2021年8月19日 02-工-B-08-0011_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表(VI-1-8-1 原子炉格納施設) 東海第二発電所	女川原子力発電所第2号機	備考
		VI-1-8-1 原子炉格納施設の設計条件に関する説明書	資料構成の相違・以下、章番号や図面番号等の相違については、差異理由の記載を省略する。

柏崎刈羽原子力発電所第7号機	先行番金ブラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		目 次	
		1. 概要 · · · · · · · · · · · · · · · · · ·	
		2. 基本方針 2	2
		2.1 設計基準事故時における基本方針 ・・・・・・・・・ 2	基本方針内で設計基準事故と
		2.2 重大事故等時における基本方針 2	重大事故等で節を分割
			<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。
		3. 原子炉格納施設の設計条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
			<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。
		3.1 設計基準事故時における設計条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
		3.1.1 圧力及び温度に関する設計条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	記載表現の相違
		3.1.2 漏えい率に対する設計条件	'
		3.1.3 最低使用温度	'
		3.1.4 使用材料 · · · · · · · · · · · · · · · · · · ·	3
		3.1.5 耐圧試験圧力10	
		3.1.6 開口部 · · · · · · 10	
		3.1.7 配管貫通部 · · · · · · 10	
		3.1.8 電気配線貫通部 10	
		3.1.9 原子炉格納容器隔離弁1	
		3.1.10 原子炉格納容器体積 24	
		3.1.11 原子炉格納容器安全設備	
		3.1.12 許容外圧 24	
			記載方針の相違
			・柏崎刈羽では4.2.1項にて整理。
		3.1.13 圧力抑制効果を得るために必要な構造及び寸法・・・ 25	5
			格納容器型式による相違
		3. 1. 14 真空破壊装置	
		3. 1. 15 原子炉建屋原子炉棟	
		3. 1. 16 可燃性ガス濃度制御設備	
		3.1.17 放射性物質濃度制御設備	
		3. 1. 18 原子炉格納容器調気設備 28	3

柏崎刈羽原子力発電所第7号機	先行番金ファントの記載との比較表 (VI-1-8-1 原子炉格納施) 東海第二発電所	女川原子力発電所第2号機	備考
		3.1.19 冷却材喪失事故時の荷重 ・・・・・・・・ 28	記載表現の相違
		3.1.20 逃がし安全弁作動時の荷重 ・・・・・・・ 31	
		3.1.21 地震荷重 31	記載表現の相違
			・荷重の組合せにおいて地震荷
			重を考慮していることから, 使
			用する地震荷重の掲載図書を
			記載。
		3.1.22 荷重の組合せ ・・・・・・・・・31	<柏崎刈羽7号機との比較>
		3.1.23 繰返し荷重に対する解析	記載方針の相違
			・柏崎刈羽では5項にて整理。
		3.2 重大事故等時における設計条件 39	
		3.2.1 重大事故等時の評価温度,評価圧力 ・・・・・・39	
		3.2.2 重大事故等時における原子炉格納容器の熱の輸送	
		機能 52	
		3.2.3 重大事故等時における原子炉格納容器冷却機能… 53	
		3.2.4 重大事故等時における原子炉格納容器の過圧破損	
		防止機能 ····· 54	
		3.2.5 重大事故等時における原子炉格納容器下部の溶融	
		炉心冷却機能 	
		3.2.6 重大事故等時における水素爆発による原子炉格納容器	
		の破損防止機能	
		3.2.7 重大事故等時における水素爆発による原子炉建屋等の	
		損傷防止機能	31.44.±18.040.45
		3.2.8 重大事故等時における放射性物質拡散抑制機能・・・ 59	記載衣現の相遅
		3.2.9 重大事故等時の動荷重	とも味が1757 7 日 W しの 以 数 へ
		3.2.10 荷重の組合せ	<柏崎刈羽7号機との比較> 記載方針の相違
			・柏崎刈羽では設計基準事故時
			と重大事故等時の両方をまと
			めて記載している。
			のと記載している。
		4. 重大事故等時における原子炉格納容器の放射性物質	
		閉じ込め機能評価及びその他影響確認 ・・・・・・・・・62	
		4.1 重大事故等時における原子炉格納容器の放射性物質	
		閉じ込め機能評価 · · · · · · 62	
		4.1.1 評価方針 62	
		4.1.2 評価対象部位及び評価対象部位における	
		機能喪失要因	
			1

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機		女川原子力発電所第2号機	備考
		4.1.3 評価方法	
		4.1.4 評価結果 71	
		4.2 その他原子炉格納容器限界温度,圧力に対する	記載表現の相違
		影響確認	
		4.2.1 確認内容	
		4.2.2 確認結果 ····· 83	
		別添1 重大事故等時における原子炉格納容器の放射性物質閉じ込	記載表現の相違
		め機能健全性について	HOTOLOGICA PRIZE
			設備の相違
			・女川は原子炉格納容器下部か
			らドライウェル床ドレンサン
			プに通じるドレン配管内にコ
			リウムシールドを設置(自主対
			策設備) しており、ペデスタル
			全面に設置するものではない
			ため、コリウムシールドについ
			ては記載していない。
		別添2 原子炉格納容器フィルタベント系の設計	設備名称の相違
			<柏崎刈羽7号機との比較>
			記載方針の相違 ・女川はVI-5「計算機プログラ
			ム (解析コード)の概要」に整
			理している。
			ZO (1.2°

柏崎刈羽原子力発電所第7号機	先行審金フラントの記載との比較表(VI-1-8-1 原子炉框 東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 1. 概要 本資料は、「実用発電用原子炉及びその附属施設の技術基準 する規則(以下「技術基準規則」という。)」第44条及びその「 発電用原子炉及びその附属施設の技術基準に関する規則の解称 下「解釈」という。)」の要求に対する原子炉格納施設の設計基 故時の設計条件について記載したものであり、最高使用圧力、 使用温度、設計漏えい率、最低使用温度、使用材料(原子炉格 器本体の脆性破壊防止含む)、耐圧試験圧力、開口部、配管貫延電気配線貫通部、原子炉格納容器隔離弁、原子炉格納容器体積 子炉格納容器安全設備、許容外圧、圧力抑制効果を得るために な構造及び寸法、真空破壊装置、原子炉建屋原子炉棟、可燃性 濃度制御設備、放射性物質濃度制御設備、原子炉格納容器調気試 原子炉冷却材喪失事故時の荷重、主蒸気逃がし安全弁作動時 重、地震荷重、荷重の組合せ、繰返し荷重に対する解析につい 明する資料である。 また、技術基準規則第63、64、65、66、67、68、70及び71 びにそれらの解釈の要求に対する重大事故等時の動荷重、荷組合せについても説明するとともに、重大事故等時における原格納施設の破損防止に係る機能、重大事故等時における原格納容器の放射性物質閉じ込め機能評価についても説明する。 2. 基本方針 原子炉格納施設は、原子炉冷却系統に係る発電用原子炉施設壊又は故障の際に漏えいする放射性物質が公衆に放射線障害 ぼすおそれがない設計とする。	に関 実用 (以 準事 最高 納容 格納容器型式による相違 を納容器型式による相違 を構 が を を が を を が を を を を を を を を を を を
		2.1 設計基準事故時における基本方針原子炉格納容器は、設計基準事故時において原子炉冷却材圧ウンダリ配管の最も過酷な破断を想定し、これにより放出され子炉冷却材のエネルギによる原子炉冷却材喪失事故(以下「冷喪失事故」という。)時の最大の圧力、最高の温度及び設計上想れた地震荷重に耐える設計とする。また、冷却材喪失事故時及蒸気逃がし安全弁(以下「逃がし安全弁」という。)作動時にて、原子炉格納容器に生じる動荷重に耐える設計とする。なお子炉格納容器に生じる動荷重に対する設計は、「BWR. MARK I 納容器圧力抑制系に加わる動荷重の評価指針」に基づき実施す	る原 < 柏崎刈羽 7 号機との比較 > 却材 格納容器型式による相違 記載表現の相違 記載表現の相違 おい , 原 型格 格納容器型式の相違による記

柏崎刈羽原子力発電所第7号機	元 (1番笛ノラントの記載との比較衣 (VI-1~8~1) 原子 東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器の開口部である出入口及び貫通部を含めて原	
		炉格納容器全体の漏えい率を許容値以下に保ち、冷却材喪失事む スペッパン・ウムの作利はよいいでおったとえて展えばなける問題	
		及び逃がし安全弁作動時において想定される原子炉格納容器内	
		圧力、温度、放射線等の環境条件の下でも原子炉格納容器バウン	
		リの健全性を保つように設計するとともに、漏えい試験ができる	設
		計とする。	
		原子炉格納容器バウンダリを構成する機器は,通常運転時,通	 転 記載表現の相違
		時の異常な過渡変化時及び設計基準事故時において、原子炉格組	
		器バウンダリの脆性破壊及び破断を防止する設計とする。	
		原子炉格納容器を貫通する各施設の配管系に設ける原子炉格	納
		容器隔離弁は、安全保護装置からの信号により、自動的に閉鎖す	-S
		動力駆動弁、チェーンロックが可能な手動弁、キーロックが可能	はな
		遠隔操作弁又は隔離機能を有する逆止弁とし、原子炉格納容器の	隔
		離機能の確保が可能な設計とする。	
		原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際	\$\C
		生じる原子炉格納容器内の圧力及び温度の上昇により原子炉格	納
		容器の安全性を損なうことを防止するとともに,原子炉格納容器	
		から漏えいする放射性物質の濃度を低減する設備として残留素	·除
		去系 (格納容器スプレイ冷却モード)を設置する設計とする。ま	
		原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に	
		じる水素及び酸素により原子炉格納容器の安全性を損なうこと	
		防止するため、可燃性ガス濃度制御系及び原子炉格納容器調気系	を設備名称の相違
		設置する設計とする。	
		なお、冷却材喪失事故後、ドライウェル内蒸気の凝縮が進み、	
		ライウェル圧力がサプレッションチェンバ圧力より低下した場	
		に, 圧力差により自動的に働き, サプレッションチェンバのプー	
		水のドライウェルへの逆流及びドライウェルの破損を防止する	た
		め、真空破壊装置を設置する設計とする。	
		では、中では、中では、中では、10mmでは	·
		運転時の異常な過渡変化時及び設計基準事故時において、原子	-1/P

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
·		建屋原子炉棟から直接大気に放射性物質が漏えいしないように, 身	設計の相違
		常用ガス処理系を設置する設計とする。	・女川は非常時の原子炉建屋の
			ガス処理設備を非常用ガス処
			理系のみ設置している。
		2.2 重大事故等時における基本方針	基本方針内で設計基準事故と
		原子炉格納容器は、重大事故等時の条件下においても放射性物質	
		の閉じ込め機能を有する設計とする。	主人手成 (1 CM E) 日
		重大事故等時の原子炉格納容器内の熱を輸送するために用いる	
		原子炉格納容器フィルタベント系は、フィルタ装置により放射性物	
		質を低減させた後に原子炉建屋屋上に設ける放出口から排出する	
		ことで、排気中に含まれる放射性物質の環境への放出量を低減して	
		つ、原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である	
		大気へ輸送できる設計とする。また、耐圧強化ベント系は、原子均	
		格納容器内雰囲気ガスを <mark>排気筒</mark> を通して原子炉建屋外に放出する	
		ことで、原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場で	
		ある大気へ輸送できる設計とする。なお、可搬型窒素ガス供給系は	
		可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止する	
		ために、可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活	
		性ガス(窒素)の供給が可能な設計とする。また、原子炉格納容器	
		フィルタベント系は、排気中に含まれる可燃性ガスによる爆発を防	
		ぐため、系統内を不活性ガス(窒素)で置換した状態で待機させ、	, , , , , , , , , , , , , , , , , , , ,
		原子炉格納容器ベント後においても不活性ガス(窒素)で置換でき	, , , , , , , , , , , , , , , , , , , ,
		る設計とする。	従い, 女川 2 号では 65 条と
			様の記載としている。
		重大事故等時の原子炉格納容器内の冷却のために用いる原子炉	ī
		格納容器代替スプレイ冷却系(常設)及び原子炉格納容器代替スプ	ρ
		レイ冷却系(可搬型)は、復水移送ポンプ又は大容量送水ポンプ(タ	
		イプ I) により原子炉格納容器内のドライウェルスプレイ管から I	
		ライウェル内にスプレイすることで、原子炉格納容器内の圧力及で	ド は新設設備(常設低圧代替注
		温度並びに放射性物質の濃度を低下させることができる設計とす	(1)
		る。また、残留熱除去系(格納容器スプレイ冷却モード)及び残留	
		熱除去系(サプレッションプール水冷却モード)は、常設代替交流	
		電源設備からの給電により機能を復旧し、残留熱除去系ポンプ及び	,
		残留熱除去系熱交換器によりサプレッションチェンバのプールオ	
		をドライウェル内及びサプレッションチェンバ内にスプレイ並び	

	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)		
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		に残留熱除去系ポンプ及び残留熱除去系熱交換器によりサプ	レッ 2 タイプの可搬型ポンプ車によ
		ションチェンバのプール水を冷却することで原子炉格納容器	を冷 る対策としている。
		却できる設計とする。	<柏崎刈羽7号機との比較>
			運用の相違
			・女川はドライウェル側へのス
			プレイの方が効果的なため, 原
			子炉格納容器への外部注水制
			限量も考慮して、ドライウェル
			側のみにスプレイを行う。
		重大事故等時の原子炉格納容器の過圧破損防止のために用	いる
		代替循環冷却系は、代替循環冷却ポンプによりサプレッション	チェ 設備名称の相違
		ンバのプール水を残留熱除去系熱交換器にて冷却し、原子炉圧	力容設計の相違
		器へ注水及び原子炉格納容器内へスプレイすることで,原子炉	格納 ・運用の相違による。
		容器バウンダリを維持しながら原子炉格納容器内の圧力及び	温度
		を低下できる設計とする。また,原子炉格納容器フィルタベン	ト系 設備名称の相違
		は、フィルタ装置により放射性物質を低減させた後に原子炉建	屋屋
		上に設ける放出口から排出することで、排気中に含まれる放射	性物 建屋構成の相違
		質の環境への放出量を低減しつつ,原子炉格納容器内の圧力及	び温
		度を低下できる設計とする。なお、可搬型窒素ガス供給系は、	可燃 設備名称の相違
		性ガスによる爆発及び原子炉格納容器の負圧破損を防止する	ため
		に、可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活	性ガ 設備名称の相違
		ス(窒素)の供給が可能な設計とする。また、原子炉格納容器	フィ 設備名称の相違
		ルタベント系は、排気中に含まれる可燃性ガスによる爆発を防	ぐた
		め、系統内を不活性ガス(窒素)で置換した状態で待機させ、	原子 記載表現の相違
		炉格納容器ベント後においても不活性ガス (窒素) で置換でき	る設
		計とする。	
		重大事故等時の原子炉格納容器下部の溶融炉心冷却のため	に用
		いる原子炉格納容器下部注水系(常設)(復水移送ポンプ)及び	原子 設備名称の相違
		炉格納容器下部注水系(常設)(代替循環冷却ポンプ)は、復水	移送 設計の相違
		ポンプ又は代替循環冷却ポンプにより、原子炉格納容器下部へ	注水・女川は原子炉格納容器下部
		し、溶融炉心が落下するまでに原子炉格納容器下部にあらかじ	め十 水系として、原子炉格納容器
		分な水位を確保するとともに、落下した溶融炉心を冷却できる	設計 部注水系 (常設) (復水移送ポ
		とする。また、原子炉格納容器下部注水系(可搬型)は、大容	量送 プ)及び原子炉格納容器下部
		水ポンプ(タイプI)により、原子炉格納容器下部へ注水し、	落下 水系 (常設) (代替循環冷却ポ
		した溶融炉心を冷却できる設計とする。	プ)を整備し、多様性等を図
			た設計としている。
			・東海第二は溶融炉心の落下
			備え,ペデスタル底部の構造

柏崎刈羽原子力発電所第7号機	先行番金フフントの記載との比較表(VI-1-8-1 原子炉格納 東海第二発電所	女川原子力発電所第2号機	備考
			更を行いペデスタル床ドレン
			サンプの水位を維持すること
			で、溶融炉心の冠水対策を行っ
			ている。
		また,原子炉格納容器代替スプレイ冷却系(常設)及び代替循環	設計の相違
		冷却系は、復水移送ポンプ又は代替循環冷却ポンプにより原子炉格	・女川はコリウムシ―ルドを設
		納容器内のドライウェルスプレイ管からドライウェル内にスプレ	置しない状態でも,原子炉格納
		イし、スプレイした水がドライウェル床面に溜まり、原子炉格納容	容器下部へ落下した溶融炉心
		器下部開口部を経由して原子炉格納容器下部へ流入することで、落	がドレン配管内で凝固するこ
		融炉心が落下するまでに原子炉格納容器下部にあらかじめ十分な	とを確認しているが, 更なる安
		水位を確保するとともに、落下した溶融炉心を冷却できる設計とす	全性向上のため,自主対策設備
		る。また、原子炉格納容器代替スプレイ冷却系(可搬型)は、大客	としてコリウムシールドを設
		量送水ポンプ (タイプ I) により原子炉格納容器内のドライウェル	置する。
		スプレイ管からドライウェル内にスプレイし、スプレイした水がト	
		ライウェル床面に溜まり,原子炉格納容器下部開口部を経由して原	〔 設計の相違
		子炉格納容器下部へ流入することで,落下した溶融炉心を冷却でき	・女川では格納容器にスプレイ
		る設計とする。	した水がドライウェル床面に
			たまり、格納容器下部開口部を
			経由して格納容器下部に流入
			することを考慮するため,原子
			炉格納容器代替スプレイ冷却
			系及び代替循環冷却系を溶融
			炉心の冷却設備として整理し
			ている。
			表現の相違
		用いる低圧代替注水系(常設)(復水移送ポンプ),低圧代替注水系	設備名称の相違
		(可搬型), 高圧代替注水系, 代替循環冷却系及びほう酸水注入系	<u> </u>
		は, 低圧代替注水系(常設)(復水移送ポンプ), 低圧代替注水系(電	では、では、できます。
		搬型), 高圧代替注水系及び代替循環冷却系のいずれかと並行して	
		ほう酸水注入系による原子炉圧力容器への注水を行うことで溶晶	į.
		炉心を冷却できる設計とする。	
		重大事故等時の原子炉格納容器内における水素爆発による破損	
		防止のために用いる可搬型窒素ガス供給装置は、原子炉格納容器内]
		を不活性化するため、原子炉格納容器内に窒素を供給することで、	
		ジルコニウムー水反応、水の放射線分解等により原子炉格納容器内	記載表現の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表(VI-1-8-1 原子炉桶 東海第二発電所	女川原子力発電所第2号機	備考
		に発生する水素及び酸素の濃度を可燃限界未満にできる設計とす	
		る。また、原子炉格納容器フィルタベント系は、フィルタ装置によ	設備名称の相違
		り放射性物質を低減させた後に原子炉建屋屋上に設ける放出口か	建屋構成の相違
		ら排出することで、排気中に含まれる放射性物質の環境への放出量	記載表現の相違
		を低減しつつ,ジルコニウムー水反応,水の放射線分解等により発	記載表現の相違
		生する原子炉格納容器内の水素及び酸素を大気に排出できる設計	
		とし、排気中に含まれる可燃性ガスによる爆発を防ぐため、系統内	記載表現の相違
		を不活性ガス(窒素)で置換した状態で待機させ、原子炉格納容器	記載表現の相違
		ベント開始後においても不活性ガス(窒素)で置換できる設計とす	記載表現の相違
		るとともに、系統内に可燃性ガスが蓄積する可能性のある箇所には	記載表現の相違
		バイパスラインを設け,可燃性ガスを連続して排出できる設計とす	記載表現の相違
		ることで、系統内で水素濃度及び酸素濃度が可燃領域に達すること	
		を防止できる設計とする。なお、可搬型窒素ガス供給系は、可燃性	設備名称の相違
		ガスによる爆発及び原子炉格納容器の負圧破損を防止するために,	
		可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス	設備名称の相違
		(窒素)の供給が可能な設計とする。	記載表現の相違
			<柏崎刈羽7号機との比較>
			設計の相違
			・柏崎刈羽は炉心損傷後も耐圧
			強化ベント系を使用するが、
			川は炉心損傷後は耐圧強化
			ント系を使用しないため耐圧
			強化ベント系の記載はしてい
			ない。(63条で整理)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笛ノフントの記載との比較衣(VI-1-8-1 原子別格料加 東海第二発電所	女川原子力発電所第2号機	備考
(日間)小44か、丁沙光亀が発	水体労一元毛力	原子炉建屋等の水素爆発による損傷を防止するために用いる静的触媒式水素再結合装置は、原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させることで、原子炉建屋原子炉棟内の水素濃度の上昇を抑制し、原子炉建屋原子炉棟の水素爆発を防止できる設計とする。	設計の相違 ・女川は静的触媒式水素再結合 装置により水素爆発損傷防止
		炉心の著しい損傷及び原子炉格納容器の破損に至った場合において,発電所外への放射性物質の拡散を抑制するために用いる放水設備(大気への拡散抑制設備)は、大容量送水ポンプ(タイプⅡ)により海水を取水し、放水砲から原子炉建屋へ放水することで発電所外への放射性物質の拡散を抑制する設計とし、原子炉建屋周辺における航空機衝突による航空機燃料火災に対応するために用いる放水設備(泡消火設備)は、大容量送水ポンプ(タイプⅡ)により泡消火薬剤混合装置を通して、海水を泡消火薬剤と混合しながらホース等を経由して放水砲から原子炉建屋周辺へ放水できる設計と	設備名称の相違 設備名称の相違 記載表現の相違 設備名称の相違 設備名称の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		する。また、海洋への拡散抑制設備(シルトフェンス)は、シルト	
		フェンスを汚染水が発電所から海洋に流出する南側排水路排水桝、	
		タービン補機放水ピット、北側排水路排水桝及び取水口に設置する	
		ことで発電所外への放射性物質の拡散を抑制する設計とする。	
		原子炉格納容器は,想定される重大事故等時において,設計基準	
		対象施設としての最高使用圧力及び最高使用温度を超える可能性	
		があるが、設計基準対象施設としての最高使用圧力(設計圧力)の	記載表現の相違
		2 倍である限界圧力及び 200℃の限界温度で閉じ込め機能を損なれない設計とする。	
		上記の設計のため、評価に用いる解析コードの検証及び妥当性確	記載方針の相違
		認等の概要については、添付書類「VI-5 計算機プログラム (解析	
		コード)の概要」に示す。	ム(解析コード)の概要」に整
		, , , , , , , , , , , , , , , , , , , ,	理している。
			<柏崎刈羽7号機との比較>
			記載表現の相違
			・柏崎刈羽は既工認に基づき,
			構造の概要について記載して
			いる。

