女川原子力発電所第 2 号機	
工事計画審査資料	
資料番号	02 －補－E－01－0120－1＿改 0
提出年月日	2021年8月24日

補足－120－1 設計及び工事の計画添付書類における基本設計方針の

抜粋について

本資料は，「発電用原子炉の設置の許可との整合性に関する説明書」（以下「説明書」という。）の うち「発電用原子炉設置変更許可申請書「本文（五号）」との整合性」（以下「本文（五号）説明書」） に記載する工事計画認可申請書の基本設計方針（以下「基本設計方針」という。）を示すものである。

本基本設計方針を本文（五号）説明書に記載する方法を以下に示す。

- 本文（五号）説明書に記載した基本設計方針は囲み線にて明示する。
- 本文（五号）説明書に記載していない基本設計方針については，発電用原子炉の設置の許可に抵触するものではないことを示すため，その理由を記載する。記載例は表1による。

表1 基本設計方針を本文（五号）説明書に記載しない理由の記載例

基本設計方針の内容	理由の記載例
概要の記載	本記載は概要であるため，記載しない。
技術基準要求のみであり，設置許可要求事項で ない記載	「実用発電用原子炉及びその附属施設の技術基準に関する規則」の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないた め，記載しない。
設備リストに対する記載	本記載は，要目表対象を示したリストに関する記載であるため，記載しない。
急傾斜地に対する記載	女川原子力発電所第 2 号機は急傾斜地崩壊危険区域には該当しない。
熱遮蔽材に対する記載	女川原子力発電所第 2 号機は，熱遮蔽材を施設 しないため，記載しない。

1．原子炉本体の基本設計方針

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炬及び その附属施設の技術基準に関する規則」並びにこれらの解积による。	用語の定義は「実用発電用原子炬及びその附属施設の位置，構造及び設備の基漼に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれら の解粎による。	本記載は概要であるため，記載し ない。
第1章 共通項目 原子炉本体の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 原子炉本体の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等， 5 ．設備に対する要求（5．5 安全弁等，5．6逆止め弁， 5.7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．炉心等 撚料体（燃料要素及びその他の部品を含む。）は，設置（変更）許可を受けた仕様となる構造及び設計とする。 然料体，減速材及び反射材並びに炉心支持構造物の材料は，通常運転時における原子炉運転状態に対応した圧力，温度条件，燃料使用期間中の燃焼度，中性子照射量及び水質の組み合わせのらち想定される最も厳しい条件において，耐放射線性，寸法安定性，耐熱性，困性質及び強度のうち必要な物理的性質並びに，耐食性，水素吸収特性及び化学的安定性 のうち必要な化学的性質を保持し得る材料を使用する。 撚料体は炉心支持構造物で支持され，その荷重は原子炉圧力容器に伝えられる設計とす 3. 然料体は，通常運転時及び運転時の異常な過渡変化時における発電用原子炉内の圧力，自重，附加荷重，核分裂生成物の蓄積による燃料被覆管の内圧上昇，熱応力等の荷重に耐远る設計とする。また，輸送中又は取扱中において，著しい変形を生じない設計とする。 匪心支持構造物は，最高使用圧力，自重，附加荷重及び地震力に加え，熱応力の荷重に耐元る設計とする。 厇心は，通常運転時又は運転時の異常な過渡変化時に発電用原子炬の運転に支障が生す る場合において，原子炉冷却系統，原子炉停止系統，反応度制御系統，計測制御系統及び安全保護装置の機能と併せて機能することにより燃料要素の許容損傷限界を超えない設計と する。	第2章 個別項目 1．炉心等 変更なし	

変更前	変更後	記載しない理由
炉心部は燃料体，制御棒及び炉心支持構造物からなり，上下端が半球状の円筒形鋼製圧力容器に収容される。原子炉圧力容器の外側には，遮蔽壁を設置する。 然料体（燃料要素を除く。），減速材及び反射材並びに灲心支持構造物は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，発電用原子炉を安全に停止し，か つ，停止後に炉心の泠却機能を維持できる設計とする。 なお，熱遮蔽材は設けない設計とする。		女川原子力発電所第 2 号機は，熱遮蔽材を施設しないため，記載し ない。
2．原子炉圧力容器 2．1 原子炉圧力容器本体 原子炉圧力容器の原子炉冷却材圧力バウンダリに係る基本設計方針については，原子炉冷却系統施設の基本設計方針「第2章 個別項目 3.2 原子炉冷却材圧力バウンダ リ」に基づく設計とする。 原子炉圧力容器は，円筒形の胴部に半球形の下鏡を付した鋼製容器に，半球形の鋼製上部ふたをボルト締めする構造であり，再循環水出口ノズル，再循環水入口ノズル，主蒸気出ロノズル，給水ノズル等を取り付ける設計とする。 原子炉圧力容器内の原子炉冷却材の流路は，原子炬再循環ポンプにより，再循環水入 ロノズルから原子炉圧力容器内に導かれ，ジェットポンプによりチャンネルボックスが形成した原子炉冷却材の流路を炉心の下方から上方向に流れ，主蒸気出ロノズルから出 る設計とする。 原子炉圧力容器の支持方法は，原子炉圧力容器支持スカートで下端を固定し，原子炉压力容器スタビライザによって水平方向に支持する設計とする。 原子炉圧力容器は最低使用温度を $10^{\circ} \mathrm{C}$ に設定し，関連温度（初期）を $-35^{\circ} \mathrm{C}$ 以下に設定 することで，脆性破壊が生じない設計とする。 中性子照射脆化の影響を受ける原子炉圧力容器にあっては，日本電気協会「原子力発電所用機器に対する破壊勒性の確認試験方法」（J E A C 4 2 0 6）に基づき，適切な破壊じん性を有する設計とする。 チャンネルボックスは，制御棒をガイドし，燃料集合体を保護する設計とする。	2．原子炉圧力容器変更なし	本記載は概要であるため，記載し ない。

変更前	変更後	記載しない理由
2.2 監視試験片 1 メカ電子ボルト以上の中性子の照射を受ける原子炉圧力容器は，当該容器が想定さ れる運転状態において脆性破壊を引き起こさないようにするために，施設時に適用され危告示「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第 501号）」を満足し，機械的強度及び破壊じん性の変化を碓認できる個数の監視試験片を原子匝圧力容器内部に挿入することにより，照射の影響を確認できる設計とする。 監視試験片は，適用可能な日本電気協会「原子炉構造材の監視試験方法」（J E A C 4 $201)$ により，取り出し及び監視試験を実施する。		
3．流体振動等による損傷の防止 㜣料体，炉心支持構造物及び原子炉圧力容器は，原子炉冷却材の循環，沸騰その他の原 子炉冷却材の挙動により生じる流体振動又は温度差のある流体の混合その他の原子炉冷却 材の挙動により生じる温度変動により損傷を受けない設計とする。	3．流体振動等による損傷の防止 変更なし	
4．主要対象設備 原子炉本体の対象となる主要な設備について，「表 1 原子炉本体の主要設備リスト」に示す。	4．主要対象設備 原子炉本体の対象となる主要な設備について，「表 1 原子炉本体の主要設備リスト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設備汇関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及ひ設備の基準に関する規則」及び「実用発電用原子炬及び その附属施設の技術基準に関する規則」並びにこれらの解粎による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及ひ設備の基準に関す る規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれら の解粎による。	本記載は概要であるため，記載し ない。
第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設の共通項目である「1．地盤等，2．自然現象， 3 ．火災，4．設備に対する要求（4．5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 核燃料物質の取报施設及び貯蔵施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．5 安全弁等， 5.6 逆止め弁， 5.7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．燃料取扱設備 1．1 燃料取扱設備の基本方針 燃料体等の取扱設備は，燃料交換機（第 1,2 号機共用（以下同じ。）），原子炬建屋クレ ーン（第1，2号機共用（以下同じ。））及び燃料チャンネル着脱機（第 1，2号機共用（以下同じ。））で構成し，新燃料を原子炉建屋原子炉棟に搬入してから原子炉建屋原子炉棟外一搬出するまで，燃料体等を安全に取り扱らことができる設計とする。 新燃料は，原子炉建屋原子炬棟内に設ける新燃料貯蔵庫から原子炉建屋クレーン及び燃料チャンネル着脱機を介して使用済燃料プール（第1，2号機共用（以下同じ。））に移 し，燃料交換機により炉心に插入できる設計とする。 また，燃料の取替えは，原子炉上部の原子炉ウェルに水を張り，水中で燃料交換機を用 いて行うことができる設計とする。 使用済燃料は，遮蔽に必要な水深を確保した状態で，燃料交換機により水中移送し，原子炉建屋原子炉棟内の使用済燃料プールの使用済燃料貯蔵ラック（第 1，2号機共用（以下同じ。））に貯蔵できる設計とする。 使用済燃料の発電所外への搬出には，使用済燃料輸送容器を使用する。 また，使用済燃料輸送容器に収納された使用済燃料を発電所外へ搬出する場合には， キャスクピット（第1，2号機共用）で使用済燃料輸送容器に収納し，キヤスク洗浄ピッ ト（第 1,2 号機共用）で使用済燃料輸送容器の除染を行い発電所外い搬出する。	第2章 個別項目 1．燃料取扱設備 1．1 燃料取扱設備の基本方針 然料体等の取扱設備は，燃料交換機（第 1,2 号機共用（以下同じ。）），原子炉建屋ク レーン（第1，2号機共用（以下同じ。））及び燃料チャンネル着脱機（第 1，2号機共用 （以下同じ。））で構成し，新燃料を原子炬建屋原子炉棟に搬入してから原子炉建屋原子炬棟外へ搬出するまで，燃料体等を安全に取り扱うことができる設計とする。 麻燃料は，原子炬建屋原子炉棟内に設ける新燃料貯蔵庫から原子炉建屋クレーン及び然料チャンネル着脱機を介して使用済燃料プール（設計基準対象施設としてのみ第 1,2号機共用（以下同じ。））に移し，燃料交換機により炬心に插入できる設計とする。 また，燃料の取替えは，原子炉上部の原子炉ウェルに水を張り，水中で燃料交換機を用いて行らことができる設計とする。 使用済燃料は，遮蔽に必要な水深を確保した状態で，燃料交換機により水中移送し，原子炉建屋原子炉棟内の使用济燃料プールの使用済燃料貯蔵ラック（設計基準対象施設 としてのみ第 1，2号機共用（以下同じ。））に貯蔵できる設計とする。 使用済燃料の発電所外への搬出には，使用済燃料輸送容器を使用する。 また，使用済燃料輸送容器に収納された使用済燃料を発電所外へ搬出する場合には， キャスクピット（第 1,2 号機共用）で使用済燃料輸送容器に収納し，キヤスク洗浄ピッ ト（第 1,2 号機共用）で使用済燃料輸送容器の除染を行い発電所外い搬出する。	

変更前
燃料交換機及び燃料チャンネル着脱機は，燃料体等を一体ずつ取り扱ら構造とするこ

原子炉建屋クレーンは，未臨界性を確保した容器に収納して吊り上げる場合を除き，燃料体等を取り扱う場合は，一体ずつ取り扱う構造とし，臨界を防止する設計とする。

燃料交換機は，燃料体等の炉心から使用済燃料プールへの移送操作，使用済燃料プー ルから灲心への移送操作又は使用済燃料輸送容器への収納操作等をすべて水中で行らこ とで，崩壊熱により燃料体等が溶融せず，燃料体等からの放射線に対して，適切な遮蔽能力を有する設計とする。

燃料チャンネル着脱機は，燃料体等の検査等のための昇降操作等をすべて水中で行う ことで，崩壊熱により燃料体等が溶融せず，燃料体等からの放射線に対して，適切な遮蔽能力を有する設計とする。

原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱 ら主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープを二重化す ることにより，燃料体等の重量物取り扱い中に落下を防止できる設計とする。

なお，ワイヤロープ及びフックは，それぞれ「クレーン構造規格」，「クレーン等安全規則」の規定を満たす安全率を有する設計とする。

燃料交換機の燃料つかみ具は，昇降を安全かつ確実に行らため，定格荷重を保持でき，必要な安全率を有するワイヤロープの二重化，フック部の外れ止めを有し，グラップル ヘッドには機械的インターロックを設ける設計とする。

燃料チャンネル着脱機は，下限リミットスイッチによるインターロック及び燃料体等 を上部で保持する固定具により燃料体等の使用済燃料プール床面への落下を防止できる設計とする。

燃料交換機は，燃料体等の取り扱い中に過荷重となった場合に上昇を阻止するインタ ーロックを設けるとともに荷重監視を行うことにより，過荷重による燃料体等の落下を防止できる設計とする。

燃料交換機は，地震時にも転倒することがないように，走行レール及び横行レール頭

原子炬建屋クレーンは，未臨界性を確保した容器に収納して吊り上げる場合を除き，撚料体等を取り扱ら場合は，一体ずつ取り扱ら構造とし，臨界を防止する設計とする。

燃料交換機は，燃料体等の炉心から使用済燃料プールへの移送操作，使用済燃料プー ルから灲心への移送操作又は使用済燃料輸送容器への収納操作等をすべて水中で行うこ とで，崩壊熱により燃料体等が溶融せず，燃料体等からの放射線に対して，適切な遮蔽能力を有する設計とする。

㦓料チャンネル着脱機は，燃料体等の検査等のための昇降操作等をすべて水中で行う ことで，崩壊熱により燃料体等が溶融せず，燃料体等からの放射線に対して，適切な遮蔽能力を有する設計とする。

原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱 ら主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープを二重化す ることにより，燃料体等の重量物取り扱い中に落下を防止できる設計とする。
また，想定される使用済燃料プール内への落下物によって使用済燃料プール内の燃料体等が破損しないことを計算により確認する。
なお，ワイヤロープ及びフックは，それぞれ「クレーン構造規格」，「クレーン等安全規則」の規定を満たす安全率を有する設計とする。

然料交換機の燃料つかみ具は，昇降を安全かつ確実に行うため，定格荷重を保持でき，必要な安全率を有するワイヤロープの二重化，フック部の外れ止めを有し，グラップル ヘッドには機械的インターロックを設ける設計とする。

㦓料チャンネル着脱機は，下限リミットスイッチによるインターロック及び燃料体等
を上部で保持する固定具により燃料体等の使用済燃料プール床面への落下を防止できる
䖉計とする。
㦓料交換機は，燃料体等の取り扱い中に過荷重となった場合に上昇を阻止するインタ ーロックを設けるとともに荷重監視を行うことにより，過荷重による燃料体等の落下を防止できる設計とする。

変更前	変更後	記載しない理由
部を抱き込む構造をした転倒防止装置を設ける。 原子炬建屋クレーンは，地震時にも転倒することがないように走行方向及び横行方向 に対して，クレーン本体等の浮上り量を考慮し，脱線防止ラグを設けることで，クレーン本体等の車輪がレール上から落下しない設計とする。 また，原子炉建屋クレーンは，使用済燃料輸送容器等の重量物を吊った状態では，使用済燃料貯蔵ラック上を走行できないようにインターロックを設ける設計とする。 使用済燃料を収納する使用済燃料輸送容器（第 1 号機設備，第 $1,2,3$ 号機共用）は，取り扱い中における衝撃，熱，その他の容器に加わる負荷に耐え，容易かつ安全に取り扱 うことができる設計とする。また，運搬中に予想される温度及び内圧の変化，振動等によ り，き裂，破損等が生じない設計とする。 更に，理論的若しくは適切な試験等により所定の機能を満足できる設計とする。 使用済燃料輸送容器（第 1 号機設備，第 $1,2,3$ 号機共用）は，内部に使用済燃料が収納された場合に，放射線障害を防止するため，その容器表面の線量当量率が $2 \mathrm{mSv} / \mathrm{h}$ 以下及び容器表面から 1 m 離れた位置における線量当量率が $100 \mu \mathrm{~Sv} / \mathrm{h}$ 以下となるよう，収納 される使用済燃料の放射能強度を考慮して十分な遮蔽を行うことができる設計とする。 燃料交換機の燃料つかみ具は空気作動式とし，燃料体等をつかんだ状態で圧縮空気が喪失した場合にも，つかんだ状態を保持し，燃料体等が外れない設計とする。 燃料交換機，原子炉建屋クレーン及び燃料チャンネル着脱機は，動力電源喪失時に電磁ブレーキによる保持機能により，燃料体等の落下を防止できる設計とする。 1.2 設備の共用 燃料交換機及び原子炉建屋クレーンは，第1号機と共用するが，第1号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすることで，共用により安全性を損なわな い設計とする。	部を抱き込む構造をした転倒防止装置を設ける。 原子炉建屋クレーンは，地震時にも転倒することがないように走行方向及び横行方向 に対して，クレーン本体等の浮上り量を考慮し，脱線防止ラグを設けることで，クレも －本体等の車輪がレール上から落下しない設計とする。 また，原子炉建屋クレーンは，使用済燃料輸送容器等の重量物を吊った状態では，使用済燃料貯蔵ラック上を走行できないようにインターロックを設ける設計とする。 使用済燃料を収納する使用済燃料輸送容器（第 1 号機設備，第 $1,2,3$ 号機共用）は，取り扱い中における衝撃，熱，その他の容器に加わる負荷に耐え，容易かつ安全に取り扱らことができる設計とする。また，運搬中に予想される温度及び内圧の変化，振動等 により，き裂，破損等が生じない設計とする。 更に，理論的若しくは適切な試験等により所定の機能を満足できる設計とする。 使用済燃料輸送容器（第 1 号機設備，第 $1,2,3$ 号機共用）は，内部に使用済燃料が収納された場合に，放射線障害を防止するため，その容器表面の線量当量率が $2 \mathrm{mSv} / \mathrm{h}$ 以下及び容器表面から 1 m 離れた位置における線量当量率が $100 \mu \mathrm{~Sv} / \mathrm{h}$ 以下となるよう，収納される使用済燃料の放射能強度を考慮して十分な遮蔽を行らことができる設計とす る。 然料交換機の燃料つかみ具は空気作動式とし，燃料体等をつかんだ状態で圧縮空気が表失した場合にも，つかんだ状態を保持し，燃料体等が外れない設計とする。 撚料交換機，原子炉建屋クレーン及び燃料チャンネル着脱機は，動力電源喪失時に電磁ブレーキによる保持機能により，燃料体等の落下を防止できる設計とする。 1.2 設備の共用 然料交換機及び原子炉建屋クレーンは，第1号機と共用するが，第1号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすることで，共用により安全性を損なわな い設計とする。	
2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 燃料体等を貯蔵する設備として，新燃料貯蔵庫及び使用済燃料プールを設ける設計と する。 新燃料貯蔵庫は，通常時の燃料取替を考慮し，適切な貯蔵能力を有し，全炉心燃料の約	2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 然料体等を貯蔵する設備として，新燃料貯蔵庫及び使用済燃料プールを設ける設計と する。 新燃料貯蔵庫は，通常時の燃料取替を考慮し，適切な貯蔵能力を有し，全炉心燃料の	

変更前	変更後	記載しない理由
の放射線に対して適切な遮蔽能力を有し，放射線業務従事者の被ばくを低減する設計と する。 万一，使用済燃料プールからの水の漏えいが発生し，かつ，使用済燃料プール水の補給 に復水貯蔵タンク水が使用できない場合には，残留熱除去系を用いてサプレッションチ ェンバのプール水を補給できる設計とする。 使用済燃料プールは，内面をステンレス鋼内張りに施設することにより，燃料体等の取扱中に想定される燃料体等の落下により機能を失うような損傷が生じない設計とす る。 燃料体等の落下に関しては，模擬燃料体の気中落下試験（以下「落下試験」という。） での最大減肉量を考慮しても使用済燃料プールの機能が損なわれない厚さ以上のステン レス鋼内張りを施設する設計とする。	の放射線に対して適切な遮蔽能力を有し，放射線業務従事者の被ばくを低減する設計と する。 万一，使用済燃料プールからの水の漏えいが発生し，かつ，使用済燃料プール水の補給に復水貯蔵タンク水が使用できない場合には，残留熱除去系を用いてサプレッション チェンバのプール水を補給できる設計とする。 使用済燃料プールは，内面をステンレス鋼内張りに施設することにより，燃料体等の取扱中に想定される燃料体等の落下及び重量物の落下により機能を失うような損傷が生 じない設計とする。 然料体等の落下に関しては，模擬燃料体の気中落下試験（以下「落下試験」という。） での最大減肉量を考慮しても使用済燃料プールの機能が損なわれない厚さ以上のステン レス鋼内張りを施設する設計とする。なお，使用済燃料輸送容器に使用済燃料を収納す る場合などは，落下試験での落下高さを超えるため，水の浮力を考慮することにより落下試験時の落下エネルギを下回ることを確認する。 重量物の落下に関しては，使用済燃料プール周辺の状況，現場における作業実績，図面等にて確認することにより，落下時のエネルギを評価し，落下試験時の燃料体等の落下エネルギ以上となる設備等に対しては，以下のとおり適切な落下防止対策を施し，使用済燃料プールの機能を維持する設計とする。 使用済燃料プールからの離隔を確保できる重量物については，使用済燃料プールー落下するおそれがないよう，転倒等を仮定しても使用済燃料プールに届かない距離に設置 する。また，転倒防止のため床面や壁面へ固定する設計とする。 原子炉建屋クレーンは，使用済燃料貯蔵ラック上を使用済燃料輸送容器等重量物を吊 った状態で走行及び横行できないように可動範囲を制限するインターロックを設ける設計とする。 原子炉建屋原子炉棟の屋根を支持する屋根トラスは，基準地震動 S s に対する発生応力が終局耐力を超えず，使用済燃料プール内に落下しない設計とする。また，屋根につ いては鋼鈑（デッキプレート）の上に鉄筋コンクリート造の床を設けた構造とし，地震 による剥落のない構造とする。また，燃料取替床の床面より上部を構成する壁は，鉄筋 コンクリート造の耐震壁であり，燃料取替床の床面より下部の耐震壁と合わせて基準地震動S s に対して使用済燃料プール内に落下しない設計とする。 然料交換機及び原子炬建屋クレーンは，基準地震動 S s による地震荷重に対し，燃料	

変更前	変更後	記載しない理由
	㬵換機本体及び原子炬建屋クレーン本体の健全性評価及び転倒落下防止評価を行い，揀	
	用済燃料プールーの落下物とならない設計とする。	
	筅料交換機本体及び原子炉建屋クレーン本体の健全性評価においては，想定される使	
	用条件において評価が保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力加	
	臨容応力以下となる設計とする。	
	橪料交換機の転倒落下防止評価においては，走行レール及び横行レール頭部を抱き込	
	馬構造をした燃料交換機の脱線防止装置について，想定される使用条件において評価加	
	保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力が許容応力以下となる設	
	矿とする。	
	㜣料交換機の走行レール及び横行レールの健全性評価においては，想定される使用条	
	件において，地震時の発生応力が許容応力以下となる設計とする。	
	原子炬建屋クレーンの転倒落下防止評価においては，走行方向及び横行方向に浮上り	
	代を設けた構造をした原子炬建屋クレーンの脱線防止ラグについて，想定される使用条	
	珄において評価が保守的となるよう吊荷の条件を考慮し，地震時の各部発生応力から恶容	
	応力以下となる設計とする。	
	使用济燃料プールからの離隔を碓保できないその他の重量物については，基準地震動	
	S s を考慮しても，地震時の各部発生応力が許容応力以下となる設計とすることで，揀	
	用済燃料プールへの落下物とならない設計とする。	
使用済燃料は，使用斎燃料貯蔵ラックに貯蔵するが，使用済燃料貯蔵ラックに収納で	使用済然料は，使用斎燃料貯蔵ラックに貯蔵するが，使用済燃料貯蔵ラックに収納で	
きないような破損燃料体が生じた場合は，使用済燃料プール水の放射能污染拡大を防ぐ	せないような破損然料体が生じた場合は，使用斎燃料プール水の放射能污染拡大を防ぐ	
ため，使用济燃料プール内の制御棒•破損燃料貯蔵ラックに収納できる設計とする。	ため，使用济然料プール内の制御棒•破損然料賏蔵ラックに収納できる設計とする。	
	地震時における使用斎燃料プールの健全性碓保のため，使用斎然料プールに設置さ绿	
	ている制御棒賏蔵ハンガに制御棒を保管する場合は，北側の制御棒貯蔵ハンガは本掛	
	－9 列のらち 4 本 5 列の使用に制限する運用，南側の制御桋貯蔵ハンガ使用しない運	
	用とするとともに，その旨を保安規定に定めて管理する。	
使用済燃料を貯蔵する乾式キヤスクは保有しない。	使用済燃料を貯蔵する乾式キャスク（兼用キャスクを含む。）は保有しない。	
2.2 設備の共用	2.2 設備の共用	
使用済燃料プール及び使用斎燃料貯蔵ラックは，第 1 号機と共用することで，第 1 号	使用斎然料プール及び使用㵒然料貯蔵ラックは，第 1 号機と共用することで，第 1 号	
機の使用济燃料を第 2 号機の使用斎燃料プールに貯蔵することが可能な設計としている。	厤の使用济燃料を第 2 号機の使用済然料プールに貯蔵することが可能な設計としている。	

変更前	変更後	記載しない理由
設備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しな いようにすることで，共用により安全性を損なわない設計とする。	殿備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しな いようにすることで，共用により安全性を損なわない設計とする。	
3．計測装置等 使用済燃料プールの水温を計測する装置として燃料貯蔵プール水温度及び燃料プール泠却浄化系ポンプ入口温度を設け，計測結果を中央制御室に表示できる設計とする。また，燃料貯蔵プール水温度及び燃料プール泠却浄化系ポンプ入口温度は計測結果を記録できる設計とする。 使用済燃料プールの水温の著しい上昇又は使用済燃料プールの水位の著しい低下の場合 に，これらを確実に検出して自動的に中央制御室に警報（使用済燃料プール水温高又は使用済燃料プール水位低）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。	3．計測装置等 使用济燃料プールの水温を計測する装置として燃料貯蔵プール水温度，燃料プール椧却浄化系ポンプ入口温度及び使用斎燃料プール水位／温度（ガイドパルス式）を設け，計測結果を中央制御室に表示できる設計とする。また，燃料貯蔵プール水温度及び然料プール椧却浄化系ポンプ入口温度は計測結果を記録し，及び保存することができる設計とする。 使用斎燃料プールの水位を計測するための装置として燃料貯蔵プール水位，燃料プール ライナドレン漏えい及び使用斎然料プール水位／温度（ガイドパルス式）を設け，計測結果 を中央制御室に表示できる設計とする。また，燃料貯蔵プール水位の記録はプロセス計算機から帪票として出力し保存できる設計とする。 篓料貯蔵プール水温度，燃料貯蔵プール水位及び使用済燃料プール水位／温度（ガイド ルス式）は，外部電源が使用できない場合においても非常用所内電源系からの電源供給氾 より，使用済燃料プールの水温及び水位を計測することができる設計とする。 使用済燃料プールの水温の著しい上昇又は使用済燃料プールの水位の著しい低下の場合 に，これらを碓実に検出して自動的に中央制御室に警報（使用斎燃料プール水温高又は使動等により運転員に通報できる設計とする。 董大事故等時に使用済燃料プールの監視設備として，使用済燃料プール水位／温度（ヒも トサーモ式），使用斎然料プール水位／温度（ガイドパルス式）を設け，想定される重大事故等により変動する可能性のある範囲にわたり測定可能な設計とする。また，計測結果は中央制御室に表示し，記録及び保存できる設計とする。 使用済燃料プール監視カメラ（個数 1 ）は，想定される重大事故等時において使用済燃料 プールの状態を監視できる設計とする。 ※た，使用济燃料プール監視カメラは，カメラと一体の泠却装置により泠却することで，㧫擐境性向上を図る設計とする。 使用済燃料プール水位／温度（ヒートサーモ式）は，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能であり，使用斎然料プール水位／温度（ガイドパルス式）及び使用斎燃料プール監視カメラは，常設代替交流電源設備区は可搬型代替交流電源設備から給電が可能な設計とする。	

変更前	変更後	記載しない理由
	厙大事故等が発生し，当該重大事故等に対処するために監視することが必要なパラメー	
	タとして，使用済燃料プールの監視に必要なパラメータを計測する装置を設ける設計とす	
	3.	
	厙大事故等が発生し，計測機器（非常用のものを含む。）の故障により，当該重大事故等	
	に対処するために監視することが必要なパラメータを計測することが困難となった場合に	
	おいて，当該パラメータを推定するために必要なパラメータを計測する設備を設置する設	
	計とする。	
	厙大事故等に対処するために監視することが必要なパラメータは，炬心損傷防止対策及	
	び格納容器破損防止対策等を成功させるために必要な発電用原子炬施設の状態を把握する	
	ためのパラメータとし，計測する装置は「表1 核燃料物質の取扱施設及び貯蔵施設の主要	
	喭備リスト」の「使用济燃料販蔵槽の温度，水位及び漏えいを監視する装置」に示す重大事	
	故等対処設備の他，使用斎燃料プール監視カメラ（個数1）とする。	
	炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子㚸	
	扥設の状態を把握するためのパラメータを計測する装置は，設計基鹪事故等に想定される	
	変動範囲の最大值を考慮し，適切に対応するための計測範囲を有する設計とするとともに，	
	重大事故等が発生し，当該重大事故等に対処するために監視することが必要なパラメータ	
	の計測が困難となった場合に，代替パラメータにより推定ができる設計とする。	
	朗た，重大事故等時に設計基漼を超える状態における発電用原子炬施設の状態を把握可	
	了ための能力（計測可能蛖囲）を明碓にするとともに，パラメータの計測が困難となった	
	場合の代替パラメータによる推定等，複数のパラメータの中から確からしさを考慮した㵋	
	先順位を保安規定に定めて管理する。	
	使用斎燃料プールの監視で想定される重大事故等の対応に必要となるパラメータは，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とする。	本記載は概要であるため，記載し ない。
	厙大事故等の対応に必要となるパラメータは，安全パラメータ表示システム（SPDS）の	
	5ち SPDS 伝送装置にて電磁的に記録，保存し，電源喪失により保存した記録が失われない	
	とともに帳票が出力できる設計とする。また，記録は必要な容量を保存できる設計とする。	
	咂心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子㚸	
	扥設の状態を把握するためのパラメータを計測する装置の電源は，非常用交流電源設備》	
	は非常用直流電源設備の震失等により計器電源が或失した場合において，代替電源設備を	

変更前	変更後	記載しない理由
4．使用済燃料貯蔵槽冷却浄化設備 4.1 燃料プール泠却浄化系 使用済燃料プールは，燃料プール冷却浄化系ポンプ（第 1，2号機共用（以下同じ。）），燃料プール泠却浄化系熱交換器（第 1，2号機共用（以下同じ。）），燃料プール泠却浄化系 ろ過脱塩器（第 1，2号機共用（以下同じ。））等で構成する燃料プール冷却浄化系を設け，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，使用済燃料から の崩壊熱を除去するとともに，使用済燃料プール水を浄化できる設計とする。 また，補給水ラインを設け，使用済燃料プール水の補給が可能な設計とする。 更に，全炬心燃料を使用済燃料プールに取り出した場合や燃料プール泠却浄化系での使用済燃料プールの泠却ができない場合は，残留熱除去系を用いて使用済燃料からの崩壊熱を除去できる設計とする。 燃料プール泠却浄化系熱交換器で除去した熱は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海へ輸送できる設計とする。	4．使用済燃料貯蔵槽冷却浄化設備 4.1 燃料プール椧却浄化系 使用済燃料プールは，燃料プール泠却浄化系ポンプ（設計基準対象施設としてのみ第 1，2号機共用（以下同じ。）），燃料プール泠却浄化系熱交換器（設計基準対象施設として のみ第 1，2号機共用（以下同じ。）），燃料プール冷却浄化系万過脱塩器（第 1,2 号機共用（以下同じ。））等で構成する燃料プール泠却浄化系を設け，通常運転時，運転時の異常 な過渡変化時及び設計基準事故時において，使用済燃料からの崩壊熱を除去するととも に，使用済燃料プール水を浄化できる設計とする。 また，補給水ラインを設け，使用済燃料プール水の補給が可能な設計とする。埂に，全炬心燃料を使用済燃料プールに取り出した場合や燃料プール泠却浄化系での使用済燃料プールの泠却ができない場合は，残留熱除去系を用いて使用済燃料からの崩壞熱を除去できる設計とする。 撚料プール冷却浄化系熱交換器で除去した熱は，原子炬補機冷却水系（原子灲補機泠却海水系を含む。）を経て，最終ヒートシンクである海へ輸送できる設計とする。 使用济燃料プールから発生する水蒸気による悪影響を防止するための重大事故等対処信備として，燃料プール泠却浄化系を設ける設計とする。 燃料プール泠却浄化系は，使用済燃料プールの水を燃料プール泠却浄化系ポンプによ り燃料プール泠却浄化系熱交換器等を経由して循環させることで，使用済燃料プールを阾却できる設計とする。 然料プール泠却浄化系は，非常用交流電源設備及び原子炉補機泠却水系（原子炉補機	

変更前	変更後	記載しない理由
	㦓料プールスプレイ系（常設配管）に使用するホースの敷設等は，ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料フ ール代替注水系」の設備を核燃料物質の取扱施設及び貯蔵設備のらち「4．3 燃料フ ールスプレイ系」の設備として兼用）により行ら設計とする。 㦓料プールスプレイ系（常設配管）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯蔵ラックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備 としての設計を行う。 4．3．2 燃料プールスプレイ系（可搬型）による使用済燃料プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異嫦に低下した場合に，燃料損傷を緩和するとともに，燃料損馥時には使用済燃料フ ール内の燃料体等の上部全面にスプレイすることによりできる限り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（可㮽型）を設ける設計とする。 㦓料プールスプレイ系（可搬型）は，大容量送水ポンプ（タイプI）により，代替㔷水源の水をホース等を経由してスプレイノズルから使用済燃料プール内の燃料体等に直接スプレイすることで，燃料損傷を緩和するとともに，環境への放射性物質 の放出をできる限り低減できるよう使用済燃料プール内燃料体等の上部全面に向け てスプレイし，使用済燃料プール内燃料体等からの崩壊熱による蒸散量を上回る量 をスプレイできる設計とする。 使用済燃料プールは，燃料プールスプレイ系（可搬型）にて，使用済燃料貯蔵ラッ ク及び燃料体等を椧却し，臨界にならないように配慮したラック形状及び燃料配置 において，いかなる一様な水密度であっても実効増倍率は不確定性を含めて 0.95 以下で臨界を防止できる設計とする。 㦓料プールスプレイ系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I）により医を利用できる設計とする。 大容量送水ポンプ（タイプ I）は，空冷式のディーゼルエンジンにより駆動でき る設計とする。	

変更前	変更後	記載しない理由
	然料プールスプレイ系（可搬型）に使用するホースの敷設等は，ホース延長回収	
	厙（台数 4 （予備 1））（核燃料物質の取报施設及び賏蔵施設のらち 「4．2燃料プー	
	匹代替注水系」の設備を核然料物質の取扱施設及び貯蔵設備のらち「4．3燃料プー	
	ルスプレイ系」の設備として兼用）により行ら設計とする。	
	然料プールスプレイ系（可搬型）の流路として，設計基漼対象施設である使用済	
	㩐料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯蔵ラックを重大事故等	
	㒳处設備として使用することから，流路に係る機能について重大事故等対処設備と	
	しての設計を行ら。	
	4.4 放射性物質抆散抑制系	
	4．4．1 大気への抁散抑制	
	使用斎然料プールからの大量の水の漏えい等により使用斎燃料プールの水位の異	
	常な低下により，使用斎然料プール内の燃料体等の著しい損傷に至った場合におい	
	て，然料損傷時にはできる限り環境入の放射性物質の放出を低減するための重大事	
	故等対处設備として，放水設備（大気への抁散抑制設備）を設ける設計とする。	
	放水設備（大気への拡散抑制設備）は，大容量送水ポンプ（タイプII）により海水	
	を取水し，ホースを経由して放水砲から原子炬建屋へ放水することにより，環境へ	
	の放射性物質の放出を可能な限り低澸できる設計とする。	
	大容量送水ポンプ（タイプII）及び放水砲は，設置場所を任意に設定し，複数の方	
	向から原子炉建屋に向けて放水できる設計とする。	
	败水設備（大気への㹡散抑制設備）に使用するホースの敷設等は，ホース延長回	
	叹車（台数 4（予備 1））（核燃料物質の取扱施設及び則蔵施設のらち「4．2 燃料才	
	ール代替注水系」の設備を核然料物質の取扱施設及び貯蔵設備のうち 「4．4 放射栍	
	物質拉散抑制系」の設備として兼用）により行ら設計とする。	
	4．4．2 海洋への拡散抑制	
	使用斎然料プール内の燃料体等の著しい損傷に至った場合において，発電所外－	
	の放射性物質の拡散を抑制するための重大事故等対処設備として，海洋への拡散抑	
	制設備（シルトフェンス）を設ける設計とする。	
	医洋への放射性物質の抁散を抑制するための重大事故等対処設備として，海洋二	
	の拡散抑制設備（シルトフェンス）は，シルトフェンス（原子炬格納施設のらち「3．3．4	
	班射性物質拉散抑制系」の設備を核燃料物質の取扱施設及び貯蔵施設のうち「4．4	
	教射性物質抆散抑制系」の設備として兼用）で構成する。シルトフェンスは，污染水	

変更前	変更後	記載しない理由
4.2 使用済燃料プールの水質維持 使用済燃料プールは，使用済燃料からの崩壊熱を燃料プール泠却浄化系熱交換器で除去して使用済燃料プール水を泠却するとともに，燃料体の被覆が著しく腐食するおそれ がないよう，燃料プール泠却浄化系ろ過脱塩器で使用済燃料プール水をろ過脱塩して，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピット水の純度，透明度を維持できる設計とする。 4． 3 使用済燃料プール接続配管 使用済燃料プール水の漏えいを防止するため，使用済燃料プールには排水口を設けな い設計とし，使用済燃料プールに接続された配管には逆止弁を設け，配管が破損しても， サイフォン効果により，使用済燃料プール水が継続的に流出しない設計とする。	が発電所から海洋に流出する 4 箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置できる設計とする。 シルトフェンスは，海洋への放射性物質の拡散を抑制するため，設置場所に応じ厉高さ及び幅を有する設計とする。必要数は，各設置場所に必要な幅に対してシル トフェンスを二重に設置することとし，南側排水路排水栁に1本1組（高さ約5m，幅約 5 m ）として計 2 本，タービン補機放水ピットに 1 本 1 組（高さ約 7 m ，幅約 5 m ） として計 2 本，北側排水路排水栁に 1 本 1 組（高さ約 6 m ，幅約 11 m ）として計 2 本及び取水口に 3 本 1 組（ 1 本あたり高さ約 12 m ，幅約 20 m ）として計 6 本の合計 12 本使用する設計とする。また，予備については，破損時のバックアップとして，各設置場所に対して 1 組の合計 6 本を保管する。 4.5 使用済燃料プールの水質維持 使用済燃料プールは，使用済燃料からの崩壊熱を燃料プール泠却浄化系熱交換器で除去して使用済燃料プール水を椧却するとともに，燃料体の被覆が著しく腐食するおそれ がないよう，燃料プール泠却浄化系ろ過脱塩器で使用済燃料プール水をろ過脱塩して，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピット水の純度，透明度 を維持できる設計とする。 4.6 使用済燃料プール接続配管 使用済燃料プール水の漏えいを防止するため，使用済燃料プールには排水口を設けな い設計とし，使用済燃料プールに接続された配管には逆止弁を設け，配管が破損しても， サイフォン効果により，使用済燃料プール水が継続的に流出しない設計とする。 4.7 重大事故等の収束に必要となる水源 代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設ける設計とする。 また，淡水が枯渴した場合に，海を水源として利用できる設計とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）は，想定される重大事故等時において，使用済燃料プールの泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型） の水源として使用できる設計とする。 海は，想定される重大事故等時において，淡水が枯渇した場合に，使用済燃料プール の泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である	

変更前	変更後	記載しない理由
4.4 設備の共用 燃料プール泠却浄化系設備及び燃料プール泠却浄化系燃料プール注入逆止弁（G41－ F019）（第 1，2号機共用）は，第 1 号機と共用することで，第 1 号機の使用済燃料を第 2号機の使用済燃料プールに貯蔵することが可能な設計としている。設備容量の範囲内で運用することにより，燃料プール泠却浄化系の冷却能力が不足しないようにすることで，共用により安全性を損なわない設計とする。	㦓料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレ イ系（常設配管）及び燃料プールスプレイ系（可搬型）の水源として，更に，放水設備 （大気への拡散抑制設備）の水源として利用できる設計とする。 4.8 設備の共用 然料プール泠却浄化系設備及び燃料プール泠却浄化系燃料プール注入逆止弁（G41－ F019）（設計基準対象施設としてのみ第 1，2 号機共用）は，第 1 号機と共用することで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計とし ている。設備容量の管囲内で運用することにより，燃料プール泠却浄化系の冷却能力が不足しないようにすることで，共用により安全性を損なわない設計とする。	
5．主要対象設備 核燃料物質の取扱施設及び貯蔵施設の対象となる主要な設備について，「表 1 核燃料物質の取扱施設及び貯蔵施設の主要設備リスト」に示す。	5．主要対象設備 核燃料物質の取扱施設及び貯蔵施設の対象となる主要な設備について，「表 1 核燃料物質の取扱施設及び貯蔵施設の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表 2 核燃料物質の取扱施設及び貯蔵施設の兼用設備リスト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

3．原子炉洽却系統施設（蒸気タービンを除く）の基本設計方針

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及び その附属施設の技術基準に関する規則」並びにこれらの解积による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す る規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれら の解釈による。	本記載は概要であるため，記載し ない。
第1章 共通項目 1．地盤等	第1章 共通項目 1．地盤等 1.1 地盤 信計基準対象施設のうち，地震の発生によって生じるおそれがあるその安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きい施設（以下「耐震重要施設」 という。）の建物•構築物，屋外重要土木構造物，津波防護機能を有する設備（以下「津波防護施設」といら。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及 び敷地における津波監視機能を有する施設（以下「津波監視設備」という。）並びに浸水防止設備又は津波監視設備が設置された建物•構築物について，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置され る重大事故等対処施設については，自重や運転時の荷重等に加え，その供用中に大きな影響を及ぼすおそれがある地震動（以下「基準地震動 S s 」という。）による地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。 ＊た，上記に加え，基準地震動 S s による地震力が作用することによって弱面上のす〔が発生しない地盤として，設置（変更）許可を受けた地盤に設置する。 ここで，建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及びそ の他の土木構造物）の総称とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系及び設備の間接支持敕能又は非常時における海水の通水機能を求められる土木構造物をいら。 信計基準対象施設のうち，耐震重要施設以外の建物•構築物については，自重や運転時 の荷重等に加え，耐震重要度分類の各クラスに応じて算定する地震力が作用した場合，若しくは，重大事故等対処施設のらち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設については，自重や運転時の荷重等に加远，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類の各クラスに応じて算定する地震力が作用した場合においても，接地圧に対する十分な支持力を有す る地盤に設置する。	

変更前	変更後	記載しない理由
	的震重要重大事故防止設備又は常設重大事故縷和設備か設置される重大事故等対処施設	
	は，地震発生に伴ら地殻変動によって生じる支持地盤の傾斜及び撓み並びに地震発生沉	
	伴ら建物•構築物間の不等沈下，液状化及び摇すり込み沈下等の周辺地盤の変状により，	
	その安全機能，若しくは，重大事故に至るおそれがある事故（運転時の異常な過渡変化	
	区び設計基準事故を除く。）又は重大事故（以下「重大事故等」といら。）に対処するため	
	严必要な機能が損なわれるおそれがない地盤として，設置（変更）許可を受けを地盤河	
	殿置する。	
	䖉計基漼対象施設のらち，而震重要施設，若しくは，重大事故等対处施設のらち，常設	
	而震重要重大事故防止設備又は常設重大事故緩和設備か設置される重大事故等対処施設	
	は，将来活動する可能性のある断層等の露頭がない地盤として，設置（変更）許可を受け	
	た地盤に設置する。	
	㙴計基準対象施設のらち，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視	
	殿備を除く。）の地盤，若しくは，重大事故等対処施設のうち，常設而震重要重大事故防	
	止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基漼抁張）（当該設備が風	
	可る耐震重要度分頑が S クラスのもの）又は常設重大事故緩和設備（設計基漼抁張）が	
	㭊置される重大事故等対処施設の建物•構築物の地盤の接地圧に対する支持力の許容限	
	囷について，自重や連転時の荷重等と基漼地震動S s による地震力との組合せにより算	
	定される接地圧が，安全上適切と認められる規格，基漼等による地盤の極限支持力度四	
	对して妥当な余裕を有することを碓認する。	
	玉た，上記の設計基漼対象施設にあっては，自重や運転時の荷重等と設置（変更）許可	
	を受けた弾性設計用地震動S d（以下「弾性設計用地震動S d」という。）による地震力	
	区は静的地震力との組合せにより算定される接地圧について，安全上適切と認められる	
	萈格，基準等による地盤の短期許容支持力度を許容限界とする。	
	屋外重要土木構造物，津波防謢施設，浸水防止設備及び津波監視設備並びに浸水防止	
	婜備又は津波監視設備が設置された建物•構節物の地盤こおいては，自重や運転時の荷	
	重等と基漼地震動S s こよる地震力との組合せにより算定される接地圧が，安全上適切	
	と認められる規格，基漼等による地盤の極限支持力度に対して妥当な余裕を有すること	
	退確認する。	
	䖉計基漼対象施設のらち，B クラス及びC クラスの施設の地盤，若しくは，常設耐震重	
	要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準	
	兹張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される	
	厙大事故等対処施設の建物•構築物及び機器•配管系の地盤においては，自重や運転時	

変更前	変更後	記載しない理由
1.1 急傾斜地の崩壊の防止 「急傾斜地の崩壊による災害の防止に関する法律」に基づき指定された急傾斜地崩壊危険区域でない地域に設備を施設する。	の荷重等と，静的地震力及び動的地震力（Bクラスの共振影響検討に係るもの又は B クラ スの施設の機能を代替する常設重大事故防止設備の共振影響検討に係るもの）との組合 せにより算定される接地圧に対して，安全上適切と認められる規格，基準等による地盤 の短期許容支持力度を許容限界とする。 1.2 急傾斜地の崩壊の防止 「急傾斜地の崩壊による災害の防止に関する法律」に基づき指定された急傾斜地崩壊危険区域でない地域に設備を施設する。	女川原子力発電所第 2 号機は急傾斜地崩壊危険区域には該当し ない。
2．自然現象 2.1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針耐震設計は，以下の項目に従って行う。 a．設計基準対象施設のらち，耐震重要施設は，その供用中に当該耐震重要施設に大 きな影響を及ぼすおそれがある地震（設置（変更）許可を受けた基準地震動（以下「基準地震動」という。））による加速度によって作用する地震力に対して，その安全機能が損なわれるおそれがない設計とする。 b．設計基準対象施設は，地震により発生するおそれがある安全機能の喪失（地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。）及びそれに続く放射線による公衆への影響を防止する観点から，各施設の安全機能が喪失した場合の影響の相対的な程度（以下「耐震重要度」という。）に応じて，S クラス，B クラス又はC クラスに分類（以下「耐震重要度分類」という。） し，それぞれに応じた地震力に十分耐えられる設計とする。	2．自然現象 2.1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 耐震設計は，以下の項目に従って行う。 a．設計基準対象施設のらち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそれがある地震（基準地震動 S s ）による加速度によって作用する地震力に対して，その安全機能が損なわれるおそれがない設計とする。 重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）は，基準地震厙 S s による地震力に対して，重大事故等に対処するために必要な機能が損なわ れるおそれがないように設計する。 b．設計基準対象施設は，地震により発生するおそれがある安全機能の喪失（地震 に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失 を含む。）及びそれに続く放射線による公衆への影響を防止する観点から，各施設 の安全機能が喪失した場合の影響の相対的な程度（以下「耐震重要度」といら。） に応じて，Sクラス，Bクラス又はCクラスに分類（以下「耐震重要度分類」とい ら。）し，それぞれに応じた地震力に十分耐えられる設計とする。 厙大事故等対処施設については，施設の各設備が有する重大事故等に対処する ために必要な機能及び設置状態を踏まえて，常設耐震重要重大事故防止設備が設直される重大事故等対処施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。	

変更前	変更後	記載しない理由
	以下同じ。），常設重大事故緩和設備が設置される重大事故等対処施設，常設重大	
	事故防止設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故	
	等対処施設を除く。以下同じ。），常設重大事故緩和設備（設計基準抁張）が設置さ	
	匹る重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）及び可搬	
	型重大事故等対処設備に分類する。	
	重大事故等対処施設のらち，常設耐震重要重大事故防止設備以外の常設重大事	
	故防止設備が設置される重大事故等対処施設は，代替する機能を有する設計基鷕	
	事故対処設備が属する耐震重要度分類のクラスに適用される地震力に十分に耐闰	
	ることができる設計とする。	
	常設而震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大	
	串故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基漼抅	
	㙊）が設置される重大事故等対処施設の両方に属する重大事故等対処施設につい	
	ては，基漼地震動S sによる地震力を適用するものとする。	
	重大事故等対処施設のらち，常設重大事故防止設備（設計基漼昖張）（当該設葿	
	が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重大事故	
	等対処施設は，当該設備が属する耐震重要度分類のクラスに適用される地震力可	
	十分に耐えることができる設計とする。	
	嫦設重大事故防止設備（設計基漼拡張）（当該設備が属する耐震重要度分類が B	
	クラス又はC クラスのもの）が設置される重大事故等対処施設と常設重大事故絸	
	和設備又は常設重大事故緩和設備（設計基漼昖張）が設置される重大事故等対処	
	地設の両方に属する重大事故等対処施設については，基漼地震動S s こよる地霣	
	力を適用するものとする。	
	なお，特定重大事故等対処施設に該当する施設は本申請の対象外である。	
c．建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及びその他の土木構造物）の総称とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系の間接支持機能又は非常時における海水の通水機能を求められる土木構造物をいう。		
d．Sクラスの施設は，基準地震動による地震力に対してその安全機能が保持できる	c．Sクラスの施設（e．汅記載のもののらち，津波防護施設，浸水防止設備及び津波	
設計とする。	監視設備を除く。）は，基準地震動 S s による地震力に対してその安全機能が保持 できる設計とする。	

変更前	変更後	記載しない理由
	瑺設重大事故防止設備（設計基準拡張）（当誩設備が属する耐震重要度分類が B	
	クラス又は C クラスのもの）が設置される重大事故等対处施設は，上記に示す。	
	当誩設備が属する耐震重要度分類のクラスに適用される地震力に対して，おおむ	
	汉弾性状態にとどまる範囲で耐えられる設計とする。	
	g．耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常	
	殿重大事故防止設備（設計基漼拡張）（当該設備が属する耐震重要度分類がSク ${ }^{\text {a }}$	
	スのもの）又は常設重大事故緩和設備（設計基準扩張）が設置される重大事故等	
	不処施設が，それ以外の発電所内にある施設（資機材等含む。）の波及的影響によ	
	つて，その安全機能及び重大事故等に対処するために必要な機能を損なわない設	
	計とする。	
	h．可搬型重大事故等対処設備については，地震による周辺斜面の崩壊等の影響买	
	受けないように「5．1．5 環境条件等」に基づく設計とする。	
	i．緊急時対策所の耐震設計の基本方針については，「（6）緊急時対策所」に示す。	
	j．耐震重要施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮	
	した場合においても，その安全機能が損なわれないよら，適切な対策を講ずる設	
	斋とする。	
	原設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設	
	備（設計基漼抆張）（当該設備が属する耐震重要度分頪がSクラスのもの）又は常	
	殿重大事故緩和設備（設計基漼抁張）が設置される重大事故等対処施設について	
	は，液状化，摇すり达み沈下等の周辺地盤の変状を考慮した場合においても，重	
	大事故等に対処するために必要な機能が損なわれるおそれがないよう，適切な対	
	策を講ずる設計とする。	
（2）耐震重要度分類	（2）耐震重要度分類及び重大事故等対処施設の設備の分類	
a．耐震重要度分類	a．耐震重要度分類	
設計基淮対象施設の耐震重要度を以下のとおり分類する。	設計基淮対象施設の耐震重要度を以下のとおり分類する。	
（a）Sクラスの施設	（a）Sクラスの施設	
地震により発生するおえれがある事象に対して，原子炬を停止し，炬心を椧却	地震により発生するおそれがある事象に対して，原子炬を停止し，炬心を渝	
するために必要な機能を持つ施設，自ら放射性物質を内蔵している施設，当該施	却するために必要な機能を持つ施設，自ら放射性物質を内蔵している施設，当	
設に直接関係しておりその機能喪失により放射性物質を外部に抆散する可能性	䬵施設に直接関係しておりその機能震失により放射性物質を外部に拡散する可	
のある施設，これらの施設の機能㖉失により事故に至った場合の影響を緩和し，	能性のある施設，これらの施設の機能喪失により事故に至った場合の影響を絸	
放射線による公衆への影響を軽減するために必要な機能を持つ施設及びこれら	和し，放射線による公衆への影響を軽減するために必要な機能を持つ施設及び	

