2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	載との比較表(VI-1-8-1-別添1 重大事故等時における原子炉格 東海第二発電所	女川原子力発電所第2号機	備考
			資料構成の相違

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添! 重大事故等時における。 東海第二発電所	女川原子力発電所第2号機	備考
		目 次	
		1. 概要 · · · · · · 別添 1-1	記載表現の相違
		2. 原子炉格納容器本体 · · · · · · · · · · · · · · · · · · ·	<柏崎刈羽7号機との比較>
		2.2 評価結果 · · · · · · · · · · · · · · · · · · ·	格納容器型式の相違
		3. ドライウェル主フランジ · · · · · · · · 別添 1- <mark>1</mark> 3.1 評価方針 · · · · · · · · · · · · · · · 別添 1- <mark>1</mark>	
			<柏崎刈羽7号機との比較> 記載表現の相違 ・柏崎刈羽は○.○.○項まで
		3.2 評価結果····· 別添 1- <mark>1</mark>	記載。以降、目次について同じ。記載表現の相違
		3.3 評価結果まとめ・・・・・・別添 1-18	記載表現の相違
		4. 機器搬出入用ハッチ・・・・・別添 1-19 4.1 評価方針・・・・・別添 1-19	設備名称及び記載表現の相違
		4. 2 評価結果 · · · · · · · · · · · · · · · · · · 別添 1- <mark>20</mark>	記載表現の相違
		4.3 評価結果まとめ・・・・・・・・ 別添 1- <mark>24</mark>	記載表現の相違
		5. 逃がし安全弁搬出入口 ····· 別添 1-25 5.1 評価方針 ···· 別添 1-25	格納容器型式の相違による評 価設備の相違
		5.2 評価結果・・・・・・別添 1- <mark>26</mark> 5.3 評価結果まとめ・・・・・・別添 1- <mark>30</mark>	記載表現の相違

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別称1 重大事故等時における原 東海第二発電所	女川原子力発電所第2号機	備考
		6. 制御棒駆動機構搬出入口 · · · · · · · · · · 別添 1- <mark>31</mark>	格納容器型式の相違による評
		6.1 評価方針····· 別添 1- <mark>31</mark>	価設備の相違
		6.2 評価結果 · · · · · · · · · · · · · · · · 別添 1- <mark>32</mark>	
		6.3 評価結果まとめ ····· 別添 1- <mark>36</mark>	
		7 元月 田 元 マロ	到 学 末 珥 の 扣 学
		7. 所員用エアロック ····· 別添 1-37 7.1 評価方針 ···· 別添 1-37	記載表現の相違
		1.1 gT 現代 1.1 gT 1.1 gT	
		7.2 評価結果····· 別添 1- <mark>40</mark>	記載表現の相違
		7.3 評価結果まとめ ····· 別添 1- <mark>44</mark>	記載表現の相違
		_	
		8. 配管貫通部 · · · · · · · · · · · · · · · · · · ·	記載表現の相違
		8.1 概要 · · · · · · · · · · · · · · · · · ·	34+H0H4
		8.2 配管貫通部(貫通配管) · · · · · · · · · · · · 別添 1- <mark>46</mark> 	記載表現の相違
		 8.3 配管貫通部(スリーブ) · · · · · · · · · 別添 1- <mark>49</mark>	
		8.4 配管貫通部(端板) · · · · · · · · · · · · 別添 1- <mark>52</mark>	設備の相違
		8.5 配管貫通部(フランジ部) ····· 別添 1- <mark>54</mark>	設備名称の相違
			- m Alle - 1 - 1 - 1 - 1
		8.6 配管貫通部(閉止板) · · · · · · · · · · · 別添 1- <mark>59</mark>	設備の相違
			設備名称の相違 ・女川は「短管」としている。
			☆/川は・/四日] C C (V ' 公。
		8.8 配管貫通部(短管) 別添 1-62	
		8.9 評価結果まとめ・・・・・・・ 別添 1- <mark>64</mark>	記載内容の充実
		9. 電気配線貫通部 · · · · · · · · · · · · · · 別添 1- <mark>66</mark>	記載表現の相違
		9.1 概要 · · · · · · · · · · · · · · · · · ·	
		9.2 電気配線貫通部(アダプタ) · · · · · · · 別添 1- <mark>68</mark>	

柏崎刈羽原子力発電所第7号機	東海第二発電所	3原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		9.3 電気配線貫通部(ヘッダ) ・・・・・・ 別添 1-70	
		9.4 電気配線貫通部(モジュール) ・・・・・・ 別添 1-72	
		10. 原子炉格納容器隔離弁 · · · · · · · · · · 別添 1-77	
		10.1 概要	
		10.2 原子炉格納容器隔離弁 (原子炉格納容器調気系バタフライ弁)・・・・ 別添 1-78	設備名称の相違
		10.3 原子炉格納容器隔離弁 (移動式炉心内計装系電磁弁) ···· 別添 1- <mark>80</mark>	格納容器型式の相違による評 価設備の相違
		10.4 原子炉格納容器隔離弁	画 欧 州 V 7 日 连
		(移動式炉心内計装系ボール弁) ・・・・・・ 別添 1-82	設備名称の相違
		添付1 重大事故等時条件におけるガスケット健全性	記載表現の相違
		について・・・・・・ 別添 1- <mark>85</mark>	・東海第二では本文で記載し
			ているが,女川では添付にて 記載している。
			<柏崎刈羽7号機との比較>
			強度計算において代表原子炉
			格納容器貫通配管の選定を記載しているが, 女川では当該
			計算書に代表とする貫通部を
			定めていることから, 本説明
			書では記載してない。
		添付 2 原子炉格納容器隔離弁の抽出について・・・・・ 別添 1-89	記載表現の相違
			・東海第二では原子炉格納容器隔離弁の添付として記載し
			ているが、女川では添付とし
			て記載した。

柏崎刈羽原子力発電所第7号機	東海第二発電所	する原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		別紙1 原子炉格納容器 限界温度・圧力に対する経年劣化の	
		影響について・・・・・・ 別添 1- <mark>90</mark>	記載表現の相違
		別紙 2 原子炉格納容器 限界温度・圧力負荷後の耐震性	
		の影響について・・・・・ 別添 1- <mark>91</mark>	記載表現の相違
		別紙3 原子炉格納容器貫通部の核分裂生成物沈着による	
		影響について······ 別添 1-96	記載表現の相違
		7777	The Indiana series

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		1. 概要 本資料は,添付書類「VI-1-8-1 原子炉格納施設の設計条件に関する説明書」(以下「説明書」という。)の「4.1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能評価」に示す重大事故等時の限界温度,限界圧力に対する原子炉格納容器の構造健全性及び機能維持の評価方法及び評価結果を詳細に示すものである。	
		2. 原子炉格納容器本体 2.1 評価方針 原子炉格納容器本体は、鋼製の上下部半球円筒形ドライウェル、円環形サプレッションチェンバ、これらを連結するベント管及びベント管ベローズから構成されている。	格納容器型式の相違 柏崎刈羽: RCCV 東海第二: Mark-II 女川 : Mark-I 改 (以下, ①の相違)
		原子炉格納容器本体の設計時に考慮される機能喪失要因は, 脆性 破壊, 疲労破壊, 座屈及び延性破壊が考えられる。今回の評価条件	設備の相違 ・格納容器型式の相違による 評価対象の相違(以下,②の相違)
		である 200℃, 2Pd の条件を考慮した場合, 脆性破壊が生じる温度 域でないこと及び圧縮力が原子炉格納容器本体に生じないことか ら, 脆性破壊及び座屈は評価する必要がない。	設備の相違 ・格納容器型式の相違による 評価対象及び機能喪失要因の 相違(以下,③の相違)
		したがって、原子炉格納容器本体の機能喪失要因は、高温状態で内圧を受けることによって生じる、過度な塑性変形に伴う延性破壊が想定される。また、ベント管ベローズには、通常運転時に累積される低サイクル疲労に加え、200℃、2Pdにより累積される低サイクル疲労による疲労破壊が想定される。原子炉格納容器本体の評価対象を図 2-1 にそれぞれ示す。	

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における原子 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	記載表現の相違
			・許容応力について女川は強度計
			算の基本方針に記載している。
		2.1. <mark>1</mark> 一般構造部	
		2.1. Nation) 1号 適用規格の相違
		の第22条及び第23条に記載の評価式を準用し、許容引張応2	
		転状態IVにおける一次一般膜応力の許容値である 200℃の 2	
		を与えることで許容圧力を算出し、限界圧力 2Pd を上回ること	
		認する。また、ダウンカマ及びベントヘッダについて、原子性	
		容器本体の放射性物質の閉じ込め機能を有するものではない。	
		界圧力 2Pd が負荷される設備であることから、念のため 200%	
		る許容圧力を算出し、限界圧力 2Pd を上回ることを確認する。	
			y / Clara / ルー型 d ル - 外間 C

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		応力評価は、添付書類「VI-3-3-6-1-1 原子炉格納容器本体の強度	れる設備であることから、念
		計算書」及び「VI-3-3-6-2 圧力低減設備その他の安全設備の強度	のため評価を実施している。
		計算書」に記載する。	設計方針の相違
			・女川は、SA 時の S/C 水頭圧
			を踏まえた限界圧力としてい
			る。
			記載表現の相違
			・女川は強度計算書に基づき
			評価している。(以下, ④の相
			違)
			設備の相違
			・②の相違
		2.1.2 構造不連続部	
		原子炉格納容器本体の構造不連続部の強度評価方法は、添付書類	
		「VI-3-3-6-1-1 原子炉格納容器本体の強度計算書 <mark>」に</mark> 記載する。	・ ④の相違
			-n Mi - 1-34
		また、原子炉格納容器はドライウェル基部がコンクリートに拘束	
		されているため、温度上昇時にはドライウェル基部に熱応力(二次	
		応力) が発生する。二次応力は、応力増加に伴い局部的な塑性流れ	設備名称の相違
		が生じ応力分布が均等化され破損を引き起こすとは考えられない	
		が、念のため一次+二次応力を評価する。	
		2.1.3 ベント管ベローズ	乳件の担告
			設備の相違
		ベント管ベローズの強度評価方法は、添付書類「VI-3-3-6-2 圧	・②の相違
		力低減設備その他の安全設備の強度計算書」に記載する。	
			記載表現の相違
			山戦水が火炬建

先行審査プラントの記載との比較表 (VI-1-8-1-別添 1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 設備の相違 ②の相違 ドライウェル -サプレッションチェンバ ベントヘッダ ダウンカマ 図 2-1 原子炉格納容器本体の評価対象 2.2 評価結果 2.2.1 一般構造部 原子炉格納容器本体の一般構造部について、既工認と同様の評価 手法である告示第501号に示される必要最小板厚の式を用い許 適用規格の相違 ・女川は,告示第501号を適 容圧力を求め、2Pd を上回ることを確認した。その際、部材に発生 用している。(本段落にて同 する応力強さの許容値は、今回の評価が設計基準を超えた限界温 度, 圧力の評価であることを踏まえ, 設計引張強さ (Su値) に対 する割下げ率をPm(一次一般膜応力強さ)には 1.5 として評価し た。Su値を算出する際の温度は、限界温度として設定した 200℃を 用いる。また、ダウンカマ及びベントヘッダについて、既工認と同 評価方針の相違 様の評価手法である告示第501号に示される必要最小板厚の式 ・女川は、ダウンカマ及びべい を用い許容圧力を求め,2Pd を上回ることを確認した。評価結果の トヘッダについて, PCV バウン 詳細を添付 2-1 に示す。 ダリではないが 2Pd が負荷さ れる設備であることから、念 のため評価を実施している。 また, 応力評価結果は, 添付書類「VI-3-3-6-1-1 原子炉格納容 器本体の強度計算書 | 及び「VI-3-3-6-2 圧力低減設備その他の安 設備の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		全設備の強度計算書」に記載する。	・②の相違 記載表現の相違
		2.2.2 構造不連続部 原子炉格納容器本体の構造不連続部の強度評価結果は,添付「VI-3-3-6-1-1 原子炉格納容器本体の強度計算書 <mark>」に</mark> 記載すまた,ドライウェル基部の熱応力評価結果を,添付 2- <mark>2</mark> に示	る。
		2.2.3 ベント管ベローズ ベント管ベローズの強度評価結果は、添付書類「VI-3-3-6-2 力低減設備その他の安全設備の強度計算書」に記載する。	圧 設備の相違 ・②の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	載との比較表(VI-1-8-1-別添1 重大事故等時における原 東海第二発電所		適用規格の相違
		②ドライウェル上部円筒部 円筒刷: SGV49 注容圧力算定式: 告示第5 O 1 号第 22 条第 3 項第 2 号イを期用 P=2S n 1 / (D ₁ +1,2 t) S	
		選下ライウェル球形部 球形刷: SGV49 連存圧力算定式: 告示第5 O 1 号第 22 条第 3 項第 2 号赤を専用 P=48 ヵ t	

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		# ドライウェル東形部 振形側: SPV90 許容氏力算定式: 告示第5 0 1 号第 22 条第 3 項第 2 号ホを単用 P = 4 S カ t / (D, + 0, 4 t) S	設備の相違 ・②の相違 <柏崎刈羽7号機との比較> 評価方針の相違 ・柏崎刈羽は,基本板厚計算書 にて評価を実施している。
		円筒啊: SPU50 許容圧力算定式: 告示第5 0 1 号第 22 条第 3 項第 2 号 7 を専用 P=2S ヵ 1 / (D, +1, 2 t) S	
		のドライウェル 下鏡 遠観: SPV30 許容圧力 原定式: 告示第5 0 1 号第 23 条第 2 項第 3 号を即用 P=2S η 1 / (R+0,21) S	
		 ①サブレッションチェンバ円筒部 門筒刷: SGV9 許容日力策定式: 告示第501号第 22 条第3項第2号イを単川 P=2S ヵ 1 / (D, +1,2 1) S (200 Cにはける23S, 値を使用) 1 板壁 D, 胴の内器 P 200 Cにおける許容圧力 L 133 MPa > 0,854 MPa (2Pd) 	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		S/ベント管円筒加入	設備の相違 ・②の相違 <柏崎刈羽7号機との比較> 評価方針の相違 ・柏崎刈羽は,基本板厚計算書 にて評価を実施している。
		9ペント発用筒部 B 円筒刷: SGV19 連存圧力算法大: 告示第5 O 1 号第22 条第3 項第2 号イを専用 P=2S n t / (D, +1, 2 t) S 資資資理に力 (200 Cにおける2/3 S。値を使用) n 報手効率 1,90 t 規則 (mm) D 報の内径 (mm) P 200 Cにおける資産圧力 (Wa) 2,446 2,116 Wa > 0,854 Wb (2Pd)	
		1 1 1 1 1 1 1 1 1 1	
		田高剛: 8G449 (中海に力算定式: 雲示第5 0 1 号第 22 条第 3 項第 2 号チを専用 (中 2 S カ t × cos θ / (D , +1, 2 t × cos θ) (