2021年8月19日 02-工-B-08-0011_改2

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元付番笙ノブントの記載との比較衣(VI-1-8-1 原于炉枪 東海第二発電所	女川原子力発電所第2号機	備考
	·	【当該記載項目なし】	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笙ノブントの記載との比較衣(Wi-1-8-1)原子 東海第二発電所	女川原子力発電所第2号機	備考
		3. 原子炉格納施設の設計条件	差異なし
		原子炉格納施設の設計条件としては設計基準事故時における設	
		計条件と,重大事故等時における設計条件に分類し,項目ごとに説	
		明する。	
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は既工認の記載事項
			に基づき, 運転状態等の定義に
			ついて記載している。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番金ノソントの記載との比較衣(VI-1-8-1 原于炉/ 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は既工認の記載事項
			に基づき,運転状態等の定義に
			ついて記載している。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番金ノソントの記載との比較衣(VI-1-8-1 原于炉/ 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は既工認の記載事項
			に基づき,運転状態等の定義に
			ついて記載している。

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		3.1 設計基準事故時における設計条件 原子炉格納容器の設計基準事故時の設計条件として,施設時に適 用した「発電用原子力設備に関する構造等の技術基準」(昭和55年 通商産業省告示第501号,以下「告示第501号」という。)に基 づき最高使用圧力,最高使用温度,最低使用温度等を設定し,原子 炉格納容器の強度評価等も含めた設計条件として使用する。以下に 設計条件として使用する項目について示す。	施設時の規格の相違
		3.1.1 圧力及び温度に関する設計条件 (1) 内圧及び温度 原子炉格納容器は冷却材喪失事故直後の圧力上昇に耐えうるも のでなくてはならないため、解析から得られる原子炉格納容器の最 高内圧及び最高温度を上回るように設定する。	
		解析の際の初期条件は、表 3-1 に示す通常運転中の圧力及び温度である。	< 柏崎刈羽 7 号機との比較> 記載方針の相違 ・柏崎刈羽は既工認に基づき, 解析モデルに用いた D/W, S/C の 空間容積等について記載して いる。
		表 3-1 解析に用いた初期条件 F9イクェル	設計条件の相違 設備名称の相違
		解析結果による最高圧力及び最高温度は表3-2に示す値となる。	< 柏崎刈羽7号機との比較> 設計条件及び格納容器型式に よる設計条件の相違 < 柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽は既工認に基づき,

柏崎刈羽原子力発電所第7号機	元刊番笙ノラントの記載との比較表(VI-1-8-1 原于炉俗程 東海第二発電所	女川原子力発電所第2号機	備考
			解析結果による圧力変化及び
			温度変化の図を記載している。
		表 3-2 解析結果による最高圧力及び最高温度*	設計条件及び格納容器型式よ
		ドライウェル サプレッションチェンバ	る解析結果の相違
		圧 力 324 kPa 206 kPa	設備名称の相違
		組 度 146℃ 97℃	<柏崎刈羽7号機との比較>
		注記*:記載内容は、平成2年5月24日付け元資庁第14466号にて	認設計条件及び格納容器型式に
		可された工事計画の添付書類「IV-1-1-1 原子炉格納容器	
		設計条件に関する説明書」による。	記載表現の相違
		MARIANTI 1 24 / WWW / B 3 1 - 04 W 0	176774 - 1672
			<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は既工認に基づき、
			圧力変化図を記載している。

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉格線 東海第二発電所	女川原子力発電所第2号機	備考
		< 記	相崎刈羽 7 号機との比較> B載方針の相違 柏崎刈羽は既工認に基づき, E力変化図を記載している。
			t計条件及び格納容器型式に る仕様の相違
			2 備名称の相違

柏崎刈羽原子力発電所第7号機	元付番笙ノブントの記載との比較衣(VI-1-8-1 原子版 東海第二発電所	女川原子力発電所第2号機	備考
		格納容器を防護する設計としている。したがって、ドライウェル及	
		びサプレッションチェンバの外面にうける最高の圧力は13.7kPaと	<柏崎刈羽7号機との比較>
		する。	設計条件及び格納容器型式に
			よる仕様の相違
		(3) 設計基準事故時の原子炉格納容器の評価水位	記載方針の相違
		冷却材喪失事故発生後、サプレッションチェンバ(内部水源)を	
		水源とした非常用炉心冷却系による注水開始により、炉心は冠水さ	
		れ、冷却材は冷却材喪失事故の破断口から原子炉格納容器下部及び	谷命の計画が位を明確化した。
		ドライウェル床を経由して、サプレッションチェンバへと流入す	
		る。	
		・ 原子炉格納容器下部及びドライウェル床には、250m3 弱の冷却材	
		を保有できる容量を有しており、冷却材喪失事故発生後の原子炉圧	
		を休有できる谷重を有しており、行动材設大事政策生後の原子が圧 力容器より流出する冷却材量(約 200m³)は原子炉格納容器下部及	
		刀谷番より孤田 9 る行列 付重 (ボ) 200m) は原士が 恰納谷番 下部 及びドライウェル床に保持される。	
		でドノイリエル体に体行される。 その後、サプレッションチェンバを水源とする非常用炉心冷却系	
		による注水が継続するため、サプレッションチェンバの水位は事象 発生時の水位以下で推移することから、弾性設計用地震動Sd及び	
		基準地震動Ssと組み合わせる原子炉格納容器の評価においては、	
		医中心展動の85と組みらわせる原丁が格納存品が計画においては、 保安規定に基づく運転上の制限値を踏まえ、サプレッションチェン	
		なお、非常用炉心冷却系のうち高圧炉心スプレイ系については、	
		第一水源として復水貯蔵タンクを用いるが、サプレッションチェン	
		第一小原として復小町蔵タンクを用いるが、リプレッションケェン バの水位が H. W. L. O. P3800mm (水位 3.6m) に到達すると水源が	
		サプレッションチェンバへ切り替わり、その後復水貯蔵タンク水に	
		リクレッションケェンハへ切り替わり、その後復小町廠タンケホに より注水されることはない。	
		より仕小されることはない。	
		3.1.2 漏えい率に対する設計条件	
		設計基準対象施設として使用する原子炉格納容器の設計漏えい	<柏崎刈羽7号機との比較>
		率は、安全評価解析(原子炉設置変更許可申請書添付書類十)の環	記載方針の相違
		境への放射性物質の異常な放出において,判断基準(実効線量 5mSv	・柏崎刈羽は既工認の記載事項
		以下)を満足することが確認されている設計漏えい率 0.5%/d以下	に基づき記載している。
		(常温,空気,最高使用圧力の0.9倍において)とする*。	

柏崎刈羽原子力発電所第7号機	先行番金ブラントの記載との比較表(VI-1-8-1 原子炉格納施設 東海第二発電所	女川原子力発電所第2号機	備考
		注記*:令和2年2月26日付け「原規規発第2002261号」をもって許可を受けた「女川原子力発電所発電用原子炉設置変更許可申請書」添付書類十 3.設計基準事故解析3.4.4原子炉冷却材喪失における解析条件	
		3.1.3 最低使用温度 告示第501号で規定されている原子炉格納容器の最低使用温度を表3-4に示す。 表 3-4 原子炉格納容器の最低使用温度	記載表現の相違 記載表現の相違
		ドライウェル,サプレッションチェンバとも同じ値である。この 最低使用温度は建設時の耐圧漏えい試験時(試験状態)を考慮して 決めたものであり、建設時を除けば、原子炉建屋内にあるため、換 気空調系により10℃以上に保たれる。	記載表現の相違
		3.1.4 使用材料 原子炉格納容器バウンダリに使用するフェライト系材料は原子 炉格納容器の最低使用温度に対して脆性破壊を防止するため、告示 第501号の規定により衝撃試験又は落重試験を行い、これに合格 したものを使用する。 原子炉格納容器本体の脆性破壊防止に関する確認事項を以下に 示す。	
		(1) 原子炉格納容器本体の脆性破壊防止 a. 概要	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器本体は、施設時に適用された「告示第501号」	
		及び「電気工作物の溶接に関する技術基準を定める省令」(昭和45	
		年通商産業省令第81号(昭和60年10月改正を含む))(以下「省	施設時の規格の相違
		令第81号」という。) に基づき, 材料, 設計及び製作において,	
		次の試験を実施し、脆性破壊に対し十分安全であることを確認され	
		たものを使用する。	
			== deb_de === 1= 1= 1= 1= 1= 1= 1= 1= 1= 1= 1= 1=
		(a) 原子炉格納容器本体の材料は、告示第501号第20条第4項に	記載表現の相違
		規定する方法による破壊靱性試験を行い、同項に規定する合	
		格基準に適合するものを使用する。	
		(b) 原子炉格納容器本体の溶接部は、省令第81号第28条第2項に	規格の改正年度に伴う相違
		規定する試験板について第26条の規定に基づき、破壊靱性試	記載表現の相違
		験を行い,同条に規定する合格基準に適合することを確認さ	
		れたものを使用する。	
		b. 脆性破壊防止のための確認事項実施要領	
		(a) 原子炉格納容器本体の材料に関する確認	
		本体材料に関する破壊靭性試験として衝撃試験を実施する。衝撃	記載表現の相違
		試験の実施要領は次のとおりである。	
		第二種容器(厚さが16mm未満の材料、断面積が625mm ² 未満の棒の	記載表現の相違
		材料, 呼び径が25mm未満のボルト等の材料, 外径が169mm未満の管	
		の材料並びに厚さが16mm又は外径が169mm未満の管に接続されるフ	IN THE
		ランジの材料及び管継手の材料を除く。)に使用する材料のうち、	
		オーステナイト系ステンレス鋼及び高ニッケル合金以外のものに	
		限る。	
		TX 00	
		H ++ 14c1	
		ロ. 材料 原子炉格納容器本体において,該当する材料はSGV49及びSPV50で	原子后故 幼家 思末 休 の 佳田 壮
		原士炉恰納谷益本体において,該当する材料は36V49及USPV50である。	原士炉格納谷益本体の使用材料の相違
		wy。	14イソノ作理
		ハ. 試験温度	
		試験温度は-17℃以下とする。これは最低使用温度(0℃)より17℃	

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表 (VI-1-8-1 原子炉格納) 東海第二発電所	女川原子力発電所第2号機	備考
		以上低い温度である。 二. 試験片 試験片は、3個採取する。 ホ. 合格基準 試験片の吸収エネルギが次の表の値以上であるものを合格とする。	
		WR	材料の違いによる基準値の相 違
		SGV49 (2.8) (2.1) SPV50 40 33 (4.1) (3.4)	

柏崎刈羽原子力発電所第7号機	元付番笙ノブントの記載との比較宏(VI-1-8-1 原于炉俗和 東海第二発電所	女川原子力発電所第2号機 備考
		(b) 原子炉格納容器本体の溶接部に関する確認
		本体の溶接に関する破壊靭性試験として衝撃試験を実施する。衝記載表現の相違
		撃試験の実施要領は次のとおりである。
		イ. 対象溶接部
		第二種容器の突合せ溶接による溶接部のうち、熱影響部であって 記載表現の相違
		材料がオーステナイト系ステンレス鋼、ニッケルクロム鉄合金、鉄
		ニッケルクロム合金又は非鉄金属以外のもの及び溶接金属部であ
		って,溶接金属がオーステナイト系ステンレス合金,ニッケルクロ
		ム鉄合金又は非鉄金属以外のものであって,厚さが16mm以上の溶接
		部,外径が169mm以上の管の溶接部及び厚さが16mm又は外径が169mm
		以上の管に接続されるフランジ又は管継手の溶接部に限る。
		口. 母材の材料
		原子炉格納容器本体において、該当する溶接部の母材はSGV49及 原子炉格納容器本体の
		びSPV50である。 料の相違
		八. 試験温度
		試験温度は-17℃以下とする。これは最低使用温度 $(0$ ℃ $)$ より 17 ℃
		以上低い温度である。
		二. 試験片
		試験片は溶接金属部及び熱影響部から、それぞれ3個採取する。
		ホ. 合格基準
		試験片の吸収エネルギが次の表の値以上であるものを合格とす
		る。なお、再試験は省令第81号第30条(第13条準用)の規定によ 規格の改正年度に伴う相
		ప 。
		要収エネルギ 原子炉格納容器本体の
		材料 3個の平均 最小値 料の相違
		(kg · m) (kg · m)
		27 21
		SGV49 (2.8) (2.1)
		SPV50 40 33
		(4.1) (3.4)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元11番笛ノフントの記載との比較衣(VI-1-8-1 原于炉恰架 東海第二発電所	女川原子力発電所第2号機	備考
		3.1.5 耐圧試験圧力	
		原子炉格納容器の耐圧試験圧力は、施設時に適用された告示第5	
		0 1 号第 104 条第 1 号ハに基づき,最高使用圧力 427kPa	
		(4.35kg/cm²) の 1.125 倍である 481kPa (4.9kg/cm²) で気圧試験を	
		行い原子炉格納容器の健全性を確認する。	よる仕様の相違
		以上より,原子炉格納容器の耐圧試験圧力 481kPa (4.9kg/cm²)	
		とする。	
		3.1.6 開口部	放体な明刊書に似る記供力を
		開口部となるドライウェル主フランジ,機器搬出入用ハッチ,逃 がし安全弁搬出入口,制御棒駆動機構搬出入口,サプレッションチ	
		エンバ出入口(以下「ハッチ類」という。)及び所員用エアロックは	
		十分な気密性を保つ設計とし、想定される漏えい量その他の漏えい	
		試験に影響を与える環境条件として、判定基準に適切な余裕係数を	
		見込み、日本電気協会「原子炉格納容器の漏えい率試験規程」(JE	
		AC4203)に定める漏えい試験のうちB種試験ができる設計と	
		する。	
		所員用エアロックは, 扉の開閉状態を管理するため, 所員用エア	
		ロックの扉が開いた場合には中央制御室に警報を発信する。また、	
		所員用エアロックの扉は、両方の扉が同時に開かないようにインタ	
		ーロックを設ける設計とする。	
		ハッチ類は, 原子炉格納容器の貫通部にフランジ付の胴板が溶接	

柏崎刈羽原子力発電所第7号機	元付番笙ノブントの記載との比較衣(VI-1-8-1 原士 東海第二発電所	女川原子力発電所第2号機	備考
	·	固定されており、ハッチ類の外周側から蓋フランジをガスケットと	
		ボルトで固定し、気密性を保つ設計とする。	
		3.1.7 配管貫通部	
		原子炉格納容器配管貫通部は、冷却材喪失事故時において想定さ	記載表現の相違
		れる原子炉格納容器内の圧力を考慮した最高使用圧力, 温度を考慮	
		した最高使用温度,湿度,放射線等の環境条件の下でも機能を発揮	
		できる設計とする。	
		3.1.8 電気配線貫通部	
		電気配線貫通部は、冷却材喪失事故時において想定される原子炉	記載表現の相違
		格納容器内の圧力を考慮した最高使用圧力、温度を考慮した最高使	HOTOLOGICA THE
		用温度、湿度、放射線等の環境条件の下でも機能を発揮できるよう、	
		それらの試験条件を考慮した試験により健全性が確認されたもの	
		を使用する設計とする。	
		3.1.9 原子炉格納容器隔離弁	
		原子炉格納容器隔離弁(以下「隔離弁」という。)は,施設時に適	
		用された「発電用原子力設備に関する技術基準を定める省令」(昭	
		和40年通商産業省令第62号,以下「省令第62号」という。)第32	
		条第3項に基づくとともに以下に示す設計方針及び設計仕様に基づ	
		き設置する。	
		(1) 設計方針	
		原子炉格納容器を貫通する各施設の配管系に設ける隔離弁は、安	
		全保護装置からの信号により、自動的に閉鎖する動力駆動弁、チェ	
		ーンロックが可能な手動弁, キーロックが可能な遠隔操作弁又は隔	
		離機能を有する逆止弁とし、原子炉格納容器の隔離機能の確保が可	
		能な設計とする。	
		原子炉冷却材圧力バウンダリに接続するか、又は原子炉格納容器	記載表現の相違
		内に開口し、原子炉格納容器を貫通している各配管は、冷却材喪失	記載表現の相違
		事故時に必要とする配管及び計測制御系統施設に関連する小口径	
		配管を除いて,原則として原子炉格納容器の内側に1個,外側に1個	
		の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とす	
		る。	
		ただし,原子炉冷却系統に係る発電用原子炉施設内及び原子炉格	
		納容器内に開口部がなく、かつ、原子炉冷却系統に係る発電用原子	
		炉施設の損壊の際に損壊するおそれがない管又は原子炉格納容器	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		外側で閉じた系を構成した管で、原子炉冷却系統に係る発電用原子	
		炉施設の損壊その他の異常の際に,原子炉格納容器内で水封が維持	
		され、かつ、原子炉格納容器外へ導かれた漏えい水による放射性物	
		質の放出量が、冷却材喪失事故の原子炉格納容器内気相部からの漏	記載表現の相違
		えいによる放出量に比べ十分小さい配管については,原子炉格納容	
		器の内側又は外側に少なくとも1個の隔離弁を原子炉格納容器に近	記載表現の相違
		接した箇所に設ける設計とする。	
		また,原子炉格納容器の内側で閉じた系を構成する管に設置する	
		隔離弁は、遠隔操作にて閉止可能な弁を設置することも可能とす	
		る。	
		貫通箇所の内側又は外側に設置する隔離弁は, 一方の側の設置箇	
		所における管であって、湿気や水滴等により駆動機構等の機能が著	
		しく低下するおそれがある箇所, 配管が狭隘部を貫通する場合であ	
		って貫通部に近接した箇所に設置できないことによりその機能が	
		著しく低下するような箇所には、貫通箇所の外側であって近接した	
		箇所に2個の隔離弁を設ける設計とする。	
		原子炉格納容器を貫通する配管には、圧力開放板を設けない設計	
		とする。	
		設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設	記載表現の相違
		備及び残留熱除去系(格納容器スプレイ冷却モード)で原子炉格納	設計の差異
		容器を貫通する配管、その他隔離弁を設けることにより安全性を損	・女川は可燃性ガス濃度制御
		なうおそれがあり、かつ、当該系統の配管により原子炉格納容器の	系,原子炉格納容器調気系につ
		隔離機能が失われない場合は、自動隔離弁を設けない設計とする。	いて、格納容器隔離信号により
			自動隔離する設計としている
			ことから記載しない。
		ただし、原則遠隔操作が可能であり、設計基準事故時及び重大事	
		故等時に容易に閉鎖可能な隔離機能を有する弁を設置する設計と	
		する。	
		また,重大事故等時に使用する原子炉格納容器調気系の隔離弁に	記載方針の相違
		ついては、設計基準事故時の隔離機能の確保を考慮し自動隔離弁と	・設計基準事故時に自動隔離さ
		し、重大事故等時に容易に開弁が可能な設計とする。	れる弁のうち、重大事故等に対応
			するために動作が必要な弁と, そ
			の設計方針を記載している。
			<柏崎刈羽7号機との比較>
			対象系統の相違
			・女川は重大事故等時に使用す
			る隔離弁の抽出にあたり,原子
			炉格納容器隔離弁のうち自動