変更前	変更後	記載しない理由
の重要な安全機能を支援するために必要となる施設，並びに地震に伴って発生 するおそれがある津波による安全機能の喪失を防止するために必要となる施設 であって，その影響が大きいものであり，次の施設を含む。 - 原子炉冷却材圧力バウンダリを構成する機器•配管系 - 使用済燃料を貯蔵するための施設 - 原子炉の緊急停止のために急激に負の反応度を付加するための施設，及び原子炉の停止状態を維持するための施設 - 原子炉停止後，灲心から崩壊熱を除去するための施設 - 原子炉冷却材圧力バウンダリ破損事故後，炉心から崩壊熱を除去するため の施設 －原子炉冷却材圧力バウンダリ破損事故の際に，圧力障壁となり放射性物質 の放散を直接防ぐための施設 －放射性物質の放出を伴うような事故の際に，その外部放散を抑制するため の施設であり，上記の「放射性物質の放散を直接防ぐための施設」以外の施設 （b）Bクラスの施設 安全機能を有する施設のうち，機能喪失した場合の影響が S クラス施設と比 べ小さい施設であり，次の施設を含む。 －原子炉冷却材圧力バウンダリに直接接続されていて，一次冷却材を内蔵し ているか又は内蔵し得る施設 －放射性廃棄物を内蔵している施設（ただし，内蔵量が少ない又は貯蔵方式に より，その破損により公衆に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則（昭和 53 年通商産業省令第 77 号）」第 2 条第 2 項第 6 号に規定する「周辺監視区域」外における年間の線量限度に比べ十分小さいものは除く。） －放射性廃棄物以外の放射性物質に関連した施設で，その破損により，公衆及 び従事者に過大な放射線被ばくを与える可能性のある施設 - 使用済燃料を泠却するための施設 - 放射性物質の放出を伴うような場合に，その外部放散を抑制するための施設で，Sクラスに属さない施設 （c）Cクラスの施設 S クラスに属する施設及び B クラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設である。	これらの重要な安全機能を支援するために必要となる施設，並びに地震に伴っ て発生するおそれがある津波による安全機能の喪失を防止するために必要とな る施設であって，その影響が大きいものであり，次の施設を含む。 - 原子炉冷却材圧力バウンダリを構成する機器•配管系 - 使用済燃料を貯蔵するための施設 - 原子炉の緊急停止のために急激に負の反応度を付加するための施設，及び原子炉の停止状態を維持するための施設 - 原子炉停止後，炉心から崩壊熱を除去するための施設 - 原子炉冷却材圧力バウンダリ破損事故後，炉心から崩壊熱を除去するため の施設 －原子炬冷却材圧力バウンダリ破損事故の際に，圧力障壁となり放射性物質 の放散を直接防ぐための施設 －放射性物質の放出を伴らような事故の際に，その外部放散を抑制するため の施設であり，上記の「放射性物質の放散を直接防ぐための施設」以外の施設 - 津波防護施設及び浸水防止設備 - 津波監視設備 （b）B クラスの施設 安全機能を有する施設のうち，機能喪失した場合の影響が S クラス施設と比 べ小さい施設であり，次の施設を含む。 －原子炉冷却材圧力バウンダリに直接接続されていて，一次冷却材を内蔵し ているか又は内蔵し得る施設 －放射性廃棄物を内蔵している施設（ただし，内蔵量が少ない又は貯蔵方式 により，その破損により公衆に与える放射線の影響が「実用発電用原子炣 の設置，運転等に関する規則（昭和 53 年通商産業省令第 77 号）」第 2 条第 2 項第 6 号に規定する「周辺監視区域」外における年間の線量限度に比べ十 分小さいものは除く。） －放射性廃棄物以外の放射性物質に関連した施設で，その破損により，公衆 及び従事者に過大な放射線被ばくを与える可能性のある施設 - 使用済燃料を泠却するための施設 - 放射性物質の放出を伴うような場合に，その外部放散を抑制するための施信で，S クラスに属さない施設 （c）Cクラスの施設 Sクラスに属する施設及び B クラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設である。	

変更前	変更後	記載しない理由
上記に基づく耐震重要度分類を第2．1．1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持されることを確認する地震動及び波及的影響を考慮すべき施設に適用する地震動についても併記する。	上記に基づく耐震重要度分類を第2．1．1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持されることを碓感する地震動及び波及的影響を考慮すべき施設に適用する地震動についても侀虏する。 b．重大事故等対処施設の設備分類厙大事故等対処設備について，施設の各設備が有する重大事故等に対処するた めに必要な機能及ひ設置状態を踏まえて，以下の設備分類に応じて設計する。 （a）常設重大事故防止設備 厙大事故等対処設備のらち，重大事故汇至るおそそれがある事故が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料プールの椧却機能若しくは注水機能が辕失した場合において，その震失した機能（重大事故汇医るおそれがある事故に対処するために必要な機能に限る。）を代替すること目 より重大事故の発生を防止する機能を有する設備であって常設のもの 1．常設耐震重要重大事故防止設備 常設重大事故防止設備であって，而震重要施設に属する設計基準事故対処殿備が有する機能を代替するもの 口．常設耐震重要重大事故防止設備以外の常設重大事故防止設備常設重大事故防止設備であって，イ．以外のもの （b）常設重大事故緩和設備厙大事故等対処設備のらち，重大事故が発生した場合において，当該重大事故の拡大を防止し，又はその影響を緩和するための機能を有する設備であって常設のもの （c）常設重大事故防止設備（設計基準扩張） 䖉計基準対象施設のらち，重大事故等時に機能を期待する設備であって，重大事故の発生を防止する機能を有する（a）以外の常設のもの （d）常設重大事故緩和設備（設計基準拡張） 殿計基準対象施設のらち，重大事故等時に機能を期待する設備であって，畽大事故の拡大を防止し，又はその影響を緩和するための機能を有する（b）以外の常設のもの （e）可搬型重大事故等対処設備 厙大事故等対処設備であって可般型のもの	

変更前	変更後	記載しない理由
（3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 設計基準対象施設に適用する静的地震力は，S クラスの施設，B クラス及びC ク ラスの施設に適用することとし，それぞれ耐震重要度分類に応じて次の地震層せ ん断力係数 C_{i} 及び震度に基づき算定する。 （a）建物•構築物 水平地震力は，地震層せん断力係数 C_{i} に，次に示す施設の耐震重要度分類に応じた係数を乗じ，さらに当該層以上の重量を乗じて算定するものとする。 $\begin{array}{ll} \text { Sクラス } & 3.0 \\ \text { B クラス } & 1.5 \\ \text { C クラス } & 1.0 \end{array}$ ここで，地震層せん断力係数 C_{i} は，標準せん断力係数 C 。を 0.2 以上とし，建物•構築物の振動特性，地盤の種類等を考慮して求められる値とする。 また，必要保有水平耐力の算定においては，地震層せん断力係数 C_{i} に乗じる施設の耐震重要度分類に応じた係数は，Sクラス，Bクラス及びCクラスともに 1.0 とし，その際に用いる標準せん断力係数C。は 1.0 以上とする。 Sクラスの施設については，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度 より算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められる規格及び基準を参考に，Cクラスに適用される静的地震力を適用する。 （b）機器•配管系	重大事故等対処設備のうち，耐震評価を行う主要設備の設備分類について，第 2．1．2 表に示す。 （3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 信計基準対象施設に適用する静的地震力は，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。），Bクラス及びCクラスの施設に適用するこ ととし，それぞれ耐震重要度分類に応じて次の地震層せん断力係数 C_{i} 及び震度に基づき算定する。 重大事故等対処施設については，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設に，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される静的地震力を，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBク ラス又はCクラスのもの）が設置される重大事故等対処施設に，当該設備が属する耐震重要度分類のクラスに適用される静的地震力を，それぞれ適用する。 （a）建物•構築物 水平地震力は，地震層せん断力係数 C_{i} に，次に示す施設の耐震重要度分類に応じた係数を乗じ，さらに当該層以上の重量を乗じて算定するものとする。 Sクラス 3.0 Bクラス 1.5 Cクラス 1.0 ここで，地震層せん断力係数 C_{i} は，標準せん断力係数 C_{o} を 0.2 以上とし， 揵物•構築物の振動特性，地盤の種類等を考慮して求められる値とする。 また，必要保有水平耐力の算定においては，地震層せん断力係数 C_{i} に乗じる 施設の耐震重要度分類に応じた係数は，S クラス，B クラス及びCクラスともに 1.0 とし，その際に用いる標準せん断力係数C。は1．0以上とする。 Sクラスの施設については，水平地震力と鉛直地震力が同時に不利な方向の 組合せで作用するものとする。鉛直地震力は，震度 0.3 以上を基準とし，建物• 構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度より算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められる規格及び基準 を参考に，Cクラスに適用される静的地震力を適用する。 （b）機器•配管系	

変更前	変更後	記載しない理由
	揵物•構築物の動的解析にて，地震時の地艋の有効応力の変化に応じた	
	影響を考慮する場合は，有効応力解析を実施する。有効応力解析に用いる	
	腋状化強度特性は，數地の原地盤における代表性及び網监性を踏まえた上	
	で実施した液状化強度試験結果に基づき，保守性を考慮して設定する。	
	原子炬建屋については，3 次元 FEM 解析等から，建物•構築物の 3 次元応	
	答性状及びそれによる機器•配管系への影響を評価する。	
	㰾的解析に用いる解析モデルは，地震観測網により得られた観測記録氾	
	より振動性状の把握を行い，解析モデルの妥当性の碓認を行ら。	
	屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故	
	缓和設備，常設重大事故防止設備（設計基準扩張）（当該設備が属する耐靁	
	重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基漼拡張）	
	が設置される重大事故等対処施設の土木構造物の動的解析は，構造物と地	
	盤の相互作用を考慮できる連成系の地震応答解析手法とし，地盤及び構週	
	物の地震時における非線形举動の有無や程度に応じて，線形，等価線形习	
	は非線形解析のいずれが行て行ら。	
	地震力については，水平 2 方向及び鉛直方向について適切に組み合わせ	
	て算定する。	
（口）機器•配管系	（口）機器•配管系	
動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，	刺的解析による地震力の算定に当たつては，地震応答解析手法の適用性，	
適用限界等を考慮の上，適切な解析法を選定するととも汇，解析条件として	適用限界等を考慮の上，適切な解析法を選定するとともに，解析条件とし	
考慮すべき減衰定数，棡性等の各種物性值は，適切な規格及び基準又は忟験	て考慮すべき減衰定数，剛性等の各種物性值は，適切な規格及び基準又因	
等の結果に基づき設定する。なお，原子炉本体の基碮の構造強度は，鋼板の	軾験等の結果に基づき設定する。ここで，原子炉本体の基碮については，鋼	
みで地震力に耐える設計とする。	板とコンクリートの複合構造物として，より現実に近い適正な地震応答解	
	断を実施する観点から，コンクリートの剛性変化を適切に考慮した復元力	
	牲性を設定する。復元力特性の設定に当たつては，既往の知見や実物の凮	
	子炉本体の基碇を模擬した試験体による加力忟験結果を踏むえて，妥当性，	
	適用性を碓認するとともに，設定における不確実性や保守性を考慮し，機	
	临•配管系の設計用地震力を設定する。なお，原子炬本体の基砋の構造強度	
	は，鋼板のみで地震力に耐える設計とする。	
機器の解析に当たつては，形状，構造特性等を考慮して，代表的な振動モ	閃器の解析に当たつては，形状，構造特性等を考慮して，代表的な振動目	
ードを適切に表現できるよう質点系モデル，有限要素モデル等に置換し，設	－ドを適切に表現できるよう質点系モデル，有限要素モデル等に置換し，	
計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法	殿計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析	
により応答を求める。	法により応答を求める。	
また，時刻歴応答解析法及びスペクトルモーダル解析法を用いる場合は	因た，時刻歴応答解析法及びスペクトルモーダル解析法を用いる場合困	
地艦物性等のばらつきを適切に考慮する。スペクトルモーダル解析法には	地艋物性等のばらつきを適切に考慮する。スペクトルモーダル解析法に因	

変更前	変更後	記載しない理由
地盤物性等のばらつきを考慮した床応答曲線を用いる。 配管系については，その仕様に応じて適切なモデルに置換し，設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。 スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たつては，衝突・すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入 れ実機の挙動を模擬する観点で，建物•構築物の剛性，地盤物性のばらつき への配慮をしつつ時刻歴応答解析法を用いる等，解析対象とする現象，対象設備の振動特性•構造特性等を考慮し適切に選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデ ルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせ るものとする。 剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定する。 c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認められる規格及び基準に基 づき，設備の種類，構造等により適切に選定するとともに，試験等で妥当性を確認 した値も用いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンクリートの減衰定数の設定 については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討する。 （4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下による。 a．耐震設計上考慮する状態 地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ．～ハ，の状態を考慮する。 イ．運転時の状態 発電用原子炉施設が運転状態にあり，通常の自然条件下におかれている状態。	地盤物性等のばらつきを考慮した床応答曲線を用いる。 配管系については，その仕様に応じて適切なモデルに置換し，設計用床 応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により 応答を求める。 スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たっては， 衝突・すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入 れ実機の挙動を模擬する観点で，建物•構築物の剛性，地盤物性のばらつき への配慮をしつつ時刻歴応答解析法を用いる等，解析対象とする現象，対 象設備の振動特性•構造特性等を考慮し適切に選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデ ルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせ るものとする。 岡性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定する。 c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認められる規格及び基準に基 づき，設備の種類，構造等により適切に選定するとともに，試験等で妥当性を確認した値も用いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンクリートの減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討する。 また，地盤と屋外重要土木構造物の連成系地震応答解析モデルの減衰定数につ いては，地中構造物としての特徴，同モデルの振動特性を考慮して適切に設定す る。 （4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下による。 a．耐震設計上考慮する状態 地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 䖊計基準対象施設については以下のイ．～ハ．の状態，重大事故等対処施設に ついては以下のイ．～ニ，の状態を考慮する。 1．運転時の状態 発電用原子炉施設が運転状態にあり，通常の自然条件下におかれている状態。	

変更前	変更後	記載しない理由
ただし，運転状態には通常運転時，運転時の異常な過渡変化時を含むものと する。 ロ．設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。 八。設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 （b）機器•配管系 設計基準対象施設については以下のイ．～ニ．の状態を考慮する。 イ．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁に行われた場合であって運転条件が所定の制限値以内にある運転状態。 ロ．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若しくはその誤作動又 は運転員の単一の誤操作及びこれらと類似の頻度で発生すると予想される外乱によって発生する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著しい損傷が生じるおそれがあるものと して安全設計上想定すべき事象が発生した状態。 八．設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態であって，当該状態が発生した場合には発電用原子炬施設から多量の放射性物質が放出するお それがあるものとして安全設計上想定すべき事象が発生した状態。 ニ．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 b．荷重の種類 （a）建物•構築物 設計基準対象施設については以下のイ．～ニ．の荷重とする。	ただし，運転状態には通常運転時，運転時の異常な過洨変化時を含むもの とする。 口．設計基準事故時の状息 発電用原子炉施設が設計基準事故時にある状態。 人．設計用自然条件 砍計上基本的に考慮しなければならない自然条件（風，積雪）。 E．重大事故等時の状悓 発電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の麻態で，重大事故等対处施設の機能を必要とする状態。 （b）機器•配管系 䖉計基準対象施設については以下のイ。～ニ，の状態，重大事故等対処施設记 いいては以下のイ，～ホ，の状態を考慮する。 1．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又困廭繁に行われた場合であって運転条件が所定の制限值以内にある運転状態。 口．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若しくはその誤作動又庭運転員の単一の誤操作及びこれらと類似の頻度で発生すると予想される外适によって発生する異常な状態であって，当該状態が継続した場合には炬心区は原子炬椧却材圧カバウンダリの著しい損傷が生じるおそれれがあるものと して安全設計上想定すべき事象が発生した状態。 人．設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態であって，当該状態かか発生した場合には発電用原子炉施設から多量の放射性物質が放出する体 それがあるものとして安全設計上想定すべき事象が発生した状態。 E．設計用自然条件 殿計上基本的に考慮しなければならない自然条件（風，積雪）。 木．重大事故時の状態 溌電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の 庆態で，重大事故等対処施設の機能を必要とする状態。 b．荷重の種類 （a）建物•構築物 䖉計基準対象施設については以下のイ。～ニ，の荷重，重大事故等対処施設何 いいては以下のイ．～ホ，の荷重とする。	

変更前	変更後	記載しない理由
なわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 ロ。 運転時の状態で施設に作用する荷重 八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ただし，運転時の状態及び設計基準事故時の状態での荷重には，機器•配管系 から作用する荷重が含まれるものとし，地震力には，地震時土圧，機器•配管系 からの反力，スロッシング等による荷重が含まれるものとする。 （b）機器•配管系 設計基準対象施設については，以下のイ．～ニ．の荷重とする。 イ．通常運転時の状態で施設に作用する荷重 口．運転時の異常な過渡変化時の状態で施設に作用する荷重 ハ。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 c．荷重の組合せ 地震と組み合わせる荷重については，以下のとおり設定する。 （a）建物•構築物 イ．S クラスの建物•構築物については，常時作用している荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施設に作用する荷重と地震力とを組み合わせる。 ロ．S クラスの建物•構築物については，常時作用している荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弹性設計用地震動による地震力又は静的地震力とを組み合わせる。	なわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 口．運転時の状態で施設に作用する荷重 ハ．設計基準事故時の状態で施設に作用する荷重 三．地震力，風荷重，積雪荷重 ホ，重大事故等時の状態で施設に作用する荷重 ただし，運転時の状態，設計基準事故時の状態及び重大事故等時の状態での 荷重には，機器•配管系から作用する荷重が含まれるものとし，地震力には，地 震時土圧，機器•配管系からの反力，スロッシング等による荷重が含まれるもの とする。 （b）機器•配管系 信計基準対象施設については，以下のイ．～ニ．の荷重，重大事故等対処施設 については以下のイ．～ホ，の荷重とする。 イ．通常運転時の状態で施設に作用する荷重 口．運転時の異常な過渡変化時の状態で施設に作用する荷重 ハ．設計基準事故時の状態で施設に作用する荷重 E．地震力，風荷重，積雪荷重 ホ．重大事故等時の状態で施設に作用する荷重 c．荷重の組合せ 地震と組み合わせる荷重については，「2．3 外部からの衝撃による損傷の防止」 で設定している風及び積雪による荷重を考慮し，以下のとおり設定する。 （a）建物•構築物（（c）に記載のものを除く。） 1．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故缓和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が信置される重大事故等対処施設の建物•構築物については，常時作用してい る荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施喭に作用する荷重と地震力とを組み合わせる。 ロ．S クラスの建物•構築物については，常時作用している荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動S dによる地震力又は静的地震力とを組み合わせる。 ${ }^{* 1, * 2}$ 八．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類がSクラスのもの）	

変更前	変更後	記載しない理由
	区は常設重大事故緩和設備（設計基漼拡張）が設置される重大事故等対処施	
	䢕の建物•構築物については，常時作用している荷重，設計基準事故時の状態	
	四び重大事故等時の状態で施設に作用する荷重のらち，地震によって引き起	
	こされるおそれがある事象によって作用する荷重と地震力とを組み合わせ	
	3。重大事故等による荷重は設計基漼対象施設の耐震設計の考え方及び碓夓	
	騟的な考察を踏まえ，地震によって引き起こされるおそれがない事象による	
	㾍重として扱ら。	
	E．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防	
	止設備（設計基漼拡張）（当該設備が属する耐震重要度分類がSクラスのもの）	
	区は常設重大事故緩和設備（設計基漼払張）が設置される重大事故等対処施	
	啟の建物•構築物については，常時作用している荷重，設計基漼事故時の状態	
	四び重大事故等時の状態で施設に作用する荷重のらち，地震によって引き起	
	区されるおそれがない事象による荷重は，その事故事象の発生確率，継続時	
	䦨及び地震動の年超過確率の闗係を踏まえ，適切な地震力（基淮地震動S s	
	又は弾性設計用地震動S dによる地震力）と組み合わせる。この組合せにつ	
	いては，事故事象の発生碓率，継続時間及び地震動の年超過確率の積等を芳	
	慮し，工学的，総合的に勘案の上設定する。なおっ，継続時間については対策の	
	成立性も考慮した上で設定する。	
	以上を踏末え，原子炉格納容器がウンダリを構成する施設（原子炉格納容	
	器内の圧力，温度の条件を用いて評価を行らその他の施設を含む。）について	
	畋，いつたん事故が発生した場合，長時間継続する事象による荷重と弾性設	
	喭用地震動S dによる地震力とを組み合わせ，その状態からさらに長期的に	
	粴続する事象による荷重と基漼地震動S s こよる地震力を組み合わせる。\％	
	お边格納容器破損モードの評価シナリオのらち，原子炉圧力容器が破損する	
	磹価シナリオについては，重大事故等対処設備による原子炉注水は実施しな	
	い想定として評価しており，本来は機能を期待できる高圧代替注水系，低冉	
	代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動	
	府圧注水系ポンプ）による原子炬注水により炬心損傷の回避が可能であるこ	
	とから荷重条件として考慮しない。	
	玉た，その他の施設については，いつたん事故が発生した場合，長時間䋛綾	
	回る事象による荷重と基漼地震動S s による地震力とを組み合わせる。	
八．Bクラス及びCクラスの建物•構築物については，常時作用している荷重及	ホ． B クラス及び C クラスの建物•構築物並びに常設耐震重要重大事故防止設	
び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み	備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡掁）	
合わせる。	（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置	
	される重大事故等対処施設の建物•構築物については，常時作用している荷	

変更前	変更後	記載しない理由
	組み合わせる。	
	＊：S クラスの建物•構築物の設計基準事故の状態で施設に作用する荷重につ	
	いては，（b）機器•配管系の考元方に沿った下記の 2 つの考え方に基つ	
	き検討した結果として後者を踏まえ，施設に作用する荷重のらち長時間	
	号の作用が続く荷重と弾性設計用地震動S d による地震力又は静的地震	
	力とを組み合わせることとしている。この考え方は，JEAG4601回	
	おける建物•構築物の荷重の組合せの記載とも整合している。	
	－常時作用している荷重及び設計基漼事故時の状態のらち地震によって	
	引き起こされるおそれのある事象によって施設に作用する荷重は，そ	
	の事故事象の継続時間との関係を踏まえ，適切な地震力と組み合わせ	
	て考慮する。	
	－常時作用している荷重及び設計基漼事故時の状態のらち地震によって	
	引き⿺⿱土龰己己⿱⿰㇒一乂⿹\zh26灬教これるおそれのない事象であっても，いったん事故が発生し	
	大場合，長時間䋛続する事象による荷重は，その事故事象の発生確率，	
	籹続時間及び地震動の超過確率の関係を踏まえ，適切な地震力と組网	
	合わせる。	
	＊2：原子炉格納容器バウンダリを構成する施設については，異常時圧力の最	
	大値と弾性設計用地震動S d こよる地震力とを組み合わせる。	
（b）機器•配管系 イ．Sクラスの機器•配管系については，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。	（b）機器•配管系（（c）に記載のものを除く。）	
	1．Sクラスの機器•配管系及び常設而震重要重大事故防止設備，常設重大事故	
	套和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重	
	要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基漼拉張）加	
	扸置される重大事故等対処施設の機器•配管系については，通常運転時の状	
	愿で施設に作用する荷重と地震力とを組み合わせる。	
口．Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのある事象 によって施設に作用する荷重と地震力とを組み合わせる。	－Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及で	
	殿計基漼事故時の状態のらち地震によって引き起こされるおそれのある事匋	
	によって施設に作用する荷重と地震力とを組み合わせる。	
	八．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防	
	止設備（設計基漼拡張）（当該設備が属する耐震重要度分類がSクラスのもの）	
	又は常設重大事故緩和設備（設計基準抁張）か設置される重大事故等対処施	
	扸の機器•配管系については，運転時の異常な過渡変化時の状態，設計基漼事	
	臨時の状態及び重大事故等時の状態で作用する荷重のらち，地震によって引	

d．許容限界

各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとお りとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用いる。
（a）建物•構築物
－Sクラスの建物•構築物
（イ）弾性設計用地震動による地震力又は静的地震力との組合せに対する許容限界

「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。
（口）基準地震動による地震力との組合せに対する許容限界
構造物全体としての変形能力（終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする （評価項目はせん断ひずみ，応力等）。
なお，終局耐力は，建物•構築物に対する荷重又は応力を漸次増大してい くとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，既往の実験式等に基づき適切に定めるものとする。
－B クラス及びCクラスの建物•構築物（へ．及びト．に記載のものを除く。）

上記イ．（イ）による許容応力度を許容限界とする。

八。 耐震重要度分類の異なる施設を支持する建物•構築物（へ．及びト．に記載の
d．許容限界
各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとお りとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されてい る値を用いる。
（a）建物•構築物（（c）に記載のものを除く。）
イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故䈠和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）か䎤置される重大事故等対処施設の建物•構築物（へ，に記載のものを除く。） （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界
「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。
ただし，泠却材喪失事故時に作用する荷重との組合せ（原子炉格納容器 バウンダリを構成する設備における長期的荷重との組合せを除く。）に対し ては，下記イ。（ロ）に示す許容限界を適用する。
（ロ）基準地震動 S s による地震力との組合せに対する許容限界
構造物全体としての変形能力（終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとす る（評価項目はせん断ひずみ，応力等）。

なお，終局耐力は，建物•構築物に対する荷重又は応力を漸次増大してい くとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因として考えられる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コン クリート造耐震壁の変形能力及び終局耐力に影響を与えないことを確認し ていることから，既往の実験式等に基づき適切に定めるものとする。

ロ．B クラス及びCクラスの建物•構築物（へ．及びト，に記載のものを除く。）並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B ク今ス又はC クラスのもの）が設置される重大事故等対処施設の建物•構築物 （ト，に記載のものを除く。）

上記イ．（イ）による許容応力度を許容限界とする。

変更前	変更後	記載しない理由
応答が全体的におおむね弾性状態にとどまることとする（評価項目は応力等）。 八．チャンネルボックス チャンネルボックスは，地震時に作用する荷重に対して，燃料集合体の原子炉泠却材流路を維持できること及び過大な変形や破損を生ずることにより制御棒の挿入が阻害されないものとする。 二．主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止 め弁まで） 主蒸気逃がし安全弁排気管は基準地震動に対して，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）は弾性設計用地震動に対してイ。（ロ）に示す許容限界を適用する。	れる重大事故等対処施設の機器•配管系 応答が全体的におおむね弾性状態にとどまることとする（評価項目は応力等）。 ニ．チャンネルボックス チャンネルボックスは，地震時に作用する荷重に対して，燃料集合体の原 子炬冷却材流路を維持できること及び過大な変形や破損を生ずることにより 制御棒の挿入が阻害されないものとする。 ホ．燃料被覆管 炉心内の燃料被覆管の放射性物質の閉じ込めの機能についての許容限界 は，以下のとおりとする。 （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまることとする。 （ロ）基準地震動S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレベルにとどまっ て破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響 を及ぼさないこととする。 －主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止 め弁まで） 主蒸気逃がし安全弁排気管は基準地震動 S s に対して，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）は弾性設計用地震動 S d に対してイ．（ロ） に示す許容限界を適用する。 （c）津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置さ れた建物•構築物 䢖波防護施設及び浸水防止設備が設置された建物•構築物については，当該揓設及び建物•構築物が構造物全体としての変形能力（終局耐力時の変形）及び安定性について十分な余裕を有するとともに，その施設に要求される機能（津波防護機能及び浸水防止機能）が保持できるものとする（評価項目はせん断ひ ずみ，応力等）。 浸水防止設備及び津波監視設備については，その設備に要求される機能（浸水防止機能及び津波監視機能）が保持できるものとする。 （5）設計における留意事項 a．波及的影響	

変更前	変更後	記載しない理由
	耐震重要施設及び常設而震重要重大事故防止設備，常設重大事故緩和設備，常	
	信重大事故防止設備（設計基準昖掁）（当該設備が属する耐震重要度分類が S ラ	
	Хのもの）又は常設重大事故緩和設備（設計基準抆張）が設置される重大事故等	
	奶処施設（以下「上位クラス施設」という。）は，下位クラス施設の波及的影響に	
	よって，その安全機能及び重大事故等に対処するために必要な機能を損なわない	
	殿計とする。	
	啵及的影響については，耐震重要施設の設計に用いる地震動又は地震力を適用	
	して評価を行ら。なお，地震動又は地震力の選定に当たつては，施設の配置状況，	
	使用時間等を踏まえて適切に設定する。また，波及的影響においては水平 2 方闹	
	及び鉛直方向の地震力が同時に作用する場合に影響を及ぼす可能性のある施設，	
	䖉備を選定し評価する。	
	波及的影響の評価に当たつては，敷地全体を俯酷した調查•検討等を行ら。	
	匚こで，下位クラス施設とは，上位クラス施設以外の発電所内にある施設（資機	
	麻等含む。）をいら。	
	波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保	
	安規定に定めて管理する。	
	聏震重要施設に対する波及的影響については，以下㲹示す（a）～（ d）の 4 つの事	
	項から検討を行ら。	
	なお，原子力発電所の地震被害情報等から新た以検討すべき事項が抽出された	
	場合には，これを追加する。	
	瑺設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備	
	（設計基淮拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設	
	重大事故緩和設備（設計基漼抆張）が設置される重大事故等対処施設に対する波	
	区的影響については，以下に示す（a）～（ d ）の 4 つの事項について「耐震重要施設」	
	な「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止	
	殿備（設計基漼扡張）（当該設備が属する耐震重要度分類がSクラスのもの）又因	
	常設重大事故緩和設備（設計基準抁張）が設置される重大事故等対処施設」に，	
	「安全機能」を「重大事故等に対処するために必要な機能」に読为替元て適用可	
	3.	
	（a）設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位による影響	
	1．不等沈下	
	而震重要施設の設計に用いる地震動又は地震力に対して，不等沈下による	
	而震重要施設の安全機能への影響。	
	口．相対変位	
	而震重要施設の設計に用いる地震動又は地震力に対して，下位クラス施設	

変更前	変更後	記載しない理由
	水した地下水を排できる設計とする。	
	地下水位低下設備は，1 系統当たり3個（計 12 個）設置した水位計からの水位	
	信号を用いて， 2 out of 3 論理により揚水ポンプの自動起動及び自動停止を行引	
	ととで，揚水井戸の水位を自動で制御できる設計とする。また，各系統の水位を，	
	原子炬建屋及び中央制御室に設置した制御媻から監視可能な設計とする。水位や	
	扸備の異常時には，これらを確実に検出して自動的に中央制御室に警報（水位低	
	又は高，水位高高，過負荷等）を発信する装置を設けるとともに，表示ランプの点	
	灯，ブザー鳴動等により運転員に通報できる設計とする。	
	制御盤は， 2 系統の独立した設備を 1 系統当たり現場及び中央制御室に 1 面す	
	口設置し，原子炬建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアの	
	それぞれ1系統の設備ごとに，監視•制御可能な設計とする。	
	源設備である非常用ディーゼル発電機及び常設代替交流電源設備であるがスター	
	ビン発電機から設備に必要な電力を供給できる設計とする。	
	電源盤は，2系統の独立した設備を 1 系統当たり1面ずつ設置し，原子炉建屋•	
	制御建屋エリア及び第3号機海水熱交器建屋エリアのそれぞれ 1 系統の設備ごと	
	迋電力を供給できる設計とする。	
	陽水ポンプ，配管及び水位計は揚水井戸内に設置し，揚水井戸により支持する	
	とともに，揚水井戸上部に蓋を設置することで，外部事象の影響を受けない設計	
	とする。	
	地下水位低下設備は，地震時及び地震後を含む，原子力発電所の供用期間の全	
	ての状態において機能維持を可能とするため，基漼地震動S s による地震力に対	
	して機能維持する設計とする。	
	＊た，「実用発電用原子炬及びその附属施設の位置，構造及ひ設備の基準に関す	
	「規則」第十二条第 2 項に基づき，地下水位低下設備を設置する原子炬建屋•制	
	御建屋エリア及び第3号機海水熱交換器建屋エリアの各エリアで，多重性及び独	
	立性を備える設計とするとともに，外部事象等による機能䨝失要因に対し機能維	
	摩する設計とする。	
	材として，原子炬建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリア回	
	おける全ての地下水位低下設備の機能喪失を考慮し，予備品及び可搬ポンプ（個	
	薮 3 ，容量 $114 \mathrm{~m}^{3} / \mathrm{h} /$／固（計 $\left.342 \mathrm{~m}^{3} / \mathrm{h}\right)$ ）を搭載した可䑤ポンプユニット（個数 2 ）を	

変更前	変更後	記載しない理由
	配備する。 予備品は，復旧措置にあたり機器の交換が必要な場合に備え，各エリアを1系統履旧できる数量を配備する。 可搬ポンプユニットは，各エリアの排水機能の維持を可能とする配備数とし，高台の堅固な地盤に外部事象を考慮して分散配置する。 地下水位低下設備は，保安規定において運転上の制限を設定し，地下水位を一定 の範囲に保持できない場合又はそのおそれがある場合には，可搬ポンプユニットに よる水位低下措置を速やかに開始するとともに，原子炉を停止する。 また，地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材の配備，手順書及び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備として，保安規定に定 めた上で，社内規定に定める。 （6）緊急時対策所 緊急時対策所については，基準地震動 S s による地震力に対して，重大事故等に奶処するために必要な機能が損なわれるおそれがない設計とする。 緊急時対策所を設置する緊急時対策建屋については，耐震構造とし，基準地震動 S s による地震力に対して，遮蔽性能を確保する。また，緊急時対策所の居住性を㕍保するため，基準地震動 S s による地震力に対して，緊急時対策所の換気設備の性能とあいまって十分な気密性を確保する。 更に，施設全体の更なる安全性を確保するため，基準地震動S s による地震力と の組合せに対して，短期許容応力度以内に収める設計とする。 なお，地震力の算定方法及び荷重の組合せと許容限界については，「2．1．1（3）地震力の算定方法」及び「2．1．1（4）荷重の組合せと許容限界」に示す建物•構築物及び機器•配管系のものを適用する。 2．1．2 地震による周辺斜面の崩壊に対する設計方針 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスの もの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s による地震力により周辺斜面の崩壊の影響がないこ とが確認された場所に設置する。	

変更前	変更後	記載しない理由
	a．竜巻	
	外部事象防詨対象施設は，竜巻防謢に係る設計時に，設置（変更）許可を受けだ	
	最大風速 $100 \mathrm{~m} / \mathrm{s}$ の章巻（以下「設計竜巻」という。）が発生した場合について章	
	巻より防護すべき施設に作用する荷重を設定し，外部事象防護対象施設が安全機	
	能を損なわないよう，それぞれの施設の設置状況等を考慮して影響評価を実施し，	
	外部事象防護対象施設が安全機能を損ならおそれがある場合は，影響に応じた防	
	䧹措置その他の適切な措置を講じる設計とする。	
	＊た，重大事故等対処設備は，建屋内への設置又は設計基淮事故対処設備等及	
	び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することに	
	より，設計基淮事故対処設備等の安全機能と同時にその機能を損なわない設計を	
	する。	
	埂に，外部事象防護対象施設に波及的影響を及ぼす可能性がある施設の影響及	
	び章巻の随伴事象による影響について考慮した設計とする。	
	なお，定期的に新知見の確認を行い，新知見が得られた場合に評価を行らこと	
	达保安規定に定めて管理する。	
	（a）影響評侕における荷重の設定	
	構造強度評価においては，風圧力による荷重，気圧差による荷重及び飛来物	
	の衝繋荷重を組み合わせた設計竜巻荷重並びに童巻以外の荷重を適切に組み合	
	わせた設計荷重を設定する。	
	風压力による荷重及び気圧差による荷重としては，設計竜巻の特性値に基づ	
	いて設定する。	
	麻（長さ $4.2 \mathrm{~m} \times$ 幅 $0.3 \mathrm{~m} \times$ 高さ 0.2 m ，質量 135 kg ，飛来時の水平速度 $46.6 \mathrm{~m} / \mathrm{s}$ ，	
	莪来時の鉛直速度 $16.7 \sim 34.7 \mathrm{~m} / \mathrm{s}$ ）より も運動エネルギ又は貫通力が大きな軍	
	大事故等対処設備，資機材等は設置場所及び障害物の有無を考慮し，固縛，固定	
	区は外部事象防護対象施設等からの離隔を実施すること，並びに車両について	
	罒入構管理及び退避を実施することにより飛来物とならない措置を講じること	
	から，設計飛来物が衝突する場合の荷重を設定することを基本とする。更に，設	
	谚飛来物に加えて，竜巻の影響を考慮する施設の設置状沉その他環境状沉を考	
	慮し，評価に用いる飛来物の衝突による荷重を設定する。	
	なお，飛来した場合の運動エネルギ又は貫通力が設計飛来物である銅製材よ	
	可も大きな重大事故等対処設備，資機材等については，その保管場所，設置場所	
	及び障害物の有無を考慮し，外部事象防護対象施設，飛来物の衝突により外部	
	庫象防護対象施設の安全機能を損なわないよう設置する防謢措置（以下「防罭	

変更前	変更後	記載しない理由
	相策施設」といら。）及び外部事象防詨対象施設を内包する施設に衝突し，外部	
	庫象防護対象施設の機能に影響を及ぼす可能性がある場合には，固縛，固定习	
	过外部事象防護対象施設等からの離滆によって，浮き上がり 又は横滑りにより	
	㔰部事象防謢対象施設の機能に影響を及ぼすような飛来物とならない設計とす	
	3．	
	重大事故等対処設備，資機材等の固縛，固定又は外部事象防詨対象施設から	
	の離隔を実施すること，並びに車両については，入構管理及び退避を実施する	
	ことを保安規定に定めて管理する。	
	（b）竜巻に対する影響評価及び竜巻防護対策	
	屋外の外部事象防護対象施設は，安全機能を損なわないよう，設計荷重に対	
	して外部事象防護対象施設の構造強度評価を実施し，要求される機能を維持可	
	設計とすることを基本とする。	
	屋内の外部事象防護対象施設については，設計荷重に対して安全機能を損な	
	わないよう，外部事象防護対象施設を内包する施設により防護する設計とする	
	ことを基本とし，外気と繋がっている屋内の外部事象防護対象施設及び建屋等	
	近よる飛来物の防護が期待できない屋内の外部事象防護対象施設は，加わる枯	
	それがある設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，	
	医全機能を損なわないよう，要求される機能を維持する設計とすることを基本	
	とする。	
	外部事象防護対象施設の安全機能を損ならおそれがある場合には，防護拱置	
	その他の適切な措置を講じる設計とする。	
	屋外の重大事故等対処設備は，竜巻による風圧力による荷重に対し，設計基	
	匯事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散	
	を考慮した配置とすることにより，重大事故等に対処するために必要な機能包	
	有効に発揮する設計とする。	
	因た，屋外の重大事故等対処設備は，その保管場所及び設置場所を考慮し，外	
	陪事象防護対象施設及び防護対策施設に衝突し，外部事象防護対象施設の機能	
	汇影響を及ぼす可能性がある場合には，浮き上がり若しくは横滑りを拘束する	
	ことにより，飛来物とならない設計とする。ただし，浮き上がり又は横滑りを拘	
	敕する車両の重大事故等対処設備のらち，地震時の移動等を考慮して地震後の	
	嘰能を維持する設備は，重大事故等に対処するために必要な機能を損なわない	
	よう，余長を有する固縛で拘束する。	
	屋内の重大事故等対処設備は，竜巻による風圧力による荷重に対し，設計基	
	漼事故対処設備等の安全機能と同時に重大事故等に対処するために必要な機能	
	庭損なわないように，重大事故等対処設備を内包する施設により防護する設計	
	とすることを基本とする。	

変更前	変更後	記載しない理由
	能を損なわないように，降下火砤物を適宜除去することにより，設計基淮	
	事故対処設備等の安全機能と同時に重大事故等対処設備の重大事故等に対	
	処するために必要な機能が損なわれるおそれがない設計とする。	
	なおっ，降下火砤物により必要な機能を損ならおうそれがないよう屋外の重	
	大事故等対処設備に堆積する降下兆呼物を適宜除去することを保安規定河	
	定めて管理する。	
	（口）閉塞	
	i．水循澴系の閉塞	
	外部事象防護対象施設等及び外部事象防護対象施設等し波及的影響它	
	区ばし得る施設のらち，降下炻确物を含む海水の流路となる施設につい	
	ては，降下火砤物に対し，機能を損なられそれがないよう，降下火砤物の	
	遃径に対し十分な流路幅を設けることにより，水循環系の狭隘部が閉塞	
	しない設計とする。	
	ii．換気系，電気系及び計測制御系に対する機械的影響（閉塞）	
	外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響园	
	及ぼし得る施設のらち，非常用ディーゼル発電機（高圧炬心スプレイ系	
	F゙イーゼル発電機を含む。）は，吸気口上流側の外気取入口にルーバを設	
	蒖し，下側から吸い达む構造とすることにより，降下火砤物が流路に侵	
	入しにくい設計とする。排気筒及び非常用が处理系（屋外配管）は，排	
	気筒の排気により降下火碑物を侵入し難くすることで排気流路が閉塞し	
	ない設計とする。	
	＊た，外気を取り入れる非常用換気空調系（外気取入口）及び非常用こ	
	イーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）の空気	
	の流路にそれぞれバグフィルタを設置することにより，フィルタメッシ	
	コより大きな降下火㸴物が内部に侵入しにくい設計とし，更に降下火确	
	物がフィルタに付着した場合でも取替え又は清掃が可能な構造とするこ	
	とで，降下火確物により閉塞しない設計とする。	
	匪常用ディーゼル機関及び高圧炬心スプレイ系ディーゼル機関は，フ	
	イルタを通過した小さな粒径の降下火确物が侵入した場合でも，降下火	
	避物により閉塞しない設計とする。	
	匪常用換気空調系（外気取入口）以外の降下火确物を含む空気の流路	
	となる換気系，電気系及び計測制御系の施設についても，降下火矿物目	

変更前	変更後	記載しない理由
	影響評価を実施し，室内の居住性を碓保する設計とする。	
	なおっ，降下火劯物による中央制御室の大気污染を防止するよら事故時運	
	謰モードへの切替え等を保安規定に定めて管理する。	
	（ ））絶縁低下	
	外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及	
	因し得る施設のらち，空気を取り込む機構を有する電気系及び計測制御奚	
	の盤については，降下火挽物に対し，機能を損なられそれがないよう，計測	
	制御用電源設備（無停電電源装置）及び非常用所内電気設備（所内低圧䋀	
	統）の設置場所の非常用換気空調系にバグフィルタを設置することにより，	
	降下火砤物が侵入しにくい設計とする。	
	なおっ，降下火砕物による電気系及び計測制御系の盤の絶皧低下を防止す	
	3ようバグフィルタの取替え又は清掃することを保安規定に定めて管理可	
	る．	
	口．間接的影響に対する設計方針	
	降下火砤物による間接的影響である長期（7日間）の外部電源礝失及び発電	
	所外での交通の途絶によるアクセス制限事象に対し，原子炬及び使用㵒然料	
	プールの安全性を損なわないようにするために，7日間の電源供給が継続で	
	きるよう，非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機	
	を含む。）の燃料を貯蔵するための軽油タンク及び燃料を移送するための燃料	
	曶送ポンプ等を降下火㸴物の影響を受けないよう設置する設計とする。	
	c．外部火災	
	厢定される外部火災において，火災源を発電所敷地内及び敷地外設定し外部	
	事象防護対象施設に係る温度や距離を算出し，それらによる影響評価を行い，最	
	も厳しい火災が発生した場合においても安全機能を損なわない設計とする。	
	外部事象防護対象施設は，防火帯の設置，堆隔距離の確保，建屋による防護によ	
	って，安全機能を損なわない設計とする。	
	厙大事故等対処設備は，建屋内への設置又は設計基漼事故対処設備等及び同以	
	機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，防	
	火帯により防護することにより，設計基淮事故対処設備等の安全機能と同時に司	
	の機能を損なわない設計とする。	
	外部火災の影響については，定期的な評価の実施を保安規定に定めて管理する。	
	（a）防火帯幅の設定に対する設計方針	
	自然現象として想定される森林火災については森林火災シミュレーション解	

変更前	変更後	記載しない理由
	の火火災発生時は速やかに消火活動が可能とすることにより，外部事象防護対	
	象施設に影響がない設計とする。	
	－航坴機隑落による火災については，「実用発電用原子炉施設への航空機落下啕	
	率の評価基漼について」（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号（平成 21 年 6 月 30 日	
	原子力安全•保安院一部改正））により壁落確率が 10^{-7}（回／炉•年）となる面	
	地点で火棪が起こることを想定し，建屋表面温度及び屋外の外部事象防護対	
	象施設の温度を求め，評価する。	
	－敷地内の危険物貯蔵施設等の火災と航空機箏落火災の重畳については，各同	
	の火災の評価条件により算出した輻射強度，燃䡙䋛続時間等により，外部事	
	潒防護対象施設の受熱面に対し，最も厳しい条件となる火災源と外部事象防	
	獲対象施設を選定し，建屋表面温度及び屋外の外部事象防護対象施設の温度	
	を求め評価する。	
	（c）発電所敷地外の火災•爆発源に対する設計方針	
	発電所敷地外での炏災•爆発源に対して，必要な離隔距雖を碓保することで，	
	外部事象防謢対象施設の安全機能を損なわない設計とする。	
	－発電所數地外 10 km 以内の範囲において，火災により発電用原子炬施設に影翌	
	『及ばすような石油コンビナート施設は存在しないため，火災による発電用	
	原子炉施設への影響については考慮しない。	
	－発電所敫地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の火災回	
	いいては，外部事象防護対象施設を内包する建屋（垂直外壁面及び天井ス司	
	ブから選定した，火災の輻射に対して最も厳しい箅所）の表面温度が許容温	
	度となる危険距帷及び屋外の外部事象防謢対象施設の温度が許容温度となる	
	辻険距離を算出し，その危険距離を上回る離倠嗂距離を碓保する設計とする。	
	なおっ，漂流船舶の火災については，発電所䑤地外半径 10 km を主要航路とす	
	了船舶が存在しないことから，発電所内の港湾施設に入港する船舶の中で然	
	料の積載量が最大である船舶の火災を想定する。	
	－発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の爆発记	
	ついては，ガス爆発の爆風圧が 0.01 MPa となる危険限界距衄を算出し，その	
	危険限界距離を上回る離隔距離を碓保する設計とする。また，ガス爆発によ	
	雦を確保する設計とする。	
	なおっ，漂流船舶の爆発については，爆発のおうそれがある船舶が発電所敷地	
	外半径 10 km 以内を航行していないため，船舵の爆発による発電用原子炉施設	
	人の影響については考慮しない。	

変更前	変更後	記載しない理由
	（d）二次的影響（ばい煙）に対する設計方針屋外に開口しており空気の流路となる設備及び換気空調系統に対し，ばい㶳 の侵入を防止するため，適切な防護対策を講じることで外部事象防護対象施設 の安全機能を損なわない設計とする。 イ．換気空調系 外部火災によるばい煙が発生した場合には，侵入を防止するためフィルタ を設置する設計とする。 なお，室内に滞在する人員の環境劣化を防止するために，ばい煙の侵入を防止するよう外気取入ダンパの閉止及び事故時運転モードへの切替えによる外気の遮断を保安規定に定めて管理する。 口．安全保護装置 外部事象防護対象施設のらち空調系統にて空調管理されており間接的に外気と接する安全保護装置盤については，フィルタを設置することによりばい垔が侵入しにくい設計とする。 ハ。非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。） 非常用ディーゼル発電機（高圧灲心スプレイ系ディーゼル発電機を含む。） については，フィルタを設置することによりばい煙が侵入しにくい設計とす る。 また，ばい煙が侵入したとしてもばい煙が流路に溜まりにくい構造とし， ばい煙により閉塞しない設計とする。 二．原子灲補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ原子炬補機冷却海水ポンプ用電動機及び高圧炉心スプレイ補機冷却海水林 シプ用電動機については，モータ部を全閉構造とすることにより，ばい煙に より閉塞しない設計とする。 原子炉補機冷却海水ポンプ用電動機の空気泠却部は，ばい煙が侵入した場合においてもばい煙が流路に溜まりにくい構造とし，ばい煙により閉塞しな い設計とする。 （e）有毒ガスに対する設計方針 外部火災起因を含む有毒ガスが発生した場合には，中央制御室内に滞在する人員の環境劣化を防止するために設置した外気取入ダンパを閉止し，中央制御室内の空気を事故時運転モードへ切替えの実施及び必要に応じ中央制御室以外	

変更	変更後	記載しない理由
a．風（台風） 安全機能を有する構築物，系統及び機器は，風荷重を「建築基準法」に基づき設定し，安全機能を有する構築物，系統及び機器及びそれらの施設を内包する建屋の構造健全性を確保することで，その安全性を損ならおそれがない設計とする。 b．凍結 安全機能を有する構築物，系統及び機器は，涷結に対して，最低気温を考慮し，建屋内への設置又は屋外機器で涷結のおそれのあるものは凍結防止対策を行う設計とする。 c．降水 安全機能を有する構造物，系統及び機器は，降水による浸水に対して，観測記録 を上回る排水能力を有する構内排水路を設けて海域へ排水を行ら設計とする。 降水による荷重に対して，排水口及び構内排水路による海域への排水により，安全機能を有する構築物，系統及び機器は及びそれらの施設を内包する建屋の構造健全性を確保することで，その安全性を損ならおそれがない設計とする。	の空調ファンを停止することにより, 有毒ガスの侵入を防止する設計とする。 なお，外気取入ダンパの閉止及び事故時運転モードへ切替えによる外気の遮断及び空調ファンの停止による外気流入の抑制を保安規定に定めて管理する。 主要道路，鉄道線路，一般航路及び石油コンビナート施設は離隔距離を確保 することで事故等による火災に伴ら発電所への有毒ガスの影響がない設計とす る。 d．風（台風） 外部事象防護対象施設は，風荷重を「建築基準法」に基づき設定し，外部事象防㢈対象施設及び外部事象防護対象施設を内包する建屋の構造健全性を確保するこ とで，外部事象防護対象施設の安全機能を損なわない設計とする。 厙大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能と同時にそ の機能を損なわない設計とする。 e．凍結 外部事象防護対象施設は，設計基準温度による凍結に対して，屋内施設につい ては換気空調系により環境温度を維持し，屋外施設については保温等の凍結防止対策を必要に応じて行うことにより，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ嘰能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能と同時にそ の機能を損なわない設計とする。 f．降水 外部事象防護対象施設は，降水による浸水に対して，設計基準降水量を上回る排水能力を有する構内排水路による海域への排水を行ら設計とする。 降水による荷重に対して，排水口及び構内排水路による海域への排水により，外部事象防護対象施設及び外部事象防護対象施設を内包する建屋の構造健全性を雁保することで，外部事象防護対象施設の安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ厍能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能と同時にそ の機能を損なわない設計とする。	

変更前					
d．積雪					
	安全機能を有する構造物，系統及び機器は，積雪荷重を発電所の最寄りの気象官				

安全機能を有する構造物，系統及び機器は，積雪荷重を発電所の最寄りの気象官署である石巻特別地域気象観測所の観測記録により設定し，安全機能を有する構造物，系統及び機器及びそれらの施設を内包する建屋の構造健全性を確保するこ とで，その安全機能を損なわない設計とする。
e．落雷
安全機能を有する構造物，系統及び機器は，発電所の雷害防止対策として，「建築基準法」に基づき原子炉建屋等への避雷針の設置を行うとともに，雷サージに対 して，接地網の敷設による接地抵抗の低減等及び安全保護装置への雷サージ侵入 の抑制を図る回路設計を行う設計とする。

f．生物学的事象

安全機能を有する構造物，系統及び機器は，生物学的事象に対して，海生生物で あるクラゲ等の発生を考慮して除塺装置及び海水ストレーナを設置し，必要に応 じて塵芥を除去する設計とする。また，小動物の侵入に対して，屋内施設は建屋止水処置により，屋外施設は，端子箱貫通部の閉止処置を行う設計とする。
g．高潮
安全機能を有する構築物，系統及び機器は，高潮の影響を受けない敷地高さ （ 0. P．+3.5 m ）以上に設置することにより，高潮により影響を受けることがない設計とする。
g．積雪
外部事象防護対象施設は，発電所の最寄りの気象官署である石巻特別地域気象観測所の観測記録に基づき設定した設計基準積雪量による積雪荷重に対して，機械的強度を有すること，また，閉塞に対して，非常用換気空調系の給排気口を設計基準積雪量より高所に設置することにより，安全機能を損なわない設計とする。重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮すること，及び除雪の実施により，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。
なお，除雪を適宜実施することを保安規定に定めて管理する。
h．落雷
外部事象防護対象施設は，発電所の雷害防止対策として，原子炉建屋等への避雷針の設置を行うとともに，設計基準電流値による雷サージに対して，接地網の僌設による接地抵抗の低減等及び安全保護装置への雷サージ侵入の抑制を図る回路設計を行うことにより，安全機能を損なわない設計とする。
重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，必
要に応じ避雷設備又は接地設備により防護することにより，設計基準事故対処設嘰能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，必
要に応じ避雷設備又は接地設備により防護することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。

i．生物学的事象厑部事象防護対象施設は，生物学的事象に対して，海生生物であるクラゲ等の外部事象防護対象施設は，生物学的事象に対して，海生生物であるクラゲ等の \begin{tabular}{|l|l|}
\hline する設計とする。また，小動物の侵入に対して，屋内施設は建屋止水処置等によ

\hline り，屋外施設は，端子箱貫通部の閉止処置を行うことにより，安全機能を損なわ

\hline

\hline する設計とする。また，小動物の侵入に対して，屋内施設は建屋止水処置等によ

\hline り，屋外施設は，端子箱貫通部の閉止処置を行らことにより，安全機能を損なわ

\hline
\end{tabular} ない設計とする。

重大事故等対処設備は，生物学的事象に対して，小動物の侵入を防止し，海生生物に対して，侵入を防止する又は予備を有することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。
j．高潮
外部事象防護対象施設及び重大事故等対処設備（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さ（0．P．＋ 3.5 m ）以上に設置することにより，高潮に より影響を受けることがない設計とする。

