
前回提出時からの変更箇所

| 相崎め1羽塬子力発電所第 7 号機 | 東海第二発䉓耍 |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
前回提出時からの変更箇所









 ：前回提出時からの変更箇所

| 女川原子力発電所第2号機 |  |
| :---: | :---: | :---: |
| 備考 |  |前回提出時からの変更箇所


| 柏崎刈羽原子力発電所第 7 号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | 原子炉格納容器本体は，施設時に適用された「告示第501号」及び「電気工作物の溶接に関する技術基準を定める省令」（昭和 45年通商産業省令第 81 号（昭和 60 年 10 月改正を含む））（以下「省令第 81 号」という。）に基づき，材料，設計及び製作において，次の試験を実施し，脆性破壊に対し十分安全であることを確認され たものを使用する。 | 施設時の規格の相違 |
|  |  | （a）原子炉格納容器本体の材料は，告示第 5 0 1 号第 20 条第 4 項に規定する方法による破壊靸性試験を行い，同項に規定する合格基準に適合するものを使用する。 | 記載表現の相違 |
|  |  | （b）原子炉格納容器本体の溶接部は，省令第 81 号第 28 条第 2 項に規定する試験板について第26条の規定に基づき，破壊鞇性試験を行い，同条に規定する合格基準に適合することを確認さ れたものを使用する。 | 規格の改正年度に伴う相違記載表現の相違 |
|  |  | b．脆性破壊防止のための確認事項実施要領 <br> （a）原子炉格納容器本体の材料に関する確認 <br> 本体材料に関する破壊勒性試験として衝撃試験を実施する。衝撃試験の実施要領は次のとおりである。 | 記載表現の相違 |
|  |  | 1．対象材料 <br> 第二種容器（厚さが 16 mm 未満の材料，断面積が $625 \mathrm{~mm}^{2}$ 末満の棒の材料，呼び径が 25 mm 未満のボルト等の材料，外径が 169 mm 未満の管 の材料並びに厚さが 16 mm 又は外径が 169 mm 未満の管に接続されるフ ランジの材料及び管継手の材料を除く。）に使用する材料のらち， オーステナイト系ステンレス鋼及び高ニッケル合金以外のものに限る。 | 記載表現の相違記載表現の相違 |
|  |  | ㅁ．材料 <br> 原子炉格納容器本体において，該当する材料はSGV49及びSPV50で ある。 | 原子炉格納容器本体の使用材料の相違 |
|  |  | 八．試験温度 <br> 試験温度は $-17^{\circ} \mathrm{C}$ 以下とする。これは最低使用温度 $\left(0^{\circ} \mathrm{C}\right)$ より $17^{\circ} \mathrm{C}$ |  |


前回提出時からの変更箇所
 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所

先行審査プラントの記載との比較表（VI－1－8－1 原子炉格納施設の設計条件に関する説明書）
 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
前回提出時からの変更箇所

| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| されているもの。 <br> 【省略】 <br> 図3－10 原子炉格納容器バウンダリ及び隔離弁全体概要図の記号及び略号 |  |
| 3．1．10 原子炉格納容器体積 <br> 設計基準事故時における泠却材喪失事故直後の圧力上昇に耐え らるよう，ドライウェル空間容積（約 $7900 \mathrm{~m}^{3}$ ），サプレッションチ ェンバ空間容積（約 $4700 \mathrm{~m}^{3}$ ）の自由体積を有している。 | 記載表現の相違設計条件及び格納容器型式に よる仕様の相違 |
| 3．1．11 原子炉格納容器安全設備 <br> 設計基準対象施設としての残留熱除去系（格納容器スプレイ冷却 モード）は，サプレッションチェンバのプール水を原子炉格納容器内にスプレイすることにより，原子炉格納容器内の圧力及び温度を原子炉格納容器の最高使用圧力及び最高使用温度以下に維持でき る設計とする。 <br> サプレッションチェンバのプール水を水源とする残留熱除去系 ポンプは，予想される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする＊。サプレッションチェンバは，設計基準事故及び重大事故等時に必要な水源として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を有する設計とする。 <br> 残留熱除去系（格納容器スプレイ掵却モード）は，テストライン を構成することにより，発電用原子炉の運転中に試験ができる設計 とする。また，設計基準事故時に動作する弁については，残留熱除去系ポンプが停止中に開閉試験ができる設計とする。また，残留熱除去系（格納容器スプレイ椧却モード）は，冷却材喪失事故後，サ プレッションチェンバ内のプール水をドライウェル内及びサプレ ッションチェンバ内にスプレイすることによって，原子炉格納容器内の温度，圧力を低減し，原子炉格納容器内に浮遊している放射性物質が漏えいするのを抑えるよう設計する。 <br> 注記＊：詳細は，添付書類「VI－1－8－4 圧力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書」に示す。 | モード名称の相違設備名称の相違 <br> 設備名称の相違 <br> 設備名称の相違機器仕様の相違 <br> モード名称の相違 <br> モード名称の相違設備名称の相違設備名称の相違 <br> 添付書類名称の相違 |
| 3．1．12 許容外圧 <br> 原子炉格納容器の許容外圧は，施設時に適用された告示第5 0 1号第 22 条第 3 項第 2 号八，卜，リ及び第 23 条第 2 項第 2 号，第 4号により， ドライウェル上鏡 $\square$ kPa | ＜柏崎刈羽 7 号機との比較＞説明箇所の相違 <br> －柏崎刈羽は圧力に関する設計条件の一部として整理してい る。 |



前回提出時からの変更箇所

| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| したがって，真空破壊装置の必要流路面積 $\mathrm{A}_{\mathrm{B}}$ は $A_{B}=\frac{A_{V}}{\square}=\square \mathrm{m}^{2}$ <br> 一方，真空破壊装置の内径は $\square$ m であるので， 1 個当たりの流路面積は $\frac{\pi}{4} \times \square=\square m^{2}$ <br> したがって，真空破壊装置の必要個数は， $\square$個 <br> となる。実際の個数は，これに 1 個余裕をもたせて 6 個とする。 <br> なお，この真空破壊装置は常時その開閉状態をチェックできる試験開閉装置を設置する。 | 真空破壊装置の仕様の相違 <br> ＜柏崎刈羽 7 号機との比較＞真空破壊装置の仕様の相違 |
| 3．1．15 原子炉建屋原子炉棟 <br> 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいした場合，放射性物質の濃度を低減する設備として原子炉建屋原子炉棟を設置する。 <br> 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であっ て，非常用ガス処理系により，内部の負圧を確保し，原子炬格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出され ることを防止する設計とする。 <br> 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保す る設計とする。 | 差異なし |
| 3．1．16 可燃性ガス濃度制御設備 <br> 可燃性ガス濃度制御系は，通常運転中，原子炬格納容器調気系に より原子炉格納容器内に窒素を充填することとあいまって，泠却材喪失事故時に原子炉格納容器内の水素濃度又は酸素濃度を，可燃限界に達しないための制限値である水素濃度を $4 \mathrm{vol} \%$ 未満又は酸素濃度を $5 \mathrm{vol} \%$ 未満に維持できる設計とする。 | 設備名称の相違記載表現の相違 |
| 3．1．17 放射性物質濃度制御設備 <br> 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいした場合，放射性 |  |前回提出時からの変更箇所













前回提出時からの変更箇所



| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| c．起動，運転，停止サイクル中の任意の 2 点間の温度差の検討（告示第501号第13条第1項第3号八準用） <br> 解析の対象となる任意の 2 点間の距離は（イ）より，次のように求める。 $\mathrm{p}=2 \sqrt{R \cdot t}=\square \mathrm{mm}$ <br> ここに，Rは原子炉格納容器の最大半径， t は原子炉格納容器の板厚で，pの値が最大となるように選ぶ。 | ＜柏崎刈羽 7 号機との比較＞設計条件及び格納容器型式に よる仕様の相違 |
| 疲れ解析が不要となる任意の 2 点間の最大温度差は（ロ）より，次 のように求める。 $\mathrm{T}=\frac{S a}{2 \cdot E \cdot \alpha}=\square C$ <br> ここに， <br> Sa ：炭素鋼の $\square$回の繰返しに対する許容ピーク応力強さ $\square$ Pa） <br> E ：炭素鋼の縦弾性係数 $\square$ MPa $\square$ $=$ $\square$ ${ }^{\circ} \mathrm{C}$ における值） <br> $\alpha$ ：炭素鋼の瞬時熱膨張係数 $\square$ $\mathrm{mm} / \mathrm{mm} \cdot{ }^{\circ} \mathrm{C}$ $\square$ ${ }^{\circ} \mathrm{C}$ における値）） <br> ここで，Tは設計上の最大温度差 $161^{\circ} \mathrm{C}\left(171^{\circ} \mathrm{C}-10^{\circ} \mathrm{C}\right)$ より大きい。 したがって，任意の 2 点間の最大温度差はTの値を超えることはな いので本条項を満足している。 |  |