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			隔離弁であって格納容器隔離
			信号にて全閉となる弁を対象
			としている。柏崎刈羽7号で抽
			出された系統は女川でも同様
			の機能を有しているが、当該弁
			には、格納容器隔離信号が設け
			られていないことから対象外
			としている。
		原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装	
		置に関連する小口径配管であって特に隔離弁を設けない場合には、	
		隔離弁を設置したものと同等の隔離機能を有する設計とする。	記載表現の相違
		原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫	
		通する計測系配管に隔離弁を設けない場合には, オリフィス又は過	
		流量防止逆止弁を設置し、流出量抑制対策を講じる設計とする。	
		隔離弁は、閉止後に駆動動力源が喪失した場合においても閉止状	
		態が維持され隔離機能を喪失しない設計とする。また、隔離弁のう	
		ち、隔離信号で自動閉止するものは、隔離信号が除去されても自動	
		開とはならない設計とする。	
		隔離弁は,想定される漏えい量その他の漏えい試験に影響を与え	
		る環境条件として、判定基準に適切な余裕係数を見込み、日本電気	
		協会「原子炉格納容器の漏えい率試験規程」(JEAC4203)に	
		定める漏えい試験のうちC種試験ができる設計とする。また、隔離	
		弁は動作試験ができる設計とする。	
		(2) 設備仕様	
		原子炉格納容器を貫通する配管系に設ける隔離弁は,以下の項目	
		を満足し、原子炉格納容器バウンダリを構成する。	
		a. 設計基準事故及び重大事故等の収束に必要な設備に係る配管	
		の隔離弁は、隔離信号により自動的に閉止しないが、必要に応	
		じて遠隔操作により閉止できる弁又は逆止弁動作により閉止	
		する弁であり、原子炉格納容器の隔離機能を確保できる。	
		b. 2個の隔離弁を必要とする配管の弁駆動は、駆動動力源の単一	
		b. 2 回の内側飛行を必要とする配目の开心助は、心動動力がの単 故障によって両方の弁を閉止する能力を損なわない。さらに、	
		関止後駆動動力源の喪失によっても閉止状態が維持され、隔離	
		c. 隔離信号で自動閉止するものは,隔離信号が除去されても自動	
		「	
		用 これなりない。	

柏崎刈羽原子力発電所第7号機	定付番笙ノブントの記載との比較宏(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		自動隔離弁への隔離信号は,原子炉水位低,ドライウェル圧力	
		高あるいは、放射能レベル高及び手動である。	
		原子炉格納容器バウンダリ及び隔離弁の全体概要図を図 3-1~図	図の引用関係の明確ル
		原子が格納谷益ハワンクリ及び網離井の主体概要図を図 3-1°図 3-9 に示す。また、記号及び略号を図 3-10 に示す。	図の万円 関係の列催化
		3-5 (こかり。 また, 記方及び暗方を図 3-10 (こかり。	
		図3-1~図3-9 原子炉格納容器バウンダリ及び隔離弁 全体概要	
		図	
		【省略】	
		(24)	
		①:原子炉格納容器に取り付ける管の貫通箇所の内側及び外側であ	
		って近接した箇所に1個の隔離弁を設置する。	
		②:原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器	
		内に開口部がなく、かつ、原子炉冷却系統に係る発電用原子炉	3144月の474
		施設の損壊の際に損壊するおそれがない管又は原子炉冷却系	
		統に係る発電用原子炉施設の損壊その他の異常の際に,構造上 内部に滞留する液体により原子炉格納容器内の放射性物質が	・技術基準規則の表現に準拠
		外部へ漏えいするおそれがない管にあっては、貫通箇所の内側	
		マは外側の近接した箇所に1個の隔離弁を設置する。	
		③: 貫通箇所の内側又は外側に隔離弁を設ける場合には、一方の側	
		の設置箇所における管であって、湿気その他の隔離弁の機能に	
		影響を与える環境条件によりその隔離弁の機能が著しく低下	
		するおそれがあると認められるもの(湿気や水滴等により隔離	
		弁の駆動機構等の機能が著しく低下するおそれがある管。配管	
		が狭隘部を貫通する場合であって貫通部に近接した箇所に設	
		置できないことにより隔離弁の機能が著しく低下するおそれ	
		がある管)にあっては、貫通箇所の外側であって近接した箇所	
		に2個の隔離弁を設置する。	
		④:隔離弁を設けることを要しない箇所	
		設計基準事故及び重大事故等の収束に必要な系統の配管に隔離	
		弁を設けることにより安全性を損なうおそれがあり、かつ、当	
		該系統の配管により原子炉格納容器の隔離機能が失われない場	
		合。	
		⑤:隔離弁を設けることを要しない箇所	
		計測制御系統施設又は制御棒駆動装置に関連する配管であっ	
		て、当該配管を通じての漏えい量が十分許容される程度に抑制	

柏崎刈羽原子力発電所第7号機	先行番金フフントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		されているもの。	
		【省略】	
		図3-10 原子炉格納容器バウンダリ及び隔離弁	
		全体概要図の記号及び略号	
		3.1.10 原子炉格納容器体積	
		設計基準事故時における冷却材喪失事故直後の圧力上昇に耐え	. 記載表現の相違
		うるよう, ドライウェル空間容積 (約 7900㎡), サプレッションチ	設計条件及び格納容器型式に
		ェンバ空間容積(約 4700m³)の自由体積を有している。	よる仕様の相違
		3.1.11 原子炉格納容器安全設備	
		設計基準対象施設としての残留熱除去系(格納容器スプレイ冷去	モード名称の相違
		モード)は、サプレッションチェンバのプール水を原子炉格納容器	設備名称の相違
		内にスプレイすることにより、原子炉格納容器内の圧力及び温度を	
		原子炉格納容器の最高使用圧力及び最高使用温度以下に維持でき	
		る設計とする。	
		サプレッションチェンバのプール水を水源とする残留熱除去系	設備名称の相違
		ポンプは、予想される最も小さい有効吸込水頭においても、正常に	
		機能する能力を有する設計とする*。サプレッションチェンバは,	設備名称の相違
		設計基準事故及び重大事故等時に必要な水源として容量 2800m³, 個	機器仕様の相違
		数1個を有する設計とする。	
		残留熱除去系(格納容器スプレイ冷却モード)は、テストライン	モード名称の相違
		を構成することにより、発電用原子炉の運転中に試験ができる設計	-
		とする。また、設計基準事故時に動作する弁については、残留熱除	3
		去系ポンプが停止中に開閉試験ができる設計とする。また,残留熱	ķ.
		除去系(格納容器スプレイ冷却モード)は、冷却材喪失事故後、サ	モード名称の相違
		プレッションチェンバ内のプール水をドライウェル内及びサプレ	設備名称の相違
		ッションチェンバ内にスプレイすることによって,原子炉格納容器	設備名称の相違
		内の温度,圧力を低減し,原子炉格納容器内に浮遊している放射性	:
		物質が漏えいするのを抑えるよう設計する。	
		注記*:詳細は,添付書類「VI-1-8-4 圧力低減設備その他の安全 設備のポンプの有効吸込水頭に関する説明書」に示す。	添付書類名称の相違
		3.1.12 許容外圧	<柏崎刈羽7号機との比較>
		原子炉格納容器の許容外圧は,施設時に適用された告示第501	説明箇所の相違
		号第22条第3項第2号ハ、ト、リ及び第23条第2項第2号、第4	・柏崎刈羽は圧力に関する設計
		号により、	条件の一部として整理してい
			る。
		ドライウェル上鏡 約kPa	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		ドライウェル上部円筒部 約 kPa	設計条件及び格納容器型式に
		ドライウェル球形部 約 kPa	よる仕様の相違
		ドライウェル下部円筒部 約 kPa	
		ドライウェル下鏡 約 kPa	
		サプレッションチェンバ円筒部 約 kPa	
		ベント管円筒部 約 kPa	
		ベント管円すい部 約 kPa	
		ベント管伸縮継手 約 kPa となる。	
		許容外圧は,原子炉格納容器の設計外圧(約 13.7kPa)を上	回る
		値となっている。	
		なお,通常運転中においては,原子炉格納容器に窒素を充填	して 記載表現の相違
		いることなどから,原子炉格納容器外面に受ける圧力が設計外	圧を 記載表現の相違
		超えることはない。	
		3.1.13 圧力抑制効果を得るために必要な構造及び寸法	
		蒸気凝縮による圧力抑制効果については、パシフィック・カ	<i>i</i> ス・
		アンド・エレクトリック社と GE 社が米国モスランディング発	電所
		において, フンボルトベイ及びボデガベイ原子力発電所用とし	て行
		った実験結果に基づいており、この実験により構造及び寸法等	のパ <柏崎刈羽7号機との比較>
		ラメータを定めている。	格納容器型式の相違に伴う引
			用試験の相違
		女川原子力発電所第 2 号機における構造及び寸法等のパラ	メー プラント名称の相違
		タと上記実験によって求められたパラメータを比較すると表3	-5 O
		とおりとなっており、圧力抑制効果を得るために必要な構造及	び寸
		法は満足されている。	
		表3-5 女川原子力発電所第2号機 圧力抑制機能の構造,寸	法等 プラント名称の相違
		女川原子力発電所 実験結果に基づく	格納容器型式の相違
		第2号機 設計条件	,
		1 直径 (ダウンカマ)	
		2 水浸 (ダウンカマ)	
		クリアランス	
		3 (ダウンカマとサブレッションチェンバ底部間)	
		4 中心問距離(ダウンカマ)	
		*1	
		5 <u>実効破腑面積^{*1}</u> ベント管流路面積 ^{*2}	
		The second of	

生行家本プラントの記載との比較主(VI-1-9-1 | 百之后故姉姉認の設計条件に関する詳細書)

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		注記*1: の実効破断面積:AR	記載表現の相違
			<柏崎刈羽 7 号機との比較>
			評価対象設備の相違
		$A_R = $ m^2	設備仕様による相違
		*2:ベント管流路面積:A _V	
		(ベント管断面積×8)	
		$A_V = \frac{\pi}{4} \times \square \times 8 = \square m^2$	<柏崎刈羽7号機との比較>
		· ·	格納容器型式の相違
		2 2 TO,	
		ベント管内径: mm	
		ベント管本数: 8 本	
		【当該記載項目なし】	格納容器型式の相違
		【日該記載集日なし】	俗称谷畚室式の相達
		3.1.14 真空破壊装置	
		₩ 水上 水上	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子炉格 東海第二発電所	女川原子力発電所第2号機	備考
		したがって,真空破壊装置の必要流路面積 A_B は $A_B = $	真空破壊装置の仕様の相違
			<柏崎刈羽7号機との比較> 真空破壊装置の仕様の相違
		なお、この真空破壊装置は常時その開閉状態をチェックできる試験開閉装置を設置する。	
		3.1.15 原子炉建屋原子炉棟 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に 原子炉格納容器から気体状の放射性物質が漏えいした場合,放射性 物質の濃度を低減する設備として原子炉建屋原子炉棟を設置する。	
		原子炉建屋原子炉棟は、原子炉格納容器を収納する建屋であって、非常用ガス処理系により、内部の負圧を確保し、原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止する設計とする。	
		原子炉建屋原子炉棟に開口部を設ける場合には, 気密性を確保する設計とする。 3.1.16 可燃性ガス濃度制御設備	
		可燃性ガス濃度制御系は、通常運転中、原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあいまって、冷却材喪失事故時に原子炉格納容器内の水素濃度又は酸素濃度を、可燃限界に達しないための制限値である水素濃度を 4vo1%未満又は酸素濃度を 5vo1%未満に維持できる設計とする。	記載表現の相違
		3.1.17 放射性物質濃度制御設備 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に 原子炉格納容器から気体状の放射性物質が漏えいした場合,放射性	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	·	物質の濃度を低減する設備として非常用ガス処理系を設置する	設備名称の相違
		計とする。	
		非常用ガス処理系は、冷却材喪失事故時に原子炉格納容器内か	ら設備名称の相違
		原子炉建屋原子炉棟に漏えいした放射性よう素・粒子状核分裂生	成
		物を除去できるように設計する。非常用ガス処理系は、チャコー	ル 設備名称の相違
		エアフィルタによるよう素除去効率は 99%以上となる設計とす	る基本設計方針の相違
		* 0	
		注記*:令和2年2月26日付け「原規規発第2002261号」で一 補正)」をもって許可を受けた「女川原子力発電所発電	
		原子炉設置変更許可申請書」添付書類十 3. 設計基準事	故
		解析 3.4.4 原子炉冷却材喪失における解析条件	
		3.1.18 原子炉格納容器調気設備	
		原子炉格納容器調気系は、水素及び酸素の反応を防止するため	, 設備名称の相違
		あらかじめ原子炉格納容器内に窒素を充填することにより、水素	濃記載表現の相違
		度及び酸素濃度を可燃限界未満に保つ設計とする。	記載表現の相違
		炉心の著しい損傷が発生した場合において原子炉格納容器内	K
		おける水素爆発による破損を防止できるよう,発電用原子炉の運	転
		中は,原子炉格納容器内を原子炉格納容器調気系により常時不活 化する設計とする。	性設備名称の相違
		3.1.19 冷却材喪失事故時の荷重 (1) ドライウェル内の配管破断によるジェット力	記載表現の相違
		原子炉格納容器のドライウェル内原子炉系配管が破断した場合	・, 記載表現の相違
		ドライウェル壁面は高温・高圧の飽和蒸気及び二相流の噴出流に	
		るジェット力を受ける。	
		ジェット力及びその拡がりは F. J. Moody の理論により求めるか	記載表現の相違
		その荷重は応力評価すべき場所によって異なるため計算書の中	
			`

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番省ノソントの記載との比較表(VI-1-8-1 原于炉1 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番省ノソントの記載との比較表(VI-1-8-1 原于炉1 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番省ノソントの記載との比較表(VI-1-8-1 原于炉1 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽では既工認の記載引 項を記載している。
		(2) サプレッションチェンバ内に生じる荷重 冷却材喪失事故時には、まず、ドライウェル内の非凝縮性ガスが ベント管を経てサプレッションプール水中に押し出されるが、この 非凝縮性ガスによって、サプレッションプール水がスラグ流となって上昇し、急速な水面の上昇(プールスウェル)が起こり、サプレッションチェンバ内部構造物に種々の荷重が加わる。 また、その後サプレッションプール水中に蒸気が放出され、サブレッションプール水中で凝縮する。これらにより、サプレッションチェンバ及びサプレッションチェンバ内部構造物に種々の荷重が加わる。 図3-12に冷却材喪失事故時荷重の時間履歴を示す。	設備名称の相違 設備名称の相違 設備名称の相違 設備名称の相違 設備名称の相違 設備名称の相違

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表 (VI-I-8-1 原子炉格) 東海第二発電所	女川原子力発電所第2号機	備考
		a. サプレッションチェンバに加わる荷重	格納容器型式及び記載方式の
		(a) プールスウェル時荷重	相違(既工認に同じ)
		冷却材喪失事故によりダウンカマ内のプール水が押し出され、	31
		き続きドライウェルの非凝縮性ガスがサプレッションプール水	†
		に放出され、サプレッションチェンバに下向き荷重が作用する。	
		さらにダウンカマ出口に形成される気泡の膨張によりサプレ	ツ
		ションプール水は押し上げられ、気相部が圧縮されることにより	,
		サプレッションチェンバに上向き荷重が作用する。	
		これらの荷重は、冷却材喪失事故後の原子炉格納容器内圧力挙	動
		解析により求まるドライウェル内圧力上昇速度を基に、実機を模	疑
		した国内 1/8 規模実験,米国 1/4 規模実験(QSTF 実験)及び EPI	RI
		1/12 規模実験により得られた荷重及び荷重分布のデータからス	ケ
		ール則等を用いて評価した。サプレッションチェンバ上向き荷重	カ
		最大値は kPa, 下向き荷重の最大値は kPa である。	
		(b) 蒸気凝縮時荷重	
		プールスウェルに引き続き、高流量蒸気が凝縮することによっ	C
		サプレッションプール水に凝縮振動波が伝播し、サプレッション	チ
		ェンバに荷重が作用する(蒸気凝縮振動荷重)。	
		また, 低流量蒸気が凝縮する場合には, ダウンカマ出口で不均・	_
		な凝縮を生じ、サプレッションチェンバに圧力振動が作用する(チ
		ャギング荷重)。	
		これらの荷重は,実機を模擬した米国実規模実験(FSTF実験)	カ
		結果に基づき、ダウンカマ出口における擾乱の大きさ、周波数特	生
		等を評価し、これを用いて動的な解析を実施して評価した。	
		蒸気凝縮振動荷重の最大正圧は kPa,最大負圧は kPaで	あ
		り、チャギング荷重の最大正圧は kPa、最大負圧は kPaで	あ
		<u></u> వ.	
		b. サプレッションチェンバ内部構造物に加わる荷重	
		(a) プールスウェル時荷重	
		原子炉格納容器圧力抑制系をモデル化した実験の結果により、	J
		ールスウェル時にベント系には衝撃・ドラッグ荷重は作用しない	0
		(b) 蒸気凝縮時荷重	
		蒸気凝縮時においては、ダウンカマ出口に圧力振動による横方	á
		の荷重が作用する(蒸気凝縮振動荷重及びチャギング荷重)。	71
		これらの荷重は、実機を模擬した米国FSTF実験の結果に基づき	
			,

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		蒸気凝縮振動についてはダウンカマ内における圧力を、チャギングについてはダウンカマ出口に加わる横方向の荷重を、実機ダウンカマの振動特性等により補正して評価した。 蒸気凝縮振動荷重によるダウンカマ内圧力は、最大内圧 kPa、最大差圧 kPaであり、チャギング荷重によるダウンカマ横方向荷重は kNである。	相違(既工認に同じ)
		3.1.20 逃がし安全弁作動時の荷重 逃がし安全弁作動時、排気管内の非凝縮性ガスが圧縮され、これがサプレッションプール水中に放出される際に気泡を形成し、この気泡が過膨張・収縮を繰返し圧力振動がサプレッションチェンバに作用する。	
		本荷重は、米国モンティセロ発電所における実機の試験結果に基づいてクエンチャ出口における擾乱の大きさ、周波数特性等を評価し、逃がし安全弁排気管長さ、排気管水浸長等により補正して評価した。 逃がし安全弁作動時の最大正圧は Pa、最大負圧は Pa、最大負圧は RPa である。	