全機能と同時にその機能を損なわない設計とする。針の設置を行らとともに，設計基準電流値による雷サー

\qquad路
\qquad

人為事象

変更前	変更後	記載しない理由
a．電磁的障害 安全機能を有する構造物，系統及び機器は，電磁波の侵入を防止する設計とす る。	a．船舶の衝突 外部事象防護対象施設は，航路からの離隔距離を確保すること，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突して止まること及び吞み口が広く，取水性を損なわないことから，船舶の衝突により安全機能を損なわない設計とす る。 重大事故等対処設備は，航路からの離隔距離を確保すること，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突して止まること及び設計基準事故対処設備等と位置的分散を図り設置することにより，船舶の衝突により取水性を損 なわない設計とする。 b．電磁的障害 外部事象防護対象施設及び重大事故等対処設備のらち電磁波に対する考慮が必要な機器は，電磁波によりその機能を損なうことがないよう，ラインフィルタや絶縁回路の設置，又は鋼製筐体や金属シールド付ケーブルの適用等により，電磁波の侵入を防止する設計とする。 c．航空機の墜落 厘大事故等対処設備は，建屋内に設置するか，又は屋外において設計基準事故対処設備等と位置的分散を図り設置する。	
3．火災 3.1 火災による損傷の防止 原子炉冷却系統施設の火災による損傷の防止の基本設計方針については，火災防護設備の基本設計方針に基づく設計とする。	3．火災 3.1 火災による損傷の防止 原子炉冷却系統施設の火災による損傷の防止の基本設計方針については，火災防護設備の基本設計方針に基づく設計とする。	本記載は概要であるため，記載し ない。
－	4．溢水等 4.1 溢水等による損傷の防止 原子炉冷却系統の溢水等による損傷の防止の基本設計方針については，浸水防護施設 の基本設計方針に基づく設計とする。	本記載は概要であるため，記載し ない。
4．設備に対する要求 4.1 安全設備及び設計基準対象施設 4．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉の反応度を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時においても発電用原子炉固有の出力抑制特性を有するとともに，発電用原子炉の反応度を制御することにより，核分裂の連鎖反応を制御できる能力を有する設計とする。	5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 信計基準対象施設は，通常運転時において発電用原子炉の反応度を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時においても発電用原子炉固有の出力抑制特性を有するとともに，発電用原子炉の反応度を制御することにより，核分展の連鎖反応を制御できる能力を有する設計とする。	

変更前
（2）通常運転時に漏えいを許容する場合の措置
設計基準対象施設は，通常運転時において，放射性物質を含む液体を内包する容器，配管，ポンプ，弁その他の設備から放射性物質を含む液体があふれ出た場合にお いては，系統外に漏えいさせることなく，各建屋等に設けられた機器ドレン，床ドレ ン等のサンプ又はタンクに収集し，液体廃棄物処理設備に送水する設計とする。

4．1．2 多様性，位置的分散等
（1）多重性又は多様性及び独立性
設置許可基準規則第 12 条第 2 項に規定される「安全機能を有する系統のらち，安全機能の重要度が特に高い安全機能を有するもの」は，当該系統を構成する機器に「（2）単一故障」にて記載する単一故障が発生した場合であって，外部電源が利用 できない場合においても，その系統の安全機能を達成できるよう，十分高い信頼性を確保し，かつ維持し得る設計とし，原則，多重性又は多様性及び独立性を備える設計 とする。

変更後
2）通常運転時に漏えいを許容する場合の措置
設計基準対象施設は，通常運転時において，放射性物質を含む液体を内包する容器，配管，ポンプ，弁その他の設備から放射性物質を含む液体があふれ出た場合に おいては，系統外に漏えいさせることなく，各建屋等に設けられた機器ドレン，床 ドレン等のサンプヌはタンクに収集し，液体廃棄物処理設備に送水する設計とする。

5．1．2 多様性，位置的分散等
（1）多重性又は多様性及び独立性
信置許可基準規則第 12 条第 2 項に規定される「安全機能を有する系統のらち，安全機能の重要度が特に高い安全機能を有するもの」は，当該系統を構成する機器に「（2）単一故障」にて記載する単一故障が発生した場合であって，外部電源が利用 できない場合においても，その系統の安全機能を達成できるよう，十分高い信頼性 を確保し，かつ維持し得る設計とし，原則，多重性又は多様性及び独立性を備える設計とする。

重大事故等対処設備は，共通要因として，環境条件，自然現象，発電所敷地又はそ の周辺において想定される発電用原子炬施設の安全性を損なわせる原因となるおそ れがある事象であって人為によるもの（以下「人為事象」といら。），溢水，火災及ひ サポート系の故障を考慮する。

発電所敷地で想定される自然現象として，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を選定する。自然現象の組合せについては，地震，津波，風（台風），積雪及び火山の影響を考慮する。

人為事象として，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載 した車両，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突そ の他のテロリズムを選定する。
故意による大型航空機の衝突その他のテロリズムについては，可搬型重大事故等対処設備による対策を講じることとする。

原子炉建屋，制御建屋，緊急用電気品建屋及び緊急時対策建屋（以下「建屋等」と いう。）については，地震，津波，火災及び外部からの衝撃による損傷を防止できる設計とする。

変更前	変更後	記載しない理由
	䁵境条件に対しては，想定される重大事故等が発生した場合における温度，放	
	附線，荷重及びその他の使用条件において，可般型重大事故等対処設備がその機	
	能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性につ	
	いては「5．1．5 環境条件等」に基づく設計とする。	
	可搬型重大事故等対処設備は，風（台風），谏結，降水，積雪及び電磁的障害囝	
	肉しては，環境条件にて考慮し機能が損なわれない設計とする。	
	地震に対して，屋内の可搬型重大事故等対処設備は，「1．地盤等」に基づく地	
	盤に設置された建屋等内纪保管する。屋外の可船型重大事故等対処設備は，転倒	
	しないことを確認する，又は必要により蒖縛等の処置をするとともに，地震によ	
	り生ずる敷地下斜面のすべり，液状化又は摇すり込みによる不等沈下，傾斜及司	
	桴き上がり，地盤文持力の不足，地中埋設構造物の損溒等の影響により必要な機	
	能を喪失しない位置に保管する設計とする。	
	地震及び津波に対して可搬型重大事故等対処設備は，「2．1 地震による椇傷め	
	防止」及び「2．2 津波による損傷の防止」にて考慮された設計とする。	
	灰災に対して可搬型重大事故等対処設備は，「3．1 火災による損傷の防止」回	
	厔づく火火災防謢を行ら。	
	厙大事故等対処設備に期待する機能については，溢水影響を受けて設計基漼事	
	臨対処設備等と同時に機能を損ならおそれがないよう，被水及び蒸気影響に対し	
	ては可能な限り設計基漼事故対処設備等と位置的分散を図り，没水の影響に対し	
	ては溢水水位を考慮した位置に設置又は保管する。	
	地震，津波，溢水及び火炎に対して可搬型重大事故等対处設備は，設計基漼事故	
	对処設備等及び常設重大事故等対処設備と同時に機能を損なられそれがないよう	
	迷，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分	
	散を図り，複数箇所に分散して保管する設計とする。	
	風（台風），竜巻，速結，降水，積雪，落雷，火山の影響，生物学的事象，森林	
	火災，爆発，近隣工場等の火災，危険物を搭載した車両，有毒がス，船舶の㣫突及	
	び電磁的障害に対して，可搬型重大事故等対処設備は，外部からの㣫撃による損	
	摥の防止が図られた建屋等内に保管するか，又は設計基漼事故対処設備等及び常	
	殿重大事故等対処設備と同時に必要な機能を損ならおそれがないように，設計基	
	龨事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，	
	防火帯の内側の複数箇所に分散して保管する設計とする。	

変更前	変更後	記載しない理由
（2）単一故障 安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するも のは，当該系統を構成する機器に短期間では動的機器の単一故障，長期間では動的機器の単一故障若しくは想定される静的機器の単一故障のいずれかが生じた場合であ って，外部電源が利用できない場合においても，その系統の安全機能を達成できる設計とする。	地震，津波及び火災に対して接続口は，「2．1 地震による損傷の防止」，「2．2 津波による損傷の防止」及び「3．1 火災による損傷の防止」に基づく設計とする。 缢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に䖉置する。 地震，津波，溢水及び火災に対しては，接続口は，建屋内及び建屋面の適切に離隔した隣接しない位置に複数箇所設置する。 風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空厍落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒がス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズムに対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。 生物学的事象のらちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等に対処するために必要な機能が損なわれるおそれのな い設計とする。 高潮に対して接続口は，高潮の影響を受けない敷地高さに設置する。 また，一つの接続口で複数の機能を兼用して使用する場合には，それぞれの機能に必要な容量が確保できる接続口を設ける設計とする。同時に使用する可能性 がある場合は，合計の容量を確保し，状況に応じて，それぞれの系統に必要な容量を同時に供給できる設計とする。 （2）単一故障 安全機能を有する系統のらち，安全機能の重要度が特に高い安全機能を有するも のは，当該系統を構成する機器に短期間では動的機器の単一故障，長期間では動的磯器の単一故障若しくは想定される静的機器の単一故障のいずれかが生じた場合で あって，外部電源が利用できない場合においても，その系統の安全機能を達成でき る設計とする。 短期間と長期間の境界は 24 時間とする。 ただし，非常用ガス処理系の配管の一部及び非常用ガス処理系フィルタ装置，中央制御室換気空調系のダクトの一部及び中央制御室再循環フィルタ装置並びに残留熱除去系（格納容器スプレイ冷却モード）のドライウェルスプレイ管及びサプレッ	

変更前	変更後	記載しない理由
4．1．4 環境条件等 安全施設の設計条件については，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能となるよう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線，荷重，屋外の天候による影響（凍結及 び降水），海水を通水する系統への影響，電磁的障害，周辺機器等からの悪影響及び原子炉冷却材の性状を考慮し，十分安全側の条件を与えることにより，これらの条件下においても期待されている安全機能を発揮できる設計とする。	可搬型重大事故等対処設備のらち，原子炉建屋の外から水又は電力を供給する注 水設備及び電源設備は，必要となる容量等を有する設備を 1 基当たり 2 セットに加 远，故障時のバックアップ及び保守点検による待機除外時のバックアップとして， 発電所全体で予備を確保する。 また，可搬型重大事故等対処設備のらち，負荷に直接接続する高圧窒素ガスボン心，主蒸気逃がし安全弁用可搬型蓄電池等は，必要となる容量等を有する設備を 1 基当たり1セットに加え，故障時のバックアップ及び保守点検による待機除外時のバ ックアップとして，発電所全体で予備を確保する。 上記以外の可搬型重大事故等対処設備は，必要となる容量等を有する設備を 1 基当たり1セットに加え，設備の信頼度等を考慮し，予備を確保する。 5．1．5 環境条件等 安全施設の設計条件については，材料疲労，劣化等に対しても十分な余裕を持つ て機能維持が可能となるよう，通常運転時，運転時の異常な過渡変化時及び設計基漼事故時に想定される圧力，温度，湿度，放射線，荷重，屋外の天候による影響（谏結及び降水），海水を通水する系統への影響，電磁的障害，周辺機器等からの悪影響及び原子炉冷却材の性状を考慮し，十分安全側の条件を与えることにより，これら の条件下においても期待されている安全機能を発揮できる設計とする。 重大事故等対処設備は，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件において，その機能が有効に発揮できるよう，そ の設置場所（使用場所）又は保管場所に応じた耐環境性を有する設計とするととも に，操作が可能な設計とする。 重大事故等時の環境条件については，重大事故等時における温度（環境温度及び使用温度），放射線及び荷重に加えて，その他の使用条件として環境圧力，湿度によ子影響，屋外の天侯による影響（凍結及び降水），重大事故等時に海水を通水する系㟲への影響，自然現象による影響，人為事象の影響，周辺機器等からの悪影響及び原子炉冷却材の性状（原子炉冷却材中の破損物等の異物を含む。）の影響を考慮する。 荷重としては，重大事故等が発生した場合における機械的荷重に加えて，環境龱力，温度及び自然現象による荷重を考慮する。 自然現象について，重大事故等時に重大事故等対処設備に影響を与えるおそれが ある事象として，地震，風（台風），凍結，降水及び積雪を選定する。これらの事象 のうち，凍結及び降水については，屋外の天候による影響として考慮する。	

変更前	変更後	記載しない理由
（1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響（凍結及び降水）並びに荷重 安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時における環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響 （凍結及び降水）並びに荷重を考慮しても，安全機能を発揮できる設計とする。	自然現象による荷重の組合せについては，地震，風（台風）及び積雪の影響を考慮 する。 これらの環境条件のらち，重大事故等時における環境温度，環境圧力，湿度によ る影響，屋外の天侯による影響（凍結及び降水），重大事故等時の放射線による影響及び荷重に対しては，重大事故等対処設備を設置（使用）又は保管する場所に応じ て，「（1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候 による影響（涷結及び降水）並びに荷重」に示すように設備分類ごとに必要な機能 を有効に発揮できる設計とする。 （1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響（凍結及び降水）並びに荷重 安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時におけ る環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響（凍結及び降水）並びに荷重を考慮しても，安全機能を発揮できる設計とする。 原子炉格納容器内の重大事故等対処設備は，想定される重大事故等時における凮子炉格納容器内の環境条件を考慮した設計とする。また，地震による荷重を考慮し て，機能を損なわない設計とする。操作は中央制御室から可能な設計とする。 原子炉建屋原子炉棟内の重大事故等対処設備は，想定される重大事故等時におけ る環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損な わない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しく は離れた場所又は設置場所で可能な設計とする。 原子炉建屋付属棟内，制御建屋内（中央制御室を含む。），緊急用電気品建屋（地下階）内及び緊急時対策建屋内の重大事故等対処設備は，重大事故等時におけるそれ ぞれの場所の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計とする。 インターフェイスシステム LOCA 時，使用済燃料プールにおける重大事故に至るお それのある事故又は主蒸気管破断事故起因の重大事故等時に使用する設備について は，これらの環境条件を考慮した設計とするか，これらの環境影響を受けない区画	

変更前	変更後	記載しない理由
	び復旧作業に支障がないように，放射線量の高くなるおそれの少ない設置場所の選	
	定，当誩設備の設置場所への遮蔽の設置等により当該設備の設置場所で操作可能な	
	な設計，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。	
	可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても	
	砓置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少な	
	い設置場所の選定，当該設備の設置場所への遮蔽の設置等により，当該設備の設置	
	及び常設設備との接続が可能な設計とする。	
原子炬洽却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準を定めて水質を管理すること により異物の発生を防止する設計とする。 安全施設は，系䖻外部から異物が流入する可能性のある系統に対しては，ストレー ナ等を設置することにより，その機能を有効に発揮できる設計とする。	原子炉泠却材の性状	
	原子炉冷却材を内包する安全施設は，水質管理基淮を定めて水質を管理すること	
	により異物の発生を防止する設計とする。	
	安全施設及び重大事故等対処設備は，系統外部から異物が流入する可能性のある	
	䒺統に対しては，ストレーナ等を設置することにより，その機能を有効に発揮でき	
	「設計とする。	
操作性及び試験•検查性	6 操作性及ひ試験•検査性	
	重大事故等対処設備は，手順書の整備，訓練•教育により，想定される重大事故等	
	が発生した場合においても，確実に操作でき，設置変更許可申請書「十 発電用凮	
	子炬の炉心の著しい損傷との他の事故が発生した場合における当該事故に対処する	
	辰めに必要な施設及び体制の整備に闗する事項」 ハ で考慮した要員数と想定時間内	
	ビ，アクセスルートの確保を含め重大事故等に対処できる設計とする。これらの運	
	用に係る体制，管理等については，保安規定に定めて管理する。	
	重大事故等対処設備は，想定される重大事故等が発生した場合においても操作を	
	㕍実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とす	
	30	
	重大事故等対処設備は，操作する全ての設備に対し，十分な操作空間を確保する	
	とともに，確実な操作ができるよう，必要に応じて操作足場を設置する。また，防置	
	具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。 現場操作において工具を必要とする場合は，一般的に用いられる工具又は專用の	
	工具を用いて，碓実に作業ができる設計とする。工具は，作業場所の近傍又はアク	
	セスルートの近傍に保管できる設計とする。可般型重大事故等対処設備は，運般，	
	砓置が碓実に行えるように，人力又は車両等による運䈲，移動ができるとともに，	

変更前	変更後	記載しない理由
（1）試験•検査性 設計基準対象施設は，健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に必要な箇所の保守点検（試験及び検査を含む。）が可能な構造とし，そのた めに必要な配置，空間等を備えた設計とする。	屋外アクセスルートは，人為事象のうち飛来物（航空機落下），爆発，近隣工場等 の火災，危険物を搭載した車両及び有毒がスに対しては，迂回路も考慮した複数の アクセスルートを確保する設計とする。落雷に対しては，道路面が直接影響を受け ることはないため，さらに生物学的事象に対しては，容易に排除可能なため，アク セスルートへの影響はない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすへ りで崩壊土砂が広範囲に到達することを想定した上で，可搬型重大事故等対処設備 の運搬に必要な幅員を確保することにより通行性を確保できる設計とする。また，不等沈下等に伴う段差の発生が想定される箇所においては，段差緩和対策の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，自然現象のらち，凍結及び積雪に対して，道路について は融雪剤を配備し，車両については常時スタッドレスタイヤを装着することにより，掽びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とする。 屋内アクセスルートは，自然現象として選定する津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮による影響に対し て，外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。屋内アクセスルートは，人為事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス及び船舶の衝突に対して，外部 からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。 屋内アクセスルートの設定に当たっては，油内包機器による地震随伴火災の影響 や，水又は蒸気内包機器による地震随伴溢水の影響を考慮するとともに，迂回路を含む複数のルート選定が可能な配置設計とする。 （2）試験•検查性 信計基準対象施設は，健全性及び能力を確認するため，発電用原子炉の運転中又 は停止中に必要な箇所の保守点検（試験及び検査を含む。）が可能な構造とし，その ために必要な配置，空間等を備えた設計とする。 重大事故等対処設備は，健全性及び能力を確認するため，発電用原子灲の運転中又は停止中に必要な箇所の保守点検，試験又は検査を実施できるよら，機能•性能 の確認，漏えいの有無の確認，分解点検等ができる構造とし，そのために必要な配	

なお，各機器等のクラス区分の適用については，別紙「主要設備リスト」による

4．2．1 材料について
（1）機械的強度及び化学的成分
a．クラス 1 機器，クラス 1 支持構造物及び炉心支持構造物は，その使用される圧力，温度，水質，放射線，荷重その他の使用条件に対して適切な機械的強度及び化学的成分（使用中の応力その他の使用条件に対する適切な耐食性を含む。）を有す る材料を使用する。
b．クラス 2 機器，クラス 2 支持構造物，クラス 3 機器及びクラス 4 管は，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。
c．原子炉格納容器又は原子炉格納容器支持構造物は，その使用される圧力，温度，湿度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。
d．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレーナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。
（2）破壊じん性
a．クラス 1 容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。

原子炉圧力容器については，原子炉圧力容器の脆性破壊を防止するため，中性子照射脆化の影響を考慮した最低試験温度を確認し，適切な破壊じん性を維持でき るよう，原子炉冷却材温度及び圧力の制限範囲を設定することを保安規定に定め て管理する。
b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物（クラス 1 管及び クラス 1 弁を支持するものを除く。），クラス 2 機器，クラス 3 機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炉格納容器支持構造物及び炉心

び使用条件に対して，要求される強度を確保できる設計とする。
重大事故等クラス 2 容器及び重大事故等クラス 2 管のうち主要な耐圧部の溶接部の耐圧試験は，母材と同等の方法，同じ試験圧力にて実施する。
なお，各機器等のクラス区分の適用については，別紙「主要設備リスト」による。
5.2 .1 材料について
（1）機械的強度及び化学的成分
a．クラス 1 機器，クラス 1 支持構造物及び炉心支持構造物は，その使用される圧力，温度，水質，放射線，荷重その他の使用条件に対して適切な機械的強度及び化学的成分（使用中の応力その他の使用条件に対する適切な耐食性を含む。）を有す る材料を使用する。
b．クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，重大事故等 クラス 2 機器及び重大事故等クラス 2 支持構造物は，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。
c．原子炉格納容器又は原子炉格納容器支持構造物は，その使用される圧力，温度，湿度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。
d．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレーナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。
e．重大事故等クラス 3 機器は，その使用される圧力，温度，荷重その他の使用条件に対して日本産業規格等に適合した適切な機械的強度及び化学的成分を有する材料を使用する。
（2）破壊じん性
a．クラス 1 容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。

原子炉圧力容器については，原子炬圧力容器の脆性破壊を防止するため，中性子照射脆化の影響を考慮した最低試験温度を確認し，適切な破壊じん性を維持で きるよう，原子炉冷却材温度及び圧力の制限範囲を設定することを保安規定に定 めて管理する。

「実用発電用原子炬及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
支持構造物は，その最低使用温度に対して適切な破壊じん性を有する材料を使用 する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 c．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレーナ及び残留熱除去系ストレーナは，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。	支持構造物及び重大事故等クラス 2 機器は，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 重大事故等クラス 2 機器のらち，原子炬圧力容器については，重大事故等時に おける温度，放射線，荷重その他の使用条件に対して損傷するおそれがない設計 とする。 c．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレーナ及び残留熱除去系ストレーナは，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
（3）非破壊試験 クラス 1 機器，クラス 1 支持構造物（棒及びボルトに限る。），クラス 2 機器（鋳造品に限る。）及び炉心支持構造物に使用する材料は，非破壊試験により有害な欠陥 がないことを確認する。	（3）非破壊試験 クラス 1 機器，クラス 1 支持構造物（棒及びボルトに限る。），クラス 2 機器（鋳造品に限る。），炉心支持構造物及び重大事故等クラス 2 機器（鋳造品に限る。）に使用する材料は，非破壊試験により有害な欠陥がないことを確認する。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
4．2．2 構造及び強度について （1）延性破断の防止 a．クラス 1 機器，クラス 2 機器，クラス 3 機器，原子炉格納容器及び炉心支持構造物は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態（以下「設計上定める条件」という。）において，全体的な変形を弾性域に抑える設計と する。 b．クラス 1 支持構造物及び原子炉格納容器支持構造物は，運転状態 I 及び運転状態Iにおいて，全体的な変形を弾性域に抑える設計とする。 c．クラス 1 支持構造物であって，クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊を生じさせるおそれがあるものは，b．にかかわら ず，設計上定める条件において，全体的な変形を弹性域に抑える設計とする。 d．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1弁，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な	5．2．2 構造及び強度について （1）延性破断の防止 a．クラス 1 機器，クラス 2 機器，クラス 3 機器，原子炉格納容器，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等クラス 3 機器は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態（以下「設計上定める条件」とい う。）において，全体的な変形を弾性域に抑える設計とする。 b．クラス 1 支持構造物及び原子炉格納容器支持構造物は，運転状態 I 及び運転状態Iにおいて，全体的な変形を弾性域に抑える設計とする。 c．クラス 1 支持構造物であって，クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊を生じさせるおそれがあるものは，b．にかかわ らず，設計上定める条件において，全体的な変形を弾性域に抑える設計とする。 d．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1弁，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

形状の部分に限る。），原子炉格納容器支持構造物及び炬心支持構造物にあっては，運転状態川におおいて，全体的な塑性変形が生じない設計とする。また，応力が集中 する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。
e．クラス1容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 支持構造物，原子师格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限 る。），原子炉格納容器支持構造物及び炬心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形が生じない設計とする。
f．クラス 4 管は，設計上定める条件において，延性破断に至る塑性変形を生じな い設計とする。
g．クラス 1 容器（ボルトその他の固定用金具，オメガシールその他のシールを除 く。），クラス 1 支持構造物（クラス 1 容器に溶接により取り付けられ，その損壊 により，クラス 1 容器の損壊を生じさせるおそれがあるものに限る。）及び原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態 において，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上 の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。
h．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレーナ及び残留熱除去系ストレーナは，運転状態 I，運転状態II及び運転状態IV（異物付着による差圧 を考慮）において，全体的な変形を弾性域に抑える設計とする。
i．クラス 2 支持構造物であって，クラス 2 機器に溶接により取り付けられ，その損壊によりクラス 2 機器に損壊を生じさせるおそれがあるものには，運転状態 I及び運転状態IIにおいて，延性破断が生じない設計とする。
（2）進行性変形による破壊の防止
クラス1容器（ボルトその他の固定用金具を除く。），クラス1管，クラス1弁（弁箱に限る。），クラス 1 支持構造物，原子炬格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態IIにおいて，進行性変形が生じない設計とする。
（3）疲労破壊の防步
a．クラス 1 容器，クラス 1 管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，

形状の部分に限る。），原子炉格納容器文持構造物及び炬心支持構造物にあっては，運転状態IIIにおいて，全体的な塑性変形が生じない設計とする。また，応力が集中 する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。
e．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 支特構造物，原子炬格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限 る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形が生じない設計とする。
f．クラス 4 管は，設計上定める条件において，延性破断に至る塑性変形を生じな い設計とする。
g．クラス 1 容器（ボルトその他の固定用金具，オメガシールその他のシールを除 く。），クラス 1 支持構造物（クラス 1 容器に溶接により取り付けられ，その損買 により，クラス 1 容器の損壊を生じさせるおそれがあるものに限る。）及び原子㶥格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態 において，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上 の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。
h．高圧炬心スプレイ系ストレーナ，低圧炬心スプレイ系ストレーナ及び残留熱除去系ストレーナは，運転状態I，運転状態II及び運転状態IV（異物付着による差圧 を考慮）において，全体的な変形を弾性域に抑える設計とする。
i．クラス 2 支持構造物であって，クラス 2 機器に溶接により取り付けられ，その損壊によりクラス 2 機器に損壊を生じさせるおそれがあるものには，運転状態 I及び連転状態IIにおいて，延性破断が生じない設計とする。
j．重大事故等クラス 2 支持構造物であって，重大事故等クラス 2 機器に溶接によ り取り付けられ，その損壊により重大事故等クラス 2 機器に損壊を生じさせるお それがあるものは，設計上定める条件において，延性破断が生じない設計とする。

2）進行性変形による破壊の防止
クラス1容器（ボルトその他の固定用金具を除く。），クラス1管，クラス1弁（弁箱に限る。），クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態IIにおいて，進行性変形が生じない設計とする。
（3）疲労破填の防止
a．クラス 1 容器，クラス 1 管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，

「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
他の評価方法によりあらかじめ確認する。 4． 3 使用中の亀裂等による破壊の防止 クラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物及び炉心支持構造物は，使用される環境条件を踏まえ応力腐食割れに対して残留応力が影響する場合，有意な残留応力が発生すると予想される部位の応力緩和を行う。 使用中のクラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物， クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物及び炉心支持構造物は，亀裂その他の欠陥により破壊が引き起こされないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検查及び維持管理を行う。 使用中のクラス 1 機器の耐圧部分は，貫通する亀裂その他の欠陥が発生しないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂 その他の欠陥の解釈」等に従って検査及び維持管理を行う。 4．4 耐圧試験等 （1）クラス 1 機器，クラス 2 機器，クラス 3 機器，クラス 4 管及び原子炬格納容器は，施設時に，次に定めるところによる圧力で耐圧試験を行ったとき，これに耐え，か つ，著しい漏えいがないことを確認する。ただし，気圧により試験を行ら場合であっ て，当該圧力に耐えることが碓認された場合は，当該圧力を最高使用圧力（原子炉格納容器にあっては，最高使用圧力の 0.9 倍）までに減じて著しい漏えいがないこと を確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。 a．内圧を受ける機器に係る耐圧試験の圧力は，機器の最高使用圧力を超え，かつ，機器に生ずる全体的な変形が弾性域の範囲内となる圧力とする。ただし，クラス 1機器，クラス 2 管又はクラス 3 管であって原子炉圧力容器と一体で耐圧試験を行 ら場合の圧力は，燃料体の装荷までの間に試験を行った後においては，通常運転時 の圧力を超える圧力とする。 b．内部が大気圧未満になることにより，大気圧による外圧を受ける機器の耐圧試験の圧力は，大気圧と内圧との最大の差を上回る圧力とする。この場合において，耐圧試験の圧力は機器の内面から加えることができる。	他の評価方法によりあらかじめ確認する。 5.3 使用中の亀裂等による破壊の防止 クラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物は，使用される環境条件を踏まえ応力腐食割れに対して残留応力が影響する場合，有意な残留応力が発生すると予想され る部位の応力緩和を行う。 使用中のクラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物， クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物は，亀裂その他の欠陥により破壊が引き起こされないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検査及び維持管理を行う。 使用中のクラス 1 機器の耐圧部分は，貫通する亀裂その他の欠陥が発生しないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂 その他の欠陥の解釈」等に従って検査及び維持管理を行う。 5.4 耐圧試験等 （1）クラス 1 機器，クラス 2 機器，クラス 3 機器，クラス 4 管及び原子炉格納容器は，施設時に，次に定めるところによる圧力で耐圧試験を行ったとき，これに耐え，か つ，著しい漏えいがないことを確認する。ただし，気圧により試験を行ら場合であっ て，当該圧力に耐えることが確認された場合は，当該圧力を最高使用圧力（原子炉格納容器にあっては，最高使用圧力の 0.9 倍）までに減じて著しい漏えいがないこと を確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。 a．内圧を受ける機器に係る耐圧試験の圧力は，機器の最高使用圧力を超え，かつ，機器に生ずる全体的な変形が弾性域の範囲内となる圧力とする。ただし，クラス 1機器，クラス 2 管又はクラス 3 管であって原子炉圧力容器と一体で耐圧試験を行 ら場合の圧力は，燃料体の装荷までの間に試験を行った後においては，通常運転時 の圧力を超える圧力とする。 b．内部が大気圧未満になることにより，大気圧による外圧を受ける機器の耐圧試験の圧力は，大気圧と内圧との最大の差を上回る圧力とする。この場合において，耐圧試験の圧力は機器の内面から加えることができる。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。 「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
	（2）重大事故等クラス 2 機器及び重大事故等クラス 3 機器に属する機器は，施設時に，当該機器の使用時における圧力で耐圧試験を行ったとき，これに耐え，かつ，著しい漏えいがないことを確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。 ただし，使用時における圧力で耐圧試験を行うことが困難な場合は，運転性能試験結果を用いた評価等により確認する。 重大事故等クラス 3 機器であって，「消防法」に基づく技術上の規格等を満たす一般産業品の完成品は，上記によらず，運転性能試験や目視等による有害な欠陷がない ことの確認とすることもできるものとする。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
（2）使用中のクラス 1 機器，クラス 2 機器，クラス 3 機器及びクラス 4 管は，通常運転時における圧力で漏えい試験を行ったとき，著しい漏えいがないことを確認する。 なお，漏えい試験は，日本機械学会「発電用原子力設備規格 維持規格（J S ME S N A 1）」等に従って実施する。	（3）使用中のクラス 1 機器，クラス 2 機器，クラス 3 機器及びクラス 4 管は，通常運転時における圧力で，使用中の重大事故等クラス 2 機器及び重大事故等クラス 3 機器に属する機器は，当該機器の使用時における圧力で漏えい試験を行ったとき，著し い漏えいがないことを確認する。 なお，漏えい試験は，日本機械学会「発電用原子力設備規格 維持規格（J SME S N A 1）」等に従って実施する。 ただし，重大事故等クラス 2 機器及び重大事故等クラス 3 機器に属する機器は使用時における圧力で試験を行うことが困難な場合は，運転性能試験結果を用いた評価等により確認する。 重大事故等クラス 3 機器であって，「消防法」に基づく技術上の規格等を満たす一般産業品の完成品は，上記によらず，運転性能試験や目視等による有害な欠陷がない ことの確認とすることもできるものとする。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
（3）原子炉格納容器は，最高使用圧力の 0.9 倍に等しい気圧で気密試験を行ったとき，著しい漏えいがないことを確認する。 なお，漏えい率試験は，日本電気協会「原子炉格納容器の漏えい率試験規程（J E AC4203）」等に従って行う。 ただし，原子炉格納容器隔離弁の単一故障の考慮については，判定基準に適切な余裕係数を見込むか，内側隔離弁を開とし外側隔離弁を閉として試験を実施する。	（4）原子灲格納容器は，最高使用圧力の 0.9 倍に等しい気圧で気密試験を行ったとき，著しい漏えいがないことを確認する。 なお，漏えい率試験は，日本電気協会「原子炉格納容器の漏えい率試験規程（J E AC4203）」等に従って行う。 ただし，原子炉格納容器隔離弁の単一故障の考慮については，判定基準に適切な余裕係数を見込むか，内側隔離弁を開とし外側隔離弁を閉として試験を実施する。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
4.5 安全弁等 蒸気タービン，発電機，変圧器及び遮断器を除く設計基準対象施設に設置する安全弁，逃がし弁，破壊板及び真空破壊弁は，日本機械学会「設計•建設規格」（J SME S N C 1）及び日本機械学会「発電用原子力設備規格 設計•建設規格（J S ME S N C 1－2001）及び（J S ME S N C 1－2005）【事例規格】過圧防護に関する規定（N C－C C－O O 1）」に適合するよう，以下のとおり設計する。	5.5 安全弁等 蒸気タービン，発電機，変圧器及び遮断器を除く設計基準対象施設及び重大事故等対処施設に設置する安全弁，逃がし弁，破壊板及び真空破壊弁は，日本機械学会「設計•建設規格」（J S M E S N C 1）及び日本機械学会「発電用原子力設備規格 設計•建設規格（J S ME S NC 1－2001）及び（J SME S NC 1－2005）【事例規格】過圧防護に関する規定（ N C－C C－O O 1）」に適合するよう，以下のとおり設計する。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規

変更前	変更後	記載しない理由
なお，安全弁，逃がし弁，破壊板及び真空破壊弁については，施設時に適用した告示 （通商産業省「発電用原子力設備に関する構造等の技術基淮（昭和 55 年通商産業省告示第501号）」の規定に適合する設計とする。 安全弁及び逃がし弁（以下「4．5 安全弁等」において「安全并等」という。）は，確実 に作動する構造を有する設計とする。 安全弁等の弁軸は，弁座面からの漏えいを適切に防止できる構造とする。 安全弁等又は真空破壊弁の材料は，容器及び管の重要度に応じて適切な材料を使用す る。 設計基準対象施設に係る安全弁又は逃がし弁（以下「4．5 安全并等」において「安全弁」という。）のらち，補助作動装置付きの安全弁にあっては，当該補助作動装置が故障 しても系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な吹出し容量が得られる構造とする。 設計基準対象施設のらち減圧弁を有する管にあって，その低圧側の設備が高圧側の圧力に耐えられる設計となっていないもののらちクラス 1 管以外のものについては，減圧弁の低圧側の系統の健全性を維持するために必要な容量を持つ安全弁等を 1 個以上，減圧弁に接近して設置し，高圧側の圧力による損傷を防止する設計とする。なおう，容量は当該安全弁等の吹出し圧力と設置個数を適切に組み合わせることにより，系統の圧力をそ の最高使用圧力の 1.1 倍以下汇保持するのに必要な容量を算定する。 また，安全弁は，吹出し圧力を下回った後に，速やかに吹き止まる構造とする。 なぁ，クラス 1 管には減圧弁を設置しない設計とする。 原子炉圧力容器，補助ボイラー及び原子炉格納容器を除く設計基準対象施設に属する容器又は管であって，内部汇過圧が生ずるおそれがあるものにあっては，過圧防止に必要な容量を持つ安全弁等を 1 個以上設置し，内部の過圧による損傷を防止する設計とす る。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切に組み合わせることによ り，系統の圧力をその最高使用圧力の 1.1 倍以下江保持するのに必要な容量を算定する。 また，安全弁は吹出し圧力を下回った後に，速やかに吹き止まる構造とする。安全弁等の入口側に破壊板を設ける場合は，当該容器の最高使用圧力以下で破壊し，破壊板の破壊により安全茾等の機能を損なわないよう設計する。 設計基準対象施設に属する容器又は管に設置する安全升等の出口側には，破壊板を設置しない設計とする。	なお，安全弁，逃がし弁，破壊板及び真空破壊并については，施設時に適用した告示 （通商産業省「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号）」）の規定に適合する設計とする。 安全弁及び逃がし弁（以下「5．5 安全并等」において「安全弁等」という。）は，確実 に作動する構造を有する設計とする。 安全弁等の弁軸は，弁座面からの漏えいを適切に防止できる構造とする。安全弁等又は真空破壊弁の材料は，容器及び管の重要度に応じて適切な材料を使用す る。設計基漼対象施設及び重大事故等対処施設に係る安全弁又は逃がし弁（以下「5．5 安全并等」において「安全弁」という。）のらち，補助作動装置付きの安全弁にあっては，当該補助作動装置が故障しても系統の圧力をその最高使用圧力の 1.1 倍以下汇保持する のに必要な吹出し容量が得られる構造とする。 設計基準対象施設及び重大事故等対処施設のらち減圧弁を有する管にあって，その低圧側の設備が高圧側の圧力に耐えられる設計となっていないもののらちクラス 1 管以外 のものについては，減圧弁の低圧側の系䖻の健全性を維持するために必要な容量を持つ安全弁等を 1 個以上，減圧弁に接近して設置し，高圧側の圧力による損傷を防止する設計とする。なお，容量は当該安全并等の吹出し圧力と設置個数を適切に組み合わせるこ とにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量を算定する。 また，安全弁は，吹出し圧力を下回った後に，速やかに吹き止まる構造とする。 なぁ，クラス 1 管には減圧弁を設置しない設計とする。 原子炉圧力容器，補助ボイラー及び原子炬格納容器を除く設計基準対象施設及び重大事故等対処施設に属する容器又は管であって，内部に過压が生ずるおそれがあるものに あっては，過圧防止に必要な容量を持つ安全并等を 1 個以上設置し，内部の過圧による損傷を防止する設計とする。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切 に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下保持するの に必要な容量を算定する。 また，安全弁は吹出し圧力を下回った後に，速やか沉吹き止まる構造とする。安全弁等の入口側汇破壊板を設ける場合は，当該容器の最高使用圧力以下で破壊し，破壊板の破壊により安全弁等の機能を損なわないよう設計する。 設計基準対象施設及び重大事故等対処施設に属する容器又は管に設置する安全弁等の出口側には，破壊板を設置しない設計とする。	則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
内燃機関の軸受は運転中の荷重を安定に支持できるものであって，かつ，異常な摩耗，変形及び過熱が生じない設計とする。 内燃機関の耐圧部の構造は，最高使用圧力又は最高使用温度において発生する耐圧部分に生じる応力は当該部分に使用する材料の許容応力以下となる設計とする。 内燃機関を屋内その他酸素欠乏の発生のおそれのある場所に設置するときは，給排気部を設ける設計とする。 内燃機関は，その回転速度及び出力が負荷の変動により持続的に動揺することを防止する調速装置を設けるとともに，運転中に生じた過速度その他の異常による設備の破損を防止するため，その異常が発生した場合に内燃機関を安全に停止させる非常調速装置その他の非常停止装置を設置する設計とする。 内燃機関及びその附属設備であって過圧が生じるおそれのあるものには，適切な過圧防止装置を設ける設計とする。 内燃機関には，設備の損傷を防止するために，回転速度，潤滑油圧力及び潤滑油温度等の運転状態を計測する装置を設ける設計とする。 内燃機関の附属設備に属する容器及び管は発電用原子炉施設として，「実用発電用原子炉及びその附属施設の技術基準に関する規則」の材料及び構造，安全弁等，耐圧試験等の規定を満たす設計とする。	機械的強度を有する設計とする。 ガスタービンは，ガスの温度が著しく上昇した場合に燃料の流入を自動的に遮断 する装置が動作したときに達するガス温度に対して構造上十分な熱的強度を有する設計とする。 内燃機関及びガスタービンの軸受は運転中の荷重を安定に支持できるものであっ て，かつ，異常な摩耗，変形及び過熱が生じない設計とする。 ガスタービンの危険速度は，調速装置により調整可能な最小の回転速度から非常調速装置が作動したときに達する回転速度までの間に発生しないように設計する。 内燃機関及びガスタービンの耐圧部の構造は，最高使用圧力又は最高使用温度に おいて発生する耐圧部分に生じる応力は当該部分に使用する材料の許容応力以下と なる設計とする。 内燃機関を屋内その他酸素欠乏の発生のおそれのある場所に設置するときは，給排気部を設ける設計とする。 内燃機関及びガスタービンは，その回転速度及び出力が負荷の変動により持続的 に動揺することを防止する調速装置を設けるとともに，運転中に生じた過速度その他の異常による設備の破損を防止するため，その異常が発生した場合に内燃機関及 びガスタービンを安全に停止させる非常調速装置その他の非常停止装置を設置する設計とする。 内燃機関及びその附属設備であって過圧が生じるおそれのあるものには，適切な過圧防止装置を設ける設計とする。 内燃機関及びガスタービンには，設備の損傷を防止するために，回転速度，潤滑油圧力及び潤滑油温度等の運転状態を計測する装置を設ける設計とする。 内燃機関及びガスタービンの附属設備に属する容器及び管は発電用原子炉施設と して，「実用発電用原子炉及びその附属施設の技術基準に関する規則」の材料及び構造，安全弁等，耐圧試験等の規定を満たす設計とする。 5．7．2 可搬型重大事故等対処設備 可搬型の非常用発電装置の内燃機関は，流入する燃料を自動的に調整する調速装置及び軸受が異常な摩耗，変形及び過熱が生じないよう潤滑油装置を設ける設計と する。 可搬型の非常用発電装置の内燃機関は，回転速度，潤滑油圧力及び潤滑油温度等の運転状態を計測する装置を設ける設計とする。 可搬型の非常用発電装置の内燃機関は，回転速度が著しく上昇した場合及び泠却水温度が著しく上昇した場合等に自動的に停止する設計とする。 可搬型の非常用発電装置の強度については，完成品として一般産業品規格で規定 される温度試験等を実施し，定格負荷状態において十分な強度を有する設計とする。	構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。 「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
4.8 電気設備の設計条件 4．8．1 設計基準対象施設 設計基準対象施設に施設する電気設備（以下「電気設備」という。）は，感電又は火災のおそれがないように接地し，充電部分に容易に接触できない設計とする。 電気設備は，電路を絶縁し，電線等が接続部分において電気抵抗を増加させないよ らに端子台等により接続するほか，期待される使用状態において断線のおそれがな い設計とする。 電気設備における電路に施設する電気機械器具は，期待される使用状態において発生する熱に耐えるものとし，高圧又は特別高圧の電気機械器具については，可燃性 の物と隔離する設計とする。 電気設備は，電流が安全かつ確実に大地に通じることができるよう，適切な箇所に接地を施す設計とする。 電気設備における高圧の電路と低圧の電路とを結合する変圧器には，適切な箇所 に接地を施し，変圧器により特別高圧の電路に結合される高圧の電路には，避雷器を施設する設計とする。 電気設備は，電路の必要な箇所に過電流遮断器又は地絡遮断器を施設する設計と する。 電気設備は，他の電気設備その他の物件の機能に電気的又は磁気的な障害を与え ない設計とする。 電気設備のらち高圧又は特別高圧の電気機械器具及び母線等は，取扱者以外の者 が容易に立ち入るおそれがないよう発電所にフェンス等を設ける設計とする。 電気設備における架空電線は，接触又は誘導作用による感電のおそれがなく，か つ，交通に支障を及ぼすおそれがない高さに施設する設計とする。 電気設備における電力保安通信線は，他の電線等を損傷するおそれがなく，かつ，接触又は断線によって生じる混触による感電又は火災のおそれがない設計とする。 電気設備のらちガス絶縁機器は，最高使用圧力に耐え，かつ，漏えいがなく，異常 な圧力を検知するとともに，使用する絶縁ガスは可燃性，腐食性及び有毒性のない設計とする。 電気設備のらち開閉器又は断路器に使用する圧縮空気装置は，最高使用圧力に耐 え，かつ，漏えいがなく，異常な圧力を検知するとともに，圧力が上昇した場合に最高使用圧力に到達する前に圧力を低下させ，空気タンクの圧力が低下した場合に圧力を自動的に回復できる機能を有し，空気タンクは耐食性を有する設計とする。 電気設備の弓ち水素冷却式発電機は，水素の漏えい又は空気の混入のおそれがな く，水素が大気圧で爆発する場合に生じる圧力に耐える強度を有し，異常を早期に検	5.8 電気設備の設計条件 5．8．1 設計基準対象施設及び重大事故等対処施設 設計基準対象施設及び重大事故等対処施設に施設する電気設備（以下「電気設備」 という。）は，感電又は火災のおそれがないように接地し，充電部分に容易に接触で きない設計とする。 電気設備は，電路を絶縁し，電線等が接続部分において電気抵抗を増加させないよ らに端子台等により接続するほか，期待される使用状態において断線のおそれがな い設計とする。 電気設備における電路に施設する電気機械器具は，期待される使用状態において発生する熱に耐えるものとし，高圧又は特別高圧の電気機械器具については，可燃性 の物と隔離する設計とする。 電気設備は，電流が安全かつ確実に大地に通じることができるよう，適切な箇所に接地を施す設計とする。 電気設備における高圧の電路と低圧の電路とを結合する変圧器には，適切な箇所 に接地を施し，変圧器により特別高圧の電路に結合される高圧の電路には，避雷器を施設する設計とする。 電気設備は，電路の必要な箇所に過電流遮断器又は地絡遮断器を施設する設計と する。 電気設備は，他の電気設備その他の物件の機能に電気的又は磁気的な障害を与え ない設計とする。 電気設備のらち高圧又は特別高圧の電気機械器具及び母線等は，取扱者以外の者 が容易に立ち入るおそれがないよう発電所にフェンス等を設ける設計とする。 電気設備における架空電線は，接触又は誘導作用による感電のおそれがなく，か つ，交通に支障を及ぼすおそれがない高さに施設する設計とする。 電気設備における電力保安通信線は，他の電線等を損傷するおそれがなく，かつ，接触又は断線によって生じる混触による感電又は火災のおそれがない設計とする。 電気設備のらちガス絶縁機器は，最高使用圧力に耐え，かつ，漏えいがなく，異常 な圧力を検知するとともに，使用する絶縁ガスは可燃性，腐食性及び有毒性のない設計とする。 電気設備のらち開閉器又は断路器に使用する圧縮空気装置は，最高使用圧力に耐 え，かつ，漏えいがなく，異常な圧力を検知するとともに，圧力が上昇した場合に最高使用圧力に到達する前に圧力を低下させ，空気タンクの圧力が低下した場合に圧力を自動的に回復できる機能を有し，空気タンクは耐食性を有する設計とする。 電気設備の弓ち水素冷却式発電機は，水素の漏えい又は空気の混入のおそれがな く，水素が大気圧で爆発する場合に生じる圧力に耐える強度を有し，異常を早期に検	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
知し警報する機能を有する設計とする。 電気設備のらち水素冷却式発電機は，軸封部から漏えいした水素を外部に放出で き，発電機内への水素の導入及び発電機内からの水素の外部への放出が安全にでき る設計とする。 電気設備のうち発電機又は特別高圧の変圧器には，異常が生じた場合に自動的に これを電路から遮断する装置を施設する設計とする。 電気設備のうち発電機及び変圧器等は，短絡電流により生じる機械的衝撃に耐え，発電機の回転する部分については非常調速装置及びその他の非常停止装置が動作し て達する速度に対し耐える設計とする。 また，蒸気タービンに接続する発電機は，軸受又は軸に発生しうる最大の振動に対 して構造上十分な機械的強度を有した設計とする。 電気設備においては，運転に必要な知識及び技能を有する者が発電所構内に常時駐在し，異常を早期に発見できる設計とする。 電気設備において，発電所の架空電線引込口及び引出口又はこれに近接する箇所 には，避雷器を施設する設計とする。 電気設備における電力保安通信線は，機械的衝撃又は火災等により通信の機能を損ならおそれがない設計とする。 電気設備において，電力保安通信設備に使用する無線通信用アンテナを施設する支持物の材料及び構造は，風圧荷重を考慮し，倒壊により通信の機能を損ならおそれ がない設計とする。	知し警報する機能を有する設計とする。 電気設備のらち水素冷却式発電機は，軸封部から漏えいした水素を外部に放出で き，発電機内への水素の導入及び発電機内からの水素の外部への放出が安全にでき る設計とする。 電気設備のらち発電機又は特別高圧の変圧器には，異常が生じた場合に自動的に これを電路から遮断する装置を施設する設計とする。 電気設備のらち発電機及び変圧器等は，短絡電流により生じる機械的衝撃に耐え，発電機の回転する部分については非常調速装置及びその他の非常停止装置が動作し て達する速度に対し耐える設計とする。 また，蒸気タービンに接続する発電機は，軸受又は軸に発生しうる最大の振動に対 して構造上十分な機械的強度を有した設計とする。 電気設備においては，運転に必要な知識及び技能を有する者が発電所構内に常時駐在し，異常を早期に発見できる設計とする。 電気設備において，発電所の架空電線引込口及び引出口又はこれに近接する箇所 には，避雷器を施設する設計とする。 電気設備における電力保安通信線は，機械的衝撃又は火災等により通信の機能を損ならおそれがない設計とする。 電気設備において，電力保安通信設備に使用する無線通信用アンテナを施設する支持物の材料及び構造は，風圧荷重を考慮し，倒壊により通信の機能を損なうおそれ がない設計とする。 5．8．2 可搬型重大事故等対処設備 可搬型の非常用発電装置の発電機は，電気的•機械的に十分な性能を持つ絶縁巻線 を使用し，耐熱性及び耐湿性を考慮した絶縁処理を施す設計とする。 可搬型の非常用発電装置の発電機は，電源電圧の著しく低下した場合及び過電流 が発生した場合等に自動的に停止する設計とする。 可搬型の非常用発電装置の発電機は，定格出力のもとで 1 時間運転し，安定した運転が維持されることを確認した設備とする。	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
5．その他 5.1 立ち入りの防止 発電所には，人がみだりに管理区域内に立ち入らないように壁，柵，塀等の人の侵入を防止するための設備を設け，かつ，管理区域である旨を表示する設計とする。 保全区域と管理区域以外の場所との境界には，他の場所と区別するため，壁，柵，塀等 の保全区域を明らかにするための設備を設ける設計，又は保全区域である旨を表示する	6．その他 6.1 立ち入りの防止 発電所には，人がみだりに管理区域内に立ち入らないように壁，柵，塀等の人の侵入を防止するための設備を設け，かつ，管理区域である旨を表示する設計とする。 保全区域と管理区域以外の場所との境界には，他の場所と区別するため，壁，柵，塀等 の保全区域を明らかにするための設備を設ける設計，又は保全区域である旨を表示する	「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，

変更前	変更後	記載しない理由
設計とする。 発電所には，業務上立ち入る者以外の者がみだりに周辺監視区域内に立ち入ることを制限するため，柵，塀等の人の侵入を防止するための設備を設ける設計，又は周辺監視区域である旨を表示する設計とする（ただし，当該区域に人が立ち入るおそれがないこと が明らかな場合は除く。）。 管理区域，保全区域及び周辺監視区域における立ち入りの防止については，保安規定 に基づき，その措置を実施する。	設計とする。 発電所には，業務上立ち入る者以外の者がみだりに周辺監視区域内に立ち入ることを制限するため，柵，塀等の人の侵入を防止するための設備を設ける設計，又は周辺監視区域である旨を表示する設計とする（ただし，当該区域に人が立ち入るおそれがないこと が明らかな場合は除く。）。 管理区域，保全区域及び周辺監視区域における立ち入りの防止については，保安規定 に基づき，その措置を実施する。	構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
5.2 発電用原子炉施設への人の不法な侵入等の防止 発電用原子炉施設への人の不法な侵入を防止するための区域を設定し，その区域を人 の容易な侵入を防止できる柵，鉄筋コンクリート造の壁等の障壁によって区画して，巡視，監視等を行らことにより，侵入防止及び出入管理を行うことができる設計とする。	6.2 発電用原子炬施設への人の不法な侵入等の防止 発電用原子炉施設への人の不法な侵入を防止するための区域を設定し，その区域を人 の容易な侵入を防止できる卌，鉄筋コンクリート造の壁等の障壁によって区画して，巡 睍，監視等を行うことにより，侵入防止及び出入管理を行うことができる設計とする。	
また，探知施設を設け，警報，映像等を集中監視するとともに，核物質防護措置に係る関係機関等との通信連絡を行らことができる設計とする。 更に，防護された区域内においても，施錠管理により，発電用原子炉施設及び特定核燃料物質の防護のために必要な設備又は装置の操作に係る情報システムへの不法な侵入を防止する設計とする。	また，探知施設を設け，警報，映像等を集中監視するとともに，核物質防護措置に係司畋係機関等との通信連絡を行らことができる設計とする。 更に，防護された区域内においても，施錠管理により，発電用原子炉施設及び特定核㦓料物質の防謢のために必要な設備又は装置の操作に係る情報システムーの不法な侵入 を防止する設計とする。	
	発電用原子炉施設に不正に爆発性又は易燃性を有する物件その他人に危害を与立，又 は他の物件を損傷するおそれがある物件の持込み（郵便物等による発電所外からの爆破物及び有害物質の持込みを含む。）を防止するため，持込み点検を行らことができる設計 とする。	
	 当該情報システムに対する外部からのアクセスを遮断する設計とする。	
これらの対策については，核物質防護規定に定めて管理する。	二れらの対策については，核物質防護規定に定めて管理する。	
5.3 安全避難通路等	6.3 安全避難通路等	
発電用原子炉施設には，その位置を明確かつ恒久的に表示することにより容易に識別 できる安全避難通路（「第2号機設備」，「第 1 号機設備，第 1 ， 2 ， 3 号機共用」及び「第	発電用原子炬施設には，その位置を明確かつ恒久的に表示することにより容易に識別 できる安全避難通路（「第 2 号機設備 I ，「第 1 号機設備，第 $1,2,3$ 号機共用」及び「第	
1 号機設備，第 1,2 号機共用」）及び照明用の電源が喪失した場合においても機能を損な	1 号機設備，第 1,2 号機共用」）及び照明用の電源かか票失した場合においても機能を損等	
わない臀難用照明として，非常用ディーゼル発電機又は灯具に内蔵した蓄電池により電	わない避難用照明として，非常用ディーゼル発電機又は灯具に内蔵した蓄電池により電	
力を供給できる非常灯（「第 2 号機設備」，「第 1 号機設備，第 1 ， 2,3 号機共用」及び 「第	历庆供給できる非常灯（「第 2 号機設備」，「第 1 号機設備，第 $1,2,3$ 号機共用」及び「第	

