで原子炉格納容器を泠却できる設計とする。 本系統に使用する泠却水は原子炉補機冷却水系（原子炬補機冷却海水系を含む。）又は原子炬補機代替冷却水系か ら供給できる設計とする。 残留熱除去系（格納容器スプレイ泠却モード）の流路と して，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。 ＜中略〉 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4．1．3 格納容器スプレイ冷却モード （2）多様性，位置的分散等 残留熱除去系（格納容器スプレイ泠却モード）は，設計基準事故対処設備であるとともに，重大事故等時において も使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並び に位置的分散を考慮すべき対象の設計基準事故対処設備 はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用 しない。	設計及び工事の計画の （3）（ii）a．－（4）は，設置変更許可申請書（本文 （五号））の（3）（ii）a． （4）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
		【原子炉格納施設】（基本設計方針） 3．2．8 残留熱除去系（格納容器スプレイ冷却モード） （2）多様性，位置的分散等 残留熱除去系（格納容器スプレイ冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時において も使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並び に位置的分散を考慮すべき対象の設計基準事故対処設備 ではないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用 しない。			
（a－2－4）常設代替交流電源設備による残留熱除去系（サ プレッションプール水泠却モード）の復旧	（d）常設代替交流電源設備による残留熱除去系（サプレ ッションプール水冷却モード）の復旧	3．2．9 残留熱除去系（サプレッションプール水冷却モード） （1）系統構成 < 中略 >			
全交流動力電源喪失又は原子炉補機泠却水系（原子炉補	全交流動力電源喪失又は原子炉補機泠却水系（原子炉補	炉心の著しい損傷防止のための原子炉格納容器内泠却			
機冷却海水系を含む。）機能喪失によるサポート系の故障	機冷却海水系を含む。）機能喪失によるサポート系の故障	に用いる設備のらち，全交流動力電源喪失又は原子炉補機			
により，残留熱除去系（サプレッションプール水泠却モー	により，残留熱除去系（サプレッションプール水泠却モー	泠却水系（原子炬補機冷却海水系を含む。）機能喪失によ			
ド）が起動できない場合の重大事故等対処設備として，常	ド）が起動できない場合の重大事故等対処設備として，常	るサポート系の故障により，残留熱除去系（サプレッショ			
設代替交流電源設備を使用し，残留熱除去系（サプレッシ	設代替交流電源設備を使用し，残留熱除去系（サプレッシ	ンプール水泠却モード）が起動できない場合の重大事故等			
ヨンプール水冷却モード）を復旧する。	ヨンプール水泠却モード）を復旧する。	対処設備として，常設代替交流電源設備を使用し，残留熱			
		除去系（サプレッションプール水冷却モード）を復旧でき			
		る設計とする。 ＜中略＞			
		3．2．9 残留熱除去系（サプレッションプール水泠却モード） （1）系統構成			
		原子炬格納容器内の泠却等のための設備として，想定さ			
		れる重大事故等時において，設計基準事故対処設備である			
		残留熱除去系（サプレッションプール水冷却モード）が使			
		用できる場合は重大事故等対処設備（設計基準拡張）とし て使用できる設計とする			
		＜中略＞			
残留熱除去系（サプレッションプール水冷却モード）は，	残留熱除去系（サプレッションプール水冷却モード）は，	残留熱除去系（サプレッションプール水泠却モード）は，	設計及び工事の計画の		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及びり（3）（ii）a．－（5）熱交換器により，サ プレッションチェンバのプール水を泠却することで原子炬格納容器を椧却できる設計とする。 本系統に使用する泠却水は，原子炉補機冷却水系（原子炬補機冷却海水系を含む。）又は原子炬補機代替冷却水系 から供給できる設計とする。	常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及び熱交換器により，サプレッションチ エンバのプール水を椧却することで原子炬格納容器を椧却できる設計とする。 本系統に使用する泠却水は，原子炉補機冷却水系（原子炬補機泠却海水系を含む。）又は原子炉補機代替冷却水系 から供給できる設計とする。	常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及びり（3）（ii）a．一（5）旄留熱除圭系熱交換器により，サプレッションチェンバのプール水を洽却する ことで原子炉格納容器を泠却できる設計とする。 本系統に使用する洽却水は，原子炬補機冷却水系（原子炉補機泠却海水系を含む。）又は原子炉補機代替冷却水系加ら供給できる設計とする。 残留熱除去系（サプレッションプール水冷却モード）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 原子炋格納容器安全設備のらち，サプレッションチェン バのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並び に，原子炉椧却材中の異物の影響について「非常用炉心椧却設備又は格納容器熱除去設備に係るろ過装置の性能評俩等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小 さい有効吸込水頭においても，正常に機能する能力を有す る設計とする。 【原子炉冷却系䖻施設（蒸気タービンを除く。）】 （基本設計方針） 4.1.4 サプレッションプール水冷却モード （2）多樣性，位置的分散等 残留熱除去系（サプレッションプール水泠却モード）は，設計基準事故対処設備であるとともに，重大事故等時におう いても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多柡性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のう ち「5．1．2 多栐性，位置的分散等」に示す設計方針は適用しない。	（1）（3）（ii）a．－（5）は，設置変更許可申請書（本文 （五号））の（3）（ii）a． （5）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
り，代替淡水源の水を残留熱除去系等を経由して四 （3）（ii）a．－7 原子炬格納容器内のスプレイ管からドライ ウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させることがで きる設計とする。 また，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部 へ流入することで，落下した溶融炬心を泠却できる設計と する。 原子炉格納容器代替スプレイ冷却系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要 となる水の供給設備である大容量送水ポンプ（タイプ I） により海を利用できる設計とする。	原子炉格納容器代替スプレイ冷却系（可搬型）は，大容量送水ポンプ（タイプ I ），配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炬格納容器内のスプレイ管からドライウェル内にスプレイする ことで，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させることができる設計とする。 また，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部 へ流入することで，落下した溶融炉心を泠却できる設計と する。 原子炉格納容器代替スプレイ冷却系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要 となる水の供給設備である大容量送水ポンプ（タイプI） により海を利用できる設計とする。	障により，残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッションプール水冷却モード） が起動できない場合の重大事故等対処設備として，原子炬格納容器代替スプレイ冷却系（可搬型）は，大容量送水ポ ンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して少（3）（ii）a．－7 ドライウエルスプレイ管から ドライウェル内にスプレイすることで，原子炉格納容器内 の圧力及び温度並びに放射性物質の濃度を低下させるこ とができる設計とする。 ＜中略＞ 原子炉格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，原子炉格納容器代替ス プレイ冷却系（可搬型）は，大容量送水ポンプ（タイプI） により，代替淡水源の水を残留熱除去系配管等を経由して原子炉格納容器内のドライウェルスプレイ管からドライ ウェル内にスプレイレ，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで，落下した溶融炉心を泠却 できる設計とする。 <中略 > 3．2．3 原子炉格納容器代替スプレイ泠却系 （2）原子炉格納容器代替スプレイ泠却系（可搬型）によ る代替格納容器スプレイ <中略 > 原子炉格納容器代替スプレイ泠却系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要 となる水の供給設備である大容量送水ポンプ（タイプI） により海を利用できる設計とする。 <中略 > 3．2．3 原子炉格納容器代替スプレイ泠却系 （2）原子炉格納容器代替スプレイ泠却系（可搬型）によ る代替格納容器スプレイ	－77と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（b－2－2）原子炉格納容器代替スプレイ冷却系（可搬型） による原子炉格納容器の泠却 炬心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炬補機冷却水系（原子炬補機冷却海水系 を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッションプール水冷却モード）が起動できない場合の重大事故等対処設備として使用する原子炬格納容器代替スプレイ泠却系（可搬型）は，リ（3）（ii）a．－（9）「リ （3）（ii）a．（a－1－2）原子炬格納容器代替スプレイ冷却采 （．．可搬型）による原子炬格納容器の冷却」と同じである。．． （b－2－3）常設代替交流電源設備による残留熱除去系納容器スプレイ冷却モード）の復旧 炬心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系 を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）が起動できない場合の重大事故等対処設備り（3）（ii）a．－（10は，「リ（3）（ii） a．（a－2－3）常設代替交流電源設備による残留熱除去系 （格納容器スプレイ冷却モード）の復旧」と同じである。	（b）原子炉格納容器代替スプレイ冷却系（可搬型）によ る原子炉格納容器の泠却 炬心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炬補機冷却水系（原子炬補機冷却海水系 を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ泠却モード）及び残留熱除去系（サプレッションプール水冷却モード）が起動できない場合の重大事故等対処設備として使用する原子炉格納容器代替スプレイ冷却系（可搬型）は，「（1）a．．．．（b）原子炬格納容器代替スプレイ冷却系（可搬型）による原子炉格納容器の冷却」と同じである。－ （c）常設代替交流電源設備による残留熱除去系（格納容器スプレイ冷却モード）の復旧 炬心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系 を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ椧却モード）が起動できない場合の重大事故等対処設備は，「（1）b．（c）常設代替交流電源設備による残留熱除去系（格納容器スプレイ泠却モ －ド）の復旧」と同じである。	3．2．3 原子炉格納容器代替スプレイ冷却系 （2）原子炉格納容器代替スプレイ冷却系（可搬型）によ る代替格納容器スプレイ ＜中略＞ 炬心の著しい損傷が発生した場合において，残留熱除去系（格納容器スプレイ椧却モード）の機能が喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッションプール水冷却モード） が起動できない場合の重大事故等対処設備として，原子炬格納容器代替スプレイ冷却系（可搬型）は，リ（3）（ii）a．－ （9）大容量送水ポンプ（タイプI）により，代替淡水源の水 を残留熱除去系等を経由してドライウェルスプレイ管か らドライウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させる ことができる設計とする。 $<$ 中略 $>$ 3．2．8 残留熱除去系（格納容器スプレイ冷却モード） （1）系統構成 ＜中略＞ 炬心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系 を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）が起動できない場合の重大事故等対処設備（3）（ii）a．－（10）として，虽設代替交流電源設備を使用し，残留熱除去系（格納容器スプレ イ冷却モード）を復旧できる設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及び残留熱除去系熱交換器によりサプレッ ションチェンバのプール水をドライウェル内及びサプレ ッションチェンバ内にスプレイすることで原子炉格納容器を泠却できる設計とする。	設計及び工事の計画の リ（3）（ii）a．－（9）は，設置変更許可申請書（本文 （五号））の（3）（ii）a． －（9）と同義であり整合 している。 設計及び工事の計画の （3）（ii）a．－（10）は，設置変更許可申請書（本文 （五号））の（3）（ii）a． －（10）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
常設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備及び所内虽設蓄電式直流電源設備について は，「ヌ（2）（iv）代替霫源設備」に記載する。 原子师格納容器代替スプレイ泠却系（常設）は，残留熱除去系（格納容器スプレイ冷却モード）と共通要因によっ て同時に機能を損なわないよう，復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（格納容器スプレイ泠却モード）に対して多様性を有 する設計とする。 原子炉格納容器代替スプレイ泠却系（常設）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替ス プレイ泠却系（常設）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。また，電動弁（直流）は，ハンドルを設けて手動操作を可能とする ことで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。	党設代替交流電源設備，可搬型代替交流電源設備，代替所内電気設備，所内常設蓄電式直流電源設備及び燃料補給設備については，「10．2 代替需源設備」に記載する。… 9．2．2．1 多様性及び独立性，位置的分散 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 原子炉格納容器代替スプレイ冷却系（常設）は，残留熱除去系（格納容器スプレイ冷却モード）と共通要因によっ て同時に機能を損なわないよう，復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（格納容器スプレイ冷却モード）に対して多様性を有 する設計とする。 原子炉格納容器代替スプレイ冷却系（常設）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替ス プレイ泠却系（常設）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。また，電動弁（直流）は，ハンドルを設けて手動操作を可能とする ことで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。	（2）原子炉格納容器代替スプレイ冷却系（可搬型）によ る代替格納容器スプレイ ＜中略＞ 原子炉格納容器代替スプレイ泠却系（可搬型）は，炉心 の著しい損傷及び原子炉格納容器の破損を防止するため の設備として兼用する設計とする。 <中略〉 3．2．3 原子炉格納容器代替スプレイ冷却系 （3）多重性又は多様性及び独立性，位置的分散 原子炉格納容器代替スプレイ冷却系（常設）は，残留熱除去系（格納容器スプレイ泠却モード）と共通要因によっ て同時に機能を損なわないよう，復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（格納容器スプレイ泠却モード）に対して多様性を有 する設計とする。 原子炉格納容器代替スプレイ冷却系（常設）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替ス プレイ冷却系（常設）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 原子炉格納容器代替スプレイ冷却系（常設）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作	設置変更許可申請書（本文（五号））「又（2）（iv）代替電源設備」に示す。		

また，原子炉格納容器代替スプレイ冷却系（常設）は，復水貯蔵タンクを水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（格納容器スプレイ冷却モ ード）に対して異なる水源を有する設計とする。
復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポンプと異なる区画に設置することで，共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。
復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によっ
て同時に機能を損なわないよう位置的分散を図る設計と する。
原子炉格納容器代替スプレイ冷却系（可搬型）は，残留熱除去系（格納容器スプレイ冷却モード）及び原子炉格納容器代替スプレイ泠却系（常設）と共通要因によって同時 に機能を損なわないよう，大容量送水ポンプ（タイプI） を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（格納容器 スプレイ泠却モード）及び原子炉格納容器代替スプレイ冷却系（常設）に対して多様性を有する設計とする。
原子炉格納容器代替スプレイ冷却系（可搬型）の電動弁 は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替スプレ

設置変更許可申請書（添付書類八）該当事項 \quad 設計及び工事の計画 該当事項
に対して多様性を有する設計とする。また，原子炉格納容器代替スプレイ泠却系（常設）の電動弁（直流）は，125V蓄電池から125V直流主母線盤までの系統において，独立し た電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり， 125 V 代替蓄電池から125V直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。

また，原子炬格納容器代替スプレイ泠却系（常設）は，復水貯蔵タンクを水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（格納容器スプレイ冷却モ ード）に対して異なる水源を有する設計とする。
復水移送ポンプは，原子炉棟内の残留熱除去系ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。

復水貯蔵タンクは，屋外に設置することで，原子炉棟内 のサプレッションチェンバと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。

原子炉格納容器代替スプレイ冷却系（可搬型）は，残留熱除去系（格納容器スプレイ泠却モード）及び原子炉格納容器代替スプレイ泠却系（常設）と共通要因によって同時 に機能を損なわないよう，大容量送水ポンプ（タイプ I ） を空泠式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（格納容器 スプレイ冷却モード）及び原子炉格納容器代替スプレイ泠却系（常設）に対して多様性を有する設計とする。
原子炉格納容器代替スプレイ冷却系（可搬型）の電動弁
は，ハンドルを設けて手動操作を可能とすることで，非常
用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炬格納容器代替スプレ

また，原子炉格納容器代替スプレイ冷却系（常設）は，復水貯蔵タンクを水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（格納容器スプレイ泠却モ ード）に対して異なる水源を有する設計とする。
復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポンプと異なる区画に設置することで，共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。

復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内に設置されているサプレッションチェンバと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。
原子炉格納容器代替スプレイ椧却系（可搬型）は，残留熱除去系（格納容器スプレイ冷却モード）及び原子炉格納容器代替スプレイ泠却系（常設）と共通要因によって同時 に機能を損なわないよう，大容量送水ポンプ（タイプI） を空冷式のディーゼルエンジンにより駆動とすることで，電動機駆動ポンプにより構成される残留熱除去系（格納容器スプレイ椧却モード）及び原子炉格納容器代替スプレイ泠却系（常設）に対して多様性を有する設計とする。

原子炉格納容器代替スプレイ冷却系（可搬型）の電動弁 は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替スプレ

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
［常設重大事故等対処設備］ 原子炉格納容器代替スプレイ椧却系（常設） 復水移送ポンプ （3）（ii）a．－（12）（「ホ（3）（iii）b．（c）（c）原子炬冷却材圧力 バウンダリ低圧時に登霥用原子炬を掵却するための設備」他と兼用）．．． （本文十号） 原子炉格納容器代替スプレイ椧却系（常設） 格納容器内へのスプレイ流量 $88 \mathrm{~m}^{3} / \mathrm{h}$ －記載䈏所 八（2）（ii）c．（b）（b－9）	第9．2－1表 原子炉格納容器内の椧却等のための設備の主要機器仕様 （1）原子炉格納容器代替スプレイ椧却系（常設） a．復水移送ポンプ 第5．6－1表 原子炬冾却村压力バウンダり低压時纪発霥用原子炬を冾却するための設備の主要機器估樣に記載 する。 －設置変更許可申請書（本文十号）で使用している復水移送ポンプの注水流量は，設計及び工事の計画で使用している復水移送ポンプの容量と整合しており，設置変更許可申請書（本文十号）で使用している解析条件に包絡されている。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （要目表） 3．7．2 㭪給水采 $* 2:$ 訃載の適正化を行ら。既工事計画書には「定格容量」と記載。 $* 3$ ：既工事計画書に記載がないため，記載の適正化を行ら。記載や $*_{4}$ ：公称値を示す。 \square 注水系）で使用する場合の値（ボンプ2台運転時）。 $8: \begin{aligned} & \text { 場合の値（ボンプ2台運転時）。 } \\ & \text { 重大事故等時における，原子枦格納施設のうち圧力低㴻設備その他の安全設備 }\end{aligned}$ の原子炉格納容器安全設偄（原子妒格納容器下部注水系）で使用する場合の値 の原子炉格納容器安全設備（原子炉格納容器下部注水系）で使用する場合の値 （溶融炬心洽却：ポンプ1台運転時） ＊10：記載の適正化を行ら。既工事計画書には「定格揚程」と記載。 	設計及び工事の計画の （3）（ii）a．－（12 は，設置変更許可申請書（本文 （五号））の（3）（ii）a． （12）と同義であり整合 している。	

整 合
合 性備 考

 －

＊16：

使用寸る責合の取付鲴所を示す。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
b．原子炬格納容器の過圧破損を防止するための設備 炬心の著しい損傷が発生した場合において原子炉格納容器の過圧による破損を防止するため，原子炬格納容器内 の圧力及び温度を低下させるために川（3）（ii）b．－（1）必要な重大事故等対処設備を設置及び保管する。．．． 原子炉格納容器の過圧破損を防止するための設備のう ち，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下させるための設備として，代替循環冷却系を設ける。また，原子炉格納容器内の圧力を大気中に逃がすための設備として，原子炉格納容器フィル タベント系を設ける。	9.3 原子炬格納容器の過圧破損を防止するための設備 9．3．1 概要 炬心の著しい損傷が発生した場合において原子炉格納容器の過圧による破損を防止するため，原子炉格納容器内 の圧力及び温度を低下させるために必要な重大事故等対処設備を設置及び保管する。．．． 原子炉格納容器の過圧破損を防止するための設備の系統概要図を第9．3－1図から第9．3－3図に示す。 9．3．2 設計方針 原子炉格納容器の過圧破損を防止するための設備のう ち，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下させるための設備として，代替循環冷却系を設ける。また，原子炉格納容器内の圧力を大気中に逃がすための設備として，原子炉格納容器フィル タベント系を設ける。	【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.2 原子炉格納容器安全設備 3．2．4 代替循環冷却系 炉心の著しい損傷が発生した場合において，原子炬格納容器の過圧による破損を防止するために必要な重大事故等対処設備のらち，原子炉格納容器バウンダリを維持しな がら原子炬格納容器内の圧力及び温度を低下させるため の（3）（ii）b．－（1）a設備として，代替循環冷却系を設ける設計とする。 ＜中略＞ 3.5 圧力逃がし装置 3．5．1 原子炉格納容器フィルタベント系 炉心の著しい損傷が発生した場合において，原子炬格納容器の過圧による破損を防止するためにリ（3）（ii）b．－（1）b必要な重大事故等対処設備のうち，原子炉格納容器内の圧力を大気中に逃がすための設備として，原子炬格納容器フ イルタベント系を設ける設計とする。 3．2．4 代替循環冷却系 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のらち，原子炉格納容器バウンダリを維持しな がら原子炬格納容器内の圧力及び温度を低下させるため の設備として，代替循環冷却系を設ける設計とする。 ＜中略＞ 3.5 圧力逃がし装置 3．5．1 原子炉格納容器フィルタベント系 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のらち，原子炬格納容器内の圧力を大気中に逃 がすための設備として，原子炉格納容器フィルタベント系 を設ける設計とする。	設計及び工事の計画の リ（3）（ii）b．－（1）a及び四 （3）（ii ）b．－（1）bは，設置変更許可申請書（本文 （五号））の（3）（ii）b． －（1）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
原子炉補機代替冷却水系は，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）に より熱交換器ユニットに海水を送水することで，残留熱除去系熱交換器で発生した熱を最終的な熱の逃がし場であ る海へ輸送できる設計とする。 （b）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱 炬心の著しい損傷が発生した場合において，原子炉格納容器の過圧破損を防止するための重大事故等対処設備と して，原子炉格納容器フィルタベント系は，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フ イルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出することで，排気中に含ま れる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内の圧力及び温度を低下できる設計とする。	原子炉補機代替冷却水系は，淡水ポンプ及び熱交換器を搭載した熱交換器ユニット，大容量送水ポンプ（タイプ I），配管・ホース・并類，計測制御装置等で構成し，熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I ）により熱交換器ユニットに海水を送水することで，残留熱除去系熱交換器で発生した熱を最終的な熱の逃がし場である海へ輸送できる設計とする。 ＜中略＞ （2）原子炉格納容器フィルタベント系による原子炉格納容器内の減圧及び除熱 炬心の著しい損傷が発生した場合において，原子炉格納容器の過圧破損を防止するための重大事故等対処設備と して，原子炉格納容器フィルタベント系を使用する。 原子炬格納容器フィルタベント系は，フィルタ装置（フ ィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よ ら素フィルタ），フィルタ装置出口側圧力開放板，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雾囲気 ガスを原子炉格納容器調気系等を経由して，フィルタ装置 へ導き，放射性物質を低減させた後に原子炉建屋屋上に設 ける放出口から排出することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内の	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 7．原子炉補機冷却設備 7.3 原子炉補機代替冷却水系 7．3．1 系統構成 ＜中略＞ 原子炉補機代替冷却水系は，原子炬補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）により取水口又は海水ポンプ室から海水を取水し，原子炬補機代替冷却水系熱交換器ユニット に海水を送水することで，残留熱除去系熱交換器又は燃料 プール泠却浄化系熱交換器で除去した熱を最終的な熱の逃がし場である海へ輸送できる設計とする。 <中略 > 【原子炉格納施設】（基本設計方針） 3.5 圧力逃がし装置 3．5．1 原子炉格納容器フィルタベント系 炬心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のうち，原子炬格納容器内の圧力を大気中に逃 がすための設備として，原子炉格納容器フィルタベント系 を設ける設計とする。 （1）系統構成 原子炉格納容器フィルタベント系は，フィルタ装置（フ イルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よ ら素フィルタ），フィルタ装置出口側ラプチャディスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィル夕装置へ導き，放射性物質を低減させた後に原子炬建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））することで，排気中に含まれる放射性物質の	であり整合している。以下同じ。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
V（3）（ii）b．－（4）本系統は，サプレッションチェンバ及び ドライウェルと接続し，いずれからも排気できる設計とす る。サプレッションチェンバ側からの排気ではサプレッシ ヨンチェンバの水面からの高さを確保し，ドライウェル側 からの排気では，ドライウェル床面からの高さを確保する とともに有効燃料棒頂部よりも高い位置に接続箇所を設 けることで長期的にも溶融炉心及び水没の悪影響を受け ない設計とする。	本系統は，サプレッションチェンバ及びドライウェルと接続し，いずれからも排気できる設計とする。サプレッシ ョンチェンバ側からの排気ではサプレッションチェンバ の水面からの高さを確保し，ドライウェル側からの排気で は，ドライウェル床面からの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を設けることで長期的にも溶融炉心及び水没の悪影響を受けない設計とす る。	【原子炉格納施設】（基本設計方針） 3．5．1 原子炉格納容器フィルタベント系 （1）系統構成 ＜中略＞ フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計とする。また，無機よう素をスクラバ溶液中に捕集•保持するためにアルカリ性の状態（待機状態に おいてpH13以上）に維持する設計とする。 < 中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4.2 原子炉格納容器フィルタベント系 4．2．1 系統構成 ＜中略＞ リ（3）（ii）b．－（4）原子炉格納容器フィルタベント系は，サ プレッションチェンバ及びドライウェルと接続し，いずれ からも排気できる設計とする。サプレッションチェンバ側 からの排気ではサプレッションチェンバの水面からの高 さを確保し，ドライウェル側からの排気では，ドライウェ ル床面からの高さを確保するとともに有効燃料棒頂部よ りも高い位置に接続箇所を設けることで長期的にも溶融炉心及び水没の悪影響を受けない設計とする。 < 中略 > 【原子炉格納施設】（基本設計方針） 3．5．1 原子炉格納容器フィルタベント系 （1）系統構成 ＜中略＞ リ（3）（ii ）b．－（4）原子炬格納容器フィルタベント系は，サ プレッションチェンバ及びドライウェルと接続し，いずれ からも排気できる設計とする。サプレッションチェンバ側 からの排気ではサプレッションチェンバの水面からの高 さを確保し，ドライウェル側からの排気では，ドライウェ	設計及び工事の計画の （3）（ii）b．－4）は，設置変更許可申請書（本文 （五号））の（3）（ii）b． －（4）と同義であり整合 している。	