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表(VI-1-8-1 原子炉格納施設 東海第二発電所	女川原子力発電所第2号機	備考
			格納容器型式及び記載方式の
			相違(既工認に同じ)
		3.1.21 地震荷重	記載表現の相違
		原子炉格納施設の設計に用いる地震荷重としては,添付書類「VI -2-1-7 設計用床応答曲線の作成方針」及び「VI-2-3-2 炉心,原	
		子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原	
		子炉本体の基礎の地震応答計算書」に示す解析結果を用いる。	記載
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金ファントの記載との比較表(VI-1-8-1 原子炉格納 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	< 柏崎刈羽 7 号機との比較> 記載方針の相違 ・柏崎刈羽では既工認の記載事 項を記載している。
		3.1.22 荷重の組合せ 設計基準対象施設としての原子炉格納施設の荷重の組合せを表 3-6に示す。なお、応力計算はそれぞれの荷重の組合せの中で最も 厳しい条件について行う。また、圧力、温度及び冷却材喪失事故時 の蒸気ブローダウンによる荷重等において、荷重の発生する時間が 明らかに異なる場合は時間のずれを考慮する。	記載表現の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元(1番笛ノソントの記載との比較衣(VI-1-8-1 原子かん 東海第二発電所	女川原子力発電所第2号機	備考
	·	【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎では既工認の記載事項を
			記載している。
			格納容器型式による相違
			・柏崎刈羽7号機は、コンクリ
			ート製格納容器であり, 告示第
			452 号の荷重状態を考慮してい
			ることから,荷重の組合せ,許
			容応力状態及び荷重状態を表
			している。(女川は表 3-6 にお
			いて, 荷重の組合せと許容応力
			状態を表している。)

赤字: 設備,運用又は体制の相違点(設計方針の相違) 緑字: 記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元刊番省ノソントの記載との比較表(VI-1-8-1 原于炉1 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽では既工認の記載事
			項を記載している。

柏崎刈羽原子力発電所第7号機	元11番省ノフントの記載との比較宏(VI-1-8-1 原寸炉格網施設 東海第二発電所	女川原子力発電所第2号機	備考
		新聞の組合社 1975年 1	格納容器型式による評価指針の相違に伴う荷重の組合せの相違 ・女川は Mark- I 型の評価指針を参照している。

柏崎刈羽原子力発電所第7号機	先行番金プフントの記載との比較表(VI-1-8-1 原子炉格納施設 東海第二発電所	女川原子力発電所第2号機	備考
		_	
		3.1.23 繰返し荷重に対する解析	
		繰返し荷重に対する解析については、告示第501号第21条第	適用規格の相違
		2項(第13条第1項第3号準用)に示される条件を(1)に示すよう	TALL COMPANY IN THE STATE OF
		にいずれも満足しているので、特殊な場合(ベント管ベローズ)を	
		除いて疲れ解析を必要としない。また、「発電用原子力設備規格(設置) これ	
		計・建設規格 (2005 年版 (2007 年追補版含む。)) J SME S	
		NC1-2005/2007)」(以下「設計・建設規格」という。)を適用す	
		る機器においては、PVB-3140に示される疲労解析不要の条件を(2)	していることから記載
		に示すようにいずれも満足しているため、疲労解析を必要としな	
		い。 なお、疲れ解析及び疲労解析不要の条件のうち第3号へ及びPVB-	英田田地の担告によるなかの
		なみ、被礼牌付及の被分解析不要の条件のうら第3号へ及のFVB- 3140(6)については、施設後の機械的荷重及び地震動による応力の	
		変更により、疲れ解析及び疲労解析不要の条件を満足できなくなる	10年
		変更により、彼れ時間及い彼カ時間不安の栄性を個定じさなくなる 可能性が考えられることから、満足できなくなった場合においては	
		毎れ解析及び疲労解析を実施する。	
		IXA VITUI IX O IX JI IT IV I E 天地 り る。	<柏崎刈羽7号機との比較>
			格納容器型式に伴う相違
			中国なる中土を任う「日本
		ここで、繰返し荷重としてかかるサイクル数は便宜上、以下のよ	記載表現の相違
		うに定める。	IN THE PARTY OF TH
		・原子炉格納容器に全体的に加わる荷重のサイクル数	
		圧力:原子炉格納容器に全体的に内圧が加わるのは,運転開始前	
		試験時, 定検時の漏えい試験時及び事故時である。ここで,	
		運転開始前試験時は 回, 定検時の漏えい試験時は	プラント固有の設計の相違
		回程度、事故時は回である。	
		温度:原子炉格納容器が全体的に最高使用温度程度まで温度が上	
		昇するのは事故時	
		以上より原子炉格納容器が全体的に負荷される場合の回数は、圧	記載表現の相違
		力の回数に余裕をみて 回とする。	<柏崎刈羽7号機との比較>
			プラント固有の設計の相違
		・原子炉格納容器に局部的に加わる荷重のサイクル数	
		原子炉格納容器に局部的に負荷されるのは原子炉の起動停止,燃	
		料交換及び地震時である。ここで、原子炉の起動停止及び燃料交換	
		のサイクルは回程度であるため余裕をみて回とし、地震	プラント固有の設計の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		荷重が加わるサイクル数は590回である。	記載表現の相違 ・女川は原子炉格納容器が局部的に負荷され場合の回数を(1)f.及び(2)f.にて記載
		(1) 告示第501号に基づく繰返し荷重に対する解析 a. 大気圧から運転圧力になり、再び大気圧に戻るサイクル数の核 討(告示第501号第13条第1項第3号イ準用) 告示第501号に定められる許容引張応力Sの3倍の値は3×13 =393MPaであり、これに対応する許容繰返し回数Nは である。 ここで告示第501号に示される運転圧力を原子炉格納容器の最	建設規格としている。
		高使用圧力と対応させてみると、その回数は 回でNより小さいので本条項を満足している。	
		b. 負荷運転時における圧力変動の全振幅の検討(告示第501号 第13条第1項第3号ロ準用) 疲れ解析の対象となる圧力変動の全振幅は(イ)より、次のように求める。 $\mathbf{Am} = \frac{1}{3} \cdot P \cdot \frac{S^{'}}{S} = \qquad $	設計条件及び格納容器型式に
		カ強さ (

 (2) 対制、展記、発生サイクルやから立の連続から展生から特別では最大の成立とのようにのないます。	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
厚で、pの値が最大となるように選ぶ。 渡れ解析が不要となる任意の2点間の最大温度差は(ロ)より、次のように求める。 T = 気を =			示第501号第13条第1項第3号ハ準用) 解析の対象となる任意の2点間の距離は(イ)より、次のように 求める。	設計条件及び格納容器型式に
のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = $				
			のように求める。 $ T = \frac{Sa}{2 \cdot E \cdot \alpha} = $	

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
In	TOTAL TOTAL	d. 負荷運転中の任意の2点間の温度差の変動の全振幅の検討(告示第501号第13条第1項第3号ニ準用) 負荷運転中の温度変動の数を 回とすると、疲れ解析が不要となる最大温度差は、c.項に示すTと同じになる。したがって、負荷運転時の任意の2点間の最大温度差の変動の全振幅は、c.項に示すTを超えることはないので本条項を満足している。 e. 負荷運転時の異種材結合部分の温度差の検討(告示第501号第13条第1項第3号ホ準用)	<柏崎刈羽 7 号機との比較> プラント固有の設計の相違
		疲れ解析の対象となる異種材結合部分(貫通部)の最小温度差は (イ)より、次のように求める。 $T = \frac{S'}{2 \cdot (E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2)}$ $= \square ^{\mathbb{C}}$ ここに、 $S' : 炭素鋼の 10^6 回の繰返しに対する許容ピーク応力強さ(\square MPa) E_1 : \text{ステンレス鋼の縦弾性係数} (\square MPa \square ^{\mathbb{C}} \text{における値})) \alpha_1 : \text{ステンレス鋼の瞬時熱膨張係数} (\square MPa \square ^{\mathbb{C}} \text{における値})) E_2 : $	よる仕様の相違
		α_2 : 炭素鋼の瞬時熱膨張係数 (

柏崎刈羽原子力発電所第7号機	元刊番笙ノノントの記載との比較表(VI-176-1 原子炉俗科施 東海第二発電所	女川原子力発電所第2号機	備考
		Z Z /Z,	<柏崎刈羽7号機との比較>
		Sa : 炭素鋼の 回の繰返しに対する許容ピーク	設計条件及び格納容器型式に
		応力強さ(MPa)	よる仕様の相違
		したがって、疲れ解析が不要となる異種材結合部の許容最大温度	
		差は温度差(161℃)より大きくなるので本条項を満足している。	
		f. 容器に接続される管からの反力その他機械的荷重及び地震動	<柏崎刈羽7号機との比較>
		による応力の全振幅の検討(告示第501号第13条第1項第3号へ	プラント固有の設計の相違
		準用)	
		荷重の繰返し回数は、原子炉の起動停止及び燃料交換のサイク	
		ル数 回, 地震荷重が加わるサイクル数590回より, 回数に余	
		裕をみて 回とする。荷重の繰返し回数 回に対応する	
		許容ピーク応力強さは、 MPaとなる。ここで、原子炉格納容	
		器の機械的荷重及び地震動による応力の全振幅はいかなる場所	
		でも MPaを超えることのないよう設計しているので本条項	
		を満足している。	
		(2) 設計・建設規格に基づく繰返し荷重に対する解析	適用規格の明確化
		a. 大気圧から運転圧力になり、再び大気圧に戻るサイクル数の検	記載表現の相違
		討(設計・建設規格 PVB-3140(1))	
		設計・建設規格に定められる許容引張応力Sの3倍の値は3×131=	
		393MPaであり、これに対応する許容繰返し回数Mは である。	
		ここで設計・建設規格に示される運転圧力を原子炉格納容器の最高	
		使用圧力と対応させてみると、その回数は 回でNより小さいの	<柏崎刈羽7号機との比較>
		で本条項を満足している。	プラント固有の設計の相違
		b. 負荷運転時における圧力変動の全振幅の検討(設計・建設規格	
		PVB-3140(2))	
		疲労解析の対象となる圧力変動の全振幅は PVB-3140(2)a. より,	
		次のように求める。	
		$Am = \frac{1}{3} \cdot P \cdot \frac{S'}{S} = MPa$	設計条件及び格納容器型式に
		$Am = \frac{1}{3} \cdot P \cdot \frac{S}{S} = MPa$	よる仕様の相違
		2 2 KZ,	
		P : 最高使用圧力 (427kPa)	
		S': 炭素鋼の 10 ⁶ 回の繰返しに対する許容ピーク応力強さ	
		(MPa)	
		S:許容引張応力	
		(131MPa)	

したがって、疲労解析が不要となる圧力変動の全版組は負荷運転 時における圧力変動の全版組(で本条項を満足している。 こ 起動、運転、停止サイクル中の任意の2点間の温度差の検討(設 計・建設規格・PVB-3140(3)) 解析の対象となる任意の2点間の距離は PVB-3140(3)より、次の ように求める。	柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
 で本条項を満足している。 よる仕様の相連 こ 起動、運転、停止サイクル中の任意の2点間の温度差の検討(設計・建設規格 PVB-3140(3)、り、次のように求める。 p = 2√R・t = mm こ に、R は原子炉格納容器の最大半径、t は原子炉格納容器の板厚で、p の値が最大となるように選ぶ。 疲労解析が不要となる任意の2点間の最大温度差はPVB-3140(3)より、次のように求める。 T = Sa			したがって,疲労解析が不要となる圧力変動の全振幅は負	
こ. 起動、選転、停止サイクル中の任意の2点間の温度差の検討(設計・建設規格 PVB-3140(3))解析の対象となる任意の2点間の距離はPVB-3140(3)より、次のように求める。 p = 2√R・t =			時における圧力変動の全振幅 (MPa) より大きく	なるの 設計条件及び格納容器型式に
計・建設規格 PVB-3140(3)) 解析の対象となる任意の 2 点間の距離は PVB-3140(3) より、次のように求める。 $p = 2\sqrt{R \cdot t} = $			で本条項を満足している。	よる仕様の相違
計・建設規格 PVB-3140(3)) 解析の対象となる任意の 2 点間の距離は PVB-3140(3) より、次のように求める。 $p = 2\sqrt{R \cdot t} = $				
解析の対象となる任意の 2 点間の距離は PVB-3140(3) より、次のように求める。			c. 起動, 運転, 停止サイクル中の任意の2点間の温度差の検	討(設 記載表現の相違
ように求める。 $p = 2\sqrt{R \cdot t} = $			計・建設規格 PVB-3140(3))	
$p=2\sqrt{R\cdot t}=$			解析の対象となる任意の 2 点間の距離は PVB-3140(3)より,	次の
$p=2\sqrt{R\cdot t}$			ように求める。	
ここに、R は原子炉格納容器の最大半径、t は原子炉格納容器の 板厚で、p の値が最大となるように選ぶ。 疲労解析が不要となる任意の2点間の最大温度差はPVB-3140(3) より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = \qquad \mathcal{C}$ ここに、 Sa :炭素鋼の 回の繰返しに対する許容ピーク応力強さ				設計条件及び格納容器型式に
板厚で、 p の値が最大となるように選ぶ。			$p = 2\sqrt{R \cdot t} = 1$	よる仕様の相違
疲労解析が不要となる任意の 2 点間の最大温度差はPVB- $3140(3)$ より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = $			ここに、R は原子炉格納容器の最大半径, t は原子炉格納	容器の
より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = \square \ \mathcal{C}$ ここに、 $Sa : 炭素鋼の \square \ \Box $ 回の繰返しに対する許容ピーク応力強さ $(\square \ MPa)$			板厚で、pの値が最大となるように選ぶ。	
より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = \square C$ ここに、 $Sa : 炭素鋼の \square 回の繰返しに対する許容ピーク応力強さ ($				
より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = \square C$ ここに、 $Sa : 炭素鋼の \square 回の繰返しに対する許容ピーク応力強さ ($				
より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = \square C$ ここに、 $Sa : 炭素鋼の \square 回の繰返しに対する許容ピーク応力強さ ($				
より、次のように求める。 $T = \frac{Sa}{2 \cdot E \cdot \alpha} = \square \ \mathcal{C}$ ここに、 $Sa : 炭素鋼の \square \ \Box \ \Box \ O $ 繰返しに対する許容ピーク応力強さ (
$T = \frac{Sa}{2 \cdot E \cdot \alpha} = \square$ C ここに、 Sa : 炭素鋼の \square 回の繰返しに対する許容ピーク応力強さ (\square MPa)			疲労解析が不要となる任意の2点間の最大温度差はPVB-3	140(3)
ここに, Sa : 炭素鋼の 回の繰返しに対する許容ピーク応力強さ			より、次のように求める。	
ここに, Sa : 炭素鋼の 回の繰返しに対する許容ピーク応力強さ			Saa	
ここに, Sa : 炭素鋼の 回の繰返しに対する許容ピーク応力強さ			$T = \frac{1}{2 \cdot E \cdot \alpha} = \square C$	
Sa : 炭素鋼の 回の繰返しに対する許容ピーク応力強さ (MPa)			I	
(MPa)				強さ
			_	
(値))
α : 炭素鋼の瞬時熱膨張係数			α : 炭素鋼の瞬時熱膨張係数	
(
ここで, <i>T</i> は設計上の最大温度差161℃ (171℃-10℃) より大きい。				きい。
したがって、任意の2点間の最大温度差はTの値を超えることはな			したがって、任意の2点間の最大温度差はTの値を超えるこ	とはな
いので本条項を満足している。				

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		d. 負荷運転中の任意の2点間の温度差の変動の全振幅の検討(設	記載表現の相違
		計・建設規格 PVB-3140(4))	
		負荷運転中の温度変動の数を 回とすると、疲労解析が不要	プラント固有の設計の相違
		となる最大温度差は, c. 項に示すTと同じになる。	
		したがって、負荷運転時の任意の2点間の最大温度差の変動の全	
		振幅は, c. 項に示すTを超えることはないので本条項を満足してい	
		వ .	
		e. 負荷運転時の異種材結合部分の温度差の検討(設計・建設規格	記載表現の相違
		PVB-3140(5))	
		疲労解析の対象となる異種材結合部分(貫通部)の最小温度差は	記載表現の相違
		PVB-3140(5)a. より、次のように求める。	
		s'	設計条件及び格納容器型式に
		$T = \frac{S'}{2 \cdot (E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2)}$	よる仕様の相違
		=°C	
		"	
		ここに,	
		S' : 炭素鋼の 10 ⁶ 回の繰返しに対する許容ピーク応力強さ	
		(MPa)	
		E ₁ : ステンレス鋼の縦弾性係数	
		(MPa (Cにおける値))	
		α ₁ : ステンレス鋼の瞬時熱膨張係数	
		(mm/mm・℃ (Cにおける値))	
		E2 : 炭素鋼の縦弾性係数	
		(MPa (℃における値)	
		α 2 : 炭素鋼の瞬時熱膨張係数	
		(mm/mm・℃ (Cにおける値)	
		上記Tを超える異種材結合部温度差の変動回数を回とする	
		と、疲労解析が不要となる異種材結合部の最大温度差はPVB-	
		3140(5)b. より、次のように求める。	
		Sa Sa	
		$T = \frac{Sa}{2 \cdot \left(E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2\right)}$	
		 	
		□	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		ここに、 Sa : 炭素鋼の □ 回の繰返しに対する許容ピーク応力強さ (□ MPa) したがって、疲労解析が不要となる異種材結合部の許容最大温度差は温度差 (161℃) より大きくなるので本条項を満足している。	
		f. 容器に接続される管からの反力その他機械的荷重及び地震動による応力の全振幅の検討(設計・建設規格 PVB-3140(6)) 荷重の繰返し回数は、原子炉の起動停止及び燃料交換のサイクル数 回、地震荷重が加わるサイクル数 590 回より、回数に余裕をみて 回とする。荷重の繰返し回数 回に対応する許容ピーク応力強さは、設計基準対象施設としては MPa、重大事故等対処設備としては MPaとなる。ここで、原子炉格納容器の機械的荷重及び地震動による応力の全振幅はいかなる場所でも設計基準対象施設としては MPa、重大事故等対処設備としては MPaを超えることのないよう設計しているので本条項を満足している。	記載表現の相違 原子炉格納容器に局部的に負荷される場合の回数を本項に で記載している。 プラント固有の設計の相違 設計・建設規格による DB 時と SA 時の許容ピーク応力強さを
		3.2 重大事故等時における設計条件 重大事故等時については,原子炉格納容器の放射性物質閉じ込め 機能の確認を行うために,原子炉格納容器の評価温度,評価圧力を 設定し,構造健全性評価又は機能維持評価を行い,その環境下での 原子炉格納容器の放射性物質閉じ込め機能が損なわれることがな いことを確認する。	
		また,重大事故等時の原子炉格納施設として原子炉格納容器内の熱を輸送するために用いる原子炉格納容器フィルタベント系,耐圧強化ベント系及び可搬型窒素ガス供給系,原子炉格納容器内の冷却のために用いる原子炉格納容器代替スプレイ冷却系(常設),原子炉格納容器代替スプレイ冷却系(可搬型),残留熱除去系(格納容器スプレイ冷却モード)及び残留熱除去系(サプレッションプール水冷却モード),原子炉格納容器の過圧破損防止のために用いる代	設備名称,モード名称及び記載 表現の相違,以下同様
		本のコート),原子炉格納容器の適圧破損防止のために用いる代替循環冷却系,原子炉格納容器フィルタベント系及び可搬型窒素ガス供給系,原子炉格納容器下部の溶融炉心冷却のために用いる原子炉格納容器下部注水系(常設)(復水移送ポンプ),原子炉格納容器下部注水系(常設)(代替循環冷却ポンプ),原子炉格納容器下部注水系(可搬型),原子炉格納容器代替スプレイ冷却系(常設),	設計の相違・東海第二は溶融炉心の落下に