変更前	変更後	記載しない理由
第2章 個別項目 1．原子炉冷却材 原子炬冷却材は，通常運転時における圧力，温度及び放射線によって起こる最も厳しい条件において，核的性質として核反応断面積が核反応維持のために適切であり，熱水力的性質として冷却能力が適切であることを保持し，かつ，燃料体及び構造材の健全性を妨げ ることのない性質であり，通常運転時において放射線に対して化学的に安定であることを保持する設計とする。	第2章 個別項目 1．原子炉冷却材	
2．原子炉冷却材再循環設備 2.1 原子炉再循環系 原子炉再循環系は，原子炉再循環ポンプ及び原子炉圧力容器内に設けられたジェット ポンプにより，原子炉冷却材を原子炉圧力容器内に循環させて，炉心から熱除去を行う。 原子炉再循環ポンプの 1 台が急速停止又は電源喪失の場合でも，燃料棒が十分な熱的 余裕を有し，かつ，タービン・トリップ又は負荷遮断直後の原子炉出力を抑制できるよ らに，原子炉再循環系は適切な慣性を有する設計とする。	2．原子炉冷却材再循環設備 変更なし	
3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付ける設計とする。蒸気タービンを出た蒸気は復水器で復水する。復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻す設計とする。主蒸気管には，ター ビンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。 復水給水系には復水中の核分裂生成物及び腐食生成物を除去するために復水浄化系を設け，高純度の給水を発電用原子炬へ供給できる設計とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とする。 タービンバイパス系は，原子炬起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 3.2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成する機器に加わる負荷に耐える設計とする。	3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主 蒸気管で蒸気タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付ける設計とする。 蒸気タービンを出た蒸気は復水器で復水する。復水は，復水ポンプ，復水浄化系及で 給水加熱器を通り，給水ポンプにより発電用原子炉に戻す設計とする。主蒸気管には， タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。 履水給水系には復水中の核分裂生成物及び腐食生成物を除去するために復水浄化系を設け，高純度の給水を発電用原子烼へ供給できる設計とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とする。 タービンバイパス系は，原子炬起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 3.2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成する機器に加わる負荷に耐える設計とする。	

変更前	変更後	記載しない理由
設計における衝繋荷重として，泠却材霊失事故に伴らジェット反力等，安全弁等の開		
放汇伴ら荷重を考慮するととも沉，反応度が炉心投入されることにより原子炉泠却系	放に伴ら荷重を考慮するとともに，反応度が炬心浙入されることにより原子炉泠却系	
の圧力が増加すること汇伴ら荷重の増加（浸水燃料の破損に加えて，ペレット／被覆管機	の圧力が増加することに伴ら荷重の増加（浸水然料の破損に加えて，ペレット／被覆管機	
械的相互作用を原因とする破損による㣫撃圧力等に伴ら荷重の増加を含む。）を考慮した	閾的相互作用を原因とする破損による衝繋圧力等に伴ら荷重の増加を含む。）を考慮した	
設計とする。	喭計とする。	
原子炉泠却材圧カバウンダリは，次の範囲の機器及び配管とする。	原子炉泠却材圧カバウンダリは，次の範囲の機器及び配管とする。	
（1）原子炬圧力容器及びその付属物（本体に直接付けられるもの及び制御棒駆動機構 ハウジング等）	（1）原子炉圧力容器及びその付属物（本体に直接付けられるもの及び制御棒駆動機構 ハウジング等）	
（2）原子炉洽却系を構成する機器及び配管（主蒸気管及び給水管のらち発電用原子炉側からみて第二隔離弁を含むまでの範囲）	（2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のらち発電用原子㚸 （側からみて第二隔䬺弁を含むまでの䡛囲）	
（3）接続配管	（3）接続配管	
（一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炬側か らみて，第二隔離亣を含むまでの範囲とする。	（一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炬側か らみて，第二隔離并を含むまでの範囲とする。	
（二）通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側か らみて，第一隔離尣を含むまでの範囲とする。	（三）通常時閉及ひ設計基集事故時閉となる弁を有するもののらち，（二）以外のも のは，発電用原子炬側かららみて，第一隔崔弁を含をまでの範囲とする。	
（三）通常時閉及び椧却材喪失時開となる弁を有する非常用炉心椧却系等も（一）に準ずる。	（四）通常時閉及び佮却材哀失時開となる弁を有する非常用炉心冷却系等も $(一)$ に 睢ずる。	
（四）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロッ クされた閉止升及び遠隔操作閉止升をいら。		
なお，通常時閉，設計基準事故時閉となる手動弁のらち個別に施銫管理を行ら弁は，開 となるおそれがなく，上記（二）に該当する。	なお，通常時閉，設計基漼事故時閉となる手動弁のらち個別に施錠管理を行ら弁は， 開となるおそれがなく，上記 ${ }^{\text {馬）に該当する。 }}$	
また，原子炉冷却材圧カバウンダリは，以下汇述べる事項を十分満足するように設計，材料選定を行ら。	また，原子炉冷却材圧力バウンダリは，以下に述べる事項を十分満足するように設計，材料選定を行ら。	

変更前	変更後	記載しない理由
通常運転時において出力運転中，原子炉圧力制御系により原子炉圧力を一定に保持す る設計とする。原子炉起動，停止時の加熱•泠却率を一定の値以下に抑える等の配慮をす る。 タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラム信号を発する安全保護装置を設 けること，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダ リ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（ 9.48 MPa ） を超えない設計とする。 設計基準事故時のらち原子炉冷却材圧力バウンダリの健全性が問題となる可能性があ る制御棒落下事象については，「原子炉周期（ペリオド）短」，「中性子束高」等の原子炉 スクラム信号を発する安全保護装置を設け，制御棒落下速度リミッタ，制御棒価値ミニ マイザなどの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピ を抑え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 原子炉泠却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。 3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バウンダリに接続する配管等が破損することによって，原子炉冷却材の流出を制限するために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁を設ける設計とする。 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおりとする。 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側か らみて，第一隔離弁及び第二隔離弁を対象とする。 （二）通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側か らみて，第一隔離弁を対象とする。 （三）通常時閉及び椧却材喪失時開となる弁を有する非常用炉心泠却系等も発電用	通常運転時において出力運転中，原子炉圧力制御系により原子炉圧力を一定に保持す る設計とする。原子炉起動，停止時の加熱•冷却率を一定の値以下に抑える等の配慮を する。 タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラム信号を発する安全保護装置を設 けること，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダ リ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（ 9.48 MPa ） を超えない設計とする。 信計基準事故時のらち原子炉冷却材圧力バウンダリの健全性が問題となる可能性があ る制御棒落下事象については，「原子炉周期（ペリオド）短」，「中性子束高」等の原子炉 スクラム信号を発する安全保護装置を設け，制御棒落下速度リミッタ，制御棒価値ミニ マイザなどの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピ を抑え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 原子炉冷却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。 3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バウンダリに接続する配管等が破損することによって，原子炉冷却材の流出を制限するために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁を設ける設計とする。 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおりとする。 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側か らみて，第一隔離弁及び第二隔離弁を対象とする。 （二）通常時開又は設計基準事故時に開となるおそれがある通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炬側からみて，第一隔離弁及び第二隔離弁を対象とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するもののらち，（二）以外のも のは，発電用原子炉側からみて，第一隔離弁を対象とする。 （四）通常時閉及び冷却材喪失時開となる弁を有する非常用炉心冷却系等も，発電	

変更前	変更後	記載しない理由
原子炉側からみて第一隔離弁及び第二隔離并を対象とする。 （四）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロッ クされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のらち個別に施錠管理を行う弁は，開 となるおそれがなく，上記（二）に該当することから，発電用原子炉側からみて第一隔離弁を対象とする。 3.4 主蒸気逃がし安全弁の機能 3．4．1 系統構成 主蒸気逃がし安全弁は，バネ式安全弁に，外部から強制的に開閉を行うアクチュエ ータを取付けたもので，排気はサプレッションチェンバのプール水面下に導き，原子炉冷却系の過度の圧力上昇を防止できる設計とする。 自動減圧系は，中小破断の泠却材喪失事故時に原子炉蒸気をサプレッションチェ ンバのプール水中へ逃がし，原子炉圧力を速やかに低下させて，残留熱除去系（低圧注水モード）又は低圧炉心スプレイ系による注水を可能とし，炉心泠却を行らことが できる設計とする。	用原子炬側からみて第一隔離弁及び第二隔崔弁を対象とする。 （五）上記において「「隔崔弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロッ クされた閉止弁及び遠隔操作閉止升をいら。 なお，通常時閉，設計基準事故時閉となる手動弁のらち個別に施錠管理を行ら弁は，開となるおそれがなく，上記（三）に該当することから，発電用原子炉側からみて第一隔䑾弁を対象とする。 3.4 主蒸気逃がし安全弁の機能 3．4．1 系統構成 主蒸気逃がし安全弁は，バネ式安全弁に，外部から強制的に開閉を行うアクチュ エータを取付けたもので，排気はサプレッションチェンバのプール水面下に導き，原子炉冷却系の過度の圧力上昇を防止できる設計とする。 自動減圧系は，中小破断の泠却村震失事故時に原子炉蒸気をサプレッションチェ ンバのプール水中へ逃がし，原子炬圧力を速やかに低下させて，残留熱除去系（低匠注水モード）又は低圧炉心スプレイ系による注水を可能とし，炉心椧却を行らこ とができる設計とする。 原子炬冷却材圧カバウンダリが高圧の状態であって，設計基準事故対処設備が有 する発電用原子炬の減圧機能が震失した場合においても炬心の著しい損傷及び原子匞格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を設ける設計とする。 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備とし て，主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃がし安全弁逃がし弁機能用アキュムレータ又は主蒸気逃がし安全弁自動減圧機能用アキ コムレータに蓄圧された寧素をアクチュエータのピストンに供給することで作動 し，蒸気を排気管によりサプレッションチェンバのプール水面下に導き凝縮させる区とで，原子炬椧却材圧カバウンダリを減圧できる設計とする。 原子炬椧却材圧力バウンダリを減圧するための設備のらち，炬心損傷時に原子炉掵却材圧カバウンダリが高圧状態である場合において，高圧溶融物放出及び格納容器雰囲気直接加熱による原子炬格納容器の破損を防止するための重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃がし安全弁逃がし弁機能用アキュムレータ又は主蒸気逃がし安全弁自動減圧機能	

変更前	変更後	記載しない理由
3．4．2 主蒸気逃がし安全升の容量 主蒸気逃がし安全弁は，ベローズと補助背圧平衡ピストンを備えたバネ式の平衡形安全弁に，外部から強制的に開閉を行らアクチュエータを取付けたもので，蒸気圧 カガスプリングの設定圧力に達すると自動開放するほか，外部信号によってアクチ ユエータのピストンに窒素圧力を供給して弁を強制的に開放することができるもの を使用し，サプレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定圧力に影響を与えない設計とする。なお，主蒸気逃がし安全弁は， 11 個設置する設計 とする。 主蒸気逃がし安全弁の排気は，排気管によりサプレッションチェンバのプール水面下に導き凝縮する設計とする。 主蒸気逃がし安全弁の容量は，原子炉冷却材圧力バウンダリの過度の圧力上昇を抑えるため，吹出し圧力と設置個数とを適切に組み合わせることにより，原子炉圧力容器の過圧防止に必要な容量以上を有する設計とする。 なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バウンダリの圧力を最高使用圧力の 1.1 倍以下に保持するのに必要な容量を算定する。	用アキュムレータに蓄圧された窒素をアクチュエータのピストンに供給することで 莋動し，蒸気を排気管によりサプレッションチェンバのプール水面下に導き凝縮き世ることで，原子炉泠却材圧カバウンダリを減圧できる設計とする。 3．4．2 環境条件等 主蒸気逃がし安全弁は，想定される重大事故等時に確実に作動するように，原子䢹格納容器内に設置し，制御用空気が震失した場合に使用する高圧窒素がス供給系 （非常用）及び代替高圧窒素ガス供給系の高圧室素ガスボンベの容量の設定も含め て，想定される重大事故等時における環境条件を考慮した設計とする。操作は，中央制御室で可能な設計とする。 3．4．3 主蒸気逃がし安全弁の容量 庄蒸気逃がし安全弁は，ベローズと補助背圧平衡ピストンを備えたバネ式の平衡形安全弁に，外部から強制的に開閉を行らアクチュエータを取付けたもので，蒸気医力がスプリングの設定圧力に達すると自動開放するほか，外部信号によってアク チュエータのピストンに窒素圧力を供給して弁を強制的に開放することができるも のを使用し，サプレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定匡力に影響を与えない設計とする。なおっ，主蒸気逃がし安全弁は， 11 個設置する設娮とする。 庄蒸気逃がし安全弁の排気は，排気管によりサプレッションチェンバのプール水面下に導き凝縮する設計とする。 主蒸気逃がし安全弁の容量は，原子炻冷却材圧カバウンダリの過度の圧力上昇を門えるため，吹出し圧力と設置個数とを適切に組み合わせることにより，原子炬圧力容器の過圧防止に必要な容量以上を有する設計とする。 なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧カバウンダリの圧力『最高使用圧力の 1.1 倍以下に保持するのに必要な容量を算定する。 3．4．4 代替自動减圧回路（代替自動減圧機能） 原子炉泠却材圧カバウンダリが高圧の状態であって，設計基準事故対処設備が有士る発電用原子炉の減圧機能が震失した場合においても炬心の著しい損傷及び原子䢹格納容器の破損を防止するため，原子炬冷却材圧カバウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動减圧機能）を設ける設計とする。 庄蒸気逃がし安全弁の自動減圧機能が衰失した場合の重大事故等対処設備とし	

変更前	変更後	記載しない理由
	て，主蒸気逃がし安全弁は，代替自動減圧回路（代替自動減圧機能）からの信号によ	
	b，主蒸気逃がし安全弁自動减圧機能用アキュムレータに蓄圧された窒素をアクチ	
	エエータのピストンに供給することで作動し，蒸気を排気管によりサプレッション	
	チェンバのプール水面下江導き凝縮させることで，原子炉洽却材圧カバウンダリを	
	䦓圧できる設計とする。	
	3．4．5 主蒸気逃がし安全弁の機能回復	
	原子炉冷却材圧カバウンダリを絾圧するための設備のらち，主蒸気逃がし安全弁	
	の機能回復のための重大事故等対処設備として，主蒸気逃がし安全异の作動に必要	
	な窒素がスが喪失した場合においても，高圧窒素がス供給系（非常用）及び代替高	
	匡窒素がス供給系を使用できる設計とする。	
	原子炬洽却材圧カバウンダリを澸圧するための設備のらち，主蒸気逃がし安全升	
	の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備及び主蒸	
	気逃がし安全弁用可搬型蓄電池を使用できる設計とする。	
	原子炬泠却材圧カバウンダりを減圧するための設備のらち，主蒸気逃がし安全茾	
	の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備は，主蒸	
	気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合においても，125V	
	值流電源切替媻を切り替えることにより，主蒸気逃がし安全弁（11個）の作動に必	
	要な電源を供給できる設計とする。	
	原子炬泠却材圧カバウンダリを澸圧するための設備のらち，主蒸気逃がし安全弁	
	の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁用可搬型晋電	
	池は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合におい	
	ても，主蒸気逃がし安全弁の作動回路に接続することにより，主蒸気逃がし安全弁	
	（2個）を一定期間にわたり連続して開状態を保持できる設計とする。	
	全交流動力電源又は常設直流電源が雲失した場合の重大事故等対処設備として，	
	主蒸気逃がし安全弁は，可搬型代替直流電源設備により作動に必要な直流電源が供	
	給されることにより機能を復旧し，原子炬泠却材圧カバウンダリを澸圧できる設計	
	とする。	
	全交流動力電源又は常設直流電源が樾失した場合の重大事故等対処設備として，	
	宔蒸気逃がし安全弁は，常設代替交流電源設備又は可搬型代替交流電源設備により	
	所内常設蓄電式直流電源設備を受電し，作動に必要な直流電源が供給されることに	
	より機能を復旧し，原子炬泠却材圧カバウンダリを減圧できる設計とする。	

変更前	変更後	記載しない理由
	3．4．6 原子炉冷却材の漏えい量抑制 インターフェイスシステム LOCA 発生時の重大事故等対処設備として，主蒸気逃が し安全弁は，中央制御室からの手動操作によって作動させ，原子炉冷却材圧力バウ シダリを減圧させることで原子炉冷却材の漏えいを抑制できる設計とする。	
4．残留熱除去設備 4． 1 残留熱除去系 4．1．1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の泠却材喪失事故時には低圧炉心スプ レイ系及び高圧炉心スプレイ系と連携して，中小破断の泠却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を直接炬心シュラウド内に注水する設計とする。 4．1．2 原子炉停止時冷却モード （1）系統構成 発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要なパラメータが設計値を超えない ようにするため，原子炉圧力容器内において発生した残留熱を除去することができ る設備として残留熱除去系を設ける設計とする。 残留熱除去系の泠却速度は，原子炉冷却材圧力バウンダリの加熱•泠却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えないように制限できる設計とする。	4．残留熱除去設備 4.1 残留熱除去系 4．1．1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の冷却材喪失事故時には低圧炉心ス プレイ系及び高圧炉心スプレイ系と連携して，中小破断の冷却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプ ール水を直接炬心シュラウド内に注水する設計とする。 4．1．2 原子炉停止時冷却モード （1）系統構成 発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要なパラメータが設計値を超えない ようにするため，原子炉圧力容器内において発生した残留熱を除去することができ る設備として残留熱除去系を設ける設計とする。 戋留熱除去系の冷却速度は，原子炉冷却材圧力バウンダリの加熱•冷却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えないように制限できる設計とする。 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備とし て，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系 （原子炉停止時冷却モード）が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時に おいて，設計基準事故対処設備である残留熱除去系（原子炉停止時冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とす る。 発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炬補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系	

変更前	変更後	記載しない理由
	（原子炬停止時冷却モード）が起動できない場合の重大事故等対処設備として，常	
	信代替交流電源設備を使用し，残留熱除去系（原子炬停止時冷却モード）を復旧で	
	きる設計とする。残留熱除去系（原子炬停止時冷却モード）は，常設代替交流電源設	
	備からの給電により機能を復旧し，原子炉浍却材を原子炉圧力容器から残留熱除去	
	系ポンプ及び残留熱除去系熱交換器を経由して原子炉圧力容器に戻すことにより㚸	
	心を椧却できる設計とする。本系統に使用する冷却水は，原子炉補機冷却水系（凮	
	子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とす	
	3.	
	倣留熱除去系（原子炬停止時泠却モード）の流路として，設計基鹪対象施設であ	
	了原子炬圧力容器，炬心支持構造物及び原子炬圧力容器内部構造物を重大事故等対	
	処設備として使用することから，流路に係る機能について重大事故等対処設備とし	
	ての設計を行ら。	
	（2）多様性，位置的分散等	
	㡲留熱除去系（原子炬停止時冷却モード）は，設計基淮事故対処設備であるとと	
	もに，重大事故等時においても使用するため，重大事故等対処設備としての基本方	
	針に示す設計方針を適用する。ただし，多樣性及び独立性並びに位置的分散を考慮	
	式べき対象の設計基漼事故対処設備はないことから，重大事故等対処設備の基本方	
	鎁のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。	
4．1．3 格納容器スプレイ浍却モード	4．1．3 格納容器スプレイ浍却モード	
（1）系統構成	（1）系統構成	
原子炬泠却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納	原子炬浍却系統に係る発電用原子炉施設の損噮又は故障の際に生ずる原子炉格納	
容器内の圧力及び温度の上昇により原子师格納容器の安全性を損ならことを防止す	容器内の圧力及び温度の上昇により原子炉格納容器の安全性を損ならことを防止す	
るため，原子炉格納容器内汚いて発生した熱を除去する設備として，残留熱除去系	了ため，原子炉格納容器内において発生した熱を除去する設備として，残留熱除去	
（格納容器スプレイ椧却モード）を設ける設計とする。	系（格納容器スプレイ椧却モード）を設ける設計とする。	
残留熱除去系（格納容器スプレイ椧却モード）は，泠却材践失事故時に，サプレッ	㡲留熱除去系（格納容器スプレイ浍却モード）は，浍却材霊失事故時に，サプレッ	
ションチェンバのプール水をドライウェル内及びサプレッションチェンバ内にスプ	ションチェンバのプール水をドライウェル内及びサプレッションチェンバ内にスブ	
レイすることにより，環境に放出される放射性物質の濃度を減少させる設計とする。	レイすることにより，環境に放出される放射性物質の濃度を減少させる設計とする。	
残留熱除去系（格納容器スプレイ洽却モード）は，原子炉泠却材圧力バウンダリ配	倣留熱除去系（格納容器スプレイ洽却モード）は，原子炬泠却材圧カバウンダリ	
管の最も過酷な破断を想定した場合でも，放出されるエネルギによる設計基準事故	彄管の最も過酷な破断を想定した場合でも，放出されるエネルギによる設計基淮事	
時の原子炉格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないように	故時の原子炉格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないよう	
し，かつ，原子炬格納容器の内圧を速やかに下げて低く維持することにより，放射性	にし，かつ，原子炬格納容器の内圧を速やかに下げて低く維持することにより，放	
物質の外部への漏えいを少なくする設計とする。	䠵性物質の外部への漏えいを少なくする設計とする。	

変更前
残留熱除去設備のうち，サプレッションチェンバのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受け た設計基準事故の評価の条件を満足する設計とする。 残留熱除去系（格納容器スプレイ泠却モード）は，テストラインを構成することに より，発電用原子炉の運転中に試験ができる設計とする。また，設計基準事故時に動作する弁については，残留熱除去系ポンプが停止中に開閉試験ができる設計とする。

格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設
成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設力を有する設計とする。

残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受け た設計基準事故の評価の条件を満足する設計とする。

残留熱除去系（格納容器スプレイ泠却モード）は，テストラインを構成することに より，発電用原子炉の運転中に試験ができる設計とする。また，設計基準事故時に動作する弁については，残留熱除去系ポンプが停止中に開閉試験ができる設計とする。
（1）系統構成
残留熱除去系（サプレッションプール水泠却モード）は，サプレッションチェンバ のプール水温度を所定の温度以下に冷却できる設計とする。

㡲留熱除去設備のうち，サプレッションチェンバのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響について「非常用烼心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。

㡲留熱除去系（格納容器スプレイ泠却モード）の仕様は，設置（変更）許可を受け た設計基準事故の評価の条件を満足する設計とする。

残留熱除去系（格納容器スプレイ冷却モード）は，テストラインを構成すること により，発電用原子炉の運転中に試験ができる設計とする。また，設計基準事故時 に動作する弁については，残留熱除去系ポンプが停止中に開閉試験ができる設計と する。

最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時に おいて，設計基準事故対処設備である残留熱除去系（格納容器スプレイ冷却モード） が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計と する。
㡲留熱除去系（格納容器スプレイ冷却モード）の流路として，設計基準対象施設 である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る嘰能について重大事故等対処設備としての設計を行う。
（2）多様性，位置的分散等
残留熱除去系（格納容器スプレイ泠却モード）は，設計基準事故対処設備である とともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。

4．1．4 サプレッションプール水泠却モード
（1）系統構成
戋留熱除去系（サプレッションプール水冷却モード）は，サプレッションチェン バのプール水温度を所定の温度以下に冷却できる設計とする。

最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時に
最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時に

変更前	変更後	記載しない理由
4．1．5 燃料プール泠却 残留熱除去系は，使用済燃料からの崩壊熱を除去できる設計とする。残留熱除去系熱交換器で除去した熱は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海へ輸送できる設計とする。	おいて，設計基準事故対処設備である残留熱除去系（サプレッションプール水冷却 モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用でき る設計とする。 戟留熱除去系（サプレッションプール水泠却モード）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路 に係る機能について重大事故等対処設備としての設計を行う。 （2）多様性，位置的分散等 残留熱除去系（サプレッションプール水冷却モード）は，設計基準事故対処設備 であるとともに，重大事故等時においても使用するため，重大事故等対処設備とし ての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 4．1．5 燃料プール泠却 残留熱除去系は，使用済燃料からの崩壊熱を除去できる設計とする。残留熱除去系熱交換器で除去した熱は，原子炉補機泠却水系（原子炉補機冷却海水系を含む。） を経て，最終ヒートシンクである海へ輸送できる設計とする。 4.2 原子炉格納容器フィルタベント系 4．2．1 系統構成 喭計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が進失した場合において灲心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，最終ヒートシンクへ熱を輸送する ために必要な重大事故等対処設備として，原子炉格納容器フィルタベント系を設け る設計とする。 残留熱除去系の故障等により最終ヒートシンクい熱を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，原子炉格納容器フィルタベント系は，フィルタ装置（フィルタ容器， スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ），フィルタ装置出口側ラ プチヤディスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雾囲気か スを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減 させた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}(1 \mathrm{Pd}$ に おいて））することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。	

変更前	変更後	記載しない理由
	原子炉格納容器フィルタベント系を使用した	
	量に対して，設置（変更）許可において敷地境界での線量評価を行い，実効線量が	
	5 mSv 以下であることを確認しており，原子炉格納容器フィルタベント系はこの評偳	
	条件を满足する設計とする。	
	フィルタ装置は 3 台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス	
	厌の無機よう素及び有機よう素を除去できる設計とする。また，無機よう素をスク	
	亏バ溶液中に捕集•保持するためにアルカリ性の状態（待機状態において pH13以上）	
	に維持する設計とする。	
	原子炉格納容器フィルタバント系は，サプレッションチェンバ及びドライウェル	
	と接続し，いずれからも排気できる設計とする。サプレッションチェンバ側からの	
	非気ではサプレッションチェンバの水面からの高さを碓保し，ドライウエル側から	
	の排気では，ドライウェル床面からの高さを碓保するとともに有効燃料棒頂部より	
	も高い位置に接続箇所を設けることで長期的にも溶融炻心及び水没の悪影響を受け	
	ない設計とする。	
	原子炉格納容器フィルタバント系は，排気中に含まれる可燃性がスによる爆発を	
	防ぐため，可搬型室素がス供給系により，系統内を不活性ガス（窒素）で置換した状	
	能で待機させ，原子炉格納容器ベント開始後においても不活性ガス（窒素）で置換	
	できる設計とするとともに，系統内に可燃性がスが蓄積する可能性のある箇所には	
	バイパスラインを設け，可燃性がスを連続して排出できる設計とすることで，系統	
	内で水素賑度及び酸素濃度が可燃領域に達することを防止できる設計とする。	
	可搬型室素がス供給系は，可燃性ガスによる爆発及び原子炉格納容器の負圧破損	
	を防止するために，可搬型空素がス供給装置を用いて原子炉格納容器内に不活性が	
	，（窒素）の供給が可能な設計とする。	
	可搬型䯧素がス供給装置は，車両内代搭載された可搬型空素がス供給装置発電設	
	筬により給電できる設計とする。	
	原子炉格納容器フィルタバント系は，他の発電用原子炬施設とは共用しない設計	
	とする。また，原子炉格納容器フィルタバント系と他の系統•機器を隔催する弁は，	
	值列で2個設置（ベント用非常用がス処理系側隔離弁（T48－F020）と格納容器排気	
	匪常用が处理系側止め弁（T48－F045）（原子炉格納施設のらち「3．6．1 原子炉格	
	胸容器フィルター゙ント系」の設備を原子炉冷却系統施設のらち「4．2 原子炉格納容	
	區フィルタバント系」の設備として兼用），ベント用換気空調系側隔囄升（T48－F021）	

変更前	変更後	記載しない理由
	「エルバント用出口隔離尣（T48－F019）の操作を行ら原子炬建屋地上 1 階に遮蔽体	
	（遠隔手動升操作設供遮蔽（原子炬格納施設のらち「3．5．1 原子炬格納容器フィル	
	隹ベント系」の設備を原子炉泠却系統施設のらち「4．2 原子炬格納容器フィルタベ	
	ント系」の設備として兼用）（以下同じ。））を設置し，放射線防護を考慮した設計と	
	する。遠隔手動尣操作設備遮蔽は，炬心の著しい損傷時においても，原子炬格納容	
	器フイルタバント系の隔催升操作ができるよう，どちらの遮蔽体においても鉛厚き	
	2 mm の遮满厚さを有する設計とする。	
	原子师格納容器フィルタバント系に使用するホースの敷設等は，ホース延長回収	
	庫（台数 4 （予備 1））（核燃料物質の取㧐施設及び貯蔵施設のらち 「4．2燃料プー	
	几代替注水系」の設備を原子炬浍却系䖻施設のらち「4．2 原子炉格納容器フィルタ	
	バント系」の設備として兼用）により行ら設計とする。	
	原子炉格納容器フィルタベント系の流路として，設計基漼対象施設である原子炉	
	硌納容器を重大事故等対処設備として使用することから，流路に係る機能について	
	重大事故等対処設備としての設計を行ら。	
	4．2．2 多重性又は多椂性及び独立性，位置的分散	
	原子炉格納容器フィルタバント系は，残留熱除去系（格納容器スプレイ椧却モー	
	ド）及び原子炬補機冷却水系（原子炉補機冷却海水系を含を。）と共通要因によって	
	同時に機能を損なわないよう，ポンプ及び熱交換器を使用せずに最終的な熱の逃が	
	七場である大気へ熱を瀭送できる設計とすることで，残留熱除去系及び原子炉禣機	
	途却水系（原子炬補機冷却海水系を含む。）に対して，多焃性を有する設計とする。	
	原子炉格納容器フィルタバント系は，排出経路に設置される隔離亣の電動弁を常	
	信代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常	
	殿代替直流電源設備又は可搬型代替直流電源設備からの給電による遠隔操作を可能	
	とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作を可能とすること	
	で，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレ	
	イ泠却モード）及び原子炉補機泠却水系（原子炉補機泠却海水系を含む。）に対して，	
	多怺性を有する設計とする。	
	原子炬格納容器フィルタバント系のフィルタ装置及びフィルタ装置出口側ラプチ	
	やディスクは，原子炬建屋原子炉棟内に設置し，原子炉建屋原子炉棟内の残留熱除	
	国系ポンプ及び残留熱除去系熱交換器，原子炬建屋付属楝内の原子炉補機洽却水术	
	ンプ及び原子炉補機泠却水系熱交換器並びに屋外の海水ポンプ室の原子炉補機冷却	
	医水ポンプと異なる区画に設置することで，残留熟除去系及び原子炉補機泠却水系	
	（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう	

変更前	変更後	記載しない理由
	矿とする。	
5．非常用炉心泠却設備その他原子炉注水設備 5.1 非常用炉心泠却設備その他原子炉注水設備の機能 非常用灲心泠却設備は，工学的安全施設の一設備であって，高圧灲心スプレイ系，低圧炉心スプレイ系，残留熱除去系（低圧注水モード）及び自動減圧系から構成する。 これらの各系統は，冷却材喪失事故等が起こったときに，サプレッションチェンバの プール水又は復水貯蔵タンクの水を原子炉圧力容器内に注水し，又は原子炉蒸気をサプ レッションチェンバのプール水中に逃がし原子炉圧力を速やかに低下させるなどによ り，炉心を泠却し，燃料被覆管の温度が燃料材の溶融又は燃料体の著しい破損を生ずる温度を超えて上昇することを防止できる設計とするとともに，燃料の過熱による燃料被覆管の大破損を防ぎ，更にこれに伴らジルコニウムと水との反応を無視しらる程度に抑 え，著しく多量の水素を生じない設計とする。 非常用炝心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足する設計とする。 非常用炉心泠却設備又は残留熱除去設備のらち，サプレッションチェンバのプール水 を水源として原子炉圧力容器へ注水するために運転するポンプは，原子炉圧力容器内又 は原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心椧却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））に よるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭 においても，正常に機能する能力を有する設計とする。 非常用炉心泠却設備のらち，復水貯蔵タンクを水源として原子炉圧力容器へ注水する ために運転するポンプは，復水貯蔵タンクの圧力及び温度により最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。	5．非常用炉心泠却設備その他原子炉注水設備 5.1 非常用炉心冷却設備その他原子炉注水設備の機能 匪常用炉心冷却設備は，工学的安全施設の一設備であって，高圧炬心スプレイ系，低圧炉心スプレイ系，残留熱除去系（低圧注水モード）及び自動減圧系から構成する。 これらの各系統は，泠却材喪失事故等が起こったときに，サプレッションチェンバの プール水又は復水貯蔵タンクの水を原子炉圧力容器内に注水し，又は原子炉蒸気をサプ レッションチェンバのプール水中に逃がし原子炬圧力を速やかに低下させるなどによ り，炉心を泠却し，燃料被覆管の温度が燃料材の溶融又は燃料体の著しい破損を生ずる温度を超えて上昇することを防止できる設計とするとともに，燃料の過熱による燃料被覆管の大破損を防ぎ，更にこれに伴らジルコニウムと水との反応を無視しらる程度に抑远，著しく多量の水素を生じない設計とする。 非常用炉心泠却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足する設計とする。 匪常用炉心冷却設備又は残留熱除去設備のらち，サプレッションチェンバのプール水 を水源として原子炉圧力容器へ注水するために運転するポンプは，原子炉圧力容器内又 は原子炉格納容器内の圧力及び温度並びに，原子炬冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係る万過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））に よるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭 においても，正常に機能する能力を有する設計とする。 匪常用炬心冷却設備その他原子炬注水設備のらち，サプレッションチェンバのプール水を水源として原子炬圧力容器へ注水するために運転するポンプは，原子炬格納容器内 の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又 は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$原院第5号（平成20年2月27日原子力安全•保安院制定））による万過装置の性能評価 により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能す る能力を有する設計とする。 匪常用炉心冷却設備のらち，復水貯蔵タンクを水源として原子炉圧力容器へ注水する ために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する設計とする。	

変更前	変更後	記載しない理由
自動減圧系を除く非常用炉心泠却設備については，作動性を確認するため，発電用原子炉の運転中に，テストラインを用いてポンプの作動試験ができる設計とするとともに，弁については単体で開閉試験ができる設計とする。 自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁の駆動用窒素供給圧力の確認を行らことで，非常用炉心泠却設備の能力の維持状況を碓認できる設計と する。なお，発電用原子炬停止中に，主蒸気逃がし安全弁の作動試験ができる設計とす る。 5．2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の泠却材喪失事故時には低圧炉心スプレイ系及び残留熱除去系（低圧注水モード）と連携し，中小破断の冷却材喪失事故時には単独で炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプによ り，復水貯蔵タンクの水又はサプレッションチェンバのプール水を炬心上部に取付 けられた高圧炬心スプレイスパージャのノズルから炬心にスプレイする設計とす る。	非常用炉心冷却設備その他原子炉注水設備のうち，復水貯蔵タンク，ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉圧力容器へ注水するために運転するポンプは，復水貯蔵タンク，ほら酸水注入系貯蔵タンク，㔷水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 自動減圧系を除く非常用炬心泠却設備については，作動性を確認するため，発電用原子炉の運転中に，テストラインを用いてポンプの作動試験ができる設計とするとともに，弁については単体で開閉試験ができる設計とする。 自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁の駆動用窒素供給圧力の確認を行らことで，非常用炉心冷却設備の能力の維持状況を碓認できる設計と する。なお，発電用原子炉停止中に，主蒸気逃がし安全弁の作動試験ができる設計とす る。 5.2 高圧炉心スプレイ系 5．2．1 系統構成 高圧灲心スプレイ系は，大破断の冷却材喪失事故時には低圧炉心スプレイ系及び残留熱除去系（低圧注水モード）と連携し，中小破断の椧却材啔失事故時には単独 で炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプに より，復水貯蔵タンクの水又はサプレッションチェンバのプール水を炉心上部に取付けられた高圧烼心スプレイスパージャのノズルから炬心にスプレイする設計とす る。 原子炉泠却材圧力バウンダリ高圧時に発電用原子炉を冷却するための設備とし て，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプ レイ系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる喭計とする。 嗃圧炉心スプレイ系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用する ことから，流路に係る機能について重大事故等対処設備としての設計を行ら。 インターフェイスシステム LOCA 発生時の重大事故等対処設備として，高圧灲心ス プレイ系注入隔離弁（E22－F003）は，現場で弁を操作することにより原子炉冷却材 の漏えい箇所を隔離できる設計とする。 なお，設計基準事故対処設備である高圧炉心スプレイ系注入隔離弁（E22－F003） を重大事故等対処設備（設計基漼拡張）として使用できる設計とする。	

| 変更前 |
| :--- | :--- |

炬建屋ブローアウトパネル（設置枚数 1，開放差圧 4．4kPa）（原子炉格納施設の設備 を原子炬泠却系統施設のらち「5．2 高圧炬心スプレイ系」の設備として兼用）は，高圧の原子炉冷却材が原子炬建屋原子炉棟内へ漏えいして蒸気となり，原子炬建屋原子炉棟内の圧力が上昇した場合において，外気との差圧により自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下させることができる設計とする。

5．2．2 多様性，位置的分散等
高圧炬心スプレイ系は，設計基準事故対処設備であるとともに，重大事故等時に おいても使用するため，重大事故等対处設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準庫故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様泩，位置的分散等」に示す設計方針は適用しない。
5.3 低圧炉心スプレイ系
5.3 .1 系統構成

低圧炉心スプレイ系は，大破断の泠却材喪失事故時には残留熱除去系（低圧注水 モード）及び高圧炉心スプレイ系と連携して，中小破断の冷却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプ一ル水を，炉心上部に取付けられた低圧灲心スプレイスパージャのノズルから炉心 にスプレイする設計とする。

原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備とし て，想定される重大事故等時において，設計基準事故対処設備である低圧炉心スプ レイ系が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用でき る設計とする。
全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，低圧炉心スプレイ系が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，低圧炉心スプレイ系 を復旧できる設計とする。低圧灲心スプレイ系は，常設代替交流電源設備からの給電により機能を復旧し，低圧灲心スプレイ系ポンプによりサプレッションチェンパ のプール水を原子炉圧力容器ヘスプレイすることで炉心を冷却できる設計とする。本系統に使用する泠却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。

低圧炉心スプレイ系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用する

低土师心スプレイ系は，大破断の泠却材喪失事故時には残留熱除去系（低圧注水モ ふスプレイ系ある流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプール水を，炉心上部に取付けられた低圧炉心スプレイスパージャのノズルから炉心にス プレイする設計とする。

変更前	変更後	記載しない理由
	ことから，流路に係る機能について重大事故等対処設備としての設計を行ら。	
	5．3．2 多様性，位置的分散等	
	低圧炬心スプレイ系は，設計基漼事故対処設備であるとともに，重大事故等時回	
	おいても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適	
	用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基鷕	
	庫故対処設備はないことから，重大事故等対処設備の基本方針のらち 「5．1．2 多様	
	泩，位置的分散等」に示す設計方針は適用しない。	
	5.4 高圧代替注水系	
	原子炬冷却材圧力バウンダリが高圧の状態であって，設計基漼事故対処設備が有する	
	発電用原子炉の洽却機能が震失した場合においても炬心の著しい損傷を防止するために	
	必要な重大事故等対処設備として，高圧代替注水系を設ける設計とする。	
	＊た，設計基準事故対処設備である高圧炉心スプレイ系及び原子炬隔離時冷却系が全	
	交流動力電源及び常設直流電源系統の機能震失により起動できない，かつ，中央制御室	
	加らの操作により高圧代替注水系を起動できない場合に，高圧代替注水系を現場操作に	
	より起動できる設計とする。	
	高圧炬心スプレイ系及び原子炬隔離時椧却系が機能喪失した場合の重大事故等対処設	
	備として，高圧代替注水系は，蒸気タービン駆動ポンプにより復水貯蔵タンクの水を高	
	匡炉心スプレイ系等を経由して，原子炉圧力容器へ注水することで炬心を椧却できる設	
	計とする。	
	高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄	
	電式直流電源設備からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能需	
	失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能	
	な設計とし，中央制御室からの操作が可能な設計とする。	
	嗃圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電	
	式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能䨤失により	
	中央制御室からの操作ができない場合においても，現場での人力による原子炬隔離時泠	
	却系蒸気供給ライン分離弁（E51－F082）（原子炉冷却系統施設のらち「5．5 原子炬隔墭	
	時冷却系」の設備を原子炉冷却系統施設のらち「5．4 高圧代替注水系」の設備として兼	
	用），高圧代替注水系注入弁（E61－F003），高圧代替注水系タービン止め弁（E61－F050）	
	及び燃料プール補給水系ポンプ吸込弁（P15－F001）の操作により，原子炉冷却材圧力バ	
	■ンダリの減圧対策及び原子炉泠却材圧力バウンダリ低圧時の泠却対策の漼備から整うま	
	での期間にわたり，発電用原子炉の冷却を継続できる設計とする。なお，人力による措	

変更前	変更後	記載しない理由
	1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のらち「5．10．2 代替水源移送系」の設備として兼用）に より行ら設計とする。	
6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系 原子炉隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等 に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。 また，泠却材喪失事故に至らない原子炉冷却材圧力バウンダリからの小さな漏えい及 び原子炉泠却材圧力バウンダリに接続する小口径配管の破断又は小さな機器の損傷によ る原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。 原子炉隔離時冷却系は，短時間の全交流動力電源喪失時においても，炉心を泠却する機能を有する設計とする。 6.2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧炉心スプレイ系及び原子炉隔離時冷却系の原子炉への注入水を貯留するため，復水貯蔵タンクを設置する設計とする。	6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系 原子炉隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等 に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。 また，冷却材喪失事故に至らない原子炬冷却材圧力バウンダリからの小さな漏えい及 び原子炉冷却材圧力バウンダリに接続する小口径配管の破断又は小さな機器の損傷によ る原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。 原子炉隔離時冷却系は，全交流動力電源喪失時から重大事故等に対処するために必要 な電力の供給が常設代替交流電源設備から開始されるまでの間，炉心を冷却する機能を有する設計とする。 6.2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧炉心スプレイ系及び原子炉隔離時冷却系の原子灲への注入水を貯留するため，復水貯蔵タンクを設置する設計とする。	
7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）は，発電用原子炉停止時に残留熱除去系により除去された原子炉圧力容器内において発生した残留熱及び重要安全施設において発生 した熱を，最終的な熱の逃がし場である海へ輸送が可能な設計とする。 また，津波又は発電所敷地若しくはその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対 して安全性を損なわない設計とする。 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炬心スプレイ補機泠却水系（高圧炉心スプレイ補機泠却海水系を含む。）は，非常用炉心冷却系の区分 に対応した 3 系統構成とすることにより，非常時に動的機器の単一故障及び外部電	7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）は，発電用原子炬停止時に残留熱除去系により除去された原子炉圧力容器内において発生した残留熱及び重要安全施設において発生 した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場である海へ輸送が可能な設計とする。 また，津波，溢水又は発電所敷地若しくはその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるも のに対して安全性を損なわない設計とする。 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機阾却水系（高圧炬心スプレイ補機冷却海水系を含む。）は，非常用灲心冷却系の区分 に対応した 3 系統構成とすることにより，非常時に動的機器の単一故障及び外部電	

変更前

高圧炉心スプレイ補機泠却水系（高圧炉心スプレイ補機泠却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系と，海水系である高圧炉心スプレ イ補機冷却海水系から構成する設計とする

変更後
高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系と，海水系である高圧炉心スプレ イ補機冷却海水系から構成する設計とする。

最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時に
おいて，設計基準事故対処設備である高圧炉心スプレイ補機冷却水系（高圧灲心ス プレイ補機冷却海水系を含む。）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。

7．2．2 多様性，位置的分散等
高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及 び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことか ら，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。
7.3 原子炉補機代替冷却水系

7．3．1 系統構成
設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合において灲心の著しい損傷及び原子炉格納容器の破損（灲心の著しい損傷が発生する前に生ずるものに限る。）を防止するため，最終ヒートシンクへ熱を輸送する ために必要な重大事故等対処設備として，原子师補機代替冷却水系を設ける設計と する。

原子炉補機冷却水系（原子炉補機泠却海水系を含む。）の故障又は全交流動力電源 の喪失により，最終ヒートシンクへ熱を輸送する機能が喪失した場合の重大事故等対処設備として，原子炉補機代替冷却水系は，サプレッションチェンバへの熱の蓄積により原子炉冷却機能が確保できる一定の期間内に，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプI）に より原子炬補機代替冷却水系熱交換器ユニットに海水を送水することで，十分な余镕を持って残留熱除去系等の機器で除去した熱を最終的な熱の逃がし場である海へ輸送できる設計とする。

原子炬補機代替冷却水系は，原子炬補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I ）により取水口又は海水ポン
ために必要な重大事故等対処設備として，原子炬補機代替冷却水系を設ける設計と
プ室から海水を取水し, 原子炉補機代替冷却水系熱交換器ユニットに海水を送水す

変更前	変更後	記載しない理由
	独立性を有するとともに，原子炉補機代替冾却水系熱交換器ユニットから原子炉補㯤冷却水系配管との合流点までの系統について，原子炉補機冷却水系に対して独立夝を有する設計とする。 モれらの多㨾性及び系統の独立性並びに位置的分散によって，原子炉補機代替冷却水系は，設計基準事故対処設備である）原子炉補機泠却水系（原子炉補機泠却海水䒺を含む。）に対して重大事故等対処設備としての独立性を有する設計とする。 7.4 重大事故等の収束に必要となる水源 海は，想定される重大事故等時において，原子炬補機代替冷却水系の水源として利用 できる設計とする。	
8．原子炉冷却材浄化設備 8．1 原子炉冷却材浄化系 原子炉冷却材浄化系は，原子炉冷却材の純度を高く保つために設置するもので，原子炬再循環系配管及び原子炬圧力容器底部から原子炉冷却材を一部取り出し，原子炉冷却厈浄化系ろ過脱塩器によって浄化脱塩して復水給水系へ戻すことにより，原子炉冷却材中の不純物及び放射性物質の濃度を発電用原子炉施設の運転に支障を及ぼさない值以下 に保つことができる設計とする。 放射性物質を含む原子炉冷却材を，原子炉起動時，停止時及び高温待機時において，原子炉冷却系統外に排出する場合は，原子炉冷却材浄化系により原子炉冷却材を浄化し て，液体廃棄物処理系へ導く設計とする。	8．原子炉冷却材浄化設備 変更なし	
9．原子炉格納容器内の原子灲冷却材漏えいを監視する装置 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいに対して，ドライウェル送風嘰冷却コイルドレン流量測定装置，ドライウェル床ドレンサンプ水位測定装置，ドライウ エル機器ドレンサンプ水位測定装置及び格納容器内ダスト放射線濃度測定装置を設ける設計とする。 このらち，漏えい位置を特定できない原子炉格納容器内の漏えいに対しては，ドライウ エル床ドレンサンプ水位測定装置により， 1 時間以内に $0.23 \mathrm{~m}^{3} / \mathrm{h}$ の漏えい量を検出する能力を有する設計とするとともに，自動的に中央制御室に警報を発信する設計とする。 また，測定値は，中央制御室に指示する設計とする。 ドライウェル床ドレンサンプ水位測定装置は, ドライウェル床ドレンサンプに設ける設	9．原子炉格納容器内の原子炉椧却材漏えいを監視する装置変更なし	

変更前	変更後	記載しない理由
10．流体振動等による損傷の防止 原子炬泠却系統，原子炉椧却村浄化系及び残留熱除去系（原子炉停止時冷却モード）に係る容器，管，ポンプ及び并は，原子炉泠却材の循擐，沸滕その他の原子炉泠却材の挙動に より生じる流体振動又は温度差のある流体の混合その他の原子师泠却材の挙動により生じ予温度変動により損傷を受けない設計とする。 管に設置された円柱状構造物で耐圧機能を有するものに関する流体振動評価は，日本機戒学会「配管内円柱状構造物の流力振動評価指針」（J SME S 0 1 2）の規定に基つ く手法及び評価フローに従った設計とする。 榅度差のある流体の混合等で生じる温度変動により発生する配管の高サイクル熱疲労に よる損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（J S ME S 017 ）の規定に基づく手法及び評価フローに従った設計とする。	10．流体振動等による損傷の防止 変更なし	
11．主要対象設備 原子炉冷却系統施設（蒸気タービンを除く。）の対象となる主要な設備について，「表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。	11．主要対象設備 原子炉冷却系統施設（蒸気タービンを除く。）の対象となる主要な設備について，「表1原子炉泠却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表 2 原子炉泠却系統施設（蒸気タービンを除く。）の兼用設備リスト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

4．蒸気タービンの基本設計方針

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及び その附属施設の技術基準に関する規則」並びにこれらの解积による。	用語の定義は「実用発電用原子炬及びその附属施設の位置，構造及び設備の基漼に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれら の解粎による。	本記載は概要であるため，記載し ない。
第1章 共通項目 蒸気タービンの共通項目である $「 1$ ．地盤等，2．自然現象，3．火災，4．設備に対す る要求（ 4.6 逆止め弁， 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。）， 5．その他」の基本設計方針については，原子炉冷却采統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 蒸気タービンの共通項目である 1 ．地盤等，2．自然現象，3．火災，4．溢水等， 5 ．設備に対する要求（5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設 の基本設計方針 「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．蒸気タービン 信計基準対象施設に施設する蒸気タービン及び蒸気タービンの附属設備は，想定される 環境条件において，材料に及ぼす化学的及び物理的影響を考慮した設計とする。 また，振動対策，過速度対策等各種の保護装置及び監視制御装置により，中央制御室及 び現場において運転状態の監視を行い，発電用原子炉施設の安全性を損なわないよう，以 下の事項を考慮して設計する。 1.1 蒸気タービン本体 蒸気タービンの定格出力は，復水器真空度 96.3 kPa ，補給水率 0% において，発電端で 825000 kW となる設計とする。 定格熱出力一定運転の実施においても，蒸気タービン設備の保安が確保できるように定格熱出力一定運転を考慮した設計とする。 蒸気タービンは，非常調速装置が作動したときに達する回転速度並びに蒸気タービン の起動時及び停止過程を含む運転中に主要な軸受又は軸に発生しらる最大の振動に対し て構造上十分な機械的強度を有する設計とする。 また，蒸気タービンの軸受は，主油ポンプ，ターニング油ポンプ，非常用油ポンプ等の軸受潤滑設備を設置することにより，運転中の荷重を安定に支持でき，かつ，異常な摩麾，変形及び過熱が生じない設計とする。 蒸気タービン及び発電機その他の回転体を同一軸上に結合したものの危険速度は，速度調定率で定まる回転速度の範囲のらち最小の回転速度から，非常調速装置が作動した ときに達する回転速度までの間に発生しない設計とする。 また，蒸気タービン起動時の危険速度を通過する際には速やかに昇速できる設計とす	第2章 個別項目 1．蒸気タービン 変更なし	

変更前	変更後	記載しない理由
る。		
蒸気タービン及びその附属設備の耐圧部分の構造は，最高使用圧力又は最高使用温度		
において発生する最大の応力が当該部分に使用する材料の許容応力を超えない設計とす		
る。		
蒸気タービンには，その回転速度及び出力が負荷の変動の際にも持続的に動摇するこ		
とを防止する調速装置を設けるとともに，運転中に生じた過回転，発電機の内部故障，		
復水器真空低下，スラスト軸受の摩耗による設備の破損を防止するため，その異常が発		
生した場合に蒸気タービンに流入する蒸気を自動的かつ速やかに遮断する非常調速装置		
及び保安装置を設置する。		
また，調速装置は，最大負荷を遮断した場合に達する回転速度を非常調速装置が作動		
する回転速度未満にする能力を有する設計とする。		
なお，過回転については定格回転速度の 1.11 倍を超えない回転数で非常調速装置が作		
動する設計とする。		
蒸気タービン及びその附属設備であって，最高使用圧力を超える過圧が生ずるおそれ		
のあるものにあっては，排気圧力の上昇時に過圧を防止することができる容量を有し，		
かつ，最高使用圧力以下で動作する大気放出板を設置し，その圧力を逃がすことができ		
る設計とする。		
蒸気タービンには，設備の損傷を防止するため，以下の運転状態を計測する監視装置		
を設け，各部の状態を監視することができる設計とする。		
（1）蒸気タービンの回転速度		
（2）主蒸気止め弁の前及び組合せ中間弁の前における蒸気の圧力及び温度		
（3）蒸気タービンの排気圧力		
（4）蒸気タービンの軸受の入口における潤滑油の圧力		
（5）蒸気タービンの軸受の出口における潤滑油の温度又は軸受メタル温度		
（6）蒸気加減弁の開度		
（7）蒸気タービンの振動の振幅		
蒸気タービンは，振動を起こさないように十分配慮をはらうとともに，万一，振動が		
発生した場合にも振動監視装置により，警報を発するように設計する。また，運転中振		
動の振幅を自動的に記録できる設計とする。		
蒸気タービン及びその附属設備の構造設計において「発電用火力設備に関する技術基		
漼を定める省令及びその解釈」に規定のないものについては，信頼性が確認され十分な		

変更前	変更後	記載しない理由
実績のある設計方法，安全率等を用いるほか，最新知見を反映し，十分な安全性を持た せることにより保安が確保できる設計とする。 復水器は，冷却水温度 $15^{\circ} \mathrm{C}$ ，タービン定格出力，大気圧 101 kPa において真空度 96.3 kPa を確保できる設計とする。 1.2 蒸気タービンの附属設備 ポンプを除く蒸気タービンの附属設備に属する容器及び管の耐圧部分に使用する材料 は，想定される環境条件において，材料に及ぼす化学的及び物理的影響に対し，安全な化学的成分及び機械的強度を有するものを使用する。 また，蒸気タービンの附属設備のらち，主要な耐圧部の溶接部については，次のとお りとし，使用前事業者検査により適用基準及び適用規格に適合していることを確認する。 （1）不連続で特異な形状でないものであること。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込 み不良その他の欠陥がないことを非破壊試験により確認したものであること。 （3）適切な強度を有するものであること。 （4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及び技能を有する溶接士であることをあらかじめ確認したものにより溶接したものであること。 なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のらち水用の容器又は管であって，最高使用温度 $100^{\circ} \mathrm{C}$ 未満のものについては，最高使用圧力 1960 kPa ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管について は，最高使用圧力 980 kPa （長手継手の部分にあっては， 490 kPa ）以上の圧力が加えられ る部分について溶接を必要とするものをいら。また，蒸気タービンに係る外径 150 mm 以上の管のうち，耐圧部について溶接を必要とするものをいう。 蒸気タービンの附属設備の機器仕様は，運転中に想定される最大の圧力•温度，必要 な容量等を考慮した設計とする。		
2．主要対象設備 蒸気タービンの対象となる主要な設備について，「表1蒸気タービンの主要設備リスト」 に示す。	主要対象設備 蒸気タービンの対象となる主要な設備について，「表1蒸気タービンの主要設備リスト」 に示す。	本記載は，要目表対象を示したリ ストに関する記載であるため，記載しない。