柏崎刈羽原子力発電所第7号機	!載との比較表(W−1−8−1−別添1 重大事故等時における原− 東海第二発電所	女川原子力発電所第2号機	備考
		D	設備の相違 ・②の相違 <柏崎刈羽7号機との比較> 評価方針の相違 ・柏崎刈羽は、基本板厚計算書 にて評価を実施している。
		日本シト管ベローズ円筒部一円筒刷 1 円筒網: SGV49 許容圧力算正式: 完全第301号第22条第3項第2号子を専用 P=2S n t / (D ₁ +1.2 t) 許容別項度力 (200℃における2/3S。値を使用) (Ma) 281 カ 龍手効率 1.00 1 収収 (mn) (mn) (mn) (p) 200℃における許容圧力 (Ma) 4.331	
		正ペント管ペローズ円筒部・円筒棚2 円筒脚:SSV49 非存化力量変式:音示第5 0 1 号第 22 条第 3 項第 2 号子を準用 P = 2 S n t ≠ (D ₁ + 1.2 t) S	
			評価方針の相違 ・女川は、ダウンカマ及びベントヘッダについて、PCV バウン ダリではないが 2Pd が負荷される設備であることから、念のため評価を実施している。

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における原子 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	記載表現の相違 ・④の相違
		添付 2- <mark>2</mark>	<柏崎刈羽7号機との比較> 格納容器型式の相違 ・①の相違
		ドライウェル基部の評価	設備名称の相違
		1. 概要 原子炉格納容器本体については、200℃、2Pd において一次応力が発生する。また、ドライウェル基部については、熱膨張の拘束による熱応力が発生する。ここでは、既工事計画書(工事計画認可申請書(東北電原第53号平成元年12月4日付け、一部補正東北電原第68号平成2年3月23日付け)の添付書類「IV-3-1-1-4 ドライウ	設備名称の相違記載表現の相違
		ェルの強度計算書」の応力値を用いて、ドライウェル基部について一次応力+二次応力(P_L+P_b+Q)を評価する。なお、原子炉格納容器の限界圧力、限界温度の確認においては、繰り返し荷重を考慮する必要はないと考えられるが、ドライウェル基部については、念のため、 200 °C、 $2Pd$ における発生応力を算出し、許容応力を下回ることを確認する。	設備名称の相違
		2. 評価方針 発生応力は、熱により発生する二次応力に分類されることから、 告示第501号に示される一次+二次応力の評価方法及び評価基準値に従う。 許容値は、告示第501号において示される原子炉格納容器(第 2種容器)の運転状態Ⅰ、Ⅱに対する許容値と同じ3S(S値:200℃における値)とする。	・女川は,告示第501号を適

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について)
-		【当該記載項目なし】 評価結果の相違
		・東海第二は,発生応力が
		値を超えることから,疲労
		についても記載している。
		3. 評価条件
		(1) 圧力及び温度
		評価圧力: 0.854MPa (2Pd) 設計条件の相違
		評価温度:200℃
		(2) 材料及び許容応力
		材料及び許容応力を表 2-2(1)に示す。
		表 2-2(1) 材料の許容応力 材料の相違に伴う許容応
		部位 材料 一次十二次吃力(IPPa) 相違
		P _L + P _b + Q 原子炉格納容器 SPV50 500 (=3 S)
		20.00
		4. 応力計算
		(1) 応力評価点
		応力評価点を表 2- <mark>2</mark> (2)及び図 2- <mark>2</mark> (1)に示す。応力評価点は,既
		工事計画書の強度計算書において、一次局部膜応力+一次曲げ応力 記載表現の相違
		+二次応力が最大の値を示す部位を応力評価点とする。
		表 2- <mark>2</mark> (2) 応力評価点 設備構造の相違による応
		応力評価点番号 評価項目 応力評価点 価点の相違 ② 借名 秋 の 相違 ② は
		大师看到**外间建
		P11 一次曲げ応力 ドライウェル基部
		二次応力

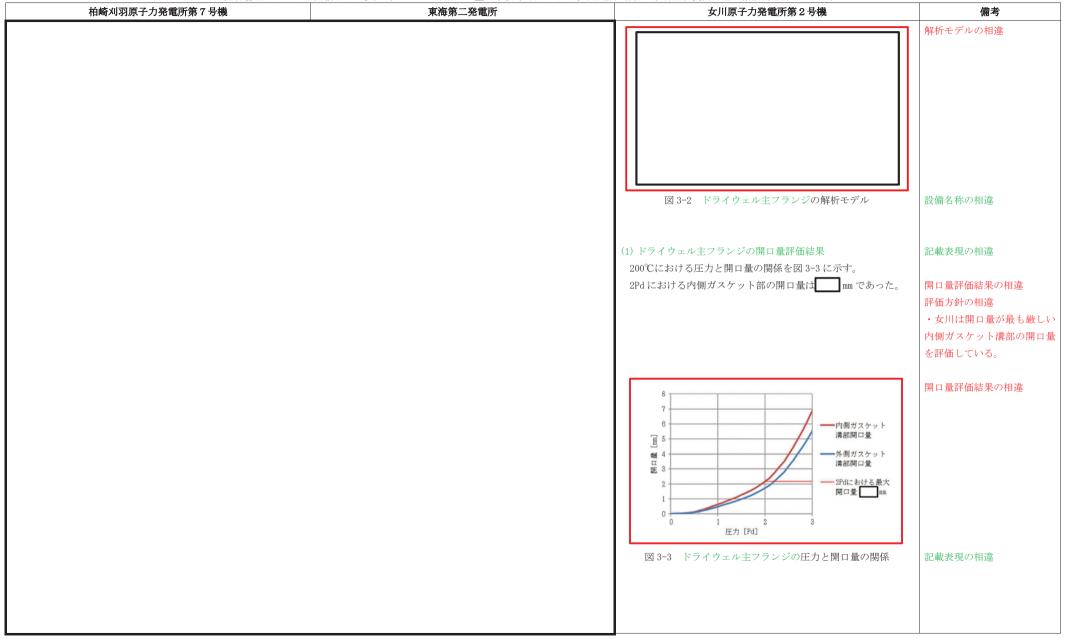
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機 備考	
		原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機 設備構造の相違に。 価点の相違 図 2-2(1) 応力評価点	上る応力書
		(2) 応力計算 ドライウェル基部に作用する圧力, 熱荷重及び死荷重による応力 は、既工事計画書で計算した応力を用い、評価荷重比の割り増しを 考慮して算出する。 5. 応力評価 ドライウェル基部の各荷重による応力を表 2-2(3)に示す。また、 応力の組合せ結果を表 2-2(4)に示す。 評価結果の相違 ・東海第二は、発生に値を超えることから 価についても記載し	ら,疲労

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 2- <mark>2</mark> (3) 各荷重による応力	評価結果の相違
		一次十二次応力(Π Pa) 荷重	
		表 2-2(4) 一次十二次応力の評価結果 応力評価点 番号 荷重の組合せ 応力分布 発生応力(MPa) 許容応力(MPa) P11 死荷重+内圧+熱 一次十二次応力 500	
			評価結果の相違 ・東海第二は、発生応力が許容値を超えることから、疲労評価結果を記載している。

柏崎刈羽原子力発電所第7号機	東海第二発電所	で る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		3. ドライウェル主フランジ	設備名称の相違
		3.1 評価方針	
		ドライウェル主フランジは、原子炉格納容器の上蓋フランジであ	設備名称の相違、設備構造の
		り、締付ボルトで固定される構造である。また、フランジ間のシー	相違
		ルにはガスケットを使用している。フランジにはシール溝が二重に	
		配置されており、原子炉格納容器内側・外側のそれぞれのシール溝	記載表現の相違
		にガスケットを取り付ける二重シール構造になっている。	
		ドライウェル主フランジの設計時に考慮される機能喪失要因は、	記載表現の相違
		脆性破壊,疲労破壊, <mark>座屈</mark> 及び延性破壊が考えられる。今回の評価	設備の相違
		条件である 200℃, 2Pd の条件を考慮した場合, 脆性破壊が生じる	・③の相違
		温度域でないこと、繰り返し荷重が作用しないこと及び圧縮力が生	設備の相違
		じないことから、脆性破壊、疲労破壊及び座屈は評価する必要がな	・ ③の相違
		V'o	記載表現の相違
			SO, Mile to St. or Leaville
		したがって、ドライウェル主フランジの機能喪失要因は、原子炉	
		格納容器内圧による過度な塑性変形に伴う延性破壊、また、フランジャの変形という。	
		ジ部の変形及びシール材の高温劣化によるシール機能の低下が考	
		えられる。	<柏崎刈羽7号機との比較>
			記載表現の相違
		このため、200℃、2Pd での健全性確認には以下の評価が必要であ	
		る。	
		・ドライウェル主フランジ部の耐圧	記載表現の相違
		・ドライウェル主フランジ固定部の強度	記載表現の相違
		・ドライウェル主フランジのシール性能	記載表現の相違
		ドライウェル主フランジの評価部位の概形を図 3-1 に示す。	記載表現の相違
		「フィッキルエノフィッか計画的型の機力を図 5-1 にかり。	山梨水グルッパロ建

: 前回提出時からの変更箇所


柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添 1 重大事故等時における原 東海第二発電所	女川原子力発電所第2号機	備考
			記載表現の相違
		ドライウェル主フランジ ガスケット A 翻鞋棚	設備構造の相違
		図 3-1 評価部位概形図(ドライウェル主フランジ)	記載表現の相違
		3.1.1 ドライウェル主フランジ部の耐圧 ドライウェル主フランジの強度評価方法は,添付書類「VI-3-3 6-1-1 原子炉格納容器本体の強度計算書」に記載する。	設備名称の相違 - 記載表現の相違 ・④の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	載との比較表(VI-1-8-1-別添 1 重大事故等時における原子 東海第二発電所	女川原子力発電所第2号機	備考
			記載表現の相違
			④の相違
		3.1.2 ドライウェル主フランジ固定部の強度	記載表現の相違
		ドライウェル主フランジ固定部の強度評価方法は、添付書類「VI	記載表現の相違
		-3-3-6-1-1 原子炉格納容器本体の強度計算書」に記載する。	④の相違
			34470104
		3.1.3 ドライウェル主フランジのシール性能 原子炉格納容器の限界温度,限界圧力におけるフランジ開口量を	記載表現の相違
		評価するために、三次元有限要素法による解析を用いてドライウェ	
		ル主フランジ部における開口量を評価する。	104X3X3047 103E
		The state of the s	
		評価した開口量は、添付1に示す重大事故等時条件におけるガス	記載表現の相違
		ケットの健全性確認結果を基に設定した許容開口量と比較し、開口	・女川では添付にて記載して
		量が許容開口量を下回ることを確認する。	いる。

柏崎刈羽原子力発電所第7号機	東海第二発電所	する原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		3.2 評価結果	記載表現の相違
		3.2.1 ドライウェル主フランジ部の耐圧	記載表現の相違
		ドライウェル主フランジの強度評価結果は , 添付書類「VI-3-3-	記載表現の相違
		6-1-1 原子炉格納容器本体の強度計算書」に記載する。	
		3.2.2 ドライウェル主フランジ固定部の強度	記載表現の相違
		ドライウェル主フランジ固定部の強度評価結果は,添付書類「VI	記載表現の相違
		-3-3-6-1-1 原子炉格納容器本体の強度計算書」に記載する。	
		3.2.3 ドライウェル主フランジのシール性能	記載表現の相違
		ドライウェル主フランジについて、限界温度、限界圧力における	
		フランジ面の開口量が許容開口量を下回ることを確認するため、三	
		次元有限要素法モデルを用いて弾塑性解析を実施した。	記載表現の相違
		図 3-2 に解析モデルを示す。本解析では、フランジ部だけでなく	解析モデル条件の相違
		鋼材が圧力を負担する原子炉格納容器上鏡及び原子炉格納容器胴	
		部(円筒胴及び球形胴)を含めてドライウェル主フランジ全体をモ	
		デル化する。	
		また、フランジシール部を構成する各種部材(フランジ、ボルト、	
		ナット等)の荷重伝達経路を詳細にモデル化するため、ソリッド要	
		素を用いて可能な限り詳細な形状をモデル化する。モデルは対称性	take - ~ , A // a kn/t
		及びボルト間の変形を考慮して周方向 7.5° 分をモデル化してい	解析セアル条件の相違
		る。	214年1月の担告
		荷重条件として、0から内圧を加えて開口量を解析する。解析コ	
		ードは「ANSYS」を使用する。評価に用いる解析コードの検証	
		及び妥当性確認等の概要については、添付書類「VI-5 計算機プロ	·
		グラム(解析コード)の概要」に示す。	記載表現の相違

: 前回提出時からの変更箇所

2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における原子炉 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	記載表現の相違
			・女川では添付にて記載して
			いる。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	の記載との比較表(VI-1-8-1-別添1 重大事故等時における原士 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	記載表現の相違
			・女川では添付にて記載して
			いる。
			女川は添付1に記載の「実機
			フランジモデル性能確認試 験」の結果から、改良 EPDM 製
			映」の結果がら、以及 EPDM 製シール材の実機への適用性を
			確認していることから記載し
			ていない。
<u> </u>			

柏崎刈羽原子力発電所第7号機	の記載との比較衣(VI-1-8-1-別添1 里人争放寺時における原子が 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	女川は添付 1 に記載の「実機
			フランジモデル性能確認試
			験」の結果から、改良 EPDM 製
			シール材の実機への適用性を
			確認していることから記載し
			ていない。
			記載表現の相違
			・女川では添付にて記載して
			いる。

2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	記載表現の相違
			・女川では添付にて記載して
			いる。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	記載表現の相違・女川では添付にて記載している。
		(2) ドライウェル主フランジの許容開口量	設備名称の相違、記載表現の
		ドライウェル主フランジに許容される開口量について以 うに設定する。 図 3-4 に開口量とシール材のシール性との関係図を示す。	記載表現の相違
		ウェル主フランジは、上鏡部のフランジと原子炉格納容器本フランジ間にシール溝が二重に配置されており、それぞれガ	体部の 設備構造の相違 スケッ ・女川は甲丸型構造としてい
		トを挟み込み、締付ボルトで固定レシールする構造であり、 ジの定格締付量(締付量)は mm である。圧力の増加に ランジ部は開口するが、添付1に示す改良 EPDM 製シール材	伴いフ 設備構造の相違による締付量 の重大 の相違。以下,本項で同じ。
		事故等時環境における圧縮永久ひずみ率	示す試 <柏崎刈羽7号機との比較>
		験から 200℃, 2Pd における締付量 0mm においてシール機能 されていることを確認したことから,許容開口量は,最大復 同じ mm に設定する	