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器代替スプレイ冷却系(可搬型)及び代替循環冷却系	系,ペデスタル底部の構造変更を
		溶融炉心の原子炉格納容器下部への落下を遅延・防止するために	用 行いペデスタル床ドレンサン
		いる低圧代替注水系(常設)(復水移送ポンプ)、低圧代替注水	系 プの水位を維持することで、溶
		(可搬型),代替循環冷却系,高圧代替注水系及びほう酸水注入系	系、融炉心の冠水対策を行ってい
		原子炉格納容器内における水素爆発による破損防止のために用	いる。
		る可搬型窒素ガス供給系及び原子炉格納容器フィルタベント系,	原
		子炉建屋等の水素爆発による損傷を防止するために用いる静的	触設計の相違
		媒式水素再結合装置,並びに炉心の著しい損傷及び原子炉格納容	器 ・女川では格納容器にスプレイ
		の破損に至った場合において,発電所外への放射性物質の拡散を	抑 した水がドライウェル床面に
		制するために用いる放水設備(大気への拡散抑制設備),放水設	備 たまり、格納容器下部開口部を
		(泡消火設備) 及び海洋への拡散抑制設備(シルトフェンス)の	設 経由して格納容器下部に流入
		計についても以下に示す。	することを考慮するため,原子
			炉格納容器代替スプレイ冷却
			系及び代替循環冷却系を溶融
			炉心の冷却設備として整理し
			ている。
			設計の相違
			・女川は静的触媒式水素再結合
			装置により水素爆発損傷防止
			対策が可能であること, また,
			水素処理を目的として設置し
			た設備ではないことから, 非常
			用ガス処理系を水素爆発損傷
			防止対策設備としては使用し
			ない。
		3.2.1 重大事故等時の評価温度,評価圧力	
		(1) 原子炉格納容器の限界温度,限界圧力	
		重大事故等時の原子炉格納容器の破損の防止において想定す	る記載の明確化
		評価事故シーケンスのうち格納容器破損モード「雰囲気圧力・温	度・設置変更許可申請書添付書類
		による静的負荷(格納容器過圧・過温破損)」について原子炉格納	容十の表現と整合させた。
		器の温度、圧力を評価した結果、原子炉格納容器バウンダリにか	か 設置変更許可申請書添付書類
		る温度の最高値は約 178℃*1, 原子炉格納容器圧力の最高値は	約 十における解析結果の相違
		0.640MPa*2となる。	

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子 東海第二発電所	女川原子力発電所第2号機	備考
		重大事故等時の原子炉格納容器内の最高温度及び最高圧力は、設	・記載表現の相違
		計基準事故時における最高使用温度(ドライウェル:171℃,サプレ	
		ッションチェンバ: 104°C) 及び最高使用圧力 (1Pd: 427kPa) を上	
		回ることから、重大事故等時の最高温度及び最高圧力を上回り、か	
		つ、産業界でシビアアクシデント時の原子炉格納容器の耐性の指標	
		*3として用いられている 200℃及び 2Pd (0.854MPa) を原子炉格網	
		容器の限界温度、限界圧力として設定し、その環境下での原子炉格	記載表現の相違
		納容器の放射性物質の閉じ込め機能について評価対象部位ごとに	
		評価することにより、その機能が損なわれることがないことを確認	,
		する。また、これにより、原子炉格納容器を重大事故等時において	
		使用する場合の設計漏えい率は、設計基準対象施設として使用する	
		設計漏えい率と同じ 0.5%/d (最高使用圧力の 0.9 倍の圧力におい	<柏崎刈羽7号機との比較>
		て)以下を維持できる。なお,重大事故等時の漏えい率は,原子炉	記載方針の相違
		格納容器圧力が設計基準対象施設としての最高使用圧力の 0.9 倍	・柏崎刈羽は安全係数を見込ん
		より大きい場合においても原子炉格納容器の環境条件を考慮し、適	i だ漏えい率としている。
		切に割増しして評価に使用しており、その設定値において被ばく割	Ē
		価上の基準に適合することを確認している。	記載表現の相違
		図 3-13 に原子炉格納容器内雰囲気温度の変化,図 3-14 に原子炉	î
		格納容器圧力の変化を示す。	
		注記*1:令和2年2月26日付け「原規規発第2002261号」をもっ	記載表現の相違
		て許可を受けた「女川原子力発電所発電用原子炉設置変	:
		更許可申請書」添付書類十 7.2.1.3.2 (4)有効性評価	i
		の結果における原子炉格納容器バウンダリにかかる温度	
		の最高値	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		*2: 令和2年2月26日付け「原規規発第2002261号」をもっ	記載表現の相違
		て許可を受けた「女川原子力発電所発電用原子炉設置変	
		更許可申請書」添付書類十 7.2.1.3.2 (4)有効性評価	
		の結果における原子炉格納容器圧力の最高値	
		*3: (財) 原子力発電技術機構「重要構造物安全評価(原子	
		炉格納容器信頼性実証事業)に関する総括報告書」	格納容器型式の相違
			L

先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)

女川原子力発電所第2号機 柏崎刈羽原子力発電所第7号機 東海第二発電所 備考 有効性評価結果の相違 ----ドライウェル **む**心相似による高温ガス発生による -- サプレッションチェンバ 一時的な温度上昇 運転水位+約2m) に到達し格納容器スプレイ停止 格納容器の限界温度 200°C 原子炉格納容器フィルタベント系に よるベント実施 ee]にて原子炉格納容器代替スプレイ治却系 (可能型) (C) による格納容器スプレイ宝盲 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 事故後の時間 (h) 図3-13 重大事故等時の原子炉格納容器内雰囲気温度の変化* 注記*:令和2年2月26日付け「原規規発第2002261号」をもって許可 記載表現の相違 を受けた「女川原子力発電所発電用原子炉設置変更許可申 請書 | 添付書類十 7.2.1.3.2 (4)有効性評価の結果にお ける原子炉格納容器内雰囲気温度の推移 0.640@a[gage]にて原子が格納容器代替スプレイ治却系 (可能型) による格納容器スプレイ実施 有効性評価結果の相違 -- サブレッションチェンバ 原子が格納容器フィルタベント系によるベン ト実施 サブレッションブール水位が真空破壊装置下端-0.4m(通 常運転水位+約2m) に同連し格納容器スプレイ停止 (MPa[gage]) 11 156 好心相信後の大変発生に 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 事故後の時間 (h) 図 3-14 重大事故等時の原子炉格納容器圧力の変化* 注記*:令和2年2月26日付け「原規規発第2002261号」をもつ 記載表現の相違 て許可を受けた「女川原子力発電所発電用原子炉設置変更 許可申請書」添付書類十 7.2.1.3.2 (4)有効性評価の結

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		果における原子炉格納容器圧力の推移	
		(2) 地震力と組み合わせる原子炉格納容器の評価温度,評価圧力	構造健全性評価に用いる地震
		重大事故等と地震力の組合せについては,添付書類「VI-2-1-1	力と組み合わせる評価温度及
		耐震設計の基本方針」において、「原子炉格納容器バウンダリを構	び評価圧力を記載している。
		成する施設(原子炉格納容器内の圧力、温度の条件を用いて評価を	
		行うその他の施設を含む。) については、いったん事故が発生した	
		場合,長時間継続する事象による荷重と弾性設計用地震動Sdによ	
		る地震力を組み合わせ、その状態から更に長期的に継続する事象に	
		よる荷重と基準地震動Ssによる地震力を組み合わせる」としてい	
		る。	
		a. 弾性設計用地震動 S d と組み合わせる原子炉格納容器の評価	
		温度,評価圧力	
		弾性設計用地震動Sdと組み合わせる原子炉格納容器の評価温	
		度,評価圧力は,事象発生後10 ⁻² 年(約3日)後の状態として,保守	
		的に事象発生後以降の最高となる原子炉格納容器温度、圧力とす	
		3.	
		重大事故等時の原子炉格納容器の破損の防止において想定する	
		評価事故シーケンスのうち格納容器破損モード「雰囲気圧力・温度	
		による静的負荷(格納容器過圧・過温破損)」(代替循環冷却系を	
		使用できない場合)について原子炉格納容器の温度,圧力を評価した。	
		た結果、原子炉格納容器バウンダリにかかる温度の最高値は約	
		178℃,原子炉格納容器バウンダリにかかる圧力の最高値は640kPa	
		となる。図3-13に原子炉格納容器内雰囲気温度の変化、図3-14に原	
		子炉格納容器圧力の変化を示す。原子炉格納容器の強度評価等に用いて温度を使していた。原子炉格納容器が強度評価等に用いて温度を使った。原子原格納容器があいば出てからて見る。	
		いる温度条件としては、原子炉格納容器バウンダリにかかる最高温度である約120℃を表慮せる。	
		度である約178℃を考慮する。 以上より、弾性設計用地震動Sdと組み合わせる原子炉格納容器	
		以上より、弾性設計用地展動S d と組み合わせる原子が格納存益 の評価温度は178℃、評価圧力は640kPaとする。	
		▽▽□	

柏崎刈羽原子力発電所第7号機	元11番雀ノフントの記載との比較衣(VI-1-8-1 原子かり 東海第二発電所	女川原子力発電所第2号機	備考
	·	b. 基準地震動Ssと組み合わせる原子炉格納容器の評価温度,評	構造健全性評価に用いる地震
		価圧力	力と組み合わせる評価温度及
		基準地震動S s と組み合わせる,原子炉格納容器の評価温度,評	び評価圧力を記載している。
		価圧力は、事象発生後2×10 ⁻¹ 年(約72日)後の値とする。	
		基準地震動Ssとの組合せにおいて想定する評価事故シーケン	
		スは、雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
		(代替循環冷却系を使用する場合)及び雰囲気圧力・温度による静	
		的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用する場	
		合) である。	
		雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代	
		替循環冷却系を使用する場合) について原子炉格納容器の温度,圧	
		力を評価した結果,事象発生後2×10 ⁻¹ 年(約72日)後時点において	
		は,原子炉格納容器温度は約50℃,原子炉格納容器圧力は約426kPa	
		となる。同シーケンスについて、図3-15に原子炉格納容器温度の変	
		化(長期解析,代替循環冷却系を使用する場合),図3-16に原子炉	
		格納容器圧力の変化(長期解析、代替循環冷却系を使用する場合)	
		を示す。	
		雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代	
		替循環冷却系を使用できない場合)について原子炉格納容器の温	
		度,圧力を評価した結果,事象発生後2×10-1年(約72日)後時点に	
		おいては,原子炉格納容器温度は約110℃,原子炉格納容器圧力は	
		約38kPaとなる。同シーケンスについて、図3-17に原子炉格納容器	
		温度の変化(長期解析、代替循環冷却系を使用できない場合)、図	
		3-18に原子炉格納容器圧力の変化(長期解析,代替循環冷却系を使	
		用できない場合)を示す。	
		以上より、基準地震動Ssと組み合わせる原子炉格納容器の評価	
		温度, 評価圧力は, 上記を包絡する値として, 111℃, 427kPaとす	
		ప .	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		請書」添付書類十 7.2.1 雰囲気圧力・温度による静台 荷(格納容器過圧・過温破損) 7.2.1.2 代替循環冷却 を使用する場合と同条件で実施した原子炉格納容器圧力 長期解析結果	即系
			構造健全性評価に用いる地震 力と組み合わせる評価温度を 記載している。
		器 選 (C) 100 0 216 432 648 864 1090 1296 1512 1728 事故後の時間 (h) 図 3-17 重大事故等時の原子炉格納容器温度の変化	
		(長期解析,代替循環冷却系を使用できない場合)* 注記*:令和2年2月26日付け「原規規発第2002261号」をもて許可を受けた「女川原子力発電所発電用原子炉設置変許可申請書」添付書類十7.2.1 雰囲気圧力・温度に	变更
		る静的負荷(格納容器過圧・過温破損) 7.2.1.3 代表 環冷却系を使用できない場合と同条件で実施した原子格納容器温度の長期解析結果	捧循

柏崎刈羽原子力発電所第7号機	先行番金フフントの記載との比較表 (VI-1-8-1 原子炉格納施設 東海第二発電所	女川原子力発電所第2号機	備考
	, ·		構造健全性評価に用いる地震
		1	力と組み合わせる評価圧力を
		ー ドライウェル ー・サブレッションチェンバ	記載している。
		A A A	
		容 器 圧 力	
		' 5	
		0.4	
		(\Pa[gage]) 0.2	
		0 216 432 648 864 1080 1296 1512 1728	
		事故後の時間 (h)	
		図3-18 重大事故等時の原子炉格納容器圧力の変化	
		(長期解析,代替循環冷却系を使用できない場合)*	
		注記*:令和2年2月26日付け「原規規発第2002261号」をもって許可	
		を受けた「女川原子力発電所発電用原子炉設置変更許可申	
		請書」添付書類十 7.2.1 雰囲気圧力・温度による静的	
		負荷(格納容器過圧・過温破損) 7.2.1.3 代替循環冷却	
		系を使用できない場合と同条件で実施した原子炉格納容	
		器圧力の長期解析結果	
		(3) 重大事故等時の原子炉格納容器の評価水位	構造健全性評価に用いる評価
		重大事故等時は原子炉格納容器外部を水源とする原子炉格納容	水位を記載している。
		器代替スプレイ冷却系により、サプレッションプール水位が上昇	
		し、また、ドライウェル水位が形成される。	
		重大事故等時の原子炉格納容器の破損の防止において想定する	
		評価事故シーケンスのうち,原子炉格納容器水位が最大となる雰囲	
		気圧力・温度による静的負荷(格納容器過圧・過温破損)について	
		サプレッションプール水位及びドライウェル水位を評価した結果、	
		最高値はそれぞれ約 5.6m 及び約 0.5m となる。図 3-19 にサプレッ	
		ションプール水位の変化、図 3-20 にドライウェル水位の変化を示	
		す。	
		重大事故対応上は、サプレッションプール水位が真空破壊弁下端	
		位置から-0.4mに到達した時点で原子炉格納容器代替スプレイ冷却	
		を停止するが、保守的にこれを上回る水位として、真空破壊弁下端	
		位置である 0.P1514mm (水位約 5.9m) を弾性設計用地震動 S d 及	
		び基準地震動Ssと組み合わせる原子炉格納容器の評価に用いる	

柏崎刈羽原子力発電所第7号機	元(1番笙/フントの記載との比較衣(VI-1-8-1 原寸 東海第二発電所	女川原子力発電所第2号機	備考
		サプレッションプール水位とする。	
		図 3-19 重大事故等時のサプレッションプールの水位の変化 注記*:令和2年2月26日付け「原規規発第2002261号」を て許可を受けた「女川原子力発電所発電用原子炉設置 許可申請書」添付書類十7.2.1 雰囲気圧力・温度に 静的負荷(格納容器過圧・過温破損) 7.2.1.3 代替 冷却系を使用できない場合7.2.1.3.2 格納容器破 止対策の有効性評価(4) 有効性評価の結果におけ 7.2.1.3-12図 サプレッションプール水位の推移	** もっ 変更 よる 循環 損防

柏崎刈羽原子力発電所第7号機	先行審査ブラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		10	構造健全性評価に用いる評価
			水位とドライウェルの水位変
		8	化を記載している。
		5	
		ク 6 (ACA に守り衛衛連がドライウェル エ に成えずることでき起かり返	
		本 位	
		(m) 4	
		2 - ベンヤヤ場の間に発表し、口間を開発なびネインであが	
		プーナンションチェンル-現入するたAABIIEE	
		0 12 24 36 48 60 72 84 96 108 120 132 144 156	We we
		事故後の時間 (h)	100
		図3-20 重大事故等時のドライウェル水位の変化*	
		注記*:令和2年2月26日付け「原規規発第2002261号」をもって	车 可
		を受けた「女川原子力発電所発電用原子炉設置変更許	可申
		請書」添付書類十 7.2.1 雰囲気圧力・温度による	争的
		負荷(格納容器過圧・過温破損) 7.2.1.3 代替循環	令却
		系を使用できない場合と同条件の解析結果に基づく	ドラ
		イウェル水位の変化	
		3.2.2 重大事故等時における原子炉格納容器の熱の輸送機能	
		設計基準事故対処設備が有する最終ヒートシンクへ熱を輸	送す
		る機能が喪失した場合において原子炉格納容器の破損(炉心の	暫し
		い損傷が発生する前に生ずるものに限る。)を防止するため、	
		ヒートシンクへ熱を輸送するために必要な重大事故等対処設	前と
		して,原子炉格納容器フィルタベント系及び耐圧強化ベント系	を設 設備名称の相違
		ける。	
		原子炉格納容器フィルタベント系は、フィルタ装置(フィル	タ容 設備名称の相違
		器,スクラバ溶液,金属繊維フィルタ,放射性よう素フィルタ)	フ記載表現の相違
		ィルタ装置出口側ラプチャディスク,配管・弁類,計測制御装	置等
		で構成し、原子炉格納容器内雰囲気ガスを原子炉格納容器調気	系等 設備名称の相違
		を経由して,フィルタ装置へ導き,放射性物質を低減させた後	こ原
		子炉建屋屋上に設ける放出口から排出(系統設計流量 10.0kg/s	1Pd <mark>設計の相違</mark>
		において)) することで、排気中に含まれる放射性物質の環境	への ・原子炉格納容器フィルタベン
		放出量を低減しつつ,原子炉格納容器内に蓄積した熱を最終的	な熱 ト系の設計系統流量の相違
		の逃がし場である大気へ輸送できる設計とする。	

柏崎刈羽原子力発電所第7号機	元们番笙ノフントの記載との比較衣(VI-1-8-1 原寸 東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器フィルタベント系を使用した場合に放出される	設備名称の相違
		放射性物質の放出量に対して、設置(変更)許可において敷地境界	Į.
		での線量評価を行い,実効線量が 5mSv 以下であることを確認して	
		おり、原子炉格納容器フィルタベント系はこの評価条件を満足する	設備名称の相違
		設計とする。	
		詳細は,「3.2.4 重大事故等時における原子炉格納容器の過圧破	Ž
		損防止機能」に示す。	
		耐圧強化ベント系は,原子炉格納容器内雰囲気ガスを原子炉格網	対設備名称の相違
		容器調気系等を経由して、 <mark>排気筒</mark> を通して原子炉建屋外に放出(系	設計の相違
		統設計流量 10.0kg/s (1Pd において)) することで,原子炉格納容	・女川の非常用ガス処理系排気
		器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送でき	は、排気筒を通して放出され
		る設計とする。	る。東海第二は非常用ガス処理
			系排気筒を通して放出される。
		┃	17
		合の耐圧強化ベント系は、炉心損傷前に使用するため、排気中に含	ì
		まれる放射性物質及び可燃性ガスは微量である。	
		耐圧強化ベント系は、使用する際に弁により他の系統・機器と隔	-
		離することにより、悪影響を及ぼさない設計とする。	
		耐圧強化ベント系の使用に際しては、原子炉格納容器が負圧とな	
		らないよう原子炉格納容器代替スプレイ冷却系等による原子炉格	設備名称の相違
		納容器内へのスプレイを停止する運用とする。耐圧強化ベント系の	記載表現の相違
		使用後に再度、原子炉格納容器内にスプレイをする場合において	
		も,原子炉格納容器内圧力が規定の圧力まで減圧した場合には,原	
		子炉格納容器内へのスプレイを停止する運用とする。	
		耐圧強化ベント系使用時の排出経路に設置される隔離弁のうち	記載表現の相違
		電動弁(直流)は所内常設蓄電式直流電源設備,常設代替直流電源	設計の相違
		設備又は可搬型代替直流電源設備からの給電による操作が可能な	・女川の耐圧強化ベント系の隔
		設計とする。 また、排出経路に設置される隔離弁のうち電動弁(交	離弁には直流駆動弁と空気駆
		流)については常設代替交流電源設備又は可搬型代替交流電源設備	動弁を設置している。
		からの給電による操作が可能な設計とする。	
			<柏崎刈羽7号機との比較>
		このうち、電動弁(直流)については、遠隔手動弁操作設備によ	設計の差異 ・柏崎刈羽では空気作動弁を設
		って人力による操作が可能な設計とし、隔離弁の操作における駆動	