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
容器内にスプレイする場合においても，原子炬格納容器内圧力が規定の圧力まで減圧した場合には，原子炬格納容器内へのスプレイを停止する運佣（3）（ii）b．－（6）とする。 ．W （3）（ii）b．（b）－（7）また，原子炬格納容器フィイルタベント系使用後において，可燃性がスによる爆発及び原子炬格納容器の負圧破損を防止するために，可搬型空素がス供給装置 を用いて原子炬格納容器内に不活性ガス（窒素）の供給が可能な設計とする。	イする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炬格納容器内へのスプレイ を停止する運用とする。また，原子彷格緢容器フィルダー ント采使用後において，可然性ガスによる爆発及び原子炬格納容器の負圧破損を防止するために，可搬型窒素かス供給装置を用いて原子炉格納容器内に不活性がス（寜素）の供給が可能な設計とする。	に定めて管理する。原子炬格納容器フィルタベント系の使用後に再度，．．原子炬格納容器内にスプレイする場合におい ても，原子炬格納容器内圧力が規定の圧力まで減圧した場合には，原子炬格納容器内へのスプレイを停止する運用問 （3）（ii）b．－（6）を保安規定に定めて管理する。．． ＜中略＞ 【原子炉格納施設】（基本設計方針） 3．5．1 原子炉格納容器フィルタベント系 （1）系統構成 ＜中略＞ 原子炉格納容器フィルタバント系の使用に際しては，（1） （3）（ii）b．－（5）原子炬格納容器が負圧とならないよう，原子炬格納容器代替スプレイ椧却系等による原子炉格納容器内へのスプレイを停止する運用（3）（ii）b．－（6）を保安規定 に定めて䉯理する。原子炬格納容器フィルタバント系の使用後に再度，原子炉格納容器内にスプレイする場合におい ても，原子炬格納容器内圧力が規定の圧力まで減圧した場合には，原子炬格納容器内へのスプレイを停止する運用問 （3）（ii）b．－（6）堂保安規定に定めて管理する。．． <中略> 【原子炉冷却采統施設（蒸気タービンを除く。）】 （基本設計方針） 4．2 原子炉格納容器フィルタバント系 4．2．1 系統構成 <中略> 可搬型窒素がス供給系は，（3）（ii）b．－（7）可燃性がスに よる爆発及び原子炉格納容器の負圧破損を防止するため に，可搬型窒素がス供給装置を用いて原子炉格納容器内に不活性がス（窒素）の供給が可能な設計とする。 <中略>	－（5）と同義であり整合 している。 設計及び工事の計画の （3）（ii）b．－66は，設置変更許可申請書（本文 （五号））の（3）（ii）b． －66を具体的に記載し ており整合している。 設計及び工事の計画の （3）（ii）b．－77は，設置変更許可申請書（本文 （五号））の（3）（ii）b． －（7）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		【原子炉格納施設】（基本設計方針）			
		3．5．1 原子炉格納容器フィルタバント系			
		（1）系統構成			
		＜中略＞			
		可搬型窒素がス供給系は，『（3）（ii）b．－（7）可燃性がスに			
		よる爆発及び原子炬格納容器の負圧破損を防止するため			
		に，可搬型空素力゙ス供給装置を用いて原子炬格納容器内に			
		不活性がス（窒素）の供給が可能な設計とする。			
		中略＞			
		3.3 放射性物質浱度制御設備及び可燃性ガス濃度制御設			
		備並びに格納容器再循環設備			
		3．3．6 可搬型窒素カス供給系			
		可搬型空素が大供給采は，（1）（3）（ii）b．－（7）可燃性がスに			
		よる暴発及び原子炉格納容器の負圧破損を防止するため			
		に，可搬型空素がス供給装置を用いて原子炉格納容器内に			
		不活性ガス（窒素）の供給が可能な設計とする。また，原			
		子炉格納容器フィルタバント系は，排気中に含まれる可燃			
		性ガスによる爆発を防ぐため，可搬型窒素がス供給系によ			
		り，系統内を不活性ガス（窒素）で置換した状態で待機さ			
		せ，原子炬格納容器ベント後においても不活性ガス（窒素）			
		で置換できる設計とする。			
		＜中略＞			
		【非常用電源設備】（基本設計方針）			
		2．交流電源設備			
		2.5 可搬型窒素力ス供給装置発電設備			
		置発電設備は，車両内红搭載し，			
		可搬型窒素がス供給装置に給電できる設計とする。			
		【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）			
		4.2 原子炉格納容器フィルタベント系			
		4．2．1 系統構成			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		施設のうち $「 4.2$ 原子炉格納容器フィルタバント系」の			
		設備として兼用）（以下同じ。）をを設置し，放射線防護を			
		考慮した設計とする。遠陽手動分操作設備遮蔽は，炬心の			
		鉛厚さ 2 mm の遮蔽厘さを有する設計とする。			
		【放射線管理施設】（基本設計方針）			
		2．換気設備，生体遮蔽装置等			
		2.3 生体遮敬装置等			
		＜中略＞			
		（3）（ii）b．－88）原子炬格䋉容器フィルタバント系のフィ1			
		ルタ装置等は，原子炬建屋原子炉棟内に設置することによ			
		り，フィルタ装置等の周围には遮蔽壁が設置されることか			
		ら原子炬格納容器フィルタベント系の使用時に本系統内			
		に蓠積される放射性物質から放出される放射線から作業			
		員を防濩する設計とする。			
		＜中略＞			
		［ 原子炬格納施設】（基本設計方針）			
		3．3．7 原子炉格納容器フィルタベント系			
		＜中略〉			
		（3）（ii）b．－88原子炝格納容器フィルター゙ント系使用時			
		の排出経路に設置される隔驩亣に設ける遠隔手動弁操作			
		設備の操作場所は，原子炬建屋付属棟内とし，サプレッシ			
		ヨンチェンバベント用出口隔離弁（T48－FO22）の操作を行			
		ら原子炬建屋地下1階及びドライウェルバント用出口隔離			
		弁（T48－F019）の操作を行う原子炬建屋地上1階に遮蔽体			
		（遠隔手動并操作設備遮蔽（ 原子炉格納施設のらち「3．5．1			
		原子炬格納容器フィルタバント系」の設備を原子炉格納施			
		設のうち「3．3．7 原子炉格納容器フィルタベント系」の			
		設備として兼用）（以下同じ。）をを設置し，放射線防護を			
		考慮した設計とする。遠陽手動弁操作設備遮蔽は，炬心の			
		著しい損罂時においても，原子炬格納容器フィルタバント			

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
系統内に設ける（3）（ii）b．－⑨フイルタ装置出口側圧力開放板は，原子炉格納容器フィルタベント系の使用の妨げ にならないよう，原子炉格納容器からの排気圧力と比較し て十分に低い圧力で破裂する設計とする。	系統内に設けるフィルタ装置出口側圧力開放板は，原子炉格納容器フィルタベント系の使用の妨げにならないよ ら，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。	【原子炉格納施設】（基本設計方針） 3．5．1 原子炉格納容器フィルタベント系 （1）系統構成 <中略> 排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計とする。 <中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4． 2 原子炉格納容器フィルタベント系 4．2．1 系統構成 <中略 > 系統内に設ける（3）（ii）b．－（9）フィルタ装置出口側ラプ チャデイスクは，原子炉格納容器フィルタベント系の使用 の妨げにならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計とする。 < 中略 > 【原子炉格納施設】（基本設計方針） 3．5．1 原子炉格納容器フィルタベント系 （1）系統構成 <中略 > 系統内に設ける归（3）（ii）b．－（9）フイルタ装置出口側ラ プチャディスクは，原子炉格納容器フィルタベント系の使用の妨げにならないよう，原子炬格納容器からの排気圧力 と比較して十分に低い圧力で破裂する設計とする。 <中略> 【原子炉冷却系統施設（蒸気タービンを除く。）】	設計及び工事の計画の （3）（ii）b．－（9）は，設置変更許可申請書（本文 （五号））の（（3）（ii）b． －（9）と同一設備であり整合している。以下同 じ。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉建屋原子炉棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線から作業員を防護する設計とする。 代替循環冷却系及び原子炉格納容器フィルタベント系 は，共通要因によって同時に機能を損なわないよう，原理 の異なる泠却及び原子炉格納容器内の減圧手段を用いる ことで多様性を有する設計とする。 代替循環冷却系は，非常用交流電源設備に対して多様性 を有する常設代替交流電源設備からの給電により駆動で きる設計とする。また，原子炉格納容器フィルタベント系 は，非常用交流電源設備に対して多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。 原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とすることで，代替循環冷却系に対して駆動源の多様性を有する設計とす る。	原子炉格納容器フィルタベント系のフィルタ装置等は，原子哣棟内に設置することにより，フィルタ装置等の周囲 には遮蔽壁が設置されることから原子炉格納容器フィル タベント系の使用時に本系統内に蓄積される放射性物質 から放出される放射線から作業員を防護する設計とする。 ＜中略＞ 9．3．2．1 多様性，位置的分散 基本方針については，「1．1．7．1 多樣性，位置的分散，悪影響防止等」に示す。 代替循環冷却系及び原子炉格納容器フィルタベント系 は，共通要因によって同時に機能を損なわないよう，原理 の異なる泠却及び原子炉格納容器内の減圧手段を用いる ことで多様性を有する設計とする。 代替循環冷却系は，非常用交流電源設備に対して多様性 を有する常設代替交流電源設備からの給電により駆動で きる設計とする。また，原子炉格納容器フィルタベント系 は，非常用交流電源設備に対して多様性を有する所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。 原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とすることで，代替循環冷却系に対して駆動源の多様性を有する設計とす る。	替注水系」の設備を原子炉格納施設のうち「3．5．1 原子炉格納容器フィルタベント系」の設備として兼用）により行ら設計とする。 原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備 として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 【放射線管理施設】（基本設計方針） 2.3 生体遮蔽装置等 ＜中略＞ 原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉建屋原子炉棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線から作業員を防護する設計とする。 ＜中略＞ 【原子炉格納施設】（基本設計方針） 3．5．1 原子炉格納容器フィルタベント系 （2）多重性又は多様性及び独立性，位置的分散 代替循環冷却系及び原子炉格納容器フィルタベント系 は，共通要因によって同時に機能を損なわないよう，原理 の異なる泠却手段及び原子炉格納容器内の減圧手段を用 いることで多様性を有する設計とする。 代替循環冷却系は，非常用交流電源設備に対して多様性 を有する常設代替交流電源設備からの給電により駆動で きる設計とする。また，原子炉格納容器フィルタベント系 は，非常用交流電源設備に対して多様性を有する常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。 原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とすることで，代替循環冷却系に対して駆動源の多様性を有する設計とす			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
属棟内に，残留熱除去系熱交換器及びサプレッションチェ ンバは原子炬建屋原子炬棟内に設置し，原子炬格納容器フ ィルタベント系のフィルタ装置及びフイルタ装置出口側圧力開放板は原子炬建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。 これらの多様性及び流路の独立性並びに位置的分散に よって，代替循環冷却系と原子炬格納容器フィルタベント系は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。	属棟内に，残留熱除去系熱交換器及びサプレッションチェ ンバは原子炬棟内に設置し，原子炬格納容器フィルタベン ト系のフィルタ装置及びフィルタ装置出口側圧力開放板 は原子炉棟内の代替循環冷却系と異なる区画に設置する ことで共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。 これらの多様性及び流路の独立性並びに位置的分散に よって，代替循環冷却系と原子炉格納容器フィルタベント系は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。	属棟内に，残留熱除去系熱交換器及びサプレッションチェ ンバは原子炉建屋原子炉棟内に設置し，原子炉格納容器フ ィルタベント系のフィルタ装置及びフィルタ装置出口側 ラプチヤディスクは原子炉建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。 これらの多様性及び流路の独立性並びに位置的分散に よって，代替循環冷却系と原子炬格納容器フィルタベント系は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。 3．2．4 代替循環冷却系 （2）多重性又は多様性及び独立性，位置的分散 < 中略 > 代替循環冷却系の代替循環冷却ポンプは原子炬建屋付属棟内に，残留熱除去系熱交換器及びサプレッションチェ ンバは原子炉建屋原子炉棟内に設置し，原子炉格納容器フ ィルタベント系のフィルタ装置及びフィルタ装置出口側 ラプチャディスクは原子炉建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。 これらの多様性及び流路の独立性並びに位置的分散に よって，代替循環冷却系と原子炉格納容器フィルタベント系は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
［常設重大事故等対処設備］ 代替循環冷却系 代替循環冷却ポンプ リ（3）（ii）b．－（10）（「ホ（3）（ii）b．（c））原子炬冷却材圧力 バウンダリ低圧時に発電用原子炬を冷却するための設備」及び「り（3）（ii）c．原子炉格納容器下部の溶融炬心を冷却するための設備」と兼用） リ（3）（ii）b．－（11）台数 1 容量 約 $150 \mathrm{~m}^{3} / \mathrm{h}$ 2（3）（ii）b．－（12 全揚程 約 80m （本文十号） 代替循環冷却系の循環流量 全体で $150 \mathrm{~m}^{3} / \mathrm{h}$ －記載箇所 $\begin{aligned} & \text { 八(2) (ii)c. (a) (a-1) (a-1-8) } \\ & \text { 八 (2) (ii)c. (b) (b-12) } \end{aligned}$ 整合性 －設計及び工事の計画の（3）（ii）b．－（10）は，設置変更許整合している。 －設計及び工事の計画の（3）（ii）b．－（11）は，設置変更許整合している。 －設計及び工事の計画の（3）（ii）b．－（12）は，設置変更許整合している。	第 9．3－1 表 原子炉格納容器の過圧破損を防止するため の設備の主要機器仕様 （1）代替循環冷却系 a ．代替循環冷却ポンプ 兼用する設備は以下のとおり。 －原子炬冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備 －原子炬格納容器下部の溶融炬心を泠却するための設備 台 数 容 量 全揚程 1 約 $150 \mathrm{~m}^{3} / \mathrm{h}$ 約 80 m －設置変更許可申請書（本文十号）では，代替循環冷却ポンプの容量に対して，代替循環冷却系の循環流量 を同量に設定しており整合している。 そのため，設計及び工事の計画で使用している代替循環冷却ポンプの容量は，設置変更許可申請書（本文十号）で使用している解析条件に包絡される。 可申請書（本文（五号））の四（3）（ii）b．－（10）と同義であり 可申請書（本文（五号））の四（3）（ii）b．－（11）と同義であり 可申請書（本文（五号））の四（3）（ii）b．－（12）と同義であり	【原子炉格納施設】（要目表） 7.3 圧力低減設備その他の安全設備 （6）原子炉格納容器安全設備 d．代替循環冷却系		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
原子炉格納容器フィルタベント系 フィルタ装置 り（3）（ii）b．－（16）（「ホ（4）（v））最終ヒートシンクへ熱を輸送するための設備」及び「リ（3）（ii）d．水素爆発に よる原子炉格納容器の破損を防止するための設備」と兼用） 個数 3 系統設計流量 約 $10.0 \mathrm{~kg} / \mathrm{s}$ リ（3）（ii ）b．－（17 放射性物質除去効率 99．9\％以上（粒子状放射性物質 に対して） 99．8\％以上（無機よう素に対し て） 98\％以上（有機よう素に対し て） （本文十号） 原子炉格納容器フィルタベント系等は，格納容器圧力 0.427 MPa ［gage］における排出流量 $10.0 \mathrm{~kg} / \mathrm{s}$ に対して，原子炉格納容器第一隔離弁（S／Cベント用出口隔離弁）を全開にて格納容器除熱を実施する。 －記載箇所 $\begin{aligned} & \text { 八 (2) (ii) b. (a) (a-9) } \\ & \text { ハ(2) (ii) b. (d) (d-2) (d-2-10) } \\ & \text { } \text { (2) (ii) b. (f) (f-8) } \end{aligned}$ （本文十号） 原子炉格納容器フィルタベント系 無機よう素の除染係数 500 有機よう素の除染係数 50 －記載箇所 八（2）（ii）b．（f）（f－10－9）	（2）原子炉格納容器フィルタベント系 a．フィルタ装置 兼用する設備は以下のとおり。 - 最終ヒートシンクへ熱を輸送するための設備 - 水素爆発による原子炬格納容器の破損を防止するための設備 個 数 系統設計流量 放射性物質除圭効率 3 約 $10.0 \mathrm{~kg} / \mathrm{s}$ 99．9\％以上（粒子状放射性物質 に対して） 99． 8% 以上（無機よう素に対し て） 98 \％以上（有機よう素に対し て） 材 料 スクラバ溶液 （pH13以上） 金属繊維フィルタ 放射性よう素フィルタ 水酸化ナトリウム水溶液 ステンレス鋼 銀ゼオライト －設置変更許可申請書（本文十号）で使用している原子炉格納容器フィルタベント系の排出流量は，設計及 び工事の計画で使用している原子炉格納容器フィルタ ベント系（フィルタ装置）の排出流量と整合しており，設置変更許可申請書（本文十号）で使用している解析条件に包絡されている。 －設置変更許可申請書（本文十号）で使用している原子炉格納容器フィルタベント系の除染係数は，設計及 び工事の計画で使用している原子炉格納容器フィルタ ベント系（フィルタ装置）の効率 99.8% 以上及び 98%以上と整合しており，設置変更許可申請書（本文十号） で使用している解析条件に包絡されている。	【原子炬格納施設】（要目表） 7.3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系 ＊ 4 ：公标値を示す。 I（3）（ ii ）b．	設計及び工事の計画の （3）（ii）b．－（16は，設置変更許可申請書（本文 （五号））の（3）（ii）b． －（16）と同義であり整合 している。 設計及び工事の計画の リ（3）（ii）b．－（17）は，設置変更許可申請書（本文 （五号））の（3）（ii）b． － 17 と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及びエ事の計画 該当事項	整合性	備 考
［可搬型重大事故等対処設備］ 原子炬補機代替冷却水系 熱交換器ユニット V（3）（ii）b．－（20）（「ホ（4）（v）－最終ヒートシンクへ熱を輸送するための設備」他と兼用）．．．	第9．3－1表 原子炉格納容器の過圧破損を防止するため の設備の主要機器仕様 （1）代替循環冷却系 c ．熱交換器ユニット 第5．10－1表 最終ヒートシンクへ熱を輸送するための設備の主要機器仕様に記載する。	【原子炬冷却系統施設（蒸気タービンを除く。）】 （要目表） （3）（ii）b．－20 ＊2：重大事故等時におきける使用時の値。	「熱交換器ユニット」 は，設置変更許可申請書 （本文（五号））におけ る（3）（ii）b．－（20）を設計及び工事の計画にお ける「原子炉冷却采統施設」のらち「原子炉補機椧却設備に整理しておう り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
c．原子炉格納容器下部の溶融炉心を冷却するための設備 リ（3）（ii）c．－（1）炬心の著しい損傷が発生した場合におい て原子炬格納容器の破損を防止するため，溶融し，原子炻格納容器の下部に落下した炬心を冷却するために必要な重大事故等対処設備を設置及び保管する。－ 原子炬格納容器下部に落下した溶融烪心を冷却するこ とで，溶融烪心・コンクリート相互作用（MC C I ）を抑制し，溶融炬心が原子炬格納容器バウンダリに接触するこ とを防止する。．． 原子炉格納容器下部の溶融炉心を冷却するための設備 のうち，炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止できるよう，原子炉格納容器下部に落下した溶融炉心の泠却を行らための設備として，原子炉格納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ），原子炬格納容器下部注水系（可搬型），原子炉格納容器代替スプ レイ冷却系（常設），原子炉格納容器代替スプレイ冷却系 （可搬型）及び代替循環冷却系を設ける。	9．4 原子炉格納容器下部の溶融灲心を泠却するための設備 9．4． 1 概要 炬心の著しい損傷が発生した場合において原子炬格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炬心を冷却するために必要な重大事故等対処設備を設置及び保管する。 原子炉格納容器下部に落下した溶融炉心を冷却するこ とで，溶融烬心・コンクリート相互作用（MC C I ）を抑制し，溶融炬心が原子炬格納容器バウンダりに接触するこ とを防止する。… 原子炉格納容器下部の溶融炉心を冷却するための設備 の系統概要図を第9．4－1図から第9．4－12図に示す。 9．4．2 設計方針 原子炉格納容器下部の溶融炉心を冷却するための設備 のうち，炬心の著しい損傷が発生した場合において原子炬格納容器の破損を防止できるよう，原子炬格納容器下部に落下した溶融炬心の泠却を行らための設備として，原子炬格納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ），原子炬格納容器下部注水系（可搬型），原子炉格納容器代替スプ レイ冷却系（常設），原子炉格納容器代替スプレイ冷却系 （可搬型）及び代替循環冷却系を設ける。	【原子炉格納施設】（基本設計方針） 3．2．2 原子炉格納容器下部注水系 リ（3）（ii）c．－①炬心の著しい損傷が発生した場合におい て原子炉格納容器の破損を防止するため，溶融し，原子炬格納容器の下部に落下した炉心を冷却するために必要な重大事故等対処設備として，原子炬格納容器下部注水系 ．．．（虽設）（復水移送ポンプ），原子炉格納容器下部注水系 （…常設）（代替循環冷却ポンプ）及び原子炉格納容器下部注水采（可搬型）を設ける設計とする。 3．2．2 原子炉格納容器下部注水系 炬心の著しい損傷が発生した場合において原子炬格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心を泠却するために必要な重大事故等対処設備として，原子炬格納容器下部注水系（常設）（復水移送ポンプ），原子炬格納容器下部注水系（常設）（代替循環冷却ポンプ）及び原子炉格納容器下部注水系（可搬型） を設ける設計とする。 3．2．3 原子炉格納容器代替スプレイ椧却系 ＜中略＞ 炬心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した灲心を冷却するために必要な重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系（常設）及び原子炉格納容器代替スプレイ泠却系（可搬型）を設け る設計とする。	設計及び工事の計画の リ（3）（ii）c．－①は，設置変更許可申請書（本文 （五号））の（3）（ii）c． －（1）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（a）原子炉格納容器下部に落下した溶融炉心の泠却に用 いる設備 （ $a-1$ ）原子炉格納容器下部注水系（常設）（復水移送ポン プ）による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，原子炉格納容器下部注水系（常設）（復水移送ポンプ）は，復水移送ポンプによ り，復水貯蔵タンクの水を補給水系等を経由して原子炉格納容器下部へ注水し，溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保するとともに，落下した溶融炉心を冷却できる設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ） は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要 な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。	（1）原子炉格納容器下部に落下した溶融炉心の泠却に用 いる設備 a ．原子炉格納容器下部注水系（常設）（復水移送ポンプ） による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の冷却を行う ための重大事故等対処設備として，原子炉格納容器下部注水系（常設）（復水移送ポンプ）を使用する。 原子炉格納容器下部注水系（常設）（復水移送ポンプ） は，復水移送ポンプ，配管•并類，計測制御装置等で構成 し，復水移送ポンプにより，復水貯蔵タンクの水を補給水系等を経由して原子炬格納容器下部へ注水し，溶融炬心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保するとともに，落下した溶融炉心を泠却できる設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ） は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要 な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。	3．2．4 代替循環冷却系 中略〉 炬心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心を泠却するために必要な重大事故等対処設備として，代替循環冷却系を設ける設計とする。 3．2．2 原子炉格納容器下部注水系 （1）原子炉格納容器下部注水系（常設）（復水移送ポン プ）による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，原子炬格納容器下部注水系（常設）（復水移送ポンプ）は，復水移送ポンプによ り，復水貯蔵タンクの水を補給水系配管等を経由して原子炉格納容器下部へ注水し，溶融炬心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保するとと もに，落下した溶融炉心を泠却できる設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ） は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，系統構成に必要 な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ） の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 原子炉格納容器安全設備のうち，復水貯蔵タンクを水源 として原子炉格納容器冷却のために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－3）原子炉格納容器下部注水系（可搬型）による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の冷却を行う ための重大事故等対処設備として，原子炬格納容器下部注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を监（3）（ii）c．－（2）補給水系等を経由して原子炬格納容器下部へ注水し，落下した溶融炉心を椧却でき る設計とする。 原子炉格納容器下部注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水 の供給設備である大容量送水ポンプ（タイプI）により海 を利用できる設計とする。 原子炉格納容器下部注水系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジンにより駆動できる設計とす る。	c．原子炉格納容器下部注水系（可搬型）による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炬心の椧却を行う ための重大事故等対处設備として，原子炉格納容器下部注水系（可搬型）を使用する。 原子炉格納容器下部注水系（可搬型）は，大容量送水ポ ンプ（タイプI），配管・ホース・弁類，計測制御装置等 で構成し，大容量送水ポンプ（タイプI）により，代替淡水源の水を補給水系等を経由して原子炉格納容器下部へ注水し，落下した溶融炬心を椧却できる設計とする。 原子炉格納容器下部注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水 の供給設備である大容量送水ポンプ（タイプI）により海 を利用できる設計とする。 原子炉格納容器下部注水系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また，大容量送水ポンプ（タイプI）は，空椧式のディーゼルエンジンにより駆動できる設計とす る。	3．2．2 原子灲格納容器下部注水系 （3）原子炉格納容器下部注水系（可搬型）による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，原子炉格納容器下部注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を（3）（ii）c．－（2）あらかじめ僌設した補給水系配管を経由して原子炉格納容器下部へ注水し，落下し た溶融炬心を泠却できる設計とする。 原子炉格納容器下部注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水 の供給設備である大容量送水ポンプ（タイプ I）により海 を利用できる設計とする。 原子炉格納容器下部注水系（可搬型）は，非常用交流電源設備に加えて代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 また，大容量送水ポンプ（タイプI）は，空泠式のディ ーゼルエンジンにより駆動できる設計とする。 原子炉格納容器下部注水系（可搬型）に使用するホース の敷設等は，ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のらち「3．2．2 原子炬格納容器下部注水系」の設備として兼用）により行う設計とする。 原子炉格納容器下部注水系（可搬型）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 原子炉格納容器安全設備のらち，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉格納容器冷却のために運転するポンプは，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される	設計及び工事の計画の （1）（ii）c．－（2）は，設置変更許可申請書（本文 （五号））の（3）（ii）c． （2）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
本采統の詳細については，「リ（3）（ii）a－．原子炬格納容器内の冷却等のための設備」に記載する。．．． （a－5）原子炉格納容器代替スプレイ冷却系（可搬型）に よる原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の椧却を行う ための重大事故等対処設備として，原子炉格納容器代替ス プレイ冷却系（可搬型）は，大容量送水ポンプ（タイプI） により，代替淡水源の水を残留熱除去系等を経由して原子炉格納容器内のスプレイ管からドライウェル内にスプレ イし，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炬格納容器下部へ流入することで，落下した溶融炬心を泠却できる設計とす る。	本采統の詳細については，「9．2 原子炉格納容器内の冷却等のための設備」に記載する。 e 。原子炉格納容器代替スプレイ冷却系（可搬型）による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，原子炉格納容器代替ス プレイ泠却系（可搬型）を使用する。 原子炉格納容器代替スプレイ冷却系（可搬型）は，大容量送水ポンプ（タイプ I），配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプ I）により，代替淡水源の水を残留熱除去系等を経由して原子炉格納容器内のスプレイ管からドライウェル内にスプレイレ，ス プレイした水がドライウェル床面に溜まり，原子炬格納容器下部開口部を経由して原子炉格納容器下部へ流入する ことで，落下した溶融炉心を泠却できる設計とする。	3．2．3 原子炉格納容器代替スプレイ冷却系 （2）原子炉格納容器代替スプレイ冷却系（可搬型）によ る代替格納容器スプレイ <中略 > 原子灲格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，原子炉格納容器代替ス プレイ冷却系（可搬型）は，大容量送水ポンプ（タイプI） により，代替淡水源の水を残留熱除去系配管等を経由して原子炉格納容器内のドライウェルスプレイ管からドライ ウェル内にスプレイレ，スプレイレた水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで，落下した溶融炉心を泠却 できる設計とする。 ＜中略＞ 原子炉格納容器代替スプレイ冷却系（可搬型）に使用す るホースの敷設等は，ホース延長回収車（台数 4 （予備 1）） （核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料 プール代替注水系」の設備を原子炉格納施設のらち「3．2．3原子炉格納容器代替スプレイ冷却系」の設備として兼用） により行ら設計とする。 原子炉格納容器代替スプレイ泠却系（可搬型）の流路と して，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。 原子炉格納容器代替スプレイ冷却系（可搬型）は，炉心 の著しい損傷及び原子炉格納容器の破損を防止するため の設備として兼用する設計とする。 原子炉格納容器安全設備のうち，淡水貯水槽（No．1），	設置変更許可申請書（本文（五号））「リ（3）（ii ） a．原子炉格納容器内の泠却等のための設備」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
本系統の詳細については，「リ（3）（ii）a．．．原子炬格納容器内の冷却等のための設備」に記載する。．．． （a－6）代替循環冷却系による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，代替循環冷却系は，代替循環冷却ポンプによりサプレッションチェンバのプー ル水を残留熱除去系熱交換器にて冷却し，残留熱除去系を経由して原子炉格納容器内ヘスプレイレ，スプレイした水 がドライウェル床面に溜まり，原子炉格納容器下部開口部 を経由して原子炉格納容器下部へ流入することで，溶融炬心が落下するまでに原子炬格納容器下部にあらかじめ土分な水位を確保するとともに，落下した溶融炬心を泠却で きる設計とする。	本系統の詳細については，「9．2 原子炬格納容器内の冷却等のための設備」に記載する。．．． f．代替循環冷却系による原子炉格納容器下部への注水原子炉格納容器下部に落下した溶融炉心の泠却を行う ための重大事故等対処設備として，代替循環冷却系を使用 する。 代替循環冷却系は，代替循環冷却ポンプ，残留熱除去系熱交換器，配管•弁類，計測制御装置等で構成し，代替循環冷却ポンプによりサプレッションチェンバのプール水 を残留熱除去系熱交換器にて冷却し，残留熱除去系を経由 して原子炉格納容器内ヘスプレイし，スプレイした水がド ライウェル床面に溜まり，原子炬格納容器下部開口部を経由して原子炉格納容器下部へ流入することで，溶融炬心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保するとともに，落下した溶融炉心を泠却できる設計とする。	淡水貯水槽（No．2）又は海を水源として原子灲格納容器泠却のために運転するポンプは，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さい有効吸込水頭においても，正常に機能する能力 を有する設計とする。 3．2．4 代替循環冷却系 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のらち，原子炉格納バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下させるための設備として，代替循環冷却系を設ける設計とする。 < 中略 > （1）系統構成 代替循環冷却系は，代替循環冷却ポンプによりサプレッ ションチェンバのプール水を残留熱除去系熱交換器にて冷却し，残留熱除去系等を経由して原子炉圧力容器へ注水及び原子炉格納容器内ヘスプレイすることで，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とする。 < 中略 > 代替循環冷却系は，代替循環冷却ポンプによりサプレッ ションチェンバのプール水を残留熱除去系熱交換器にて泠却し，残留熱除去系配管を経由して，原子炉格納容器内 ヘスプレイし，スプレイした水がドライウェル床面に溜ま り，原子炉格納容器下部開口部を経由して原子炉格納容器	設置変更許可申請書（本文（五号））「リ（3）（ii） a．原子炉格納容器内の冷却等のための設備」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
原子炉格納容器下部注水系（常設）（代替循環冷却ポン プ）及び代替循環冷却系は，原子炉格納容器下部注水系（可搬型）及び原子炬格納容器代替スプレイ冷却系（可搬型） と共通要因によって同時に機能を損なわないよう，原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型）の大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンによ る駆動とすることで，多様性を有する設計とする。	原子炉格納容器下部注水系（常設）（代替循環冷却ポン プ）及び代替循環冷却系は，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型） と共通要因によって同時に機能を損なわないよう，原子炬格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ椧却系（可搬型）の大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンによ る駆動とすることで，多様性を有する設計とする。	（常設）（復水移送ポンプ）及び原子炉格納容器代替スプ レイ椧却系（常設）の復水移送ポンプを代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炬格納容器下部注水系（常設） （代替循環冷却ポンプ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多様性を有する設計とす る。 原子炉格納容器代替スプレイ冷却系（常設）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備から の給電による遠隔操作に対して多様性を有する設計とす る。また，原子炉格納容器代替スプレイ冷却系（常設）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 3．2．2 原子炉格納容器下部注水系 （4）多重性又は多様性及び独立性，位置的分散 ＜中略＞ 原子炉格納容器下部注水系（常設）（代替循環冷却ポン プ）は，原子炉格納容器下部注水系（可搬型）及び原子炬格納容器代替スプレイ椧却系（可搬型）と共通要因によっ て同時に機能を損なわないよう，原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の代替循環冷却ポンプ を代替所内電気設備を経由した常設代替交流電源設備か らの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ泠却系（可搬型）の大容量送水ポンプ（タイプ I ）を空冷式のディー ゼルエンジンによる駆動とすることで，多様性を有する設計とする。 3．2．4 代替循環冷却系			