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
<u> </u>			設備構造の相違
		初期状態 200°C, 2Pd 状態	東海第二:タング型
		200 C, 41 V-9.288	→ 女川 : 甲丸型
			1
		†	
		ドライウェル主フランジのガスケットは、定格締付量 (縮付量) mm	k-
		である。 いずみずが、のであれば、締	1
		m回復する。 機能は維持できる。	
		図 3-4 ひずみ率と許容開口量関係図	
		囚 3 ± U y が平と iT 仕用 I 里 閃	
			記載表現の相違
		(3) 比較結果	
		200℃, 2Pd (0.854MPa) における開口量は,内側ガスケッ	
		mm であり、許容開口量 mm を下回り、シール機能だ	
		できることを確認した。	・女川は開口量が最も崩
			内側ガスケット溝部の間
			を評価している。
			記載表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		3.3 評価結果まとめ	記載表現の相違
		ドライウェル主フランジの健全性評価結果を表 3-1 に示す。	設備名称の相違
		表 3-1 ドライウェル主フランジの健全性評価結果	設備名称の相違
		No. 評価項目 評価方法 評価 税果	記載表現の相違
		以上により、ドライウェル主フランジについては、限界温度、原界圧力環境下でも、放射性物質の閉じ込め機能を維持可能である。	
		【当該記載項目なし】	設備の相違 ・女川は、当初設計時からバックアップシール材は考慮不要であるとし使用していない。

柏崎刈羽原子力発電所第7号機	東海第二発電所	・る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		4. 機器搬出入用ハッチ	設備名称の相違
			<柏崎刈羽7号機との比較>
			記載表現の相違
			・柏崎刈羽は複数のハッチ類
			を本章にて記載している。
		4.1 評価方針	
		機器搬出入用ハッチは,原子炉格納容器内側に突き出した円筒胴	設備の相違
		及び鏡板によって原子炉格納容器バウンダリを構成しており,原子	①の相違
		炉格納容器の内圧が円筒胴及び鏡板に対して <mark>外圧</mark> として作用する。	設備の相違
		また、蓋フランジ部はヒンジボルトにより固定され、フランジ間の	・③の相違
		シールにはガスケットを使用している。フランジにはシール溝が二	記載表現の相違
		重に配置されており、原子炉格納容器内側・外側のそれぞれのシー	
		ル溝にガスケットを取り付ける二重シール構造になっている。	
		機器搬出入用ハッチの設計時に考慮される機能喪失要因は、脆性	設備名称の相違
		破壊,疲労破壊, <mark>座屈</mark> 及び延性破壊が考えられる。今回の評価条件	設備の相違
		である 200℃, 2Pd の条件を考慮した場合, 脆性破壊が生じる温度	・③の相違
		域でないこと、繰り返し荷重が作用しないことから、脆性破壊及び	
		疲労破壊は考慮する必要がない。	記載表現の相違
		また、シール部は、原子炉格納容器内の圧力により鏡板を機器搬出入用ハッチ円筒胴に押し付ける構造であり、内圧により鏡板を開く荷重が作用しないことから、ヒンジボルトの延性破壊は、評価対象外とする。	・③の相違
		したがって、機器搬出入用ハッチの機能喪失要因は、原子炉格納容器内圧による過度な塑性変形に伴う延性破壊、 <mark>鏡板の座屈</mark> 、原子炉格納容器本体の変形に伴う円筒胴の変形及びシール材の高温劣化によるシール機能の低下が考えられる。	設備の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		このため、200℃、2Pd での健全性確認には以下の評価が必要である。	
		・機器搬出入用ハッチ本体の耐圧	記載表現の相違 <mark>設備の相違</mark>
			・③の相違
		・機器搬出入用ハッチフランジのシール性能	記載表現の相違
		機器搬出入用ハッチの評価部位の概形を図 4-1 に示す。	設備名称の相違, 記載表現の 相違
			記載表現の相違
		鏡板 円筒脚	設備の相違・①の相違
		カスケット	・山の相違 <柏崎刈羽7号機との比較> 記載表現の相違 ・柏崎刈羽は複数のハッチ類 を本章にて記載している。
		図 4-1 評価部位概形図(機器搬出入用ハッチ)	記載表現の相違

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
化啊/小初原丁//完 电// 序 传	果帶為一名毛//	【当該記載項目なし】	機構の相違 ・①の相違 <柏崎刈羽 7 号機との比較> 記載表現の相違 ・柏崎刈羽は複数のハッチ類 を本章にて記載している。
		4.1.1 機器搬出入用ハッチ本体の耐圧 (1) 応力評価 機器搬出入用ハッチ本体の <mark>構造健全性評価</mark> は,添付書類「 3-6-1-2 機器搬出入口の強度計算書」に記載する。	記載表現の相違 71-3- 記載表現の相違 ・④の相違 <柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽は複数のハッチ類 を本章にて記載している。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	東海第二発電所 東海第二発電所	女川原子力発電所第2号機	記載表現の相違・許容応力について女川は強度計算の基本方針に記載している。
		機器搬出入用ハッチ本体の構造健全性評価として、告示第501 号の第13条第2項及び第22条第3項第2号に記載の評価式を準用 し、運転状態IVにおいて外面に受ける許容圧力を算出し、限界圧力 2Pdを上回ることを確認する。	・女川は、告示第501号を適用している。 設備の相違 ・③の相違 ・③の相違 東海第二:外開き形式 女川 : 内開き形式 を川 : 内開き形式 記載表現の相違 ・許容応力について女川は強度計算の基本方針に記載している。 <柏崎刈羽7号機との比較> 評価方針の相違 ・柏崎刈羽は、基本板厚計算書
			にて評価を実施している。

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
			記載表現の相違
			・許容応力について女川は強度計
			算の基本方針に記載している。
		【当該記載項目なし】	設備の相違
		I HINHUM AR WOL	・③の相違
			0 1 11.2
		4.1.2 機器搬出入用ハッチフランジのシール性能	記載表現の相違
		原子炉格納容器の限界温度,限界圧力におけるフランジ <mark>変形量</mark> を	
		評価するために、三次元有限要素法による解析を用いて機器搬出入	
		用ハッチフランジ部における <mark>変形量を評価する。</mark>	・開口部が原子炉格納容器に
			近いことから,原子炉格納容器
			本体の変形に伴う円筒胴の変
		では、本本以目)と	形についても評価をしている。
		評価した変形量は、添付1に示す重大事故等時条件におけるガス	
		ケットの健全性確認結果を基に設定した許容変形量と比較し,変形量が許容変形量を下回ることを確認する。	・女川では添付にて記載している。
		里が計分変形里を下凹ることを帷祕する。	いる。

柏崎刈羽原子力発電所第7号機	戦との比較衣(VI-1-8-1-別称1 単入事政寺時にわりる原士》 東海第二発電所	女川原子力発電所第2号機	備考
		4.2 評価結果	記載表現の相違
		4.2.1 機器搬出入用ハッチ本体の耐圧	記載表現の相違
		(1) 応力評価	記載表現の相違
		機器搬出入用ハッチ本体の <mark>応力</mark> 評価結果は、添付書類「VI-3-3-	
		6-1-2 機器搬出入口の強度計算書」に記載する。	<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は複数のハッチ類
			を本章にて記載している。
		(2) 許容圧力評価	<柏崎刈羽7号機との比較>
		機器搬出入用ハッチ本体の構造健全性について、既工認と同様の	
		評価手法である告示第501号に示される必要最小板厚の式を用	
		い許容圧力を求め、2Pdを上回ることを確認した。	にて評価を実施している。
			適用規格の相違
			・女川は、告示第501号を適
			用している。
		評価結果の詳細を表 4-1 に示す。	
		表 4-1 - 機器無出入用ハッチの許容圧力評価結果	設備の相違
		①機器艇出入用ハッチ円筒部	・③の相違
		円筒欄: SGV49	東海第二:外開き形式
		許容圧力環定式: 告示第5 0 1 号第 13 条第 2 項第 1 号へ及び第 22 条第 3 項第 2 号へを準用 P=1,5× [4B t / (3D。)]	女川 : 内開き形式
		В	
		1. HgRX (mm). D., B4029-18. (mm).	
		P 200 C1に233プス計算圧力 (MPa) 4,523 1,523 MPa > 0,854 MPa (2Pd) 4,523	
		n, ozo ana 😕 U, oot ana Aztuz	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		②機器順出入用ハッチ競技 (東形剛: SOV19 許容圧力算定式: 告示第5 0 1 号第 13 条第2 項第2 号へ及び第 22 条第 3 項第2 号トを専用 P=1.5× (B t / R _o) B 1	設備の相違 ・③の相違 東海第二:外開き形式 女川 : 内開き形式
		【当該記載項目なし】	設備の相違 ・③の相違 柏崎刈羽:外開き形式 東海第二:外開き形式 女川 : 内開き形式
		4.2.2 機器搬出入用ハッチフランジのシール性能機器搬出入用ハッチフランジについて、限界温度、限界圧力におけるフランジ面の変形量が許容変形量を下回ることを確認するため、三次元有限要素法モデルを用いて弾塑性解析を実施した。図 4-2 に解析モデル、図 4-3 に変形の概念図をそれぞれ示す。本解析では、原子炉格納容器の重大事故等時の過温、過圧時におけるフランジ変形量を評価するため、機器搬出入用ハッチ及びハッチ近傍の原子炉格納容器をモデル化する。また、フランジシール部を構成する各種部材(蓋フランジ、ヒンジボルト等)の荷重伝達経路を詳細にモデル化するため、ソリッド要素を用いて可能な限り詳細な形状をモデル化する。モデルは対称性を考慮して機器搬出入用ハッチ中心を境にドライウェル全体 1/4 ピッチ分をモデル化している。荷重条件として、0から内圧を加えて変形量を解析する。解析コードは「ABAQUS」を使用する。評価に用いる解析コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。	設備の相違 ・開口部が原子炉格納容器に近いことから、原子炉格納容器本体の変形に伴う円筒胴の変形についても評価をしている。 記載表現の相違 ・解析モデルの条件を記載し

先行審査プラントの記載との比較表 (VI-1-8-1-別添1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 解析モデルの相違 <柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽は複数のハッチ類 を本章にて記載している。 図 4-2 機器搬出入用ハッチ開口部評価解析モデル 設備名称の相違 設備の相違 円開研究形的 ・開口部が原子炉格納容器に 近いことから,原子炉格納容器 本体の変形に伴う円筒胴の変 形についても評価をしている。 執方向閉口量 極方向変位整 図 4-3 径方向変位差と軸方向開口量の概念図

先行審査プラントの記載との比較表 (VI-1-8-1-別添 1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 (1) 機器搬出入用ハッチフランジの変形量評価結果 設備の相違 200℃における径方向変形量(変位差)を図 4-4 に、軸方向変形 ・ 開口部が原子炉格納容器に 量(開口量)を図4-5にそれぞれ示す。 近いことから,原子炉格納容器 2Pdにおける変形量は、径方向が最大 mm (短径方向変位差)、 本体の変形に伴う円筒胴の変 軸方向が最大 mm (短径部開口量) であった。 形についても評価をしている。 開口量評価結果の相違 <柏崎刈羽7号機との比較> 記載方針の相違 短径方向变位差 ・柏崎刈羽は複数のハッチ類 - 2Pdにおける最大 開口量 nn を本項にて記載している。 2.0 圧力 [Pd] 図 4-4 機器搬出入用ハッチの各ガスケット部の圧力と径方向変形量(変位差)の関係 -短径部開口量 長径部開口量 -2Pdにおける最大 開口量 mm 1.0 圧力 [Pd] 図 4-5 機器機出入用ハッチの各ガスケット部の圧力と軸方向変形量 (開口量) の関係

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別旅 1 重大事故等時における原子: 東 海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	開口量評価結果の相違 <柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽は複数のハッチ類 を本項にて記載している。
		【当該記載項目なし】	<柏崎刈羽7号機との比較> 記載方針の相違 ・柏崎刈羽は複数のハッチ類 を本項にて記載している。
		【当該記載項目なし】	記載表現の相違・女川では添付にて記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
177-17-17-17-17-17-17-17-17-17-17-17-17-			記載表現の相違・女川では添付にて記載している。
		(2) 機器搬出入用ハッチフランジの許容変形量 円筒胴が変形することによる径方向許容変位差は mm となる。また,添付1に示すように,改良 EPDM 製シール材の重大事故等時環境における圧縮永久ひずみ率は %であり,シール材の初期締付け量は mm であるため,圧縮永久ひずみ率を考慮した軸方向許容開口量は mm となる。 (3) 比較結果	近いことから,原子炉格納容器 本体の変形に伴う円筒胴の変
		200℃、2Pd (0.854MPa) における, 径方向変位差は最大で mm であり, 径方向許容変位差 mm を下回る。また, 軸方向開口量は最大で mm であり, 軸方向許容開口量 mm を下回る。よって, シール機能が維持できることを確認した。	設備の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		4.3 評価結果まとめ	記載表現の相違
		機器搬出入用ハッチの健全性評価結果を表 4- <mark>2</mark> に示す。	設備名称の相違
		表 4-2 機器搬出入用ハッチの健全性評価結果	設備名称の相違
		No. 評価項目 評価方法 評価 結果	設備の相違
		投器輸出入用ハッチ 算書」に記載	・③の相違 東海第二:外開き形式
		本体の耐圧 2音容圧力評価 200 C、20 にごおける音容圧力が2円以上であることを確認した 変形量評価 シール材の重大事故等時の環境におけ	女川 : 内開き形式
		機器搬出入用ハッチ る劣化特性を考慮しても、限界温度、限 2 フランジのシール性 界圧力におけるフランジ変形量は、許容 ○	<柏崎刈羽7号機との比較>
		能 変形量を下回ることから、シール機能が 維持されることを確認した。	評価方針の相違 ・柏崎刈羽は、基本板厚計算書
			にて評価を実施している。
		以上により、機器搬出入用ハッチについては、限界温度、限界日	設備名称の相違、記載表現の
		力環境下でも、放射性物質の閉じ込め機能を維持可能である。	相違
		【当該記載項目なし】	設備の相違
			・女川は、当初設計時からバッ
			クアップシール材は考慮不要 であるとし使用していない。

柏崎刈羽原子力発電所第7号機	東海第二発電所	を原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
THEORY STRUCKS A 24204 PENJA ST. ST. VANS	不神が一ル程が	【当該記載項目なし】	格納容器型式の相違による評価設備の相違 ・女川のサプレッションチェン出入口は、配管貫通部において記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における原子 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	格納容器型式の相違による評
			価設備の相違
			女川のサプレッションチェ
			ン出入口は、配管貫通部にお
			いて記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格網谷器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	格納容器型式の相違による評
			価設備の相違
			女川のサプレッションチェ
			ン出入口は、配管貫通部にお
			いて記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格網谷器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	格納容器型式の相違による評
			価設備の相違
			女川のサプレッションチェ
			ン出入口は、配管貫通部にお
			いて記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格網谷器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	格納容器型式の相違による評
			価設備の相違
			女川のサプレッションチェ
			ン出入口は、配管貫通部にお
			いて記載している。