前回提出時からの変更箇所
 ：前回提出時からの変更箇所

| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| 原子炉格納容器代替スプレイ冷却系（可搬型）及び代替循環冷却系，溶融炉心の原子炉格納容器下部への落下を遅延•防止するために用 いる低圧代替注水系（常設）（復水移送ポンプ），低圧代替注水系 <br> （可搬型），代替循環冷却系，高圧代替注水系及びほう酸水注入系，原子炉格納容器内における水素爆発による破損防止のために用い る可搬型窒素ガス供給系及び原子炉格納容器フィルタベント系，原子炉建屋等の水素爆発による損傷を防止するために用いる静的触媒式水素再結合装置，並びに炉心の著しい損傷及び原子炉格納容器 の破損に至った場合において，発電所外への放射性物質の拡散を抑制するために用いる放水設備（大気への拡散抑制設備），放水設備 （泡消火設備）及び海洋への拡散抑制設備（シルトフェンス）の設計についても以下に示す。 | ペデスタル底部の構造変更を行いペデスタル床ドレンサン プの水位を維持することで，溶融炉心の冠水対策を行ってい る。 <br> 設計の相違 <br> －女川では格納容器にスプレイ した水がドライウェル床面に たまり，格納容器下部開口部を経由して格納容器下部に流入 することを考慮するため，原子炉格納容器代替スプレイ冷却系及び代替循環冷却系を溶融炉心の泠却設備として整理し ている。 <br> 設計の相違 <br> －女川は静的触媒式水素再結合装置により水素爆発損傷防止対策が可能であること，また，水素処理を目的として設置し た設備ではないことから，非常用ガス処理系を水素爆発損傷防止対策設備としては使用し ない。 |
| 3．2．1 重大事故等時の評価温度，評価圧力 <br> （1）原子炉格納容器の限界温度，限界圧力 <br> 重大事故等時の原子炉格納容器の破損の防止において想定する評価事故シーケンスのらち格納容器破損モード「雰囲気圧力•温度 による静的負荷（格納容器過圧•過温破損）」について原子炉格納容器の温度，圧力を評価した結果，原子炉格納容器バウンダリにかか る温度の最高値は約 $178^{\circ} \mathrm{C}^{* 1}$ ，原子炉格納容器圧力の最高値は約 $0.640 \mathrm{MPa}^{* 2}$ となる。 | 記載の明確化 <br> －設置変更許可申請書添付書類十の表現と整合させた。設置変更許可申請書添付書類十における解析結果の相違 |前回提出時からの変更箇所