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炬格納容器代替スプレイ冷却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系は，共通要因によって同時に機能を損 なわないよう，非常用所内電気設備を経由した非常用交流	原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ冷却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系は，共通要因によって同時に機能を損 なわないよう，非常用所内電気設備を経由した非常用交流	（2）多重性又は多様性及び独立性，位置的分散 ＜中略＞ 代替循環冷却系は，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型）と共通要因によって同時に機能を損なわないよう，代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型）の大容量送水ポンプ（タイ プ I ）を空泠式のディーゼルエンジンによる駆動とするこ とで，多様性を有する設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ泠却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系は，共通要因によって同時に機能を損 なわないよう，非常用所内電気設備を経由した非常用交流電源設備からの給電に対して，原子炉格納容器下部注水系 （常設）（復水移送ポンプ）及び原子炉格納容器代替スプ レイ椧却系（常設）の復水移送ポンプを代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炉格納容器下部注水系（常設） （代替循環冷却ポンプ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多樣性を有する設計とす る。 ＜中略＞ 3．2．2 原子炉格納容器下部注水系 （4）多重性又は多様性及び独立性，位置的分散 ＜中略＞ 原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ冷却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系は，共通要因によって同時に機能を損 なわないよう，非常用所内電気設備を経由した非常用交流			

設置変更許可申請書（本文（五号））
設置変更許可申請書（添付書類八）該当事項
設計及び工事の計画 該当事項

電源設備からの給電に対して，原子炉格納容器下部注水采 （常設）（復水移送ポンプ）及び原子炉格納容器代替スプ レイ冷却系（常設）の復水移送ポンプを代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炉格納容器下部注水系（常設） （代替循環冷却ポンプ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多様性を有する設計とす 3．
原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炬格納容器代替スプレイ冷却系（常設）の電動弁 （交流）は，ハンドルを設けて手動操作を可能とすること で，常設代替交流電源設備又は可搬型代替交流電源設備か らの給電による遠隔操作に対して多様性を有する設計と し，原子炉格納容器下部注水系（常設）（代替循環冷却ポ ンプ）及び代替循環冷却系の電動弁（交流）は，ハンドル を設けて手動操作を可能とすることで，常設代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ），原子炉格納容器代替スプレイ泠却系（常設）及び代替循環冷却系の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。また，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及 び原子炉格納容器代替スプレイ冷却系（常設）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作 に対して多様性を有する設計とする。

電源設備からの給電に対して，原子炉格納容器下部注水系 （常設）（復水移送ポンプ）及び原子炉格納容器代替スプ レイ椧却系（常設）の復水移送ポンプを代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炬格納容器下部注水系（常設） （代替循澴冷却ポンプ）及び代替循環洽却系の代替循澴冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多様性を有する設計とす 3．
原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却采（常設）の電動弁 （交流）は，ハンドルを設けて手動操作を可能とすること で，常設代替交流電源設備又は可般型代替交流電源設備か らの給電による遠隔操作に対して多㥞性を有する設計と し，原子炉格納容器下部注水系（常設）（代替循睘冷却ポ ンプ）及び代替循嬹冷却采の電動弁（交流）は，ハンドル を設けて手動操作を可能とすることで，常設代替交流電源設備かっらの給電による遠隔操作に対して多様性を有する設計とする。また，原子炬格納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ），原子炉格納容器代替スプレイ椧却系（常設）及び代替循環冷却系の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系䖻に対して独立性を有する設計とする。また，原子炬格納容器下部注水系（常設）（復水移送ポンプ）及 び原子炉格納容器代替スプレイ椧却系（常設）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作 に対して多様性を有する設計とする。

電源設備からの給電に対して，原子炉格納容器下部注水系 （常設）（復水移送ポンプ）及び原子炉格納容器代替スブ レイ椧却系（常設）の復水移送ポンプを代替所内電気設備 を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炬格納容器下部注水系（常設） （代替循澴冷却ポンプ）及び代替循環洽却系の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電とすることで，多様性を有する設計とす る。

原子炬格納容器下部注水系（常設）（復水移送ポンプ） の電動弁（交流）は，ハンドルを設けて手動操作を可能と することで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多樣性を有す る設計とし，原子炉格納容器下部注水系（常設）（代替循嘸冷却ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，常設代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，原子炬格納容器下部注水系（常設）（復水移送ポン プ）及び原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の電動开（交流）は，代替所内電気設備を経由 して給電する系統において，独立した電路で系統構成する ことにより，非常用所内電気設備を経由して給電する系統 に対して独立性を有する設計とする。
原子炉格納容器下部注水系（常設）（復水移送ポンプ） の電動弁（直流）は，ハンドルを設けて手動操作を可能と することで，所内常設蓄電式直流電源設備からの給電によ子遠隔操作に対して多樣性を有する設計とする。また，原子炬格納容器下部注水系（常設）（復水移送ポンプ）の電動亣（直流）は，125V蓄電池から125V直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり，125V代替蓄電池から 125 V直流主母線盤までの系統において，独立した電路で采統構成することにより，非常用ディーゼル発電機の交流を

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
源とすることで，復水貯蔵タンクを水源とする原子炉格納	源とすることで，復水貯蔵タンクを水源とする原子炉格納	炬格納容器下部注水系（常設）（復水移送ポンプ）及び原			
容器下部注水系（常設）（復水移送ポンプ）及び原子炬格	容器下部注水系（常設）（復水移送ポンプ）及び原子炬格	子炬格納容器代替スプレイ掵却系（常設）並びにサプレッ			
納容器代替スプレイ阾却系（常設）並びにサプレッション	納容器代替スプレイ阾却系（常設）並びにサプレッション	ションチェンバを水源とする原子炉格納容器下部注水系			
チェンバを水源とする原子炬格納容器下部注水系（常設）	チェンバを水源とする原子炬格納容器下部注水系（常設）	（常設）（代替循擐泠却ポンプ）及び代替循環洽却系に対			
（代替循睘冷却ポンプ）及び代替循澴泠却系に対して，異	（代替循睘冷却ポンプ）及び代替循嚎泠却系に対して，異	して，異なる水源を有する設計とする。			
なる水源を有する設計とする。	なる水源を有する設計とする。	＜中略＞			
		3．2．3 原子炉格納容器代替スプレイ椧却系 （3）多重性又は多様性及び独立性，位置的分散			
		＜中略＞			
		また，原子炬格納容器代替スプレイ洽却系（可搬型）は			
		代替淡水源を水源とすることで，復水貯蔵タンクを水源と			
		する原子炬格納容器下部注水系（常設）（復水移送ポンプ）			
		及び原子炬格納容器代替スプレイ彾却系（常設）並びに年			
		プレッションチェンバを水源とする原子炬格納容器下部			
		注水系（常設）（代替循澴冷却ポンプ）及び代替循環洽却			
		系に対して，異なる水源を有する設計とする。			
		＜中略＞			
		3．2．4 代替循澴泠却系			
		（2）多重性又は多様性及び独立性，位置的分散			
		＜中略＞			
		また，原子炬格納容器下部注水系（可搬型）及び原子炬			
		格納容器代替スプレイ椧却系（可搬型）は代替淡水源を水			
		源とすることで，復水貯蔵タンクを水源とする原子炬格納			
		容器下部注水系（常設）（復水移送ポンプ）及び原子炉格			
		納容器代替スプレイ椧却系（常設）並びにサプレッション			
		チェンバを水源とする原子炬格納容器下部注水系（常設）			
		（代替循環洽却ポンプ）及び代替循環洽却系に対して，異			
		なる水源を有する設計とする。			
		＜中略＞			
		3．2．2 原子炉格納容器下部注水系			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
代替循環冷却系に使用する原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，共通要因によって同時に機能を損なわないよう位置的分散 を図る設計とする。 熱交換器ユニット及び大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止 するため，位置的分散を図った複数箇所に設置する設計と する。 これらの多様性及び系統の独立性並びに位置的分散に よって，原子炬格納容器下部注水系（常設）（復水移送ポ	代替循環冷却系に使用する原子炉補機代替冷却水系の熱交換器ユニット及び大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，共通要因によって同時に機能を損なわないよう位置的分散 を図る設計とする。 熱交換器ユニット及び大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止 するため，位置的分散を図った複数箇所に設置する設計と する。 これらの多様性及び系統の独立性並びに位置的分散に よって，原子炉格納容器下部注水系（常設）（復水移送ポ	（3）多重性又は多様性及び独立性，位置的分散 ＜中略＞ 原子炉格納容器代替スプレイ泠却系（可搬型）の電動弁 は，ハンドルを設けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。ま た，原子炉格納容器代替スプレイ椧却系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統におい て，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有す る設計とする。 これらの多様性及び系統の独立性並びに位置的分散に よって，原子炉格納容器下部注水系（常設）（復水移送ポ ンプ）及び原子炉格納容器代替スプレイ泠却系（常設）並 びに原子炉格納容器下部注水系（常設）（代替循環冷却术 ンプ）及び代替循環冷却系並びに原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ泠却系（可搬型）は，それぞれ互いに重大事故等対処設備としての独立性を有する設計とする。 ＜中略＞ 3．2．4 代替循環冷却系 （2）多重性又は多様性及び独立性，位置的分散 <中略 > 代替循環冷却系に使用する原子炬補機代替冷却水系熱交換器ユニット及び大容量送水ポンプ（タイプI）は，原子炬建屋から離れた屋外に分散して保管することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 これらの多様性及び系統の独立性並びに位置的分散に よって，原子炉格納容器下部注水系（常設）（復水移送ポ			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
［常設重大事故等対処設備］ 原子炬格納容器下部注水系（常設） 復水移送ポンプ （3）（ii）c．－（3）（「木（3）（ii）b．（c）（c）原子炬冾却材圧力 バウンダリ低圧時に発電用原子炬を椧却するための設備」他と兼用）	第9．4－1表 原子炉格納容器下部の溶融灯心を泠却する ための設備の主要機器仕様 （1）原子炉格納容器下部注水系（常設） a．復水移送ポンプ 第5．6－1表 原子炬冷却材圧力バウンダリ低圧時に発霵用原子炬を冷却するための設備の主要機器仕樣に記載 する。	【原子炉泠却系統施設（蒸気タービンを除く。）】 （要目表） 原子炉冷却材補給設備 3．7．2 補給水系 注記＊ 1 ＊5 ：重大事故等時における，非常用炉心椧却設備その他原子炉注水設備（低圧代替納容器安全設備（低圧代替注水系）で使用する場合の値（ボンプ 1 台運転時 $)$ 。 $* 6$ ：重大事故等庤における，非常用炉心冾却設備その他原子炉注水設備（䢑転脏代。替 $* 7$ ：注水系）で使用する場合の値（ボンプ2台運軽時） 場合の値（ボンプ台運転時） $* 8$ ：重大事故等時における，原子炉格納施設のうち圧力低堿設備その他の安全設備 の原子炉格納容器安全設備（原子炉格納容器下部注水系）で使用する場合の值 （事前水悵り：ホンプ1台運転時）。 ＊9：重大事故等時における，原子炉格納施設のらち压力低琙設備その他の安全設備 ＊ 10 ：記載の適正化を行う。既工事計画書には「定格場程」と記載。 設備その他の安全設備の原子炉格納容器安全設備で使用する場合の記載事項。	設計及び工事の計画の （3）（ii）c．－（3）は，設置変更許可申請書（本文 （五号））の（3）（ii）c． （3）と同義であり整合 している。	

設置変更許可甲請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炉格納容器代替スプレイ冷却系（常設） 復水移送ポンプ （3）（ii）c．－（5）（「ホ（3）（iii）b．（c）（c）原子炬冷却材圧力 バウンダリ低圧時に発電用原子炬を冷却するための設備」他と兼用）	（3）原子炉格納容器代替スプレイ椧却系（常設） a ．復水移送ポンプ 第5．6－1表 原子炬冷却材圧力バウンダリ低圧時に発霊用原子炬を冷却するための設備の主要機器仕様に記載 する。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （要目表） 原子炉冷却材補給設備 ＊ 4 ：公林䛧を耍をま。 	設計及び工事の計画の （3）（ii）c．－（5）は，設置変更許可申請書（本文 （五号））の（3）（ii）c． （5）と同義であり整合 している。	

設置変更許可甲請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
低圧代替注水系（常設） 復水移送ポンプ （3）（ii）c．－88（「ホ（3）（ii）b．（c）（c）原子炬冷却林压力 バウンダり低圧時に発簂用原子炬を冾却するための設備」他と兼用）	（6）低圧代替注水系（常設） a．復水移送ポンプ 第5．6－1表 原子炬冷却村圧力バウンダり低圧時に発電用原子炬を冷却するための設備の主要機器仕様に記載 する。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （要目表） 原子炉冷却材補給設備 （1）補給水系 ＊ の原子炉格納容器安全設備（原子枦柂設のうち圧力低減設備その他の安全設備 － 月3日付け4資庁第1992号にて認可された工事計画の添付書類「第2－2－3図 復水 	設計及び工事の計画の （3）（ii）c．－88は，設置変更許可申請書（本文 （五号））の（3）（ii）c． －88と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
ほう酸水注入系貯蔵タンク （1）（3）（ii）c．－（12）（「～（4）韭黨用制御設備I他と兼用）	b．ほう酸水注入系貯蔵タンク 第6．1．2－3表 ほら酸水注入系主要仕樣に記載する。	【計測制御系統施設】（要目表）	設計及び工事の計画の （3）（ii）c．－（12）は，設置変更許可申請書（本文 （五号））の（3）（ii）c． （12）と同義であり整合 している。	

（1）（3）（ii ）c．－（13

 て使用する场合の値をで示

使用する屓合の取付衡所を示ま。

－第41保管エリア 星外 0. P．䊾 62 m

取䇶画：

 －屋外 0. P．解 3.5 酎取水口付近 ${ }^{2}$

847
ホンブと同し

I（3）（ii ）c．－（11）

 －基合の水侹を市を，

＊16：当

使用寸る責合の取付鲴所を示す。

\qquad整合 性合 性備考

2 ：

＊16 ：

使用寸る責合の取付鲴所を示す。

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炉補機代替冷却水系 熱交換器ユニット リ（3）（ii）c．－（16）（「ホ（4）（v）最終ヒートシンクへ熱を 輸送するための設備」他と兼用）	（5）代替循環冷却系 c．熱交換器ユニツト 第5．10－1表 最終ヒートシンクへ熱を輸送するための設備の主要機器仕樣に記載する。	【原子炬冾却系統㬼設（蒸気タービンを除く。）】 （要目表） （3）（ii）c．－（16） ＊2：重大事故等時における使用時の值。	「熱交換器ユニット」 は，設置変更許可申請書 （本文（五号））におけ る（3）（ii）c．－（16）を設計及び工事の計画の「原子炉冷却系統施設」のう ち「原子炉補機冷却設備」に整理しており整合 している。	