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子 東海第二発電所	女川原子力発電所第2号機	備考
		源の多様性を有する設計とする。	のみで構成している。
		耐圧強化ベント系はサプレッションチェンバ及びドライウェ	N= 31111 1111 <u>-</u>
		と接続し、いずれからも排気できる設計とする。サプレッション	
		エンバ側からの排気ではサプレッションチェンバの水面からの	
		さを確保し、ドライウェル側からの排気では、ドライウェルの床	面
		からの高さを確保するとともに有効燃料棒頂部よりも高い位置	に 記載表現の相違
		接続箇所を設けることで長期的にも溶融炉心及び水没の悪影響	を
		受けない設計とする。	
		耐圧強化ベント系を使用した場合に放出される放射性物質の	t-h
		出量に対して、設置(変更)許可において敷地境界での線量評価	
		一	
		. , , , , , , , , , , , , , , , , , , ,	
		ベント系はこの評価条件を満足する設計とする。	記載表現の相違
			,
		可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止	
		るために必要な重大事故等対処設備として、可搬型窒素ガス供給	糸 設備名称の相違
		を設ける。	
		可搬型窒素ガス供給系は,可搬型窒素ガス供給装置を用いて原	
		炉格納容器内に不活性ガス(窒素)の供給が可能な設計とする。	ま一設備名称の相違
		た、原子炉格納容器フィルタベント系は、排気中に含まれる可燃	性
		ガスによる爆発を防ぐため、系統内を不活性ガス(窒素)で置換	し 記載表現の相違
		た状態で待機させ,原子炉格納容器ベント後においても不活性ガ	ス 記載表現の相違
		(窒素) で置換できる設計とする。	記載表現の相違
		3.2.3 重大事故等時における原子炉格納容器冷却機能	
		設計基準事故対処設備が有する原子炉格納容器内の冷却機能	が
		喪失した場合において炉心の著しい損傷を防止するために原子	炉
		格納容器内の圧力及び温度を低下させるため、また、炉心の著し	V
		損傷が発生した場合において原子炉格納容器の破損を防止する	た
		めに原子炉格納容器内の圧力及び温度並びに放射性物質の濃度	を
		低下させるための重大事故等対処設備として、原子炉格納容器代	
		スプレイ冷却系(常設)及び原子炉格納容器代替スプレイ冷却系(
		搬型)を設ける。また、想定される重大事故等時において、設計	
		準事故対処設備である残留熱除去系(格納容器スプレイ冷却モ	
		ド)及び残留熱除去系(サプレッションプール水冷却モード)が	
		用できる場合は重大事故等対処設備(設計基準拡張)として使用	
		一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	に戦み先の作連

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		きる設計とする。	・女川では設備分類として設計
			基準拡張を設けているが, 東海
			第二は同分類を設けず重大事
			故等対処設備として整理して
			いる。なお、設備分類の相違で
			あり, 東海第二と実質的な違い
			はない。
		原子炉格納容器代替スプレイ冷却系(常設)は、復水移送ポンス	プ設備名称の相違
		により、復水貯蔵タンクの水を残留熱除去系等を経由して原子炉	各 設計の相違
		納容器内のドライウェルスプレイ管からドライウェル内にスプレ	・東海第二は新設設備(常設低
		イすることで、原子炉格納容器内の圧力及び温度並びに放射性物質	質 圧代替注水系ポンプ,代替淡水
		の濃度を低下させることができる設計とする。	貯槽) を用いるが, 女川は既設
			設備(復水移送ポンプ、復水貯
			蔵タンク)を使用する。
		原子炉格納容器代替スプレイ冷却系(常設)の水源である <mark>復水</mark> 県	ウ 設備名称の相違
		蔵タンクは、複数の代替淡水源から淡水を供給できる設計とし、溶	炎設計の相違
		水が枯渇した場合に、海を利用できる設計とする。	・女川は既設の復水貯蔵タンク
			を重大事故等対処設備として
			使用する。東海第二は、重大事
			故等対処設備として代替淡水
			貯槽を新設する。
		原子炉格納容器代替スプレイ冷却系(常設)は、非常用交流電池	京 設備名称の相違
		設備に加えて、代替所内電気設備を経由した常設代替交流電源設備	# 記載方針の相違
		又は可搬型代替交流電源設備からの給電が可能な設計とする。こ	・非常用電源設備からの給電も
		た、系統構成に必要な電動弁(直流)は、所内常設蓄電式直流電池	亰 可能であるため記載している。
		設備からの給電が可能な設計とする。	設計の相違
			・女川では原子炉格納容器下部
			注水系(常設)(復水移送ポン
			プ) の系統構成を行うにあた
			り, 直流電源で作動する弁も使
			用する。
		原子炉格納容器代替スプレイ冷却系(常設)は、炉心の著しい打	 設備名称の相違
		傷及び原子炉格納容器の破損を防止するための設備として兼用する	
		る設計とする。	

柏崎刈羽原子力発電所第7号機	先行番金フフントの記載との比較表(VI-1-8-1 原子版 東海第二発電所	女川原子力発電所第2号機	備考
	'	原子炉格納容器代替スプレイ冷却系(可搬型)は,大容量送水	ポ 設備名称の相違
		ンプ(タイプ I)により代替淡水源の水を残留熱除去系等を経由	し設計の差異
		て原子炉格納容器内のドライウェルスプレイ管からドライウェ	・女川は1水源,1タイプの可
		内にスプレイすることで,原子炉格納容器内の圧力及び温度並び	こ 搬型ポンプ車による対策とし
		放射性物質の濃度を低下させることができる設計とする。	ている。東海第二は2水源,2
			タイプの可搬型ポンプ車によ
			る対策としている。
		原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源	が記載方針の相違
		枯渇した場合において, 重大事故等の収束に必要となる水の供給	設 ・設置 (変更) 許可を踏襲し,
		備である大容量送水ポンプ (タイプ I) により海を利用できる設	計 代替淡水源が枯渇した場合の
		とする。	海の利用について記載してい
			る。
		原子炉格納容器代替スプレイ冷却系(可搬型)は、非常用交流	電設備名称の相違
		源設備に加えて、代替所内電気設備を経由した常設代替交流電源	設記載方針の相違
		備又は可搬型代替交流電源設備からの給電が可能な設計とする。	ま ・非常用電源設備からの給電も
		た,大容量送水ポンプ(タイプI)は,空冷式のディーゼルエン	ジ 可能であるため記載している。
		ンにより駆動できる設計とする。	
		原子炉格納容器代替スプレイ冷却系(可搬型)は、炉心の著し	ハ 設備名称の相違
		損傷及び原子炉格納容器の破損を防止するための設備として兼	用
		する設計とする。	
		残留熱除去系(格納容器スプレイ冷却モード)は、常設代替交	流 モード名称の相違
		電源設備からの給電により機能を復旧し、残留熱除去系ポンプ及	び表現の相違
		残留熱除去系熱交換器によりサプレッションチェンバのプール	水 ・残留熱除去系熱交換器も使用
		をドライウェル内及びサプレッションチェンバ内にスプレイす	るするため記載している。
		ことで原子炉格納容器を冷却できる設計とする。	
		残留熱除去系(サプレッションプール水冷却モード)は、常設	代 モード名称の相違
		替交流電源設備からの給電により機能を復旧し、残留熱除去系ポ	×
		プ及び残留熱除去系熱交換器により, サプレッションチェンバの	プ設備名称の相違
		ール水を冷却することで原子炉格納容器を冷却できる設計とする	0
		3.2.4 重大事故等時における原子炉格納容器の過圧破損防止機能	E E
		炉心の著しい損傷が発生した場合において,原子炉格納容器の	周
		圧による破損を防止するために必要な重大事故等対処設備として	,
		原子炉格納容器バウンダリを維持しながら原子炉格納容器内の	王
		力及び温度を低下させるための設備である代替循環冷却系及び	原

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		子炉格納容器内の圧力を大気中に逃がすための設備である原子炉 格納容器フィルタベント系を設ける。	設備名称の相違
		代替循環冷却系は、代替循環冷却ポンプによりサプレッションチェンバのプール水を残留熱除去系熱交換器にて冷却し、残留熱除去系等を経由して <mark>原子炉圧力容器へ注水及び原子炉格納容器内へスプレイ</mark> することで、原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とする。	・原子炉格納容器構造の相違に より、東海第二では代替循環冷
		原子炉圧力容器に注水された水は,原子炉圧力容器又は原子炉格納容器内配管の破断口等から流出し,原子炉格納容器内へスプレイされた水とともに,ベント管を経て,サプレッションチェンバに戻ることで循環できる設計とする。	設備名称の相違
		代替循環冷却系は、非常用交流電源設備に加えて、代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計とする。	
		原子炉格納容器フィルタベント系は、フィルタ装置(フィルタ容器、スクラバ溶液、金属繊維フィルタ、放射性よう素フィルタ)、フィルタ装置出口側ラプチャディスク、配管・弁類、計測制御装置等で構成し、原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して、フィルタ装置へ導き、放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出(系統設計流量 10.0kg/s(1Pdにおいて)) することで、排気中に含まれる放射性物質の環境への	表現の相違 設計の相違
		放出量を低減しつつ、原子炉格納容器内の圧力及び温度を低下できる設計とする。 フィルタ装置は3台を並列に設置し、排気中に含まれる粒子状放射性物質、ガス状の無機よう素及び有機よう素を除去できる設計とする。また、無機よう素をスクラバ溶液中に捕集・保持するために	設計の相違 ・フィルタ装置設置個数の相

柏崎刈羽原子力発電所第7号機	元11番笙ノフントの記載との比較衣(VI-1-8-1 原子》 東海第二発電所	女川原子力発電所第2号機	備考
	'	アルカリ性の状態(待機状態において pH13 以上)に維持する設計	十 並列に設置。
		とする。	
		原子炉格納容器フィルタベント系はサプレッションチェンバ	設備名称の相違
		びドライウェルと接続し、いずれからも排気できる設計とする。す	+
		プレッションチェンバ側からの排気ではサプレッションチェンバ	₹
		の水面からの高さを確保し、ドライウェル側からの排気では、ドラ	$\hat{ au}$
		イウェル床面からの高さを確保するとともに有効燃料棒頂部より	記載表現の相違
		も高い位置に接続箇所を設けることで、長期的にも溶融炉心及びが	<
		没の悪影響を受けない設計とする。	
		原子炉格納容器フィルタベント系は、排気中に含まれる可燃性力	が設備名称の相違
		スによる爆発を防ぐため、可搬型窒素ガス供給系により、系統内を	設備名称の相違
		不活性ガス(窒素)で置換した状態で待機させ、原子炉格納容器へ	: 記載表現の相違
		ント開始後においても不活性ガス(窒素)で置換できる設計とする	記載表現の相違
		とともに、系統内に可燃性ガスが蓄積する可能性のある箇所にはノ	₹
		イパスラインを設け、可燃性ガスを連続して排出できる設計とする	記載表現の相違
		ことで、系統内で水素濃度及び酸素濃度が可燃領域に達することを	2
		防止できる設計とする。	
		原子炉格納容器フィルタベント系は、他の発電用原子炉施設とに	は設備名称の相違
		共用しない設計とする。また、原子炉格納容器フィルタベント系と	
		他の系統・機器を隔離する弁は直列で2個設置し,原子炉格納容器	3
		フィルタベント系と他の系統・機器を確実に隔離することで、悪景	
		響を及ぼさない設計とする。	
		原子炉格納容器フィルタベント系の使用に際しては,原子炉格網	内 設備名称の相違
		容器が負圧とならないよう,原子炉格納容器代替スプレイ冷却系領	設備名称の相違
		による原子炉格納容器内へのスプレイを停止する運用とする。原子	- 記載表現の相違
		炉格納容器フィルタベント系の使用後に再度,原子炉格納容器内に	
		スプレイをする場合においても,原子炉格納容器内圧力が規定のE	=
		力まで減圧した場合には、原子炉格納容器内へのスプレイを停止す	-
		る運用とする。	
		原子炉格納容器フィルタベント系使用時の排出経路に設置され	は 設備名称の相違
		る隔離弁は、遠隔手動弁操作設備(個数4)によって人力により名	設備名称の相違
		易かつ確実に操作が可能な設計とする。	
			50.31 a least.
		排出経路に設置される隔離弁の電動弁については、常設代替交流	
		電源設備,可搬型代替交流電源設備,所内常設蓄電式直流電源設備	
		常設代替直流電源設備又は可搬型代替直流電源設備からの給電に	
		より、中央制御室から操作が可能な設計とする。	ルタベント系は直流電源弁で
			系統構成する。

先行案本プラントの記載との比較表(W-1-8-1 原子恒核納施設の設計条件に関する説明書)

拓欧川河区 了.4.整金花笠ヶ县機	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設	の設計条件に関する説明書) 女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原士刀兜电 別第2万機	/#/ラ <柏崎刈羽7号機との比較>
			設計の差異
			・柏崎刈羽では空気作動弁を設
			置しているが、女川では電動弁
			のみで構成している。
		で休中)を引いますって、カサ栗山戸間にディ、ヴェッカル 臣フに	31.14.17.44.07.11.44
		系統内に設けるフィルタ装置出口側ラプチャディスクは、原子炉	
		格納容器フィルタベント系の使用の妨げにならないよう,原子炉格	
		納容器からの排気圧力と比較して十分に低い圧力で破裂する設計	
		とする。	
			設計の相違
			・女川は排水設備を自主対策設
			備としているため記載しない。
			なお、女川はベント後のスクラ
			バ溶液のサプレッションチェ
			ンバへの移送を自重により実
			施し、ポンプが不要な設計とし
			ている。
		「「「「「「」」」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」	3.
		原子炉格納容器フィルタベント系は、代替淡水源から、大容量送	
		水ポンプ(タイプI)によりフィルタ装置にスクラバ溶液を補給で	
		きる設計とする。	・女川は1水源,1タイプの可・ 本川は1水源,1タイプの可
			搬型ポンプ車による対策としている。東海第二はの水源のな
			ている。東海第二は2水源2タ
			イプの可搬型ポンプ車による
			対策としている。
			<投跡が117777日操)のは数~
			<柏崎刈羽7号機との比較> 設計の差異
			・柏崎刈羽ではベント中に蒸気 凝縮によりフィルタ装置水位
			が上昇するため、機能喪失しない水位に維持するため排水が
			い水位に維持するため排水が
			必要で、その際に pH 調整が必
			要である。女川では水位上昇に
			よっても機能喪失しない設計
			としており、排水せず、さらに
			待機時に十分な量の薬液を保

柏崎刈羽原子力発電所第7号機	元们番笙ノグントの記載との比較衣(VI-1-8-1 原子が 東海第二発電所	女川原子力発電所第2号機	備考
	·		有することで、ベント後でもア
			ルカリ性を維持できる設計と
			している)
		可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止るために必要な重大事故等対処設備として,可搬型窒素ガス供給	
		を設ける。 可搬型窒素ガス供給系は,可搬型窒素ガス供給装置を用いて原 炉格納容器内に不活性ガス(窒素)の供給が可能な設計とする。	
		可搬型窒素ガス供給装置発電設備は, 車両内に搭載し ,可搬型素ガス供給装置に給電できる設計とする。	
		ポスペ 医相談性 に相違 くさ 切取用 と が る。	・女川の可搬型窒素ガス供給装 置発電設備は、可搬型窒素ガス 供給装置内に搭載している。
		3.2.5 重大事故等時における原子炉格納容器下部の溶融炉心 機能	一
		炉心の著しい損傷が発生した場合において原子炉格納容器の 損を防止するため、溶融し、原子炉格納容器下部に落下した炉心	
		冷却するために必要な重大事故等対処設備として、原子炉格納名	
		下部注水系(常設)(復水移送ポンプ),原子炉格納容器下部注水	
		(常設)(代替循環冷却ポンプ),原子炉格納容器下部注水系(で	
		型),原子炉格納容器代替スプレイ冷却系(常設),原子炉格納容	
		代替スプレイ冷却系(可搬型)及び代替循環冷却系を設ける。	時間を要するため、原子炉格納
			容器下部への事前水張を開始
			する時間までに注水を可能な
			設備として、原子炉格納容器下
			部注水系 (常設) (復水移送ポン
			プ) に加えて常設設備である原
			子炉格納容器下部注水系(常
			設)(代替循環冷却ポンプ)を整
			備し, 多様性等を図った設計と
			している。また、東海第二は溶
			融炉心の落下に備え, ペデスタ
			ル底部の構造変更を行いペデ
			スタル床ドレンサンプの水位
			を維持することで、溶融炉心の
			冠水対策を行っている。

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	女川原子力発電所第2号機	備考
			設計の相違
			・女川では格納容器にスプレイ
			した水がドライウェル床面に
			たまり,格納容器下部開口部を
			経由して格納容器下部に流入
			することを考慮するため,原子
			炉格納容器代替スプレイ冷却
			系を溶融炉心の冷却対応設備
			として整理している。
			設計の差異
			・女川では格納容器にスプレイ
			した水がドライウェル床面に
			たまり、格納容器下部開口部を
			経由して格納容器下部に流入
			することを考慮するため、代替
			循環冷却系を溶融炉心の冷却
			対応設備として整理している。
		また、溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ 十分な水位を確保するとともに、落下した溶融炉心を冷却できる設 計とする。	
			設計の相違
			・女川はコリウムシールドを設
			置しない状態でも,原子炉格納
			容器下部へ落下した溶融炉心
			がドレン配管内で凝固するこ
			とを確認しているが, 更なる安
			全性向上のため、自主対策設備
			としてコリウムシールドを設
			置する。
		原子炉格納容器下部注水系 (常設) (復水移送ポンプ) は, 復水移	設備名称の相違
		送ポンプにより、復水貯蔵タンクの水を補給水系配管等を経由して	
		原子炉格納容器下部へ注水し、溶融炉心が落下するまでに原子炉格	
		納容器下部にあらかじめ十分な水位を確保するとともに、落下した	
		溶融炉心を冷却できる設計とする。	野槽)を用いるが,女川は既設
		HIMPS CONTRACTOR	設備(復水移送ポンプ,復水貯

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表 (VI-1-8-1 原子炉格納施記 東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器下部注水系(常設)(復水移送ポンプ)の水源であ	蔵タンク)を使用する。
		る復水貯蔵タンクは、複数の代替淡水源から淡水を供給できる設計	
		とし、淡水が枯渇した場合に、海を利用できる設計とする。	設計の相違
			・女川は既設の復水貯蔵タンク
			を重大事故等対処設備として
			使用する。東海第二は、重大事
			故等対処設備として代替淡水
			貯槽を新設する。
		原子炉格納容器下部注水系(常設)(復水移送ポンプ)は、非常用	設備名称の相違
		交流電源設備に加えて、代替所内電気設備を経由した常設代替交流	記載方針の相違
		電源設備又は可搬型代替交流電源設備からの給電が可能な設計と	・非常用電源設備からの給電も
		する。また,系統構成に必要な電動弁(直流)は,所内常設蓄電式	可能であるため記載している。
		直流電源設備からの給電が可能な設計とする。	設計の相違
			・女川では原子炉格納容器下部
			注水系(常設)(復水移送ポン
			プ) の系統構成を行うにあた
			り, 直流電源で作動する弁も使
			用する。
		原子炉格納容器下部注水系(常設)(代替循環冷却ポンプ)は、代	設計の相違
		替循環冷却ポンプにより、サプレッションチェンバのプール水を残	・女川の原子炉格納容器下部注
		留熱除去系等を経由して原子炉格納容器下部へ注水し, 溶融炉心が	水系(可搬型)は、設置作業に
		落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確	時間を要するため、原子炉格納
		保するとともに、落下した溶融炉心を冷却できる設計とする。	容器下部への事前水張を開始
		原子炉格納容器下部注水系(常設)(代替循環冷却ポンプ)は、非	する時間までに注水を可能な
		常用交流電源設備に加えて、代替所内電気設備を経由した常設代替	設備として,原子炉格納容器下
		交流電源設備からの給電が可能な設計とする。	部注水系 (常設) (復水移送ポン
			プ) に加えて常設設備である原
			子炉格納容器下部注水系(常
			設)(代替循環冷却ポンプ)を整
			備し,多様性等を図った設計と
			している。
		原子炉格納容器下部注水系(可搬型)は、大容量送水ポンプ(タ	設備名称の相違
		イプI)により、代替淡水源の水をあらかじめ敷設した補給水系配	設計の相違
		管を経由して原子炉格納容器下部へ注水し,落下した溶融炉心を冷	・女川は1水源,1タイプの可
		却できる設計とする。	搬型ポンプ車による対策とし