 ：前回提出時からの変更箇所

| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| 果における原子炉格納容器圧力の推移 |  |
| （2）地震力と組み合わせる原子炉格納容器の評価温度，評価圧力重大事故等と地震力の組合せについては，添付書類「VI－2－1－1耐震設計の基本方針」において，「原子炬格納容器バウンダリを構成する施設（原子炉格納容器内の圧力，温度の条件を用いて評価を行らその他の施設を含む。）については，いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S dによ る地震力を組み合わせ，その状態から更に長期的に継続する事象に よる荷重と基準地震動S s による地震力を組み合わせる」としてい る。 <br> a．弾性設計用地震動 Sd と組み合わせる原子炉格納容器の評価温度，評価圧力 <br> 弾性設計用地震動 S d と組み合わせる原子炉格納容器の評価温度，評価圧力は，事象発生後 $10^{-2}$ 年（約 3 日）後の状態として，保守的に事象発生後以降の最高となる原子炉格納容器温度，圧力とす る。 <br> 重大事故等時の原子炉格納容器の破損の防止において想定する評価事故シーケンスのうち格納容器破損モード「雰囲気圧力•温度 による静的負荷（格納容器過圧•過温破損）」（代替循環冷却系を使用できない場合）について原子炉格納容器の温度，圧力を評価し た結果，原子炉格納容器バウンダリにかかる温度の最高値は約 $178^{\circ} \mathrm{C}$ ，原子炬格納容器バウンダリにかかる圧力の最高値は 640 kPa となる。図3－13に原子炉格納容器内雰囲気温度の変化，図3－14に原子炉格納容器圧力の変化を示す。原子炉格納容器の強度評価等に用 いる温度条件としては，原子炉格納容器バウンダリにかかる最高温度である約 $178^{\circ} \mathrm{C}$ を考慮する。 <br> 以上より，弾性設計用地震動 S d と組み合わせる原子炉格納容器 の評価温度は $178^{\circ} \mathrm{C}$ ，評価圧力は 640 kPa とする。 | 構造健全性評価に用いる地震力と組み合わせる評価温度及 び評価圧力を記載している。 | ：前回提出時からの変更箇所



| 柏崎刈羽原子力発電所第7号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  |  <br> 図3－15 重大事故等時の原子炉格納容器温度の変化 （長期解析，代替循環冷却系を使用する場合）＊ <br> 注記＊：令和2年2月26日付け「原規規発第2002261号」をもつて許可 を受けた「女川原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7．2．1 雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）7．2．1．2 代替循環冷却系 を使用する場合と同条件で実施した原子炉格納容器温度の長期解析結果 | 構造健全性評価に用いる地震力と組み合わせる評価温度を記載している。 |
|  |  |  <br> 図3－16 重大事故等時の原子炉格納容器圧力の変化 （長期解析，代替循環冷却系を使用する場合）＊ <br> 注記＊：令和2年2月26日付け「原規規発第2002261号」をもつて許可 を受けた「女川原子力発電所発電用原子炉設置変更許可申 | 構造健全性評価に用いる地震力と組み合わせる評価圧力を記載している。 |


| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| 請書」添付書類十 7．2．1 雰囲気圧力•温度による静的負荷（格納容器過圧•過温破損）7．2．1．2 代替循環冷却系 を使用する場合と同条件で実施した原子炉格納容器圧力の長期解析結果 |  |
|  <br> 図 3－17 重大事故等時の原子炉格納容器温度の変化 （長期解析，代替循環冷却系を使用できない場合）＊ <br> 注記＊：令和 2 年 2 月 26 日付け「原規規発第 2002261 号」をもつ て許可を受けた「女川原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7．2．1 雰囲気圧力•温度によ る静的負荷（格納容器過圧•過温破損）7．2．1．3 代替循環冷却系を使用できない場合と同条件で実施した原子炉格納容器温度の長期解析結果 | 構造健全性評価に用いる地震力と組み合わせる評価温度を記載している。 |


 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
前回提出時からの変更箇所

| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| 源の多様性を有する設計とする。 <br> 耐圧強化ベント系はサプレッションチェンバ及びドライウェル と接続し，いずれからも排気できる設計とする。サプレッションチ ェンバ側からの排気ではサプレッションチェンバの水面からの高 さを確保し，ドライウェル側からの排気では，ドライウェルの床面 からの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を設けることで長期的にも溶融炉心及び水没の悪影響を受けない設計とする。 <br> 耐圧強化ベント系を使用した場合に放出される放射性物質の放出量に対して，設置（変更）許可において敷地境界での線量評価を行い，実効線量が 5 mSv 以下であることを確認しており，耐圧強化 ベント系はこの評価条件を満足する設計とする。 | のみで構成している。 <br> 記載方針の相違 <br> －耐圧強化ベント系仕様の記載位置の相違 <br> 記載表現の相違 <br> 記載表現の相違 |
| 可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止す るために必要な重大事故等対処設備として，可搬型窒素ガス供給系 を設ける。 <br> 可搬型窒素ガス供給系は，可搬型窒素ガス供給装置を用いて原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とする。ま た，原子炉格納容器フィルタベント系は，排気中に含まれる可燃性 ガスによる爆発を防ぐため，系統内を不活性ガス（窒素）で置換し た状態で待機させ，原子炉格納容器ベント後においても不活性ガス （窒素）で置換できる設計とする。 | 設備名称の相違 <br> 設備名称の相違設備名称の相違 <br> 記載表現の相違記載表現の相違記載表現の相違 |
| 3．2．3 重大事故等時における原子炉格納容器冷却機能 <br> 設計基準事故対処設備が有する原子炉格納容器内の泠却機能が喪失した場合において炉心の著しい損傷を防止するために原子炉格納容器内の圧力及び温度を低下させるため，また，炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するた めに原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させるための重大事故等対処設備として，原子炉格納容器代替 スプレイ泠却系（常設）及び原子炉格納容器代替スプレイ泠却系（可搬型）を設ける。また，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（格納容器スプレイ泠却モー ド）及び残留熱除去系（サプレッションプール水冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用で | 設備名称の相違 <br> モード名称の相違 <br> 記載表現の相違 |前回提出時からの変更箇所