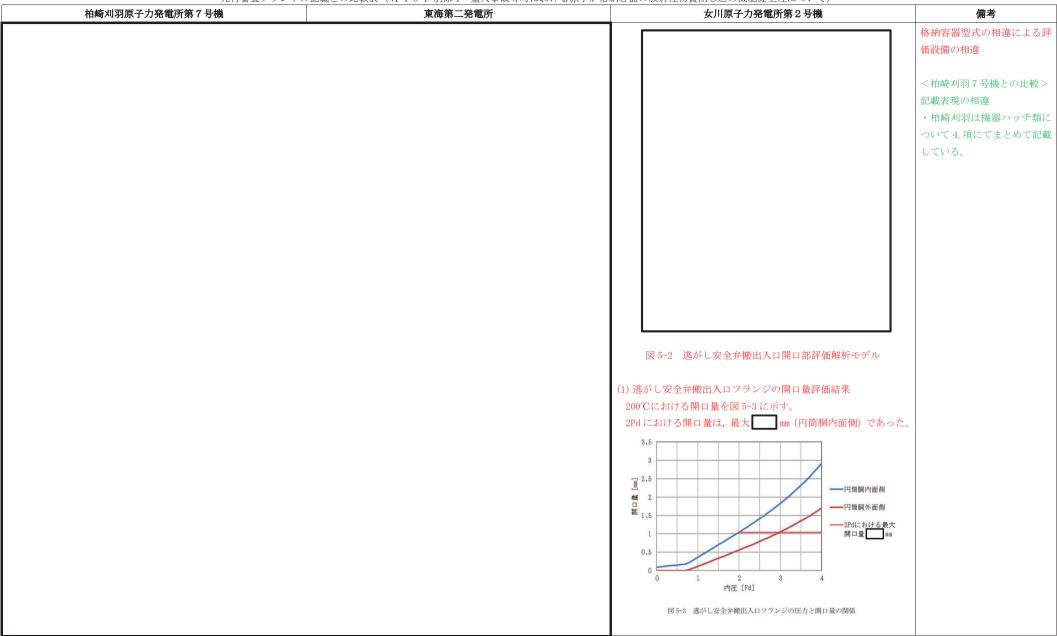
赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格網谷器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	格納容器型式の相違による評
			価設備の相違
			女川のサプレッションチェ
			ン出入口は、配管貫通部にお
			いて記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	を原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
THEORY STRUCKS A 24204 PENJA ST. ST. VANS	不神が一ル程が	【当該記載項目なし】	格納容器型式の相違による評価設備の相違 ・女川のサプレッションチェン出入口は、配管貫通部において記載している。

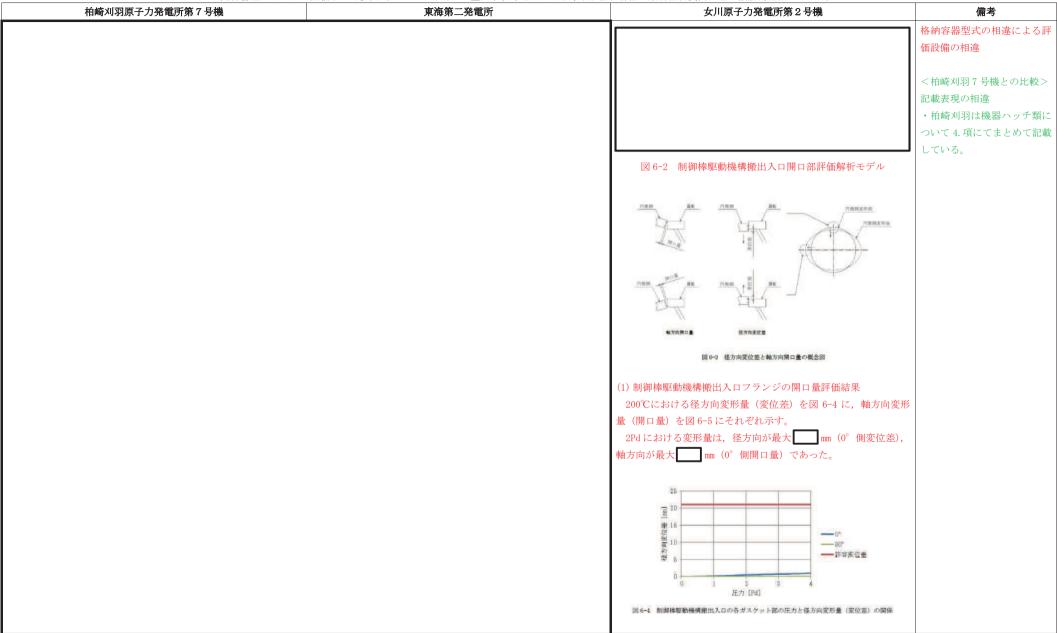

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格網谷器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	格納容器型式の相違による評
			価設備の相違
			女川のサプレッションチェ
			ン出入口は、配管貫通部にお
			いて記載している。

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		5. 逃がし安全弁搬出入口	格納容器型式の相違による評
		5.1 評価方針	価設備の相違
		逃がし安全弁搬出入口は、原子炉格納容器外側に突き出した円行	前
		胴及び鏡板によって原子炉格納容器バウンダリを構成しており、」	京 <柏崎刈羽7号機との比較>
		子炉格納容器の内圧が円筒胴及び鏡板に対して内圧として作用	記載表現の相違
		る。また、蓋フランジ部はヒンジボルトにより固定され、フランジ	・ 柏崎刈羽は機器ハッチ類に
		間のシールにはガスケットを使用している。フランジにはシール	構 ついて 4. 項にてまとめて記載
		が二重に配置されており、原子炉格納容器内側・外側のそれぞれの	している。
		シール溝にガスケットを取り付ける二重シール構造になっている	
		逃がし安全弁搬出入口の設計時に考慮される機能喪失要因は、帰	危
		性破壊、疲労破壊、座屈及び延性破壊が考えられる。今回の評価	*
		件である 200℃, 2Pd の条件を考慮した場合, 脆性破壊が生じる	
		度域でないこと、繰り返し荷重が作用しないこと及び圧縮力が生	
		ないことから、脆性破壊、疲労破壊及び座屈は考慮する必要がない	0
		したがって、逃がし安全弁搬出入口の機能喪失要因は、原子炉	各
		納容器内圧による過度な塑性変形に伴う延性破壊、フランジ部の変	变
		形及びシール材の高温劣化によるシール機能の低下が考えられる	
		このため、200℃,2Pd での健全性確認には以下の評価が必要で	5
		る。	
		・逃がし安全弁搬出入口本体の耐圧	
		・逃がし安全弁搬出入口フランジ固定部の強度	
		・逃がし安全弁搬出入口フランジのシール性能	
		逃がし安全弁搬出入口の評価部位の概形を図 5-1 に示す。	
		カスケット 円換線 ガスケット 円換線 エアランジ ガスケット 円換線 エアデルト A 総訂権 図 5-1 評価部位模形図 (迷がし安全弁検出入口)	

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事放等時における原 東海第二発電所	女川原子力発電所第2号機	備考
		5.1.1 逃がし安全弁搬出入口本体の耐圧	格納容器型式の相違による評
		(1) 応力評価	価設備の相違
		逃がし安全弁搬出入口本体の <mark>構造健全性評価</mark> は,添付書類「VI-	
		3-3-6-1-2 機器搬出入口の強度計算書」に記載する。	<柏崎刈羽7号機との比較>
			記載表現の相違
		(2) 許容圧力評価	・柏崎刈羽は機器ハッチ類に
		逃がし安全弁搬出入口本体の構造健全性評価として、告示第50	ついて 4. 項にてまとめて記載
		1号の第22条に記載の評価式を準用し、許容引張応力に運転状態	している。
		IVにおける一次一般膜応力の許容値である 200℃の 2/3 S uを与え	
		ることで許容圧力を算出し、限界圧力 2Pd を上回ることを確認す	
		<mark>3.</mark>	
		5.1.2 逃がし安全弁搬出入口フランジ固定部の強度	
		逃がし安全弁搬出入口ヒンジボルトの強度評価方法は、添付書類	
		「VI-3-3-6-1-2 機器搬出入口の強度計算書」に記載する。	
		5.1.3 逃がし安全弁搬出入口フランジのシール性能	
		原子炉格納容器の限界温度、限界圧力におけるフランジ開口量を	
		評価するために、二次元有限要素法による解析を用いて逃がし安全	
		弁搬出入口フランジ部における開口量を評価する。	
		評価した開口量は,添付1に示す重大事故等時条件におけるガス	
		ケットの健全性確認結果を基に設定した許容開口量と比較し、開口	
		量が許容開口量を下回ることを確認する。	
		5. 2 評価結果	
		5.2.1 逃がし安全弁搬出入口本体の耐圧	
		(1) 応力評価	
		逃がし安全弁搬出入口本体の <mark>応力</mark> 評価結果は,添付書類「VI-3-	
		3-6-1-2 機器搬出入口の強度計算書」に記載する。	
		(2) 許容圧力評価	
		逃がし安全弁搬出入口本体の構造健全性について、既工認と同様	
		の評価手法である告示第501号に示される必要最小板厚の式を	
		用い許容圧力を求め、2Pdを上回ることを確認した。	
		評価結果の詳細を表 5-1 に示す。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		女川原子力発電所第2号機	格納容器型式の相違による評価設備の相違 < 柏崎刈羽7号機との比較 > 記載表現の相違 ・柏崎刈羽は機器ハッチ類に ついて4.項にてまとめて記載 している。
		ードは「ABAQUS」を使用する。評価に用いる解析コードの 証及び妥当性確認等の概要については,添付書類「VI-5 計算機	
		ログラム (解析コード) の概要」に示す。	



柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	東海第二発電所		格納容器型式の相違による評価設備の相違 <柏崎刈羽7号機との比較> 記載表現の相違 ・柏崎刈羽は機器ハッチ類に ついて4.項にてまとめて記載
		1 口本体の耐圧 ②許容圧力評価 2のCC、2Pd における許容圧力が 2Pd 以上であることを確認した。 迷がし安全弁婚出入 応力評価 添付書類「VI-3-3-6-1-2 機器撥出入口の強度計算書」に記載	

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		6. 制御棒駆動機構搬出入口	格納容器型式の相違による評
		6.1 評価方針	価設備の相違
		制御棒駆動機構搬出入口は、原子炉格納容器内側に突き出した門	
		筒胴及び鏡板によって原子炉格納容器バウンダリを構成しており,	<柏崎刈羽7号機との比較>
		原子炉格納容器の内圧が円筒胴及び鏡板に対して外圧として作用	記載表現の相違
		する。また、蓋フランジ部はヒンジボルトにより固定され、フラン	・柏崎刈羽は機器ハッチ類に
		ジ間のシールにはガスケットを使用している。フランジにはシール	ついて 4. 項にてまとめて記載
		溝が二重に配置されており、原子炉格納容器内側・外側のそれぞれ	している。
		のシール溝にガスケットを取り付ける二重シール構造になってい	\
		ప .	
		制御棒駆動機構搬出入口の設計時に考慮される機能喪失要因は、	
		脆性破壊、疲労破壊、座屈及び延性破壊が考えられる。今回の評価	ī
		条件である 200℃, 2Pd の条件を考慮した場合, 脆性破壊が生じる	
		温度域でないこと、繰り返し荷重が作用しないことから、脆性破壊	ŧ
		及び疲労破壊は考慮する必要がない。	
		また、シール部は、原子炉格納容器内の圧力により鏡板を制御棒	*
		駆動機構搬出入口円筒胴に押し付ける構造であり、内圧により鏡板	Ē.
		を開く荷重が作用しないことから、ヒンジボルトの延性破壊は、詩	Ž.
		価対象外とする。	
		したがって、制御棒駆動機構搬出入口の機能喪失要因は、原子炉	i
		格納容器内圧による過度な塑性変形に伴う延性破壊、鏡板の座屈、	
		原子炉格納容器本体の変形に伴う円筒胴の変形及びシール材の高	î
		温劣化によるシール機能の低下が考えられる。	
		このため、200℃、2Pdでの健全性確認には以下の評価が必要であ	
		る。	
		・制御棒駆動機構搬出入口本体の耐圧	
		・制御棒駆動機構搬出入口フランジのシール性能	
		制御棒駆動機構搬出入口の評価部位の概形を図 6-1 に示す。	
		カスケット カスケット カスケット カスケット カスケット カスケット カスケット カスケット	
		図 6-1 評価部位観形図 (制御棒駆動機構搬出入口)	