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元 日番館ノブントの記載との比較衣(VI-1-8-1 原十炉格) 東海第二発電所	女川原子力発電所第2号機	備考
			ている。東海第二は2水源,2
			タイプの可搬型ポンプ車によ
			る対策としている。
			設計の相違
			・女川の原子炉格納容器下部注
			水系(可搬型)は設置時間を要
			するため、溶融炉心が落下する
			までに、水張を行えないため記
			載していない。
		原子炉格納容器下部注水系(可搬型)は、代替淡水源が枯渇した	記載大針の担造
		場合において、重大事故等の収束に必要となる水の供給設備である	
		大容量送水ポンプ (タイプ I) により海を利用できる設計とする。	
		八谷里込小小ング(グイクエ)により何を利用しさる政司とする。	海の利用について記載する。
			(声の作)用について記載する。
		原子炉格納容器下部注水系(可搬型)は,非常用交流電源設備に	設備名称の相違
		加えて、代替所内電気設備を経由した常設代替交流電源設備又は可	記載方針の相違
		搬型代替交流電源設備からの給電が可能な設計とする。また、大容	・非常用電源設備からの給電も
		量送水ポンプ(タイプ I)は、空冷式のディーゼルエンジンにより	可能であるため記載している。
		駆動できる設計とする。	
		TE 7 (- 14 / 1-15 TIT / 1-1+ / 1-15 (- 14 / 15))) //c (- / 4 / 15))	20.21 o 24 H
		原子炉格納容器代替スプレイ冷却系(常設)は、復水移送ポンプ	
		により、復水貯蔵タンクの水を残留熱除去系配管等を経由して原子	
		炉格納容器内のドライウェルスプレイ管からドライウェル内にス プレイし、スプレイした水がドライウェル床面に溜まり、原子炉格	
			,
		納容器下部開口部を経由して原子炉格納容器下部へ流入することで、終軸に心が落下するまでに原子炉格納容器下部にまたかじめ上で、終軸に心が落下するまでに原子炉格納容器下部にあたかじめ上	
		で、溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ十	
		分な水位を確保するとともに、落下した溶融炉心を冷却できる設計	
		とする。	系を溶融炉心の冷却対応設備
		原子炉格納容器代替スプレイ冷却系(常設)の水源である復水貯	
		蔵タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水が枯渇した場合に、海を利用できる設計とする。	
		原子炉格納容器代替スプレイ冷却系(常設)は、非常用交流電源 設備に加って、代麸配内電気設備を終わした常設化麸が溶電源設備	
		設備に加えて、代替所内電気設備を経由した常設代替交流電源設備 フゖコ柳刊化技な姿態源設備からの発電が可能な記載します。ま	
		又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た、系統構成に必要な電動弁(直流)は、所内常設蓄電式直流電源	
		設備からの給電が可能な設計とする。	

柏崎刈羽原子力発電所第7号機	元 (WI-1-8-1 原子) 東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器代替スプレイ冷却系(可搬型)は,大容量送水ポ	設計の差異
		ンプ(タイプI)により、代替淡水源の水を残留熱除去系配管等を	・女川では格納容器にスプレイ
		経由して原子炉格納容器内のドライウェルスプレイ管からドライ	した水がドライウェル床面に
		ウェル内にスプレイし、スプレイした水がドライウェル床面に溜ま	たまり、格納容器下部開口部を
		り,原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流	経由して格納容器下部に流入
		入することで、落下した溶融炉心を冷却できる設計とする。	することを考慮するため、原子
		原子炉格納容器代替スプレイ冷却系(可搬型)は、代替淡水源が	炉格納容器代替スプレイ冷却
		枯渇した場合において、重大事故等の収束に必要となる水の供給	系を溶融炉心の冷却対応設備
		設備である大容量送水ポンプ (タイプ I) により海を利用できる	として整理している。
		設計とする。	
		原子炉格納容器代替スプレイ冷却系(可搬型)は,非常用交流電	
		源設備に加えて、代替所内電気設備を経由した常設代替交流電源設	
		備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま	
		た、大容量送水ポンプ(タイプ I)は、空冷式のディーゼルエンジ	
		ンにより駆動できる設計とする。	
		代替循環冷却系は、代替循環冷却ポンプによりサプレッションチ	
		ェンバのプール水を残留熱除去系熱交換器にて冷却し、残留熱除去	
		系配管を経由して原子炉格納容器内へスプレイし,スプレイした水	
		がドライウェル床面に溜まり、原子炉格納容器下部開口部を経由し	
		て原子炉格納容器下部へ流入することで、溶融炉心が落下するまで	
		に原子炉格納容器下部にあらかじめ十分な水位を確保するととも	
		に、落下した溶融炉心を冷却できる設計とする。	
		代替循環冷却系は、非常用交流電源設備に加えて、代替所内電気	
		設備を経由した常設代替交流電源設備からの給電が可能な設計と	
		する。	
			設計の相違
			・女川はコリウムシールドを設
			置しない状態でも,原子炉格納
			容器下部へ落下した溶融炉心
			がドレン配管内で凝固するこ
			とを確認しているが, 更なる安
			全性向上のため、自主対策設備
			としてコリウムシールドを設
			置する。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	元 (VI-1-8-1 原子が俗称地放 東海第二発電所	女川原子力発電所第2号機	備考
			設計の相違
			・東海第二は溶融炉心の落下に
			備え,ペデスタル底部の構造変
			更を行いペデスタル床ドレン
			サンプの水位を維持すること
			で、溶融炉心の冠水対策を行っ
			ている。

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			設計の相違
			・東海第二は溶融炉心の落下に
			備え,ペデスタル底部の構造変
			更を行いペデスタル床ドレン
			サンプの水位を維持すること
			で、溶融炉心の冠水対策を行っ
			ている。
		炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器	記載表現の相違
		下部への落下を遅延・防止するための重大事故等対処設備として、	
		低圧代替注水系(常設)(復水移送ポンプ),低圧代替注水系(可搬	設備名称の相違
		型)、代替循環冷却系、高圧代替注水系及びほう酸水注入系を設け	
		る。	
		低圧代替注水系(常設)(復水移送ポンプ),低圧代替注水系(可	設備名称の相違
		搬型), 代替循環冷却系, 高圧代替注水系及びほう酸水注入系は, 低	設備名称の相違
		圧代替注水系(常設)(復水移送ポンプ),低圧代替注水系(可搬型),	
		代替循環冷却系及び高圧代替注水系のいずれかと並行してほう酸	1
		水注入系による原子炉圧力容器への注水を行うことで溶融炉心を	
		冷却できる設計とする。	
		低圧代替注水系(常設)(復水移送ポンプ)は、復水移送ポンプに	設備名称の相違
		より、復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力	設計の相違
		容器へ注水することで溶融炉心を冷却できる設計とする。	・東海第二は新設設備(常設促
			圧代替注水系ポンプ、代替淡水
			貯槽)を用いるが,女川は既認
			設備(復水移送ポンプ、復水貯
			蔵タンク)を使用する。
		低圧代替注水系 (常設) (復水移送ポンプ) の水源である <mark>復水貯蔵</mark>	設計の相違
		タンクは、複数の代替淡水源から淡水を供給できる設計とし、淡水	・女川は既設の復水貯蔵タンク
		が枯渇した場合に、海を利用できる設計とする。	を重大事故等対処設備として
			使用する。東海第二は、重大事
			故等対処設備として代替淡水
			貯槽を新設する。
		● 低圧代替注水系(可搬型)は、大容量送水ポンプ(タイプⅠ)に	設計の相違
		より、代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器	
		へ注水することで溶融炉心を冷却できる設計とする。	搬型ポンプ車による対策とし
		エハナること CHTMAN でを印み Ce SIX II C y So	でいる。また、東海第二は2か

柏崎刈羽原子力発電所第7号機	先行番金ブラントの記載との比較表 (VI-1-8-1 原子炉格) 東海第二発電所	女川原子力発電所第2号機	備考
	·		源,2 タイプの可搬型ポンプ車
			の対策としている。東海第二は
			代替淡水貯槽を水源とし, 可搬
			型代替注水大型ポンプにより
			原子炉建屋東側接続口から注
			水する場合は、低圧炉心スプレ
			イ系を使用するが, 女川はいず
			れの接続口からも残留熱除去
			系を経由しての原子炉注水と
			なる。
		低圧代替注水系(可搬型)は、代替淡水源が枯渇した場合におい	記載表現の相違
		て、重大事故等の収束に必要となる水の供給設備である大容量送水	
		ポンプ(タイプ I)により海を利用できる設計とする。	代替淡水源が枯渇した場合の
			海の利用について記載する。
		高圧代替注水系は、蒸気タービン駆動ポンプにより 復水貯蔵タン	お計の相違
		クの水を高圧炉心スプレイ系等を経由して、原子炉圧力容器へ注水	・女川は復水貯蔵タンクを重大
		することで溶融炉心を冷却できる設計とする。	事故等対処設備として使用す
			る。
		代替循環冷却系は、代替循環冷却ポンプにより、サプレッション	製備を称の相違
		チェンバのプール水を残留熱除去系配管を経由して原子炉圧力容	
		器へ注水することで、原子炉圧力容器内に存在する溶融炉心を冷ま	
		できる設計とする。	HIGHWAY DUTY THISE
		ほう酸水注入系は、ほう酸水注入系ポンプにより、ほう酸水注入	到備名称の相違
		「はり酸水柱へ赤は、はり酸水柱へ赤小シンにより、はり酸水柱へ 系貯蔵タンクのほう酸水を原子炉圧力容器へ注入することで、溶融	
		デリー	
		が心ツ原丁が俗称合命下的、2026下を煙煙・約111.9 の政司とする。	建
		3.2.6 重大事故等時における水素爆発による原子炉格納容器の破	
		損防止機能	
		炉心の著しい損傷が発生した場合において原子炉格納容器内に	
		おける水素爆発による破損を防止するための重大事故等対処設備	
		として、原子炉格納容器内を不活性化するための設備である可搬型	設備名称の相違
		窒素ガス供給装置及び原子炉格納容器内に滞留する水素及び酸素	
		を大気へ排出するための設備である原子炉格納容器フィルタベン	設備名称の相違
		ト系を設ける。	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金フラントの記載との比較表(VI-1-8-1 原子炉格料 東海第二発電所	女川原子力発電所第2号機	備考
		また、炉心の著しい損傷が発生した場合において原子炉格納容器	
		内における水素爆発による破損を防止できるよう,発電用原子炉の	
		運転中は,原子炉格納容器内を原子炉格納容器調気系により常時不	設備名称の相違
		活性化する設計とする。	
		可搬型窒素ガス供給装置は,原子炉格納容器内に窒素を供給する	設備名称の相違
		ことで、ジルコニウムー水反応、水の放射線分解等により原子炉格	
		納容器内に発生する水素及び酸素の濃度を可燃限界未満にできる	
		設計とする。	
			-11 Hb b d - 1 mbb
		可搬型窒素ガス供給装置は、車両内に搭載された可搬型窒素ガス	設備名称の相違
		供給装置発電設備により給電できる設計とする。	
			<柏崎刈羽7号機との比較>
			設計の差異
			・柏崎刈羽は炉心損傷後も耐圧
			強化ベント系を使用するがも
			川は炉心損傷後は耐圧強化
			ント系を使用しないため、耐圧
			強化ベント系の記載はしない。
			(63条で整理)
			(63 宋 (* 登理)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		原子炉格納容器フィルタベント系は、炉心の著しい損傷が発生し	設備名称の相違
		た場合において,原子炉格納容器内雰囲気ガスを原子炉格納容器調	設備名称の相違
		気系等を経由して,フィルタ装置へ導き,放射性物質を低減させた	
		後に原子炉建屋屋上に設ける放出口から排出(系統設計流量	設計の相違
		10.0kg/s (1Pd において)) することで、排気中に含まれる放射性物	・原子炉格納容器フィルタベス
		質の環境への放出量を低減しつつ、ジルコニウムー水反応、水の放	ト系の設計系統流量の相違。
		射線分解等により発生する原子炉格納容器内の水素及び酸素を大	
		気に排出できる設計とする。	
		原子炉格納容器フィルタベント系は, 排気中に含まれる可燃性ガ	設備名称の相違
		スによる爆発を防ぐため、可搬型窒素ガス供給系により、系統内を	設備名称の相違
		不活性ガス (窒素) で置換した状態で待機させ,原子炉格納容器べ	
		ント開始後においても不活性ガス(窒素)で置換できる設計とする	
		とともに、系統内に可燃性ガスが蓄積する可能性のある箇所にはバ	
		イパスラインを設け、可燃性ガスを連続して排出できる設計とする	
		ことで、系統内で水素濃度及び酸素濃度が可燃領域に達することを	
		防止できる設計とする。	
		可搬型窒素ガス供給装置は, 車両内に搭載された可搬型窒素ガス	記載方針の相違
		供給装置発電設備により給電できる設計とする。	・可搬型窒素ガス供給装置の網
			電に関する設計方針について
			記載している。
		なお,詳細は添付書類「VI-1-8-2 原子炉格納施設の水素濃度低	
		減性能に関する説明書」に示す。	
		3.2.7 重大事故等時における水素爆発による原子炉建屋等の損傷	
		防止機能	
		炉心の著しい損傷が発生した場合において原子炉建屋等の水素	設計の相違
		爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃	・女川は静的触媒式水素再結合
		度上昇を抑制し、水素濃度を可燃限界未満に制御するための重大事	装置において水素処理が可能
		故等対処設備として, 水素濃度制御設備である静的触媒式水素再結	であり、非常用ガス処理系はな
		合装置を設ける。	素処理を目的として設置した
			設備でないことから, 重大事
			等対処設備とはしていない。

柏崎刈羽原子力発電所第7号機	先行番金ファントの記載との比較表 (VI-1-8-1 原子炉格) 東海第二発電所	女川原子力発電所第2号機	備考
		水素濃度制御設備である静的触媒式水素再結合装置は、運転員の	設備名称の相違
		起動操作を必要とせずに、原子炉格納容器から原子炉建屋原子炉棟	
		内に漏えいした水素と酸素を触媒反応によって再結合させること	
		で、原子炉建屋原子炉棟内の水素濃度の上昇を抑制し、原子炉建屋	
		原子炉棟の水素爆発を防止できる設計とする。	
		なお、詳細は添付書類「VI-1-8-2 原子炉格納施設の水素濃度低	
		なわ、詳細は徐竹青規「VI-1-8-2 原士炉俗納施設の水素濃度低 減性能に関する説明書」に示す。	
		例注形に関する説明書」に小り。 	
		3.2.8 重大事故等時における放射性物質拡散抑制機能	
		5.2.6 里入事政等時における放射性物質拡散抑削機能 炉心の著しい損傷及び原子炉格納容器の破損に至った場合にお	
		いて、発電所外への放射性物質の拡散を抑制するための重大事故等	
		対処設備として、放水設備(大気への拡散抑制設備)及び海洋への	設備を称の相違
		拡散抑制設備(シルトフェンス)を設ける。また、原子炉建屋周辺	以哺和40~2位是
		における航空機衝突による航空機燃料火災に対応できる設備とし	設備名称の相違
		て、放水設備(泡消火設備)を設ける設計とする。	以偏右470~7百建
		C, MATSA MI (TETTO CRAME) ERATO DIRECTOR	
		大気への放射性物質の拡散を抑制するための重大事故等対処設	記載表現の相違
		備として、放水設備(大気への拡散抑制設備)は、大容量送水ポン	
		プ(タイプⅡ)により海水を取水し、ホースを経由して放水砲から	
		原子炉建屋へ放水できる設計とする。大容量送水ポンプ (タイプ II)	
		及び放水砲は、設置場所を任意に設定し、複数の方向から原子炉建	
		屋に向けて放水できる設計とする。また、原子炉建屋周辺における	
		航空機衝突による航空機燃料火災に対応するため、大容量送水ポン	設備名称の相違
		プ(タイプⅡ)により泡消火薬剤混合装置を通して、海水を泡消火	
		薬剤と混合しながらホースを経由して放水砲から原子炉建屋周辺	
		へ放水できる設計とする。	
		海洋への放射性物質の拡散を抑制するための重大事故等対処設	
		備として、海洋への拡散抑制設備(シルトフェンス)は、シルトフ	設備名称の相違
		ェンスで構成し、シルトフェンスは、汚染水が発電所から海洋に流	
		出する南側排水路排水桝、タービン補機放水ピット、北側排水路排	設計の相違
		水桝及び取水口に設置できる設計とする。	・シルトフェンス設置場所の相

柏崎刈羽原子力発電所第7号機	元付番笙ノブントの記載との比較衣(VI-1-8-1)原士外 東海第二発電所	女川原子力発電所第2号機	備考
	·	シルトフェンスは、海洋への放射性物質の拡散を抑制するため、	設備名称の相違
		設置場所に応じた高さ及び幅を有する設計とする。また、 <mark>破損時及</mark>	設計の相違
		び保守点検時のバックアップ用として、設置場所ごとに予備を保管	・バックアップ保有数の相違。
		する。	
			<柏崎刈羽7号機との比較>
			設計の差異
			・女川は放水砲による放水開始
			前にシルトフェンスを設置す
			ることで海洋への放性物質の
			拡散抑制対策が可能なため、放
			射性物質吸着材は, 自主対策設
			備と位置付けている。
		3.2.9 重大事故等時の動荷重	
		■ 重大事故等時は、設計基準事故時と事故進展が異なるため、設計	
		基準事故時に生じる冷却材喪失事故時の動荷重及び逃がし安全弁	記載表現の相違
		作動時以外の動荷重が加わる。	
		そこで、炉心損傷防止対策の有効性評価における重要事故シーケ	
		ンス及び格納容器破損防止対策の有効性評価における評価事故シ	
		ーケンス(以下「重要事故シーケンス等」という。)ごとの事故進展	
		を考慮し、重大事故等時の動荷重を抽出した。	
		その結果、設計基準事故時の動荷重である冷却材喪失事故時及び	記載表現の相違
		逃がし安全弁作動時以外に,以下の重要事故シーケンス等における	
		動荷重を新たに抽出した。	
		・原子炉圧力容器外の溶融燃料ー冷却材相互作用時の蒸気発生に	
		伴う圧力上昇	
		・雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)	
		時の格納容器ベントによる減圧	
		これらの動荷重については、影響を評価した結果、冷却材喪失事	記載表現の相違
		故時の動荷重に対して同等以下であり、設計基準事故時の動荷重に	
		包絡される。	
		一方で、以下の重要事故シーケンス等の状態は設計基準事故時の	
		範囲を逸脱しており、この際に生じる逃がし安全弁作動時の動荷重	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第 7 号機	東海第二発電所	女川原子力発電所第2号機 は設計基準事故時より大きくなる可能性が考えられる。 ・全交流動力電源喪失のプール水の温度上昇時 ・原子炉停止機能喪失時の逃がし安全弁11 弁作動時 ・原子炉停止機能喪失時の原子炉圧力上昇時 ・高圧溶融物放出/格納容器雰囲気直接加熱の発生防止のための 逃がし安全弁作動に伴う過熱蒸気発生時 これらのうち、原子炉停止機能喪失時の原子炉圧力上昇時の動荷 重は、設計基準事故時の逃がし安全弁作動時の動荷重よりも大きく なる可能性があることから、重大事故等時の動荷重として、新たに 考慮し、動荷重に対する構造健全性を確認する。 上記以外の状態については、影響を評価した結果、設計基準事故	備考 設備の相違 ・逃がし安全弁設置台数の相違
		の逃がし安全弁の動荷重に対して同等以下であり、設計基準事故時の動荷重に包絡される。 なお、重大事故等時のサプレッションチェンバ内部構造物に加わる荷重のうち、チャギング荷重によるダウンカマ横方向荷重については kN である。	
		原子炉格納施設の重大事故等時における荷重の組合せを表3-7に示す。なお、応力計算はそれぞれの荷重の組合せの中で最も厳しい条件について行うが、SA 長期(L)及び SA 長期(LL)時においてサプレッションチェンバ内に設置されるベント管、ベントヘッダ及びダウンカマに組み合わせる圧力は、SA 長期(L)及び SA 長期(LL)時に想定されるドライウェル内圧力とサプレッションチェンバ内圧力との最大圧力差を組み合わせる。また、圧力、温度及び冷却材喪失事故時の蒸気ブローダウンによる荷重等において、荷重の発生する時間が明らかに異なる場合は時間のずれを考慮する。	・ベント系設備に対する組み合わせる圧力について記載している

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 備考
柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格 東海第二発電所	本文学 (
		(本) (***********************************