\qquad

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
d．水素爆発による原子灲格納容器の破損を防止するため の設備 炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止する四 （3）（ii）d．－（1）必要がある場合には，水素爆発による原子炬格納容器の破損を防止するために必要な重大事故等対処設備を設置及び保管する。 水素爆発による原子炉格納容器の破損を防止するため の設備のうちっ，炡心の著しい損傷が発生した場合において原子炬格納容器内における水素爆発による破損を防止で きるようっ，原子炉格納容器内を不活性化するための設備と して，可搬型窒素ガス供給装置を設ける。 水素爆発による原子炉格納容器の破損を防止するため の設備のらち，炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止で きるよう，原子炉格納容器内に滞留する水素及び酸素を大気へ排出するための設備として，原子炬格納容器フィルタ ベント系を設ける。 水素爆発による原子炉格納容器の破損を防止するため の設備のらち，炬心の著しい損傷が発生した場合におい て，原子炬格納容器内の水素濃度を監視する設備として， リ（3）（ii）d．－（2）水素濃度監視設備を設ける。	9.5 水素爆発による原子炉格納容器の破損を防止するた めの設備 9．5．1 概要 炬心の著しい損傷が発生した場合において原子炉格納容器内における水素による爆発（以下「水素爆発」という。） による破損を防止する必要がある場合には，水素爆発によ る原子炬格納容器の破損を防止するために必要な重大事故等対処設備を設置及び保管する。 水素爆発による原子炉格納容器の破損を防止するため の設備の系統概要図を第 $9.5-1$ 図から第 $9.5-3$ 図に示す。 9．5．2 設計方針 水素爆発による原子炉格納容器の破損を防止するため の設備のうち，灲心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止で きるよう，原子炉格納容器内を不活性化するための設備と して，可搬型窒素ガス供給装置を設ける。 水素爆発による原子炉格納容器の破損を防止するため の設備のらち，炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止で きるよう，原子炉格納容器内に滞留する水素及び酸素を大気へ排出するための設備として，原子炉格納容器フィルタ ベント系を設ける。 水素爆発による原子炉格納容器の破損を防止するため の設備のらち，炉心の著しい損傷が発生した場合におい て，原子炉格納容器内の水素濃度を監視する設備として，水素濃度監視設備を設ける。	【原子炉格納施設】（基本設計方針） 3．3．6 可搬型窒素ガス供給系 <中略 > 炬心の著しい損傷が発生した場合において，原子炬格納容器内における水素爆発による破損を防止する四 （3）（ii）d．－1 ために必要な重大事故等対処設備のうち，原子炬格納容器内を不活性化するための設備として，可搬型窒素ガス供給装置を設ける設計とする。 <中略 > 【非常用電源設備】（基本設計方針） 2．交流電源設備 2.5 可搬型窒素ガス供給装置発電設備 可搬型窒素ガス供給装置発電設備は，車両内に搭載し，可搬型窒素ガス供給装置に給電できる設計とする。 【原子炉格納施設】（基本設計方針） 3．3．7 原子炉格納容器フィルタベント系 炬心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による破損を防止できるように，原子炉格納容器内に滞留する水素及び酸素を大気へ排出 するための設備として，原子灲格納容器フィルタベント系 を設ける設計とする。 <中略 > 【計測制御系統施設】（基本設計方針） 2．計測装置等 2.1 計測装置 2．1．2 原子炉格納容器内の水素濃度及び酸素濃度の計測水素爆発による原子炉格納容器の破損を防止するため の設備のうち，炉心の著しい損傷が発生した場合におい て，原子炉格納容器内の水素濃度及び酸素濃度が変動する可能性のある範囲を測定できる設備として，リ（3）（ii）d．－	設計及び工事の計画の （3）（ii）d．－1 は，設置変更許可申請書（本文 （五号））の（3）（ii）d． －（1）と同義であり整合 している。 設計及び工事の計画の （3）（ii）d．－2 2 は，設置変更許可申請書（本文 （五号））の（3）（ii ）d．	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
排出経路における水素濃度を測定し，監視できるよう， フィルタ装置出口配管にフィルタ装置出口水素濃度を設 ける。また，放射線量率を測定し，放射性物質漲度を推定 できるよう，フィルタ装置出口配管にフィルタ装置出口放射線モニタを設ける。	排出経路における水素濃度を測定し，監視できるよう， フィルタ装置出口配管にフィルタ装置出口水素縟度を設 ける。また，放射線量率を測定し，放射性物質賑度を推定 できるよう，フィルタ装置出口配管にフィルタ装置出口放射線モニタを設ける。	粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計とする。また，無機よう素をスクラバ溶液中に捕集•保持するためにアルカリ性の状態（待機状態に おいてpH13以上）に維持する設計とする。 ＜中略＞ 原子炉格納容器フィルタベント系使用時の排出経路に設置される隔離弁は，遠隔手動弁操作設備（個数4）（原子炉格納施設のらち「3．5．1 原子炉格納容器フィルタベ ント系」の設備を原子炉格納施設のうち「3．3．7 原子炉格納容器フィルタベント系」の設備として兼用）によって人力により容易かつ確実に操作が可能な設計とする。 排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により，中央制御室から操作が可能な設計とする。 原子炉格納容器フィルタベント系は，代替淡水源から，大容量送水ポンプ（タイプ I ）によりフィルタ装置にスク ラバ溶液を補給できる設計とする。 ＜中略＞ 【計測制御系統施設】（基本設計方針） 2．1．3 原子炉格納容器フィルタベント系排出経路内の水素濃度の計測 原子炉格納容器フィルタベント系の排出経路における水素濃度を測定し，監視できるよう，フィルタ装置出口配管にフィルタ装置出口水素濃度（個数 2 ，計測範囲 $0 \sim$ $30 \mathrm{vol} \%$ のものを 1 個，計測範囲 $0 \sim 100 \mathrm{vo} \%$ の ものを 1 個） を設ける設計とする。 ＜中略＞ 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1．1 放射線管理用計測装置 1．1．1 プロセスモニタリング設備			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（D／W）及び格納容器内水素濃度（S／C）は，焒心の著しい損傷が発生した場合に，水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視できる設計とする。格納容器内水素濃度（D／W）及び格納容器内水素濃度（S／ C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計 とする。 （b－2）原子炬格納容器内雰囲気計装による原子炉格納容器内の水素濃度監視及び酸素濃度監視 リ（3）（ii ）d．－（5）原子炬格納容器内の水素濃度監視及び酸素濃度監視を行うための重大事故等対処設備として，格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度は，炬心の著しい損傷が発生した場合に，リ（3）（ii）d．－（6）サン プリング装置により原子炬格納容器内の雾囲気ガスを原子炬建屋原子炬棟内へ導き，検出器で測定することで，原子炬格納容器内の水素濃度及び酸素濃度を中央制御室よ り監視できる設計とする。格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度は，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。	格納容器内水素濃度（S／C）を使用する。 格納容器内水素濃度（D／W）及び格納容器内水素濃度 （S／C）は，炬心の著しい損傷が発生した場合に，水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視できる設計とする。格納容器内水素濃度（D／ W）及び格納容器内水素濃度（S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 <中略 > b．原子炉格納容器内雾囲気計装による原子炉格納容器内 の水素濃度監視及び酸素濃度監視 原子炉格納容器内の水素濃度監視及び酸素濃度監視を行うための重大事故等対処設備として，格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を使用する。 格納容器内雾囲気水素濃度及び格納容器内雾囲気酸素濃度は，炇心の著しい損傷が発生した場合に，サンプリン グ装置により原子炉格納容器内の雰囲気ガスを原子炉棟内へ導き，検出器で測定することで，原子炉格納容器内の水素濃度及び酸素濃度を中央制御室より監視できる設計 とする。格納容器内雾囲気水素濃度及び格納容器内雰囲気酸素濃度は，常設代替交流電源設備又は可搬型代替交流電源設備から給電が可能な設計とする。	場合において，原子炬格納容器内の水素濃度及び酸素濃度 が変動する可能性のある範囲を測定できる設備として，格納容器内水素濃度（D／W），格納容器内水素濃度（S／C），格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を設ける設計とする。 格納容器内水素濃度（D／W）及び格納容器内水素濃度 （S／C）は，原子炉格納容器内の水素濃度が変動する可能性のある範囲の水素濃度を中央制御室より監視できる設計とする。 格納容器内水素濃度（D／W）及び格納容器内水素濃度 （S／C）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 ＜中略＞ 【計測制御系統施設】（基本設計方針） 2．1．2 原子炉格納容器内の水素濃度及び酸素濃度の計測 リ（3）（ii ）d．－（5）水素爆発による原子炬格納容器の破損を防止するための設備のうち，炡心の著しい損傷が発生した場合において，原子炬格納容器内の水素濃度及び酸素濃度 が変動する可能性のある範囲を測定できる設備として，格納容器内水素濃度（D／W），格納容器内水素濃度（S／C），格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を設ける設計とする。 < 中略 > 格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度は，リ（3）（ii）d．－（6）格納容器内雰囲気ガスサンプリン グ装置（吸引ポンプ（個数 2 ，容量 $0.05 \mathrm{~L} / \mathrm{min} /$ 個以上，吐出圧力 0.2 MPa ），排気ポンプ（個数 2 ，容量 $0.05 \mathrm{~L} / \mathrm{min} /$ 個以上，吐出圧力 0.854 MPa 以上），サンプル泠却器（個数 2 ，伝熱面積 $0.245 \mathrm{~m}^{2} /$ 個以上））により原子炉格納容器内の雰囲気 ガスを原子炉建屋原子炉棟内へ導き，検出器で測定するこ とで，原子炉格納容器内の水素濃度及び酸素濃度を中央制御室より監視できる設計とする。 格納容器内雾囲気水素濃度及び格納容器内雰囲気酸素	変更許可申請書（本文 （五号））の（3）（ii）d． －（4）と文章表現は異な るが，内容に相違はない ため整合している。 設計及び工事の計画の り（3）（ii）d．－5 ${ }^{\text {a }}$ は，設置変更許可申請書（本文 （五号））の（3）（ii）d． －（5）と文章表現は異な るが，内容に相違はない ため整合している。 設計及び工事の計画の り（3）（ii）d．－6 6 は，設置変更許可申請書（本文 （五号））の（3）（ii）d． －（6）と同一設備であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
e ．発電所外への放射性物質の拡散を抑制するための設備 発電所外への放射性物質の拡散を抑制するための設備 のうち，炉心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内の燃料体等の著しい損傷に至った場合において，発電所外への放射性物質の拡散を抑制するた めの設備として，放水設備（大気への拡散抑制設備）及び海洋への拡散抑制設備（シルトフェンス）を設ける。	9.7 発電所外への放射性物質の拡散を抑制するための設備 9．7．1 概要 灲心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内の燃料体等の著しい損傷に至った場合に おいて，発電所外への放射性物質の拡散を抑制するために必要な重大事故等対処設備を保管する。 <中略 > 9．7．2 設計方針 発電所外への放射性物質の拡散を抑制するための設備 のうち，炉心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内の燃料体等の著しい損傷に至った場合において，発電所外への放射性物質の拡散を抑制するた めの設備として，放水設備（大気への拡散抑制設備）及び海洋への拡散抑制設備（シルトフェンス）を設ける。	【原子炉格納施設】（基本設計方針） 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．4 放射性物質拡散抑制系 炬心の著しい損傷及び原子炉格納容器の破損に至った場合において，発電所外への放射性物質の拡散を抑制する ための重大事故等対処設備として，放水設備（大気への拡散抑制設備）及び海洋への拡散抑制設備（シルトフェンス） を設ける設計とする。 <中略> 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 4． 4 放射性物質拡散抑制系 4．4．1 大気への拡散抑制 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位の異常な低下により，使用済燃料プ ール内の燃料体等の著しい損傷に至った場合において，燃料損傷時にはできる限り環境への放射性物質の放出を低減するための重大事故等対処設備として，放水設備（大気 への拡散抑制設備）を設ける設計とする。 <中略> 4．4．2 海洋への拡散抑制 使用済燃料プール内の燃料体等の著しい損傷に至った場合において，発電所外への放射性物質の拡散を抑制する ための重大事故等対処設備として，海洋への拡散抑制設備 （シルトフェンス）を設ける設計とする。 <中略 >		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，原子炉建屋周辺における航空機衝突による航空機燃料火災に対応できる設備として，放水設備（泡消火設備） を設ける。 （a）炉心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内燃料体等の著しい損傷時に用いる設備 （ $\mathrm{a}-1$ ）大気への放射性物質の拡散抑制 （a－1－1）放水設備（大気への拡散抑制設備）による大気 への放射性物質の拡散抑制 大気への放射性物質の拡散を抑制するための重大事故等対処設備として，放水設備（大気への拡散抑制設備）は，大容量送水ポンプ（タイプII）により海水をホースを経由 して放水砲から原子炬建屋へ放水できる設計とする。大容量送水ポンプ（タイプII）及び放水砲は，設置場所を任意 に設定し，複数の方向から原子炉建屋に向けて放水できる設計とする。	また，原子炉建屋周辺における航空機衝突による航空機燃料火災に対応できる設備として，放水設備（泡消火設備） を設ける。 （1）炬心の著しい損傷及び原子炉格納容器の破損又は使用済燃料プール内燃料体等の著しい損傷時に用いる設備 a．大気への放射性物質の拡散抑制 （a）放水設備（大気への拡散抑制設備）による大気への放射性物質の拡散抑制 大気への放射性物質の拡散を抑制するための重大事故等対処設備として，放水設備（大気への拡散抑制設備）を使用する。 放水設備（大気への拡散抑制設備）は，大容量送水ポン プ（タイプII），放水砲，ホース等で構成し，大容量送水 ポンプ（タイプII）により海水をホースを経由して放水砲 から原子炉建屋へ放水できる設計とする。大容量送水ポン プ（タイプII）及び放水砲は，設置場所を任意に設定し，複数の方向から原子炬建屋に向けて放水できる設計とす る。	【原子炉格納施設】（基本設計方針） 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火） 原子炉建屋周辺における航空機衝突による航空機燃料火災に対応できる設備として，放水設備（泡消火設備）を設ける設計とする。 ＜中略＞ 【原子炉格納施設】（基本設計方針） 3．3．4 放射性物質拡散抑制系 （1）放水設備（大気への拡散抑制設備） 大気への放射性物質の拡散を抑制するための重大事故等対処設備として，放水設備（大気への拡散抑制設備）は，大容量送水ポンプ（タイプII）により海水を取水し，ホー スを経由して放水砲から原子炉建屋へ放水できる設計と する。大容量送水ポンプ（タイプII）及び放水砲は，設置場所を任意に設定し，複数の方向から原子炉建屋に向けて放水できる設計とする。 放水設備（大気への拡散抑制設備）に使用するホースの敷設は，ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のらち「3．3．4 放射性物質拡散抑制系」の設備として兼用）により行う設計とす る。 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 4．4．1 大気への拡散抑制 < 中略 > 放水設備（大気への拡散抑制設備）は，大容量送水ポン プ（タイプII）により海水を取水し，ホースを経由して放水砲から原子炉建屋へ放水することにより，環境への放射		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－2）海洋への放射性物質の拡散抑制 （a－2－1）海洋への拡散抑制設備（シルトフェンス）によ る海洋への放射性物質の拡散抑制 海洋への放射性物質の拡散を抑制するための重大事故等対処設備として，海洋への拡散抑制設備（シルトフェン ス）は，シルトフェンスで構成する。シルトフェンスは，污染水が発電所から海洋に流出する 4 箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置できる設計とする。	b．海洋への放射性物質の拡散抑制 （a）海洋への拡散抑制設備（シルトフェンス）による海洋への放射性物質の拡散抑制 海洋への放射性物質の拡散を抑制するための重大事故等対処設備として，海洋への拡散抑制設備（シルトフェン ス）を使用する。 海洋への拡散抑制設備（シルトフェンス）は，シルトフ ェンスで構成する。シルトフェンスは，污染水が発電所か ら海洋に流出する 4 箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置でき る設計とする。 <中略>	性物質の放出を可能な限り低減できる設計とする。 大容量送水ポンプ（タイプII）及び放水砲は，設置場所 を任意に設定し，複数の方向から原子炉建屋に向けて放水 できる設計とする。 < 中略 > 【原子炉格納施設】（基本設計方針） 3．3．4 放射性物質拡散抑制系 （2）海洋への拡散抑制設備（シルトフェンス） 海洋への放射性物質の拡散を抑制するための重大事故等対処設備として，海洋への拡散抑制設備（シルトフェン ス）は，シルトフェンス（核燃料物質の取扱施設及び貯蔵施設のらち「4．4 放射性物質拡散抑制系」の設備と兼用） で構成する。シルトフェンスは，污染水が発電所から海洋 に流出する 4 箇所（南側排水路排水桝，タービン補機放水 ピット，北側排水路排水桝及び取水口）に設置できる設計 とする。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 4．4．2 海洋への拡散抑制 <中略 > 海洋への放射性物質の拡散を抑制するための重大事故等対処設備として，海洋への拡散抑制設備（シルトフェン ス）は，シルトフェンス（原子灲格納施設のらち「3．3．4放射性物質拡散抑制系」の設備を核燃料物質の取扱施設及 び貯蔵施設のらち「4．4 放射性物質拡散抑制系」の設備 として兼用）で構成する。シルトフェンスは，污染水が発電所から海洋に流出する 4 箇所（南側排水路排水栁，ター ビン補機放水ピット，北側排水路排水桝及び取水口）に設置できる設計とする。 ＜中略＞		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（b）原子炉建屋周辺における航空機衝突による航空機燃 料火災時に用いる設備 （b－1）航空機燃料火災への泡消火 （b－1－1）放水設備（泡消火設備）による航空機燃料火災 への泡消火 原子炉建屋周辺における航空機衝突による航空機燃料火災に対応するための重大事故等対処設備として，放水設備（泡消火設備）は，大容量送水ポンプ（タイプII）によ り海水を泡消火薬剤と混合しながらホースを経由して放水砲から原子炉建屋周辺へ放水できる設計とする。	（2）原子炉建屋周辺における航空機衝突による航空機燃料火災時に用いる設備 a．航空機燃料火災への泡消火 （a）放水設備（泡消火設備）による航空機燃料火災への泡消火 原子炉建屋周辺における航空機衝突による航空機燃料火災に対応するための重大事故等対処設備として，放水設備（泡消火設備）を使用する。 放水設備（泡消火設備）は，大容量送水ポンプ（タイプ II），放水砲，泡消火薬剤混合装置，ホース等で構成し，大容量送水ポンプ（タイプII）により海水を泡消火薬剤と混合しながらホースを経由して放水砲から原子炉建屋周辺へ放水できる設計とする。 <中略 >	【原子炉格納施設】（基本設計方針） 3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火） < 中略 > 原子炉建屋周辺における航空機衝突による航空機燃料火災に対応するための重大事故等対処設備として，放水設備（泡消火設備）は，大容量送水ポンプ（タイプII）によ り泡消火薬剤混合装置を通して，海水を泡消火薬剤と混合 しながらホースを経由して放水砲から原子炉建屋周辺へ放水できる設計とする。 < 中略 >		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（4）その他の主要な事項 （i）原子炉建屋原子炉棟 原子炉建屋原子炉棟は，原子炉格納容器をリ（4）（i）－（1）完全に取り囲む建物であって，リ（4）（i）－（2）内部を負圧に保つことにより，原子炬格納容器から放射性物質の漏えい があっても発電所周辺に直接放出されることを防止する。	9．1．2 重大事故等時 9．1．2．3 原子炉棟 9．1．2．3．1 概要 原子淑棟は，．．重大事故等時においても，韭常用がス処理系により，内部の負圧を碓保することができる設計とす る。原子炉棟の気密バウンダリの一部として原子炉棟江設置する原子炬建屋ブローアウトパネルは，閉状態を維持で きる，又は開放時に容易かつ確実に原子炬建屋ブローアウ トパネル閉止装置により開口部を閉止できる設計とする。 また，原子炬建屋ブローアウトパネル閉止装置は，現場に おいて，人力により操作ができる設計とする。 また，原子炉建屋ブローアウトパネルは，原子炉格納容器外での配管破断事故時に原子炬棟の圧力が上昇し，建屋 の内外差圧により自動的に開放する機能を有する設計と する。 原子炉建屋ブローアウトパネル閉止装置については，「6． 10 制御室」に記載する。	【原子炉格納施設】（基本設計方針） 2．原子炉建屋 2． 1 原子炉建屋原子炉棟等 <中略> 原子炉建屋原子炉棟は，原子炉格納容器をリ（4）（i）－（1）収納する建屋であって，非常用ガス処理系等により，四 （4）（i ）－2）内部の負圧を確保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出される ことを防止する設計とする。 ＜中略＞ 原子炉建屋原子炉棟は，重大事故等時においても，非常用ガス処理系により，内部の負圧を確保することができる設計とする。原子炉建屋原子炉棟の気密バウンダリの一部 として原子炉建屋原子炉棟に設置する原子炉建屋ブロー アウトパネル（原子炉冷却系統施設のうち「5．2 高圧炉心スプレイ系」，浸水防護施設と兼用）（以下同じ。）は，閉状態の維持又は開放時に容易かつ確実に原子炉建屋ブ ローアウトパネル閉止装置により開口部を閉止可能な設計とする。	設計及び工事の計画の （4）（i）－（1）は，設置変更許可申請書（本文（五号））の（4）（i）－（1）と同義であり整合してい る。 設計及び工事の計画の （4）（i）－（2）は，設置変更許可申請書（本文（五号））の（4）（i）－（2と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（iii）水素爆発による原子炉建屋等の損傷を防止するた めの設備 リ（4）（iii）－（1）水素爆発による原子炬建屋等の損傷を防止 するための設備のうち，原子炬建屋等の損傷を防止するた めの水素濃度制御設備として，静的触媒式水素再結合装置及び静的触媒式水素再結合装置動作監視装置を設ける。ま た，原子炉建屋内の水素濃度が変動する可能性のある範囲 にわたり測定するための設備として，原子炉建屋水素濃度監視設備を設ける。	9.6 水素爆発による原子炉建屋等の損傷を防止するため の設備 9．6．1 概要 炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために必要な重大事故等対処設備を設置する。 水素爆発による原子炉建屋等の損傷を防止するための設備の構造図及び系統概要図を第9．6－1図から第9．6－3図 に示す。 9．6．2 設計方針 水素爆発による原子炬建屋等の損傷を防止するための設備のうち，原子炬建屋等の損傷を防止するための水素濃度制御設備として，静的触媒式水素再結合装置及び静的触媒式水素再結合装置動作監視装置を設ける。 また，原子炉建屋内の水素濃度が変動する可能性のある範囲にわたり測定するための設備として，原子炉建屋水素濃度監視設備を設ける。	【原子炉格納施設】（基本設計方針） 3．3．3 原子炉建屋水素濃度抑制系 リ（4）（iii）－（1）炬心の著しい損傷が発生した場合において原子炬建屋等の水素爆発による損傷を防止するために原子炬建屋原子炬棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備とし て，水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。 水素濃度制御設備である静的触媒式水素再結合装置は，運転員の起動操作を必要とせずに，原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応 によって再結合させることで，原子炉建屋原子炉棟内の水素濃度の上昇を抑制し，原子炉建屋原子炉棟の水素爆発を防止できる設計とする。また評価に用いる性能を満足し，試験により性能及び耐環境性が確認された型式品を設置 する設計とする。静的触媒式水素再結合装置は，原子炉建屋原子炉棟内に漏えいした水素が滞留すると想定される原子炉建屋原子炉棟3階に設置することとし，静的触媒式水素再結合装置の触媒反応時の高温ガスの排出が重大事故等時の対処に重要な計器•機器に悪影響がないよう離隔距離を設ける設計とする。 <中略 >	設計及び工事の計画の （4）（iii）－（1）は，設置変更許可申請書（本文（五号））の（4）（iii）－（1）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	10．1．1．4．3 非常用ディーゼル発電機（高圧炉心スプレイ	【非常用電源設備】（基本設計方針）			
	系ディーゼル発電機を含む。）	4.1 非常用交流電源設備の燃料補給設備			
	＜中略＞				
7 日間の外部電源襄失を仮定しても，運転時の異常な過	なお，7日間の外部電源感失を仮定しても，運転時の異	7 日間の外部電源喪失を仮定しても，運転時の異常な過			
渡変化又は設計基準事故に対処するために必要な非常用	常な過渡変化又は設計基漼事故に対処するために必要な	渡変化又は設計基準事故に対処するために必要な非常用			
ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機	非常用ディーゼル発電機（高圧炉ふスプレイ系ディーゼル	ディーゼル発電機（高圧炉ふスプレイ系ディーゼル発電機			
を含む。）2台を7日間連続運転することにより必要とす	発電機を含む。）2台を7日間連続運転できる燃料賏蔵設	を含む。） 2 台を7日間運転することにより必要とする電			
万電力を供給できる容量以上の燃料を敷地内の軽油タン	備を㻃需所内に設ける。	力を供給できる容量以上の燃料を敷地内の軽油タンクに			
クに貯蔵する設計とする。	＜中略＞	貯蔵する設計とする。			
		＜中略＞			

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（iv）代替電源設備 設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において灲心の著しい損傷，原子炬格納容器の破損，使用済燃料プール内の燃料体等の著し い損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するため，区（2）（iv）－（1）必要な電力を確保するために必要な重大事故等対処設備を設置区（2）（iv）－（2）及び保管す る．	10.2 代替電源設備 10．2． 1 概要 設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において灲心の著しい損傷，原子炬格納容器の破損，使用済燃料プール内の燃料体等の著し い損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するため，必要な電力を確保するために必要な重大事故等対処設備を設置及び保管する。．．． ＜中略＞	2.2 常設代替交流電源設備 2．2．1 系統構成 設計基準事故対処設備の電源が喪失したことにより重大事故等が発生した場合において，炬心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著 しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するために区（2）（iv）－（1）必要な交流負荷へ電力を供給 する常設代替交流電源設備としてガスタービン発電機を設ける設計とする。 <中略 > 2.3 可搬型代替交流電源設備 2．3．1 系統構成 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合に，重大事故等の対応に必要な炉心の著 しい損傷，原子灲格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炬内燃料体の著しい損傷を防止するための交流負荷へ電力を供給する区 （2）（iv）－（2）可搬型代替交流電源設備として，雫源車を使用 できる設計とする。 < 中略 > 3.1 常設直流電源設備 3．1．1 系統構成 <中略> 設計基準事故対処設備の交流電源が喪失（全交流動力電源進失）した場合に，重大事故等の対応に必要な炉心の著 しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する区 （2）（iv）－（1）所内常設蓄電式直流電源設備として， 125 V 蓄電池 2 A 及び 2 B 並びに 125 V 充電器 2 A 及び 2 B を使用できる設計とする。	設計及び工事の計画の区（2）（iv）－（1）は，設置変更許可申請書（本文（五号））の 区（2）（iv）－（1）を具体的に記載しており整合している。 設計及び工事の計画の又（2）（iv）－（2）は，設置変更許可申請書（本文（五号））の区（2）（iv）－（2）を具体的に記載しており整合している。	