柏崎刈羽原子力発電所第7号機	に取るの比較表(VI-1-8-1-別称 1 里人事故寺時におりる原 東海第二発電所	女川原子力発電所第2号機	備考
		6.1.1 制御棒駆動機構搬出入口本体の耐圧	格納容器型式の相違による評
		(1) 応力評価	価設備の相違
		制御棒駆動機構搬出入口本体の <mark>構造健全性評価</mark> は,添付書類「VI	
		-3-3-6-1-2 機器搬出入口の強度計算書」に記載する。	<柏崎刈羽7号機との比較>
			記載表現の相違
		(2) 許容圧力評価	・柏崎刈羽は機器ハッチ類に
		制御棒駆動機構搬出入口本体の構造健全性評価として,告示第5	ついて 4. 項にてまとめて記載
		01号の第13条第2項及び第22条第3項第2号に記載の評価式を	している。
		準用し、運転状態Ⅳにおいて外面に受ける許容圧力を算出し、限界	
		圧力 2Pd を上回ることを確認する。	
		6.1.2 制御棒駆動機構搬出入口フランジのシール性能	
		原子炉格納容器の限界温度、限界圧力におけるフランジ変形量を	
		評価するために,三次元有限要素法による解析を用いて制御棒駆動	
		機構搬出入口フランジ部における変形量を評価する。	
		評価した変形量は、添付1に示す重大事故等時条件におけるガス	
		ケットの健全性確認結果を基に設定した許容変形量と比較し、変形	
		量が許容変形量を下回ることを確認する。	
		6.2 評価結果	
		6.2.1 制御棒駆動機構搬出入口本体の耐圧	
		(1) 応力評価	
		制御棒駆動機構搬出入口本体の <mark>応力</mark> 評価結果は,添付書類「VI-	
		3-3-6-1-2 機器搬出入口の強度計算書」に記載する。	
		<i>3</i>	
		(2) 許容圧力評価	
		制御棒駆動機構搬出入口本体の構造健全性について、既工認と同	
		様の評価手法である告示第501号に示される必要最小板厚の式	
		を用い許容圧力を求め、2Pd を上回ることを確認した。	
		評価結果の詳細を表 6-1 に示す。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		表 6-1 制御棒駆動機構搬出入口の許容圧力評価結果	格納容器型式の相違による評
		D.制御棒壓動機構搬出入口門简部.	価設備の相違
		丹筒酮:86/19 菲容圧力算定式:告示第501号第13条第2項第1号八及び第22条第3項第2号小を専用	<柏崎刈羽7号機との比較>
		P=1.5× {4B t / (3D,)}	記載表現の相違
		1 版版 (mm) 1	・柏崎刈羽は機器ハッチ類に
		P 200 Cにおける許容圧力 (MPa) 9,590 9,590 MPa > 0,854 MPa (2Pd)	ついて 4. 項にてまとめて記載
			している。
		2)南郊林縣動族構設出入口稅稅 跃形制: SOV19	
		許容圧力算定式:告示第501号第13条第2項第2号ハ及び第22条第3項第2号トを準用	
		P=1.5× (B t / R _o)	
		1 板原 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm	
		P 200 Cにおける許容圧力 (MPa) 2,600 2,600 MPa > 0.854 MPa (2Pd)	
		6.2.2 制御棒駆動機構搬出入口フランジのシール性能 制御棒駆動機構搬出入口フランジについて、限界温度、限界圧力	
		制御棒船期機構搬口パロノブンシについて、限外温度、限外圧力におけるフランジ面の変形量が許容変形量を下回ることを確認す	
		るため、三次元有限要素法モデルを用いて弾塑性解析を実施した。	
		図 6-2 に解析モデル、図 6-3 に変形の概念図をそれぞれ示す。4	
		解析では、原子炉格納容器の重大事故等時の過温、過圧時における	
		フランジ変形量を評価するため、制御棒駆動機構搬出入口及び制御	p .
		棒駆動機構搬出入口近傍の原子炉格納容器をモデル化する。	
		また、フランジシール部を構成する各種部材(蓋フランジ、ヒン	
		ジボルト等)の荷重伝達経路を詳細にモデル化するため、ソリット 要素を用いて可能な限り詳細な形状をモデル化する。	
		荷重条件として、0から内圧を加えて変形量を解析する。解析:	1
		ードは「ABAQUS」を使用する。評価に用いる解析コードの権	
		証及び妥当性確認等の概要については,添付書類「VI-5 計算機フ	۴
		ログラム(解析コード)の概要」に示す。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		3	格納容器型式の相違による評
		2.5	価設備の相違
		1 2 and 1.5	A LEAST TOTAL OF THE SECOND STATE OF THE SECON
		置 1 一郎 部間口量	<柏崎刈羽7号機との比較> 記載表現の相違
		0.5	・柏崎刈羽は機器ハッチ類に
		0 1 2 3 4 压力 [Fd]	ついて 4. 項にてまとめて記載
		図 6-5 制御棒駆動機構搬出入口の各ガスケット部の圧力と軸方向変形量(開口量)の関係	している。
		(2) 制御棒駆動機構搬出入口フランジの許容開口量	
		円筒胴が変形することによる径方向許容変位差は mm となる	
		また、添付1に示すように、改良 EPDM 製シール材の重大事故等	
		時環境における圧縮永久ひずみ率は %であり、シール材の初期締付け量は mm であるため、圧縮永久ひずみ率を考慮した軸、	
		向許容開口量は mmとなる。)
		15311/4 M H = 10	
		(3) 比較結果	
		200℃, 2Pd (0.854MPa) における, 径方向変位差は最大で	
		mm であり、径方向許容変位差 mm を下回る。また、軸方向開	
		量は最大で mmであり、軸方向許容開口量 mmを下回る	
		よって、シール機能が維持できることを確認した。	
		6.3 評価結果まとめ	
		制御棒駆動機構搬出入口の健全性評価結果を表 6-2 に示す。	
		No. 評価項目 評価方法 評価 結果	
		超点 1 1 1 1 1 1 1 1 1	
		1 入口本体の耐圧 ②許容圧力評価 200 C, 2Pd における許容圧力が 2Pd 以上	
		であることを確認した 変形就評価 シール材の重大事故等時の環境におけ	
		制御棒駆動機構搬出 る劣化特性を考慮しても,限界温度,限 2 入口フランジのシー 界圧力におけるフランジ変形量は,許容 ○	
		ル性能 変形量を下回ることから、シール機能が 維持されることを確認した。	
		THE CALL OF THE CALL	
		以上により、制御棒駆動機構搬出入口については、限界温度、『	₹
		界圧力環境下でも、放射性物質の閉じ込め機能を維持可能である。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	する原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		7. 所員用エアロック	
		7.1 評価方針	
		所員用エアロックは, 円筒胴が原子炉格納容器に溶接固定されて	設備構造の相違
		おり、円筒胴の両端に平板(隔壁)を溶接し、人が出入りできる関	
		口部を設けている。この開口部に枠板(隔壁)を溶接し、枠板の前	
		面を開閉扉で塞ぐ構造である。枠板の前面と扉間のシールにはガス	
		ケットを使用している。なお、ドライウェル主フランジや逃がし安	
		全弁搬出入口と異なり,原子炉格納容器加圧時は所員用エアロック	設備の相違
		扉が支持部に押し付けられる構造となっているため、扉板が開くこ	・③の相違
		とはない。また、隔壁には扉開閉ハンドル軸等が貫通しており、貫	記載表現の相違
		通部にシール材を使用している。	
		所員用エアロックの設計時に考慮される機能喪失要因は、 脆性破	
		壊、疲労破壊、座屈及び延性破壊が考えられる。今回の評価条件	
		200℃, 2Pd の条件を考慮した場合, 脆性破壊が生じる温度域でない	
		こと、繰り返し荷重が作用しないこと及び有意な圧縮力が所員用エ	
		アロックに生じないことから、脆性破壊、疲労破壊及び座屈は考慮	
		する必要がない。	101/2/30 1 10/2
		したがって、所員用エアロックの機能喪失要因は、高温状態で原	記載表現の相違
		子炉格納容器内圧を受けることによる、過度な塑性変形に伴う所員	
		用エアロック本体の延性破壊、並びに、扉の変形及びシール材の高	
		温劣化によるシール機能の低下による漏えいが想定される。	
		このため,200℃,2Pd での健全性確認には以下の評価が必要であ	
		ప .	
		・所員用エアロック本体の耐圧	記載表現の相違
		・所員用エアロック本体のシール性能	記載表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		所員用エアロックの評価部位の概形を図 7-1 に示す。	記載表現の相違
		なお、隔壁には電気配線貫通部が設けられているが、この電気配線貫通部の構造は電気配線貫通部のうち、低電圧用モジュールと同様の構造であることから、「9. 電気配線貫通部」にて評価する。	記載表現の相違
			記載表現の相違
		展示が保険であります。 関係ハンドル 関係ハンドル 関係ハンドル が成成であります。 は成文がスケット取付託の課題)	設備構造の相違
		図 7-1 評価部位概形図(所員用エアロック)	記載表現の相違

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		7.1.1 所員用エアロック本体の耐圧	記載表現の相違
		(1) 応力評価	※比較のし易さから,東海第
		<mark>所員用エアロック</mark> 本体 <mark>の構造健全性評価</mark> は,添付書類「VI-3-3-	二の a. 項,b. 項を入替え
		6-1-3 エアロックの強度計算書」に記載する。	記載表現の相違
			・許容応力について女川は強度計
			算の基本方針に記載している。
			<柏崎刈羽7号機との比較>
			記載方針の相違
			・柏崎刈羽は複数の所員用エ
			アロックを本章にて記載して
			いる。
		(2) 許容圧力評価	<柏崎刈羽 7 号機との比較>
		(2) 計容圧刀評価 所員用エアロック本体の構造健全性評価として,所員用エアロッ	< 相崎刈羽 7 号機 との比較 > 評価方針の相違
		所員用エアロック本体の構造健全性評価として、所員用エアロック円筒部(外側円筒胴)については、告示第501号の第22条に	・柏崎刈羽は,基本板厚計算書
			・ 和崎刈羽は,基本板厚計算書 にて評価を実施している。
		記載の評価式を準用し、許容引張応力に運転状態Ⅳにおける一次一 殺膜応力の許容値である 200℃の 2/3 S 』を与えることで許容圧力	記載表現の相違
		仮膜応力の計谷値である 200 Cの 2/3 Suを与えることで計谷圧力を算出し、限界圧力 2Pd を上回ることを確認する。また、所員用エ	記載 衣先9/和達
			滋田担牧の担告
		アロック円筒部(内側円筒胴)については、告示第501号の第13	適用規格切相運

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における 東海第二発電所	女川原子力発電所第2号機	備考
		条第2項及び第22条第3項第2号に記載の評価式を準用し、運転	・女川は、告示第501号を適
		状態Ⅳにおいて外面に受ける許容圧力を算出し、限界圧力 2Pd を上	- I
		回ることを確認する。	評価条件の相違
			・女川は、内側円筒胴について
			外面に受ける圧力評価を実施
			している。
			記載表現の相違
			・許容応力について女川は強度計
			算の基本方針に記載している。
		7.1.2 所員用エアロック本体のシール性能	記載表現の相違
		(1) 扉のシール材	HOTAVA VUIVA I HAZ
		所員用エアロックの扉のシール材には、重大事故等時の耐環境性	記載表現の相違
		に優れた改良 EPDM 製シール材を使用する。所員用エアロック扉間	
		止時は、扉は原子炉格納容器内圧により扉板が支持部に押し付けら	
		れる構造であり、圧力により扉板が開くことはない。しかし、高温	
		状態で内圧を受けることによる扉板のわずかな変形によりガスク	
		ット部の微小な開口が予想されるため、圧力による開口量を理論式	

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別旅1 重大事故等時における原子! 東海第二発電所	女川原子力発電所第2号機	備考
		に基づき評価する。 改良 EPDM 製シール材による重大事故等時の原子炉格納容器閉じ込め機能を確認するために、圧縮永久ひずみ試験結果をもとに許容開口量を評価し、重大事故等時における扉板部の変位量と比較することで原子炉格納容器閉じ込め機能を評価する。	記載表現の相違
		評価した変位量は、添付1に示す重大事故等時条件におけるガスケットの健全性確認結果を基に設定した許容開口量と比較し、変位量が許容開口量を下回ることを確認する。	記載表現の相違
		(2) 扉以外のシール材 所員用エアロックには、扉のガスケット以外に原子炉格納容器閉 じ込め機能を確保するための隔壁貫通部にシール材が使用されて いるが、重大事故等時の耐環境性に優れた表 7-1 に示すシール材に	
		変更する。これらのシール材は、通常運転中における劣化は軽微で あることから、通常運転時の劣化を考慮せず重大事故等時の条件下 での評価を実施する。 また、これらのシール材について試験結果及び一般的な材料特性	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	との比較表(VI-1-8-1-別添 1 重大事故等時におけ 東海第二発電所		川原子力発電所第25		備考
		により重大事故等時の	環境下における耐性を	を確認する。	
		扉開閉ハンドルメカ	ニカルシールの配置を	を図 7-2 に, 圧力平衡弁	<柏崎刈羽7号機との比較>
		シール材の配置を図 7-	-3 に示す。		記載表現の相違
			3 (=.4) 8		・柏崎刈羽は扉以外のシール
					材について記載しているが,
					女川は表 7-1 において表形式
					にて記載している。
		表 7-1 所員	用エアロック(扉以タ	りのシール材	設備構造の相違によるシール
		対象	k部位	シール材	材の使用部位およびシール材
		原開閉ハンドル	Oリング	改良EPDM材	の相違
		メカニカルシール	シャフトパッキン Oリング	改良 EPDM 材 改良 EPDM 材	
			シート	PEEK H	
		圧力平衡弁	グランドバッキン	PEEK #f	
		**************************************	スラストペアリング	PEEK #f	
		<u> </u>	ステムペアリング	PEEK #	
		1 1			
		1 1			
		11			
		11			
		11			
		1 1			
		11			
		図 7-2 扉開閉	引ハンドルメカニカル	シールの配置図	記載表現の相違

	先行審査プラントの記載との比較表 (VI-1-8-1-別添 1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)		
柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		k	
		グランドパッキン	
		(PEEK 材) のリング (改良 EPDM 材)	
		スラストベアリング (CCR EFON M)	
		(PEEK 材) ステムベアリンク	,
		(PEEK 材)	
		 	
		H + + + + + + + + + + + + + + + + + + +	
		シート (PEEK 材)	
		図 7-3 圧力平衡弁シール材の配置図	
		7.2 評価結果	
		7.2.1 所員用エアロック本体の耐圧	
		(1) 応力評価	
		所員用エアロック本体の <mark>応力</mark> 評価結果は,添付書類「VI-3-	3-6- 記載表現の相違
		1-3 エアロックの強度計算書」に記載する。	記載表現の相違
			※比較のし易さから、東
			二の a. 項,b. 項を入替え
			<柏崎刈羽7号機との比較
			記載方針の相違
			・柏崎刈羽は複数の所員
			アロックを本章にて記載
			いる。
		(2) 許容圧力評価	<柏崎刈羽7号機との比
		所員用エアロック本体の構造健全性について, 既工認と同様	
		価手法である告示第501号に示される必要最小板厚の式を	
		許容圧力を求め、2Pdを上回ることを確認した。	にて評価を実施している。
			記載表現の相違
			適用規格の相違
		評価結果の詳細を表 7-2 に示す。	
		計価箱未り詳細を衣でとに示す。	・女川は、告示第501号
			用している。

柏崎刈羽原子力発電所第7号機	『L載との比較表(VI-1-8-1-別添1 重大事敬等時における原子炉 東 海第二発電所	女川原子力発電所第2号機	備考
		表 7-2 所負用エアロックの許容圧力評価結果 1.所員用エアロック円筒部(外側円筒輌) 円筒刷:SONP 許容圧力算定式:告示第5 0 1 号第 22 条第 3 項第 2 号 イ を平用 P=2 S 3 t / (D , +1, 2 t) S	評価条件の相違 ・女川は、内側円筒胴について 外面に受ける圧力評価を実施 している。 <柏崎刈羽7号機との比較> 評価方針の相違 ・柏崎刈羽は、基本板厚計算書 にて評価を実施している。
		7.2.2 所員用エアロック本体のシール性能 (1) 扉のシール材	記載表現の相違
		所員用エアロック扉閉止時は、扉は原子炉格納容器内圧により扉板が支持部に押し付けられる構造であり、圧力により扉板が開くことはない。しかし、高温状態で内圧を受けることによる扉板のわずかな変形によりガスケット部の微小な開口が予想されるため、圧力	記載表現の相違
		による変位量を機械工学便覧のはりのたわみ計算式に基づき評価 した。改良 EPDM 製シール材による重大事故等時の原子炉格納容器 閉じ込め機能を確認するために,圧縮永久ひずみ試験結果をもとに	記載表現の相違
		許容開口量を評価し、重大事故等時における扉板部の変位量と比較 することで原子炉格納容器閉じ込め機能を評価した。	記載表現の相違 記載表現の相違 記載表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
THE POST OF THE PO	ALIMAN—JUMBIJI	SAMA 1775 ENTREE TO UN	・女川では添付にて記載している。
		許容開口量は、扉板シール部の初期締付け量 mm, 必要押込み量 mm及び添付1に示す改良 EPDM 製シール材の重大事故等時環境における圧縮永久ひずみ率 %より、 mm (= (初期締付け量 mm-必要押込み量 mm) × (100% -	設備構造の相違による締付量の相違。
		評価式:	評価結果の相違