5．計測制御系統施設の基本設計方針

及びその附属施設の位置，構造及び設備の基準に関する規則」 及び「実用発電用原子炉及び

 その附属施設の技術基準に関する規則」並びにこれらの解秋による。
第1章 共通項目

計測制御系統施設の共通項目である 1 。 ．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他」 の基本設計方針については，原子炉洽却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。

第 2 章 個別項目

1．計測制御采統施設
1.1 反応度制御系統及び原子炉停止系統共通

発電用原子炉施設には，制御棒の挿入位置を調節することによって反応度を制御する制御棒及び制御棒駆動系と，再循澴流量を調整することによって反応度を制御する再循環流量制御系の独立した原理の異なる反応度制御系統を施設し，計画的な出力変化に伴 ら反応度変化を燃料要素の計容損傷限界を超えることなく制御できる能力を有する設計 とする。

通常運転時の高温状態において，独立した原子炬停止系統である制御棒及び制御棒駆動采による制御棒の炬心への挿入並びにほら酸水注入系による原子炬洽却材中へのほう酸注入は，それぞれ発電用原子炉を臨界末満にでき，かつ，維持できる設計とする。

運転時の異常な過渡変化時の高温状態においても，制御棒及び制御棒駆動采による制御棒の烼心への挿入により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界未満にでき，かつ，維持できる設計とする。

設置（変更）許可を受けた洽却材趡失その他の設計基準事故時の評価において，制御棒及び制御棒駆動采は，原子炬スクラム信号によって，水圧制御コニット（アキュムレー タ）の圧力により制御棒を緊急挿入できる設計とするとともに，制御棒が碓実に挿入さ れ，灲心を臨界未満にでき，かつ，それを維持できる設計とする。

制御棒及びほら酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳 しい条件に扮いて，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。

変更後

用語の定義は「実用発電用原子炬及びその附属施設の位置，構造及び設備の基漼に関す
る規則」及び「実用発電用原子炉及びその附属施設の技術基漼に関する規則」並びにこれら の解粎による。

第 1 章 共通項目

計測制御采統施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備记対する要求（ 5.7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系䖻施設の基本設計方針「第1章 共通項目」に基づく設計とする。

第2章 個別項目

1．計測制御系統施設
1.1 反応度制御系統及び原子炬停止系統共通

廃電用原子炉施設には，制御棒の挿入位置を調節することによって反応度を制御する制御棒及び制御棒駆動系と，再循環流量を調整することによって反応度を制御する再循四流量制御系の独立した原理の異なる反応度制御采統を施設し，計画的な出力変化に伴 5反応度変化を燃料要素の許容損偒限界を超えることなく制御できる能力を有する設計 とする。

熥常運転時の高温状態において，独立した原子炬停止系統である制御棒及び制御棒駆動系による制御棒の炬心への挿入並びにほら酸水注入系による原子炉冷却材中へのほう酸注入は，それぞれ発電用原子炉を臨界未満にでき，かつ，維持できる設計とする。

㦁転時の異常な過液変化時の高温状態においても，制御棒及び制御棒駆動系による制卸棒の烼心への挿入により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界末満にでき，かつ，維持できる設計とする。

砓置（変更）許可を受けた椧却材露失その他の設計基準事故時の評価において，制御厏及び制御棒駆動系は，原子炉スクラム信号によって，水圧制御コニット（アキュムレ一タ）の圧力により制御棒を緊急挿入できる設計とするとともに，制御棒が碓実に挿入 され，炬心を臨界未満にでき，かつ，それを維持できる設計とする。

制御棒及びほら酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳 しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。

記載しない理由
本記載は概要であるため，記載し ない。

本記載は概要であるため，記載し

変更前	変更後	記載しない理由
1.2 制御棒及び制御棒鴚動系	1.2 制御棒及び制御栭駆動系	
制御俸は，最大の反応度価值を持つ制御棒 1 本が完全に炬心の外に引き抜かれていて，	制御棒は，最大の反応度価値を持つ制御棒 1 本が完全に炉心の外に引き抜かれていて，	
その他の制御棒が全挿入の場合，高温状態及び低温状態において常に师心を臨界未満に	その他の制御棒が全挿入の場合，高温状態及び低温状態において常に炬心を臨界未满汤	
できる設計とする。また，発電用原子炉運転中に，完全汇挿入されている制御棒を除く，	できる設計とする。また，発電用原子炉運転中に，完全に挿入されている制御愫を除く，	
他のいずれかの制御棒が動作不能となった場合は，動作可能な制御棒のらち最大反応度	他のいずれかの制御棒が動作不能となった場合は，動作可能な制御䏾のらち最大反応度	
価値を有する制御棒 1 本が完全に炬心の外に引き抜かれで状態でも，他のすべての動作	価值を有する制御棒 1 本が完全に炬心の外に引き抜かれた状態でも，他のすべての動作	
可能な制御棒により，高温状態及び低温状態において炬心を臨界未满に保持できること	可能な制御棒により，高温状態及び低温状態において炬心を臨界未满に保持できること	
を評価碓認し，確認できない場合には，発電用原子炉を停止するように保安規定に定め	を評価碓認し，確認できない場合には，発電用原子炉を停止するように保安規定に定め	
て管理する。	て管理する。	
反応度が大きく，かつ急激に投入される事象による影響を小さくするため，制御棒の	区応度が大きく，かつ急激に投入される事象による影響を小さくするため，制御棒め	
落下速度を設置（ 変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒	落下速度を設置（変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒	
落下速度リミッタにより制限することで，制御棒引き抜きによる反応度添加率を抑制す	落下速度リミッタにより制限することで，制御棒引き拔きによる反応度添加率を抑制す	
る。また，「原子炬起動時における制御棒の異常な引き抜き」の評価で想定した制御棒引	3。また，「原子炬起動時における制御棒の異常な引き抜き」の評価で想定した制御棒引	
拔速度以下に制限するとともに，零出力ないし低出力においては，運転員の制御棒引抜	抜速度以下に制限するとともに，零出力ないし低出力においては，運転員の制御棒引拔	
操作を規制する補助機能として，制御棒価值ミニマイザを設けることで，引き抜く制御	操作を規制する補助機能として，制御棒価值ミニマイザを設けることで，引き抜く制御	
棒の最大反応度価値を制限する。更に中性子束高及び原子炬周期（ヘリリド）短による原	棒の最大反応度価値を制限する。更に中性子束高及び原子炬周期（ペリオド）短による	
子炬スクラム信号を設ける設計とする。これらにより，想定される反応度投入事象発生	原子炬スクラム信号を設ける設計とする。これらにより，想定される反応度投入事象発	
時に燃料の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炬洽却材圧力バ	生時に燃料の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炉冷却材圧力	
ウンダリを破損せず，かつ，炬心の椧却機能を損ならような炬心，炬心支持構造物及び原	バウンダリを破損せず，かつ，炬心の椧却機能を損ならよらな炉心，炉心支持構造物及	
子炉圧力容器内部構造物の破損を生じさせない設計とする。なお，制御棒引抜手順につ	び原子炬圧力容器内部構造物の破賣を生じさせない設計とする。なお，制御棒引拨手順	
いては，保安規定に定めて管理する。	については，保安規定に定めて管理する。	
制御棒及び制御棒駆動系は，通常運転時及び運転時の異常な過渡変化時における低温	制御棒及び制御俸駆動系は，通常運転時及び運転時の異常な過渡変化時における低温	
状態において，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度	庈態において，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度	
添加を制御し，低温状態で炬心を未䟭界に移行して維持できる設計とする。	㔷加を制御し，低温状態で师心を未輱界に移行して維持できる設計とする。	
制御棒は，十字形纪組み合わせたステンレス龬製のU字形シ一スの中に中性子吸収材	制御棒は，十字形扎組み合わせたステンレス銅製の U 字形シースの中に中性子吸収材	
を収めたものであり，各制御棒は 4 体の燃料体の中央に，炬心全体にわたって一焃に配	を収めたものであり，各制御棒は 4 体の燃料体の中央に，炬心全体にわたつて一焃に配	
置する設計とする。	直する設計とする。	
制御棒の下端には制御棒落下速度リミッタを設けるとともに，制御棒の駆動は，ピス	制御棒の下端には制御棒落下速度リミッタを設けるとともに，制御棒の駆動は，ピス	
トン上部又は下部に駆動水を供給することにより，原子炉圧力容器底部から行ら設計と	トン上部又は下部に駆動水を供給することにより，原子炬圧力容器底部から行ら設計と	
する。	する。	
通常駆動時は，制御桋駆動水ポンプにより加圧された駆動水で駆動し，原子炬緊急停	通常駆動時は，制御棒駆動水ポンプにより加圧された駆動水で駆動し，原子炬緊急停	
止時は，各々の制御棒駆動機構ごとに設ける水圧制御ユニット（アキュムレータ）の高圧	止時は，各々の制御棒駆蝩機構ごとに設ける水圧制御コニット（アキュムレータ）の高	
室素により加圧された駆動水を供給することで制御棒を駆動する設計とする。	匡窒素により加圧された駆動水を供給することで制御棒を駆動する設計とする。	

変更前
原子炉泠却材の漏えいが生じた場合，その漏えい量が $10 \mathrm{~mm}(3 / 8$ インチ）径の配管破
断に相当する量以下の場合は制御棒駆動水ポンプで補給できる設計とする。

制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炉冷却材圧力バウンダリの損傷を防ぐために適切な値となるような速度で炉心内に挿入できること，並びに通常運転時において制御棒の異常な引き抜きが発生し た場合においても，燃料要素の許容損傷限界を超える駆動速度で引き抜きできない設計 とする。

なお，設置（変更）許可を受けた仕様並びに運転時の異常な過渡変化及び設計基準事故 の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時に おける制御棒の異常な引き抜き」及び「出力運転中の制御棒の異常な引き抜き」の評価の条件を満足する設計とする。

制御棒は，原子炉モードスイッチ「停止」位置にある場合，原子炉モードスイッチ「燃料取替」位置にある場合で，燃料交換機が原子炉上部にあり，荷重状態のとき，原子炉モ ードスイッチ「燃料取替」位置にある場合で，引き抜かれている制御棒本数が 1 本のと き，原子炉モードスイッチ「燃料取替」位置にある場合で，スクラム排出容器水位高によ るスクラム信号がバイパスされているとき，スクラム排出容器水位高による制御棒引抜阻止信号のあるとき，原子炉モードスイッチ「起動」位置にある場合で，起動領域モニタ の指示高，指示低若しくは動作不能及び中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」位置にある場合で，出力領域モニタの指示低又は動作不能のと き，出力領域モニタの指示高のとき，制御棒価値ミニマイザによる制御棒引抜阻止信号 のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあるときは，引き抜きを阻止できる設計とする。

制御棒駆動機構は，各制御棒に独立して設けられたラッチ付き水圧ピストン・シリン ダ方式のものであり，インデックスチューブと駆動ピストン，コレット集合体等で構成 され，制御棒の駆動動力源である制御棒駆動水ポンプによる水圧が喪失した場合におい ても，ラッチ機構により制御棒を現状位置に保持し，発電用原子炉の反応度を増加させ る方向に作動させない設計とする。

また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れない構造とする。

制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炬冷却材圧力バウンダリの損傷を防ぐために適切な値となるような速度で炉心内に挿入できること，並びに通常運転時において制御棒の異常な引き抜きが発生し た場合においても，燃料要素の許容損傷限界を超える駆動速度で引き抜きできない設計

とする。

なお，設置（変更）許可を受けた仕様並びに運転時の異常な過渡変化及び設計基準事故 の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時に おける制御棒の異常な引き抜き」及び「出力運転中の制御棒の異常な引き抜き」の評価の条件を満足する設計とする。

制御棒は，原子炉モードスイッチ「停止」位置にある場合，原子炉モードスイッチ「燃料取替」位置にある場合で，燃料交換機が原子炉上部にあり，荷重状態のとき，原子炉モ ードスイッチ「燃料取替」位置にある場合で，引き抜かれている制御棒本数が 1 本のと き，原子灲モードスイッチ「燃料取替」位置にある場合で，スクラム排出容器水位高によ るスクラム信号がバイパスされているとき，スクラム排出容器水位高による制御棒引抜阻止信号のあるとき，原子炉モードスイッチ「起動」位置にある場合で，起動領域モニタ の指示高，指示低若しくは動作不能及び中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」位置にある場合で，出力領域モニタの指示低又は動作不能の とき，出力領域モニタの指示高のとき，制御棒価値ミニマイザによる制御棒引抜阻止信号のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあるときは，引き抜き を阻止できる設計とする。

制御棒駆動機構は，各制御棒に独立して設けられたラッチ付き水圧ピストン・シリン ダ方式のものであり，インデックスチューブと駆動ピストン，コレット集合体等で構成 され，制御棒の駆動動力源である制御棒駆動水ポンプによる水圧が喪失した場合におい ても，ラッチ機構により制御棒を現状位置に保持し，発電用原子炉の反応度を増加させ る方向に作動させない設計とする。
また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れない構造とする。
j足する設計とする。

「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
制御棒駆動系にあっては，制御棒の挿入その他の衝撃により制御棒，燃料体，その他の炬心を構成するものを損壊しない設計とする。	制御棒駆動系にあっては，制御棒の挿入その他の衝撃により制御棒，燃料体，その他の灲心を構成するものを損壊しない設計とする。	「実用発電用原子炬及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
1.3 原子炉再循環流量制御系 再循澴流量は，静止型原子炬再循澴ポンプ電源装置により電源周波数を変化させ，原子炉再循環ポンプ速度を調整することにより制御できる設計とする。 また，タービン・トリップヌは発電機負荷遮断直後の原子炉出力を抑制するため，主蒸気止め弁閉又は蒸気加減弁急速閉の信号により，原子炉再循擐ポンプ 2 台を同時にトリ ップする機能を設ける設計とする。	1.3 原子炉再循環流量制御系 再循環流量は，静止型原子炉再循環ポンプ電源装置により電源周波数を変化させ，原子炬再循環ポンプ速度を調整することにより制御できる設計とする。 ＊た，タービン・トリップ又は発電機負荷遮断直後の原子炉出力を抑制するため，主蒸気止め弁閉又は蒸気加減并急速閉の信号により，原子炉再循環ポンプ 2 台を同時に下 リップする機能を設ける設計とする。	
1．4 ほう酸水注入系 ほう酸水注入系は，制御棒挿入による原子炉停止が不能になった場合，手動で中性子 を吸収するほう酸水（五ほら酸ナトリウム）を原子炉内に注入する設備であり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において十分臨界未満に維持でき るだけの反応度効果を持つ設計とする。	1.4 ほう酸水注入系 ほう酸水注入系は，制御棒插入による原子炉停止が不能になった場合，手動で中性子 を吸収するほら酸水（五ほら酸ナトリウム）を原子炬内に注入する設備であり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において十分臨界未満に維持で きるだけの反応度効果を持つ設計とする。 運転時の異常な過渡変化時において発電用原子灲の運転を緊急に停止することができ ない事象が発生するおそれがある場合又は当該事象が発生した場合においても炬心の著 しい損傷を防止するため，原子炉冷却材圧力バウンダリ及び原子炬格納容器の健全性を維持するとともに，発電用原子炉を未臨界に移行するために必要な重大事故等対処設備 として，ほら酸水注入系を設ける設計とする。 原子炬保護系，制御棒，制御棒駆動機構又は水圧制御ユニットの機能が喪失した場合 の重大事故等対処設備として，ほう酸水注入系は，ほう酸水注入系ポンプにより，ほう酸水注入系貯蔵タンクのほう酸水を原子炉圧力容器へ注入することで，発電用原子炉を圧臨界にできる設計とする。 ほら酸水注入系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子灲圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。	

変更前	変更後	記載しない理由
1.5 原子炉圧力制御系 圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及びタービンバイパス弁の開度を自動制御する設計とする。 また，原子炉圧力が急上昇するような場合，タービンバイパス弁を開き，原子炉圧力の過度の上昇を防止する設計とする。 圧力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減弁及びタービンバイパス弁の開度を制御することにより，負荷 の変動その他の発電用原子炉の運転に伴う原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。 1.6 原子炉給水制御系 原子炉給水制御采は，原子炉水位を一定に保つようにするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポンプの速度を調整 することなどにより原子炉給水流量を自動的に制御できる設計とする。	1.5 原子炉圧力制御系 圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及びタービンバイパス弁の開度を自動制御する設計とする。 また，原子炉圧力が急上昇するような場合，タービンバイパス弁を開き，原子炉圧力 の過度の上昇を防止する設計とする。 压力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減弁及びタービンバイパス弁の開度を制御することにより，負荷 の変動その他の発電用原子炉の運転に伴ら原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。 1.6 原子炉給水制御系 原子炉給水制御系は，原子炉水位を一定に保つようにするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポンプの速度を調整することなどにより原子炉給水流量を自動的に制御できる設計とする。	
2．計測装置等 2.1 計測装置 2．1．1 通常運転時，運転時の異常な過渡変化時における計測計測制御采統施設は，炉心，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウ ンダリ並びにこれらに関する系統の健全性を確保するために監視することが必要な パラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視できる設計とする。 また，設計基準事故が発生した場合の状況把握及び対策を講じるために必要なパ ラメータは，設計基準事故時に想定される環境下において十分な測定範囲及び期間 にわたり監視できるとともに，発電用原子炉の停止及び炉心の泠却に係るものにつ いては，設計基準事故時においても 2 種頪以上監視又は推定できる設計とする。 灲心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域，出力領域の 2 つの領域に分けて中性子束を計測できる設計とする。 炉周期は起動領域モニタの計測結果を用いて演算できる設計とする。	2．計測装置等 2.1 計測装置 2．1．1 通常運転時，運転時の異常な過渡変化時及び重大事故等時における計測娮測制御系統施設は，炉心，原子炉冷却材圧力バウンダリ及び原子炉格納容器バ ウンダリ並びにこれらに関する系統の健全性を確保するために監視することが必要 なパラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視できる設計とする。 また，設計基準事故が発生した場合の状況把握及び対策を講じるために必要なパ ラメータは，設計基準事故時に想定される環境下において十分な測定範囲及び期間 にわたり監視できるとともに，発電用原子炉の停止及び炉心の泠却に係るものにつ いては，設計基準事故時においても 2 種類以上監視又は推定できる設計とする。 炬心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域，出力領域の 2 つの領域に分けて中性子束を計測できる設計とする。 厌周期は起動領域モニタの計測結果を用いて演算できる設計とする。 重大事故等が発生し，計測機器（非常用のものを含む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難と なった場合において，当該パラメータを推定するために必要なパラメータを計測す る設備を設置又は保管する設計とする。	

変更前	変更後	記載しない理由
	㯰するものについては，常設代替交流電源設備又は可搬型代替交流電源設備からの	
	給電及び所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流	
	電源設備からの給電が可能な設計とする。	
	また，原子炉建屋内水素濃度のらち，原子炉建屋地上 1 階及び原子炉建屋地下 1	
	階に設置するものについては，所内常設蓄電式直流電源設備，常設代替直流電源設	
	備又は可搬型代替直流電源設備からの給電が可能な設計とする。	
	2．1．5 静的触媒式水素再結合装置の作動状態監視	
	炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を	
	防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限	
	界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的	
	触媒式水素再結合装置動作監視装置を設ける設計とする。	
	静的触媒式水素再結合装置動作監視装置（個数 8，計測箷囲 $0 \sim 500^{\circ} \mathrm{C}$ ，検出器種	
	類 熱電対）は，静的触媒式水素再結合装置の入口側及び出口側の温度により静的触	
	媒式水素再結合装置の作動状態を中央制御室から監視できる設計とし，重大事故等	
	時において測定可能なよう耐環境性を有した熱電対を使用する。	
	静的触媒式水素再結合装置動作監視装置は，所内常設蓄電式直流電源設備，常設	
	代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。	
2.2 警報装置等	2.2 警報装置等	
設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他	信計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他	
の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（中性子	の異常により発電用原子炉の運転に著しい支障を及ぼすおそれが発生した場合（中性子	
束，温度，圧力，流量，水位等のプロセス変数が異常値になった場合，工学的安全施設が	束，温度，圧力，流量，水位等のプロセス変数が異常値になった場合，工学的安全施設が	
作動した場合等）に，これらを確実に検出して自動的に警報（原子灯水位低又は高，原子	作動した場合等）に，これらを確実に検出して自動的に警報（原子炉水位低又は高，原子	
炉圧力高，中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯，ブザー	炉圧力高，中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯，ブザー	
鳴動等により運転員に通報できる設計とする。	鳴動等により運転員に通報できる設計とする。	
発電用原子炉並びに原子炬冷却系統に係る主要な機械又は器具の動作状態を正確，か	発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の動作状態を正確，か	
つ迅速に把握できるようポンプの運転停止状態及び弁の開閉状態等を表示灯により監視	つ迅速に把握できるようポンプの運転停止状態及び弁の開閉状態等を表示灯により監視	
できる設計とする。	できる設計とする。	
2.3 計測結果の表示，記録及び保存	2.3 計測結果の表示，記録及び保存	
発電用原子炉の停止，炉心の泠却及び放射性物質の閉じ込めの機能の状況を監視する	発電用原子炉の停止，炬心の泠却及び放射性物質の閉じ込めの機能の状況を監視する	
ために必要なパラメータは，設計基準事故時においても確実に記録できる設計とする。	ために必要なパラメータは，設計基準事故時においても確実に記録し，保存できる設計	

変更前	変更後	記載しない理由
設計基準対象施設として，灯心における中性子束密度を計測するための計測装置，原子炉冷却材の不純物の濃度を測定するための導電率を計測する装置，原子炉圧力容器の入口及び出口における温度及び流量を計測するための給水温度，主蒸気温度，給水流量及び主蒸気流量を計測する装置，原子炉圧力容器内の水位を計測するための原子炉水位 （停止域，燃料域，広帯域及び狭帯域）を計測する装置並びに原子炉格納容器内の圧力，温度及び可燃性ガス濃度を計測するためのドライウェル圧力，圧力抑制室圧力，格納容器内温度，格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。 制御棒の位置を計測する装置並びに原子炉圧力容器の入口及び出口における圧力を計測するための給水圧力及び主蒸気圧力を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とする。また，記録はプロセス計算機から帳票とし て出力できる設計とする。 原子炉冷却材の不純物の濃度は，試料採取設備により断続的に試料を採取し分析を行 い，測定結果を記録する。	とする。 脣計基準対象施設として，炬心における中性子束密度を計測するための計測装置，原子炉泠却材の不純物の濃度を測定するための導電率を計測する装置，原子炉圧力容器の入口及び出口における温度及び流量を計測するための給水温度，主蒸気温度，給水流量及び主蒸気流量を計測する装置，原子炉圧力容器内の水位を計測するための原子炉水位 （停止域，燃料域，広帯域及び狭帯域）を計測する装置並びに原子炬格納容器内の圧力，榅度及び可燃性ガス濃度を計測するためのドライウェル圧力，圧力抑制室圧力，格納容器内温度，格納容器内雾囲気水素浱度及び格納容器内雾囲気酸素賑度を計測する装置を殿けっこれらの計測装置は計測結果を中央制御室に表示できる設計とする。また，計測結果を記録し，及び保存できる設計とする。 制御棒の位置を計測する装置並びに原子炉圧力容器の入口及び出口における圧力を計測するための給水圧力及び主蒸気圧力を計測する装置を設け，これらの計測装置は計測糖果を中央制御室に表示できる設計とする。また，記録はプロセス計算機から帳票とし て出力し保存できる設計とする。 原子炉冷却材の不純物の濃度は，試料採取設備により断続的に試料を採取し分析を行 い，測定結果を記録し，及び保存する。 蒒心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子厥施設の状態を把握するためのパラメータを計測する装置は，設計基蕉事故等に想定さ れる変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とすると ともに，重大事故等が発生し，当該重大事故等に対処するために監視することが必要な原子炬圧力容器内の温度，圧力及び水位並びに原子炬圧力容器及び原子炬格納容器への注水量等のパラメータの計測が困難となった場合又は計測範囲を超えた場合に，代替べ ラメータにより推定ができる設計とする。 おた，重大事故等時に設計基準を超える状態における発電用原子炉施設の状態を把握 するための能力（最高計測可能温度等（設計基準最大值等））を明碓にするとともに，パ ラメータの計測が困難となった場合又は計測範囲を超えた場合の代替パラメータによる龨定等，複数のパラメータの中から確からしさを考慮した優先順位を保安規定に定めて管理する。 原子炉格納容器内の温度，圧力，水位，水素濃度等想定される重大事故等の対応に必要となるパラメータは，計測又は監視できる設計とする。また，計測結果は中央制御室 に指示又は表示し，記録できる設計とする。	

変更前	変更後	記載しない理由
	厙大事故等の対応に必要となるパラメータは，安全パラメータ表示システム（SPDS） のらち SPDS 伝送装置にて電磁的に記録，保存し，電源霛失により保存した記録が失われ ないとともに帳票が出力できる設計とする。また，記録は必要な容量を保存できる設計 とする。 2.4 電源喪失時の計測 堐心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子䢹施設の状態を把握するためのパラメータを計測する装置の電源は，非常用交流電源設備又は非常用直流電源設備の震失等により計器電源が震失した場合において，代替電源喭備として常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源殿備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とする。 また，代替電源設備が喪失し計測に必要な計器電源が震失した場合，特に重要なパラ区ータとして，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要 な発電用原子炬施設の状態を把握するためのパラメータを計測する設備については，温度，圧力，水位及び流量伅係るものについて，乾電池を電源とした可搬型計測器（原子㚸匡力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障を想定した予備 1 個を含む 1 セット 26 個（予備 26 個（緊急時対策建屋に保管）））（核燃料物質の取扱施設及び貯蔵施設のらち「3．計測装置等」の設備と兼用）に より計測できる設計とし，これらを保管する設計とする。 なお，可搬型計測器による計測においては，計測対象の設定を行ら際の考え方として，同一パラメータにチャンネルが複数ある場合は，いずれか 1 つの適切なチャンネルを選定し計測又は監視するものとする。 同一の物理量について，複数のパラメータがある場合は，いずれか 1 つの適切なパラ メータを選定し計測又は監視するものとする。	
3．安全保護装置等 3.1 安全保護装置 3．1．1 安全保護装置の機能及び構成 安全保護装置は，運転時の異常な過渡変化が発生する場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において，その異常な状態を検知し及び原子炉保護系その他系統と併せて機能することにより，燃料要素の許容損傷限界を超 えないようにできるものとするとともに，設計基準事故が発生する場合において，そ の異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的に作動させる設計とする。	3．安全保護装置等 3.1 安全保護装置 3．1．1 安全保護装置の機能及び構成 安全保護装置は，運転時の異常な過渡変化が発生する場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において，その異常な状態を検知し及び原子炉保護系その他系統と併せて機能することにより，燃料要素の許容損傷限界を超元ないようにできるものとするとともに，設計基漼事故が発生する場合において， その異常な状態を検知し，原子炬保護系及び工学的安全施設を自動的に作動させる設計とする。	

変更前	変更後	記載しない理由
運転時の異常な過渡変化及ひ設計基準事故時に対処し得る複数の原子炉スクラム信号及びその他の安全保護装置起動信号を設ける設計とする。 なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価の条件を満足する設計とする。 安全保護装置を構成する機械若しくは器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失 わないよう，多重性を確保する設計とする。 安全保護装置を構成するチャンネルは，それぞれ互いに分離し，それぞれのチャン ネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を碓保 する設計とする。 また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 安全保護装置は，駆動源の趡失，系統の遮断その他の不利な状況が発生した場合に おいても，フェイル・セイフとすることで発電用原子炉施設をより安全な状態に移行 するか，又は当該状態を維持することにより，発電用原子炉施設の安全上支障がない状態を維持できる設計とする。 計測制御采統施設の一部を安全保謢装置と共用する場合には，その安全機能を失 わないよう，計測制御系統施設から機能的に分離した設計とする。 また，運転条件に応じて作動設定值を変更できる設計とする。 非常用炉心泠却設備その他の非常時に発電用原子炉の安全を碓保するための設備 を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動をしないようにできる設計とする。	運転時の異常な過渡変化及び設計基準事故時に対処し得る複数の原子炉スクラム信号及びその他の安全保護装置起動信号を設ける設計とする。 なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価 の条件を満足する設計とする。 安全保護装置を構成する機械若しくは器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失 わないよう，多重性を確保する設計とする。 安全保護装置を構成するチャンネルは，それぞれ互いに分離し，それぞれのチヤ ンネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を確保する設計とする。 また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 安全保護装置は，駆動源の喪失，系統の遮断その他の不利な状況が発生した場合 においても，フェイル・セイフとすることで発電用原子炉施設をより安全な状態に移行するか，又は当該状態を維持することにより，発電用原子炉施設の安全上支障 がない状態を維持できる設計とする。 麻測制御系統施設の一部を安全保護装置と共用する場合には，その安全機能を失 わないよう，計測制御系統施設から機能的に分離した設計とする。 また，運転条件に応じて作動設定値を変更できる設計とする。 非常用炉心泠却設備その他の非常時に発電用原子炉の安全を確保するための設備 を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動をしないようにできる設計とする。 3．1．2 安全保護装置の不正アクセス行為等の被害の防止 安全保護装置のらち，アナログ回路で構成する機器は，外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作の防止並びに物理的及び電気的アクセスの制限を設け，システムの据付，更新，試験，保守等で，承認されて	「実用発電用原子炬及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。

変更前	変更後	記載しない理由
	いない者の操作を防止する措置を講じることで，不正アクセス行為その他の電子計算機に使用目的に沿うべき動作をさせず，又は使用目的に反する動作をさせる行為 による被害を防止できる設計とする。 安全保護装置のらち，一部デジタル演算処理を行ら機器は，外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作防止及びウイルス等 の侵入防止並びに物理的及び電気的アクセスの制限を設け，システムの据付，更新，辟験，保守等で，承認されていない者の操作及びウイルス等の侵入を防止する措置 を講じることで，不正アクセス行為その他の電子計算機に使用目的に沿らべき動作 なさせず，又は使用目的に反する動作をさせる行為による被害を防止できる設計と する。 安全保護装置が収納された盤の施錠によりハードウェアを直接接続させない措置区実施すること及び安全保護装置のらち一部デジタル演算処理を行ら機器のソフト ウェア及びハードウェア回路は設計，製作，詞験及び変更管理の各段階で検証と妥当性碓認を適切に行らことを保安規定に定め，不正アクセスを防止する。 3．2 ATWS 緩和設備（代替制御棒挿入機能） 運転時の異常な過渡変化時において発電用原子炉の運転を緊急皀停止することができ ない事象が発生するおそれがある場合又は当該事象が発生した場合においても炬心の著 しい損傷を防止するため，原子炉椧却材圧カバウンダリ及び原子炬格納容器の健全性を維持するとともに，発電用原子炬を未臨界に移行するために必要な重大事故等対処設備 として，ATWS 緩和設備（代替制御棒挿入機能）を設ける設計とする。 発電用原子炬が運転を緊急江停止していなければならない状沉にもかかわらず，原子臤出力，原子炉圧力等のパラメータの変化から緊急停止していないことが推定される場合の重大事故等対処設備として，ATWS 緩和設備（代替制御棒挿入機能）は，原子炬圧力高又は原子炬水位低（レベル 2）の信号により，全制御棒を全插入させて発電用原子灲を東臨界にできる設計とする。 ※た，ATWS 緩和設備（代替制御棒挿入機能）は，中央制御室の操作スイッチを手動で㿋作することで作動させることができる設計とする。 ATWS 緩和設備（代替制御棒挿入機能）の流路として，設計基準対象施設である制御棒駩動水圧系の配管を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行ら。 その他，設計基漼対象施設である制御棒，制御棒騳雖機構及び水圧制御ユニットを重大事故等対処設備として使用できる設計とする。	

変更前	変更後	記載しない理由
3.2 試験及び検查 原子炉保護系は，原子炉運転中でも一度に 1 つずつのチャンネルを各検出器でトリッ プさせることによって，スクラムパイロット弁までのあらゆる機能をチェックすること ができる設計とする。 工学的安全施設作動回路は，原子炉運転中でもテスト信号によって各々のチャンネル （検出器を含む）の試験を行うことができる設計とする。	故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能）を設ける設計とする。 自動減圧機能が喪失した場合の重大事故等対処設備として，代替自動減圧回路（代替自動減圧機能）は，原子炉水位低（レベル1）及び残留熱除去系ポンプ運転（低圧注水も ード）又は低圧炬心スプレイ系ポンプ運転の場合に，主蒸気逃がし安全升用電磁升を作動させることにより，主蒸気逃がし安全弁を強制的に開放し，原子炉冷却材圧力バウン ダリを減圧させることができる設計とする。なお， 11 個の主蒸気逃がし安全弁のらち， 2 個がこの機能を有するとともに，自動減圧系との干渉及びリセットスイッチの操作判断の時間的余裕を考慮し，時間遅れを設ける設計とする。 3.6 試験及び検査 原子炉保護系は，原子炉運転中でも一度に 1 つずつのチャンネルを各検出器でトリッ プさせることによって，スクラムパイロット弁までのあらゆる機能をチェックすること ができる設計とする。 工学的安全施設作動回路は，原子炉運転中でもテスト信号によって各々のチャンネル （検出器を含む）の試験を行うことができる設計とする。	「実用発電用原子炬及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」の要求事項でないため，記載 しない。
4．通信連絡設備 4． 1 通信連絡設備（発電所内） 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人 に操作，作業，退避の指示等の連絡を行うことができる設備として，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。	4．通信連絡設備 4.1 通信連絡設備（発電所内） 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人 に操作，作業，退避の指示，事故対策のための集合等の連絡をブザー鳴動等により行引 ことができる設備及び音声等により行うことができる設備として，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。 警報装置として，十分な数量の送受話器（ページング）（警報装置を含む。）及び多様性 を確保した通信連絡設備（発電所内）として，十分な数量の送受話器（ページング）（警報装置を含む。），電力保安通信用電話設備（固定電話機，PHS 端末及び FAX），移動無線信備（固定型），移動無線設備（車載型），携行型通話装置，無線連絡設備（固定型），無線連絡設備（携帯型），衛星電話設備（固定型）及び衛星電話設備（携帯型）を設置又は保管する設計とする。 ＊た，緊急時対策所へ事故状態等の把握に必要なデータを伝送できる設備として，安全パラメータ表示システム（SPDS）を設置する設計とする。	

変更前	変更後	記載しない理由
	である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とする。 衛星電話設備（携帯型），無線連絡設備（携帯型）及び携行型通話装置は，充電式電池又は乾電池を使用する設計とする。 完電式電池を用いるものについては，ほかの端末又は予備の充電式電池と交換するこ とにより7日間以上継続して通話を可能とし，使用後の充電式電池は，中央制御室又は緊急時対策所の電源から充電することができる設計とする。また，乾電池を用いるもの については，予備の乾電池と交換することにより，7日間以上継続して通話ができる設計 とする。 安全パラメータ表示システム（SPDS）のらちデータ収集装置は，非常用交流電源設備 に加えて，全交流動力電源が喪失した場合においても，代替電源設備である常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 安全パラメータ表示システム（SPDS）のらち SPDS 伝送装置及びSPDS 表示装置は，非常用交流電源設備に加えて，全交流動力電源が喪失した場合においても，代替電源設備 である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な喭計とする。 重大事故等が発生した場合に必要な通信連絡設備（発電所内）及び安全パラメータ表示システム（SPDS）については，基準地震動 S s による地震力に対し，地震時及び地震後 においても通信連絡に係る機能を保持するため，固縛又は固定による転倒防止措置等を実施するとともに，信号ケーブル及び電源ケーブルは，耐震性を有する電線管等に敷設 する設計とする。 4.2 通信連絡設備（発電所外） 信計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等により行うことができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び衛星保安電話（固定型）），社内テレビ会議システム，局線加入電話設備（加入電話機及び加入 FAX），専用電話設備（地方公共団体向ホットライン），衛星電話設備 （固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP 電話及び IP－FAX）を設置又は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム（ERSS）へ必要なデータを伝送できる設備として，データ伝送設備を設置する設計とする。	

変更前	変更後	記載しない理由
	葦星電話設備（固定型）は，屋外に設置したアンテナと接続することにより，屋内で使 囲できる設とする。 また，中央制御室内に設置する衛星電話設備（固定型）は，中央制御室待避所において も使用できる設計とする。 中央制御室内に設置する衛星電話設備（固定型）は，非常用交流電源設備に加えて，全穴流動力電源が震失した場合においても，代替電源設備である常設代替交流電源設備又 は可搬型代替交流電源設備からの給電が可能な設計とする。 樃星電話設備（携帯型）は，充電式電池を使用する設計とする。 完電式電池を用いるものについては，ほかの端末又は予備の充電式電池と交換するこ とにより7日間以上継続して通話を可能とし，使用後の充電式電池は，中央制御室又は緊急時対策所の電源から充電することができる設計とする。 㗨急時対策所内に設置する衛星電話設備（固定型）及び統合原子力防災ネットワーク を用いた通信連絡設備（テレビ会議システム，IP 電話及び IPーFAX）は，非常用交流電原設備に加えて，全交流動力電源が趡失した場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とす 3. F゙ータ伝送設備は，非常用交流電源設備に加えて，全交流動力電源が豪失した場合江 おいても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源䖊備からの給電が可能な設計とする。 厙大事故等が発生した場合に必要な通信連絡設備（発電所外）及びデータ伝送設備に ついては，基準地震動S s による地震力に対し，地震時及び地震後においても通信連絡汇係る機能を保持するため，固緷又は固定による転倒防止措置等を実施するとともに，信号ケーブル及び電源ケーブルは，耐震性を有する電線管等に敷設する設計とする。 中央制御室内，中央制御室待避所内及び緊急時対策所内に設置する通信連絡設備の引 ち無線連絡設備，衞星電話設備，携行型通話装置，安全パラメータ表示システム（SPDS），陡合原子力防災ネットワークを用いた通信連絡設備及びデータ伝送設備は，二以上の発電用原子炉施設と共用しない設計とする。	

変更前	変更後	記載しない理由
4.2 設備の共用 通信連絡設備のらち電力保安通信用電話設備（固定電話機及び PHS 端末）（焼却炉建屋，固体廃棄物貯蔵所，サイトバンカ建屋及び予備変圧器配電盤室）（第 1 号機設備，第 1 ， 2， 3 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計と する。	4.3 設備の共用 通信連絡設備のらち電力保安通信用電話設備（固定電話機及び PHS 端末）（焼却炉建屋，固体廃棄物貯蔵所，サイトバンカ建屋及び予備変圧器配電盤室）（第1号機設備，第 1， 2， 3 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計と する。	
5．制御用空気設備 5.1 計装用圧縮空気系 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備として，計装用圧縮空気系を設ける設計とする。 計装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計とする。 計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によ って，計装用圧縮空気系に圧縮空気を供給できる設計とする。 所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経て各負荷先へ圧縮空気を供給できる設計とする。	5．制御用空気設備 5.1 計装用圧縮空気系 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備として，計装用圧縮空気系を設ける設計とする。 娮装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計とする。 計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によ つて，計装用圧縮空気系に圧縮空気を供給できる設計とする。 所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経て各負荷先へ圧縮空気を供給できる設計とする。 5.2 高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する 発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧カバウンダリを減圧するために必要な重大事故等対処設備として，高圧窒素ガス供給系（非常用）を設ける設計とする。 原子炉冷却材圧力バウンダリを減圧するための設備のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，高圧窒素ガス供給系（非常用）は，主蒸気逃 がし安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキュムレータ及び主蒸気逃がし安全弁自動減圧機能用アキュムレータの充填圧力が喪失した場合において，主蒸気逃がし安全弁（6個）の作動に必要な窒素を高圧窒素ガスボンべにより供給できる設計とする。 高圧窒素ガスボンべの圧力が低下した場合は，現場で高圧窒素ガスボンべの切替え及 び取替えが可能な設計とする。 高圧窒素ガス供給系（非常用）の流路として，設計基準対象施設である主蒸気逃がし安全弁自動減圧機能用アキュムレータ及び主蒸気逃がし安全弁を重大事故等対処設備と して使用することから，流路に係る機能について重大事故等対処設備として設計する。	

変更前	変更後	記載しない理由
	5.3 代替高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，代替高圧窒素がス供給系を設ける設計とする。 原子炉泠却材圧力バウンダリを減圧するための設備のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，代替高圧窒素がス供給系は，主蒸気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキュムレータ及び主蒸気逃 がし安全弁自動減圧機能用アキュムレータの充填圧力が喪失した場合において，主蒸気逃がし安全弁のアクチュエータに高圧窒素ガスボンべにより直接窒素を供給すること で，主蒸気逃がし安全弁（4個）を一定期間にわたり連続して開状態を保持できる設計と する。 高圧窒素ガスボンベの圧力が低下した場合は，現場で高圧窒素ガスボンベの取替えが可能な設計とする。 代替高圧窒素がス供給系の流路として，設計基準事故対処設備である主蒸気逃がし安全弁を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。	
6．主要対象設備 計測制御系統施設の対象となる主要な設備について，「表1 計測制御系統施設の主要設備リスト」に示す。	6．主要対象設備 計測制御系統施設の対象となる主要な設備について，「表1 計測制御系統施設の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については「表2 計測制御系統施設の兼用設備リスト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

6．放射性廃槀物の廃乗施設の基本設計方針

及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及び その附属施設の技術基準に関する規則」並びにこれらの解秋による。

第1章 共通項目

放射性廃衰物の廃重施設の共通項目である r 1 。地盤等，2．自然現象，3．火災，4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．そ の他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。

第2章 個別項目

1．廃裹物貯蔵設備，廃裹物処理設備等
1.1 廃重物貯蔵設備

放射性廃重物を貯蔵する設備の容量は，通常運転時に発生する放射性廃妻物の発生量 と放射性廃黄物処理設備の処理能力，また，放射性廃萰物処理設備の稼働率を想定した設計とする。

放射性廃重物を貯蔵する設備は，放射性廃誱物が漏えいし難い設計とする。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃案物に含まれる化学薬品 の影響及び不純物の影響により著しく腐食しない設計とする。

1．2 廃宩物处理設備

放射性廃実物を処理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界 における水中の放射性物質の滥度が，それぞれ，「核原料物質又は核燃料物質の製鍊の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下 となるように，発電用原子炬施設において発生する放射性廃車物を处理する能力を有す る設計とする。

更に，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保つ設計とし，「発電用軽水型原子炉施設周辺の線量目標值に関する指針」を満足する設計とする。

気体廃重物処理系は，蒸気式空気抽出器排がス中の水素と酸素とを結合させる排がス再結合器，排ガス復水器，活性炭式希ガスホールドアップ塔等で構成し，排気は，放射性物質の濃度をモニタしつつ排気筒から放出する設計とする。

活性炭式希ガスホールドアップ塔でキセノンを約 18 日間，クリプトンを約 24 時間保

変更後
用語の定義は「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関す
る規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれら の解釈による。

第1章 共通項目

放射性廃宋物の廃重施設の共通項目である $\Gamma 1$ ．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉椧却采統施設の基本設計方針「第1章 共通項目」に基づく設計とする。

第2章 個別項目

1．廃重物貯蔵設備，廃重物処理設備等
1.1 廃亲物貯蔵設備

故射性廃妻物を貯蔵する設備の容量は，通常運転時に発生する放射性廃妻物の発生量 と放射性廃妻物処理設備の処理能力，また，放射性廃重物処理設備の稼働率を想定した殿計とする。

倣射性廃乗物を貯蔵する設備は，放射性廃㨀物が漏えいし難い設計とする。また，崩袁熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃兼物に含まれる化学霜品の影響及び不純物の影響により著しく腐食しない設計とする。
1.2 廃㨀物处理設備

倣射性廃妻物を处理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界 におうける水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製鋉の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた浱度限度以下 となるように，発電用原子炉施設において発生する放射性廃糨物を処理する能力を有す尚設計とする。

埂に，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保つ設計とし，「発電用軽水型原子炉施設周辺の線量目標值に関する指針」を满足する設計とする。

> 気体廃乗物処理系は, 蒸気式空気抽出器排ガス中の水素と酸素とを結合させる排ガス再結合器, 排カスス復水器, 活性炭式希ガスホールドアップ塔等で構成し, 排気は, 放射性物質の浱度をモニタタつつ排気筒から放出する設計とする。

記載しない理由
本記載は概要であるため，記載し ない。

本記載は概要であるため，記載し ない。

辞性炭式希ガスホールドアップ塔でキセノンを約 18 日間，クリプトンを約 24 時間保

変更前	変更後	記載しない理由
持する設計とする。	特する設計とする。	
液体廃重物処理系は，液体廃重物を分離収集し，廃液の性状に応じて，機器ドレン系，	夜体廃重物処理系は，液体廃重物を分離収集し，廃液の性状に応じて，機器ドレン系，	
床ドレン・化学廃液系及びランドリドレン系（第 1 号機設備，第 1,2 号機共用）で処理	床ドレン・化学廃液系及びランドリドレン系（第 1 号機設備，第 1,2 号機共用）で处理	
する設計とする。	する設計とする。	
放射性物質を含を原子炉冷却材を通常運転時において原子炉冷却奚統外排出する場	败射性物質を含む原子炉冷却材を通常運転時において原子炉冷却系統外汇排出する場	
合は，床ドレン・化学廃液系及び機器ドレン系のサンプを介して，液体廃乗物処理系へ導	合は，床ドレン・化学廃液系及び機器ドレン系のサンプを介して，液体廃重物処理系へ	
く設計とする。	導く設計とする。	
固体廃重物処理系は，廃重物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッジを	固体廃重物処理系は，廃重物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッシ	
固型化するプラスチック固化式固化装置（第 1，2号機共用），漲縮廃液を固型化するセ	を固型化するプラスチック固化式固化装置（第 1,2 号機共用），濃縮廃液を固型化する	
メント固化式固化装置（第 1 号機設備，第 1， 2 号機共用（以下同じ。））及び可燃性雑固	セメント固化式固化装置（第 1 号機設備，第 1,2 号機共用（以下同じ。））及び可燃性維	
体廃重物，脱塩装置から発生する使用济樹脂及びランドリ廃スラッジを燌却する固体廃	固体廃重物，脱塩装置から発生する使用済樹脂及びランドリ廃スラッジを烓却する固体	
妻物䎝却設備（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。）），並びに不燃性雑固体		
廃宩物を圧縮する減容装置（「第 1 号機設備，第 $1,2,3$ 号機共用」，「第 $1,2,3$ 号機共	体廃重物を圧縮する減容装置（ l 第 1 号機設備，第 1，2，3 号機共用」，「第 1，2，3 号機	
用」及び「第3号機設備，第 1，2，3号機共用」（以下同じ。））及び固型化処理用減容機	共用」及び「第3号機設備，第1，2，3 号機共用」（以下同じ。））及び固型化処理用減容	
（第3号機設備，第 1，2，3号機共用（以下同じ。））で処理する設計とする。	機（第3号機設備，第 $1,2,3$ 号機共用（以下同じ。））で処理する設計とする。	
サプレッションチェンバの保守•点検のため，プール水の排水，貯留，返送を行らため		
の設備として，サプレッションプール水貯蔵系（一部第 1,2 号機共用（以下同じ。））を		
設置する。 サプレッションプール水貯蔵系を構成するサプレッションプール水貯蔵タンク（第 1 ，		
2 号機共用（以下同じ。））は，サプレッションチェンバ内のプール水を貯留するのに十分		
な容量を有する設計とする。		
また，サプレッションプール水貯蔵タンクは，床ドレン・化学廃液系に導かれた㲾液等		
を貯留することができる設計とする。		
放射性廃車物以外の流体状の廃重物を流体状の放射性廃車物を処理する設備に導かない	放射性廃茦物以外の流体状の廃妻物を流体状の放射性廃車物を处理する設備に遵かない	
設計とする。	䖍計とする。	
放射性廃重物を处理する設備は，放射性廃菷物が漏えいし難い又は放射性廃重物を処		
理する過程において散逸し難い構造とし，かつ，放射性廃重物に含まれる化学薬品の影	理する過程において散逸し難い構造とし，かつ，放射性廃重物に含まれる化学楽品の影	
響及び不純物の影響により著しく腐食しない設計とする。	響及び不純物の影響により著しく腐食しない設計とする。	
気体状の放射性廃㐮物はフィルタを通し放射性物質の渞度を監視可能な排気筒等から	気体状の放射性廃㨀物はフィルタを通し放射性物質の澋度を監視可能な排気筒等から	
放出する設計とする。	敎出する設計とする。	
また，フィルタは，放射性物質による污染の除去又は交換に必要な空間を有するとと	区た，フィルタは，放射性物質による污染の除去又は交換に必要な空間を有するとと	
もに，必要に応じて梯子等を設置し，取替元が容易な設計とする。	もに，必要に応じて梯子等を設置し，取替えが容易な設計とする。	

変更前
流体状の放射性廃棄物は，管理区域内で処理することとし，流体状の放射性廃棄物を
管理区域外において運搬するための容器は設置しない。

原子炉冷却材圧力バウンダリ内に施設されたものから発生する高放射性の固体状の放射性廃棄物（放射能量が科技庁告示第 5 号第 3 条第 1 号に規定する A_{1} 値又は A_{2} 値を超え るもの（除染等により線量低減ができるものは除く））を管理区域外において運搬するた めの固体廃棄物移送容器（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））は，容易か つ安全に取扱らことができ，かつ，運搬中に予想される温度及び内圧の変化，振動等によ
り，亀裂，破損等が生じるおそれがない設計とする。
また，固体廃棄物移送容器は，放射性廃棄物が漏えいし難い構造であり，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及 び不純物の影響により著しく腐食しない設計とする。

固体廃棄物移送容器は，内部に放射性廃棄物を入れた場合に，放射線障害を防止する ため，その表面の線量当量率及びその表面から 1 m の距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超 えない設計とする。

1．3 汚染拡大防止
1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏えいの拡大防止
放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超 える放射性液体廃棄物貯蔵施設内部のらち，流体状の放射性廃棄物の漏えいが拡大 するおそれがある部分の漏えいし難い構造，漏えいの拡大防止，堰については，次の とおりとする。
（1）漏えいし難い構造
全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計 とし，流体状の放射性廃棄物が漏えいし難い構造とする。また，その貫通部は堰の機能を失わない構造とする。
（2）漏えいの拡大防止
床面は，床面の傾斜又は床面に設けられた溝の傾斜により流体状の放射性廃棄物 が排液受け口に導かれる構造とし，かつ，気体状のものを除く流体状の放射性廃棄物 を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施設 し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。
変更後
流体状の放射性廃棄物は，管理区域内で処理することとし，流体状の放射性廃棄物を
管理区域外において運搬するための容器は設置しない。

原子炉冷却材圧力バウンダリ内に施設されたものから発生する高放射性の固体状の放射性廃棄物（放射能量が科技庁告示第 5 号第 3 条第 1 号に規定する A_{1} 値又は A_{2} 値を超え るもの（除染等により線量低減ができるものは除く））を管理区域外において運搬するた めの固体廃棄物移送容器（第 1 号機設備，第 $1, ~ 2, ~ 3$ 号機共用（以下同じ。））は，容易 かつ安全に取扱うことができ，かつ，運搬中に予想される温度及び内圧の変化，振動等 により，亀裂，破損等が生じるおそれがない設計とする。

また，固体廃棄物移送容器は，放射性廃棄物が漏えいし難い構造であり，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食しない設計とする。

固体廃棄物移送容器は，内部に放射性廃棄物を入れた場合に，放射線障害を防止する
ため，その表面の線量当量率及びその表面から 1 m の距離における線量当量率が「核燃料
物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超 えない設計とする。
1.3 汚染拡大防止

1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏えいの拡大防止
放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超 える放射性液体廃重物貯蔵施設内部のうち，流体状の放射性廃重物の漏えいが拡大 するおそれがある部分の漏えいし難い構造，漏えいの拡大防止，堰については，次 のとおりとする。
（1）漏えいし難い構造
全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計とし，流体状の放射性廃葉物が漏えいし難い構造とする。また，その貫通部は堰 の機能を失わない構造とする。
（2）漏えいの拡大防止
床面は，床面の傾斜又は床面に設けられた溝の傾斜により流体状の放射性廃棄物 が排液受け口に導かれる構造とし，かつ，気体状のものを除く流体状の放射性廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施喭し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。
管理区域外において運搬するための容器は設置しない。
，
地

変更前
（3）放射性廃棄物処理施設に係る堰の施設
放射性廃棄物処理施設外に通じる出入口又はその周辺部には，堰を施設すること により，流体状の放射性廃重物が施設外へ漏えいすることを防止する設計とする。

施設外へ漏えいすることを防止するための堰は，処理する設備に係わる配管につ いて，長さが当該設備に接続される配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃棄物の漏えい量のらち最大の漏えい量をもつてしても，流体状の放射性廃棄物の漏えいが広範囲に拡大することを防止する設計とする。

この場合の仮定は堰の能力を算定するためにのみに設けるものであり，開口は施設内の貯蔵設備に 1 ヶ所想定し，漏えい時間は漏えいを適切に止めることができる までの時間とし，床ドレンファンネルの排出機能を考慮する。床ドレンファンネル は，その機能が確実なものとなるように設計する。
（4）放射性廃棄物貯蔵施設に係る堰の施設
放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰を施設すること により，流体状の放射性廃棄物が施設外い漏えいすることを防止する設計とする。

漏えいの拡大を防止するための堰及び施設外へ漏えいすることを防止するための堰は，開口を仮定する貯蔵設備が設置されている区画内の床ドレンファンネルの排出機能を考慮しないものとし，流体状の放射性廃棄物の施設外への漏えいを防止で きる能力をもつ設計とする。

1．3．2 固体状の放射性廃棄物の汚染拡大防止
固体状の放射性廃棄物を貯蔵する設備が設置される発電用原子炉施設は，固体状 の放射性廃棄物をドラム缶に詰める，容器に入れる又はタンク内に貯蔵することに よる汚染拡大防止措置を講じることにより，放射性廃棄物による汚染が広がらない設計とする。
1.4 排水路

液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連する施設を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流れる排水路を施設しない設計 とする。