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
		3.2 常設代替直流電源設備 3.2 .1 系統構成 設計基準事故対処設備の交流電源及び直流電源が喪失 した場合に，重大事故等の対応に必要な炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する区 （2）（iv）－（1）虽設代替直流電源設備として， 125 V 代替薏需池 を使用できる設計とする。．．また，設計基準事故対処設備の交流電源が喪失（全交流動力電源䨤失）した場合又は交流電源及び直流電源が䨤失した場合は，常設代替直流電源設備として， 250 V 蓄電池を使用できる設計とする。 ＜中略＞ 3.3 可搬型代替直流電源設備 3．3．1 系統構成 設計基準事故対処設備の交流電源及び直流電源が喪失 した場合に，重大事故等の対応に必要な炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する区 （2）（iv）－（2）可船型代替直流電源設備として 125 V 代替蓄電池， 250 V 誉需池及び電源車， 125 V 代替充電器及び 250 V 充電器を使用できる設計とする。 ＜中略＞ 1．2 代替所内電気系統 1．2．1 系統構成 ＜中略＞ これとは別に上記 3 系統の非常用母線等の機能が喪失し たことにより発生する重大事故等の対応に必要な設備に電力を給電する 区（2）（iv）－（1）代替所内電気設備として，ガ スタービン発電機接続盤（ $7200 \mathrm{~V}, ~ 1200 \mathrm{~A}$ のものを 2 個）， メタルクラッドスイッチギア（緊急用）（7200V，1200A の ものを 3 個），動力変压器（緊急用）（500kVA，6900／460V		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		（全交流憅力電源串失）した場合に，重大事故等の対底に必要な炬心の著しい損傷，原子炉格納容器の破損，使用斎然料プール内の然料体等の著しい損傷及び軍転停止中原子㛐内燃料体の著しい損傷を防止するための直流負荷へ需力を供給する所内常設蓄電式直流電源設備として，125V蓄電池 $2 A$ 及び $2 B$ 並びに $125 V$ 充電器 $2 A$ 及び $2 B$ を使用で きる設計とする。 ＜中略＞ 3.2 常設代替直流電源設備 3．2．1 系統構成 区（2）（iv）－（3）設計基蕉事故対处設備の交流電源及び直流需源が霛失した場合に，重大事故等の対応に必要な炬心の著しい損傷，原子炬格納容器の破損，使用済燃料プール内 の燃料体等の著しい損鹪及び運転停止中原子炬内燃料体 の著しい損傷を防止するための直流負荷へ簂力を供給す尚常設代替直流電源設備として，125V代替晋電池を使用で きる設計とする。。また，設計基準事故対処設備の交流電源 が亟失（全交流動力電源战失）した場合又は交流電源及び直流電源が震失した場合は，常設代替直流電源設備とし て， 250 V 蓄電池を使用できる設計とする。 <中略> 3.3 可搬型代替直流電源設備 3．3．1 系統構成 区（2）（iv）－（3）設計基蕉事故対处設備の交流雷源及び直流需源が悪失した場合に，重大事故等の対応に必要な烸心の著しい椇傷，原子炬格納容器の破損，使用済燃料プール内 の燃料体等の著しい損鹪及び運転停止中原子炬内燃料体 の著しい損傷を防止するための直流負荷へ電力を供給す当可搬型代替直流電源設備として 125 V 代替著電池，250V 用できる設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		1.2 代替所内電気系統			
		1．2．1 系統構成			
		＜中略＞			
		これとは別に上記 3 系統の非常用母線等の機能が震失し			
		たことにより発生する区（2）（iv）－（3）重大事故等の対底に必			
		要な設備に電力を給電する代替所内電気設備として，ガス			
		タービン発霋機接続盤（ 7200 V ，1200Aのものを2個），又			
		タルクラッドスイッチギア（緊急用）（7200V，1200Aのも			
		のを3，個），動力弯厓器，（緊急用）（500kVA，6900／460V			
		のものを2個，750kVA，6750／460V のものを 1 個），パワ			
		センタ（緊急用）（600V，3000Aのものを1個），天ー			
		タコントロールセンタ（緊急用）（600V，800Aのものを4			
		個），カカスタービン登電設備然料移送ポンプ接続艀（600V，			
		100A のものを 1 個），460V 原子炬建屋交流電源切替盤（緊			
		半）（600V，150A のものを1個），460V 原子炬建屋交			
		タルクラツドスイッチギア（非常用）（6900V，1200A のも			
		30 A のものを 1 値）及び中央制御室 120 V 交流分電媻（緊急			
		用）（20kVA，460／120V のものを 1 個）を使用できる設計			
		とする。			
		＜中略＞			
		4.2 常設代替交流電源設備の燃料補給設備			
		区（2）（iv）－（3）がスタービン発電機は，ガスタービン発霜			
		設備軽油タンクからガスタービン発霉設備燃料移送ポン			
		用いて燃料を裇給できる哭計とする。			
		＜中略〉			
		非常用ディーゼル発電設備軽油タンク及び高圧炬心ス			
		プレイ系ディーゼル発電設備軽油タンクからタンクロー			
		リへの燃料の補給は，ホースを用いる設計とする。			
		＜中略〉			
		4.3 可搬型代替交流電源設備及び可搬型代替直流電源設備の燃料補給設備			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
b ．代替直流電源設備による給電 （a）所内常設蓄電式直流電源設備による給電 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合区（2）（iv）－8 ）の重大事故等対処設備とし て，所内常設蓄電式直流電源設備を使用する。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$蓄電池 $2 B, 125 V$ 充電器 $2 A, 125 V$ 充電器 $2 B$ ，電路，計測制御装置等で構成し，全交流動力電源喪失から 1 時間以内に	主要な設備は，以下のとおりとする。 - 電源車 - 軽油タンク - ガスタービン発電設備軽油タンク －タンクローリ （2）代替直流電源設備による給電 a ．所内常設蓄電式直流電源設備による給電 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合の重大事故等対処設備として，所内常設蓄電式直流電源設備を使用する。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$蓄電池 $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 $2 \mathrm{~A}, 125 \mathrm{~V}$ 充電器 2 B ，電路（ 125 V直流主母線盤及び 125 V 直流電源切替盤を含む。），計測	のガスタービン発電機から離れた場所に保管することで，共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替交流電源設備は，電源車からメタルクラッド スイッチギア（非常用）までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機か らメタルクラッドスイッチギア（非常用）までの系統及び高圧炉心スプレイ系ディーゼル発電機からメタルクラッ ドスイッチギア（高圧炉心スプレイ系用）までの系統に対 して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性に よって，可搬型代替交流電源設備は非常用交流電源設備で ある非常用ディーゼル発電機及び高圧炉心スプレイ系デ ィーゼル発電機に対して独立性を有する設計とする。 < 中略 > 3.1 常設直流電源設備 3．1．1 系統構成 < 中略 > 設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合区（2）（iv）－8 に に，重大事故等の対応に必要な炬心の著しい損傷，原子炬格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する所内常設蓄電式直流電源設備として， 125 V 萻電池 2 A 及び 2 B 並びに 125 V 充電器 2 A 及び 2 B を使用でき る設計とする。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び 2 B ， 125 V 充電器 2 A 及び 2 B （ 125 V ，700A のものを 2 個），電路，計測制御装置等で構成し， 125 V 蓄電池 2 A 及び 2 B は， 125 V	設計及び工事の計画の区（2）（iv）－8 は，設置変更許可申請書（本文（五号））の 又（2）（iv）－8を具体的に記載しており整合している。 設計及び工事の計画の区（2）（iv）－（9）は，設置変更許可申請書（本文（五	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
中央制御室において，全交流動力電源喪失から 8 時間後	制御装置等で構成し，全交流動力電源喪失から 1 時間以内	直流主母線盤 2 A 及び 2 B （ 125 V ，1800A のものを 2 個），	号））の区（2）（iv）－（9）を		
に，不要な負荷の切離しを行い，全交流動力電源喪失から	に中央制御室において，全交流動力電源喪失から 8 時間後	125 V 直流主母線盤 2A－1 及び $2 \mathrm{~B}-1$（ 125 V ，1800A のものを	具体的に記載しており		
$\underline{24}$ 時間にわたり， 125 V 蓄電池 2 A 及び 125 V 蓄電池 2 B から	に，不要な負荷の切離しを行い，全交流動力電源喪失から	2 個）， 125 V 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-3,2 \mathrm{~B}-1,2 \mathrm{~B}-2$	整合している。		
電力を供給できる設計とする。また，交流電源復旧後に，	$\underline{24}$ 時間にわたり， 125 V 蓄電池 2 A 及び 125 V 蓄電池 2 B から	及び2B－3（ $125 \mathrm{~V}, 1200 \mathrm{~A}$ のものを6個），125V 直流電源切			
交流電源を 125 V 充電器 2 A 及び 125 V 充電器 2 B を経由し冈	電力を供給できる設計とする。また，交流電源復旧後に，	替盤 2 A 及び 2 B （ 125 V ， 60 A のものを 2 個）並びに 125 V 直			
（2）（iv）－（9） 125 V ，直流母線へ接続することで電力を供給で	交流電源を 125 V 充電器 2 A 及び 125 V 充電器 2 B を経由し	流RCIC モータコントロールセンタ（125V，800A のものを			
きる設計とする。	125 V 直流母線へ接続することで電力を供給できる設計と	1 個）～電力を給電できる設計とする。			
	する。	所内常設蓄電式直流電源設備の 125 V 蓄電池 2 A 及び 2 B			
		いて不要な負荷の切り離しを行うこと，また全交流動力電			
		源喪失から8時間後に中央制御室外において不要な負荷の			
		切り離しを行らことで，全交流動力電源喪失から 24 時間			
		にわたり， 125 V 蓄電池 2 A 及び 2 B から電力を供給できる設			
		計とする。また，交流電源復旧後に，交流電源を 125 V 充			
		及び 2 B へ接続することで電力を供給できる設計とする。			
		＜中略＞			
	主要な設備は，以下のとおりとする。				
	－ 125 V 蓄電池 2 A				
	－ 125 V 蓄電池 2 B				
	－ 125 V 充電器 2 A				
	－ 125 V 充電器 2 B				
（b）常設代替直流電源設備による給電	b ．常設代替直流電源設備による給電	3.2 常設代替直流電源設備 3．2．1 系統構成			
設計基準事故対処設備の交流電源及び直流電源が喪失	設計基準事故対処設備の交流電源及び直流電源が喪失	設計基準事故対処設備の交流電源及び直流電源が䨤失	設計及び工事の計画の		
した場合区（2）（iv）－（10）の重大事故等対処設備として，常設	した場合の重大事故等対処設備として，常設代替直流電源	した場合又（2）（iv）－（10），重大事故等の対応に必要な焾心	区（2）（iv）－（10）は，設置変		
代替直流電源設備のらち 125 V 代替蓄電池を使用する。ま	設備のうち 125 V 代替蓄電池を使用する。また，設計基準	の著しい損傷，原子炬格納容器の破損，使用済燃料プール	更許可申請書（本文（五		
た，設計基準事故対処設備の交流電源が喪失（全交流動力	事故対処設備の交流電源が喪失（全交流動力電源喪失）し	内の燃料体等の著しい損傷及び運転停止中原子炬内燃料	号））の区（2）（iv）－（10を		
電源喪失）した場合又は交流電源及び直流電源が喪失した	た場合又は交流電源及び直流電源が喪失した場合の重大	体の著しい損傷を防止するための直流負荷へ電力を供給	具体的に記載しており		
場合区（2）（iv）－（10）の重大事故等対処設備として，常設代替	事故等対処設備として，常設代替直流電源設備のらち 250 V	する常設代替直流電源設備として，125V 代替蓄電池を使用	整合している。		
直流電源設備のうち 250 V 蓄電池を使用する。	蓄電池を使用する。	できる設計とする。また，設計基準事故対処設備の交流電			
		源が喪失（全交流動力電源喪失）した場合又は交流電源及			
		び直流電源が喪失した場合又（2）（iv）－（10）は，常設代替直流			
		電源設備として，250V 蓄電池を使用できる設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	主要な設備は，以下のとおりとする。 - 125 V 代替蓄電池 - 250 V 蓄電池 - 電源車 - 125 V 代替充電器 - 250 V 充電器 - 軽油タンク - ガスタービン発電設備軽油タンク －タンクローリ	可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車 から 125 V 直流主母線盤 2A－1 及び $2 \mathrm{~B}-1$ までの系統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤までの系統 において，独立した電路で系統構成することにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, ~ 2 \mathrm{~B}$ 及び 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, ~ 2 \mathrm{~B}$ 及び 2 H までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性に よって，可搬型代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。 ＜中略＞			
c．代替所内電気設備による給電	（3）代替所内電気設備による給電	【非常用電源設備】（基本設計方針） 1.2 代替所内電気奚統 1．2．1 系統構成			
区（2）（iv）－（12）設計基準事故対処設備の非常用所内電気設	設計基準事故対処設備の非常用所内電気設備が機能喪	区（2）（iv）－（13）韭常用所内電気設備は，3 系統の非常用母線	設計及び工事の計画の		
		等（メタルクラッドスイッチギア（非常用）（6900V，1200A			
所内電気設備を使用する。 区（2）（iv）－（12）代替所内電気設備は，ガスタービン発電機	備を使用する。 代替所内電気設備は，ガスタービン発電機接続艦，緊急	のものを2個），メタルクラッドスイッチギア（高圧炬心 スプレイ采用）（6900V，1200Aのものを1個），パワーセ	更許可申請書（本文（五 号））の区（2）（iv）－（12 と		
接続盤，緊急用高圧母線 2 F 系，緊急用高圧母線 2 G 系，緊	用高圧母線 2 F 系，緊急用高圧母線 2 G 系，緊急用動力変圧	ンタ（非常用）（600V，5000A のものを2個），モータコ	文章表現は異なるが，内		
急用動力変圧器 2 G 系，緊急用低圧母線 2 G 系，緊急用交流	器 2 G 系，緊急用低圧母線 2 G 系，緊急用交流電源切替盤 2 G	ントロールセンタ（非常用）（600V，800Aのものを14個），	容に相違はないため整		
需源切替盤2G 系，緊急用交流電源切替盤 2 C 系，緊急用交	系，緊急用交流電源切替盤，2C，系，緊急用交流電源切替盤	モータコントロールセンタ（高圧炬心スプレイ系用）	合している。		
流電源切替盤 2 D 奚，非常用高圧母線 2 C 系，非常用高圧母	$2 D$ 系，非常用高圧母線 2 C系，非常用高圧母線 2 D 系，計測	（ $600 \mathrm{~V}, 800 \mathrm{~A}$ のものを 1 個），動力変圧器（非常用）（ 3300 kVA ，			
線2D 系，計測制御装置等で構成し，常設代替交流電源設	制御装置等で構成し，党設代替交流霫源設備又は可搬型代	6750／460V のものを2個），動力変圧器（高圧炉心スプレ	設計及び工事の計画の		
備又は可搬型代替交流電源設備の電路として使用し電力	替交流需源設僙の電路として使用し電力を供給できる設		区（2）（iv）－（13）は，設置変		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
を供給できる設計とする。 区（2）（iv）－（12）代替所内電気設備は，共通要因で設計基蕉事故対处設備である非虽用所内雷気設備と同時に機能を霖失しない設計とする。また，代替所内電気設備区（2）（iv） （13）及び非虽用所内電気設備は，区（2）（iv）－（46）少なくとも 1系統は機能の維持及び人の接近性の碓保を図る設計とす 3．	計とする。 代替所内電気設備は，共通要因で設計基集事故対処設備 である非賞用所内簂氮設備と同時に機能を霜失しない設計とする。また。代替所内電気設備及び非虽用所内電気設備は，少なくとも1系統は機能の維持及び人の接近性の確保を図る設計とする。 主要な設備は，以下のとおりとする。 - ガスタービン発電機接続盤 - 緊急用高圧母線 $2 F$ 系 - 緊急用高圧母線 2 G 系 - 緊急用動力変圧器 2 G 系 - 緊急用低圧母線 $2 G$ 系 - 緊急用交流電源切替盤 2 G 系 - 緊急用交流電源切替盤 2 C 系	御室 120 V 交流分電盤（非虽用）（ $75 \mathrm{kVA}, ~ 460 / 120 \mathrm{~V}$ のもの を4個））により構成することにより，共通要因で機能を失うことなく，区（2）（iv）－（14）少なくとも 1 系統は電力供給機能の維持及び人の接近性の確保を図る設計とする。 これとは別に区（2）（iv）－（12）上記 3 系統の非虽用母線等の機能が噩失したことにより発生する重大事故等の対応に必要な設備に電力を給電する代替所内電気設備として，ガ スタービン発電機接続盤（ 7200 V ，1200Aのものを 2 個） メタルクラッドスイッチギア（緊急用）（7200V，1200Aの ものを 3 個），動力変圧器（緊急用）（ $500 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 2 個， 750 kVA ， $6750 / 460 \mathrm{~V}$ のものを 1 個），\ldots パワ一センタタ（緊急用）（600V，3000Aのものを 1 個），モー モー タコントロールセンタ（緊急用）（600V，800Aのものを 4個），ガスタービン発電設備燃料移送ポンプ接続盤（ 600 V ， 急用）（600V，150A のものを 1 個）， 460 V 原子炬建屋交流電源切替盤（非常用）（600V，30Aのものを2個），メ タルクラッドスイッチギア（非虽用）（6900V，1200Aのも のを 2 個）， 120 V 原子炉建屋交流電源切替盤（緊急用）（ 120 V ， 30 A のものを 1 個）及び中央制御室 120 V 交流分電盤（緊急用）（20kVA，460／120V のものを 1 個）を使用できる設計 とする。 代替所内電気設備は，上記に加え，電路，計測制御装置等で構成し，常設代替交流電源設備又は可搬型代替交流電源設備の電路として使用し電力を供給できる設計とする。 また，区（2）（iv）－（14）代替所内電気設備は，，少なくとも 1 系統は機能の維持及び人の接近性を教慮した設計とする。	更許可申請書（本文（五号））の区（2）（iv）－（38を具体的に記載しており整合している。 設計及び工事の計画の区（2）（iv）－（46）は，設置変更許可申請書（本文（五号））の区（2）（iv）－（404具体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
機を用いる非常用交流電源設備に対して多樣性を有する	機を用いる非常用交流電源設備に対して多様性を有する	機を用いる非常用交流電源設備に対して多樣性を有する			
設計とする。また，可搬型代替交流電源設備は，常設代替	設計とする。また，可搬型代替交流電源設備は，常設代替	設計とする。また，可搬型代替交流電源設備は，常設代替			
交流電源設備と共通要因によって同時に機能を損なわな	交流電源設備と共通要因によって同時に機能を損なわな	交流電源設備と共通要因によって同時に機能を損なわな			
いよう，電源車をディーゼルエンジンにより駆動すること	いよう，電源車をディーゼルエンジンにより駆動すること	いよう，電源車をディーゼルエンジンにより駆動すること			
で，ガスタービンにより駆動するガスタービン発電機を用	で，ガスタービンにより駆動するガスタービン発電機を用	で，ガスタービンにより駆動するガスタービン発電機を用			
いる常設代替交流電源設備に対して多様性を有する設計	いる常設代替交流電源設備に対して多様性を有する設計	いる常設代替交流電源設備に対して多様性を有する設計			
とする。	とする。	とする。			
可搬型代替交流電源設備の電源車，ガスタービン発電設	可搬型代替交流電源設備の電源車，ガスタービン発電設	可搬型代替交流電源設備の電源車は，屋外の原子炉建屋			
備軽油タンク及びタンクローリは，屋外の原子炉建屋付属	備軽油タンク及びタンクローリは，屋外の原子炬建屋付属	付属棟から離れた場所に保管することで，原子炉建屋付属			
棟から離れた場所に設置又は保管することで，原子炉建屋	棟から離れた場所に設置又は保管することで，原子炬建屋	棟内の非常用ディーゼル発電機及び高圧炉心スプレイ系			
付属棟内の非常用ディーゼル発電機，高圧炬心スプレイ系	付属棟内の非常用ディーゼル発電機，高圧炉心スプレイ系	ディーゼル発電機と共通要因によって同時に機能を損な			
ディーゼル発電機，非常用ディーゼル発電設備燃料デイタ	ディーゼル発電機，韭常用ディーゼル発需設備燃料デイタ	わないよう，位置的分散を図る設計とする。また，可搬型			
ンク及び高圧媔心スプレイ系ディーゼル発電設備燃料デ	ンク及び高圧焾ふプレイ系デイーゼル発霊設備燃料デ	代替交流電源設備の電源車は，屋外（緊急用電気品建屋）			
イタンク並びに原子炉建屋付属棟近傍の非常用ディーゼ	イタンク並びに原子炉建屋付属棟近傍の非虽用ディーゼ	のガスタービン発電機から離れた場所に保管することで，			
ル発需設備燃料移送ポンプ及び高圧媔心スプレイ系ディ	ル発需設備燃料移送ポンプ及び高圧炉心スプレイ系デイ	共通要因によって同時に機能を損なわないよう，位置的分			
－セせル発電設備燃料移送ポンプと共通要因によって同時	ーゼル発電設備燃料移送ポンプと共通要因によって同時	散を図る設計とする。			
に機能を損なわないよう，位置的分散を図る設計とする。	に機能を損なわないよう，位置的分散を図る設計とする。	＜中略＞			
また，可搬型代替交流電源設備の電源車及びタンクローリ	また，可搬型代替交流電源設備の電源車及びタンクローリ				
は，屋外のガスタービン発電機，ガスタービン発電設備軽	は，屋外のガスタービン発電機，ガスタービン発電設備軽	4.3 可搬型代替交流電源設備及び可搬型代替直流電源設			
油タンク及びガスタービン発電設備燃料移送ポンプから	油タンク及びガスタービン発電設備燃料移送ポンプから	備の燃料補給設備			
離れた場所に保管することで，共通要因によって同時に機	離れた場所に保管することで，共通要因によって同時に機	＜中略＞			
能を損なわないよう，位置的分散を図る設計とする。	能を損なわないよう，位置的分散を図る設計とする。	燃料補給設備のタンクローリは，屋外の原子炉建屋付属			
		棟から離れた場所に保管することで，原子炉建屋付属棟近			
		傍の燃料移送ポンプと共通要因によって同時に機能を損			
		なわないよう，位置的分散を図る設計とする。また，予備			
		のタンクローリについては，上記タンクローリと異なる場			
		所に保管する設計とする。			
		中略＞			
		2.3 可搬型代替交流電源設備			
		2．3．2 多様性，位置的分散等			
		＜中略＞			
可搬型代替交流電源設備は，電源車からの又（2）（iv）－（22）	可搬型代替交流電源設備は，電源車から非常用高圧母線	可搬型代替交流電源設備は，電源車から区（2）（iv）－（22）	設計及び工事の計画の		
非常用高圧母線までの系統において，独立した電路で系統	までの系統において，独立した電路で系統構成することに	タルクラッドスイッチギア（非常用）までの系統において，	区（2）（iv）－（22）は，設置変		
構成することにより，非常用ディーゼル発電機及び高圧炬	より，非常用ディーゼル発電機及び高圧炉心スプレイ系デ	独立した電路で系統構成することにより，非常用ディーゼ	更許可申請書（本文（五		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
用直流電源設備と共通要因によって同時に機能を損なわ	用直流電源設備と共通要因によって同時に機能を損なわ	通要因によって同時に機能を損なわないよう，位置的分散			
ないよう，位置的分散を図る設計とする。	ないよう，位置的分散を図る設計とする。	を図る設計とする。			
可搬型代替直流電源設備の電源車，ガスタービン発電設	可搬型代替直流電源設備の電源車，ガスタービン発電設	可搬型代替直流電源設備の電源車は，屋外の原子炉建屋			
備軽油タンク及びタンクローリは，屋外の原子炉建屋付属	備軽油タンク及びタンクローリは，屋外の原子炉建屋付属	付属棟から離れた場所に保管することで，原子炬建屋付属			
棟から離れた場所に設置又は保管することで，原子炉建屋	棟から離れた場所に設置又は保管することで，原子炉建屋	棟内の非常用ディーゼル発電機及び高圧炬心スプレイ系			
付属棟内の非常用ディーゼル発電機，高圧炬心スプレイ系	付属棟内の非常用ディーゼル発電機，高圧炉心スプレイ系	ディーゼル発電機と共通要因によって同時に機能を損な			
ディーゼル発電機，非常用ディーゼル発需設備燃料デイタ	ディーゼル発電機，非常用ディーゼル発檽設備燃料デイタ	わないよう，位置的分散を図る設計とする。			
ンク及び高圧彷心スプレイ系デイーゼル発電設備燃料デ	ンク及び高圧彷心スプレイ系ディーゼル発電設備燃料デ	＜中略＞			
イタンク並びに原子炉建屋付属棟近傍の非常用デイーゼ	イタンク並びに原子炉建屋付属棟近傍の非常用デイーゼ	4.3 可搬型代替交流電源設備及び可搬型代替直流電源設			
ル発簂設備燃料移送ポンプ及び高圧媔心スプレイ系ディ	ル発電設備燃料移送ポンプ及び高圧炧心スプレイ系ディ．．	備の燃料補給設備			
ーゼル発電設備燃料移送ポンプと共通要因によって同時	ーゼル発檽設備燃料移送ポンプと共通要因によって同時	＜中略＞			
に機能を損なわないよう，位置的分散を図る設計とする。	に機能を損なわないよう，位置的分散を図る設計とする。	燃料補給設備のタンクローリは，屋外の原子炉建屋付属			
		棟から離れた場所に保管することで，原子炉建屋付属棟近			
		傍の燃料移送ポンプと共通要因によって同時に機能を損			
		なわないよう，位置的分散を図る設計とする。また，予備			
		のタンクローリについては，上記タンクローリと異なる場所に保管する設計とする。			
		＜中略＞			
		3．3 可搬型代替直流電源設備			
		3．3．2 多様性，位置的分散等			
		＜中略＞			
可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車	可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車	可搬型代替直流電源設備は， 125 V 代替蓄電池及び電源車			
から 125 V 直流主母線盤2A－1 及び125V 直流主母線盤 2B－1	から 125 V 直流主母線盤2A－1 及び 125 V 直流主母線盤 2B－1	から 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び2B－1 までの系統並びに			
までの系統並びに 250 V 蓄電池及び電源車から 250 V 直流主	までの系統並びに 250 V 蓄電池及び電源車から 250 V 直流主	250 V 蓄電池及び電源車から 250 V 直流主母線盤までの系統			
母線盤までの系統において，独立した電路で系統構成する	母線盤までの系統において，独立した電路で系統構成する	において，独立した電路で系統構成することにより，非常			
ことにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$	ことにより，非常用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, ~ 125 \mathrm{~V}$	用直流電源設備の 125 V 蓄電池 $2 \mathrm{~A}, 2 \mathrm{~B}$ 及び 2 H から 125 V 直			
蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤 2 A ，	蓄電池 2 B 及び 125 V 蓄電池 2 H から 125 V 直流主母線盤 2 A ，	流主母線盤2A，2B 及び 2 H までの系統に対して，独立性を			
125 V 直流主母線盤2B及び125V 直流主母線盤2H までの系	125 V 直流主母線盤 2 B 及び 125 V 直流主母線盤2 2 H までの系	有する設計とする。			
統に対して，独立性を有する設計とする。	統に対して，独立性を有する設計とする。				
これらの多様性及び位置的分散並びに電路の独立性に	これらの多様性及び位置的分散並びに電路の独立性に	これらの多様性及び位置的分散並びに電路の独立性に			
よって，可搬型代替直流電源設備は非常用直流電源設備に	よって，可搬型代替直流電源設備は非常用直流電源設備に	よって，可搬型代替直流電源設備は非常用直流電源設備に			
対して独立性を有する設計とする。	対して独立性を有する設計とする。	対して独立性を有する設計とする。			
可搬型代替直流電源設備の電源車の接続箇所は，共通要	可搬型代替直流電源設備の電源車の接続箇所は，共通要	可搬型代替直流電源設備の電源車の接続箇所は，共通要			
因によって接続できなくなることを防止するため，位置的	因によって接続できなくなることを防止するため，位置的	因によって接続できなくなることを防止するため，位置的			
分散を図った複数箇所に設置する設計とする。	分散を図った複数箇所に設置する設計とする。	分散を図った複数箇所に設置する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
ガスタービン発電設備燃料移送ポンプ	（1）常設代替交流電源設備 c．ガスタービン発電設備燃料移送ポンプ	【非虽用需源設備】（要目表） 8．1．2．3 ガスタービン発電設備 （4）燃料設備	「ガスタービン発電設	
区（2）（iv）－（2）（「又（3）（vi））緊急時対策所」と兼用） 区（2）（iv）－（3）台数 $\underline{2}$ 容量 約 $3.0 \mathrm{~m}^{3} / \mathrm{h}$（1台当たり）	台 数 $\underline{2}$ 容 量 約 $3.0 \mathrm{~m} 3 / \mathrm{h}(1$ 台当たり $)$ 全圧力 約 0.5 XPa ［gage］		備燃料移送ポンプ」は，設置変更許可申請書（本文（五号））における区 （2）（iv）－（29）を設計及び工事の計画における「そ の他発電用原子炉の附属施設」のらち「非常用電源設備」に整理してお り整合している。 設計及び工事の計画の区（2）（iv）－（30）は，設置変更許可申請書（本文（五号））の区（2）（iv）－（30 と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	（1）常設代替交流電源設備 e．タンクローリ （2）可搬型代替交流電源設備 d．タンクローリ 第 10．2－1 表 代替電源設備の主要機器仕様「（1）e．．．． タンクローリ」に記載する。… （5）可搬型代替直流電源設備 h．タンクローリ 第 $10.2-1$ 表 代替電源設備の主要機器仕様「（1）e．．． タンクローリ」に記載する。 （7）燃料補給設備 c．タンクローリ 第 $10.2-1$ 表 代替靁源設備の主要機器估樣「（1）e．．．． タンクローリ」に記載する。	【補機駆憅用燃料設備】（要目表） 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （2）容器（可搬型） 邓（2）（iv）－（43	「タンクローリ」は，設置変更許可申請書（本文 （五号））における区（2） （iv）－（42）を設計及び工事の計画における「その他発電用原子炉の附属施設」のうち「補機駆動用燃料設備」に整理して おり整合している。 設計及び工事の計画の区（2）（iv）－43 は，設置変更許可申請書（本文（五号））の 又（2）（iv）－（43）と同義であり整合してい る。	