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における原子 東海第二発電所	女川原子力発電所第2号機	備考
		図 7-4 所員用エアロック扉の変形概念図	設備構造の相違 <柏崎刈羽 7 号機との比較> 評価結果の相違
		(2) 扉以外のシール材 所員用エアロックには、扉のガスケット以外に原子炉格納容器閉 じ込め機能を確保するための隔壁貫通部にシール材が表 7-1 のと おり使用されている。	
		これらのシール材について試験結果及び一般的な材料特性によ り重大事故等時の環境下における耐性を確認した。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	5原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		扉開閉ハンドル貫通部及び圧力平衡弁に使用する改良 EPDM 製シ	設備の相違
		ール材については、添付 1 に示す圧縮永久ひずみ試験結果のとお	・ ③の相違
		り、重大事故等時の環境下における健全性を確認した。	記載表現の相違
			設備の相違
			・③の相違
			・女川は膨張黒鉛材を使用し
			ていない。
		圧力平衡弁に使用する PEEK 材は, 一般的に 200℃程度の高温環	設備名称の相違
		境下においても高い安定性を得ることができるシール材料であり,	
		表 7-4 に示す材料特性から, 重大事故等時の環境下においても十分	
		な耐性を有することを確認した。	
		_	
		表 7- <mark>4</mark> PEEK 材の材料特性	
		仕様	試験条件の相違
		シール材 耐熱温度 融点 耐放射線性	
		PEEK 村 250°C 343°C 約10 MGy	
		また、PEEK 材は圧力平衡弁シート部に用いるシール材料である	設備名称の相違
		ため、実機圧力平衡弁と同型の弁を使用した、重大事故等時の原子	
		炉格納容器環境を模擬した耐環境試験を実施しており、熱及び放射	
		線曝露後の漏えい試験にて弁シート部の気密性が確保できること	
		を確認している。表 7-5 に耐環境試験条件を示す。	

先行審査プラントの記載との比較表 (VI-1-8-1-別添1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 表 7-5 圧力平衡弁の耐環境試験条件 (PEEK 材) 設備名称の相違 試験条件の相違 熱劣化 200℃. 168 時間 kGy 放射線照射量 漏えい試験圧力 0.854MPa 7.3 評価結果まとめ 記載表現の相違 所員用エアロックの健全性評価結果を表 7-6 に示す。 表 7-6 所員用エアロックの健全性評価結果 評価条件の相違 結果 評価項目 評価方法 D応力評価 添付書類「VI-3-3-6-1-3 エアロックの強度計算 ・女川は、内側円筒胴について 書」に記載 所員用エアロック本 外面に受ける圧力評価を実施 体の耐圧 200℃, 2Pd における許容圧力が 2Pd 以上 あることを確認した。 している。 開口量評価,シ ・扉ガスケットについて、シール材の重大 ール材評価 事故等時環境における劣化特性を考慮 <柏崎刈羽7号機との比較> しても、限界温度、限界圧力における変 評価方針の相違 位量は許容開口量を下回ることから,シ 2 シール性能 ール機能が維持されることを確認した。 0 ・柏崎刈羽は,基本板厚計算書 ・扉以外のシール材について、試験等によ りシール材の重大事故等時環境におい にて評価を実施している。 ても、シール機能が維持されることを確 認した。 記載表現の相違 以上により, 所員用エアロックについては, 限界温度, 限界圧力 環境下でも,放射性物質の閉じ込め機能を維持可能である。

柏崎刈羽原子力発電所第7号機	東海第二発電所	・る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
·		8. 配管貫通部	
		8.1 概要	
		配管貫通部ついて、限界温度、限界圧力環境下における放射性物	記載表現の相違
		質の閉じ込め機能が維持されることを確認する。	
		代表的な配管貫通部の概形を図8-1に示す。配管貫通部は、スリ	記載表現の相違
		ーブ,端板,フランジ部(フランジ,ボルト締付平板),閉止板,伸	評価対象設備の相違
		縮継手及び短管とスリーブ等に接続する配管(貫通配管)によって	記載表現の相違
		原子炉格納容器バウンダリを構成している。また、フランジ部は、	
		原子炉格納容器の貫通部に溶接固定されたフランジとボルト締付	記載表現の相違
		平板を締結ボルトで固定しており、シール部にはガスケットを使用	記載表現の相違
		している。	
		上記を踏まえ,以下の構成で健全性を確認する。	
		8.2項では,配管貫通部(貫通配管)の構造健全性を確認する。	記載表現の相違
		8.3項では,配管貫通部(スリーブ)の構造健全性を確認する。	
		8.4項では,配管貫通部(端板)の構造健全性を確認する。	設備の相違
		8.5 項では、配管貫通部(フランジ部)の構造健全性、シール部	記載表現の相違
		の機能維持を確認する。	
		8.6 項では,配管貫通部(閉止板)の構造健全性を確認する。	設備の相違
			記載表現の相違(女川は「短
			管」として評価)
		8.7項では,配管貫通部(伸縮継手)の構造健全性を確認する。	
		8.8項では、配管貫通部 (短管) の構造健全性を確認する。	
		原子が移動が離り便 スリーブ 相管 知管 知管 理板 は は は は は は は は は は は は は は は は は は	
		図 8-1 配管貫通部概形図	

柏崎刈羽原子力発電所第7号機	東海第二発電所	5原子炉格網容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		8.2 配管貫通部(貫通配管)	記載表現の相違
		8.2.1 評価方針	記載表現の相違
		配管貫通部(貫通配管)は、スリーブ等を介して原子炉格納る	器
		本体に溶接構造で取り付けられている。	
		配管貫通部 (貫通配管) に考慮される機能喪失要因は, 脆性破	裹,
		疲労破壊、座屈及び延性破壊が考えられる。今回の評価条件であ	つる
		重大事故等時の条件を考慮した場合, 脆性破壊が生じる温度域で	でな
		いこと,繰り返し荷重が作用しないこと及び有意な圧縮力が配管	費
		通部(貫通配管)に生じないことから、脆性破壊、疲労破壊及び	座
		屈は評価対象外とする。	
		一方、配管貫通部(貫通配管)には、原子炉格納容器内圧が何	用
		し、一次応力が生じるため、配管貫通部(貫通配管)における類	性
		破壊が機能喪失要因として想定される。	
		このため、 <mark>重大事故等時</mark> の環境下における構造健全性を確認す	る。
			<柏崎刈羽7号機との比較>
			記載方針の相違
			・④の相違
		8.2.2 評価	
		(1) 応力評価	
		配管貫通部(貫通配管)の構造健全性評価は,添付書類「VI-3	-3-
		3-1 原子炉冷却材再循環設備の強度計算書」,「VI-3-3-3-2 『	
		炉冷却材の循環設備の強度計算書」,添付書類「VI-3-3-3-3 死	智
		熱除去設備の強度計算書」,「VI-3-3-3-4 非常用炉心冷却設備?	
		他原子炉注水設備の強度計算書」,「VI-3-3-3-5 原子炉冷却材料	清給
		設備の強度計算書」,「VI-3-3-4-1-2 制御棒駆動水圧設備の強度	
		算書」,「VI-3-3-4-2 ほう酸水注入設備の強度計算書」,「VI-3	
		4-3 制御用空気設備の強度計算書」,「VI-3-3-6-1-4 原子炉材	系納
		容器配管貫通部及び電気配線貫通部の強度計算書」,「VI-3-3-6-	2–7
		原子炉格納容器安全設備の強度計算書」,「VI-3-3-6-2-8 放射性	· · · · · · · · · · · · · · · · · · ·
		質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再	1.6
		環設備の強度計算書」,「VI-3-3-6-2-9 原子炉格納容器調気設備	う

柏崎刈羽原子力発電所第7号機	東海第二発電所	サルト・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・	備考
		強度計算書」及び「VI-3-3-6-2-10 圧力逃がし装置の強度計算書」	
		に記載する。	
		(2) 許容圧力評価	
		a. 今回工認において改造を伴わない配管貫通部(貫通配管)	
		今回工認において改造を伴わない配管貫通部(貫通配管)の構造	
		健全性評価として,限界圧力に対し許容圧力の裕度が最小となる X-	
		10A~D について評価する。	
		今回工認において改造を伴わない配管貫通部(貫通配管)につい	
		ては、告示第501号第26条第1項第1号に記載の評価式を準用	
		し、許容引張応力に運転状態IVにおける一次一般膜応力の許容値で	
		ある重大事故等時の最高温度の 2/3 S uを与えることで許容応力を	
		算出し、重大事故等時の最高圧力を上回ることを確認する。	
		b. 今回工認において改造を伴う配管貫通部(貫通配管)	
		今回工認において改造を伴う配管貫通部(貫通配管)の構造健全	
		性評価として、限界圧力に対し許容圧力の裕度が最小となる X-93	
		について評価する。	
		今回工認において改造を伴う配管貫通部(貫通配管)については、 設計・建設規格 PVE-3611に記載の評価式を準用し、許容引張応力	
		設計・建設税恰 PVE-3011 に記載の評価式を専用し、計谷が振応力 に運転状態IVにおける一次一般膜応力の許容値である重大事故等	
		時の最高温度の 2/3 Suを与えることで許容応力を算出し、重大事	
		対の取同価度の 2/35 uを与えることで計谷ル力を昇山し、重入争 故等時の最高圧力を上回ることを確認する。	
		以守時の取同圧力を工門ることを唯恥する。	
		8. 2. <mark>3</mark> 評価結果	記載表現の相違
		(1) 応力評価	記載表現の相違
		配管貫通部(貫通配管)の強度評価方法及び評価結果は、添付書	
		類「VI-3-3-3-1 原子炉冷却材再循環設備の強度計算書」,「VI-3-	N= 044 434 1114
		3-3-2 原子炉冷却材の循環設備の強度計算書」,添付書類「VI-3-	
		3-3-3 残留熱除去設備の強度計算書」,「VI-3-3-3-4 非常用炉心	
		冷却設備その他原子炉注水設備の強度計算書」,「VI-3-3-3-5 原子	
		炉冷却材補給設備の強度計算書」,「VI-3-3-4-1-2 制御棒駆動水圧	
		設備の強度計算書」,「VI-3-3-4-2 ほう酸水注入設備の強度計算	
		書」,「VI-3-3-4-3 制御用空気設備の強度計算書」,「VI-3-3-6-1-4	
		原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」,「VI	
		-3-3-6-2-7 原子炉格納容器安全設備の強度計算書」,「VI-3-3-6-	

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		2-8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに	
		格納容器再循環設備の強度計算書」、「VI-3-3-6-2-9 原子炉格納容	
		器調気設備の強度計算書」及び「VI-3-3-6-2-10 圧力逃がし装置	
		の強度計算書」に記載する。	
		(2) 許容圧力評価	
		a. 今回工認において改造を伴わない配管貫通部(貫通配管)	
		・ 今回工認において改造を伴わない配管貫通部(貫通配管)の構造	
		健全性評価について、既工認と同様の評価手法である告示第501	
		号に示される必要最小板厚の式を用い許容圧力を求め、限界圧力	
		(最高圧力)を上回ることを確認した。	
		評価結果の詳細を表 8-1 に示す。	
		表 8-1 X-10A~D の配管貫通部(貫通配管)の許容圧力評価結果	
		2 ₹8-1 λ-10A~D の配管負担制部(負担間配管)の計算は力計価格米	
		内面に圧力を受ける管台:SPVC2B	
		評容圧力算定式:告示第5 0 1 号第 26 条第 1 項第 1 号を準用 P = 2 S η τ / (D _o = 0,8 τ)	
		S 評容引張に力 (315 Cにおける 2/3 S。統を使用) (MPa) 292	
		5	
		t 祝州 (mm) (mm) (D.	
		D. 関の外名 (mm) 609, 60 P 315 Cにおける許容圧力 (MPa) 30, 982	
		30, 982 WPa > 10, 34 MPa	
		b. 今回工認において改造を伴う配管貫通部(貫通配管)	
		今回工認において改造を伴う配管貫通部(貫通配管)の構造健全	
		性評価について、設計・建設規格に示される必要最小板厚の式を用	
		い許容圧力を求め、限界圧力(最高圧力)を上回ることを確認した。	
		評価結果の詳細を表 8-2 に示す。	
		表 8-2 X-93 の配管貫通郎(貫通配管)の許容圧力評価結果	
		内而に圧力を受ける管台: SUS304LIP 許容圧力算定式:設計・建設規格 PUE-3611 を準用	
		$P = 2S \eta t / (D_0 - 0.8 t)$	
		新容引張は力 (200℃における 2/3 S . 値を使用) (MPa) 248	
		<u>1</u> 維手効率 1.00	
		t (mm) (mm) (mm) 76, 30	
		P 200 Cにおける許容圧力 (MPa) 35, 752	
		35, 752 MPa > 2, 00 MPa	

柏崎刈羽原子力発電所第7号機	東海第二発電所	する原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		8.3 配管貫通部 (スリーブ)	
		8.3.1 評価方針	
		配管貫通部(スリーブ)は、原子炉格納容器本体胴を貫通する円	記載表現の相違
		筒形の部材で、原子炉格納容器本体胴に溶接固定されている。また、	設備の相違
		配管貫通部(スリーブ)は、原子炉格納容器内に開口しており内面	・ ③の設備
		に圧力を受けるスリーブと,原子炉格納容器内の突出し部が閉止し	
		ており外面に圧力を受けるスリーブに分類される。	
		配管貫通部(スリーブ)の設計時に考慮される機能喪失要因は、	記載表現の相違
		脆性破壊,疲労破壊,座屈及び延性破壊が考えられる。今回の評価	
		条件である <mark>重大事故等時</mark> の条件を考慮した場合, 脆性破壊が生じる	
		温度域でないこと及び繰返し荷重が作用しないことから、脆性破壊	設備の相違
		及び疲労破壊は評価対象外とする。	・③の設備
		したがって、配管貫通部(スリーブ)の機能喪失要因は、内面に	
		圧力を受けるスリーブについては、高温状態で内圧を受け、過度な	
		塑性変形に伴う延性破壊が想定される。また、外面に圧力を受ける	設備の相違
		スリーブについては座屈が想定される。	・ ③の設備
		このため、 <mark>重大事故等時</mark> での配管貫通部(スリーブ)の健全性確	記載表現の相違
		認について、内面に圧力を受けるスリーブについては、延性破壊を	設備の相違
		評価する。また、外面に圧力を受けるスリーブについては、座屈を	・ ③の設備
		評価する。	
			記載表現の相違
			・女川は,代表評価対象設備
			ついて 8.3.2 項に記載して
			<mark>る。</mark>
			記載表現の相違

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添 1 重大事故等時における 東海第二発電所	女川原子力発電所第2号機	備考
			記載表現の相違
		8.3.2 評価 (1) 応力評価 配管貫通部 (スリーブ) の構造健全性評価は、添付書類「VI 6-1-2 機器搬出入口の強度計算書」及び「VI-3-3-6-1-4 原格納容器配管貫通部及び電気配線貫通部の強度計算書」に記る。	マラグ 記載方針の相違
		(2) 許容応力評価 a. 今回工認において改造を伴わない配管貫通部(スリーブ)の今回工認において改造を伴わない配管貫通部(スリーブ)の健全性評価として、内面に圧力を受けるスリーブは、許容圧力小となる X-200A, B, また, 外面に圧力を受けるスリーブは、X-Bについて評価する。 内面に圧力を受ける X-200A, B のスリーブについては、告記の正理などのでは、許容別力に運転状態IVにおける一次一般膜応力の許容値である 202/3S』を与えることで許容応力を算出し、重大事故等時の最高を上回ることを確認する。また、外面に圧力を受ける X-151A、スリーブについては、告示第501号の第13条第2項及び第第1項第2号に記載の評価式を準用し、運転状態IVにおいて外第	記載表現の相違 評価方針の相違 ・女川は、改造を伴なわない関 設設備は告示第501号によ 151A、 る評価としている。 設備の相違 ・③の設備 ・・③の設備