 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
 ：前回提出時からの変更箇所
$\qquad$先行審査プラントの記載との比較表（VI－1－8－1 原子炉格納施設の設計条件に関する説明書）

| 柏崎刈羽原子力発電所第7号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | アルカリ性の状態（待機状態において pH 13 以上）に維持する設計 とする | 並列に設置。 |
|  |  | とする。 | 供名称の相違 |
|  |  | びドライウェルと接続し，いずれからも排気できる設計とする。サ |  |
|  |  | プレッションチェンバ側からの排気ではサプレッションチェンバ |  |
|  |  | の水面からの高さを確保し，ドライウェル側からの排気では，ドラ |  |
|  |  | イウェル床面からの高さを確保するとともに有効燃料棒頂部より | 記載表現の相違 |
|  |  | も高い位置に接続箇所を設けることで，長期的にも溶融炬心及び水 |  |
|  |  | 没の悪影響を受けない設計とする。 |  |
|  |  | 原子炬格納容器フィルタベント系は，排気中に含まれる可燃性が | 設備名称の相違 |
|  |  | スによる爆発を防ぐため，可搬型窒素がス供給系により，系統内を | 設備名称の相違 |
|  |  | 不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ | 記載表現の相違 |
|  |  | ント開始後においても不活性ガス（窒素）で置換できる設計とする | 記載表現の相違 |
|  |  | とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ |  |
|  |  | イパスラインを設け，可燃性ガスを連続して排出できる設計とする | 記載表現の相違 |
|  |  | ことで，系統内で水素濃度及び酸素濃度が可燃領域に達することを |  |
|  |  | 防止できる設計とする。 |  |
|  |  | 原子炉格納容器フィルタベント系は，他の発電用原子炉施設とは | 設備名称の相違 |
|  |  | 共用しない設計とする。また，原子炉格納容器フィルタベント系と |  |
|  |  | 他の系統•機器を隔離する弁は直列で2個設置し，原子炬格納容器 |  |
|  |  | フィルタベント系と他の系統•機器を確実に隔離することで，悪影 |  |
|  |  | 響を及ぼさない設計とする。 |  |
|  |  | 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納 | 設備名称の相違 |
|  |  | 容器が負圧とならないよう，原子炉格納容器代替スプレイ椧却系等 | 設備名称の相違 |
|  |  | による原子炉格納容器内へのスプレイを停止する運用とする。原子 | 記載表現の相違 |
|  |  | 炉格納容器フィルタバント系の使用後に再度，原子炉格納容器内に |  |
|  |  | スプレイをする場合においても，原子炉格納容器内圧力が規定の圧 |  |
|  |  | 力まで減圧した場合には，原子炉格納容器内へのスプレイを停止す |  |
|  |  | る運用とする。 |  |
|  |  | 原子炉格納容器フィルタベント系使用時の排出経路に設置され | 設備名称の相違 |
|  |  | る隔離弁は，遠隔手動弁操作設備（個数4）によって人力により容 | 設備名称の相違 |
|  |  | 易かつ確実に操作が可能な設計とする。 |  |
|  |  | 排出経路に設置される隔離弃の電動弁については，常設代替交流 | 設計の相違 |
|  |  | 電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備， | －電動弁に給電する電源系の相 |
|  |  | 常設代替直流電源設備又は可搬型代替直流電源設備からの給電に | 違。女川の原子炉格納容器フィ |
|  |  | より，中央制御室から操作が可能な設計とする。 | ルタベント系は直流電源并 |
|  |  |  | 系統構成する。 |