また，液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連する施設を設ける建屋内部には発電所外に管理されずに排出される排水が流れる排水路に通じる開口部を設けない設計とする。

3）放射性発棄物処理施設に係る堰の施設
放射性廃棄物処理施設外に通じる出入口又はその周辺部には，堰を施設すること により，流体状の放射性廃棄物が施設外へ漏えいすることを防止する設計とする。

施設外へ漏えいすることを防止するための堰は，処理する設備に係わる配管につ いて，長さが当該設備に接続される配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃棄物の漏えい量のらち最大の漏えい量をもってしても，流体状の放射性廃棄物の漏えいが広範囲に拡大することを防止する設計とする。
この場合の仮定は堰の能力を算定するためにのみに設けるものであり，開口は施設内の貯蔵設備に 1 ヶ所想定し，漏えい時間は漏えいを適切に止めることができる までの時間とし，床ドレンファンネルの排出機能を考慮する。床ドレンファンネル は，その機能が確実なものとなるように設計する。
（4）放射性廃棄物貯蔵施設に係る堰の施設
放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰を施設すること により，流体状の放射性廃棄物が施設外へ漏えいすることを防止する設計とする。漏えいの拡大を防止するための堰及び施設外へ漏えいすることを防止するための堰は，開口を仮定する貯蔵設備が設置されている区画内の床ドレンファンネルの排出機能を考慮しないものとし，流体状の放射性廃棄物の施設外への漏えいを防止で きる能力をもつ設計とする。

1．3．2 固体状の放射性廃棄物の汚染拡大防止
固体状の放射性廃棄物を貯蔵する設備が設置される発電用原子炉施設は，固体状 の放射性廃棄物をドラム缶に詰める，容器に入れる又はタンク内に貯蔵することに よる汚染拡大防止措置を講じることにより，放射性廃棄物による汚染が広がらない設計とする。

1.4 排水路

夜体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連する施設を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流れる排水路を施設しない設計 とする。

また，液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連する施設を設ける建屋内部には発電所外に管理されずに排出される排水が流れる排水路に通じる開口部を設けない設計とする。

変更前	変更後	記載しない理由
1.5 設備の共用 プラスチック固化式固化装置は，第 1 号機及び第 2 号機で共用し，固体廃棄物貯蔵所 （第 1 号機設備，第 $1,2,3$ 号機共用），固体廃棄物焼却設備，サイトバンカ（第 1 号機設備，第 $1,2,3$ 号機共用），雑固体廃棄物保管室（第 1 号機設備，第 $1,2,3$ 号機共用） は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対し て必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損なわない設計 とする。 排気筒の支持構造物（第 2，3号機設備，第 2，3号機共用）は，第 3 号機と共用する が，支持機能を十分維持できる設計とすることで，共用により安全性を損なわない設計 とする。 サプレッションプール水貯蔵系は，第 1 号機及び第 2 号機で共用するが，サプレッシ ョンプール水貯蔵タンク（第 1 号機設備，第 1,2 号機共用）及びサプレッションプール水貯蔵タンク（第 1,2 号機共用）を用いることで，第 1 号機又は第 2 号機のサプレッシ ョンチェンバのプール水の最大容量を貯蔵でき，安全性を損なわない設計とする。	1.5 設備の共用 プラスチック固化式固化装置は，第 1 号機及び第 2 号機で共用し，固体廃棄物貯蔵所 （第1号機設備，第1，2，3号機共用），固体廃棄物焼却設備，サイトバンカ（第 1 号機信備，第1，2，3号機共用），雑固体廃棄物保管室（第 1 号機設備，第 $1,2,3$ 号機共用） は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対し て必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損なわない設計 とする。 なお，プラスチック固化式固化装置は休止しており，今後も使用しない。 排気筒の支持構造物（第 2,3 号機設備，第 $2, ~ 3$ 号機共用）は，第 3 号機と共用する が，支持機能を十分維持できる設計とすることで，共用により安全性を損なわない設計 とする。	
2．警報装置等 流体状の放射性廃棄物を処理し，又は貯蔵する設備から流体状の放射性廃棄物が著しく屚えいするおそれが発生した場合（床への漏えい又はそのおそれ（数滴程度の微少漏えい を除く。））を早期に検出するよう，タンクの水位，漏えい検知等によりこれらを確実に検出して自動的に警報（機器ドレン，床ドレンの容器又はサンプの水位）を発信する装置を喭けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。 また，タンク水位の検出器，インターロック等の適切な計測制御設備を設けることによ り，漏えいの発生を防止できる設計とする。 倣射性廃棄物を処理し，又は貯蔵する設備に係る主要な機械又は器具の動作状態を正確， かつ迅速に把握できるようポンプの運転停止状態及び弁の開閉状態等を表示灯により監視 できる設計とする。	2．警報装置等 変更なし	
3．主要対象設備 放射性廃棄物の廃棄施設の対象となる主要な設備については，「表1放射性廃棄物の廃棄施設の主要設備リスト」に示す。	3．主要対象設備 放射性廃棄物の廃棄施設の対象となる主要な設備については，「表1放射性廃棄物の廃棄施設の主要設備リスト」に示す。	本記載は，要目表対象を示したリ ストに関する記載であるため，記載しない。

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及び その附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれら の解釈による。	本記載は概要であるため，記載し ない。
第1章 共通項目 放射線管理施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対 する要求（4．5 安全弁等，4．6 逆止め弁， 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 放射線管理施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等， 5．設備に対する要求（5．5 安全并等，5．6 逆止め弁， 5.7 内燃機関及びガスタービン の設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却奚統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．放射線管理施設 1.1 放射線管理用計測装置 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時 において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリ ング設備，エリアモニタリング設備及び放射線サーベイ機器（第 1 号機設備，第 1,2 ， 3 号機共用）を設ける設計とする。 出入管理関係設備（第 1 号機設備，第 1,2 号機共用）として，放射線業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行らため，化学分析室（第 1 号機設備，第 1， 2 号機共用），放射能測定室（第 1 号機設備，第 1,2 号機共用（以下同じ。））に測定機器を設ける設計とする。 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視 するためにプロセスモニタリング設備，固定式周辺モニタリング設備及び移動式周辺モ ニタリング設備を設ける設計とする。また，風向，風速その他の気象条件を測定するた め，環境測定装置を設ける。 プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺モニタリング設備については，設計基準事故時における迅速な対応のために必要な情報を中央制御室に表示できる設計とする。 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他	第2章 個別項目 1．放射線管理施設 1.1 放射線管理用計測装置 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時 において，当該発電用原子炬施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリ シグ設備，エリアモニタリング設備及び放射線サーベイ機器（第1号機設備，第1，2， 3 号機共用）を設ける設計とする。 出入管理関係設備（第 1 号機設備，第 1,2 号機共用）として，放射線業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第 1 号機設備，第 1,2 号機共用），放射能測定室（第 1 号機設備，第1，2号機共用（以下同じ。））に測定機器を設ける設計とする。 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視 するためにプロセスモニタリング設備，固定式周辺モニタリング設備及び移動式周辺モ ニタリング設備を設ける設計とする。また，風向，風速その他の気象条件を測定するた め，環境測定装置を設ける。 プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺モニタリング設備については，設計基準事故時における迅速な対応のために必要な情報を中央制御室及 び緊急時対策所に表示できる設計とする。 信計基準対象施設は，発電用原子灲施設の機械又は器具の機能の喪失，誤操作その他	

変更前	変更後	記載しない理由
の異常により発電用原子炬の運転に著しい支障を及ぼすおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルか設定值を超えた場合，主蒸気管又は蒸気式空気抽出器排がス中の放射能レベルが設定值を超えた場合等）に，これらを確実に検出して自動的 に警報（原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とす る。 排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所 をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が著しく上昇した場合に，これらを碓実に検出して自動的に中央制御室に警報（排気筒放射能高，工 リア放射線モニタ放射能高及び周辺監視区域放射能高）を発信する装置を設ける設計と する。 上記の警報を発信する装置は，表示ランプの点灯，ブザー鳴動等により連転員に通報 できる設計とする。	できる設計とする。 厙大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）におい て，発電用原子炉施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するために，移動式周辺モニタリング設備を保管する設計 とする。 厙大事故等が発生した場合に発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録するために，環境測定装置を保管する設計とする。 厙大事故等が発生し，当該重大事故等に対処するために監視することが必要なパラメ一タとして，原子炬格納容器内の放射線量率，最終ヒートシンクの確保及び使用済然料 プールの監視に必要なパラメータを計測する装置を設ける設計とする。 厙大事故等が発生し，計測機器（非常用のものを含む。）の故障により，当該重大事故等に対処するために監視することが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパラメータを計測する設備を設置 する設計とする。 厙大事故等に対処するために監視することが必要なパラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握 するためのパラメータとし，計測する装置は「表1 放射線管理施設の主要設備りスト	

変更前	変更後	記載しない理由
	のプロセスモニタリング設備に示す重大事故等対処設備，エリアモニタリング設備のら	
	ち使用斎燃料プール上部空間放射線モ二タ（低線量）及び使用済燃料プール上部空間放	
	粕線モニタ（高線量）とする。	
	匝心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子	
	师施設の状態を把握するためのパラメータを計測する装置は，設計基漼事故等に想定さ	
	ともに，重大事故等が発生し，当該重大事故等に対処するために監視することが必要な	
	原子炉格納容器の線量当量率等のパラメータの計測が困難となった場合に，代替パラメ	
	ータにより推定ができる設計とする。	
	Fた，重大事故等時に設計基準を超える状態における発電用原子炬施設の状態を把握	
	するための能力（計測可能筐囲）を明碓にするとともに，パラメータの計測が困難とな	
	つた場合の代替パラメータによる推定等，複数のパラメータの中から確からしさを考慮	
	した優先順位を保安規定に定めて管理する。	
	原子炬格納容器内の放射線量率等想定される重大事故等の対応に必要となるパラメー	
	夕は，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，	
	馳録できる設計とする。	
	厙大事故等の対応に必要となるパラメータは，安全パラメータ表示システム（SPDS）	
	のらち SPDS 伝送装置にて電磁的に記録，保存し，電源需失により保在した記録が失わ水	
	ないとともに帳票が出力できる設計とする。また，記録は必要な容量を保存できる設計 とする。	
	洰心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子	
	非施設の状態を把握するためのパラメータを計測する装置の電源は，非常用交流電源設	
	備又は非常用直流電源設備の䨤失等により計器電源が需失した場合において，代替電源	
	殿備として常設代替交流電源設備，可搬型代替交流電源設備，所内常設萃電式直流電源	
	殿備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とする。	
1．1．1 プロセスモニタリング設備	1．1．1 プロセスモニタリング設備	
通常運転時，運転時の異常な過洨変化時及び設計基準事故時において，原子炉格納	通常運転時，運転時の異常な過渡変化時及ひ設計基準事故時において，原子炉格	
容器内の放射性物質の嶩度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸	納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の	
気タービン又は復水器に接続する放射性物質を内包する設備の排がス中の放射性物	蒸気タービン又は復水器に接続する放射性物質を内包する設備の排がス中の放射性	
質の濃度，排気筒の出口又はこれに近接する䉪所における排気中の放射性物質の濃	物質の濃度，排気简の出口又はこれに近接する䈏所における排気中の放射性物質の	
度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常	濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が	

変更前	変更後	記載しない理由
時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測するた めのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計と する。また，計測結果を記録できる設計とする。 原子炉冷却材の放射性物質の濃度，排気筒の出口又はこれに近接する箇所におけ る排気中の放射性物質の濃度及び排水口又はこれに近接する箇所における排水中の放射性物質の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録する。 放射性物質により活染するおそれがある管理区域内に開口部がある排水路を施設 しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測する ための設備を設けない設計とする。 プロセスモニタリング設備のらち，原子炉格納容器内の線量当量率を計測する格納容器内雾囲気放射線モニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は， それぞれ多重性，独立性を確保した設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内におい て人が常時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測するためのエリアモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。	常時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測する ためのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計 とする。また，計測結果を記録し，及び保存することができる設計とする。 原子炉冷却材の放射性物質の濃度，排気筒の出口又はこれに近接する箇所におけ る排気中の放射性物質の濃度及び排水口又はこれに近接する箇所における排水中の篗射性物質の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定権果を記録し，及び保存する。 放射性物質により活染するおそれがある管理区域内に開口部がある排水路を施設 しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測する ための設備を設けない設計とする。 プロセスモニタリング設備のらち，原子炉格納容器内の線量当量率を計測する格納容器内雾囲気放射線モニタ（D／W）及び格納容器内雾囲気放射線モニタ（S／C）は，尼れぞれ多重性，独立性を確保した設計とする。 プロセスモニタリング設備のらち，原子炉建屋原子炉棟排気放射線モニタ及び燃料取替エリア放射線モニタは，外部電源が使用できない場合においても非常用所内屚源系からの電源供給により，線量当量率を計測することができる設計とする。 原子炉格納容器フィルタベント系の排出経路における放射線量率を測定し，放射性物質濃度を推定できるよう，フィルタ装置出口配管にフィルタ装置出口放射線も二タを設ける設計とする。 フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 1．1．2 エリアモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内にお いて人が常時立ち入る場所その他放射線管理を特に必要とする場所の線量当量率を計測するためのエリアモニタリング設備を設け，計測結果を中央制御室に表示でき る設計とする。また，計測結果を記録し，及び保存することができる設計とする。 エリアモニタリング設備のらち，燃料交換フロア放射線モニタは，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，線量当量率を計測することができる設計とする。	

変更前		変更後	記載しない理由
		厘大事故等時に使用済燃料プールの監視設備として，使用斎燃料プール上部空閏	
		罒，想定される重大事故等により変動する可能性のある範囲にわたり測定可能な設	
		計とする。また，計測結果は中央制御室に表示し，記録及び保存できる設計とする。	
		使用済燃料プール上部空間放射線モ二タ（低線量）及び使用斎燃料プール上部空	
		䦨放射線モニタ（高線量）は，所内常設萃電式直流電源設備，常設代替直流電源設備	
		又は可搬型代替直流電源設備から給電が可能な設計とする。	
		緊急時対策所に設ける緊急時対策所可搬型エリアモニタは，重大事故等時に緊急	
		甠対策所内への希が等の放射性物質の侵入を低減又は防止するための確実な判断	
		ができるよう放射線量を監視，測定し，計測結果を記錄及び保存できる設計とする。	
1．1．3 固定式周辺モニタリング設備	1．1．3	3 固定式周辺モニタリンク設備	
通常運転時，運転時の異常な過渃変化時及ひ設計基漼事故時において，周辺監視区		通常運転時，運転時の異常な過渡変化時及び設計基淮事故時において，周辺監視	
域境界付近の空間線量率を監視及び測定するための固定式周辺モニタリング設備と		区域境界付近の空間線量率を監視及び測定するための固定式周辺モニタリング設備	
してモニタリングポスト（第 1 号機設備，第 1，2，3号機共用（以下同じ。））を設		としてモニタリングポスト（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））を	
け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設		砓け，計測結果を中央制御室及び緊急時対策所に表示できる設計とする。また，計	
計とする。		則結果を記録し，及び保存することができる設計とする。	
		モニタリングポストは，外部電源が使用できない場合においても，非常用交流電	
		蒝設俪により，空間線量率を計測することができる設計とする。更に，モニタリン	
		ノ゙ポストは，專用の無停電電源裂置を有し，電源切替時の短時間の停電時に電源を	
		厝給できる設計とし，重大事故等が発生した場合には，非常用交流電源設備に加え τ ，代替電源設備である常設代替交流電源設備から給電できる設計とする。	
		て，代替電源設備である常設代替交流電源設備から給電できる設計とする。	
		モニタリングポストで計測したデータの伝送系は，モニタリングポスト設置場所	
		から中央制御室及び中央制御室から緊急時対策所建屋間において有線系回線及び無	
		的系系回線により多様性を有する設計とする。	
周辺監視区域境界付近の放射性物質の濃度は，構内ダストモニタ（第1号機設備，		園辺監視区域境界付近の放射性物質の濃度は，構内ダストモニタ（第 1 号機設備，	
第 $1,2,3$ 号機共用（以下同じ。））により断続的に試料を採取し分析を行い，測定結		第 $1,2,3$ 号機共用（以下同じ。））により断続的に試料を採取し分析を行い，測定	
果を記録する。		結果を記録し，及び保存する。	
1．1．4 移動式周辺モニタリング設備	1．1．4	4 移動式周辺モニタリング設備	
通常䆃転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視区		通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，周辺監視	
域境界付近の放射性物質の濃度を測定するための移動式周辺モニタリング設備とし		区域境界付近の放射性物質の濃度を測定するための移動式周辺モニタリング設備と	

変更前	変更後	記載しない理由
て，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備 えた放射能観測車（第 1 号機設備，第 $1,2,3$ 号機共用，屋外红保管（以下同じ。）） を設け，測定結果を表示し，記録できる設計とする。ただし，放射能観測車による断続的な試料の分析は，従事者が計測結果を記録し，その記録を碓認することをもつ て，これに代えるものとする。	して，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備えた放射能観測車（第 1 号機設備，第 $1,2,3$ 号機共用，屋外に保管（以下同じ。））『設け，測定結果を表示し，記録し，及び保存することができる設計とする。ただ し，放射能権測車による断続的な試料の分析は，従事者が計測結果を記録し，及び これを保存し，その記録を碓認することをもって，これに代えるものとする。 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）に おいて，発電用原子炉施設から放出される放射性物質の涱度（空気中，水中，土罜中）及び放射線量を監視するための移動式周辺モニタリング設備として，γ 線サー ベイメータ，β 線サーベイメータ，α 線サーベイメータ及び電睢箱サーベイメータ な設け，測定結果を記録し，保存できるように測定値を表示できる設計とし，可搬型ダスト・よう素サンプラ（個数2（予備 1）），小型船舶（個数 1 （予備 1 ））を保管 する設計とする。 败射能観測車のダスト・よう素サンプラ，放射性よう素測定装置又は放射性ダス卜測定装置が機能喪失した場合にその機能を代替する重大事故等対処設備として，可搬型ダスト・よう素サンプラ，γ 線サーベイメータ及び β 線サーベイメータを設时，重大事故等が発生した場合に，発電所及びその周辺において，発電用原子炉施䖉から放出される放射性物質の濃度（笁気中）を監視し，及び測定し，並びにその結厘を記録し，保存できるように測定値を表示できる設計とし，放射能観測車を代替 し得る十分な個数を保管する設計とする。 モニタリングポストが機能喪失した場合にその機能を代替する移動式周辺モニタ リング設備として，可搬型モニタリングポストを設け，重大事故等が発生した場合选，発電所敷地境界付近において，発電用原子炉施設から放出される放射線量を監萈し，及び測定し，並びにその結果を記録できる設計とする。 可搬型モニタリングポストで測定した放射線量は，電磁的に記録，保存し，電源嶩失により保存した記録が失われず，必要な容量を保存できる設計とする。 可搬型モニタリングポストは，モニタリングポストを代替し得る十分な個数を保管する設計とする。また，指示値は，衛星系回線により伝送し，緊急時対策所で可搬型モニタリングポストデータ処理装置にて監視できる設計とする。 可搬型モニタリングポストは，重大事故等が発生した場合に，発電所海側及び緊急時対策建屋屋上において，発電用原子炉施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とするとともに，緊急時対策所内へ	

変更前	変更後	記載しない理由
なわない設計とする。 モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。	なわない設計とする。 モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕樣を满足する設計とすることで，共用により安全性を損なわない設計とす 3．	
2．換気設備，生体遮蔽装置等 2.1 中央制御室の居住性を碓保するための防護措置 中央制御室は，泠却材㕹失等の設計基準事故時に，中央制御室内にとどまり，必要な操作及び措置を行ら運転員が過度の被ばくを受けないよう施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室 しゃへい壁を透過する放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しやへ い壁， 2 次しゃへい壁及び補助しゃへいの機能とあいまって，「原子力発電所中央制御室 の居住性に係る被ばく評価手法について（内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製鍊の事業に関する規則等の規定に基づく線量限度等を定める告示」に示される 100 mSv を下回る設計とする。 また，運転員その他の従事者が中央制御室にとどまるため，気体状の放射性物質及び中央制御室外の火災等により発生する燃焼ガス及び有毒がスに対する換気設備の隔離を の他の適切に防護するための設備を設ける設計とする。	2．換気設備，生体遮蔽装置等 2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置 中央制御室は，泠却材喪失等の設計基準事故時に，中央制御室内にとどまり，必要な操作及び措置を行ら運転員が過度の被ばくを受けないよう施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室しやへい壁を透過する放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しゃ へい壁， 2 次しゃへい壁及び補助しゃへいの機能とあいまって，「原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示される 100 mSv を下回る設計とする。 また，運転員その他の従事者が中央制御室にとどまるため，気体状の放射性物質及び中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対 する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。 運転員の被ばくの観点から結果が最も厳しくなる重大事故等時においても中央制御室 に運転員がとどまるために必要な設備を施設し，中央制御室しゃへい壁を透過する放射線による線量，中央制御室に取り込まれた外気による線量及び入退域時の線量が，全面 マスク等の着用及び運転員の交替要員体制を考慮し，その実施のための体制を整備する ことで，中央制御室の気密性並びに中央制御室換気空調系，中央制御室待避所加圧空気供給系，中央制御室しやへい壁，中央制御室待避所遮蔽，2次しやへい壁及び補助しやへ いの機能とあいまって，運転員の実効線量が 7 日間で 100 mSv を超えない設計とする。炉心の著しい損傷が発生した場合における居住性に係る被ばく評価では，設計基準事故時 の手法を参考にするとともに，炬心の著しい損傷が発生した場合に放出される放射性物質の種類，全交流動力電源喪失時の中央制御室換気空調系の起動遅れ等，炬心の著しい損傷が発生した場合の評価条件を適切に考慮する。 信計基準事故時及び炬心の著しい損傷が発生した場合において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握できるよう，計測制御系統施設の酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）を使用し，中央制御室内及び中央制御室待避所内の居住性を確保で	

変更前	変更後	記載しない理由
	時対策所加厂究気供給系，酸素濃度計（緊刍時対策所用）一酸化炭素濃度計（緊刍時対	
	时对束所加王空入供給糸，酸素浱度計（䇣急時対策所用），一酸化灭素浱度計（䇣急时吋	
	策所用），緊急時対策所可搬型エリアモニタ及び可搬型モニタリングポストを設ける設計	
	とする。	
	緊急時対策所換気空調系である緊急時対策所非常用送風機は，非常用給排気配管を介	
	して緊急時対策所を含む緊急時対策建屋地下階を正圧化し，放射性物質の侵入を低減で	
	きる設計とする。また，緊急時対策所加圧空気供給系は，放射性雲通過時において，緊急	
	時対策所等を正圧化し，希ガスを含む放射性物質の侵入を防止できる設計とする。	
	差圧計（緊急時対策所用）（個数 1，計測範囲－100～500Pa）は，緊急時対策所等が正冉	
	化された状態であることを監視できる設計とする。	
	䗟急時対策所遮蔽， 2 次しやへい壁及び補助しやへいは，重大事故等が発生した場合に	
	おいて，緊急時対策所の気密性，緊急時対策所換気空調系及び緊急時対策所加圧空気供	
	給系の機能とあいまって，緊急時対策所にとどまる要員の実効線量が 7 日間で 100 mSv を	
	超えない設計とする。	
	緊急時対策所は，重大事故等が発生し，緊急時対策所の外側が放射性物質により汚染	
	したような状況下において，対策要員が緊急時対策所内に放射性物質による污染を持込	
	兆ことを防止するため，身体サーベイ及び作業服の着替え等を行らための区画を設置す	
	る設計とする。身体サーベイの結果，対策要員の汚染が確認された場合は，対策要員の	
	除染を行らことができる区画を，身体サーベイを行う区画に隣接して設置することがで	
	きるよう考慮する。	
2.2 換気設備	2.2 換気設備	
通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，放射線障害を	通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，放射線障害を	
防止するため，発電所従業員に新鮮な空気を送るとともに，空気中の放射性物質の除去•	防止するため，発電所従業員に新鮮な空気を送るとともに，空気中の放射性物質の除去•	
低減が可能な換気設備を設ける設計とする。	低減が可能な換気設備を設ける設計とする。	
換気設備は，放射性物質による汚染の可能性からみて区域を分け，それぞれ別系統と し，清浄区域に新鮮な空気を供給して，污染の可能性のある区域に向って流れるように	換気設備は，放射性物質による污染の可能性からみて区域を分け，それぞれ別系統と し，清浄区域に新鮮な空気を供給して，汚染の可能性のある区域に向って流れるように	「実用発電用原子炉及びその附属施設の技術基準に関する規則」
し，排気は適切なフィルタを通して行う。また，各換気系統は，その容量が区域及び部屋	し，排気は適切なフィルタを通して行う。また，各換気系統は，その容量が区域及び部屋	の要求事項であり，「実用発電用
の必要な換気並びに除熱を十分行える設計とする。	の必要な換気並びに除熱を十分行える設計とする。	原子炉及びその附属施設の位置，
放射性物質を内包する換気ダクトは，溶接構造とし，耐圧試験に合格したものを使用	放射性物質を内包する換気ダクトは，溶接構造とし，耐圧試験に合格したものを使用	構造及び設備の基準に関する規
することで，漏えいし難い構造とする。また，ファン，逆流防止用ダンパ等を設置し，逆	することで，漏えいし難い構造とする。また，ファン，逆流防止用ダンパ等を設置し，逆	則」の要求事項でないため，記載
流し難い構造とする。	流し難い構造とする。	
排出する空気を浄化するため，気体状の放射性よう素を除去するチャコールエアフィ	排出する空気を浄化するため，気体状の放射性よう素を除去するチャコールエアフィ	

変更前
ルタ及び放射性微粒子を除去する高性能エアフィルタを設置する。 これらのフィルタを内包するフィルタコニットは，フィルタの取替立が容易となるよ ら取替え汇必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易 な構造とする。 吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒，サイトバンカ建屋排気口及び焼却炉建屋排気口から十分蒦れた位置に設置する。
2．2．1 中央制御室換気空調系 中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。 中央制御室外の火災等により発生する燃焼ガス及び有毒ガスに対し，中央制御室換気空調系の外気との連絡口を遮断し，事故時運転モードに切替えることが可能な設計とする。 中央制御室換気空調系は，通常のラインの他，高性能エアフィルタ及びチャコール エアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時には外気との連絡口を遮断し，中央制御室再循環フィルタ装置を通る事故時運転モードとし，運転員を被ばくから防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合に は，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。

ルタ及び放射性微粒子を除去する高性能エアフィルタを設置する。
これらのフィルタを内包するフィルタユニットは，フィルタの取替えが容易となるよ ら取替えに必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易 な構造とする。

吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒，サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。

2．2．1 中央制御室換気空調系
中央制御室の換気及び泠暖房は，中央制御室送風機，中央制御室再循環フィル夕装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。

中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モード に切替えることが可能な設計とする。

中央制御室換気空調系は，通常のラインの他，高性能エアフィルタ及びチャコー ルエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A）， （B）出口ダンパ（V30－D305A，B）を閉とすることにより外気との連絡口を遮断し，中央制御室再循環フィルタ装置入ロダンパ（A），（B）（V30－D302A，B）を開とすることに より中央制御室再循環フィルタ装置を通る事故時運転モードとし，放射性物質を含屯外気が中央制御室に直接流入することを防ぐことができ，運転員を被ばくから防護する設計とする。外部との遮断が長期にわたり，室内の雾囲気が悪くなった場合 には，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能 な設計とする。

中央制御室換気空調系は，地震時及び地震後においても，中央制御室の気密性と あいまって，設計上の空気の流入率を維持でき，「2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。

中央制御室送風機，中央制御室排風機，中央制御室再循環送風機及び中央制御室
再循環フィルタ装置は，設計基漼事故対処設備であるとともに，重大事故等時に抒
いても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用

変更前
焼却炉建屋換気空調系は，焼却炉建屋給気ファン（第 1 号機設備，第 $1,2,3$ 号機
共用），焼却炉建屋排気ファン（第 1 号機設備，第 $1,2,2$ 号機共用）等で構成する。
焼却炉建屋内に供給された空気は，フィルタを通した後，排気ファンにより焼却炉
建屋排気口から大気に放出する設計とする。
2.2 .7 サイトバンカ建屋換気空調系
サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第 1 号機設備，第 1 ， 2 ，
3 号機共用），サイトバンカ建屋排風機（第 1 号機設備，第 $1,2,3$ 号機共用）等で
構成する。
サイトバンカ建屋内に供給された空気は，フィルタを通した後，排風機によりサイ
トバンカ建屋排気口から大気に放出する設計とする。

2.3 生体遮蔽装置等

設計基準対象施設は，通常運転時において発電用原子炉施設からの直接線及びスカイ シャイン線による発電所周辺の空間線量率が，放射線業務従事者等の放射線障害を防止 するために必要な生体遮蔽等を適切に設置すること及び発電用原子炉施設と周辺監視区域境界までの距離とあいまって，発電所周辺の空間線量率を合理的に達成できる限り低減し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマで年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。

発電所内における外部放射線による放射線障害を防止する必要がある場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあいまって，「核原料物質又は核燃料物質の製鍊の事業に関する規則等の規定に基づく線量限度等を定める告示」 を満足できる遮蔽設計とする。

生体遮蔽は，主に原子炉しやへい壁， 1 次しゃへい壁（ドライウェル外側壁）， 2 次しゃ へい壁（原子炉建屋原子炉棟外壁），補助しやへい及び中央制御室しやへい壁から構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止のために，遮蔽性を維持する設計とする。

生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐え る設計とする。
－開口部を設ける場合，人が容易に接近できないような場所（通路の行き止まり部，高所

2.3 生体遮蔽装置等

䖉計基準対象施設は，通常運転時において発電用原子炉施設からの直接線及びスカイ シャイン線による発電所周辺の空間線量率が，放射線業務従事者等の放射線障害を防止 するために必要な生体遮蔽等を適切に設置すること及び発電用原子炉施設と周辺監視区域境界までの距離とあいまって，発電所周辺の空間線量率を合理的に達成できる限り低葴し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマで年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。

発電所内における外部放射線による放射線障害を防止する必要がある場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあいまって，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」 を満足できる遮蔽設計とする。

生体遮蔽は，主に原子炉しやへい壁， 1 次しやへい壁（ドライウェル外側壁）， 2 次し やへい壁（原子炉建屋原子炉棟外壁），補助しゃへい，中央制御室しゃへい壁，中央制御室待避所遮蔽及び緊急時対策所遮蔽から構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時及び重大事故等時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止のために，遮蔽性を維持する設計とする。
生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐え る設計とする。

変更前	変更後	記載しない理由
等）への開口部設置 - 貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充てん等） - 線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視できない措置 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたう えで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5 ）」の通常運転時の遮蔽設計に基づく設計とする。	等）への開口部設置 - 貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充てん等） - 線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視できない措置 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたら元で，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5）」の通常運転時の遮蔽設計に基づく設計とする。 原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉建屋原子炉棟内に設置 することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線 から作業員を防護する設計とする。 中央制御室しゃへい壁，中央制御室待避所遮蔽，緊急時対策所遮蔽， 2 次しゃへい壁及 び補助しゃへいは，「2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。 中央制御室しゃへい壁は，設計基準事故対処設備であるとともに，重大事故等時に打 いても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備 はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」 に示す設計方針は適用しない。	
3．主要対象設備 放射線管理施設の対象となる主要な設備について，「表1放射線管理施設の主要設備リ スト」に示す。	3．主要対象設備 放射線管理施設の対象となる主要な設備について，「表1放射線管理施設の主要設備リ スト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

8．原子炉格納施設の基本設計方針

変更前
用語の定義は「「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉
及びその附属施設位置，構造及ひ設備の基漼に関する規則」及 及実用発電用原子炉及び

及びその附属施設の位置，構造及び設備の基潐に関する規則」 及び「実用発電用原子炉及び その附属施設の技術基準に関する規則」並びにこれらの解釈による。

第1章 共通項目

原子炉格納施設の共通項目である $\Gamma 1$ ．地盤等，2．自然現象，3．火災，4．設備に対 する要求（ 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炬泠却系統施設の基本設計方針「第 1 章 共通項目」に基 づく設計とする。

第2章 個別項目

1．原子炻格納容器
1．1 原子师格納容器本体等
原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆に放射線障害を及ぼすおそれがな い設計とする。

原子炉格納容器にはドライウェル内のガスを循睘洽却するための設備として，椧却装置及び送風機からなるドライウェル泠却系（個数 4（予備 2））を設ける設計とする。

原子炉格納容器は，残留熱除去系（格納容器スプレイ椧却モード）とあいまって原子炉洽却材圧カバウンダリ配管の最も過酷な破断を想定し，これにより放出される原子炉冷却材のエネルギによる泠却材震失時の圧力，温度及び設計上想定された地震荷重に耐え る設計とする。また，泠却材震失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器に生じる動荷重に耐える設計とする。

原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏元 い率を許容值以下㳭ち，洽却材啔失時及び主蒸気逃がし安全弁作動時において想定さ れる原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウ ンダリの健全性を保つ設計とする。

通常運転時，運転時の異常な過液変化時及び設計基準事故時において，原子炉格納容器 バウンダリを構成する機器は脆性破壊及び破断が生じない設計とする。脆性破壊に対し ては，最低使用温度を考慮した破壊じん性試験を行い，規定值を満足した材料を使用す る設計とする。

変更後
用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関 る規則」及び「実用発電用原子炉及びその附属施設の技術基漼に関する規則」並びにこれら の解釈による。

第1章 共通項目

原子炉格納施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等， 5．設備に対する要求（5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。

第2章 個別項目

1．原子炉格納容器
1．1 原子炉格納容器本体等
原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施毃の損壊又は故障の際に漏えいする放射性物質が公衆に放射線障害を及ぼすおそれがな い設計とする。

原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，泠却装置及び送風機からなるドライウェル泠却系（個数 4（予備 2））を設ける設計とする。

原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）とあいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定し，これにより放出される原子㚸阾却材のエネルギによる泠却材喪失時の圧力，温度及び設計上想定された地震荷重に耐 える設計とする。また，泠却材喪失時及び主蒸気逃がし安全弁作動時において，原子炣格納容器に生じる動荷重に耐える設計とする。

原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏え い率を許容値以下に保ち，冷却材喪失時及び主蒸気逃がし安全弁作動時において想定さ れる原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウ シダリの健全性を保つ設計とする。

[^0]記載しない理由
本記載は概要であるため，記載し ない。

本記載は概要であるため，記載し ない。

変更前
原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量その他の漏えい試験 に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏えい試験のうち B 種試験ができる設計とする。

サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置す る。

1.2 原子炉格納容器隔離弁

原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チ ェーンロックが可能な手動弁，キーロックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに接続するか，又は原子炉格納容器内に開口し，原子炉格納容器を貫通している各配管は，泠却材喪失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側 に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部が なく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがな い管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炬格納容器外へ導かれた漏えい水による放射性物質の放出量が，泠却村喪失事故の原子炬格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1 個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。

貫通箇所の内側又は外側に設置する隔離弁は，一方の側の設置箇所における管であっ て，湿気や水滴等により駆動機構等の機能が著しく低下するおそれがある箇所，配管が

変更後
原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏えい試験のうち B 種試験ができる設計とする。

サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置す る。

原子炉格納容器は，想定される重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える可能性があるが，設計基準対象施設としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度で閉じ込め機能を損なわない設計とする。

1.2 原子炉格納容器隔離弁

原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，千 エーンロックが可能な手動弁，キーロックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに接続するか，又は原子炉格納容器内に開口し，原子㚸格納容器を貫通している各配管は，泠却材䨤失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側 に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部が なく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがな い管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が，泠却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1 個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。

貫通箇所の内側又は外側に設置する隔離弁は，一方の側の設置箇所における管であつ て，湿気や水滴等により駆動機構等の機能が著しく低下するおそれがある箇所，配管が
て，湿

変更前	変更後	記載しない理由
狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著しく低下するような箇所には，貫通箇所の外側であって近接した箇所に 2 個の隔離弁を設ける設計とする。 設計基準事故の収束に必要な非常用炉心冷却設備及び残留熱除去系（格納容器スプレ イ泠却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設けることにより安全性を損ならおそれがあり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われない場合は，自動隔離弁を設けない設計とする。 ただし，原則遠隔操作が可能であり，設計基準事故時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。 原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離并を設置したものと同等の隔離機能を有する設計とする。 原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通する計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。 隔離弁は，閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機能が喪失しない設計とする。また，隔離弁のうち，隔離信号で自動閉止するものは，隔離信号が除去されても自動開とはならない設計とする。 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏えい試験のうち C 種試験ができる設計とする。また，隔離弁は動作試験ができる設計とする。	厥隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著しく低下するような箇所には，貫通箇所の外側であって近接した箇所に 2 個の隔騅弁を設ける設計とする。 原子炉格納容器を貫通する配管には，圧力開放板を設けない設計とする。 䖉計基準事故及び重大事故等の収束に必要な非常用炉心冷却設備及び残留熱除去系 （格納容器スプレイ椧却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設 けることにより安全性を損ならおそれがあり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われない場合は，自動隔離并を設けない設計とする。 ただし，原則遠隔操作が可能であり，設計基準事故時及び重大事故等時に容易に閉鎳可能な隔離機能を有する弁を設置する設計とする。 また，重大事故等時に使用する原子炉格納容器調気系の隔離弁については，設計基準事故時の隔離機能の確保を考慮し自動隔離弁とし，重大事故等時に容易に開弁が可能な䖊計とする。 原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したものと同等の隔離機能を有する設計とする。 原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通する計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。 隔離弁は，閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機能が震失しない設計とする。また，隔離弁のらち，隔離信号で自動閉止するものは，隔離信号が除去されても自動開とはならない設計とする。 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏えい試験のらちC 種試験ができる設計とする。また，隔離弁は動作試験ができる設計とする。	
2．原子炬建屋 2． 1 原子炉建屋原子炉棟等	原子炬建屋 1 原子炉建屋原子炉棟等	

変更前	変更後	記載しない理由
原子炉泠却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定す る線量を超えないよう，当該放射性物質の濃度を低減する設備として原子炬建屋原子炉棟を設置する。 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止する設計とする。 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を碓保する設計とする。 新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそれがある場合において，放射性物質による敷地外への影響を低減するため，原子炉建屋原子炉棟内に設置する設計とする。	原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炬施設の安全評価に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定す る線量を超えないよう，当該放射性物質の濃度を低減する設備として原子炉建屋原子炉㡷を設置する。 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を碓保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止する設計とする。 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。 噺燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそれがある場合において，放射性物質による敷地外への影響を低減するため，原子炉建屋原子炉棟内に設置する設計とする。 原子炉建屋原子炉棟は，重大事故等時においても，非常用ガス処理系により，内部の負圧を確保することができる設計とする。原子炉建屋原子炉棟の気密バウンダリの一部 として原子炉建屋原子炉棟に設置する原子炉建屋ブローアウトパネル（原子炉冷却系統施設のらち「5．2 高圧炬心スプレイ系」，浸水防護施設と兼用）（以下同じ。）は，閉状態 の維持又は開放時に容易かつ確実に原子炉建屋ブローアウトパネル閉止装置により開口部を閉止可能な設計とする。	
3．圧力低減設備その他の安全設備 3.1 真空破壊装置 泠却材䨖失事故後，ドライウェル圧力がサプレッションチェンバ圧力より低下した場合に，ドライウェルとサプレッションチェンバ間に設置された6個の真空破壊弁が，圧力差により自動的に働き，サプレッションチェンバのプール水のドライウェルーの逆流及 びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしていることなどから，原子炬格納容器外面に受ける圧力が設計を超えることはない。	3．圧力低減設備その他の安全設備 3.1 真空破壊装置 掵却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力より低下した場合に，ドライウェルとサプレッションチェンバ間に設置された 6 個の真空破壊弁が，冉力差により自動的に働き，サプレッションチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしていることなどから，原子炉格納容器外面に受ける圧力が設計を超えることはない。 㦄定される重大事故等時において，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置された 6 個の真空破壊弁が，圧力差により自動的に働き，サプレッションチェンバのプール水のドライ ウェルへの逆流及びドライウェルの破損を防止できる設計とする。	

変更前	変更後	記載しない理由
3.2 原子炉格納容器安全設備 3．2．1 原子炉格納容器スプレイ椧却系 原子炉椧却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器か ら気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審查指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。	3.2 原子炉格納容器安全設備 3．2．1 原子炉格納容器スプレイ泠却系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器か ら気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として戋留熱除去系（格納容器スプレイ冷却モード）を設置する。 重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合 に長期間にわたつて機能が要求される静的機器のらち，単一設計とする残留熱除去系（格納容器スプレイ泠却モード）のドライウェルスプレイ管及びサプレッション チェンバスプレイ管については，想定される最も過酷な単一故障の条件として，配管 1 箇所の全周破断を想定した場合においても，原子炉格納容器の冷却機能を達成 できる設計とする。 ここで，単一故障時には，残留熱除去系 1 系統による格納容器スプレイ泠却モー ドは，スプレイ効果に期待できない状態となり，スプレイ液滴による除熱を考慮し ないこと及び泠却水が破断箇所から落下してサプレッションチェンバのプール水に曆行することを想定する。このような場合においても，他の残留熱除去系 1 系統を サプレッションプール水冷却モードで運転することで原子炉格納容器の冷却機能を代替できる設計とする。 3．2．2 原子炉格納容器下部注水系 厫心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するた め，溶融し，原子炬格納容器の下部に落下した炬心を泠却するために必要な重大事做等対処設備として，原子炉格納容器下部注水系（常設）（復水移送ポンプ），原子炣格納容器下部注水系（常設）（代替循環冷却ポンプ）及び原子炉格納容器下部注水系 （可搬型）を設ける設計とする。 （1）原子炉格納容器下部注水系（常設）（復水移送ポンプ）による原子炉格納容器下部人の注水 原子炉格納容器下部に落下した溶融炉心の椧却を行らための重大事故等対処設備 として，原子炉格納容器下部注水系（常設）（復水移送ポンプ）は，復水移送ポンプ により，復水貯蔵タンクの水を補給水系配管等を経由して原子炬格納容器下部へ注水し，溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保するとともに，落下した溶融灲心を泠却できる設計とする。	

変更前	変更後	記載しない理由
	低圧代替注水系（可搬型）の流路として，設計基準対象施設である原子炉圧力容睘，炬心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 3．2．7 ほう酸水注入系 於心の著しい損傷が発生した場合に溶融烼心の原子炉格納容器下部への落下を遅莚•防止するための重大事故等対処設備として，ほう酸水注入系を設ける設計とす る。なお，この場合は，低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系 （可搬型），代替循環冷却系及び高圧代替注水系のいずれかによる原子炉圧力容器へ の注水と並行して行う。 ほら酸水注入系は，ほら酸水注入系ポンプにより，ほう酸水注入系貯蔵タンクの ほら酸水を原子灲圧力容器へ注入することで，溶融炉心の原子炉格納容器下部への落下を遅延•防止できる設計とする。 ほら酸水注入系は，非常用交流電源設備に加え，代替所内電気設備を経由した常信代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 ほら酸水注入系の流路として，設計基準対象施設である原子炉圧力容器，灲心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用すること から，流路に係る機能について重大事故等対処設備としての設計を行う。 3．2．8 残留熱除去系（格納容器スプレイ椧却モード） （1）系統構成 原子炉格納容器内の冷却等のための設備として，想定される重大事故等時におい て，設計基準事故対処設備である残留熱除去系（格納容器スプレイ冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とす る。 於心の著しい損傷防止のための原子炉格納容器内冷却に用いる設備のらち，全交流動力電源震失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失 によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，㡲留熱除去系（格納容器スプレイ冷却モード）を復旧できる設計とする。 炉心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機掵却水系（原子灲補機冷却海水系を含む。）機能喪失によるサポート系の故障により，	

変更前	変更後	記載しない理由
3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器か ら気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。 非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガス処理系排風機及 び高性能エアフィルタ，チャコールエアフィルタを含む非常用ガス処理系フィルタ装置等から構成される。 放射性物質の放出を伴う設計基準事故時には，常用換気系を閉鎖し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して除去•低減した後，排気筒から放出する設計とする。 非常用ガス処理系は，冷却材喪失事故時に想定する原子炬格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出される放射性物質の濃度を減少させ る設計とする。 非常用ガス処理系のうち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とする。 新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損し て放射性物質の放出により公衆に放射線障害を及ぼすおそれがある場合において，放射性物質による敷地外への影響を低減するため，非常用ガス処理系により放射性物質の放出を低減できる設計とする。	分散を考慮すべき対象の設計基準事故対処設備ではないことから，重大事故等対処䑀備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しな い。 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器か ら気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として匪常用ガス処理系を設置する。 非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタを含む非常用ガス処理系フィル夕装置等から構成される。 放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通し て除去•低減した後，排気筒から放出する設計とする。 匪常用ガス処理系は，泠却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出される放射性物質の濃度を減少させ る設計とする。 匪常用ガス処理系のうち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とする。 新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損し て放射性物質の放出により公衆に放射線障害を及ぼすおそれがある場合において，放射性物質による敷地外への影響を低減するため，非常用ガス処理系により放射性物質の放出を低減できる設計とする。 重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合 に長期間にわたつて機能が要求される静的機器のらち，単一設計とする非常用ガス処理系の配管の一部及び非常用ガス処理系フィルタ装置については，当該設備に要	

変更前	変更後	記載しない理由
3．3．2 可燃性ガス濃度制御系 泠却材喪失事故時に原子炉格納容器内で発生する水素及び酸素の反応を防止する ため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内 に窒素を充填することとあいまって，可燃限界に達しないための制限値である水素濃度 $4 \mathrm{vol} \%$ 未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。	から，流路に係る機能について重大事故等対処設備としての設計を行ら。 3．3．2 可燃性ガス濃度制御系 阾却材喪失事故時に原子炉格納容器内で発生する水素及び酸素の反応を防止する ため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器 内に窒素を充填することとあいまって，可燃限界に達しないための制限値である水 素濃度 $4 \mathrm{vol} \%$ 未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。 3．3．3 原子炉建屋水素濃度抑制系 炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。 水素濃度制御設備である静的触媒式水素再結合装置は，運転員の起動操作を必要 とせずに，原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させることで，原子炉建屋原子炉棟内の水素濃度の上昇を抑制し，原子炬建屋原子炬棟の水素爆発を防止できる設計とする。また評価に用いる性能を満足し，試験により性能及び耐環境性が確認された型式品を設置する設計と する。静的触媒式水素再結合装置は，原子炉建屋原子炉棟内に漏えいした水素が滞留すると想定される原子炉建屋原子炉棟 3 階に設置することとし，静的触媒式水素再結合装置の触媒反応時の高温ガスの排出が重大事故等時の対処に重要な計器•機器に悪影響がないよう離隔距離を設ける設計とする。 静的触媒式水素再結合装置の流路として，設計基準対象施設である原子炉建屋原子炉棟，原子炉建屋大物搬入口及び原子炉建屋エアロックを重大事故等対処設備と して使用することから，流路に係る機能について重大事故等対処設備としての設計 を行う。 3．3．4 放射性物質拡散抑制系 炉心の著しい損傷及び原子炉格納容器の破損に至った場合において，発電所外へ の放射性物質の拡散を抑制するための重大事故等対処設備として，放水設備（大気人の拡散抑制設備）及び海洋への拡散抑制設備（シルトフェンス）を設ける設計と する。 （1）放水設備（大気への拡散抑制設備） 大気への放射性物質の拡散を抑制するための重大事故等対処設備として，放水設	

変更前	変更後	記載しない理由
	泡消火薬剤混合装置は，航空機燃料火災に対応するため，大容量送水ポンプ（夕 イプII）及び放水砲に接続することで，泡消火薬剤を混合して放水できる設計とす る。また，泡消火薬剤混合装置の保有数は，航空機燃料火災に対応するため， 1 台と故障時及び保守点検時の予備として 1 台の合計 2 台を保管する。 放水設備（泡消火設備）に使用するホースの敷設は，ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」 の設備を原子炉格納施設のらち「3．3．5 放射性物質拡散抑制系（航空機燃料火災へ の泡消火）」の設備として兼用）により行ら設計とする。 3．3．6 可搬型窒素ガス供給系 可搬型窒素ガス供給系は，可燃性ガスによる爆発及び原子炉格納容器の負圧破損 を防止するために，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性が ，（窒素）の供給が可能な設計とする。また，原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，可搬型窒素ガス供給系により，䒺統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント後 においても不活性がス（窒素）で置換できる設計とする。 炬心の著しい損傷が発生した場合において，原子炉格納容器内における水素爆発 による破損を防止するために必要な重大事故等対処設備のらち，原子炉格納容器内 を不活性化するための設備として，可搬型窒素がス供給装置を設ける設計とする。 可搬型窒素ガス供給装置は，原子炉格納容器内に窒素を供給することで，ジルコ Еウムー水反応，水の放射線分解等により原子炉格納容器内に発生する水素及び酸畨の濃度を可燃限界未満にできる設計とする。 可搬型窒素ガス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計とする。 可搬型窒素ガス供給系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 3．3．7 原子炉格納容器フィルタベント系炬心の著しい損傷が発生した場合において原子炬格納容器内における水素爆発に よる破損を防止できるように，原子炉格納容器内に滞留する水素及び酸素を大気へ	

変更前	変更後	記載しない理由
3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため，あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。	原子炉格納容器フィルタベント系は，代替淡水源から，大容量送水ポンプ（タイ プI）によりフィルタ装置にスクラバ溶液を補給できる設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置される隔離弁に設ける遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，サプレッションチェ シバベント用出口隔離弁（T48－F022）の操作を行ら原子炉建屋地下 1 階及びドライ ウェルベント用出口隔離弁（T48－F019）の操作を行う原子炉建屋地上 1 階に遮蔽体 （遠隔手動弁操作設備遮蔽（原子炉格納施設のらち「3．5．1 原子炉格納容器フィル タベント系」の設備を原子炬格納施設のらち「3．3．7 原子炬格納容器フィルタベン ト系」の設備として兼用）（以下同じ。））を設置し，放射線防護を考慮した設計とす る。遠隔手動弁操作設備遮蔽は，炬心の著しい損傷時においても，原子炬格納容器 フィルタベント系の隔離弁操作ができるよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚さを有する設計とする。 原子炉格納容器フィルタベント系に使用するホースの敷設等は，ホース延長回収庫（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プー ル代替注水系」の設備を原子炉格納施設のらち「3．3．7 原子炉格納容器フィルタベ シト系」の設備として兼用）により行ら設計とする。 原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため，あらかじめ原子炬格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満 に保つ設計とする。 厌心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発に よる破損を防止できるように，発電用原子炉の運転中は，原子炉格納容器内を原子炬格納容器調気系により常時不活性化する設計とする。 3.5 圧力逃がし装置 3．5．1 原子炉格納容器フィルタベント系 厥心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を	

変更前	変更後	記載しない理由
	防止するために必要な重大事故等対処設備のらち，原子炬格納容器内の圧力を大気	
	中に逃がすための設備として，原子师格納容器フィルター゙ント系を設ける設計とす 3	
	（1）系統構成	
	原子炉格納容器フィルタベント系は，フィルタ装置（フィルタ容器，ス	
	㖡，金属綫維フイルタ，放射性よう素フィルタ），フィルタ装置出口側ラプチャディ	
	スク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炣	
	格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に	
	原子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））	
	することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炣	
	咯納容器内の圧力及び温度を低下できる設計とする。	
	フィルタ装置は3台を並列設㯰し，排気中に含まれる粒子状放射性物質，ガス	
	肰の無機よう素及び有機よう素を除去できる設計とする。また，無機よう素をスク	
	今バ溶液中汇捕集•保持するためにアルカリ性の状態（待機状態においてpH13以上）	
	还維持する設計とする。	
	原子炬格納容器フィルタバント系は，サプレッションチェンバ及びドライウェル	
	と接続し，いずれからも排気できる設計とする。サプレッションチェンバ側からの	
	匪気ではサプレッションチェンバの水面からの高さを碓保し，ドライウェル側から	
	の排気では，ドライウェル床面からの高さを碓保するとともに有効燃料䏾頂部より	
	も高い位置に接続笽所を設けることで長期的にも溶融炬心及び水没の悪影響を受け	
	ない設計とする。	
	原子炬格納容器フィルタバント系は，排気中に含まれる可燃性がスによる爆発を	
	防ぐため，可搬型窒素が供給系により，系統内を不活性がス（窒素）で置換した状	
	態で待機させ，原子炉格納容器ベント開始後においても不活性がス（窒素）で置換	
	できる設計とするとともに，系統内に可燃性がスが蓄積する可能性のある箇所には	
	－゙イパスラインを設け，可燃性ガスを連続して排出できる設計とすることで，系統	
	原子炬格納容器フィルタバント系は，他の発電用原子炉施設とは共用しない設計	
	とする。また，原子炉格納容器フィルタバント系と他の系統•機器を隔離する开は，	
	值列で2 個設置（ベント用非常用がス処理系側隔䧺弁（T48－F020）と格納容器排気	
	匪常用ガス处理系側止め弁（T48－F045）（原子炬冷却系統施設のらち「4．2 原子炣	
	慗納容器フィルタバント系」の設備と兼用），ベント用換気空調系側搹離弁（T48－	
	F021）と格納容器排気換気空調系側止め弁（T48－F046）（原子炬冷却系統施設のらち	