	設置変更許可申請書（添付書類八）該当事項	設計	び工事の計画	該当事項	整合性	備	考

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
		【火災防護設備】（基本設計方針）			
（3）その他の主要な事項	10.5 火災防護設備	1．火災防護設備の基本設計方針			
（i）火災防護設備	10．5．1 設計基準対象施設				
a．設計基準対象施設	10．5．1．1 概要	区（3）（ i ）a．－（1）設計基漼対象施設は，火災により発需用	設計及び工事の計画の		
区（3）（i）a．－（1）火災防護設備は，少災区域及び火災区画	発電用原子炉施設内の火災区域及び火災区画に設置さ	原子炬施設の安全性を損なわないよう，兆災防護上重要な	区（3）（ i ）a．－1 は，設置		
を考慮し，火災感知，消火又は火災の影響軽減の機能を有	れる，安全機能を有する構築物，系統及び機器（10．5にお	機器等を設置する火災区域及び火災区画に対して，火災防	変更許可申請書（本文		
するものとする。	いて本文五口（3）（i）a ．（c）に同じ。）を火災から防護す	檴対策を講じる。	（五号））の区（3）（ i ）a．		
	ることを目的として，火災の発生防止，火災の感知及び消	＜中略＞	－（1）と文章表現は異な		
	火並びに火災の影響軽減のそれぞれを考慮した火災防護	設定する区（3）（ i ）a．－（1）火災区域及び火災区画に対し	るが，内容に相違はない		
	対策を講じる。	て，以下に示す火災の発生防止，，火災の感知及び消火並び	ため整合している。		
	＜中略＞	に火災の影響軽減のそれぞれを考慮した火災防櫵対策を講じる設計とする			
		なお，発電用原子炉施設のうち，火災防護上重要な機器			
		等又は重大事故等対処施設に含まれない構築物，系統及び			
		機器は，「消防法」，「建築基準法」，「日本電気協会電			
		気技術規程•指針」に基づき設備に応じた火災防護対策を			
		講じる設計とする。			
		＜中略＞			
		1.2 火災の感知及び消火			
	10．5．1．4 主要設備	1．2．1 火災感知設備			
	（2）火災感知設備	火災感知設備の火災感知器は，火災区域又は火災区画に	設計及び工事の計画の		
火災感知設備は，固有の信号を発するアナログ式の煙感	火災感知設備の火災感知器は，各火災区域又は火災区画	おける放射線，取付面高さ，温度，湿度，空気流等の環境	区（3）（i）a．－22は，設置		
知器及びアナログ式の熱感知器を区（3）（ i ）a．－（2）組み合わ	における放射線，取付面高さ，温度，湿度，空気流等の環	条件，予想される火災の性質を考慮し，火災感知器を設置	変更許可申請書（本文		
せて設置することを基本とするが，各火災区域又は火災区	境条件や，炎が生じる前に発煙すること等，予想される炎	する火災区域又は火災区画の火災防護上重要な機器等及	（五号））の区（3）（ i ）a．		
画における放射線，取付面高さ，温度，湿度，空気流等の	災の性質を考慮して，火災感知器を設置する火災区域又は	び重大事故等対処施設の種類に応じ，火災を早期に感知で	－（2）を具体的に記載し		
環境条件や火災の性質を考慮し，又（3）（ i ）a．－（3）上記の設	火災区画の安全機能を有する構築物，系統及び機器の種類	きるよう，固有の信号を発するアナログ式の煙感知器及び	ており整合している。		
置が適切でない場合においては，非アナログ式の炎感知	に応じ，火災を早期に感知し，誤作動を防止するために，	アナログ式の熱感知器の区（3）（i）a．－2 ）異なる種類の火災			
器，非アナログ式の防爆型の煙感知器，非アナログ式の防	固有の信号を発するアナログ式の煙感知器及びアナログ	感知器を組み合わせて設置する設計とする。	設計及び工事の計画の		
爆型の熱感知器等の火災感知器も含めた中から2つの異	式の熱感知器の異なる種類の感知器を組み合わせて設置		区（3）（i）a．－3 は，設置		
なる種類の感知器を設置する。	する設計とする。	区（3）（i）a．－（3）ただし，発火性又は引火性の雰囲気を形	変更許可申請書（本文		
	ただし，発火性又は引火性の雰囲気を形成するおそれの	成するおそれのある場所及び屋外等は，環境条件や火災の	（五号））の区（3）（ i ）a．		
	ある場所及び屋外等は，非アナ口グ式も含めた組み合わせ	性質を考慮し，非アナログ式の炎感知器，アナログ式の屋	－（3）を具体的に記載し		
	で設置する設計とする。炎感知器は非アナログ式である	外仕様の熱感知カメラ，非アナログ式の屋外仕様の炎感知	ており整合している。		
	が，炎が発する赤外線又は紫外線を感知するため，炎が生	器，非アナログ式の防爆型の煙感知器及び非アナログ式の			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，中央制御室で常時監視可能な火災受信機盤を設置 する。 区（3）（i）a．－－4 消火設備は，破損，誤作動又は誤操作に より，安全機能を有する構築物，系統及び機器（「口（3）（i） a．（ $\mathrm{c}-1-2$ ），火災防護対策を講じる安全機能を有する構築物，系統及び機器の抽出」と同じ）の安全機能を損なわ ない設計とし，又（3）（i）a．－（5）火災発生時の煙の充満又は放射線の影響により消火活動が困難である火災区域又は	じた時点で感知することができ，火災の早期感知が可能で ある。 ＜中略＞ 水素等による引火性又は発火性の雰囲気を形成するお それのある場所（蓄電池室）は，万一の水素濃度の上昇を考慮し，火災を早期に感知できるよう，非アナログ式の防爆型で，かつ固有の信号を発する異なる種類の煙感知器及 び熱感知器を設置する設計とする。 また，火災により安全機能への影響が考えにくい火災防護対象機器のみを設けた火災区域又は火災区画について は，「消防法」又は「建築基準法」に基づく火災感知器を設置する設計とする。 10．5．1．7 手順等 （1）火災が発生していない平常時の対応においては，以下の手順を整備し，操作を行う。 a．中央制御室内の巡視点検によって，火災が発生してい ないこと及び火災感知設備に異常がないことを火災受信機盤で確認する。 10．5．1．1 概要 <中略 > 火災感知設備及び消火設備は，想定される自然現象に対 して当該機能が維持され，かつ，安全機能を有する構築物，系統及び機器は，消火設備の破損，誤動作又は誤操作によ つて安全機能を失うことのないように設置する。	防爆型の熱感知器も含めた組み合わせで設置する設計と する。 火災感知器については，消防法施行規則に従い設置す る，又は火災区域内の感知器の網羅性及び火災報知設備の感知器及び発信機に係る技術上の規格を定める省令に定 める感知性能と同等以上の方法により設置する設計とす る。 非アナログ式の火災感知器は，環境条件等を考慮するこ とにより誤作動を防止する設計とする。 なお，アナログ式の屋外仕様の熱感知カメラ及び非アナ ログ式の屋外仕様の炎感知器は，監視範囲に火災の検知に影響を及ぼす死角がないように設置する設計とする。 また，発火源となるようなものがない火災区域又は火災区画は，可燃物管理により可燃物を持ち込まない運用とし て保安規定に定めて，管理することから，火災感知器を設置しない設計とする。 火災感知設備のらち火災受信機盤は中央制御室に設置 L，火災感知設備の作動状況を常時監視できる設計とす る。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を 1 つずつ特定できる設計と する。屋外の海水ポンプ室（補機ポンプエリア）及びガス タービン発電設備燃料移送ポンプを監視するアナログ式 の屋外仕様の熱感知カメラの火災受信機盤においては，カ メラ機能による映像監視（熱サーモグラフィ）により火災発生箇所の特定が可能な設計とする。 ＜中略＞ 1．2．2 消火設備 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の区（3）（i）a．－（4）消火設備 は，破損，誤作動又は誤操作が起きた場合においても，原子炬を安全に停止させるための機能又は重大事故等に対処するために必要な機能を有する電気及び機械設備に影響を与えない設計とし，区（3）（i）a．－（5）火災発生時の煙の	設計及び工事の計画の区（3）（i）a．－4 4 は，設置変更許可申請書（本文 （五号））の 区（3）（i ）a． －（4）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
火災区画であるかを考盧し，全域がス消火設備等を設置す る．．． 区（3）（i）a．－（6）火災の影響軽減の機能を南するものとし て，安全機能を有する構築物，系統及び機器の重要度に応 じ，それらを設置する火災区域又（3）（ i ）a．－7 又 又は火災区画の火災及び隣接する火災区域又は少災区画の火災によ る影響を軽減するため，火災耐久試験で確認された 3 時間以上の耐火能力を有する耐火壁又は1時間以上の耐火能力を有する隔壁等を設置する。	10．5．1．1 概要 ＜中略＞ 火災の影響軽減は，安全機能を有する構築物，系統及び機器の重要度に応じ，それらを設置する火災区域又は火災区画の火災及び隣接する火災区域又は火災区画における火災による影響を軽減するため，系統分離等の火災の影響軽減のための対策を行う。 ＜中略＞ 10．5．1．4 主要設備 （4）火災の影響軽減のための対策設備 b．火災防護対象機器及び火災防護対象ケーブルの火災の影響軽減のための対策を実施する設備 火災防護対象機器及び火災防護対象ケーブルを設置す る火災区域又は火災区画に対して，火災区域又は火災区画内の火災の影響軽減のための対策や隣接する火災区域又 は火災区画における火災の影響を軽減するための対策を実施するための隔壁等として，火災耐久試験により 3 時間以上の耐火能力を確認した隔壁等を設置する。 また，これと同等の対策として火災耐久試験により 1 時間以上の耐火能力を確認した隔壁等と火災感知設備及び消火設備を設置する。	充満又は放射線の影響により消火活動が困難となるとこ ろは，自動消火設備又は手動操作による固定式消火設備で あるハロンガス消火設備及びケーブルトレイ消火設備を設置して消火を行う設計とする。 火災発生時の煙の充満又は放射線の影響により消火活動が困難とならないところは，消火器，移動式消火設備又 は消火栓により消火を行ら設計とする。 <中略 > 【火災防護設備】（基本設計方針） 1．火災防護設備の基本設計方針 < 中略 > 建屋内のらち，区（3）（i）a．－（6）火災の影響軽減の対策が必要な原子炉の高温停止及び低温停止を達成し，維持する ための安全機能を有する構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域は，又（3）（i）a．－7 7 3 時間以上の耐火能力を有する耐火壁として， 3 時間耐火に設計上必要な コンクリート壁厚である 150 mm 以上の壁厚を有するコンク リート壁や火災耐久試験により3時間以上の耐火能力を有 することを確認した耐火壁（貫通部シール，防火扉，防火 ダンパ）により隣接する他の火災区域と分離するように設定する。 ＜中略＞ 1.3 火災の影響軽減 1．3．1 火災の影響軽減対策 <中略 > 区（3）（i）a．－66火災が発生しても原子炉の高温停止及び低温停止を達成し，維持するためには，プロヤスを監視し ながら原子炉を停止し，冷却を行うことが必要でありっこ のためには，手動操作に期待してでも原子炬の高温停止及 び低温停止を達成し，維持するために必要な機能を少なく とも 1 つ確保するように系統分離対策を講じる必要があ る。	設計及び工事の計画の区（3）（i）a．－（5）は，設置変更許可申請書（本文 （五号））の区（3）（i ）a． －（5）を具体的に記載し ており整合している。 設計及び工事の計画の区（3）（i）a．－（6）は，設置変更許可申請書（本文 （五号））の 又（3）（i ）a． －（6）を具体的に記載し ており整合している。 設計及び工事の計画の区（3）（i）a．－7 $は$ は，設置変更許可申請書（本文 （五号））の区（3）（i ）a． －（7）を具体的に記載し ており整合している。		

b．重大事故等対処施設

区（3）（i）b．－（1）火災防櫵設備は，，火災区域及び火災区画
を考慮し，火災感知又は消火の機能を直するものとする。

火災感知設備は，固有の信号を発するアナログ式の煙感知器，アナログ式の熱感知器を 叉（3）（i ）b．－（2）組み合わせ て設置することを基本とするが，各火災区域又は火災区画 における放射線，取付面高さ，温度，湿度，空気流等の環境条件や火災の性質を考慮し，又（3）（i ）b．－（3）上記の設置