前回提出時からの変更箇所

 ：前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第7号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | 原子炉格納容器下部注水系（常設）（復水移送ポンプ）の水源であ | 蔵タンク）を使用する。 |
|  |  | る復水貯蔵タンクは，複数の代替淡水源から淡水を供給できる設計 |  |
|  |  | とし，淡水が枯渇した場合に，海を利用できる設計とする。 | 設計の相違 |
|  |  |  | －女川は既設の復水貯蔵タンク |
|  |  |  | を重大事故等対処設備として |
|  |  |  | 使用する。東海第二は，重大事 |
|  |  |  | 故等対処設備として代替淡水 |
|  |  |  | 貯槽を新設する。 |
|  |  | 原子炬格納容器下部注水系（常設）（復水移送ポンプ）は，非常用 | 設備名称の相違 |
|  |  | 交流電源設備に加えて，代替所内電気設備を経由した常設代替交流 | 記載方針の相違 |
|  |  | 電源設備又は可搬型代替交流電源設備からの給電が可能な設計と | －非常用電源設備からの給電も |
|  |  | する。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式 | 可能であるため記載している。 |
|  |  | 直流電源設備からの給電が可能な設計とする。 | 設計の相違 |
|  |  |  | －女川では原子炉格納容器下部 |
|  |  |  | 注水系（常設）（復水移送ポン |
|  |  |  | プ）の系統構成を行らにあた |
|  |  |  | り，直流電源で作動する弁も使 |
|  |  |  | 用する。 |
|  |  | 原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，代 | 設計の相違 |
|  |  | 替循環冷却ポンプにより，サプレッションチェンバのプール水を残 | －女川の原子炉格納容器下部注 |
|  |  | 留熱除去系等を経由して原子炉格納容器下部へ注水し，溶融炝心が | 水系（可搬型）は，設置作業に |
|  |  | 落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確 | 時間を要するため，原子炉格納 |
|  |  | 保するとともに，落下した溶融炬心を泠却できる設計とする。 | 容器下部への事前水張を開始 |
|  |  | 原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，非 | する時間までに注水を可能な |
|  |  | 常用交流電源設備に加えて，代替所内電気設備を経由した常設代替 | 設備として，原子炉格納容器下 |
|  |  | 交流電源設備からの給電が可能な設計とする。 | 部注水系（常設）（復水移送ポン |
|  |  |  | プ）に加えて常設設備である原 |
|  |  |  | 子炬格納容器下部注水系（常 |
|  |  |  | 設）（代替循環冷却ポンプ）を整 |
|  |  |  | 備し，多様性等を図った設計と |
|  |  |  | している。 |
|  |  | 原子炉格納容器下部注水系（可搬型）は，大容量送水ポンプ（タ | 設備名称の相違 |
|  |  | イプ I ）により，代替淡水源の水をあらかじめ敷設した補給水系配 | 設計の相違 |
|  |  | 管を経由して原子炉格納容器下部へ注水し，落下した溶融炉心を泠 | －女川は1水源，1タイプの可 |
|  |  | 却できる設計とする。 | 搬型ポンプ車による対策とし |