変更前	変更後	記載しない理由
3.5 設備の共用 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作することにより隔離できる設計とすること で，共用により安全性を損なわない設計とする。	ール水冷却モード）の水源として使用できる設計とする。 臣ら酸水注入系販蔵タンクは，想定される重大事故等時において，原子炉圧力容器へ の注水に使用する設計基準事故対処設備が機能霛失した場合の代替手段であるほう酸水注入系の水源として使用できる設計とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）は，想定される重大事故等時において，原子炬圧力容器への注水及び原子炉格納容器へのスプレイに使用する設琂基準事故対処設備が機能霛失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替スプレイ玲却系（可搬型），原子炉格納容器フィルタベント系への水補给及び原子炉格納容器下部注水系（可船型）の水源として使用できる設計とする。 海は，想定される重大事故等時において，淡水が枯渴した場合に，原子炬圧力容器へ の注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能霛失し大場合の代替手段である低圧代替注水系（可搬型），原子烠格納容器代替スプレイ泠却系 （可搬型）及び原子炬格納容器下部注水系（可搬型）の水源として，更に，放水設備（大気への抆散抑制設備）及び放水設備（泡消火設備）の水源として利用できる設計とする。 3.7 設備の共用 㖡体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を碓保するとともに，接続部の升を閉操作することにより隔離できる設計とすること で，共用により安全性を損なわない設計とする。	
4．主要対象設備 原子炉格納施設の対象となる主要な設備について，「表1 原子炉格納施設の主要設備り スト」に示す。	4．主要対象設備 原子炉格納施設の対象となる主要な設備について，「表1 原子炉格納施設の主要設備り スト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については， 「表2 原子炉格納施設の兼用設備リスト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

9．非常用電源設備の基本設計方針

変更前
用語の定義は「発電用原子力設備に関する技術基漼を定める省令」，「実用発電用原子炉
及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炬及び

及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及び

 その附属施設の技術基準に関する規則」並びにこれらの解釈による。第1章 共通項目
非常用電源設備の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対 する要求（4．6 逆止め弁を除く。），5．その他（5．4 放射性物質による汚染の防止を除 く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。

第2章 個別項目

1．非常用電源設備の電源系統
1.1 非常用電源系統

重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線 で構成し，信頼性の高い機器を設置する。

非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持たせ， 3 系統の母線 で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機へ給電 する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及び モータコントロールセンタで構成）へ給電する。非常用低圧母線も同様に多重性を持た せ 3 系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。

また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離でき る設計とし，故障による影響を局所化できるとともに，他の安全施設への影響を限定で きる設計とする。

更に，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。

これらの母線は，独立性を確保し，それぞれ区画分離された部屋に配置する設計とす る。

変更後

用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す
る規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれら の解釈による。

第1章 共通項目
非常用電源設備の共通項目である「1．地盤等，2．自然現象，3．火㷋，4．溢水等， 5．設備に対する要求（5．6 逆止め弁を除く。），6．その他（6．4 放射性物質による汚染 の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章共通項目」に基づく設計とする。

第2章 個別項目

1．非常用電源設備の電源系統
1.1 非常用電源系統

重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線 で構成し，信頼性の高い機器を設置する。

非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持たせ， 3 系統の母線 で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機—給電 する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及び モータコントロールセンタで構成）へ給電する。非常用低圧母線も同様に多重性を持た せ 3 系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。

また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離でき る設計とし，故障による影響を局所化できるとともに，他の安全施設への影響を限定で きる設計とする。

更に，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。

重要安全施設への電力供給に係る電気盤及び当該電気盤に影響を与えるおそれのある電気盤（安全施設（重要安全施設を除く。）への電力供給に係るものに限る。）について，遮断器の遮断時間の適切な設定等により，高エネルギーのアーク放電によるこれらの電気盤の損壊の拡大を防止することができる設計とする。

記載しない理由
本記載は概要であるため，記載し ない。

本記載は概要であるため，記載し ない。

これらの母線は，独立性を確保し，それぞれ区画分離された部屋に配置する設計とす る。

変更前	変更後	記載しない理由
原子炉保護采並びに工学的安全施設に関係する多重性をもつ動力回路に使用するケー ブルは，負荷の容量に応じたケーブルを使用し，多重化したそれぞれのケーブルについ て相互㲸物理的分離を図る設計とするとともに制御回路や計装回路への電気的影響を考慮した設計とする。 1.2 所内電気系統 1．2．1 系統構成 非常用所内電気設備は， 3 系統の非常用母線等（メタルクラッドスイッチギア（非常用）（ $6900 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 2 個），メタルクラッドスイッチギア（高圧炉心スプ レイ采用）（6900V，1200A のものを 1 個），パワーセンタ（非常用）（ $600 \mathrm{~V}, 5000 \mathrm{~A}$ の ものを2個），モータコントロールセンタ（非常用）（600V，800A のものを 14 個）， モータコントロールセンタ（高圧炉心スプレイ系用）（600V，800A のものを 1 個），動力変圧器（非常用）（ $3300 \mathrm{kVA}, 6750 / 460 \mathrm{~V}$ のものを 2 個），動力変圧器（高圧炬心 スプレイ系用）（ $750 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 1 個）及び中央制御室 120 V 交流分電盤 （非常用）（ $75 \mathrm{kVA}, 460 / 120 \mathrm{~V}$ のものを 4 個））により構成することにより，共通要因 で機能を失うことなく，少なくとも 1 系統は電力供給幾能の維持及び人の接近性の碓保を図る設計とする。	原子炉保護系並びに工学的安全施設に関係する多重性をもつ動力回路に使用するケー ブルは，負荷の容量に応じたケーブルを使用し，多重化したそれぞれのケーブルについ て相互に物理的分離を図る設計とするとともに制御回路や計装回路への電気的影響を考慮した設計とする。 1.2 代替所内電気系統 1．2．1 系統構成 非常用所内電気設備は， 3 系統の非常用母線等（メタルクラッドスイッチギア（非常用）（ $6900 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 2 個），メタルクラッドスイッチギア（高圧烼心スプ レイ系用）（6900V，1200Aのものを1個），パワーセンタ（非常用）（600V，5000A の ものを 2 個），モータコントロールセンタ（非常用）（ $600 \mathrm{~V}, 800 \mathrm{~A}$ のものを 14 個）， モータコントロールセンタ（高圧炉心スプレイ系用）（600V，800A のものを 1 個），動力変圧器（非常用）（ $3300 \mathrm{kVA}, 6750 / 460 \mathrm{~V}$ のものを 2 個），動力変圧器（高圧炉心 スプレイ系用）（ $750 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 1 個）及び中央制御室 120 V 交流分電盤 （非常用）（ $75 \mathrm{kVA}, 460 / 120 \mathrm{~V}$ のものを 4 個））により構成することにより，共通要因 で機能を失うことなく，少なくとも 1 系統は電力供給機能の維持及び人の接近性の㕍保を図る設計とする。 これとは別に上記 3 系統の非常用母線等の機能が喪失したことにより発生する重大事故等の対応に必要な設備に電力を給電する代替所内電気設備として，ガスター ビン発電機接続盤（ $7200 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 2 個），メタルクラッドスイッチギア（緊急用）（ $7200 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 3 個），動力変圧器（緊急用）（ $500 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ の ものを 2 個， $750 \mathrm{kVA}, 6750 / 460 \mathrm{~V}$ のものを 1 個），パワーセンタ（緊急用）（ 600 V, 3000A のものを 1 個），モータコントロールセンタ（緊急用）（ $600 \mathrm{~V}, 800 \mathrm{~A}$ のものを 4 個），ガスタービン発電設備燃料移送ポンプ接続盤（600V，100A のものを 1 個）， 460 V 原子炉建屋交流電源切替盤（緊急用）（ $600 \mathrm{~V}, 150 \mathrm{~A}$ のものを 1 個）， 460 V 原子炉揵屋交流電源切替盤（非常用）（600V，30Aのものを2個），メタルクラッドスイッチ ギア（非常用）（6900V，1200A のものを 2 個）， 120 V 原子炉建屋交流電源切替盤（緊急用）（ $120 \mathrm{~V}, 30 \mathrm{~A}$ のものを 1 個）及び中央制御室 120 V 交流分電盤（緊急用）（20kVA， $460 / 120 \mathrm{~V}$ のものを 1 個）を使用できる設計とする。 代替所内電気設備は，上記に加え，電路，計測制御装置等で構成し，常設代替交流電源設備又は可搬型代替交流電源設備の電路として使用し電力を供給できる設計と する。また，代替所内電気設備は，少なくとも 1 系統は機能の維持及び人の接近性 を考慮した設計とする。	

変更前	変更後	記載しない理由
	1．2．2 多様性，位置的分散等 代替所内電気設備のガスタービン発電機接続盤，メタルクラッドスイッチギア（緊急用），動力変圧器（緊急用），パワーセンタ（緊急用），モータコントロールセンタ （緊急用），ガスタービン発電設備燃料移送ポンプ接続盤， 460 V 原子炉建屋交流電源切替盤（緊急用），460V 原子炉建屋交流電源切替盤（非常用），120V 原子炉建屋交流電源切替盤（緊急用）及び中央制御室 120 V 交流分電盤（緊急用）は，非常用所内電気設備と異なる区画に設置することで，非常用所内電気設備と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 代替所内電気設備は，独立した電路で系統構成することにより，非常用所内電気信備に対して，独立性を有する設計とする。 これらの位置的分散及び電路の独立性によって，代替所内電気設備は非常用所内電気設備に対して独立性を有する設計とする。 重大事故等対処施設の動力回路に使用するケーブルは，負荷の容量に応じたケー ブルを使用し，非常用電源系統に接続するか，非常用電源系統と独立した代替所内電気系統へ接続する設計とする。	
2．交流電源設備 2.1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力 を当該重要安全施設に供給するため，電力系統に連系した設計とする。 発電用原子炉施設には，電線路及び当該発電用原子炉施設において常時使用され る発電機からの電力の供給が停止した場合において発電用原子炉施設の安全性を確保するために必要な装置の機能を維持するため，内燃機関を原動力とする非常用電源設備を設ける設計とする。 発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びそ の燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外か らの原子炉停止設備）は，内燃機関を原動力とする非常用電源設備の非常用ディーゼ ル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）からの電源供給が可能な設計とする。	2．交流電源設備 2.1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力 を当該重要安全施設に供給するため，電力系統に連系した設計とする。 発電用原子炉施設には，電線路及び当該発電用原子炉施設において常時使用され る発電機からの電力の供給が停止した場合において発電用原子炉施設の安全性を確保するために必要な装置の機能を維持するため，内燃機関を原動力とする非常用電源設備を設ける設計とする。 発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びそ の燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外 からの原子炉停止設備）は，内燃機関を原動力とする非常用電源設備の非常用ディ一ゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）からの電源供給が可能な設計とする。	

変更前	変更後	記載しない理由
非常用電源設備及びその附属設備は，多重性又は多様性を碓保し，及び独立性を碓保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において，工学的安全施設及ひ設計基準事故に対処するための設備がその機能を確保するために十分な容量を有する設計と する。 非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）は，非常用高圧母線低電圧信号又は非常用炉心椧却設備作動信号で起動し，設置（変更）許可を受けた椧却材電失事故における工学的安全施設の設備の作動開始時間を满足す る時間として非常用ディーゼル発電機は 10 秒及び高圧炬心スプレイ系ディーゼル発電機は 13 秒以内に電圧を碓立した後は，各非常用高圧母線に接続し，負荷に給電す る設計とする。 設計基準事故時において，発電用原子炬施設に属する非常用所内電源設備及びそ の附属設備は，発電用原子炬ごとに単独で設置し，他の発電用原子炉施設と共用しな い設計とする。	匪常用電源設備及びその附属設備は，多重性又は多栐性を確保し，及び独立性を確保し，その系䖻を構成する機械又は器具の単一故障が発生した場合であっても，軍転時の異常な過渡変化時又は設計基淮事故時において，工学的安全施設及び設計基準事故に対処するための設備がその機能を碓保するために十分な容量を有する設椐とする。 匪常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）は，非原用高圧母線低電圧信另又は非常用炬心椧却設備作動信号で起動し，設置（変更）計可を受けた洽却材䨖失事故における工学的安全施設の設備の作動開始時間を满足す る時間として非常用ディーゼル発電機は 10 秒及び高圧炬心スプレイ系ディーゼル廃電機は 13 秒以内に電圧を碓立した後は，各非常用高圧母線に接続し，負荷に給電 する設計とする。 砓計基準事故時において，発電用原子炬施設に属する非常用所内電源設備及びを の附属設備は，発電用原子炉ごとに単独で設置し，他の発電用原子炉施設と共用し ない設計とする。 匪常用交流電源設備は，想定される重大事故等時において，重大事故等対処設備 （設計基準抁張）として使用できる設計とする。 匪常用交流電源設備のらち非常用ディーゼル発電機は重大事故等時に，ATWS 緩和殿備（代替制御棒挿入機能），ATWS 緩和設備（代替原子炬再循澴ポンプトリップ機能），ATWS 緩和設備（自動減圧系作動阻止機能），ほう酸水注入系，代替自動减圧回路（代替自動减圧機能），高圧窒素がス供給系（非常用），低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系（可搬型），残留熱除去系（低圧注水モード），低冉洰心スプレイ系，残留熱除去系（原子炉停止時冷却モード），原子炬補機冷却水系（原子炬補機浍却海水系を含む。），原子炉格納容器代替スプレイ椧却系（常設），原子炬㗉納容器代替スプレイ椧却系（可搬型），残留熱除去系（格納容器スプレイ椧却モー ＊゙），残留熱除去系（サプレッションプール水冷却モード），代替循環椧却系，原子炬迢納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設） （代替循睘洽却ポンプ），原子炉格納容器下部注水系（可搬型），計測制御装置及び匪常用がス処理系へ電力を供給できる設計とする。 匪常用交流電源設備のらち高圧炬ふスプレイ系ディーゼル発電機は重大事故等時 に，高圧炉心スプレイ系及び計測制御装置へ電力を供給できる設計とする。 2．1．2 多㥞性，位置的分散等 韭常用交流電源設備は，設計基準事故対処設備であるとともに，重 重大事故等時沉	

変更前	変更後	記載しない理由
	おいても使用するため，重大事故等対処設備としての基本方針に示す設計方針を啇	
	用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準	
	事故対処設備はないことから，重大事故等対処設備の基本方針のらち，「5．1．2 多	
	彔性，位置的分散等」に示す設計方針は適用しない。	
	2.2 常設代替交流電源設備	
	2.2 .1 系統構成	
	砓計基準事故対処設備の電源が霛失したことにより重大事故等が発生した場合に	
	おいて，炬心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体	
	等の著しい損傷及び連転停止中原子炬内燃料体の著しい損傷を防止するために必要	
	な交流負荷へ電力を供給する常設代替交流電源設備としてガスタービン発電機を設	
	ける設計とする。	
	常設代替交流電源設備は，ガスタービン発電機，ガスタービン発電設備軽油タン	
	リ，ガスタービン発電設備然料移送ポンプ，非常用ディーゼル発電設備軽油タンク	
	高圧炬ふスプレイ系ディーゼル発電設備軽油タンク，タンクローリ，電路，計測制	
	䑔装置等で構成し，設計基準事故対処設備の交流電源が震失（全交流動力電源震失）	
	した場合に，重大事故等時に対処するために外部電源震失時に自動起動したが，	
	ービン発電機を，メタルクラッドスイッチギア（緊急用）を介してメタルクラッド	
	スイッチギア（非常用）又はモータコントロールセンタ（緊急用）い接続することで	
	電力を供給できる設計とする。	
	＊た，緊急時対策所への電力確保のため，外部電源喪失時に自動起動したがスタ	
	ービン発電機を，メタルクラッドスイッチギア（緊急用）を介してメタルクラッド	
	スイッチギア（緊急時対策所用）へ接続することで電力を供給できる設計とする。	
	2．2．2 多様性，位置的分散等	
	常設代替交流電源設備は，非常用交流電源設備と共通要因によって同時に機能を	
	貝なわないよう，ガスタービン発電機をガスタービンにより駆動することで，ディ	
	ーゼルエンジンにより駆動する非常用ディーゼル発電機及び高圧炬心スプレイ系テ	
	イーゼル発電機を用いる非常用交流電源設備に対して多焃性を有する設計とする。	
	常設代替交流電源設備のガスタービン発電機，ガスタービン発電設備軽油タンク，	
	ガスタービン発電設供燃料移送ポンプ及びタンクローリは，原子炬建屋付属楝から	
	菛れた屋外に設置又は保管することで，原子炬建屋付属棟内の非常用ディーゼル発	
	電機，高压炬ふスプレイ系ディーゼル発電機及び燃料デイタンク並びに原子炬建屋	
	府属棟近傍の燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位	

変更前	変更後	記載しない理由
	レイ系ディーゼル発電機と共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。また，可搬型代替交流電源設備の電源車は，屋外（緊急用電気品建屋）のガスタービン発電機から離れた場所に保管することで，共通要因によ って同時に機能を損なわないよう，位置的分散を図る設計とする。 可搬型代替交流電源設備は，電源車からメタルクラッドスイッチギア（非常用） までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機からメタルクラッドスイッチギア（非常用）までの系統及び高圧炉心スプレ イ系ディーゼル発電機からメタルクラッドスイッチギア（高圧炉心スプレイ系用） までの系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替交流電源設備は非常用交流電源設備である非常用ディーゼル発電機及び高圧炬心スプレイ系ディーゼル発電機に対して独立性を有する設計とする。 可搬型代替交流電源設備の電源車の接続箇所は，共通要因によって接続できなく なることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 2.4 緊急時対策所用代替交流電源設備 緊急時対策所用代替交流電源設備である電源車（緊急時対策所用）は，メタルクラッ ドスイッチギア（緊急時対策所用）（7200V，1200A のものを 2 個），動力変圧器（緊急時刈策所用）（500kVA，6900／460V のものを2個），モータコントロールセンタ（緊急時対策所用）（ $600 \mathrm{~V}, 800 \mathrm{~A}$ のものを 3 個）， 105 V 交流電源切替盤（緊急時対策所用）（ $460 / 210-$ 105 V ，225A のものを 1 個）， 105 V 交流分電盤（緊急時対策所用）（30kVA，210－105V のも のを 1 個）， 120 V 交流分電盤（緊急時対策所用）（ $10 \mathrm{kVA}, 460 / 120 \mathrm{~V}$ のものを 2 個）， 210 V交流分電盤（緊急時対策所用）（ $150 \mathrm{kVA}, 460 / 210 \mathrm{~V}$ のものを 2 個）， 125 V 直流主母線盤（緊急時対策所用）（ $125 \mathrm{~V}, 1800 \mathrm{~A}$ のものを 3 個）を経由して緊急時対策所非常用送風機，衛星電話設備（固定型），無線連絡設備（固定型），統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP 電話及び IP－FAX）及び安全パラメータ表示システ ム（SPDS）等へ給電できる設計とする。 2.5 可搬型窒素ガス供給装置発電設備可搬型窒素ガス供給装置発電設備は，車両内に搭載し，可搬型窒素ガス供給装置に給電できる設計とする。	
3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備 3．1．1 系統構成	3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備 3．1．1 系統構成	

変更前	変更後	記載しない理由
設計基準対象施設の安全性を確保する上で特に必要な設備に対し，直流電源設備 を施設する設計とする。 直流電源設備は，短時間の全交流動力電源喪失時においても，発電用原子炉を安全 に停止し，かつ，発電用原子炉の停止後に灲心を泠却するための設備が動作すること ができるよう，これらの設備の動作に必要な容量を有する 125 V 蓄電池を設ける設計 とする。 非常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及び 125 V 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉の安全性は確保できる設計とする。また，これらの系統は，多重性及び独立性を確保することにより，共通要因により同時に機能が喪失することのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。	䖉計基準対象施設の安全性を確保する上で特に必要な設備に対し，直流電源設備 を施設する設計とする。 直流電源設備は，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの約 15 分を包絡した約 8 時間に対し，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に炉心を泠却するための設備が動作するとともに，原子炉格納容器の健全性を碓保するための䖊備が動作することができるよう，これらの設備の動作に必要な容量を有する 125 V蓄電池を設ける設計とする。 匪常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及び 125 V 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉の安全性は確保できる設娮とする。また，これらの系統は，多重性及び独立性を確保することにより，共通要因により同時に機能が喪失することのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁并，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。 䖉計基準事故対処設備の交流電源が喪失（全交流動力電源喪失）した場合に，重大事故等の対応に必要な炬心の著しい損傷，原子炉格納容器の破損，使用済燃料プ一ル内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止 するための直流負荷へ電力を供給する所内常設蓄電式直流電源設備として， 125 V 蓄電池 2 A 及び 2 B 並びに 125 V 充電器 2 A 及び 2 B を使用できる設計とする。 所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び $2 \mathrm{~B}, 125 \mathrm{~V}$ 充電器 2 A 及び 2 B （ $125 \mathrm{~V}, 700 \mathrm{~A}$ のものを 2 個），電路，計測制御装置等で構成し， 125 V 蓄電池 2 A 及び 2 B は， 125 V 直流主母線盤 2 A 及び 2 B （ $125 \mathrm{~V}, 1800 \mathrm{~A}$ のものを 2 個）， 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$（ $125 \mathrm{~V}, 1800 \mathrm{~A}$ のものを 2 個）， 125 V 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-$ 3，2B－1，2B－2 及び $2 \mathrm{~B}-3$（ $125 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 6 個）， 125 V 直流電源切替盤 2A 及 び2B（125V，60A のものを 2 個）並びに 125 V 直流 RCIC モータコントロールセンタ （ $125 \mathrm{~V}, 800 \mathrm{~A}$ のものを 1 個）へ電力を給電できる設計とする。 所内常設蓄電式直流電源設備の 125 V 蓄電池 2 A 及び 2 B は，全交流動力電源喪失か ら 1 時間以内に中央制御室において不要な負荷の切り離しを行うこと，また全交流厙力電源喪失から8時間後に中央制御室外において不要な負荷の切り離しを行うこ とで，全交流動力電源喪失から 24 時間にわたり， 125 V 蓄電池 2 A 及び 2 B から電力	

変更前	変更後	記載しない理由
3.2 計測制御用電源設備 設計基準対象施設の安全性を確保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とする。 非常用の計測制御用電源設備は，無停電交流 $120 V 2$ 母線及び計測母線 $120 V 2$ 母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認が可能な設計とする。 無停電交流電源用静止形無停電電源装置は，直流電源設備である 125 V 蓄電池から直流電源が供給されることにより，無停電交流母線に対し電源供給を確保する設計とする。	$2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$ までの系統並びに 250 V 蓄電池及び電源車から 250 V 直流主母線盤ま での系統において，独立した電路で系統構成することにより，非常用直流電源設備 の 125 V 蓄電池 $2 \mathrm{~A}, 2 \mathrm{~B}$ 及び 2 H から 125 V 直流主母線盤 $2 \mathrm{~A}, 2 \mathrm{~B}$ 及び 2 H までの系統に对して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替直流電源設備は非常用直流電源設備に対して独立性を有する設計とする。 可搬型代替直流電源設備の電源車の接続䈯所は，共通要因によって接続できなく なることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 3.4 主蒸気逃がし安全弁用可搬型蓄電池 原子炉冷却材圧力バウンダリを減圧するための設備のうち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁用可搬型蓄電池は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合においても，主蒸気逃がし安全弁の作動回路に接続することにより，主蒸気逃がし安全弁（2 個）を一定期間 にわたり連続して開状態を保持できる設計とする。 3.5 計測制御用電源設備 䖉計基準対象施設の安全性を確保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とする。 匪常用の計測制御用電源設備は，無停電交流 120V2母線及び計測母線120V2母線で構成する。 匪常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認が可能な設計とする。 無停電交流電源用静止形無停電電源装置は，外部電源喪失及び全交流動力電源喪失時 から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始さ れるまでの間においても，非常用直流電源設備である 125 V 蓄電池から直流電源が供給さ れることにより，無停電交流母線に対し電源供給を確保する設計とする。 なお，無停電交流電源用静止形無停電電源装置は約1時間，電源供給が可能な設計と する。	

変更前	変更後	記載しない理由
4．燃料設備 4． 1 非常用交流電源設備の燃料補給設備 7 日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処 するために必要な非常用ディーゼル発電機を7日間運転することにより必要とする電力 を供給できる容量以上の燃料を敷地内の軽油タンクに貯蔵する設計とする。	4．燃料設備 4.1 非常用交流電源設備の燃料補給設備 7 日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）2 台を7日間運転することにより必要とする電力を供給できる容量以上の燃料を㩤地内の軽油タンクに貯蔵する設計とする。 重大事故等時に，非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機 の燃料は，非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク及び燃料移送ポンプを用いて給油できる設計とする。 4．2 常設代替交流電源設備の燃料補給設備 ガスタービン発電機は，ガスタービン発電設備軽油タンクからガスタービン発電設備燃料移送ポンプを用いて燃料を補給できる設計とする。また，ガスタービン発電設備軽油タンクは，非常用ディーゼル発電設備軽油タンク及び高圧炬心スプレイ系ディーゼル発電設備軽油タンクからタンクローリを用いて燃料を補給できる設計とする。 非常用ディーゼル発電設備軽油タンク及び高圧炉心スプレイ系ディーゼル発電設備軽油タンクからタンクローリへの燃料の補給は，ホースを用いる設計とする。 然料補給設備のガスタービン発電設備燃料移送ポンプ及びタンクローリは，原子炉建屋付属棟から離れた屋外に設置又は分散して保管することで，原子炉建屋付属棟近傍の撚料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。また，予備のタンクローリについては，上記タンクローリと異なる場所に保管する設計とする。 ガスタービン発電設備軽油タンクは，非常用ディーゼル発電設備軽油タンク及び高圧炉心スプレイ系ディーゼル発電設備軽油タンクと離れた屋外に分散して設置すること で，共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 4.3 可搬型代替交流電源設備及び可搬型代替直流電源設備の燃料補給設備 電源車は，非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油タンクからタンクローリを用いて燃料 を補給できる設計とする。 非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油 タンク又はガスタービン発電設備軽油タンクからタンクローリへの燃料の補給は，ホー スを用いる設計とする。	

変更前	変更後	記載しない理由
	然料補給設備のタンクローリは，屋外の原子炉建屋付属棟から離れた場所に保管する ことで，原子炉建屋付属棟近傍の燃料移送ポンプと共通要因によって同時に機能を損な わないよう，位置的分散を図る設計とする。また，予備のタンクローリについては，上記 タンクローリと異なる場所に保管する設計とする。 ガスタービン発電設備軽油タンクは，非常用ディーゼル発電設備軽油タンク及び高圧炉心スプレイ系ディーゼル発電設備軽油タンクと離れた屋外に分散して設置すること で，共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とする。 4．4 緊急時対策所用代替交流電源設備の燃料補給設備 重大事故等時に電源車（緊急時対策所用）の燃料を貯蔵及び補給する設備として，緊急時対策所軽油タンク及びホースを使用できる設計とする。 電源車（緊急時対策所用）は，緊急時対策所軽油タンクから燃料を補給できる設計と する。 4.5 可搬型窒素ガス供給装置発電設備の燃料補給設備 可搬型窒素ガス供給装置発電設備は，非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油タンクから タンクローリを用いて燃料を補給できる設計とする。 非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油 タンク又はガスタービン発電設備軽油タンクからタンクローリへの燃料の補給は，ホー スを用いる設計とする。	
5．主要対象設備 非常用電源設備の対象となる主要な設備については，「表 1 非常用電源設備の主要設備 リスト」に示す。	5．主要対象設備 非常用電源設備の対象となる主要な設備については，「表 1 非常用電源設備の主要設備 リスト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

10．常用電源設備の基本設計方針

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設借に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炬及び その附属施設の技術基準に関する規則」並びにこれらの解粎による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれら の解粎による。	本記載は概要であるため，記載し ない。
第1章 共通項目 常用電源設備の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対す る要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止，4．4 耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 常用電源設備の共通項目である「1．地盤等， 2. 自然現象（ 2.2 津波による損傷の防止を除く。）3．火災，5．設備に対する要求（5．2 材料及び構造等，5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等，5．5 安全弁等，5．6逆止め弁，5．7 内燃機関及 びガスタービンの設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止 重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 常用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，通常運転時 に必要な負荷を各母線に振り分け給電する。それぞれの母線から動力変圧器を通し て降圧し，常用低圧母線（パワーセンタ及びモータコントロールセンタで構成）へ給電する。 共通用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，それぞれ の母線から動力変圧器を通して降圧し，共通用低圧母線（パワーセンタ及びモータコ ントロールセンタで構成）へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離で きる設計とし，故障による影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。	第2章 個別項目 1．保安電源設備 1.1 発電所構内における電気奚統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止 安全施設へ電力を供給する保安電源設備は，電線路，発電用原子炉施設において常時使用される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設直し，機器の損壊，故障その他の異常を検知するとともに，異常を検知した場合は， ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することによ り，その拡大を防止する設計とする。 特に重要安全施設に給電する系統においては，多重性を有し，系統分離が可能で ある母線で構成し，信頼性の高い機器を設置する。 常用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，通常運転時 に必要な負荷を各母線に振り分け給電する。それぞれの母線から動力変圧器を通し て降圧し，常用低圧母線（パワーセンタ及びモータコントロールセンタで構成）へ給電する。 共通用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，それぞれ の母線から動力変圧器を通して降圧し，共通用低圧母線（パワーセンタ及びモー夕 コントロールセンタで構成）へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離 できる設計とし，故障による影響を局所化できるとともに，他の安全施設への影響 を限定できる設計とする。	

変更前	変更後	記載しない理由
常用の直流電源設備は， 250 V 蓄電池， 250 V 充電器， 250 V 直流主母線盤等で構成す る。 常用の直流電源設備は，タービンの非常用油ポンプ，発電機の非常用密封油ポンプ等へ給電する設計とする。 常用の計測制御用電源設備は，計測母線で構成する。 常用電源設備の動力回路のケーブルは，負荷の容量に応じたケーブルを使用する設計とし，多重化した非常用電源設備の動力回路のケーブルの系統分離対策に影響 を及ぼさない設計とするとともに，制御回路や計装回路への電気的影響を考慮した設計とする。 1.2 電線路の独立性及び物理的隔離 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 設計基準対象施設は，送受電可能な回線として 275 kV 送電線（東北電力ネットワーク	常用の直流電源設備は， 250 V 蓄電池， 250 V 充電器， 250 V 直流主母線盤等で構成す る。 常用の直流電源設備は，タービンの非常用油ポンプ，発電機の非常用密封油ポン プ等へ給電する設計とする。 常用の計測制御用電源設備は，計測母線で構成する。 常用電源設備の動力回路のケーブルは，負荷の容量に応じたケーブルを使用する信計とし，多重化した非常用電源設備の動力回路のケーブルの系統分離対策に影響 を及ぼさない設計とするとともに，制御回路や計装回路への電気的影響を考慮した信計とする。 1．1．2 1相の電路の開放に対する検知及び電力の安定性回復 変圧器 1 次側において 3 相のらちの 1 相の電路の開放が生じた場合に検知できる よう，変圧器 1 次側の電路は，電路を筐体に内包する変圧器やガス絶縁開閉装置等 により構成し， 3 相のうちの 1 相の電路の開放が生じた場合に保護継電器にて自動 で故障箇所の隔離及び非常用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。 送電線において 3 相のらちの 1 相の電路の開放が生じた場合， 275 kV 送電線は 1 回線での電路の開放時に安全施設への電力の供給が不安定にならないよう，多重化し た設計とする。 また，電力送電時，保護装置による 3 相の電流不平衡監視にて常時自動検知でき る設計とする。 66 kV 送電線は，各相の不足電圧継電器にて常時自動検知できる設計とする。 埂に， 275 kV 送電線及び 66 kV 送電線は，保安規定に定めている巡視点検を加える ことで，保護装置による検知が期待できない場合の 1 相開放故障や，その兆候を早期に検知できる設計とする。 275 kV 送電線及び 66 kV 送電線において 1 相の電路の開放を検知した場合は，自動又は手動で故障箇所の隔離及び非常用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。 1.2 電線路の独立性及び物理的隔離 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当硋重要安全施設に供給するため，電力系統に連系した設計とする。 信計基準対象施設は，送受電可能な回線として 275 kV 送電線（東北電力ネットワーク	

変更前	変更後	記載しない理由
株式会社牡麀幹線（以下「牡鹿幹線」という。）（第 1 号機設備，第 1，2，3号機共用（以下同じ。））及び 275 kV 送電線（東北電力ネットワーク株式会社松島幹線（以下「松島幹線」という。））（第3号機設備，第1，2，3号機共用（以下同じ。））の 2 ルート 4 回線及 び受電專用の回線として66kV 送電線（東北電カネットワーク株式会社塚浜支線（以下 ${ }^{(\text {塚 }}$浜支線」という。）（東北電カネットワーク株式会社鮎川線（以下「鮎川線」といら。）1号 を一部含む。）及び東北電カネットワーク株式会社万石線（以下「万石線」という。））（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））1 ルート 1 回線の合計 3 ルート 5 回線に て，電力系統に接続する設計とする。 275 kV 送電線（牲鹿幹線） 1 ルート 2 回線は東北電カネットワーク株式会社石巻変電所 （以下「石巻変電所」という。）， 275 kV 送電線（松島幹線）1 ルート 2 回線は東北電力ネ ットワーク株式会社宮城中央変電所（以下「宮城中央変電所」という。）に連系する設計 とする。また，66kV 送電線（塚浜支線（鮎川線 1 号を一部含む。））1 ルート 1 回線は東北電カネットワーク株式会社女川変電所（以下「女川変電所」という。）及び万石線を経由し，その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石巻変電所」という。）に連系する設計とする。	麻式会社牡鹿幹線（以下「牡鹿幹線」といら。））（第1号機設備，第 1，2，3号機共用（以下同じ。））及び 275 kV 送電線（東北電力ネットワーク株式会社松島幹線（以下「松島幹線」という。））（第3号機設備，第1，2，3号機共用（以下同じ。））の 2 ルート 4 回線及 び受電専用の回線として 66 kV 送電線（東北電力ネットワーク株式会社塚浜支線（以下「塚梹支線」といら。）（東北電力ネットワーク株式会社鮎川線（以下「鮎川線」といら。）1号 を一部含む。）及び東北電カネットワーク株式会社万石線（以下「万石線」という。））（第 1 号機設備，第 1 ，2， 3 号機共用（以下同じ。））1 ルート 1 回線の合計 3 ルート 5 回線に て，電力系統に接続する設計とする。 275 kV 送電線（牡鹿幹線）1 ルート 2 回線は東北電力ネットワーク株式会社石巻変電所 （以下「石巻変電所」といら。），275kV 送電線（松島幹線）1 ルート 2 回線は東北電力斈 ットワーク株式会社宮城中央変電所（以下「宮城中央変電所」という。）に連系する設計 とする。また，66kV 送電線（塚浜支線（鮎川線 1 号を一部含む。））1 ルート 1 回線は東北電力ネットワーク株式会社女川変電所（以下「女川変電所」という。）及び万石線を経由し，その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石巻変電所」という。）に連系する設計とする。 上記 3 ルート 5 回線の送電線の独立性を確保するため，万一，送電線の上流側接続先 である石巻変電所が停止した場合でも，外部電源からの電力供給が可能となるよう，宮城中央変電所及び女川変電所を経由するルートで本発電所に電力を供給することが可能 な設計とする。また，宮城中央変電所が停止した場合には，石巻変電所及び女川変電所 を経由するルートで本発電所に電力を供給することが可能な設計とする。更に，女川変電所が停止した場合には，石巻変電所及び宮城中央変電所を経由するルートで本発電所 に電力を供給することが可能な設計とする。 殿計基準対象施設は，電線路のらち少なくとも 1 回線は，同一の送電鉄塔に架線され ていない，他の回線と物理的に分離された送電線から受電する設計とする。 また，大規模な盛土の崩壊，大規模な地すべり，急傾斜地の崩壊に対し鉄塔基礎の安定性が確保され，台風等による強風発生時及び着氷雪の事故防止対策が図られ，送電線 の接近•交差•併架㯺所については，仮に1つの鉄塔が倒壊しても，全ての送電線が同時 に機能喪失しない離隔距離が確保された送電線，又は電線の張力方向によって，全ての送電線が同時に機能䨨失しないように配置された鉄塔の送電線から受電できる設計とす 3. 1.3 発電用原子炉施設への電力供給確保 殷計基準対象施設に接続する電線路は，いずれの 2 回線が喪失した場合においても電	

変更前	変更後	記載しない理由
1.3 設備の共用 275 kV 送電線， 275 kV 開閉所， 66 kV 送電線， 66 kV 開閉所及び予備電源盤は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機の必要負荷容量を満足する設計とすること， また，各号機に遮断器を設け，短絡•地絡等の故障が発生した場合，故障箇所を隔離し，他号機へ影響を及ぼさない設計とし，共用箇所の故障により外部電源を受電できなくな った場合は，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。） により各号機の非常用所内電源系に給電できる設計とすることで，共用により安全性を損なわない設計とする。	力系統から発電用原子炉施設への電力の供給が停止しない設計とし，275kV 送電線4回線は母線連絡遮断器を設置したタイラインにより起動変圧器を介して接続するととも に， 66 kV 送電線は予備変圧器（第 1 号機設備，第 $1,2,3$ 号機共用）を介して接続する喭計とする。 開閉所から主発電機側の送受電設備は，十分な支持性能を持つ地盤に設置するととも に，耐震性の高い，可とう性のある懸垂碍子及び重心の低いガス絶縁開閉装置を設置す る設計とする。 更に，防潮堤等により津波の影響を受けないエリアに設置するとともに，塩害を考慮 し，275kV 送電線引留部の碍子に対しては，碍子洗浄ができる設計とし，66kV 送電線引留部の碍子に対しては，絶縁強化を施した碍子を設置し，遮断器等に対しては，電路が タンクに内包されているガス絶縁開閉装置を設置する。 1.4 設備の共用及び相互接続 275 kV 送電線， 275 kV 開閉所， 66 kV 送電線， 66 kV 開閉所及び予備電源盤は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機の必要負荷容量を満足する設計とすること， また，各号機に遮断器を設け，短絡•地絡等の故障が発生した場合，故障箇所を隔離し，他号機へ影響を及ぼさない設計とし，共用箇所の故障により外部電源を受電できなくな った場合は，非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。） により各号機の非常用所内電源系に給電できる設計とすることで，共用により安全性を損なわない設計とする。 共通用高圧母線（第 $1 \sim 2$ 号機間及び第 $2 \sim 3$ 号機間）は，第 1 号及び第 2 号機並びに第 2 号及び第 3 号機で相互接続しているが，電源融通時に何らかの要因で電気故障が発生した場合，遮断器により故障箇所を隔離し，他の号機へ影響を及ぼさない設計とする ことで，相互接続により安全性を損なわない設計とする。	
2．主要対象設備 常用電源設備の対象となる主要な設備について，「表1常用電源設備の主要設備リスト」 に示す。	2．主要対象設備 常用電源設備の対象となる主要な設備について，「表1常用電源設備の主要設備リスト」 に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

変更前
用語の定義は「発電用原子力設備に関する技術基漼を定める省令」，「実用発電用原子炉
及びその附属施設の位置，構造及び設備の基準に関する則則」及び「実用発電用原子炉及び

及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炬及び その附属施設の技術基準に関する規則」並びにこれらの解秋による。

第1章 共通項目

補助ボイラーの共通項目である $「 1$ ．地盤等，2．自然現象，3．火災，4．設備に対す る要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止，4．4 耐圧試験等， 4.6 逆止め弁，4．7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他（5．4 放射性物質による污染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。

第2章 個別項目
1．補助ボイラー
1.1 補助ボイラーの機能

発電用原子炬施設には，設計基準事故に至るまでの間に想定される使用条件として，液体廃重物処理系の濃縮装置，排ガス予熱器，屋外タンクの保温及び建屋の暖房用並び に主蒸気が使用できない場合のタービンのグランドシール及び起動停止用蒸気式空気抽出器に，必要な蒸気を供給する能力を有する主ボイラー（第 1 号機設備，第 1,2 号機共用（以下同じ。））及び補助ボイラー（第1，2号機共用（以下同じ。））を設置する。
主ボイラー及び補助ボイラーは，発電用原子炉施設の安全性を損なわない設計とする。
1.2 補助ボイラーの設計条件

主ボイラーは，ボイラー本体，重油燃炾設備，通風設備，給水設備，制御装置等から，補助ボイラーは，ボイラー本体，給水設備，制御装置等から構成する。
蒸気は蒸気だめより加熱蒸気系を経て，蒸気を使用する各機器に供給できる設計とす る。

各機器で使用された蒸気のらち回収できるものは，復水戻り系により，主ボイラー及 び補助ボイラーの給水として再使用し，給水使用量を低滅できる設計とする。

主ボイラー及び補助ボイラーは，長期連続運転及び負荷変動に対応できる設計とし，設計基準事故時及び当該事故に至るまでの間汇想定される全ての環境条件において，そ の機能を発捙できる設計とするとともに，主ボイラー及び補助ボイラーの健全性及び能力を碓認するため，必要な箇所の保守点検（試験及び検查を含む。）ができるよう設計す る。
－変更後

用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基漼に関す
る規則」及び「実用発電用原子炉及びその附属施設の技術基漼に関する規則」並びにこれら の解釈による。

第1章 共通項目

補助ボイラーの共通項目である 1 ．地盤等，2．自然現象（ 2.2 津波による損傷の防止を除く。）3．火災，5．設備に対する要求（5．2 材料及び構造等，5．3 使用中の亀裂等による破境の防止，5．4耐圧試験等，5．6逆止め弁，5．7 内燃機関及びガスタービン の設計条件，5．8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染 の防止を除く。）」の基本設計方針については，原子炬冷却系統施設の基本設計方針「第1章共通項目」に基づく設計とする。

第2章 個別項目
1．補助ボイラー
1.1 補助ボイラーの機能

廃電用原子炉施設には，設計基準事故に至るまでの間に想定される使用条件として，
腋体廃裹物処理系の謴縮装置，排ガス予熱器，屋外タンクの保温及び建屋の暖房用並び に主蒸気が使用できない場合のタービンのグランドシール及び起動停止用蒸気式空気抽出器に，必要な蒸気を供給する能力を有する補助ボイラー（第 1，2 号機共用（以下同 じ。）を設置する。
㕊助ボイラーは，発電用原子炬施設の安全性を損なわない設計とする。
1.2 補助ボイラーの設計条件

補助ボイラーは，ボイラー本体，給水設備，制御装置等から構成し，蒸気は蒸気だめよ り加熱蒸気系を経て，蒸気を使用する各機器に供給できる設計とする。

各機器で使用された蒸気のらち回收できるものは，復水戻り系により，補助ボイラー の給水として再使用し，給水使用量を低減できる設計とする。
補助ボイラーは，長期連続運転及び負荷変動に対応できる設計とし，設計基準事故時及び当該事故に至るまでの間に想定される全ての環境条件において，その機能を発揮で きる設計とするとともに，補助ボイラーの健全性及び能力を碓認するため，必要な箇所 の保守点検（試験及び検査を含む。）ができるよう設計する。
設計基準対象施設に施設する補助ボイラー並びにその附属設備の耐圧部分に使用する材料は，安全な化学的成分及び機械的強度を有するとともに，耐圧部分の構造は，最高使用圧力及び最高使用温度において，発生する応力に対して安全な設計とする。

記載しない理由
本記載は概要であるため，記載し ない。

本記載は概要であるため，記載し ない。

「実用発電用原子炉及びその附属施設の技術基準に関する規則」 の要求事項であり，「実用発電用原子炉及びその附属施設の位置，構造及び設備基準に関する規則」 の要求事項でないため，記載しな い。

変更前	変更後	記載しない理由
ることで，共用により安全性を損なわない設計とする。	ることで，共用により安全性を損なわない設計とする。	原子炬及びその附属施設の位置，構造及び設備基準に関する規則」 の要求事項でないため，記載しな い。

12．火災防護設備の基本設計方針

変更前	変更後	記載しない理由
用語の定義は「発電用軽水型原子炬施設の火災防護に関する審査指針」による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す る規則」，「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈並びに「実用発電用原子炉及びその附属施設の火災防護に係る審査基準」（平成 25 年 6月 19 日原子力規制委員会）による。	本記載は概要であるため，記載し ない。
第1章 共通項目	第1章 共通項目 火災防護設備の共通項目である「1．地盤等， 2. 自然現象（ 2.2 津波による損傷の防止を除く。），5．設備に対する要求（5．5 安全弁等，5．6 逆止め弁， 5.8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉泠却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．火災防護設備の基本方針 火災により原子炉の安全性が損なわれないように，「原子力発電所の火災防護指針」（日本電気協会 J EAG4607）に準じ，火災の発生防止対策，火災の検知及び消火対策並 びに火災の影響軽減対策を組み合わせて対応する。	第2章 個別項目 1．火災防護設備の基本設計方針 信計基準対象施設は，火災により発電用原子炬施設の安全性を損なわないよう，火災防隻上重要な機器等を設置する火災区域及び火災区画に対して，火災防護対策を講じる。 発電用原子炉施設は，火災によりその安全性を損なわないように，適切な火災防護対策 を講じる設計とする。火災防護対策を講じる対象として「発電用軽水型原子炉施設の安全嘰能の重要度分類に関する審査指針」のクラス 1 ，クラス 2 及び安全評価上その機能を期待 するクラス 3 に属する構築物，系統及び機器とする。 火災防護上重要な機器等は，上記構築物，系統及び機器のらち原子炉の高温停止及び低榅停止を達成し，維持するために必要な構築物，系統及び機器並びに放射性物質の貯蔵又 は閉じ込め機能を有する構築物，系統及び機器とする。 原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器 は，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な以下の機能を確保するための構築物，系統及び機器とする。 （8）心分却機能 （9）工学的安全施設及び原子炬停止系への作動信号の発生機能	

変更前	変更後	記載しない理由
2．火災の発生防止対策 2.1 発火性，引火性材料の予防措置 2．1．1 設備の対策 （1）潤滑油及び燃料油を内包する設備の対策 潤滑油又は燃料油を内包する設備は，オイルパン，ドレンリム及び堰による漏えい防止対策を講じるとともに，ポンプの軸受部は溶接構造又はシール構造とする。 配管及びタンクは原則溶接構造とする。 また，安全機能を有する構造物，系統及び機器を設置する火災区域で使用する潤滑油及び燃料油は，必要以上に貯蔵しない。 （2）水素を内包する設備の対策 水素を内包する設備及び機器には，気体廃棄物処理設備及び蓄電池がある。 これらの設備及び機器は，以下に示す漏えい防止及び換気等による防爆対策を講 じることにより火災の発生を防止する。	消火並びに火災の影響軽減のそれぞれを考慮した火災防謢対策を講じる設計とする。 なお，発電用原子炬施設のらち，火炎防護上重要な機器等又は重大事故等対処施設に含 ＊れない構築物，系統及び機器は，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防謢対策を講じる設計とする。 発電用原子炉施設の火災防護上重要な機器等は，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減の 3 つの深層防護の概念に基づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定めて，管理する。 重大事故等対処施設は，火災の発生防止，火災の早期感知及び消火の必要な運用管理冚含む炏災防謢対策を講じることを保安規定に定めて管理する。 重大事故等対処施設のらち，可搬型重大事故等対処設備に対する火災防護対策について も保安規定に定めて，管理する。 その他の発電用原子炬施設については，「消防法」，「建築基潐法」，「日本電気協会電気技逆規程•指針」に基づき設備に応じた火災防護対策を講じることを保安規定に定めて，管理する。 外部火災については，設計基集対象施設及び重大事故等対処施設を外部火災から防護す るための運用等について保安規定に定めて，管理する。 1.1 火災発生防止 1．1．1 火災の発生防止対策 灰災の発生防止における発火性又は引火性物質汇対する火災の発生防止対策は，火災区域又は火㷋区画に設置する㵎滑油又は燃料油を内包する設備並びに水素を内包する設備を対象とする。 四滑油又は然料油を内包する設備は，溶接構造，シール構造の採用による漏えい の防止及び防爆の対策を講じるとともに，堰等を設置し，漏えいした泪滑油又は燃料油が拡大することを防止する設計とし，潤滑油又は燃料油を内包する設備の火災汇より発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわないよ 5，壁の設置又は離隔による配置上の考慮を行ら設計とする。 四滑油又は然料油を内包する設備を設置する火災区域又は火災区画は，空調機器 による機械換気又は自然換気を行ら設計とする。 四滑油又は然料油を貯蔵する設備は，貯蔵量を一定時間の運転に必要な量にとど める設計とする。 水素を内包する設備のうち気体廃軍物处理系設備及び発電機水素がス供給設備の	

変更前
a．配管及び機器は原則溶接構造とし，弁は溶接構造，ベローズ弁等の漏えい防止構造とする。
b．溶接構造としている配管設置区域以外は，以下に示すとおり換気により雰囲気中での水素の滞留を防止する
（a）気体廃棄物処理設備の構成機器を設置する区画は，空調設備にて換気する。
（b）蓄電池室は，充電中に内部から水素が放出されることから，空調設備で換気す る。

配管等は水素の漏えいを考慮した溶接構造とし，弁グランド部から水素の漏えいの可能性のある弁は，ベローズ弁等を用いて防爆の対策を行う設計とし，水素を内包 する設備の火災により，発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわないよう，壁の設置による配置上の考慮を行ら設計とする。

水素を内包する設備である蓄電池，気体廃车物処理系設備，発電機水素ガス供給設備及び水素ボンべを設置する火災区域又は火災区画は，送風機及び排風機による機械換気を行い，水素濃度を燃焼限界濃度以下とする設計とする。

水素ボンベは，ボンベ使用時のみ建屋内に持込みを行う運用として保安規定に定 めて，管理し，火災区域内に水素の貯蔵機器は設置しない設計とする。

火災の発生防止における水素漏えい検出は，蓄電池室の上部に水素濃度検出器を喭置し，水素の燃焼限界濃度である $4 \mathrm{vo1} \%$ の $1 / 4$ に達する前の濃度にて中央制御室 に警報を発する設計とする。
気体廃棄物処理系設備内の水素濃度については，水素濃度計により中央制御室で常時監視ができる設計とし，水素濃度が上昇した場合には中央制御室に警報を発す る設計とする。
溌電機水素ガス供給設備は，水素消費量を管理するとともに，発電機内の水素純度，水素圧力を中央制御室で常時監視ができる設計とし，発電機内の水素純度や水素圧力が低下した場合には中央制御室に警報を発する設計とする。

水素ボンべを使用する火災区域又は火災区画については，ボンべ使用時のみ建屋内に持込みを行ら運用として保安規定に定めて，管理し，機械換気により水素濃度 を燃焼限界濃度以下とするように設計することから，水素濃度検出器は設置しない設計とする。

蓄電池室の換気設備が停止した場合には，中央制御室に警報を発する設計とする。 また，蓄電池室には，直流開閉装置やインバータを設置しない。

放射性廃棄物処理設備及び放射性廃棄物貯蔵設備において，崩壊熱が発生し，火扊事象に至るような放射性廃棄物を貯蔵しない設計とする。
また，放射性物質を含んだ使用済イオン交換樹脂，チャコールフィルタ及び HEPA フィルタは，固体廃棄物として処理を行うまでの間，金属容器や不燃シートに包え で保管することを保安規定に定めて，管理する。

放射性廃棄物処理設備及び放射性廃棄物貯蔵設備を設置する火災区域又は火災区画の換気設備は，火災時に他の火災区域又は火災区画や環境への放射性物質の放出

変更前	変更後	記載しない理由
2.2 電気設備の過電流による過熱防止対策 電気系統は，地絡及び短絡に起因する過電流による過熱防止のため，過負荷継電器又 は過電流継電器等の保護継電装置と遮断器の組合せにより故障機器系統の早期遮断を行 い，過熱及び焼損の未然防止を図る。	を防ぐために，換気設備の停止及び風量調整ダンパの閉止により，隔離ができる設娮とする。 必災の発生防止のため，火災区域又は火災区画において有機溶剤を使用する場合 は必要量以上持ち込まない運用として保安規定に定めて，管理するとともに，可燃性の蒸気が滞留するおそれがある場合は，使用する作業場所において，換気，通風，拡散の措置を行らとともに，建屋の送風機及び排風機による機械換気により滞留を防止する設計とする。 火災区域又は火災区画において，発火性又は引火性物質を内包する設備は，溶接構造の採用及び機械換気等により，「電気設備に関する技術基準を定める省令」及び「工場電気設備防爆指針」で要求される爆発性雾囲気とならない設計とするととも に，当該の設備を設ける火災区域又は火災区画に設置する電気•計装品の必要な箇所には，接地を施す設計とする。 火災の発生防止のため，可燃性の微粉を発生する設備及び静電気が溜まるおそれ がある設備を火災区域又は火災区画に設置しないことによって，可燃性の微粉及び静電気による火災の発生を防止する設計とする。 必災の発生防止のため，発火源への対策として，設備を金属製の筐体内に収納す る等，火花が設備外部に出ない設備を設置するとともに，高温部分を保温材で覆引 ことによって，可燃性物質との接触防止や藺滑油等可燃物の過熱防止を行ら設計と する。 火災の発生防止のため，発電用原子炉施設内の電気系統は，保護継電器及び遮断器によって故障回路を早期に遮断し，過電流による過熱及び焼損を防止する設計と する。 屚気品室は，電源供給のみに使用する設計とする。 灵災の発生防止のため，放射線分解により水素が発生する火災区域又は火災区画 における，水素の蓄積防止対策として，社団法人火力原子力発電技術協会「BWR 配管 における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10 月）」等に基づき，原子炉の安全性を損ならおそれがある場合には水素の蓄積を防止する豦計とする。 厙大事故等時の原子炉格納容器内及び建屋内の水素については，重大事故等対処	