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
		このため，火災防護対象機器等に対して，以下に示す火災の影響軽減対策を講じる設計とする。 （1）火災防護対象機器等の系統分離による影響軽減対策 a． 3 時間以上の耐火能力を有する隔壁等 互いに相違する系列の火災防護対象機器等は，区 （3）（i）a．－7 火災耐久試験により 3 時間以上の耐火能力を確認した隔壁等で分離する設計とする。．．． c． 1 時間耐火隔壁等，火災感知設備及び自動消火設備互いに相違する系列の火災防護対象機器等は，叉 （3）（i）a．－7 火災耐久試験により1時間以上の耐火能力を確認した隔壁等で分離する設計とする。… <中略 >			
b．重大事故等対処施設	10．5．2 重大事故等対処施設 10．5．2．1 概要	1．火災防護設備の基本設計方針 ＜中略＞			
	発電用原子炉施設内の火災区域及び火災区画に設置さ	区（3）（ i ）b．－（1）重大事故等対処施設は，火災により重大	設計及び工事の計画の		
を考慮し，火災感知又は消火の機能を有するものとする。	れる重大事故等対処施設を火㷋から防護することを目的	事故等に対処するために必要な機能が損なわれないよう，			
	として，火災の発生防止，火災の感知及び消火のそれぞれ を考慮した小仱防萑対策を講じる	重大事故等対処施設を設置する火災区域及び火災区画に対して 小水防櫵対策を講じる	変更許可申請書（本文		
	＜中略＞	＜中略＞	－（1）と同義であり整合		
		区（3）（i ）b．－（1）設定する火災区域及び火災区画に対し て，以下に示す火災の発生防止，火災の感知及び消火並び に火災の影響軽減のそれぞれを考盧した火災防櫵対策を講じる設計とする。．． ＜中略＞	している。		
	10．5．2． 4 主要設備 （2）火災感知設備	1．2 火災の感知及び消火 1．2．1 火災感知設備			
火災感知設備は，固有の信号を発するアナログ式の煙感	火災感知設備の火災感知器は，各火災区域又は火災区画	火災感知設備の火災感知器は，火災区域又は火災区画に	設計及び工事の計画の		
知器，アナログ式の熱感知器を区（3）（i）b．－（2）組み合わせ	における放射線，取付面高さ，温度，湿度，空気流等の環	おける放射線，取付面高さ，温度，湿度，空気流等の環境	区（3）（i）b．－（2）は，設置		
て設置することを基本とするが，各火災区域又は火災区画 における放射線，取付面高さ，温度，湿度，空気流等の環	境条件や，炎が生じる前に発煙すること等，予想される炎災の性質を考慮して，火災感知器を設置する火災区域又は	条件，予想される火災の性質を考慮し，火災感知器を設置 する火災区域又は火災区画の火災防護上重要な機器等及	変更許可申請書（本文 (五号)) の区(3) (i) b.		
境条件や火災の性質を考慮し，叉（3）（ i ）b．－（3）上記の設置	火災区画の重大事故等対処施設の種類に応じ，火災を早期	び重大事故等対処施設の種類に応じ，火災を早期に感知で	－（2）を具体的に記載し		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
が適切でない場合においては，非アナログ式の炎感知器，非アナログ式の防爆型の煙感知器，非アナログ式の防爆型 の熱感知器等の火災感知器も含めた中から2つの異なる種類の感知器を設置する。 また，中央制御室で常時監視可能な火災受信機盤を設置 する。	に感知し，誤作動を防止するために，固有の信号を発する アナログ式の煙感知器，アナログ式の熱感知器の異なる種類の感知器を組み合わせて設置する設計とする。 ただし，発火性又は引火性の雰囲気を形成するおそれの ある場所及び屋外等は，非アナログ式も含めた組合せで設置する設計とする。炎感知器は非アナログ式であるが，炎 が発する赤外線又は紫外線を感知するため，炎が生じた時点で感知することができ，火災の早期感知が可能である。 c．蓄電池室 充電時に水素発生のおそれがある蓄電池室は，万一の水素濃度の上昇を考慮し，火災を早期に感知できるよう，非 アナログ式の防爆型で，かつ固有の信号を発する異なる種類の煙感知器及び熱感知器を設置する設計とする。 10．5．2．7 手順等 （1）火災が発生していない平常時の対応においては，以下の手順を整備し，操作を行う。 a．中央制御室内の巡視点検によって，火災が発生してい ないこと及び火災感知設備に異常がないことを火災受信機盤で確認する。	きるよう，固有の信号を発するアナログ式の煙感知器及び アナログ式の熱感知器の区（3）（i）b．－（2）異なる種類の火炎感知器を組み合わせて設置する設計とする。 区（3）（i）b．－（3）ただし，発火性又は引少性の雰囲気を形成するおそれのある場所及び屋外等は，環境条件や火災の性質を考慮し，非アナログ式の炎感知器，アナログ式の屋外仕様の熱感知カメラ，非アナログ式の屋外仕様の炎感知器，非アナログ式の防爆型の煙感知器及び非アナログ式の防爆型の熱感知器も含めた組み合わせで設置する設計と する。 ＜中略＞ 火災感知設備のうち炏災受信機盤は中央制御室に設置 し，火災感知設備の作動状況を常時監視できる設計とす る。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を1つずつ特定できる設計と する。屋外の海水ポンプ室（補機ポンプエリア）及びガス タービン発電設備燃料移送ポンプを監視するアナログ式 の屋外仕様の熱感知カメラの火災受信機盤においては，カ メラ機能による映像監視（熱サーモグラフィ）により火災発生箇所の特定が可能な設計とする。 火災感知器は，自動試験機能又は遠隔試験機能により点検ができる設計とする。 自動試験機能又は遠隔試験機能を持たない火災感知器 は，機能に異常がないことを確認するため，「消防法施行規則」に準じ，煙等の火災を模擬した試験を実施する。 < 中略 > 1．2．2 消火設備	ており整合している。 設計及び工事の計画の区（3）（i）b．－3 は，設置変更許可申請書（本文 （五号））の区（3）（i）b． －（3）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
区（3）（ i ）b．－（4）消火設備は，破損，誤作動又は䛊操作に	＜中略〉	火災防護上重要な機器等及び区（3）（ i ）b．－（4）重大事故等	設計及び工事の計画の		
より，重大事故等対処施設の重大事故等に対処するために	火災感知設供及び消火設備は，想定される自然現象に対	対処施設を設置する火災区域又は火災区画の消火設備は，	区（3）（i）b．－（4）は，設置		
必要な機能を損なわない設計とし，区（3）（i）b，－（5）火災発	して当該機能が維持され，かつ，重大事故等対処施設は，	破損，誤作動又は誤操作が起きた場合においてもも，原子炉	変更許可申請書（本文		
生時の煙の充满又は放射線の影響により消火活動が困難	消火設備の破損，誤動作又は誤操作によって重大事故等に	を安全に停止させるための機能又は重大事故等に対処す	（五号））の区（3）（ i ）b		
である火火火火災区域又は火火火火区欠区画であるかを考慮し，全域がス	対処する機能を失らことのないように設置する。	るために必要な機能を有する電気及び機械設備に影響を	－（4）と文章表現は異な		
消火設備等を設置する。		与えない設計とし，区（3）（i）b．一司火災発生時の煙の充满又は放射線の影響により消火活動が困蜼となるところは	るが，内容に相違はない ため僌合している。		
		自動消炎設備又は手動操作による固定式消火設備である	ため整合している。		
		ヘロンガス消火設備及びケーブルトレイ消火設備を設置	設計及び工事の計画の		
		して消火を行う設計とする。．．	邓（3）（i）b．－⑤ は，設置		
		火災発生時の燰の充満又は放射線の影響により消火活	変更許可申請書（本文		
		動が困難とならないところは，消火器，移動式消火設備又	（五号））の 叉（3）（i）b．		
		は消火栓により消火を行ら設計とする。	－（5）を具体的に記載し		
		＜中略〉	ており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	め， 2 号及び 3 号炉の流入経路となる可能性のある開口部	流入を防止するための津波防護施設として，防潮堤を設置			
	（ 2 号炬海水ポンプ室スクリーンエリア， 3 号炬海水ポン	する設計とする。			
	プ室スクリーンエリア， 2 号炉放水立坑， 3 号炉放水立坑	＜中略＞			
	及び 3 号炬海水熱交換器建屋取水立坑）に対して，防潮壁				
	を設置する。	（2）取水路，放水路等の経路からの津波の流入防止			
	＜中略＞	＜中略＞			
	（3）取放水路流路縮小工	評価の結果，流入する可能性のある経路が特定されたこ			
	海と連接する取水路，放水路から設計基準対象施設の津	とから，津波防護対象設備（非常用取水設備を除く。）を			
	波防護対象設備（津波防護施設，浸水防止設備，津波監視	内包する建屋及び区画の設置された敷地並びに建屋及び			
	設備及び非常用取水設備を除く。）への流入を防止するた	区画への流入を防止するため，津波防護施設として防潮壁			
	め， 1 号炉取水路及び1 号炉放水路内にコンクリート製の	及び取放水路流路縮小工を設置する設計とする。また，浸			
	取放水路流路縮小工を設置する。	水防止設備として逆流防止設備，水密扉，浸水防止蓋及び			
	＜中略＞	逆止弁付ファンネルを設置並びに貫通部止水処置を実施			
	（4）貯留堰	する設計とする。			
	基準津波による水位低下時においても，非常用海水ポン	＜中略＞			
	プによる補機冷却に必要な海水を確保するため，取水口底				
	盤に設置する。	1．3．3 津波による溢水の重要な安全機能及び重大事故等			
	＜中略＞	に対処するために必要な機能への影響防止（内郭防護）			
	（5）逆流防止設備	（2）浸水防護重点化範囲の境界における浸水対策			
	設計基準対象施設の津波防護対象施設を内包する建屋	＜中略＞			
	及び区画に対して津波による影響が発生することを防止	評価の結果，浸水防護重点化範囲への浸水の可能性のあ			
	する浸水防止設備として，防潮堤及び防潮壁の横断部に逆	る経路，浸水口が特定されたことから，地震による設備の			
	流防止設備を設置する。	損傷箇所からの津波の流入を防止するための浸水防止設			
	＜中略＞	備として，浸水防止壁，水密扉及び浸水防止蓋の設置並び			
	（6）水密扉	に貫通部止水処置を実施する設計とする。			
	取水路，放水路を流入経路とした津波により浸水する区				
	画と設計基準対象施設の津波防護対象施設を内包する建	1．3．4 水位変動に伴う取水性低下及び津波の二次的な影			
	屋及び区画とを接続する経路上に浸水防止設備として水	響による重要な安全機能及び重大事故等に対処するた			
	密扉を設置する。設置位置は，3号炬海水熱交換器建屋補	めに必要な機能への影響方止			
	機ポンプエリアから海水熱交換器建屋取水立坑へのアク	（1）非常用海水ポンプ，大容量送水ポンプ（タイプ I）			
	セス用入口である。また，地震による海水采機器等の損傷	及び大容量送水ポンプ（タイプII）の取水性			
	による溢水が原子炉建屋及び制御建屋に流入することを	<中略>			
	防止するため，浸水防護重点化範囲の境界に浸水防止設備	評価の結果，海水ポンプ室の下降側の評価水位が非常用			
	として水密扉を設置する。	海水ポンプの取水可能水位を下回ることから，津波防護施			
	＜中略＞	設として，海水を貯留するための貯留堰を設置すること			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	（7）浸水防止蓋	で，取水性を確保する設計とする。<中略 >			
	取水路，放水路を流入経路とした津波により浸水する区				
	画と設計基準対象施設の津波防護対象施設を内包する建				
	屋及び区画とを接続する経路の床面に設置する。設置位置				
	は， 3 号炉海水熱交換器建屋補機ポンプエリアの床開口				
	部， 2 号炉海水ポンプ室スクリーンエリアから補機冷却系				
	トレンチへのアクセス用入口，2号炬海水ポンプ室防潮壁				
	及び3号炉海水ポンプ室防潮壁区画内の揚水井戸並びに				
	3 号炬補機冷却海水系放水ピットの開口部である。また，				
	地震による屋外タンクの損傷等による溢水が軽油タンク				
	エリアに流入することを防止するため，浸水防護重点化範				
	囲の境界に浸水防止設備として浸水防止蓋を設置する。				
	＜中略＞				
	（8）浸水防止壁				
	基準地震動S S による地震力に対して耐震性が確保さ				
	れない屋外に設置されたタンク・貯槽類の複数同時破損に				
	より生じる屋外の溢水に加え，基準津波が発生した場合に				
	津波の襲来によって2号炉放水立坑防潮壁の水位が上昇				
	し，逆流防止設備が「閉」となることで， 2 号炉放水立坑				
	に接続する補機冷却海水系放水路からの海水ポンプ排水				
	が一時的に放水立坑へ排出できなくなり，補機冷却海水系				
	放水路より海水が溢れることから，海水ポンプ室補機ポン				
	プエリアへの溢水の流入防止を考慮し補機ポンプエリア				
	周りに浸水防止壁を設置する。				
	＜中略＞				
	（9）逆止弁付ファンネル				
	取水路を流入経路とした津波により浸水する区画と設				
	計基準対象施設の津波防護対象施設を内包する建屋及び				
	区画とを接続する経路上に設置する。				
	＜中略＞				
	（10）貫通部止水処置				
	海水ポンプ室スクリーンエリア及び放水立坑に津波が				
	流入した場合に海水ポンプ室補機ポンプエリア，海水ポン				
	プ室循環水ポンプエリア及び敷地への浸水防止を目的と				
	して， 2 号炉海水ポンプ室スクリーンエリア及び 2 号炉放				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	水立坑エリアの防潮壁下部貫通部，3号炉海水ポンプ室ス				
	クリーンエリア及び3号炬放水立坑エリアの防潮壁下部				
	貫通部にシリコンシール材施工又はブーツラバー施工を				
	実施するものである。また，地震による海水采機器等の損				
	傷による溢水が原子炬建屋，制御建屋及び軽油タンクエリ				
	アに流入することを防止するため，浸水防護重点化範囲の				
	境界に浸水防止設備として貫通部止水処置を実施する。				
	＜中略＞				
	10．6．1．2 重大事故等対处施設				
	10．6．1．2．4 主要設備				
	（1）防潮堤				
	「10．6．1．1 設計基準対象施設 10．6．1．1．4 主要設備」				
	に同じ。				
	（2）防潮壁				
	「10．6．1．1 設計基準対象施設 10．6．1．1．4 主要設備」 に同じ。				
	（3）取放水路流路縮小工				
	10．6．1．1 設計基準対象施設 10．6．1．1．4 主要設備				
	に同じ。				
	（4）貯留堰				
	「10．6．1．1 設計基準対象施設 10．6．1．1．4 主要設備				
	に同じ。				
	（5）逆流防止設備				
	「10．6．1．1 設計基準対象施設 10．6．1．1．4 主要設備				
	に同じ。				
	（6）水密扉				
	「10．6．1．1 設計基漼対象施設 10．6．1．1．4 主要設備				
	に同じ。				
	（7）浸水防止监				
	「10．6．1．1 設計基準対象施設 10．6．1．1．4 主要設備」				
	に同じ。				
	（8）浸水防止壁				
	「10．6．1．1 設計基準対象施設 10．6．1．1．4 主要設備」				
	に同じ。				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
b．内部溢水に対する防護設備 区（3）（ii ）b．－（1）安全施設は，．．発電用原子炬施設内におけ る溢水が発生した場合においても，叉（3）（ii）b．－（2）安全機熊を損なわない設計とする。 そのために，又（3）（ii）b．－（3）発電用原子炬施設内に設置 された機器及び配管の破損（地震起因を含む。），消火系統等の作動，使用済燃料プール等のスロッシングその他の事象による溢水が発生した場合においても，叉（3）（ii）b．－44発電用原子哣施設内における壁，扉，，堰等によりっ，溢水防護対象設備が安全機能を損なわない設計とする。また，使用済燃料プールの泠却機能及び使用済燃料プールへの給水機能を維持できる設計とする。	10．6．2 内部溢水に対する防護設備 10．6．2．1 概要 発電用原子炉施設内における溢水が発生した場合にお いても，施設内に設ける壁，扉，堰等の浸水防護設備によ り，溢水防護対象設備が，その安全機能を損なわない設計 とする。 10．6．2．2 設計方針 浸水防護設備は，以下の方針で設計する。 （1）浸水防止堰は，溢水により発生する水位や水圧に対 して流入防止機能が維持できるとともに，基準地震動S s による地震力等の溢水の要因となる事象に伴い生じ る荷重や環境に対して必要な当該機能が損なわれない設計とする。また，浸水防止堰の高さは，溢水水位に対 して裕度を確保する設計とする。 （2）水密扉は，溢水により発生する水位や水圧に対して流入防止機能が維持できるとともに，基準地震動 S s に よる地震力等の溢水の要因となる事象に伴い生じる荷重や環境に対して必要な当該機能が損なわれない設計 とする。 （3）止水壁は，溢水により発生する水位や水圧に対して流入防止機能が維持できるとともに，基準地震動 S s に よる地震力等の溢水の要因となる事象に伴い生じる荷重や環境に対して必要な当該機能が損なわれない設計 とする。 （4）（1）～（3）以外の浸水防護設備についても，溢水によ り発生する水位や水圧に対して流入防止機能が維持で きるとともに，基準地震動 S s による地震力等の溢水の要因となる事象に伴い生じる荷重や環境に対して必要 な当該機能が損なわれない設計とする。	2．発電用原子炉施設内における溢水等による損傷の防止 2.1 溢水防護等の基本方針 区（3）（ii ）b．－（1）設計基蕉対象施設が，発電用原子炉施設内における溢水が発生した場合においても，叉（3）（ii）b． （2）その安全性を損なうおそれがない設計とする。 そのために，又（3）（ii）b．－（3）溢水防護に係る設計時に発電用原子炬施設内で発生が想定される溢水の影響を評価 （以下「溢水評価」という。）し，運転状態にある場合は発電用原子炬施設内における溢水が発生した場合におい ても，区（3）（ii）b．－（4）発電用原子炬を高温停止及び，引き続き低温停止することができ，並びに放射性物質の閉じ込 め機能を維持できる設計とする。また，停止状態にある場合は，引き続きその状態を維持できる設計とする。さらに，使用済燃料プールにおいては，使用済燃料プールの泠却機能及び使用済燃料プールへの給水機能を維持できる設計 とする。 これらの機能を維持するために必要な設備（以下「溢水防護対象設備」という。）が発生を想定する没水，被水及 び蒸気の影響を受けて，その安全機能を損ならおそれがな い設計（多重性又は多様性を有する設備が同時にその機能 を損ならおそれがない設計）とする。 <中略 > 溢水影響に対し防護すべき設備（以下「防護すべき設備」 という。）として溢水防護対象設備及び重大事故等対処設備を設定する。 発電用原子炉施設内の放射性物質を含む液体を内包す る容器，配管その他の設備（ポンプ，弁，使用済燃料プー ル，原子炉ウェル，蒸気乾燥器•気水分離器ピット）から放射性物質を含む液体があふれ出るおそれがある場合に おいて，当該液体が管理区域外へ漏えいすることを防止す る設計とする。 溢水評価条件の変更により評価結果が影響を受けない ことを確認するために，評価条件変更の都度，溢水評価を実施することとし保安規定に定めて管理する。	設計及び工事の計画の区（3）（ii）b．－（1）の「設計基準対象施設」は，設置変更許可申請書（本文 （五号））の 区（3）（ii）b． －（1）の「安全施設」を含 んでおり整合している。 設計及び工事の計画の区（3）（ii）b．－（2）は，設置変更許可申請書（本文 （五号））の区（3）（ii）b． －（2）と同義であり整合 している。 設計及び工事の計画の区（3）（ii）b．－（3）は，設置変更許可申請書（本文 （五号））の区（3）（ii）b． －（3）より保守的であり整合している。 設計及び工事の計画の区（3）（ii）b．－（4）は，設置変更許可申請書（本文 （五号））の区（3）（ii）b． －（4）を含んでおり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
緊急時対策所は，重大事故等が発生した場合においても当該事故等に対処するために必要な指示を行ら要員がと どまることができるよう，邓（3）（vi）－（1）適切な措置を講じ た設計とするとともに，重大事故等に対処するために必要 な指示ができるよう，重大事故等に対処するために必要な情報を邓（3）（vi）－（2）把握できる設備及び発電所内外の通信連絡をする必要のある場所と通信連絡を行うために必䙲 な設備を設置又は保管する設計とする。	10．9．2．1 概要 緊急時対策所は，重大事故等が発生した場合において も，当該重大事故等に対処するために必要な指示を行ら要員がとどまることができるよう，適切な措置を講じた設計 とするとともに，重大事故等に対処するために必要な情報 を把握できる設備及び発電所内外の通信連絡をする必要 のある場所と通信連絡を行らために必要な設備を設置又 は保管する。また，重大事故等に対処するために必要な数 の要員を収容できる設計とする。	（4）緊急時対策所機能の確保 a．居住性の確保 緊急時対策所は，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をと るために必要な要員を収容できるとともに，それら要員が必要な期間にわたり滞在できる設計とする。 緊急時対策所は，重大事故等が発生した場合において も，重大事故等に対処するために必要な指示を行う要員に加え，原子灲格納容器の破損等による発電所外への放射性物質の拡散を抑制するための対策に対処するために必要 な数の要員を含め，重大事故等に対処するために必要な数 の要員を収容することができるとともに，重大事故等に対処するために必要な指示を行ら要員がとどまることがで きるよう，又（3）（vi）－（1）適切な遮蔽設計及び換気設計を行 い緊急時対策所の居住性を確保する。．．． ＜中略＞ b．情報の把握 緊急時対策所には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常に対処するために必要な情報及 び重大事故等が発生した場合においても当該事故等に対処するために必要な指示ができるよう，重大事故等に対処 するために必要な情報を，区（3）（vi）－（2）中央制御室内の運転員を介さずに正確かつ速やかに把握できる設備として，安全パラメータ表示システム（SPDS）を設置する。… ＜中略＞ c．通信連絡 原子炉冷却系統に係る発電用原子炉施設の損壊その他 の異常が発生した場合において，当該事故等に対処するた め，発電所内の関係要員に指示を行らために必要な通信連絡設備及び発電所外関係箇所と専用であって多様性を備 えた通信回線にて通信連絡できる設計とする。 緊急時対策所には，区（3）（vi）－（2）重大事故等が発生した場合においても発電所の内外の通信連絡をする必要のあ る場所と通信連絡できる設計とする。 原子炉冷却系統に係る発電用原子炉施設の損壊その他	設計及び工事の計画の邓（3）（vi）－（1）は，設置変更許可申請書（本文（五号））の区（3）（vi）－（1）を具体的に記載しており整合している。 設計及び工事の計画の邓（3）（vi）－（2）は，設置変更許可申請書（本文（五号））の区（3）（vi）－（2 を具体的に記載しており整合している。	

また，重大事故等に対処するために必要な数の要員を収容できる設計とする。

設置変更許可申請書（添付書類八）該当事項
の異常が発生した場合において，通信連絡設備により，発電所内から発電所外の緊急時対策支援システム（ERSS）～必要なデータを伝送できるデータ伝送設備として，SPDS 伝送装置を設置する設計とする。
データ伝送設備については，通信方式の多様性を確保し た専用通信回線にて伝送できる設計とする。
緊急時対策支援システム（ERSS）～必要なデータを伝送 できる SPDS 伝送装置で構成するデータ伝送設備について は，重大事故等が発生した場合においても必要なデータを伝送できる設計とする。

1．緊急時対策所
1．1 緊急時対策所の設置等
1．1．2 設計方針
（4）緊急時対策所機能の確保
a．居住性の確保
緊急時対策所は，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をと るために必要な要員を収容できるとともに，それら要員が必要な期間にわたり滞在できる設計とする。

緊急時対策所は，重大事故等が発生した場合において
も，重大事故等に対処するために必要な指示を行う要員に
加え，原子炉格納容器の破損等による発電所外への放射性物質の拡散を抑制するための対策に対処するために必要 な数の要員を含め，重大事故等に対処するために必要な数 の要員を収容することができるとともに，重大事故等に対処するために必要な指示を行う要員がとどまることがで きるよう，適切な遮蔽設計及び換気設計を行い緊急時対策所の居住性を確保する。

＜中略＞

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
緊急時対策所は，重大事故等に対処するために必要な指示を行う要員に加え，原子炉格納容器の破損等による発電所外への放射性物質の拡散を抑制するための対策に対処 するために必要な要員を含め，重大事故等に対処するため に必要な数の要員を収容することができる設計とする。 重大事故等が発生し，緊急時対策所の外側が放射性物質 により汚染したような状況下において，対策要員が緊急時対策所内に放射性物質による汚染を持ち込むことを防止 するため，身体サーベイ及び作業服の着替え等を行らため の区画を設置する設計とする。身体サーベイの結果，対策要員の污染が確認された場合は，対策要員の除染を行うこ とができる区画を，身体サーベイを行う区画に隣接して設置することができるよう考慮する。	緊急時対策所は，重大事故等に対処するために必要な指示を行う要員に加え，原子炉格納容器の破損等による発電所外への放射性物質の拡散を抑制するための対策に対処 するために必要な数の要員を含め，重大事故等に対処する ために必要な数の要員を収容することができる設計とす る。 重大事故等が発生し，緊急時対策所の外側が放射性物質 により汚染したような状況下において，重大事故等対策要員（以下「対策要員」という。）が緊急時対策所内に放射性物質による污染を持込むことを防止するため，身体サー ベイ及び作業服の着替え等を行らための区画を設置する設計とする。身体サーベイの結果，対策要員の汚染が確認 された場合は，対策要員の除染を行うことができる区画 を，身体サーベイを行う区画に隣接して設置することがで きるよう考慮する。	（4）緊急時対策所機能の確保 a．居住性の確保 ＜中略＞ 緊急時対策所は，重大事故等が発生した場合において も，重大事故等に対処するために必要な指示を行う要員に加え，原子炉格納容器の破損等による発電所外への放射性物質の拡散を抑制するための対策に対処するために必要 な数の要員を含め，重大事故等に対処するために必要な数 の要員を収容することができるとともに，重大事故等に対処するために必要な指示を行う要員がとどまることがで きるよう，適切な遮蔽設計及び換気設計を行い緊急時対策所の居住性を確保する。 ＜中略＞ 【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.1 中央制御室及び緊急時対策所の居住性を確保するた めの防護措置 ＜中略＞ 緊急時対策所は，重大事故等が発生し，緊急時対策所の外側が放射性物質により污染したような状況下において，対策要員が緊急時対策所内に放射性物質による汚染を持込むことを防止するため，身体サーベイ及び作業服の着替完等を行らための区画を設置する設計とする。身体サーベ イの結果，対策要員の污染が確認された場合は，対策要員 の除染を行うことができる区画を，身体サーベイを行う区画に隣接して設置することができるよう考慮する。 【緊急時対策所】（基本設計方針） （4）緊急時対策所機能の確保 a．居住性の確保 緊急時対策所は，重大事故等が発生し，緊急時対策所の外側が放射性物質により污染したような状況下において，対策要員が緊急時対策所内に放射性物質による汚染を持込むことを防止するため，身体サーベイ及び作業服の着替			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
区（3）（vi）－（6）重大事故等が発生した場合においても，当該事故等に対処するために必要な指示を行ら要員がとど まることができるよう，緊急時対策所の居住性を確保する ための設備として，緊急時対策所遮蔽，緊急時対策所換気空調系，緊急時対策所加圧設備，酸素濃度計，二酸化炭素濃度計，可搬型モニタリングポスト及び緊急時対策所可搬型エリアモニタを設ける。	（1）居住性を確保するための設備 重大事故等が発生した場合においても，当該事故等に対処するために必要な指示を行ら要員がとどまることがで きるよう，緊急時対策所の居住性を確保するための設備と して，緊急時対策所遮蔽，緊急時対策所換気空調系，緊急時対策所加圧設備，酸素濃度計，二酸化炭素濃度計，可搬型モニタリングポスト及び緊急時対策所可搬型エリアモ ニタを設ける。	元等を行らための区画を設置する設計とする。身体サー心゙ 1の結果，対策要員の活染が確認された場合は，対策要員 の除染を行うことができる区画を，身体サーベイを行ら区画に隣接して設置することができるよう考慮する。 （4）緊急時対策所機能の碓保 a．居住性の碓保 ＜中略＞ 緊急時対策所は，重大事故等が発生した場合において も，区（3）（vi）－（6）重大事故等に対処するために必要な指示 を行う要員に妿え，原子炬格納容器の破損等による発電所外への放射性物質の掋散を抑制するための対策に対処す るために必要な数の要員を含め，重大事故等に対処するた めに必要な数の要員を収容することができるとともに，重太事故等に対処するために必要な指示を行ら要員がとど まることができるよら，適切な遮蔽設計及び換気設計を行 い緊急時対策所の居住性を碓保する。 <中略> 【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.1 中央制御室及び緊急時対策所の居住性を碓保するた めの防謢措置 <中略> 重大事故等が発生した場合においても，当該事故等に対処するために必要な指示を行ら要員がとどまることがで きるよう，緊急時対策所の居住性を碓保するための設備と して，緊急時対策所遮蔽， 2 次しやへい壁，補助しやへい，緊急時対策所換気空調系，緊急時対策所加圧空気供給系，酸素浱度計（緊急時対策所用），二酸化炭素浱度計（緊急時対策所用），緊急時対策所可搬型エリアモニタ及び可般型モニタリングポストを設ける設計とする。 <中略>	設計及び工事の計画の区（3）（vi）－64は，設置変更許可申請書（本文（五号））の 区（3）（vi）－（6を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
理用の主要な設備の種類」にて記載する。．．．			文（五号））「チ（2）屋外管理用の主要な設備 の種類」に示す。		
安全パラメータ表示システム（SPDS），衛星電話設			設置変更許可申請書（本		
備，無線連絡設備及び統合原子力防災ネットワークを用い			文（五号））「ヌ（3）（vii）		
た通信連絡設備については，「又（3）（vii）－通信連絡設備」			通信連絡設備」に示		
にて記載する。．．					
ガスタービン発電機については，「又（2）（iv）－代替電源			設置変更許可申請書（本		
設備」にて記載する。．．			文（五号））「ヌ（2）（iv）		
			代替電源設備」に示 す。		
	第 10．9－1 表 緊急時対策所の主要機器仕様 （3）通信連絡設備	【計測制御系統施設】（基本設計方針） 4．通信連絡設備 4.1 通信連絡設備（発電所内）			
		＜中略＞			
送受話器（ページング）（警報装置を含む。）	a ．送受話器（ページング）（警報装置を含む。）	警報装置として，又（3）（vi）－（10）十分な数量の送受話器（ペ	「送受話器（ページン		
区（3）（vi）－9）（「又（3）（vii）－通信連絡設備」 と兼用）	第10．12－1表－通信連絡設備の一覧表に記載する。．．．	ージング）（警報装置を含む。）及び多様性を確保した通	グ）（警報装置を含		
区（3）（vi）－（10）－式		信連絡設備（発電所内）として，区（3）（vi）－（10）＋分な数量 の送受話器（ページング）（警報装置を含む。），電力保	む。）」，「局線加入電話設備」，「電力保安通		
局線加入電話設備	i ．局線加入電話設備	安通信用電話設備，（固定電話機，PHS 端木及びFFAX），移	信用電話設備」，「社内		
又（3）（vi）－9（「又（3）（viil）－通信連絡設備」」と兼用）	第10．12－1表－通信連絡設備の一覧表に記載する。．．．	動無線設備（固定型），移動無線設備（車載型），携行型	テレビ会議システム」及		
区 (3) (vi) -(10) 式		通話装置，無線連絡設備（固定型），無線連絡設備（携帯	び「専用電話設備」は，		
		型），衛星電話設備（固定型）及び衛星電話設備（携帯型）	設置変更許可申請書（本		
電力保安通信用電話設備	b．電力保安通信用電話設備	を設置又は保管する設計とする。	文（五号））における区		
区（3）（vi）－9（「又（3）（vii）通信連絡設備」 と兼用）	第10．12－1 表 通信連絡設備の一覧表に記載する。	＜中略＞	（3）（vi）－（9）を設計及び		
X(3) (vi) -(10) 式			工事の計画における「計		
		4.2 通信連絡設備（発電所外）	測制御系統施設」のうち		
社内テレビ会議システム	h．社内テレビ会議システム	設計基準事故が発生した場合において，発電所外の本	「基本設計方針」に整理		
区（3）（vi）－（9）（「又（3）（vii）－－通信連絡設備」 ¢－兼用）	第10．12－1表－．－通信連絡設備の一覧表に記載する。…	店，国，地方公共団体，その他関係機関等の必要箇所へ事	しており整合している。		
区（3）（vi）－（10）－式		故の発生等に係る連絡を音声等により行うことができる			
		通信連絡設備（発電所外）として，区（3）（vi）－（10）＋分な数	設計及び工事の計画の		
専用電話設備	j．専用電話設備	量の電力保安通信用電話設備，（固定電話機，PHS 端末，FAXX	区（3）（vi）－（10）は，設置変		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備	考
		通信連絡設備（発電所内）及び計測等を行った特に重要な パラメータを発電所内の必要な場所で共有するために必要な通信連絡設備（発電所内）として，区（3）（vi）－（2）必要 な数量の衛星電話設備（固定型），衛星電話設備（携帯型），無線連絡設備（固定型），無線連絡設備（携带型）及び携行型通話装置を設置又は保管する設計とする。なお，可搬型については必要な数量に加え，故障を考慮した数量の予備を保管する。 ＜中略＞ 緊急時対策所へ重大事故等に対处するために必要なデ ータを伝送するための設備として，安全パラメータ表示シ ステム（SPDS）区（3）（vi）－（1） 0 うちデータ収集装置は，制御建屋内に設置し，SPDS 伝送装置及びSPDS 素示装置は，．．緊急時対策所内に設置する設計とする。 ＜中略〉 4.2 通信連絡設備（発電所外） 設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関保機関等の必要箇所へ事故の発生等に係る連絡を音声等により行らことができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び衛星保安電話（固定型）），社内テレビ会議システム，局線加入電話設備（加入電話機及び加入 FAX），専用電話設備（地方公共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワーク を用いた通信連絡設備（テレビ会議システム，IP 電話及び IP—FAX）を設置又は保管する設計とする。 ＜中略〉 重大事故等が発生した場合において，発電所外（社内外） の通信連絡をする必要のある場所と通信連絡を行らため に必要な通信連絡設備（発電所外）及び計測等を行った特 に重要なパラメータを発電所外（社内外）の必要な場所で共有するための通信連絡設備（発電所外）として，区 （3）（vi）－（20）必要な数量の衛星電話設備（固定型），衛星電	る。		