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

製造の関係を登出し、の場合というのでは、できません。	柏崎刈羽原子力発電所第7号機	の記載との比較表(VI-1-8-1-別添1 重大事故等時における 東海第二発電所	女川原子力発電所第2号機	備考
b. 今回工認において改造を伴う配管貫通部(スリーブ)の構造健全性評価として、内面に圧力を受けるスリーブは、許容圧力が最小となる X-230、X-231 について評価する。なお、今回工認において改造を伴う配管貫通部(スリーブ)として外面に圧力を受けるスリーブはないことから評価しない。				
・ク回工認において改造を伴う配管貫通部(スリーブ)の構造健全性評価として、内面に圧力を受けるスリーブは、許容圧力が最小となる X-230、X-231 について評価する。なお、今回工認において改造を伴う配管貫通部(スリープ)として外面に圧力を受けるスリーブはないことから評価しない。 X-230、X-231 のスリーブについては、設計・建設規格 PVE-3611に記載の評価式を準用し、許容引張応力に運転状態IVにおける一次一般胰応力の許容値である 200℃の 2/3 S。を与えることで許容圧力を算出し、限界圧力 2Pd を上回ることを確認する。 に載表現の相違・許容応力について女川は強度計			確認する。	
・ク回工認において改造を伴う配管貫通部(スリーブ)の構造健全性評価として、内面に圧力を受けるスリーブは、許容圧力が最小となる X-230、X-231 について評価する。なお、今回工認において改造を伴う配管貫通部(スリープ)として外面に圧力を受けるスリーブはないことから評価しない。 X-230、X-231 のスリーブについては、設計・建設規格 PVE-3611に記載の評価式を準用し、許容引張応力に運転状態IVにおける一次一般胰応力の許容値である 200℃の 2/3 S。を与えることで許容圧力を算出し、限界圧力 2Pd を上回ることを確認する。 に載表現の相違・許容応力について女川は強度計				
性評価として、内面に圧力を受けるスリーブは、許容圧力が最小となる X-230、X-231 について評価する。なお、今回工認において改造を伴う配管貫通部(スリーブ)として外面に圧力を受けるスリーブはないことから評価しない。				
なる X-230, X-231 について評価する。なお、今回工認において改造を伴う配管責通部 (スリーブ)として外面に圧力を受けるスリーブはないことから評価しない。 X-230, X-231 のスリーブについては、設計・建設規格 PVE-3611 に記載の評価式を準用し、許容引張応力に運転状態IVにおける一次 一般膜応力の許容値である 200℃の 2/3 S。を与えることで許容圧力を算出し、限界圧力 2Pdを上回ることを確認する。 記載表現の相違・許容応力について女川は強度計				
造を伴う配管貫通部 (スリーブ) として外面に圧力を受けるスリーブはないことから評価しない。 X-230, X-231 のスリーブについては, 設計・建設規格 PVE-3611 に記載の評価式を準用し, 許容引張応力に運転状態IVにおける一次 一般膜応力の許容値である 200℃の 2/3 S uを与えることで許容圧 力を算出し, 限界圧力 2Pd を上回ることを確認する。 記載表現の相違・・許容応力について女川は強度計				
ブはないことから評価しない。 X-230, X-231 のスリーブについては, 設計・建設規格 PVE-3611 に記載の評価式を準用し, 許容引張応力に運転状態IVにおける一次 一般膜応力の許容値である 200℃の 2/3 S uを与えることで許容圧 力を算出し, 限界圧力 2Pd を上回ることを確認する。 記載表現の相違 ・許容応力について女川は強度計				
X-230, X-231 のスリーブについては、 設計・建設規格 PVE-3611 に記載の評価式を準用し、許容引張応力に運転状態IVにおける一次一般膜応力の許容値である 200℃の 2/3 S 。を与えることで許容圧力を算出し、限界圧力 2Pd を上回ることを確認する。 記載表現の相違 ・許容応力について女川は強度計				
に記載の評価式を準用し、許容引張応力に運転状態Ⅳにおける一次 一般膜応力の許容値である 200℃の 2/3 S』を与えることで許容圧 力を算出し、限界圧力 2Pd を上回ることを確認する。 記載表現の相違 ・許容応力について女川は強度計				
カを算出し、限界圧力 2Pd を上回ることを確認する。 記載表現の相違 ・許容応力について女川は強度計				
記載表現の相違・ ・許容応力について女川は強度計				
・許容応力について女川は強度計			力を算出し、限界圧力 2Pd を上回ることを確認する。	
				算の基本方針に記載している。

柏崎刈羽原子力発電所第7号機	載との比較表(VI-1-8-1-別旅1 重大事故等時における原 東海第二発電所	女川原子力発電所第2号機	備考
			適用規格の相違 ・女川は、改造を伴なわない既 設設備は告示第501号、改 造を伴う設備は設計・建設規 格による評価としている。
			記載方針の相違 ・女川は、許容圧力に対する評 価結果について、8.3.3項に記載している。
		8.3. <mark>3</mark> 評価結果 (1) 応力評価 配管貫通部(スリーブ)の強度評価方法及び評価結果は、添付書	
		類「VI-3-3-6-1-2 機器搬出入口の強度計算書」及び「VI-3-3-6-1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」に記載する。 (2) 許容圧力評価 a. 今回工認において改造を伴わない配管貫通部 (スリーブ) 今回工認において改造を伴わない配管貫通部 (スリーブ) の構造健全性について,既工認と同様の評価手法である告示第501号に示される必要最小板厚の式を用い許容圧力を求め,限界圧力(最高	・④の相違

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		圧力)を上回ることを確認した。	
		評価結果の詳細を、内面に圧力を受ける X-200A、B のスリープに	
		ついては表 8-3 に,外面に圧力を受ける X-151A,B のスリーブにつ	
		いては表 8-4 に示す。	
		表 8-3 内面に圧力を受ける X-200A、B の配管貫通部(スリープ)の許容圧力評価結果	
		内面に圧力を受ける管台: SGV49 許容圧力算定式: 告示第5 0 1 号第 26 条第 1 項第 1 号を専用 P=2S n t Z (D_=0.8 t) S (Pa) (Wa) 281 n 議手効率 1.00 t 板屋 (mm)	
		P = 1.5× 4B t / (3D _w) B	
		b. 今回工認において改造を伴う配管貫通部 (スリーブ) 今回工認において改造を伴う配管貫通部 (スリーブ) の構造健全	
		中国上記において、以近を仕り配置負通前 (ヘリーノ) の併垣健主性について、設計・建設規格に示される必要最小板厚の式を用い許	
		容圧力を求め、限界圧力(最高圧力)を上回ることを確認した。	
		評価結果の詳細を表 8-3 に示す。	
		表 8-5 X-230, X-231 の配管質通部(スリーブ)の許容圧力評価結果 内面に圧力を受ける管合:STS42(STS410) 許容圧力原定式:設計・出設規格 PVE-3611 を単用 P=2 S カ 1 / (D _n - 0.8 1) S 許容引張に力 (200 Cにおける 2/3 S。値を使用) は 板関	

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-I-8-I-別旅1 重大事故等時における原 東海第二発電所	女川原子力発電所第2号機	備考
		8.4 配管貫通部(端板)	設備の相違
		8.4.1 評価方針	・②の相違
		配管貫通部 (端板) は、スリーブ又は短管に溶接固定されている。	
		配管貫通部(端板)の設計時に考慮される機能喪失要因は、脆性	
		破壊、疲労破壊、座屈及び延性破壊が考えられる。	
		今回の評価条件である <mark>重大事故等時</mark> の条件を考慮した場合,脆性	
		破壊が生じる温度域でないこと、繰り返し荷重が作用しないこと及	
		び有意な圧縮力が生じないことから, 脆性破壊, 疲労破壊及び座屈	
		は評価対象外と考えることができる。	
		したがって、端板の機能喪失要因は、高温状態で内圧を受け、過	!
		度な塑性変形に伴う耐圧部材の延性破壊が想定される。	
I		このため、 <mark>重大事故等時</mark> での端板の健全性確認について、延性破	
		壊を評価する。	
		8. 4. 2 評価	
		(1) 応力評価	
		配管貫通部(端板)の構造健全性評価は、添付書類「VI-3-3-6-1-	
		4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」	
		に記載する。	
		(a) Sharks are 1 57 fee	
		(2) 許容圧力評価	
		配管貫通部(端板)の構造健全性評価として、許容圧力が最小と	
		なる X-130A~D について評価する。 X-130A~D の配管貫通部(端板)については、告示第501号第	
		24 条第 1 項に記載の評価式を準用し、許容引張応力に運転状態IV における一次一般膜応力の許容値である重大事故等時の最高温度	
		の 2/3 Suを与えることで許容圧力を算出し、重大事故等時の最高	
		アンプラスで サスのことで 計谷圧力を昇出し、 単八季の寺内の取信 圧力を上回ることを確認する。 なお、今回工認において改造を伴う	
		圧力を上回ることを確認する。なお、今回上談において収益を行り 配管貫通部(端板)があるが、強度計算の基本方針に従い、告示第	
		記官員理部(端板)があるが、強度計算の基本方針に使い、音小束 501号と設計・建設規格の評価式を比較し、告示第501号が安	
		2017年20日・建設規格の評価式を比較し、音小第3017年かり 全側の規格であったことから、告示第501号にて評価する。	
		土地の別は住しめりにことがり、青小角301万にて評価する。	
		8.4. <mark>3</mark> 評価結果	
		(1) 応力評価	
		配管貫通部(端板)の強度評価方法及び評価結果は、添付書類「V.	
		-3-3-6-1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強	
		3 3-0-1-4 床丁炉俗MI合奋配官具进部及U电风配燃具进部V25	

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		度計算書」に記載する。	
		(2) 許容圧力評価	
		配管貫通部(端板)の構造健全性について、既工認と同様の評価	
		手法である告示第501号に示される必要最小板厚の式を用い許容圧力を求め、限界圧力(最高圧力)を上回ることを確認した。	
		評価結果の詳細を表 8-6 に示す。	
		表 8-6 X-130A~D の配管貫通部(3編板)の許容圧力評価結果 平板: SUS316L 許容圧力算定式: 告示第5 O 1 号第24 条第1 項を準用 P = S / K × (t / d) S	
		8.5 配管貫通部 (フランジ部)	設備名称の相違
		8.5.1 評価方針	以哺生47~21日建
		配管貫通部(フランジ部)は、フランジ、ボルト締付平板及び締	設備構造の相違
		付ボルトからなり,原子炉格納容器の貫通部に溶接固定されたフラ	
		ンジとボルト締付平板とを締付ボルトで固定している。また, フラ	
		ンジ部のシール材には、重大事故等時の耐環境性に優れた改良 EPDM	
		製シール材を使用する。	
			設備名称の相違
			設備の相違
			③の相違
			設備の相違
			・③の相違 ====================================
			設備名称の相違
		状態で内圧を受け、過度な塑性変形に伴う延性破壊が想定される。	-11.14 /2 The 07.40 Th
			設備名称の相違
		(フランジ部)が変形することによる開口及びシール材の高温劣化	
		によるシール機能の低下が想定される。更に、シール部の開口が進	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
·		むと締付ボルトに引張応力が作用し、締付ボルト破損に至ることが	設備名称の相違
		想定される。	
		このため、 <mark>重大事故等時</mark> での配管貫通部(フランジ部)の 構造健	設備名称の相違
		全性確認について,延性破壊を評価する。シール部については,フ	記載表現の相違
		ランジ開口量評価によるシール性能を評価する。	
		配管貫通部(フランジ部)は、フランジ部の径と板厚等の組み合	設備名称の相違, 記載表現の
		わせにより、厳しい条件となる X-200A, B を代表評価する。	相違
			評価対象貫通部の相違
		配管貫通部(フランジ部)(X-200A, B) の評価対象を図 8-2 に示	設備名称の相違, 評価対象
		す。配管貫通部(フランジ部)(X-200A, B) は, サプレッションチ	通部の相違
		ェンバに取り付けられているサプレッションチェンバ出入口であ	評価対象貫通部の相違
		る。	
			<柏崎刈羽7号機との比較
			記載方針の相違
			・④の相違
			記載表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格網容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		第4年の 1月1日 第4年の 1月1日 第4日の 1月1日 1日 1	設備構造の相違
		8.5.2 評価 (1) 構造部 (フランジ, 締付ボルト) 構造部 (フランジ, 締付ボルト) の構造健全性評価は, 添付 「VI-3-3-6-1-2 機器搬出入口の強度計算書」に記載する。	記載表現の相選 ・④の相違
		(2) 構造部 (ボルト締付平板) 配管貫通部 X-200A, B の構造部 (ボルト締付平板) について 告示第501号第24条第1項に記載の評価式を準用し、許容	引張 適用規格の相違
		応力に運転状態IVにおける一次一般膜応力の許容値である重 故等時の最高温度の 2/3 S 』を与えることで許容圧力を算出し 大事故等時の最高圧力を上回ることを確認する。	
		(3) シール部 シール部のフランジ開口量については、最も厳しい部位であ ール部について、理論式を用いて開口量を評価する。なお、フ ジ部のシール材は、プラントの定期検査時に開放される場合に	ラン
		り替えを実施しており、通常運転中における劣化は軽微であるから、通常運転時の劣化を考慮せず重大事故等時条件下での評 実施する。	こと Control Co

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		8.5. <mark>3</mark> 評価結果	
		(1) 構造部 (フランジ, 締付ボルト)	記載表現の相違
		構造部の強度評価方法及び評価結果は,添付書類「VI-3-3-6-1-2	④の相違
		機器搬出入口の強度計算書」に記載する。	
		(2) 構造部 (ボルト締付平板) 構造部 (ボルト締付平板) の構造健全性について, 既工認と同様	
		(ボルト編刊 平板) の構造建主性について、成工誌と同様の評価手法である告示第501号に示される必要最小板厚の式を	
		用い許容圧力を求め、限界圧力(最高圧力)を上回ることを確認し	
		<u>t.</u>	
		評価結果の詳細を表 8-7 に示す。	

生行薬をプラントの記載との比較表 (W-1-8-1-別送1 重大事故等時における原子位格納容界の放射性物質関じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		表 8-7 X-200A, B の構造部(ボルト縮付平板)の許容圧力評価結果 平板:SGV49 許容圧力算定式:告示第5 O 1 号第 24 条第 1 項を準用 P = S / K × (t / d) S	
			記載表現の相違・④の相違

2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	などの比較表(VI-1-8-1-別添 1 重大事故等時における原子炉 東 海第二発電所	女川原子力発電所第2号機	備考
·			記載表現の相違
			・ ④の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		(2) シール性能	記載表現の相違 記載表現の相違 ・④の相違
			記載表現の相違 女川では添付にて記載している。
		許容開口量は、サプレッションチェンバ出入口(X-200A, ランジ部の定格締付量	1製シー 設備構造の相違による締付量 の相違。 6) とす
		下回る。 ***********************************	設備構造の相違