変更前	変更後	記載しない理由
2.3 不燃性材料，難燃性材料の使用 安全機能を有する構築物，系統及び機器は，以下のとおり不燃性又は難燃性材料を使用する。 （1）構築物は，不燃性である鉄筋コンクリート及び鋼材により構成する。 （2）機器，配管，ダクト，トレイ，電線管及びこれらの支持構造物は，主要な構造材に不燃性である金属を使用する。 （3）安全機能を有するケーブルは，実用上可能な限り「IEEE Standard for Type of Class 1E Electric Cables，Field Splices，and Connections for Nuclear Power Generating Stations」（I E E E Std 383－1974）又は電気学会技術報告 II部第 139 号（昭和 57 年 11 月）の垂直トレイ燃焼試験に合格した難燃性ケーブル を使用する。また，必要に応じ延焼防止塗料を使用する。 （4）建屋内における変圧器は乾式とし，遮断器は実用上可能な限りオイルレスとする。 （5）安全機能を有する動力盤及び制御盤は，不燃性である鋼製の筐体，塩化ビニル等難㦓性の配線ダクト及びテフロン等実用上可能な限り難燃性の電線を使用する。 （6）換気設備のフィルタは，チャコールフィルタを除き難燃性のガラス繊維を使用す る。 （7）保温材は，不燃性の金属保温並びに難燃性のロックウール，グラスウール等を使用する。 （8）建屋内装材は，実用上可能な限り不燃性材料及び難燃性材料を使用する。	椸設にて，蓄積防止対策を行う設計とする。 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料 を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能を有するもの（以下「代替材料」といら。）を使用する設計，若しくは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用が技術上困難な場合は，当該構築物，系統及び機器における火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生 することを防止するための措置を講じる設計とする。 灵災防護上重要な機器等及び重大事故等対処施設のらち，機器，配管，ダクト，ト レイ，電線管，盤の筐体及びこれらの支持構造物の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計と する。 ただし，配管のパッキン類は，その機能を確保するために必要な代替材料の使用 が技術上困難であるため，金属で覆われた狭隘部に設置し直接火炎に晒されること のない設計とする。 金属に覆われたポンプ及び弁等の駆動部の潤滑油並びに金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他の火災防護上重要な機器等及び重大事故等対処施設に延焼しないことから，不燃性材料又は難燃性材料でない材料を使用する設計とする。 必災防護上重要な機器等及び重大事故等対処施設に使用する保温材は，原則，「平成 12 年建設省告示第 1400 号」に定められたもの又は「建築基準法」で不燃性材料 として認められたものを使用する設計とする。 必災防護上重要な機器等及び重大事故等対処施設を設置する建屋の内装材は，「建築基準法」で不燃性材料として認められたものを使用する設計とする。 ただし，管理区域の床や，原子炉格納容器内の床や壁に使用する耐放射線性のコ ーティング剤は，不燃性材料であるコンクリート表面に塗布すること，難燃性が確認された塗料であること，加熱源を除去した場合はその燃㳣部が広がらないこと，原子炉格納容器内を含む建屋内に設置する火災防護上重要な機器等及び重大事故等㭩処施設は，不燃性又は難燃性の材料を使用し，その周辺には可燃物がないことか ら，難燃性材料を使用する設計とする。	

変更前	変更後	記載しない理由
火災の検知及び消火対策 安全機能を有する構築物，系統及び機器に使用する材料は，実用上可能な限り不燃性又 は難燃性とし，火災の発生を防止するための予防措置を講じていることから，火災の可能性は小さいが，万一の場合に備え，火災報知設備及び消火設備を設ける。 3.1 火災報知設備 火災報知設備は，火災感知器及び火災受信機等で構成する。 3．1．1 火災感知器 火災感知器は，火災の発生による原子炉に外乱が及び，かつ，原子炉保護設備又は工学的安全施設作動設備の作動を要求される場合の高温停止を達成するに必要な系統及び機器，原子炉を低温停止するに必要な系統及び機器，放射性物質の抑制されな い放出を防止するに必要な系統及び機器並びにそれらが機能する必要な計測制御系，電源系及び冷却系等の関連系の設置区域に設置する，ただし，これら区域に設置 される系統及び機器が火災による悪影響を受ける可能性がない場合等は，火災感知器を設置しない。 3．1．2 火災感知器設置要領 （1）火災感知器は，消防法施行規則に準じて，煙感知器又は熱感知器を設置する。 （2）火災感知器の電源は，通常時は常用低圧母線から給電するが，交流電源喪失時に は，火災受信機の蓄電池から給電することにより，その機能を失わないようにする。 3．1．3 火災受信機設置要領 火災受信機は中央制御室に設置し，火災発生時には警報を発信するとともに，火災発生区域を表示できるようにする。	る設計とするとともに，「実用発電用原子炉及びその附属施設の技術基準に関する規測の解釈」（平成 25 年 6 月 19 日原子力規制委員会）に従い，耐震設計を行ら設計と する。 火災防護上重要な機器等及び重大事故等対処施設は，森林火災から，防火帯によ る防護により，火災発生防止を講じる設計とし，竜巻（風（台風）を含む。）から， 竜巻防護対策設備の設置，固綪等により，火災の発生防止を講じる設計とする。 1.2 火災の感知及び消火 火災区域又は火災区画の火災感知設備及び消火設備は，火災防護上重要な機器等及び重大事故等対処施設に対して火災の影響を限定し，早期の火災感知及び消火を行ら設計 とする。 火災感知設備及び消火設備は，「1．1．3 自然現象による火災の発生防止」で抽出した自然現象に対して，火災感知及び消火の機能，性能が維持できる設計とする。 火災感知設備及び消火設備については，火災区域及び火災区画に設置された火災防護上重要な機器等の耐震クラス及び重大事故等対処施設の区分に応じて，地震に対して機能を維持できる設計とする。 1．2．1 火災感知設備 炏災感知設備の火災感知器は，火災区域又は火災区画における放射線，取付面高 さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器 を設置する火災区域又は火災区画の火災防護上重要な機器等及び重大事故等対処施信の種類に応じ，火災を早期に感知できるよう，固有の信号を発するアナログ式の垔感知器及びアナログ式の熱感知器の異なる種輠の火炎感知器を組み合わせて設置 する設計とする。 ただし，発火性又は引火性の雾囲気を形成するおそれのある場所及び屋外等は，睘境条件や火災の性質を考慮し，非アナログ式の炎感知器，アナログ式の屋外仕様 の熱感知カメラ，非アナログ式の屋外仕様の炎感知器，非アナログ式の防爆型の煏感知器及び非アナログ式の防爆型の熱感知器も含めた組み合わせで設置する設計と する。 火災感知器については，消防法施行規則に従い設置する，又は火災区域内の感知器の網羅性及び火災報知設備の感知器及び発信機に係る技術上の規格を定める省令 に定める感知性能と同等以上の方法により設置する設計とする。 匪アナログ式の火災感知器は，環境条件等を考慮することにより誤作動を防止す る設計とする。 なお，アナログ式の屋外仕様の熱感知カメラ及び非アナログ式の屋外仕様の炎感	

変更前	変更後	記載しない理由
3.2 消火設備 消火設備は，消火栓設備，二酸化炭素消火設備及び消火器で構成する。 3．2．1 消火設備設置対象区域 （1）火災防護上，以下の区域に消火設備を設置する。 a．原子炉建屋，タービン建屋及び制御建屋等には，すべての区域の消火活動に対処 できるように屋内消火栓を設置する。 b．火災の影響軽減対策として，火災荷重の大きいディーゼル発電機室及びケーブ	知器は，監視範囲に火災の検知に影響を及ぼす死角がないように設置する設計とす る。 また，発火源となるようなものがない火災区域又は火災区画は，可燃物管理によ り可燃物を持ち込まない運用として保安規定に定めて，管理することから，火災感知器を設置しない設計とする。 火災感知設備のうち火災受信機盤は中央制御室に設置し，火災感知設備の作動状闾を常時監視できる設計とする。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を 1 つずつ特定できる設計とする。屋外の海水ボ シプ室（補機ポンプエリア）及びガスタービン発電設備燃料移送ポンプを監視する アナログ式の屋外仕様の熱感知カメラの火災受信機盤においては，カメラ機能によ る映像監視（熱サーモグラフィ）により火災発生箇所の特定が可能な設計とする。 火災感知器は，自動試験機能又は遠隔試験機能により点検ができる設計とする。 自動試験機能又は遠隔試験機能を持たない火災感知器は，機能に異常がないこと を確認するため，「消防法施行規則」に準じ，煙等の火災を模擬した試験を実施す る． 必災感知設備は，外部電源霛失時又は全交流動力電源喪失時においても火災の感知が可能となるように蓄電池を設け，電源を確保する設計とする。また，火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の火災感知設備の電源は，非常用電源又は常設代替交流電源設備からの受電も可能な設計と する。 火災区域又は火災区画の火災感知設備は，凍結等の自然現象によっても，機能，泩能が維持できる設計とする。 屋外に設置する火災感知設備は，$-14.6^{\circ} \mathrm{C}$ まで気温が低下しても使用可能な火災感知設備を設置する設計とする。 屋外の火災感知設備は，火災感知器の予備を保有し，万一，風水害の影響を受け た場合にも，早期に取替えを行らことにより機能及び性能を復旧する設計とする。 1．2．2 消火設備 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起きた場合においても，原子灲を安全 に停止させるための機能又は重大事故等に対処するために必要な機能を有する電気及び機械設備に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響 により消火活動が困難となるところは，自動消火設備又は手動操作による固定式消火設備であるハロンガス消火設備及びケーブルトレイ消火設備を設置して消火を行	

変更前	変更後	記載しない理由
ル処理室には，二酸化炭素消火設備を設置する。 c．中央制御室には消火器を設置する。 3．2．2 消火設備の設置要領 消火設備は，「消防法施行令」に準じて設置する。 なお，汚染の可能性のある消火排水が建屋外へ流出するおそれがある場合には，建屋外氾通じる出入口部に堰又はトレンチあるいは床面スロープを設置し，消火排水 を床ドレンより液体廃重物処理設備に導く。 3．2．3 消火用水供給設備 消火栓への消火用水供給設備は，消火水槽（第1，2号機共用（以下同じ。）），消火 ポンプ（第 1,2 号機共用（以下同じ。））及び消火系配管等で構成する。消火用水は，消火ポンプで建屋内外纪布設された消火系配管省かれ，必要箇所に送水される。ま た，消火ポンプ故障時には，中央制御室に警報を発信する。 3.3 消火設備の破損，誤作動又は誤操作対策 消火設備は，以下のとおり破損，誤作動又は誤操作によって安全機能を有する構築物，系統及び機器の安全機能を霛失しないようにする。 （1）消火設備は，安全機能を有する構築物，采統及び機器に対し，地震に伴ら波及的影響を及ぼさないようにする。 （2）ディーゼル発電機は，二酸化炭素消火設備の誤動作又は誤操作により，ディーゼ ル機関内の燃焼が阻害されることがないよう，ディーゼル機関に外気を直接吸気し，室外へ排気する。	5設計とする。 火災発生時の煙の充満又は放射線の影響により消火活動が困難とならないところ は，消火器，移動式消火設備又は消火栓により消火を行ら設計とする。 なお，消火設備の破損，誤作動又は誤操作に伴ら溢水による安全機能及び重大事故等に対処する機能への影響については，浸水防護設備の基本設計方針にて確認す る。 原子炉格納容器は，運転中は窒素に置換され火災は発生せず，内部に設置された灵災防護上重要な機器等が火災により機能を損ならおそれはないことから，原子㚸起動中並びに低温停止中の状態に対して措置を講じる設計とし，消火については，消火器又は消火栓を用いた消火ができる設計とする。火災の早期消火を図るために原子炉格納容器内の消火活動の手順を定めて，自衛消防隊（運転員，初期消火要員） の訓練を実施する。 なお，原子炉格納容器内において火災が発生した場合，原子炉格納容器の空間体廭（約 $7650 \mathrm{~m}^{3}$ ）に対してパージ用排風機の容量が約 $24000 \mathrm{~m}^{3} / \mathrm{h}$ であることから，煙が完満しないため，消火活動が可能であることから，消火器又は消火栓を用いた消火 ができる設計とする。 中央制御室は，消火器で消火を行ら設計とし，中央制御室制御盤内の火災につい ては，電気機器への影響がない二酸化炭素消火器で消火を行ら設計とする。また，中央制御室床下ケーブルピットについては，自動消火設備であるハロンガス消火設備（局所）を設置する設計とする。 が可能であることから，消火器を用いた消火ができる設計とする。 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，以下の設計を行う。 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するた め，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。 b．消火用水供給系は， 2 時間の最大放水量を確保する設計とする。 c．屋内，屋外の消火栓は，「消防法施行令」に基づく容量を確保する設計とする。	

変更前	変更後	記載しない理由
	（2）消火設備の系統構成 a．消火用水供給系の多重性又は多様性 屋内水消火系の水源は，消火水槽（第 1，2号機共用（以下同じ。）），消火水 タンクを設置し，屋外水消火系は，屋外消火系消火水タンクを 2 基設置し多重性 を有する設計とする。 屋内水消火系の消火ポンプは，電動機駆動消火ポンプ（第 1，2号機共用（以下同じ。））を 2 台設置し，多重性を有する設計とする。 屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポンプ，屋外消火系 ディーゼル駆動消火ポンプを設置し，多様性を有する設計とする。 屋外消火系ディーゼル駆動消火ポンプの駆動用燃料は，屋外消火系ディーゼル駆動消火ポンプに付属する燃料タンクに貯蔵する。 b．系統分離に応じた独立性 原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器の相互の系統分離を行らために設けられた火災区域又は火災区画に設置 されるハロンガス消火設備及びケーブルトレイ消火設備は，以下に示すとおり，䒺統分離に応じた独立性を備えた設計とする。 （a）動的機器である選択弁は多重化する。 （b）容器弁及びボンベを必要数より1つ以上多く設置する。 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時に機能喪失しないよう，区分分離や位置的分散を図る設計とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置するハロンガス消火設備は，上記の区分分離や位置的分散に応じた独立性を備えた設計とする。 c．消火用水の優先供給 消火用水供給系は，飲料水系や所内用水系等と共用する場合には，隔離弁を設㯰して遮断する措置により，消火用水の供給を優先する設計とする。 （3）消火設備の電源確保 屋内水消火系の電動機駆動消火ポンプは，外部電源喪失時でも起動できるように匪常用電源から受電する設計とする。 屋外水消火系のらち屋外消火系ディーゼル駆動消火ポンプは，外部電源䨤失時に	

変更前	変更後	記載しない理由
3.4 自然現象に対する火㷋報知設備及び消火設備の性能維持 火災報知設備及び消火設備の耐震重要度分類はCクラスとする。また，屋外消火栓は凍結防止構造とする。さらに，消火設備を内蔵する建屋，構築物等は，台風に対し消火設備の性能が著しく阻害されないよう建築基準法施行令等に基づき設計する。	する設計とする。 c．消火栓の配置 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外の消火栓は，「消防法施行令」に漼拠し，全ての火災区域又は火災区画の消火活動に対処できるように配置する設計とする。 （5）消火設備の警報 a．消火設備の故障警報 電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディー ゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発する設計とする。 b．ハロンガス消火設備の職員退避警報 固定式消火設備であるハロンガス消火設備は，作動前に職員等の退出ができる ように警報又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置したケーブルトレイ内に留まり，外部に有意な影響 を及ぼさないため，消火設備作動前に退避警報を発しない設計とする。 （6）消火設備に対する自然現象の考慮 a．凍結防止対策 屋外消火設備の配管は，保温材により配管内部の水が凍結しない設計とする。 屋外消火栓は，凍結を防止するため，自動排水機構により消火栓内部に水が溜 まらないような構造とする設計とする。 b．風水害対策 消火用水供給系の消火設備を構成する電動機駆動消火ポンプ，屋外消火系電動璣駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，風水害に対してその性能が著しく阻害されるこ とのないよう，建屋内に設置する設計とする。 c．地盤変位対策 地震時における地盤変位対策として，水消火配管のレイアウト，配管支持長さ からフレキシビリティを考慮した配置とすることで，地盤変位による変形を配管系統全体で吸収する設計とする。 さらに，屋外消火配管が破断した場合でも移動式消火設備を用いて屋内消火栓人消火用水の供給ができるよう，建屋に給水接続口を設置する設計とする。	

変更前	変更後	記載しない理由
4．火災の影響軽減対策 原子炉の施設内のいかなる場所の想定火災に対しても，その火災により原子炉に外乱が及び，かつ，原子炉保護設備又は工学的安全施設作動設備の作動を要求される場合に，動的	（7）その他 a．移動式消火設備 移動式消火設備は，恒設の消火設備の代替として消火ホース等の資機材を備え付けている化学消防自動車を 2 台及び泡原液搬送車を 1 台配備する設計とする。 b．消火用の照明器具 建屋内の消火栓，消火設備現場盤の設置場所及び設置場所までの経路には，移厙及び消火設備の操作を行らため，消防法で要求される消火継続時間 20 分に現場人の移動等の時間も考慮し， 8 時間以上の容量の蓄電池を内蔵する照明器具を設㯰する設計とする。 c．ポンプ室の煙の排気対策 火災発生時の煙の充満により消火活動が困難となるポンプ室には，消火活動に よらなくとも迅速に消火できるように固定式消火設備を設置し，鎮火の確認のた めに自衛消防隊がポンプ室に入る場合については，再発火するおそれがあること から，十分に泠却時間を確保した上で扉の開放，換気空調系及び可搬型排煙装置 により換気が可能な設計とする。 d．使用済燃料貯蔵設備及び新燃料貯蔵設備 使用済燃料貯蔵設備は，水中に設置されたラックに燃料を貯蔵することで未臨界性が確保される設計とする。 麻燃料貯蔵設備については，消火活動により消火水が噴霧され，水分雰囲気に満たされた状態となっても未臨界性が確保される設計とする。 e．ケーブル処理室 ケーブル処理室は，自動消火設備であるハロンガス消火設備により消火する設叶とする。区分 I ケーブル処理室及び区分II ケーブル処理室については，消火活動のため2箇所の入口を設置する設計とする。 なお，区分IIIケーブル処理室は，消火活動のための入口は 1 箇所であるが，部屋の大きさが狭く，室内の可燃物は少量のケーブルトレイのみであるため，火災 が発生した場合においても，入口から消火要員による当該室全域の消火活動を行 らことが可能な設計とする。 1．3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設において火災が発生した	

変更前	変更後	記載しない理由
機器の単一故障を想定しでも，原子炉を高温停止できるように，また，低温停止に必要な系統及び機器は，その安全機能を失わず，低温停止できるように，以下に示す火災の影響軽減対策を実施する。 4． 1 耐火壁による軽減対策 （1）原子炉の安全確保に必要な設備を設置している原子炉建屋及び制御建屋に隣接す るタービン建屋で火災が発生しても，原子炉建屋及び制御建屋に影響を及ぼさない ように，原子炉建屋及び制御建屋とタービン建屋の境界の壁は，2時間の耐火能力を有する耐火壁（以下「耐火壁」という。）とする。 （2）燃料油の漏えい油火災を想定する補機を設置するディーゼル発電機室（ディーゼ ル制御盤室も含む）は，それぞれトレン別に二つの区域に分け，互いの区域及び周囲 の区域に火災の影響を及ぼさないようにそれぞれを耐火壁で囲む。 （3）耐火壁の貫通口は耐火シールを施工し，換気設備のダクトには防火ダンパ，出入口には防火戸を設置し，耐火壁効果を減少させないようにする。 4．2 固定式消火設備による軽減対策火災荷重の大きいディーゼル発電機室には，二酸化炭素消火設備を設置する。	場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な火災防護对象機器及び火災防護対象ケーブルを火災防護対象機器等とする。 火災が発生しても原子炉の高温停止及び低温停止を達成し，維持するためには， プロセスを監視しながら原子炉を停止し，泠却を行うことが必要であり，このため には，手動操作に期待してでも原子炉の高温停止及び低温停止を達成し，維持する ために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要があ る。 このため，火災防護対象機器等に対して，以下に示す火災の影響軽減対策を講じ る設計とする。 （1）火纼防護対象機器等の系統分離による影響軽減対策 中央制御室及び原子炉格納容器を除く火災防護対象機器等は，原則として安全系区分 I と安全系区分II，IIIを境界とし，以下のいずれかの系統分離によって，火災 の影響を軽減するための対策を講じる。 a． 3 時間以上の耐火能力を有する隔壁等 互いに相違する系列の火災防護対象機器等は，火災耐久試験により 3 時間以上 の耐火能力を確認した隔壁等で分離する設計とする。 b． 6 m 以上離隔，火災感知設備及び自動消火設備 互いに相違する系列の火災防護対象機器等は，仮置きするものを含めて可燃性物質のない水平距離 6 m 以上の離隔距離を確保する設計とする。 火災感知設備は，自動消火設備を作動させるために設置し，自動消火設備の誤宱動防止を考慮した火災感知器の作動信号により自動消火設備を作動させる設計 とする。 c． 1 時間耐火隔壁等，火災感知設備及び自動消火設備 互いに相違する系列の火災防護対象機器等は，火災耐久試験により 1 時間以上 の耐火能力を確認した隔壁等で分離する設計とする。 また，火災感知設備及び消火設備は，上記 b．と同様の設計とする。 （2）中央制御室の火災の影響軽減対策 a．中央制御室制御盤内の火災の影響軽減	

変更前	変更後	記載しない理由
	㢁感知器として，煙感知器と熱感知器を組み合わせて設置する設計とする。こ そらの火災感知設備は，アナログ機能を有するものとする。 また，火災感知設備は，外部電源䨖失時においても火災の感知が可能となる ように，非常用電源から受電するとともに，火災受信機盤は中央制御室に設置乚常時監視できる設計とする。火災受信機盤は，作動した火災感知器を 1 つす つ特定できる機能を有する設計とする。 （c）消火設備 中央制御室床下ケーブルピットには，系統分離の観点から自動消火設備であ るハロンガス消火設備（局所）を設置する設計とする。 区の消火設備は，故障警報及び作動前の警報を中央制御室に発するとともに，時間遅れをもってハロンガスを放出する設計とする。また，外部電源襄失時に おいても消火が可能となるように，非常用電源から受電する。 （3）原子炉格納容器内の火災の影響軽減対策 原子炉格納容器内は，プラント運転中は窒素が封入され，火災の発生は想定され ない。鬥素が封入されていない期間のほとんどは原子炉が低温停止期間であるが， わずかに低温停止に到達していない期間もあることを踏まえ，上記（1）と同等の火災 の影響軽減対策を講じる設計とする。 床た，原子炉格納容器内への持込み可燃物は，持込み期間，可燃物量等，運用につ いて保安規定に定めて，管理する。 a．原子炬格納容器内の火災防護対象機器等の系統分睢は以下のとおり対策を行う殿計とする。 （a）火災防護対象機器は，難燃ケーブルを使用するとともに，電線管及び蓋付ヶ ーブルトレイの使用等により火災の影響軽減対策を行ら設計とする。 （b）原子炉格納容器内の火災防護対象機器は，系統分離の観点から安全系区分 I $と$ 安全系区分 II機器の水平距雀を 6 m 以上碓保し，異なる安全系区分の機器間に国る介在物（ケーブル，電磁并）については，金属製の筐体に収納することで延魔防止対策を行ら設計とする。 （c）原子炬格納容器内の火炏防謢対象ケーブルは，可能な限り位置的分散を図る殿計とする。	

変更前	変更後	記載しない理由
4.3 その他の軽減対策 （1）中央制御室で煙が発生した場合には，中央制御室空調設備で排煙できるようにす る。 （2）油タンクには，火災に起因した爆発を防ぐためにベント管を設け，屋外に排気で きるようにする。	（d）原子炉圧力容器下部においては，火災防護対象機器である起動領域モニタの核計装ケーブルを露出して敷設するが，火災の影響軽減の観点から，起動領域 モニタはチャンネルごとに位置的分散を図って設置する設計とする。 b．火災感知設備については，アナログ式の異なる 2 種類の火災感知器（煙感知器及び熱感知器）を設置する設計とする。 c．原子炬格納容器内の消火については，運転員及び初期消火要員による消火器又 は消火栓を用いた速やかな消火活動により消火ができる設計とする。 起動中又は停止過程の空気環境において，原子炉格納容器内が広範囲な火災と なり原子炉格納容器内への入域が困難な場合には，原子炉格納容器内を密閉状態 とし内部の窒息消火を行う設計とする。 なお，原子炉格納容器内点検終了後から窒素置換完了までの間で原子炉格納容器内の火災が発生した場合には，火災による延焼防止の観点から窒素封入作業の䛧続による窒息消火又は窒素封入作業を中止し，早期の消火活動を実施する。 （4）換気設備に対する火災の影響軽減対策 火災防護上重要な機器等を設置する火災区域又は火災区画に設置する換気設備に は，他の火災区域又は火災区画の境界となる箇所に 3 時間耐火性能を有する防火夕 シパを設置する設計とする。 換気設備のフィルタは，チャコールフィルタを除き難燃性のものを使用する設計 とする。 （5）火災発生時の煙に対する火災の影響軽減対策 運転員が常駐する中央制御室には，火災発生時の煙を排気するため，「建築基準法」 に準拠した容量の排煙設備を設置する設計とする。 火災防護上重要な機器等を設置する火災区域又は火災区画のらち，電気ケーブル や引火性液体が密集する火災区域又は火災区画については，ハロンガス消火設備に よる早期の消火により火災発生時の煙の発生が抑制されることから，煙の排気は不要である。 （6）油タンクに対する火災の影響軽減対策火災区域又は火災区画に設置される油タンクは，換気空調設備による排気又はヘ ント管により屋外に排気する設計とする。	

変更前	変更後	記載しない理由
5．設備の共用 屋内水消火系の電動機駆動消火ポンプ及び消火水槽は，第1号機と共用するが，各号機 に必要な容量を確保するとともに，接続部の弁を閉操作することにより隔離できる設計と することで，共用により安全性を損なわない設計とする。	当該火災区域又は火災区画と隣接火災区域又は火災区画の 2 区画内の火災防護対象機器等の有無の組み合わせに応じて，火災区域又は火災区画内に設置さ孔る不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定しても，原子炉の高温停止及び低温停止の達成，維持が可能であることを㕍認する。 b．設計基準事故等に対処するための機器に単一故障を想定した設計に対する評価内部火災により原子炉に外乱が及び，かつ，安全保護系及び原子炉停止系の作昨が要求される運転時の異常な過渡変化又は設計基準事故が発生する可能性があ るため，「発電用軽水型原子炉施設の安全評価に関する審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するための機器に対し単一故障を想定しても，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉の高温停止及び低温停止を達成できることを火災影響評価により確認する。 1.4 設備の共用 屋内水消火系の電動機駆動消火ポンプ及び消火水槽は，第1号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作することにより隔離できる設計とすることで，共用により安全性を損なわない設計とする。	
6．主要対象設備 火災防護設備の対象となる主要な設備について，「表1 火災防護施設の主要設備リスト」 に示す。	2．主要対象設備 火災防護設備の対象となる主要な設備について，「表1 火災防謢設備の主要設備リス ト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

13．浸水防護施設の基本設計方針

変更前	変更後	記載しない理由
	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれら の解粎による。	本記載は概要であるため，記載し ない。
	第1章 共通項目 浸水防護施設の共通項目である「1．地盤等， 2. 自然現象（ 2.2 津波による損傷の防止を除く。），3．火災，5．設備に対する要求（5．3 使用中の亀裂等による破壊の防止， 5.4 耐圧試験等， 5.5 安全弁等， 5.6 逆止め弁， 5.7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
	第2章 個別項目 1．津波による損傷の防止 1.1 耐津波設計の基本方針 信計基準対象施設及び重大事故等対処施設が設置（変更）許可を受けた基準津波によ りその安全性又は重大事故等に対処するために必要な機能が損なわれるおそれがないよ 5，遡上への影響要因及び浸水経路等を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとともに津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とする。 なお，「1．津波による損傷の防止」の耐津波設計においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1m の地盤沈下 が発生していることを考慮した設計とし，地盤沈下量を考慮した敷地高さや施設高さ等 を記載する。 1．1．1 津波防護対象設備 喭計基準対象施設が，基準津波により，その安全性が損なわれるおそれがないよ ら，津波から防護を検討する対象となる設備は，クラス 1 ，クラス 2 及びクラス 3信備並びに耐震Sクラスに属する設備（津波防護施設，浸水防止設備及び津波監視信備を除く。）とする。このらち，クラス 3 設備については，安全評価上その機能を期待する設備は，津波に対してその機能を維持できる設計とし，その他の設備は損傷した場合を考慮して，代替設備により必要な機能を確保する等の対応を行ら設計 とする。これより，津波から防護すべき施設は，設計基準対象施設のらち「発電用軽水型原子炉施設の安全機能の重要度分類に関する審查指針」で規定されているクラ ス 1 及びクラス 2 に該当する構築物，系統及び機器（以下「津波防護対象設備」とい ら。）とする。	

変更前	変更後	記載しない理由
	犍波防護対象設備の防護設計においては，津波により津波防護対象設備に波及的影響を及ぼすおそれのある津波防護対象設備以外の施設についても考慮する。 また，重大事故等対処施設及び可搬型重大事故等対処設備についても，設計基準対象施設と同時に必要な機能が損なわれるおそれがないよう，津波防護対象設備に含める。 埂に，津波が地震の随伴事象であることを踏まえ，耐震 S クラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）を含めて津波防護対象設備とする。 1.2 入力津波の設定 各施設•設備の設計又は評価に用いる入力津波として，敷地への遡上に伴ら津波（以下「遡上波」といら。）による入力津波と取水路，放水路等の経路からの流入に伴ら津波 （以下「経路からの津波」という。）による入力津波を設定する。 入力津波の設定の諸条件の変更により，評価結果が影響を受けないことを確認するた めに，評価条件変更の都度，津波評価を実施する運用とする。 1．2．1 遡上波による入力津波 遡上波による入力津波については，遡上への影響要因として，敷地及び敷地周辺 の地形及びその標高，河川等の存在，設備等の設置状況並びに地震による広域的な隆起•沈降を考慮して，遡上波の回り込みを含め敷地への遡上の可能性を評価する。迷上する場合は，基準津波の波源から各施設•設備の設置位置において算定され る津波高さとして設定する。また，地震による変状又は繰返し襲来する津波による选掘•堆積により地形又は河川流路の変化等が考えられる場合は，敷地への遡上経路に及ぼす影響を評価する。 1．2．2 経路からの津波による入力津波 経路からの津波による入力津波については，浸水経路を特定し，基準津波の波源 から各施設•設備の設置位置において算定される時刻歴波形及び津波高さとして設定する。 1．2．3 水位変動 「1．2．1 遡上波による入力津波」及び「 1.2 .2 経路からの津波による入力津波」 においては，水位変動として，朔望平均満潮位 0．P．+1.43 m ，朔望平均干潮位 0．P．0.14 m を考慮する。上昇側の水位変動に対しては，潮位のばらつきとして 0.16 m を考	

変更前	変更後	記載しない理由
	機能が保持できる設計とする。 大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）についても，入力津波の水位に対して，取水性を碓保できるものを用いる設計とする。 （2）津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプ I）及 び大容量送水ポンプ（タイプII）の機能保持碓認 基準津波による水位変動に伴ら海底の砂移動•堆積に対して，取水口，取水路及 び海水ポンプ室が閉塞することなく取水口，取水路及び海水ポンプ室の通水性が䧹保できる設計とする。 厞常用海水ポンプは，取水時に浮逰砂が軸受に混入した場合においても，軸受境の異物逃がし溝から浮遊砂を排出することで，機能を保持できる設計とする。 大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）は，浮䢫砂の偕入に対して，取水性能が保持できるものを用いる設計とする。 漂流物に対しては，発電所敷地内及び敷地外で漂流物となる可能性のある施設•毃備を抽出し，抽出された漂流物となる可能性のある施設•設備が漂流した場合匠，非常用海水ポンプへの衝突並びに取水口，取水路及び海水ポンプ室の閉塞が生じることがなく，非常用海水ポンプの取水性碓保並びに取水口，取水路及び海水ポンプ室の通水性能が碓保できる設計とする。 ※た，漂流物化させない運用を行ら施設•設備については，漂流物化防止対策の蓮用を保安規定に定めて管理する。 発電所敷地内及び敷地外の人工構造物については，設置状況を定期的に確認し䬳価する運用を保安規定に定めて管理する。更に，従前の評価結果に包絡されな い場合は，漂流物となる可能性，非常用海水ポンプ等の取水性及び浸水防護施設 の健全性への影響評価を行い，影響がある場合は漂流物対策を実施する。 1．3．5 津波監視 犍波監視設備として，數地への津波の繰返しの襲来を察知し，津波防護施設及び馒水防止設備の機能を碓実に確保するため，津波監視カメラ（計測制御系統施設の中央制御室機能と兼用（以下同じ。））及び取水ピット水位計を設置する。	

変更前	変更後	記載しない理由
	1．4 津波防護対策に必要な浸水防護施設の設計 1．4．1 設計方針 貄波防護施設，浸水防止設備及び津波監視設備については，「1．2 入力津波の設定」で設定している繰返しの襲来を想定した入力津波に対して，津波防護対象設備 の要求される機能を損ならおそれがないよう以下の機能を満足する設計とする。 （1）津波防護施設 津波防護施設は，津波の流入による浸水及び漏水を防止する設計とする。 䢖波防護施設のらち防潮堤及び防潮壁については，入力津波高さを上回る高さ で設置し，止水性を保持する設計とする。 津波防護施設のらち取放水路流路縮小工については，第 1 号機の取水路及び放水路からの津波の流入を抑制し，入力津波に対して浸水を防止する設計とする。 また，第1号機の廃止措置期間中に性能を維持すべき施設（以下「性能維持施設」 という）に影響を与えない設計とする。 津波防護施設のらち貯留殹については，津波による水位低下に対して，非常用海水ポンプの取水可能水位を保持し，かつ，椧却に必要な海水を確保する設計と する。 主要な構造体の境界部には，想定される荷重の作用及び相対変位を考慮し，試験等にて止水性を確認した止水ジョイント等を設置し，止水処置を講じる設計と する。 （2）浸水防止設備 臣水防止設備は，浸水想定範囲等における浸水時及び冠水後の波圧等に対する耐性を評価し，津波の流入による浸水及び漏水を防止する設計とする。 また，津波防護対象設備を内包する建屋及び区画に浸水時及び冠水後に津波が流入することを防止するため，当該区画への流入経路となる開口部に浸水防止設備を喭置し，止水性を保持する設計とする。 謾水防止設備として逆流防止設備，水密扉，浸水防止蓋，浸水防止壁，逆止弁付 7 アンネルを設置するとともに，貫通部止水処置を実施する設計とする。 軽油タンクエリアの浸水に対する浸水防止設備については，内郭防護として流入経路となる開口部に設置する設計とする。 臣水防止設備は，入力津波高さに余裕を考慮した高さの水位又は内部溢水の評価 にて保守性を見込んで算出した溢水水位により，静水圧に対する耐性を評価又は試験等による止水性を碓認した方法により，止水性を保持する設計とする。 （3）津波監視設備	

変更前	変更後	記載しない理由
	犍波監視設備は，津波の襲来状況を監視可能な設計とする。津波監視カメラは，波力及び漂流物の影響を受けない位置，取水ピット水位計は波力及び漂流物の影響『受けにくい位置に設置し，津波監視機能が十分に保持できる設計とする。また，厔準地震動S s に対して，機能を喪失しない設計とする。設計に当たつては，自然条件（積雪，風荷重）との組合せを適切に考慮する。 犍波監視設備のらち津波監視カメラは，非常用電源から給電し，赤外線摄像機能『有したカメラにより，昼夜にわたり中央制御室から監視可能な設計とする。 貄波監視設備のらち取水ピット水位計は，非常用電源から給電し，0．P．－11．25m～ 0. P．+19.00 m を測定範囲として，非常用海水ポンプが設置された海水ポンプ室補機 ポンプエリアの上昇側及び下降側の水位を中央制御室から監視可能な設計とする。 1．4．2 荷重の組合せ及び許容限界 犍波防護施設，浸水防止設備及び津波監視設備の設計に当たつては，津波による㢌重及び津波以外の荷重を適切に設定し，それらの組合せを考慮する。また，想定 される荷重に対する部材の健全性や構造安定性について適切な許容限界を設定す る． （1）荷重の組合せ 䢖波と組み合わせる荷重については，原子炉泠却系統施設の基本設計方針 5 第 1㢓 共通項目」のらち 2.3 外部からの衝撃による損傷の防止」で設定している自然条件（積雪，風荷重）及び余震として考えられる地震に加え，漂流物による荷重を考慮する。津波による荷重の設定に当たつては，各施設•設備の機能損傷も ードに対応した荷重の算定過程に介在する不碓かさを考慮し，余裕の程度を検討 した上で安全側の設定を行ら。 （2）許容限界 㡽波防護施設，浸水防止設備及び津波監視設備の許容限界は，地震後，津波後の覀使用性や，津波の繰返し作用を想定し，施設•設備を構成する材料がおおむむね弾性状態に留まることを基本とする。	
	2．発電用原子炉施設内における溢水等による損傷の防止 2.1 溢水防護等の基本方針 信計基準対象施設が，発電用原子炉施設内における溢水が発生した場合においても， その安全性を損ならおそれがない設計とする。 そのために，溢水防護に係る設計時に発電用原子炉施設内で発生が想定される溢水の影響を評価（以下「溢水評価」という。）し，運転状態にある場合は発電用原子炉施設内 における溢水が発生した場合においても，発電用原子炉を高温停止及び，引き続き低温	

変更前	変更後	記載しない理由
	S s による地震力によって生じるスロッシング現象を三次元流動解析により評価 し，使用済燃料プール外い漏えいする水量を考慮する。 その際，使用済燃料プールの初期水位は，スキマサージタンクへのオーバーフロ一水位として評価する。 算出した溢水量からスロッシング後の使用済燃料プールの水位低下を考慮して も，使用済燃料プールの泠却機能及び使用済燃料プールへの給水機能を確保し，そ孔らを用いることにより適切な水温及び遮蔽水位を維持できる設計とする。 2.6 防護すべき設備を内包する建屋外及びエリア外で発生する溢水に関する溢水評価及び防護設計方針 防護すべき設備を内包する建屋外及びエリア外で発生を想定する溢水である循環水配管等の破損による溢水，屋外タンクで発生を想定する溢水，地下水等による影響を評価 し，防護すべき設備を内包する建屋内及びエリア内へ溢水が流入し伝播しない設計とす 3． 具体的には，溢水水位に対して止水性を維持する壁，扉，蓋の設置及び貫通部止水処置を実施し，溢水の伝播を防止する設計とする。 タービン建屋内における循環水系配管の破損による溢水量低減については，破損箇所 からの溢水を早期に自動検知し，自動隔離を行らために，循環水系隔離システム（漏元 い検出器，復水器水室出入口弁並びに漏えい検出制御盤及び監視盤）を設置する。循環水系隔離システムは，隔離信号発信後，約 30 秒で循環水ポンプを停止するとともに，約 3 分で復水器水室出入口弁を自動閉止する設計とする。 タービン建屋内におけるタービン補機泠却海水系配管の破損による溢水量低減につい ては，破損箇所からの溢水を早期に自動検知し，隔離を行らために，タービン補機冷却海水系隔離システム（漏えい検出器，タービン補機冷却海水ポンプ出口弁並びに漏えい倹出制御盤及び監視盤）を設置する。タービン補機冷却海水系隔離システムは，隔離信号発生後，約 30 秒でタービン補機冷却海水ポンプを停止するとともに，タービン補機冷却海水ポンプ出口弁を自動閉止する設計とする。 また，地下水に対しては，地下水位低下設備のらち揚水ポンプの故障等より建屋周囲 の水位が地表面まで上昇することを想定し，建屋外周部における壁，扉，堰等により溢水防護区画を内包する建屋内への流入を防止するとともに，地震による建屋外周部から の地下水の流入の可能性を安全側に考慮しても，防護すべき設備が要求される機能を損 なわない設計とする。 止水性を維持する浸水防護施設については，試験又は机上評価にて止水性を確認する喭計とする。	

変更前	変更後	記載しない理由
	2.7 管理区域外への漏えい防止に関する溢水評価及び防護設計方針 放射性物質を含む液体を内包する容器，配管その他の設備（ポンプ，弁，使用済燃料プ ール，原子炉ウェル及び蒸気乾燥器•気水分離器ピット）からあふれ出る放射性物質を含む液体の溢水量，溢水防護区画及び溢水経路により溢水水位を評価し，放射性物質を内包する液体が管理区域外に漏えいすることを防止し伝播しない設計とする。なお，地震時における放射性物質を含む液体の溢水量の算出については，要求される地震力を用 いて設定する。 放射性物質を含む液体が管理区域外に伝播するおそれがある場合には，溢水水位を上回る高さまで，止水性を維持する堰及び水密扉により管理区域外への溢水伝播を防止す るための対策を実施する。 2.8 溢水防護上期待する浸水防護施設の構造強度設計 谥水防護区画及び溢水経路の設定並びに溢水評価において期待する浸水防護施設の構造強度設計は，以下のとおりとする。 謾水防護施設が要求される機能を維持するため，計画的に保守管理，点検を実施する とともに必要に応じ補修を実施する。 止水に期待する壁，堰，扉，蓋，逆流防止装置及び貫通部止水処置のらち，地震に起因 する機器の破損等により生じる溢水（使用済燃料プール等のスロッシングにより発生す る溢水を含む。）から防護する設備については，基準地震動S s による地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損ならおそれがない設計とする。 ただし，放射性物質を含む液体が管理区域外に伝播することを防止するために設置する隁については，要求される地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損ならおそれがない設計とする。 屝水に期待する床ドレン配管の設計については，発生を想定する溢水に対する排水機能を損ならおそれがない設計とする。 漏えい蒸気影響を緩和する保護力バーの設計においては，配管の破断により発生する荷重に対し，蒸気影響を緩和する機能を損ならおそれがない設計とする。 㵌環水系配管及びタービン補機冷却海水系配管の破損箇所からの溢水量を低減する循圜水系隔離システム及びタービン補機冷却海水系隔離システムの設計においては，基準地震動 S s による地震力に対し，地震時及び地震後においても，溢水量を低減する機能 を損ならおそれがない設計とする。	
	3．主要対象設備 浸水防護施設の対象となる主要な設備について，「表1浸水防護施設の主要設備リスト」 に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

14．補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）の基本設計方針

変更前	変更後	記載しない理由
	用語の定義は「実用発電用原子炬及びその附属施設の位置，構造及び設備の基漼に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれら の解釈による。	本記載は概要であるため，記載し ない。
	第1章 共通項目 補機駆動用燃料設備の共通項目である「1．地盤等，2．自然現象，3．火災，5．設備 に対する要求（5．3 使用中の亀裂等による破壊の防止，5．5 安全弁等，5．6 逆止め弁， 5.8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染の防止を除 く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
	第2章 個別項目 1．補機駆動用燃料設備 大容量送水ポンプ（タイプ I ）のポンプ駆動用燃料は，大容量送水ポンプ（タイプ I ） （燃料タンク）に貯蔵する。 大容量送水ポンプ（タイプII）のポンプ駆動用燃料は，大容量送水ポンプ（タイプII） （燃料タンク）に貯蔵する。 原子炉補機代替冷却水系熱交換器ユニットのポンプ駆動用燃料は，原子炉補機代替冷却水系熱交換器ユニット（燃料タンク）に貯蔵する。 匪常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油夕 シク又はガスタービン発電設備軽油タンクは，大容量送水ポンプ（タイプ I），大容量送水 ポンプ（タイプII）及び原子炉補機代替冷却水系熱交換器ユニットの燃料を貯蔵できる設計とする。 大容量送水ポンプ（タイプII），大容量送水ポンプ（タイプII）及び原子炉補機代替冷却水系熱交換器ユニットの燃料は，燃料補給設備である非常用ディーゼル発電設備軽油タン ク，高圧灲心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油夕 シクよりタンクローリを用いて補給できる設計とする。 非常用ディーゼル発電設備軽油タンク，高圧炬心スプレイ系ディーゼル発電設備軽油夕 シク又はガスタービン発電設備軽油タンクからタンクローリへの燃料の補給は，ホースを用いる設計とする。	
	2．主要対象設備 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）の対象とな る主要な設備について，「表 1 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）の主要設備リスト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炬及び その附属施設の技術基準に関する規則」並びにこれらの解粎による。	用語の定義は「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれら の解积による。	本記載は概要であるため，記載し ない。
第1章 共通項目 非常用取水設備の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対 する要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止，4．4 耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件 を除く。），5．その他（5．3 安全避難通路等，5．4 放射性物質による汚染の防止を除く。）」 の基本設計方針については，原子炉冷却系統の基本設計方針「第1章 共通項目」に基づ く設計とする。	第1章 共通項目 非常用取水設備の共通項目である「1．地盤等，2．自然現象，3．火災，5．設備に対 する要求（5．2 材料及び構造等，5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等， 5.5 安全弁等， 5.6 逆止め弁， 5.7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他（6．3 安全避難通路等，6．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．非常用取水設備の基本設計方針 設計基準事故に対処するために必要となる原子炉補機泠却海水系及び高圧炬心スプレイ補機洽却海水采に使用する海水を取水し，導水するための流路を構築するため，取水口，取水路及び海水ポンプ室から構成される取水設備を設置することにより椧却に必要な海水を碓保できる設計とする。なお，取水設備は，海と接続しており容量に制限がなく必要な取水容量を十分に有している。	第2章 個別項目 1．非常用取水設備の基本設計方針 信計基準事故に対処するために必要となる原子炉補機泠却海水系及び高圧彷心スプレイ铺機冷却海水系に使用する海水を取水し，導水するための流路を構築するため，取水口，取水路及び海水ポンプ室から構成される取水設備を設置することにより泠却に必要な海水 を確保できる設計とする。なお，取水設備は，海と接続しており容量に制限がなく必要な取水容量を十分に有している。 また，基準津波に対して，原子炬補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプが引き波時においても機能保持できるよう，貯留堰を設置することにより冷却に必要な十分な容量の海水が確保できる設計とする。 匪常用取水設備の貯留堰，取水口，取水路及び海水ポンプ室は，想定される重大事故等時において，設計基準事故対処設備の一部を流路として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。	
2．主要対象設備 非常用取水設備の対象となる主要な設備について，「表1非常用取水設備の主要設備り スト」に示す。	2．主要対象設備 非常用取水設備の対象となる主要な設備について，「表 1 非常用取水設備の主要設備り スト」に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

16．緊急時対策所の基本設計方針

変更前	変更後	記載しない理由
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炬及び その附属施設の技術基準に関する規則」並びにこれらの解积による。	用語の定義は「実用発電用原子炬及びその附属施設の位置，構造及び設備の基準に関す る規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれら の解粎による。	本記載は概要であるため，記載し ない。
第1章 共通項目 緊急時対策所の共通項目のらち 11 ．地盤等，2．自然現象，3．火災，4．設備に対す る要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止，4．4 耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件を除 く。），5．その他（5．4 放射性物質による污染の防止を除く。）」の基本設計方針について は，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 緊急時対策所の共通項目のらち「1．地盤等，2．自然現象，3．火纼，4．溢水等5．設備に対する要求（5．2 材料及び構造等，5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等， 5.5 安全弁等， 5.6 逆止め弁， 5.7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染の防止を除 く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。	本記載は概要であるため，記載し ない。
第2章 個別項目 1．緊急時対策所 1.1 緊急時対策所の設置等 1．1．1 緊急時対策所の設置 発電用原子炉施設には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるため，緊急時対策所を中央制御室以外の場所に設置する。 1．1．2 設計方針	第2章 個別項目 1．緊急時対策所 1.1 緊急時対策所の設置等 1．1．1 緊急時対策所の設置 発電用原子炉施設には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるため，緊急時対策所を中央制御室以外の場所に設置する。 1．1．2 設計方針 緊急時対策所は，重大事故等が発生した場合においても，当該事故等に対処する ための適切な措置が講じることができるよう，緊急時対策所機能に係る設備を含め，以下の設計とする。 なお，緊急時対策所は，緊急対策室及びSPDS 室から構成され，緊急時対策建屋に䖉置する設計とする。 （1）耐震性及び耐津波性 緊急時対策所は，重大事故等が発生した場合においても，当該事故等に対処す るための適切な措置が講じられるよう，その機能に係る設備を含め，基準地震動 S s による地震力に対し，機能を喪失しないよう設計するとともに，基準津波の影響を受けない設計とする。 （2）中央制御室に対する独立性 緊急時対策所の機能に係る設備は，共通要因により中央制御室と同時に機能雷失しないよう，中央制御室に対して独立性を有する設計とするとともに，中央制	

変更前	変更後	記載しない理由
（1）緊急時対策所機能の確保 緊急時対策所は，以下の措置を講じること又は設備を備えることにより緊急時対策所機能を確保する。 a．居住性の確保 緊急時対策所は，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるために必要な要員を収容できるととも に，それら要員が必要な期間にわたり滞在できる設計とする。	御室とは離れた位置に設置又は保管する設計とする。 （3）代替交流電源の碓保 緊急時対策所は，全交流動力電源が喪失した場合に，代替電源設備からの給電 が可能な設計とする。 常設の代替電源設備は，常設代替交流電源設備であるガスタービン発電機 2 台 で緊急時対策所を含む重大事故等発生時に想定される負荷へ給電するために必要 な容量を有する設計とする。 なお，放射性雲通過中には給油を必要とせずに必要負荷に対して7日間（168時間）以上連続給電が可能な設計とする。 可搬の代替電源設備は，緊急時対策所用代替交流電源設備である電源車（緊急時対策所用）1 台で緊急時対策所に電源供給するために必要な容量を有する設計 とする。 電源車（緊急時対策所用）使用時には電源車（緊急時対策所用） 1 台が必要負荷 に対して7日間（168時間）以上連続運転が可能な容量を有する緊急時対策所軽油 タンクへ接続するため，放射性雲通過時において，燃料を補給せずに運転できる䖍計とする。 緊急時対策所の代替電源設備は，常設設備としてガスタービン駆動であるガス タービン発電機及び可搬型設備としてディーゼル駆動である電源車（緊急時対策所用）を設置することにより，電源の多様性を有する設計とする。 （4）緊急時対策所機能の確保 緊急時対策所は，以下の措置を講じること又は設備を備えることにより緊急時対策所機能を確保する。 a．居住性の確保 緊急時対策所は，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるために必要な要員を収容できるととも に，それら要員が必要な期間にわたり滞在できる設計とする。 緊急時対策所は，重大事故等が発生した場合においても，重大事故等に対処 するために必要な指示を行ら要員に加え，原子炬格納容器の破損等による発電所外への放射性物質の拡散を抑制するための対策に対処するために必要な数の要員を含め，重大事故等に対処するために必要な数の要員を収容することがで	本記載は概要であるため，記載し ない。

変更前	変更後	記載しない理由
	きるとともに，重大事故等に対処するために必要な指示を行ら要員がとどまる	
	ことができるよう，適切な遮蔽設計及び換気設計を行い緊急時対策所の居住性	
	を確保する。	
	厙大事故等が発生した場合における緊急時対策所の居住性については，想定	
	士る放射性物質の放出量等を東京電力株式会社福島第一原子力発電所事故と同	
	等とし，から緊急時対策所内でのマスクの着用，交替要員体制，安定よう素剤の	
	服用及び仮設設備を考慮しない条件においても，「原子力発電所中央制御室の周	
	㕍性に係る被ばく評価手法について（内規）」の手法を参考とした被ばく評価に	
	おいて，緊急時対策所にとどまる要員の実効線量が事故後7日間で100mSv を超	
	远ない設計とする。	
	緊急時対策所には，酸素漟度及び二酸化炭素賑度が活動に支障がない範囲に	
	あることを把握できるよう酸素謈度計（緊急時対策所用）（個数 1 （ ${ }^{\text {予備 1））及 }}$	
	び二酸化岸素濃度計（緊急時対策所用）（個数 1 （ ${ }_{\text {備 1））を保管する設計とす }}$	
	るとともに，室内への希ガス等の放射性物質の侵入を低減又は防止するための	
	帷実な判断ができるよら放射線量を監視，測定するため，さらに緊急時対策所	
	加圧空気供給系による加圧判断のために使用する緊急時対策所可般型エリアも	
	三タ及び可搬型モニタリングポストを保管する設計とする。	
	緊急時対策所は，重大事故等が発生し，緊急時対策所の外側が放射性物質汇	
	より污染したよらな状沉下において，対策要員が緊急時対策所内に放射性物質	
	による污染を持込むことを防止するため，身体サーベイ及び作業服の着替元等	
	荲行らための区画を設置する設計とする。身体サーベイの結果，対策要員の污	
	染が確認された場合は，対策要員の除染を行らことができる区画を，身体サー	
	－゙イを行ら区画に隣接して設置することができるよう考慮する。	
b．情報の把握 緊急時対策所には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常に対処するために必要な情報を，中央制御室内の運転員を介さずに正確か つ速やかに把握するための設備を設置する。	b．情報の把握	
	緊急時対策所には，原子炉泠却系統に係る発電用原子炉施設の損填をの他の	
	異常に対処するために必要な情報及び重大事故等が発生した場合においても当	
	㵣事故等に対処するために必要な指示ができるよう，重大事故等に対処するた	
	めに必要な情報を，中央制御室内の運転員を介さずに正確かつ速やかに把握で	
	きる設備として，安全パラメータ表示システム（SPDS）を設置する。	
	安全パラメータ表示システム（SPDS）として，事故状態等の必要な情報を把握	
	するために必要なパラメータ等を収集し，緊急時対策所内で表示できるよう，	
	F゙ータ収集装置，SPDS 伝送装置及びSPDS 表示装置を設置する設計とする。	

変更前	変更後	記載しない理由
	c．通信連絡 原子炉椧却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合汇おいて，当該事故等に対処するため，発電所内の関係要員に指示を行らため远必要な通信連絡設備及び発電所外関係箇所と専用であって多㥞性を備えた通信回線にて通信連絡できる設計とする。 緊急時対策所には，重大事故等が発生した場合においても発電所の内外の通信連絡をする必要のある場所と通信連絡できる設計とする。 原子炬冷却采統に係る発電用原子炉施設の損哱その他の異常が発生した場合 において，通信連絡設備により，発電所内から発電所外の緊急時対策支援シス テム（ERSS）い必要なデータを伝送できるデータ伝送設備として，SPDS 伝送装直を設置する設計とする。 データ伝送設備については，通信方式の多様性を確保した專用通信回線にて层送できる設計とする。 緊急時対策支援システム（ERSS）へ必要なデータを伝送できるSPDS 伝送装置 で構成するデータ伝送設備については，重大事故等が発生した場合においても必要なデータを伝送できる設計とする。	
2．主要対象設備 緊急時対策所の対象となる主要な設備について，「表 1 緊急時対策所の主要設備りスト」 に示す。	2．主要対象設備 緊急時対策所の対象となる主要な設備について，「表1 緊急時対策所の主要設備リスト」 に示す。	本記載は，要目表対象を示したり ストに関する記載であるため，記載しない。

[^0]: 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生じない設計とする。脆性破壊に対 しては，最低使用温度を考慮した破壊じん性試験を行い，規定値を満足した材料を使用 する設計とする。