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金プブントの記載との比較表 (VI-1-8-1 原子作 東海第二発電所	女川原子力発電所第2号機	備考
		4. 重大事故等時における原子炉格納容器の放射性物質閉じ込め	
		機能評価及びその他影響確認	
		重大事故等時の評価温度、評価圧力に対して原子炉格納容器の構	
		造健全性及び機能維持について評価する。	
		4.1 重大事故等時における原子炉格納容器の放射性物質閉じ込め	
		機能評価	
		4.1.1 評価方針	
		「3.2.1 重大事故等時の評価温度,評価圧力」に示す限界温度	記載表現の相違
		(200℃), 限界圧力 (2Pd) を用いて, その環境下での原子炉格納容	
		器の放射性物質閉じ込め機能について評価部位ごとに評価するこ	
		とにより、その機能が損なわれることがないことを確認する。	
		原子炉格納容器の放射性物質の閉じ込め機能を確認するため、	
		200℃, 2Pd の環境下で原子炉格納容器本体及び開口部等のリーク	
		パスとなる可能性のある部位を抽出し、規格を用いた構造健全性評	
		価にて原子炉格納容器の放射性物質閉じ込め機能について確認す	
		る。	
		さらに,福島第一原子力発電所での事故において,原子炉格納容	
		器からの漏えい要因の一つとして指摘されている原子炉格納容器	
		に設置されるフランジ部等のシール部についても評価部位として	
		抽出し、試験結果を用いた機能維持評価により原子炉格納容器の放	
		射性物質閉じ込め機能について確認する。	
		4.1.2 評価対象部位及び評価対象部位における機能喪失要因	
		図 3-1~図 3-9「原子炉格納容器バウンダリ及び隔離弁 全体概	
		要図」に示す原子炉格納容器バウンダリを構成する機器から、以下	
		のとおり評価対象部位を抽出し、評価部位ごとに放射性物質の閉じ	
		込め機能喪失の要因を抽出する。	
		評価対象部位として 200℃, 2Pd の環境下で原子炉格納容器の放	
		射性物質の閉じ込め機能が損なわれることがないよう原子炉格納	
		容器本体について <mark>強度</mark> 評価する。また,原子炉格納容器の開口部及	<柏崎刈羽7号機との比較>
		び貫通部については、構造上原子炉格納容器の内圧等の影響により	
		リークパスになる可能性があるため、評価対象部位として抽出す	
		る。開口部のシール部についても、ガスケットの劣化及びシール部	
		の変形に伴いリークパスになる可能性があるため評価対象部位と	
		する。	
		原子炉格納容器の機能喪失要因としては脆性破壊、疲労破壊、座	
		屈及び延性破壊が考えられるため、これらの破損モードの中から原	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
·		子炉格納容器内の環境条件等を考慮し、評価対象ごとに想定される	
		機能喪失要因を抽出する。	
		機能喪失要因の詳細な抽出内容については別添1において,評価	記載表現の相違
		対象ごとに説明する。	
		原子炉格納容器バウンダリ構成部である評価対象部位を以下に	
		示す。また、バウンダリ構成部の概要図を図 4-1 に示す。	
		① 原子炉格納容器本体	
		(ドライウェル, サプレッションチェンバ, ベント管 <mark>(ベント管</mark>	設備の相違
		ベローズを含む。))	・格納容器型式の相違による
			価対象の相違,以下同様。
		② ドライウェル主フランジ	設備名称の相違
		③ 機器搬出入用ハッチ	設備名称の相違
		④ 制御棒駆動機構搬出入口	
		⑤ 所員用エアロック	
		⑥ 逃がし安全弁搬出入口	
		⑦ 配管貫通部	
		・貫通配管	記載表現の相違
		・スリーブ	
		· 端板	記載表現の相違
		・フランジ部	記載表現の相違
		• 閉止板	記載表現の相違
		・伸縮継手	記載表現の相違
		· 短管	記載表現の相違
		⑧ 電気配線貫通部	
			記載表現の相違
		⑨ 原子炉格納容器隔離弁	
		・原子炉格納容器調気系バタフライ弁	記載表現の相違
		・移動式炉心内計装系電磁弁	記載表現の相違
		・移動式炉心内計装系ボール弁	記載表現の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行番金ファントの記載との比較表(VI-1-8-1 原子炉格箱 東海第二発電所	女川原子力発電所第2号機	備考
		②ドライウェル ③所員用エアロック ①配管資連部 ③電文配得資連部 ②検別をは一ス ②物理体室を接換第出入口 :原子即格納容器パウンダリ	
		図 4-1 原子炉格納容器バウンダリ構成部の概要図	格納容器型式の相違
		原子炉格納容器バウンダリ構成部の重大事故時における放射性物質の閉じ込め機能喪失の要因(以下「機能喪失要因」という。)として,原子炉格納容器内の温度,圧力条件や原子炉格納容器本体の変形から,表4-1に示す機能喪失要因が想定される。	

			育2号機		備考
		表 4-1 評価対象における機	能喪失要因	-	設備の相違
4		評価対象		機能喪失要因	・格納容器型式の相違による評
			構造部	シール部	
	①原子炉格納容器本体	胴部等及びドライウェル基部 ベント管ベローズ	延性破壊 被労破壊		価対象及び機能喪失要因の相
		7350	延性破壊		違
	②ドライウェル主フラン	締付ボルト	延性破壊	_	
	1400004000	円筒胴取付部	延性破壞		
	③機器搬出入用ハッチ	円筒欄 競板	延性破壊 座厢	変形、シール能力低下	
		門筒順取付部	延性破壊		
	①制御棒駆動機構搬出;	入口 円筒胴	延性破壊		
		競板	座 網		
	⑤所負用エアロック	解及び隔壁 円筒胴	延性破壊	変形、シール能力低下	
		シール部(爆以外)	-	シール能力低下	
		円筒期	延性破壞		
	⑥逃がし安全弁験出入し	段板 一	延性破壊		
		プランジ センジポルト	延性破壞 延性破壞		
		貫通配管	延性破壞		
		スリーブ	延性破壞,		
		端板	座組 延性破壊		
	10 J	端板 ボルト締付事板	延性破壊	_	
	②配管頁通部	プランジ	延性破壊	開口、シール能力低下	
		縮付ポルト	延性破壞	_	
		関止板 伸縮跳手	延性破壊 疲労破壊		
		押 相 報 于 知 管	被方板塘		
		スリーブ	延性破壊		
	(8)電気配練貫通部	アダプラ	延性破壊	-	
		ベッダ モジュール	延性破壞	シール能力低下	
		副压抑料	延性破壞		
	②原子炉格納容器隔離 9	ガ シール部	-	シール能力低下	
	の閉じ込め機能をいずれかの方法に 及びシール部の機 (a) 告示第501 (b) 告示第501	対する評価方法は、名確保できる判断基準をより評価し、200°C、は能維持を確認する。 1 号又は設計・建設規 1 号又は設計・建設規 1 号又は設計・建設規 1 野工は 1 計算 1 計	を設定し、 2Pdの環境 格に準拠 格の準用 た評価	,以下の(a)~(c)の 寛下での構造健全 ゆした評価 間等による評価	カ

先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 設備の相違 評価対象機器の選定 ・格納容器型式の相違による評 ·原子炉格納容器本体 胴部等及びドライウェル基部、ベント管ベローズ 価対象の相違 ドライウェル主フランジ フランジ、締付ポルト ・機器搬出入用ハッチ 円筒胴取付部, 円筒胴, 鏡板 ·制御棒駆動機構搬出入口 円筒胴取付部, 円筒胴, 鏡板 所員用エアロック 扉及び隔壁, 円筒胴, シール部 ・逃がし安全弁搬出入口 円筒胴、鏡板、フランジ、ヒンジボルト ·配管貫通部 貫通配管、スリーブ、端板、ボルト締付平板、フランジ、締付ボルト、閉止板、伸縮継手、短管 · 電気配線貫通部 スリーブ, アダプタ, ヘッダ, モジュール · 原子炉格納容器隔離弁 耐圧部材、シール部 機能喪失要因の抽出と評価方法の設定 構造部 (規格を用いた評価) シール部(試験又は解析結果を用いた評価) 既往研究又は解析結果等を 活用した評価で確認 表 4-2 の評価方法(c)参照 告示第501号又は 設計・建設規格に準拠 した評価で確認できる 表 4-2 の評価方法(a)参照 適用規格の相違 告示第501号又は設計・建設規格の 準用等による評価により確認 表 4-2 の評価方法(b)参照 図 4-2 評価方法による評価対象の分類

柏崎刈羽原子力発電所第7号機	先行番金プラントの記載との比較表(VI-1-8-1 原子炉格納施設 東海第二発電所	女川原子力発電所第2号機 備考
	•	設備の相違
		・格納容器型式の相違による評 価対象及び機能喪失要因の相
		L L
		1
		解放高等 1 の他の安全教徒の禁制 1 の他の安全教徒の独立。 (作物間の最近下であること) (作物間の最近下であること) (作物間の最近下であること) (作物間の最近下であること) (作物間の最近下であること) (作物質であること) (作物質になって、あること)
		対象主義を をの他の安全政権の施供・事業 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年 100年
		版本中に 評価的 能の分類及 (7年)
		数44-2 評価的 象の分類及で評価的等(1/3) 解析を整備的ないる。 「おきない」 評価的 象の分類及で評価的な。 「おきない」 お子が機能器本体の速度計算表 3.55 「Nt-ウ-ウ-ウ・エカ機構設施 mp-per activity acti
		2011年 2011
		79年前及び評価的写案(1./ 3) 野橋方かの意思・1 原子が指導的器本体の意思・1 原子が指導的器本体の意思・1 原子が指導的器本体の意思計算書」及び「Vi-3-3-4 を認めている。 1 原子が高端の部とはの形式を専門。 2 の子の部が高端をは一定には、 2 の子の部が高端をは、 2 の子の影響を使います。 2 の子の表します。 2 の子のの表します。 2 の子の表します。 2 の子の表します。 2 の子の表します。 2 の子の表します。 2 の子の表します。 2 の子の表します。
		ない (1/2) (2/4) (1/2) (2/4) (1/2) (2/4)
		(1997年7月 1997年7日 199
		今班及では平価19年(1/イ3) 原子が他所能等! 第一次がの他のでは、 (2 年前 5 日 19 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日
		1980
		Wode Woe Wode Woe Wode
		表 4-2 評価が 第00分類及 (洋産価内 (1/3) 部件 42 計画 (1/4) 第00分類及 (洋産価内 (1/3) 21 に配施
		(20m / 10m
		総合なわる 機能変数 (本を通信) (本を通信) (本を通信) (なり) (ない
		機能を必要 マンゴコ 大田 東京 東京 東京 東京 東京 東京 東京 東
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		○ 2

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備ま 設備の相違 ・格納容器型式の 価対象及び機能

東海第二発電所	女川原子力発電所第2号機	備考
	・格納容価対象及	違 器型式の相違による なび機能喪失要因の
	新名	の相違
	先行審査プラントの記載との比較表(VI-1-8-1 原子炉 東海第二発電所	Recommendation 1982 1985 19

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		4.1.4 評価結果	
		原子炉格納容器本体及び原子炉格納容器に設置されている開口	
		部 (ドライウェル主フランジ,機器搬出入用ハッチ,制御棒駆動機	設備名称の相違
		構搬出入口,所員用エアロック及び逃がし安全弁搬出入口) につい	設備の相違
		ては、告示第501号の規格式による応力評価等を行い、判定値を	適用規格の相違
		満足することにより 200℃, 2Pd の環境下での構造健全性を確認し	
		た。	
		原子炉格納容器貫通部(配管貫通部,電気配線貫通部)及び原子	
		炉格納容器隔離弁については、告示第501号及び設計・建設規格	適用規格の相違
		等による評価を行い、判定値を満足することにより 200℃, 2Pd の	
		環境下での構造健全性を確認した。	
		また、ドライウェル主フランジ、機器搬出入用ハッチ等の開口部	設備名称の相違
		のシール部、原子炉格納容器調気系バタフライ弁等については既往	
		研究又は解析結果を基に評価を行い、200℃、2Pd の環境下での機能	
		維持が可能であることを確認した。	BE IN A DUTY THAT
		評価対象部位ごとの詳細な評価方法及び評価結果を表 4-3 及び	記載表現の相違
		別添1に示す。	旧事の大力でプログラ
		JUNE I (CA) 9 o	

柏崎刈羽原子力発電所第7号機	元11番宜ノフントの記載との比較衣(VI-I-8-1 原于炉恰料1旭放 東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違
			・格納容器型式の相違による評価対象及び機能喪失要因の相
		20	(四対家及び機能授大要囚の相) 違
		新香油等 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		20 公子 シーム機能維持・ (20 公子 シール機能維持・ (20 公子 シール・ (20 公子 ・ (20 公	
		存在高等	
		野佐高等 (一面の) (19年 19年 19年 19年 19年 19年 19年 19年 19年 19年	
		は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	
		在	
		の の の の の の の の の の の の の の	
		新 2 (4 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 / 7 /	
		が高います。 1 に 2 を 2 に 2 を 3 に 2 に 2 を 3 に 2 に 2 を 3 に 2 に 2 に 2 に 2 に 2 に 2 に 2 に 2 に 2 に	
		特別 11 12 13 13 14 14 15 15 15 15 15 15	
		株	
		# 6 4~3 # 6 4 5 4 4 7 5 4 4 7 5 4 4 7 5 4 4 7 5 4 4 7 5 7 5	
		商品 (
		存在点 を実施的 等金子系統的 等金子系統的 イント第ペロース イント第ペロース イント第ペロース イント第ペロース イント第ペロース イント第ペロース イント第ペロース イント第ペロース イント第ペロース イント) イント第ペロース イント) イント イント イント イント イント イント イント イント	
		2 日 日 発養	
		連時間大 ・ ストエン ・ ストエー ・ スト ・ スト	
		算価対象 原子が発売登録本体 をライウェルモフラン 機器輸出入用ハッチ 機器輸出入用ハッチ 施がし完全手機出入に 高がし完全手機出入に 高が1.完全手機出入に 第41:フランジ部の **・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		<u>国際 </u>	

20世紀 (1997年)

柏崎刈羽原子力発電所第7号機	先行番金ファントの記載との比較表(VI-1-8-1 原子炉格納施設 東海第二発電所	女川原子力発電所第2号機	備考
			設備の相違 ・格納容器型式の相違による評 価対象及び機能喪失要因の相
		野産活業 高かって 原かって 原かって がかせて シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シース権配体やマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを配体をマ シースを表している。	
		20 回転 1 日本 1 日	
		評価点	
		ができます。 ・ 1 ・ 2 ・ 3 ・ 3 ・ 4 ・ 3 ・ 3 ・ 4 ・ 4	

柏崎刈羽原子力発電所第7号機
柏崎刈羽原子力発電所第7号機

: 前回提出時からの変更箇所

	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)			
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考	
		期後 内側側 カスケット カスケット A 産アランジ ボルト A 産産課題 機器輸出入用ハッチ	設備の相違 ・格納容器型式の相違	
		原子が絡納容器内側 制御後駆動機構輸出入口 (21 4-3 原子が格納容器//ウンダリ構成路観製図 (2/8)	新教	

先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納施設の設計条件に関する説明書)			
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機			設備の相違・格納容器型式の相違

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納) 東海第二発電所	女川原子力発電所第2号機	備考
		第十世級前容器内側 スリープ 馬根 日本配管 配管資連部(資通配管、スリープ、端板)	設備の相違 ・格納容器型式の相違
		ポルト線付平板 ポルト ボルト線付平板 オルト オルト線付平板 オルト スリープ オスケット A原発線	
		配管資通部 (フランジ部) 図 4-3 原子炉格納容器パウンダリ構成部機要図 (4/8)	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	先行審査プラントの記載との比較表 (VI-1-8-1 原子炉格納 東海第二発電所	女川原子力発電所第2号機	備考
		Mass Mass	設備の相違 ・格納容器型式の相違
		原于伊格奇尔森内侧	
		经验雇理取(国际税)	
		(2 + 0 10 mm	
		Race	
		配管資產館 (体稿課手: 報管)	
		図 4-3 原子が移納容器パウンダリ構成能概要図 (5/8)	

: 前回提出時からの変更箇所

先行審査プラントの記載との比較表(VI-1-8 柏崎刈羽原子力発電所第7号機 東海第二発電所		女川原子力発電所第2号機	備考
		第子が移動容器 内側	設備の相違 ・格納容器型式の相違
		度子が移動容器 内側 ファクター マソープ アダプタ マジューア アダプタ マジュースリーア マグラ マジュー マス 京 京 京 京 京 京 京 京 京 京 京 京 京 京 京 京 京 京	
		図 4-3 原子が格納容器パウンダリ構成部機要 図 (6/8)	

先行審査プラントの記載との比較表(VI-1-8-1 原子炉格納施設の設計条件に関する説明書)				
東海第二発電所	女川原子力発電所第2号機	備考		
		機考設備の相違・格納容器型式の相違		
		東海第二発電所 女川原子の格納容器隔離年(原子の格納容器隔離年(原子の格納容器隔離年(原子の格納容器隔離年(原子の格納容器隔離年(原子の格納容器隔離年(移動式のもいわけまる。電話す)		

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
柏崎刈羽原子力発電所第7号機	死行審金プラントの記載との比較表(VI-1-8-1 原子炉格系 東海第二発電所		機考設備の相違・格納容器型式の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		4.2 その他原子炉格納容器の限界温度,圧力に対する影響確認	記載表現の相違
		原子炉格納容器の限界温度、圧力の環境下における評価に対して	記載表現の相違
		影響を及ぼす可能性のある設備の経年劣化,200℃,2Pdが負荷され	記載表現の相違
		た後の耐震性,貫通部の核分裂生成物(以下「FP」という。)沈着	
		について影響を確認する。	
		4.2.1 確認内容	
		原子炉格納容器の放射性物質の閉じ込め機能の評価に対して、影	
		響を及ぼす可能性のある対象機器の経年劣化、限界温度、圧力負荷	記載表現の相違
		後の耐震性への影響等、以下の内容について影響を確認する。	
		(1) 経年劣化の影響	
		原子炉格納容器の限界温度,圧力(200℃, 2Pd)の環境下での	記載表現の相違
		放射性物質の閉じ込め機能の健全性が、経年劣化により低下して	
		いないことを確認する。確認方法及び確認結果の詳細は別添1別	
		紙1に示す。	
		(2) 限界温度,圧力負荷後の耐震性への影響	記載表現の相違
		原子炉格納容器が限界温度,圧力(200℃, 2Pd)が負荷された	記載表現の相違
		後の耐震性の影響について確認する。確認方法及び確認結果の詳	
		細は別添1別紙2に示す。	
		(3) 貫通部のFP沈着による影響	
		炉心溶融時, 貫通部のリークパスにFPが沈着した場合の温度上	
		昇について確認する。確認方法及び確認結果の詳細は別添1別紙3	
		に示す。	
		4.2.2 確認結果	
		(1) 原子炉格納容器の閉じ込め機能を有する箇所における経年	
		劣化の対策について確認し、原子炉格納容器の限界温度、圧	記載表現の相違
		力における閉じ込め機能への影響はないことを確認した。	記載表現の相違
		(2) 重大事故等時の温度, 圧力を超える限界温度, 圧力 (200℃,	記載表現の相違
		2Pd)が負荷された後の耐震性の影響については,限界温度,	記載表現の相違
		圧力の環境下において残留ひずみが <mark>発生するが十分小さく、</mark>	評価結果の相違
		耐震評価にて考慮する許容応力は今回の評価で考慮した許容	
		応力の制限内であり、さらに限界温度、圧力負荷前と同様の	記載表現の相違
		挙動を示すことから、耐震性に影響はないことを確認した。	
		(3) 炉心溶融時の原子炉格納容器内のFPの沈着による温度上昇	
		について、格納容器破損防止対策の有効性評価における評価	
		事故シーケンスのうち雰囲気圧力・温度による静的負荷(格	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	設の設計条件に関する説明書) 女川原子力発電所第2号機	備考
		納容器過圧・過温破損)を想定した条件にて,原子炉格納容器	
		のリークパスへFPが飛散し、リークパス内がFPで満たされ目	
		詰まりしたと保守的に仮定し、FEM解析により熱解析を実施し	
		た。評価結果としては,原子炉格納容器の貫通部リークパス	
		箇所の最高温度は約178℃となり,原子炉格納容器の限界温度	評価結果の相違
		である200℃を下回ることから原子炉格納容器の限界温度,圧 力に影響はないことを確認した。	記載表現の相違
			<柏崎刈羽7号機との比較>
			引用文献の使用の相違
			・柏崎刈羽は、既工認と同様ジ
			エット力に係る記載を行って
			おり,これらにて引用文献を使
			用している。