又（3）（vii）－（2）発電用原子鿉施設には，設計基蕉事故が発生した場合において，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の者 への必要な操作，作業又は退避の指示等の連絡をブザー鳴動等により行うことができる装置及び音声等により行う ことができる設備として，送受話器（ページング）（警報装置を含む。），電力保安通信用電話設備，移動無線設備，携行型通話装置，無線連絡設備及び衛星電話設備の多様性 を確保した通信連絡設備（発電所内）を設置又は保管する設計とする。

また，緊急時対策所へ事故状態等の把握に必要なデー夕 を伝送できる設備として，安全パラメータ表示システム （S P D S ）を設置する設計とする。
警報装置，通信連絡設備（発電所内）及び安全パラメー タ表示システム（ S P D S）については，非常用所内電源設備又は無停電電源装置（充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
発電用原子炉施設には，設計基準事故が発生した場合に おいて，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等に より行うことができる設備として，電力保安通信用電話設備，社内テレビ会議システム，局線加入電話設備，専用電話設備，衛星電話設備及び統合原子力防災ネットワークを用いた通信連絡設備の通信連絡設備（発電所外）を設置又 は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム （ERSS）～必要なデータを伝送できる設備として，デー タ伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した専用通信回線に接続し，輻輳等によ る制限を受けることなく常時使用できる設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，非常用所内電源設備又は無停電電源装置（充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。	（2）設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所 へ事故の発生等に係る連絡を音声等により行うことが できる設備として，通信連絡設備（発電所外）を設置又 は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム （ER S S）へ必要なデータを伝送できる設備として，デ ータ伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した専用通信回線に接続し，輻輳等によ る制限を受けることなく常時使用できる設計とする。 なお，通信連絡設備（発電所外）及びデータ伝送設備は，非常用所内電源設備又は無停電電源装置（充電器等を含 む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。	＜中略＞ 4.2 通信連絡設備（発電所外） 設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等により行うことができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び衛星保安電話（固定型）），社内テレビ会議システム，局線加入電話設備（加入電話機及び加入 FAX），専用電話設備（地方公共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワーク を用いた通信連絡設備（テレビ会議システム，IP 電話及び IP—FAX）を設置又は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム （ERSS）～必要なデータを伝送できる設備として，データ伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した通信回線に接続する。 電力保安通信用電話設備（固定電話機，PHS 端末，FAX及び衛星保安電話（固定型）），統合原子力防災ネットワ ークを用いた通信連絡設備（テレビ会議システム，IP 電話及び IP—FAX），専用電話設備（地方公共団体向ホットラ イン），社内テレビ会議システム及びデータ伝送設備は，專用通信回線に接続し，輻輳等による制限を受けることな く常時使用できる設計とする。また，これらの専用通信回線の容量は，通話及びデータ伝送に必要な容量に対し，十分な余裕を確保した設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，非常用所内電源又は無停電電源（充電器等を含む。） に接続し，外部電源が期待できない場合でも動作可能な設計とする。 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常が発生した場合において，データ伝送設備 は，基準地震動 S s による地震力に対し，地震時及び地震			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行らための通信連絡設備（発電所内），緊急時対策所へ重大事故等に対処す るために必要なデータを伝送できる安全パラメータ表示 システム（ S P D S）及び計測等を行った特に重要なパラ メータを発電所内の必要な場所で共有するための通信連絡設備（発電所内）を設ける。 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行らための通信連絡設備（発電所内）として，衛星電話設備，無線連絡設備及び携行型通話装置を設置又は保管する設計とする。	10．12．2．2 設計方針 （1）発電所内の通信連絡を行うための設備 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行うための通信連絡設備（発電所内），緊急時対策所へ重大事故等に対処す るために必要なデータを伝送できる安全パラメータ表示 システム（ S P D S ）及び計測等を行った特に重要なパラ メータを発電所内の必要な場所で共有するための通信連絡設備（発電所内）を設ける。 a．通信連絡設備（発電所内） 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行うための通信連絡設備（発電所内）として，衛星電話設備，無線連絡設備及び携行型通話装置を設置又は保管する設計とする。	4.1 通信連絡設備（発電所内） ＜中略＞ 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行うために必要な通信連絡設備（発電所内）及び計測等を行った特に重要な パラメータを発電所内の必要な場所で共有するために必要な通信連絡設備（発電所内）として，必要な数量の衛星電話設備（固定型），衛星電話設備（携帯型），無線連絡設備（固定型），無線連絡設備（携帯型）及び携行型通話装置を設置又は保管する設計とする。なお，可搬型につい ては必要な数量に加え，故障を考慮した数量の予備を保管 する。 ＜中略＞ 緊急時対策所へ重大事故等に対処するために必要なデ ータを伝送するための設備として，安全パラメータ表示シ ステム（SPDS）のうちデータ収集装置は，制御建屋内に設置し，SPDS 伝送装置及びSPDS 表示装置は，緊急時対策所内に設置する設計とする。 <中略 > 4.1 通信連絡設備（発電所内） <中略 > 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行うために必要な通信連絡設備（発電所内）及び計測等を行った特に重要な パラメータを発電所内の必要な場所で共有するために必要な通信連絡設備（発電所内）として，必要な数量の衛星電話設備（固定型），衛星電話設備（携帯型），無線連絡設備（固定型），無線連絡設備（携帯型）及び携行型通話装置を設置又は保管する設計とする。なお，可搬型につい ては必要な数量に加え，故障を考慮した数量の予備を保管 する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
		＜中略＞			
緊急時対策所へ重大事故等に対処するために必要なデ	緊急時対策所へ重大事故等に対処するために必要なデ	緊急時対策所へ重大事故等に対処するために必要なデ			
ータを伝送するための設備として，データ収集装置，S P	ータを伝送するための設備として，データ収集装置，S P	ータを伝送するための設備として，安全パラメータ表示シ			
D S 伝送装置及びS P D S 表示装置で構成する安全パラ	D S 伝送装置及びS P D S 表示装置で構成する安全パラ	ステム（SPDS）のうちデータ収集装置は，制御建屋内に設			
メータ表示システム（ ${ }^{\text {P P D S ）を設置する設計とする。 }}$	メータ表示システム（ S P D S ）を設置する設計とする。	置し，SPDS 伝送装置及び SPDS 表示装置は，緊急時対策所			
		内に設置する設計とする。			
		＜中略＞			
衛星電話設備のうち衛星電話設備（携帯型）は，緊急時	衛星電話設備のらち衛星電話設備（携帯型）は，緊急時	衛星電話設備（携帯型）は，緊急時対策所内に保管する			
対策所内に保管する設計とする。	対策所内に保管する設計とする。	設計とする。			
無線連絡設備のらち無線連絡設備（携帯型）は，中央制	無線連絡設備のらち無線連絡設備（携帯型）は，中央制	無線連絡設備（携帯型）は，中央制御室及び緊急時対策			
御室及び緊急時対策所内に保管する設計とする。	御室及び緊急時対策所内に保管する設計とする。	所内に保管する設計とする。			
携行型通話装置は，中央制御室内に保管する設計とす	携行型通話装置は，中央制御室内に保管する設計とす	携行型通話装置は中央制御室内に保管する設計とする。			
$\underline{\text { る。 }}$	る。	＜中略＞			
安全パラメータ表示システム（SPDS）のうちデータ	安全パラメータ表示システム（SPDS）のうちデータ	緊急時対策所へ重大事故等に対処するために必要なデ			
収集装置は，制御建屋内に設置し，S P D S 伝送装置及び	収集装置は，制御建屋内に設置し，S P D S 伝送装置及び	ータを伝送するための設備として，安全パラメータ表示シ			
SPDS表示装置は，緊急時対策所内に設置する設計とす	SPDS表示装置は，緊急時対策所内に設置する設計とす	ステム（SPDS）のうちデータ収集装置は，制御建屋内に設			
る。	る。	置し，SPDS 伝送装置及び SPDS 表示装置は，緊急時対策所			
		内に設置する設計とする。			
		＜中略＞			
衛星電話設備のらち衛星電話設備（固定型）及び無線連	衛星電話設備のらち衛星電話設備（固定型）及び無線連	衛星電話設備（固定型）及び無線連絡設備（固定型）は，			
絡設備のらち無線連絡設備（固定型）は，中央制御室及び	絡設備のらち無線連絡設備（固定型）は，中央制御室及び	中央制御室及び緊急時対策所内に設置する設計とする。			
緊急時対策所内に設置し，屋外に設置したアンテナと接続	緊急時対策所内に設置し，屋外に設置したアンテナと接続	＜中略＞			
することにより，屋内で使用できる設計とする。また，衛	することにより，屋内で使用できる設計とする。また，衛	衛星電話設備（固定型）及び無線連絡設備（固定型）は，			
星電話設備及び無線連絡設備のうち中央制御室内に設置	星電話設備及び無線連絡設備のうち中央制御室内に設置	屋外に設置したアンテナと接続することにより，屋内で使			
する衛星電話設備（固定型）及び無線連絡設備（固定型）	する衛星電話設備（固定型）及び無線連絡設備（固定型）	用できる設計とする。			
は，中央制御室待避所においても使用できる設計とする。	は，中央制御室待避所においても使用できる設計とする。	中央制御室内に設置する衛星電話設備（固定型）及び無			
		線連絡設備（固定型）は，中央制御室待避所においても使			
		用できる設計とする。			
衛星電話設備及び無線連絡設備のらち中央制御室内に	衛星電話設備及び無線連絡設備のらち中央制御室内に	中央制御室内に設置する衛星電話設備（固定型）及び無			
設置する衛星電話設備（固定型）及び無線連絡設備（固定	設置する衛星電話設備（固定型）及び無線連絡設備（固定	線連絡設備（固定型）は，非常用交流電源設備に加えて，			
型）は，非常用交流電源設備に加えて，全交流動力電源が	型）は，非常用交流電源設備に加えて，全交流動力電源が	全交流動力電源が喪失した場合においても，代替電源設備			
喪失した場合においても，代替電源設備である常設代替交	喪失した場合においても，代替電源設備である常設代替交	である常設代替交流電源設備又は可搬型代替交流電源設			
流電源設備又は可搬型代替交流電源設備からの給電が可	流電源設備又は可搬型代替交流電源設備からの給電が可	備からの給電が可能な設計とする。			
能な設計とする。	能な設計とする。				
衛星電話設備及び無線連絡設備のうち緊急時対策所内	衛星電話設備及び無線連絡設備のらち緊急時対策所内	緊急時対策所内に設置する衛星電話設備（固定型）及び			

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備	考
		型），無線連絡設備（固定型），無線連絡設備（携帯型）及 び携行型通話装置を設置又は保管する設計とする。なお，可搬型については必要な数量に加え，故障を考慮した数量 の予備を保管する。 邓（3）（vii）－（5）衛星電話設備（携帯型）は，は，緊急時対策所内に保管する設計とする。 又（3）（vii）－（5）無線連絡設備（携帯型）は，中央制御室及 び緊急時対策所内に保管する設計とする。．．． <中略 > 区（3）（vii）－（5）衛星霊話設備（固定型）及び無線連絡設備 （固定型）は，は央制御室及び緊急時対策所内に設置する設計とする。 ＜中略＞ 区（3）（vii）－（5）衛星電話設備（固定型）及び無線連絡設備 （固定型）は，屋外に設置したアンテナと接続することに より，屋内で使用できる設計とする。．．． 区（3）（vii）－（5）中央制御室内に設置する衛星電話設備（固定型）及び無線連絡設備（固定型）は，中央制御室待避所 においても使用できる設計とする。 邓（3）（vii）－（5）中央制御室内に設置する衛星電話設備（固定型）及び無線連絡設備（固定型）は，，非常用交流電源設備に加えて，全交流動力需源が啨失した場合においてもっ代替電源設備である常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 区（3）（vii）－（5）緊急時対策所内に設置する衛星電話設備 （固定型）及び無線連絡設備（固定型）は，非常用交流電源設備に加えて，全交流動力檽源が喪失した場合において も，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流霥源設備からの給電が可能な設計とす る． 区（3）（vii）－（5）衛星電話設備（携帯型），無線連絡設備（携帯型）及び携行型通話装置は，充電式電池又は乾電池を使用する設計とする。 充電式電池を用いるものについては，ほかの端末又は予備の充電式電池と交換することにより7日間以上継続して			

統合原子力防災ネットワークを用いた通信連絡設備は，婜急時対策所内に設置する設計とする。

統合原子力防災ネットワークを用いた通信連絡設備は，非常用交流電源設備に加えて，全交流動力電源が震失した場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とする。

設置変更許可申請書（添付書類八）該当事項 設計及び工事の計画 該当事項
に設置する設計とする。

＜中略＞

4.1 通信連絡設備（発電所内）

＜中略＞

緊急時対策所へ重大事故等に対処するために必要なデ ータを伝送するための設備として，安全パラメータ表示シ ステム（SPDS）のうちデータ収集装置は，制御建屋内に設置し，区（3）（vii）－⑥SPDS 伝送装置及び SPDS 表示装置は，緊急時対策所内に設置する設計とする。
＜中略＞
4.2 通信連絡設備（発電所外）

＜中略＞

統合原子力防災ネットワークを用いた通信連絡設備（テ レビ会議システム，IP 電話及び IP—FAX）は，緊急時対策所内に設置する設計とする。
< 中略 >
4.2 通信連絡設備（発電所外）
＜中略＞
緊急時対策所内に設置する衛星電話設備（固定型）及び統合原子力防災ネットワークを用いた通信連絡設備（テレ ビ会議システム，IP 電話及び IP—FAX）は，非常用交流電源設備に加えて，全交流動力電源が喪失した場合において も，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とす る。
＜中略＞

連絡設備（発電所内）」
の「SPDS伝送装置」は同
一設備であることから
整合している。

備 考備 －
ら考

統合原子力防災ネットワークを用いた通信連絡設備は，婜急時対策所内に設置する設計とする。

統合原子力防災ネットワークを用いた通信連絡設備は，非常用交流電源設備に加えて，全交流動力電源が喪失した場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とする。

主要な設備は，以下のとおりとする。

- 衛星電話設備（固定型）
- 衛星電話設備（携帯型）
- 統合原子力防災ネットワークを用いた通信連絡設備 （テレビ会議システム，I P 電話及びI I P－FAX）
- データ伝送設備
- 常設代替交流電源設備（10．2 代替電源設備）
- 可般型代替交流電源設備（10．2 代替電源設備）
- 緊急時対策所用代替交流電源設備（10．9 緊急時対策

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
重大事故等が発生した場合に計測等を行った特に重要 なパラメータを発電所外の必要な場所で共有する通信連絡設備（発電所外）は，区（3）（vii）－7 7 通信連絡設備（発電所外）と同じである。 区（3）（vii）－8 緊急時対策支援システム（ERSS）への データ伝送の機能に係る設備及び緊急時対策所の通信連絡機能に係る設備としてのデータ伝送設備，衛星電話設備及び統合原子力防災ネットワークを用いた通信連絡設備 については，固縛又は転倒防止処置を講じる等，基準地震動 S s による地震力に対し，機能哭失しない設計とする。… 非常用交流電源設備については，「ヌ（2）非虽用電源設備の構造」に記載する。…	所） その他，設計基準事故対処設備である非常用交流電源設備を重大事故等対処設備（設計基準拡張）として使用する。 b ．計測等を行った特に重要なパラメータを発電所外の必要な場所で共有する通信連絡設備（発電所外） 重大事故等が発生した場合に計測等を行った特に重要 なパラメータを発電所外の必要な場所で共有する通信連絡設備（発電所外）は，「（2）a．．．．．．⿺辶⿱龴⿵⺆⿻二丨力刂信連絡設備（発需所外）」と同じである。 重大事故等に対処するためのデータ伝送の機能に係る設備，，緊急時対策支援システム（ERSS）へのデータ伝送 の機能に係る設備及び緊急時対策所の通信連絡機能に係る設備としての安全パラメータ表示システム（SPDS）．．．． データ伝送設備，無線連絡設備，携行型通話装置，衛星電話設備及び統合原子力防災ネットワークを用いた通信連絡設備については，固縛又は転倒防止処置を講じる等，基準地震動S s による地震力に対し，機能露失しない設計とする。 非虽用交流電源設備については，「10．1 非常用電源設備」に記載する。．．	4.2 通信連絡設備（発電所外） < 中略 > 重大事故等が発生した場合において，発電所外（社内外） の通信連絡をする必要のある場所と通信連絡を行らため に必要な通信連絡設備（発電所外）及び計測等を行った特 に重要なパラメータを発電所外（社内外）の必要な場所で共有するための通信連絡設備（発電所外）として，叉 （3）（vii）－（7）必要な数量の衛星電話設備（固定型），，衛星電話設備（携帯型）及び統合原子力防災ネットワークを用い た通信連絡設備（テレビ会議システム，IP 電話及び IP— FAX）を設置又は保管する設計とする。なお，可搬型につ いては必要な数量に加え，故障を考慮した数量の予備を保管する。 <中略 > 4.2 通信連絡設備（発電所外） < 中略 > 邓（3）（vii）－（8）重大事故等が発生した場合に必要な通信連絡設備（発電所外）及びデータ伝送設備については，基準地震動 S s による地震力に対し，地震時及び地震後におい ても通信連絡に係る機能を保持するためっ，固縛又は固定に よる転倒防止措置等を実施するとともに，信号ケーブル及 び電源ケーブルは，耐震性を有する電線管等に敷設する設計とする。 < 中略 >	設計及び工事の計画の区（3）（vii）－（7）は，設置変更許可申請書（本文（五号））の区（3）（vii）－（7）を具体的に記載しており整合している。 設計及び工事の計画の邓（3）（vii）－8 は，設置変更許可申請書（本文（五号））の区（3）（vii）－8 と同義であり整合してい る。 設置変更許可申請書（本文（五号））「又（2）非常用電源設備の構造」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
常設代替交流電源設備及び可搬型代替交流電源設備に ついては，「ヌ（2）（iv）－代替電源設備」に記載する。 緊急時対策所用代替交流電源設備については，「ヌ （3）（vi））緊急時対策所」に記載する。．．． 無線連絡設備，衛星電話設備，携行型通話装置，安全パ ラメータ表示システム（SPDS），統合原子力防災ネッ トワークを用いた通信連絡設備及びデータ伝送設備は，二以上の発電用原子炬施設と共用しない設計とする。 区（3）（vii）－（9）通信連絡設備の一覧を以下に示す。．．． 送受話器（ページング）（警報装置を含む。） 区（3）（vii）－（10）（「又（3）（vi））緊急時対策所」 と兼用） 区（3）（vii）－（11）－式 局線加入電話設備	嘗設代替交流電源設備及び可搬型代替交流電源設備に ついては，「10．2 代替雷源設備」に記載する。．．． 緊急時対策所用代替交流電源設備については，「10．9緊急時対策所」に記載する。．．． 非常用交流電源設備は，設計基準事故対処設備であると ともに，重大事故等時においても使用するため，「1．1．7重大事故等対処設備に関する基本方針」のうち，多樣性，位置的分散等を除く設計方針を適用する。 10．12．2．2．3 共用の禁止 基本方針については，「1．1．7．1 多様性，位置的分散，悪影響防止等」に示す。 無線連絡設備，衛星電話設備，携行型通話装置，安全パ ラメータ表示システム（S P D S），統合原子力防災ネッ トワークを用いた通信連絡設備及びデータ伝送設備は，二以上の発電用原子炬施設と共用しない設計とする。	4.2 通信連絡設備（発電所外） < 中略 > 中央制御室内，中央制御室待避所内及び緊急時対策所内 に設置する通信連絡設備のうち無線連絡設備，衛星電話設備，携行型通話装置，安全パラメータ表示システム（SPDS），統合原子力防災ネットワークを用いた通信連絡設備及び データ伝送設備は，二以上の発電用原子炉施設と共用しな い設計とする。 【計測制御系統施設】（基本設計方針） 4.1 通信連絡設備（発電所内） < 中略 > 警報装置として，区（3）（vii）－（11）士分な数量の送受話器（ペ ージング）（警報装置を含む。）及び多様性を確保した通信連絡設備（発電所内）として，又（3）（vii）－（11）士分な数量 の送受話器（ページング）（警報装置を含む。），電力保	設置変更許可申請書（本文（五号））「又（2）（iv） 代替電源設備」に示 す。 設置変更許可申請書（本文（五号））「又（3）（vi） 緊急時対策所」に示 す。 設置変更許可申請書（本文（五号））区（3）（vii）－ （9）に整合していること は，以下に示す。 「送受話器（ページン グ）（警報装置を含 む。）」，「局線加入電話設備」，「電力保安通	

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
		【原子炉冷却系統施設】（要目表） 3.7 原子炬冷却材補給設備 3．7．2 補給水系 ：非常用炉心冷却設備をの他原子炉注水設備（高圧炉心スプレイ系，高圧代替注 水系，原子炉隔離時冷却系，低圧代替注水系）及び原子炉格納施設のうち圧力低減設備をの他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注 ：と既工事計画書に記載がないため，記載の適正化を行う。記載内容は設計図書に ＊ 3 ：よる。 ＊4：既工事計画書に記載がないため，記載の適正化を行ら。記載内容は，平成 4 年4 		