2021年8月19日前回提出時からの変更箇所


2021年8月19日 ：前回提出時からの変更箇所

 ：前回提出時からの変更箇所


| 女川原子力発電所第2号機 | 備考 |
| :--- | :--- |

前回提出時からの変更箇所

| 柏崎刈羽原子力発電所第 7 号機 | 東海第二発電所 | 女川原子力発電所第2号機 | 備考 |
| :---: | :---: | :---: | :---: |
|  |  | 原子炉格納容器フィルタベント系は，炉心の著しい損傷が発生し た場合において，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 10． $0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジルコニウム一水反応，水の放射線分解等により発生する原子炉格納容器内の水素及び酸素を大気に排出できる設計とする。 <br> 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガ スによる爆発を防ぐため，可搬型窒素ガス供給系により，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ ント開始後においても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ イパスラインを設け，可燃性ガスを連続して排出できる設計とする ことで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。 <br> 可搬型窒素ガス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計とする。 <br> なお，詳細は添付書類「VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書」に示す。 | 設備名称の相違設備名称の相違 <br> 設計の相違 <br> －原子炉格納容器フィルタベン ト系の設計系統流量の相違。 <br> 設備名称の相違設備名称の相違 <br> 記載方針の相違 <br> －可搬型窒素ガス供給装置の給電に関する設計方針について記載している。 |
|  |  | 3．2．7 重大事故等時における水素爆発による原子炉建屋等の損傷防止機能 <br> 炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的触媒式水素再結合装置を設ける。 | 設計の相違 <br> －女川は静的触媒式水素再結合装置において水素処理が可能 であり，非常用ガス処理系は水素処理を目的として設置した設備でないことから，重大事故等対処設備とはしていない。 | ：前回提出時からの変更箇所

前回提出時からの変更箇所
前回提出時からの変更箇所

 ：前回提出時からの変更箇所

| 女川原子力発電所第2号機 | 備考 |
| :---: | :---: |
| 4．重大事故等時における原子炉格納容器の放射性物質閉じ込め機能評価及びその他影響確認 <br> 重大事故等時の評価温度，評価圧力に対して原子炉格納容器の構造健全性及び機能維持について評価する。 |  |
| 4.1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能評価 <br> 4．1．1 評価方針 <br> 「3．2．1 重大事故等時の評価温度，評価圧力」に示す限界温度 $\left(200^{\circ} \mathrm{C}\right)$ ，限界圧力（ 2 Pd ）を用いて，その環境下での原子炉格納容器の放射性物質閉じ込め機能について評価部位ごとに評価するこ とにより，その機能が損なわれることがないことを確認する。 <br> 原子炉格納容器の放射性物質の閉じ込め機能を確認するため， $200^{\circ} \mathrm{C}$ ， 2 Pd の環境下で原子炉格納容器本体及び開口部等のリーク パスとなる可能性のある部位を抽出し，規格を用いた構造健全性評価にて原子炉格納容器の放射性物質閉じ込め機能について確認す る。 <br> さらに，福島第一原子力発電所での事故において，原子炉格納容器からの漏えい要因の一つとして指摘されている原子炉格納容器 に設置されるフランジ部等のシール部についても評価部位として抽出し，試験結果を用いた機能維持評価により原子炉格納容器の放射性物質閉じ込め機能について確認する。 | 記載表現の相違 |
| 4．1．2 評価対象部位及び評価対象部位における機能喪失要因 <br> 図 3－1～図 3－9「原子炉格納容器バウンダリ及び隔離弁 全体概要図」に示す原子炉格納容器バウンダリを構成する機器から，以下 のとおり評価対象部位を抽出し，評価部位ごとに放射性物質の閉じ込め機能喪失の要因を抽出する。 <br> 評価対象部位として $200^{\circ} \mathrm{C}$ ， 2 Pd の環境下で原子炉格納容器の放射性物質の閉じ込め機能が損なわれることがないよう原子炉格納容器本体について強度評価する。また，原子炉格納容器の開口部及 び貫通部については，構造上原子炉格納容器の内圧等の影響により リークパスになる可能性があるため，評価対象部位として抽出す る。開口部のシール部についても，ガスケットの劣化及びシール部 の変形に伴いリークパスになる可能性があるため評価対象部位と する。 <br> 原子炉格納容器の機能喪失要因としては脆性破壊，疲労破壊，座屈及び延性破壞が考えられるため，これらの破損モードの中から原 | ＜柏崎刈羽7号機との比較＞格納容器型式の相違 |


 2021年8月19日 ：前回提出時からの変更箇所


2021年8月19日
前回提出時からの変更箇所


前回提出時からの変更箇所













 ：前回提出時からの変更箇所
$\qquad$先行審査プラントの記載との比較表（VI－1－8－1 原子炉格納施設の設計条件に関する説明書）