ア・・

20 月 新聞 (日本位)	柏崎刈羽原子力発電所第7号機	R載との比較表(VI-1-8-1-別添1 重大事故等時におけ 東海第二発電所	女川原子力発電所第2号機	備考
配装 東海部 (附近収) は、年来的に原子中傷体容器木体に配管等 を始結するために設けた動材であり、スリーズに接受情であれている。 高程 別場の 原理 取扱 の を取け始めた場合をしたか、今雨の写版を を被破、度で改装。原理 取扱 の条件を考慮した場合、配性破壊が生じる度 度域でないこと。持つ近く何度が出現する。 の企業でありましたとから、配性の変しまますが場合を とする。 したがって、配性の変しまます。 一定のでのであり、現代な関性実材に伴う気性破壊が思定される。 このため、「変し、受け、の格は東文要性、高温状態 で内肝を受け、現代な関性実材に伴う気性破壊が思定される。 このため、「変し、受け、の格は東文要性、高温状態 で内肝を受け、現代な関性実材に伴う気性破壊が思定される。 このため、「変し、受け、の格は東文要性、高温状態 で内肝を受け、現代な関性実材に伴う気性破壊が思定される。 あいまして、現代な関性実材による。 あいまして、現代な関性実材による。 あいまして、現代な関性実材による。 あいまして、現代な関係があります。 また、このでは、現代など、はな対象がなからないであります。 また、このでは、日本のでは、			8.6 配管貫通部 (閉止板)	設備の相違
を接触するために設けた部分であり、スリープに接接国産されている。 「整門通路(内に版)の原列向に予慮される検定異大変関は、適性機能、接受放逐点、基本を考慮した場合。 「大型が開き、人権と変した関連を対しての選及して企業を対しての選及して企業を対しての選及していことから、限性機能、受労政権の必要による。 「したがって、配定資産部(廃止板)の環境を検索の定される。 「したがって、配定資産部(廃止板)の環境を検索の定される。 「このため、国土地が参加した。」の環境を検索の定される。 「このため、国土地が参加した。」の環境を検索の定される。 「このため、国土地が参加した。」の環境を検索の定される。 「このため、国土地が参加した。」が関連して、国土地が参加した。 「配管資金額(向上板)の特定性を認定して、対した。 「成定資金額(向上板)の特定性の定域に、国土体を検索を関する。 「は、元の利益・関連を関する。」 「は、元の利益・関連を関する。」 「は、元の利益・関連を関する。」 「は、元の人権・関連を関する。」 「は、元の人権・元の人権・元の人権・元の人権・元の人権・元の人権・元の人権・元の人権・			8.6.1 評価方針	・②の相違
西沙 南川			配管貫通部(閉止板)は、将来的に原子炉格納容器本体に配管	等
配容要連部 (開止税) の設計時に考慮される機能失失要因は、施 付成的、数字数数、用面及が計成があるとされる。今回の評価条 作すのある。 最大量を持つしていことから、随性被数、提分破落及び確面は評価知象が とする。 したかって、配容資産部(開止税)の機能失失要因は、表現、被 でPUEを受け、流度な効性を排斥や多計板数が振っれる。 このため、 正な、単体を呼での配容資産部(促止税)の機会性確認 について、近性破路を評価する。 配管資産部 (関止税) の評価的象を図を4 に示す。 配管資産部 (関止税) の評価的象を図を4 に示す。 記述 成本性の数を評価する。 このため、 正な、経験を2 での配容資産部 (関止税) の機会性確認 について、近性破路を3 での理解を 動のよう理解 (利) 切力が関 (対策変産部 (関止税) の構造性条件関係は、適性支軽性等 対策変産の原理を表現を対策変産を表現を必要を表現を2 である。 では、原本性を対象を表現して、通常に対象に対象に対象を表現して、通常に対象に対象に対象に対象に対象に対象に対象を表現して、通常に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に			を接続するために設けた部材であり、スリーブに溶接固定されて	V
特である。最大手は参加の条件を考慮した場合、設性政策が行出、 変域でないこと、熱の返し情報が作用しないことなり配信は対解は 技术を上される。 したがって、配管資産部(例上数)の機能変が要される。 このため、最大変を理しての配資語部(例上数)の発金性発送 について、発性放送を存储する。 配管資産部(例上数)の発金性発送 について、発性放送を存储する。 配管資産部(例上数)の経価対象を図8-1 に示す。 配管資産部(例上数)の存储対象を図8-1 に示す。 の方面対象を図8-1 に示す。 に対する。 の方面は、例上数)の存储対象を図8-1 に示す。 に対する。 の方面は、例上数)の存储性を付置に、対付書類「リンテン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
度域でないこと、繰り返し荷重が作用しないこと及び圧縮力が増上 復に生じないことから、歴史の機能を対しては出来している。 したがって、配管資金部(内土板)の機能を失変関は、高温状態 で内圧を受け、過度の経度情能で、何かも数)の能企性機能の起産される。 このかめ、過失を整理していて、発性機能を評価する。 配管資金部(内土板)の評価対象を図84に示す。 配管資金部(内土板)の評価対象を図84に示す。 配管資金部(内土板)の評価対象を図84に示す。 単位変金部(成上板)の活動を全計値は、流行管理「Nun-nun」により、 現実があれまめを管資金部(成上板)の構造を全計値は、流行管理「Nun-nun」により、 現実が移動するを管質の部にの構造を全計値は、流行管理「Nun-nun」により、 現実があれまめを管質の部にの構造を管理の部との構造をと計画は、 第1に変しい。 第2に変しい、 第3に変しい、				
板に生じないことから、脆性破壊、疲労破壊及び原因は評価対象外とする。 したかって、配管責導所(附止板)の機能技失要因は、高温状態で内形を受け、適度な現代変形に作うを性機嫌が形定される。このため、最大等域等所での配管資達的(例止板)の体体性機能について、低性接続を対象では多くに示す。 配管資通部(附止板)の評価対象を図多くに示す。 「おります。 「おります。」 「おります。」 「なります。」 「ないます。」 「ないまするます。」 「ないます。」 「な				
とする。 したかって、配管資通部(関止版)の機能要失配信う配性機が配定される。 このため、 このため、 一本本電等型での配管資通部(関止版)の健全性確認 について、発性破壊を評価する。 配管資通部(関止版)の評価対象を図からに示す。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				
したがって、配管質通常 (閉止板) の機能喪失要因は、高温状態で内圧を受け、適度な整性要形に伴う最佳成類が見定される。このため、簡単を影響型での配管質通常 (閉止板) の段全性確認について、延性成績を評価する。 配管資源部 (閉止板) の評価対象を図8-1 に示す。 「「関止板」の評価がある。 の表現 (原止板) の評価対象を図8-1 に示す。 「「「「				外
で内圧を受け、過度な歴性変形に伴う経性破壊が想定される。 このため、 国際 (日本				. Lake
このため、				思
について、延性破壊を評価する。 配管質通節(関上板)の評価対象を図8-4に示す。 現代 配管関連 原本 配管 東海 原本 配管 東海 原本 配管 東海 原本 配合 東京 「VI-3-3-6-1-1・ 原子 データ 展示 を で 東京 正 京 正 京 正 京 正 京 正 京 正 京 正 京 正 京 正 京				.⇒ য
配管資通部(開止板)の評価対象を図8-4に示す。				商 色
第6年 税費員等 (別点税) の評価対象 8.6.2 評価 (1) 応力評価 (1) 応力評価 (2) 原子が格納容器配管資通部及び高気配線資通部の強度計算 等」に記載する。 (2) 許容圧力評価 配管資通部 (閉止板) の構造態全性評価として、許容圧力が最小 となる X-90 (について評価する。				
2.6.2 評価 (1) 応力評価 配管質適節 (開止板) の構造鍵全性評価は、添付書類「VI-3-3-6-12-1 原子炉格納容器配管質適節 (関止板) の構造鍵全性評価は、添付書類「VI-3-3-6-12-1 原子炉格納容器配管質適節の強度計算要」に配載する。 (2) 許容圧力評価 配管質適節 (関止板) の構造健全性評価として、許容圧力が最小となる X-90 について評価する。			配官貝理部(闭工权)の計画対象を図 6-4 に小り。	
8.6.2 評価 (1) 応力評価 配管責通部(関止板)の構造健全性評価は、添付書類「VI-3-3-6-1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」に記載する。 (2) 許容圧力評価 配管責通部(関止板)の構造健全性評価として、許容圧力が最小となる X-90 について評価する。				
(1) 応力評価 配管貫通部 (閉止板) の構造健全性評価は, 添付書類「VI-3-3-6-1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」に記載する。 (2) 許容圧力評価 配管貫通部 (閉止板) の構造健全性評価として, 許容圧力が最小となる X-90 について評価する。			図 8-4、配管貫通部(閉止板)の評価対象	
1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」に記載する。 (2) 許容圧力評価 配管貫通部 (閉止板) の構造健全性評価として, 許容圧力が最小となる X-90 について評価する。				
書」に記載する。 (2) 許容圧力評価 配管貫通部 (閉止板) の構造健全性評価として, 許容圧力が最小 となる X-90 について評価する。				
(2) 許容圧力評価 配管貫通部 (閉止板) の構造健全性評価として, 許容圧力が最小 となる X-90 について評価する。				鼻
配管貫通部 (閉止板) の構造健全性評価として, 許容圧力が最小となる X-90 について評価する。			書」に記載する。	
配管貫通部 (閉止板) の構造健全性評価として, 許容圧力が最小となる X-90 について評価する。			(2) 数索压力起伍	
となる X-90 について評価する。				ds
				⁷ 1
			Z-90 の配管貫通部 (閉止板) については, 告示第501号第	24

先行審査プラントの記載との比較表 (VI-1-8-1-別添1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 条第1項に記載の評価式を準用し, 許容引張応力に運転状態Ⅳにお する一次一般膜応力の許容値である重大事故等時の最高温度の 2/3 Suを与えることで許容圧力を算出し、重大事故等時の最高圧力を 上回ることを確認する。 8.6.3 評価結果 (1) 応力評価 配管貫通部 (閉止板) の強度評価方法及び評価結果は、添付書類 「VI-3-3-6-1-4 原子炉格納容器配管貫通部及び電気配線貫通部 の強度計算書」に記載する。 (2) 許容圧力評価 配管貫通部(閉止板)の構造健全性について,既工認と同様の評 m手法である告示第501号に示される必要最小板厚の式を用い 杵容圧力を求め,限界圧力(最高圧力)を上回ることを確認した。 評価結果の詳細を表 8-9 に示す。 表 8-9 X-90 の配管貫通部 (閉止板) の許容圧力評価結果 平板: SGV49 許容圧力算定式:告示第501号第24条第1項を準用 $P = S / K \times (t / d)^{2}$ 許容引張応力 (200℃における 2/3 S。値を使用) (MPa) 200°Cにおける許容圧力 3,459 MPa > 0,854 MPa (2Pd)

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		8.7 配管貫通部 (伸縮継手)	<柏崎刈羽7号機との比較>
		8.7.1 評価方針	設備の相違
		配管貫通部(伸縮継手)は、原子炉格納容器本体に配管等を接続	・②の相違
		するために設けた部材であり、短管に溶接構造で取り付けられてい	記載内容の比較のため、東流
		る。	第二の伸縮継手の記載順序を
		配管貫通部(伸縮継手)の設計時に考慮される機能喪失要因は、	変更
		脆性破壊及び疲労破壊が考えられる。今回の評価条件である 重大事	記載表現の相違
		故等時 の条件を考慮した場合, 脆性破壊が生じる温度域でないこと	
		から、脆性破壊は評価対象外と考えることができる。	
		したがって、配管貫通部(伸縮継手)の機能喪失要因は、通常運	
		転時に累積される低サイクル疲労に加えて重大事故等時に累積さ	
		れる低サイクル疲労による疲労破壊が想定される。	
		このため、 <mark>重大事故等時</mark> での配管貫通部(伸縮継手)の健全性確	
		認について、疲労破壊を評価する。	
		配管貫通部 (伸縮継手) の評価対象を図 8-5 に示す。	
		日8-5 配管貫通郎 (伸縮離手) の評価対象 8.7.2 評価結果 配管貫通部 (伸縮継手) の強度評価方法及び評価結果は、添付書類「VI-3-3-6-1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」に記載する。	記載表現の相違記載表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	・る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		8.8 配管貫通部(短管)	<柏崎刈羽7号機との比較>
		8.8.1 評価方針	設備の相違
		配管貫通部 (短管) は、伸縮継手付貫通部に用いられる短管で、	・②の相違
		スリーブ及び伸縮継手等に溶接固定されている。	記載内容の比較のため, 東海
		配管貫通部(短管)の設計時に考慮される機能喪失要因は、脆性	第二のセーフエンドの記載順
		破壊、疲労破壊、座屈及び延性破壊が考えられる。今回の評価条件	序を変更
		である <mark>重大事故等時</mark> の条件を考慮した場合, 脆性破壊が生じる温度	記載表現の相違
		域でないこと、繰り返し荷重が作用しないこと及び圧縮力が短管に	設備名称の相違
		生じないことから, 脆性破壊, 疲労破壊及び座屈は評価対象外とす	
		る。	
		したがって、配管貫通部(短管)の機能喪失要因は、高温状態で	設備名称の相違
		内圧を受け、過度な塑性変形に伴う延性破壊が想定される。	
		このため、 <mark>重大事故等時</mark> での配管貫通部(短管)の 健全性確認 に	設備名称の相違
		ついて, 延性破壊を評価する。	記載表現の相違
		配管貫通部(短管)の評価対象を図 8-6 に示す。	設備名称の相違記載表現の相違
		原本配管 (株成 (株成) (設備構造の相違
		図 8-6 配管貫通部(短管)の評価対象 	設備名称の相違
		8.8.2 評価	記載表現の相違
		(1) 応力評価	記載表現の相違
		配管貫通部(短管)の構造健全性評価は,添付書類「VI-3-3-6-1-	・④の相違
		4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」	
		に記載する。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	5原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
·		(2) 許容圧力評価	記載表現の相違
		配管貫通部(短管)の構造健全性評価として、許容圧力が最小と	
		なる X-10A~D について評価する。	
		X-10A~D の配管貫通部 (端板) については, 告示第501号第2	
		条第1項第1号に記載の評価式を準用し、許容引張応力に運転状態	
		IVにおける一次一般膜応力の許容値である重大事故等時の最高活	□ I
		度の 2/3 S uを与えることで許容圧力を算出し、重大事故等時の最高圧力を上回ることを確認する。	Ž.
		尚圧力を工 <u>四</u> ることを難認する。	
		8.8. <mark>3</mark> 評価結果	
		(1) 応力評価	記載表現の相違
		配管貫通部 (短管) の強度評価方法及び評価結果は, 添付書類「N	・④の相違
		-3-3-6-1-4 原子炉格納容器配管貫通部及び電気配線貫通部の熱	Ř
		度計算書」に記載する。	
		(2) 許容圧力評価	
		配管貫通部(短管)の構造健全性について、既工認と同様の評価	
		手法である告示第501号に示される必要最小板厚の式を用いま	F
		容圧力を求め、限界圧力(最高圧力)を上回ることを確認した。	
		評価結果の詳細を表 8-10 に示す。	
		表 8-10 X-10A~D の配管費通常(短管)の許容圧力評価結果	
		内面に圧力を受ける管台:86V49	
		許容圧力算定式:告示第501号第26条第1項第1号を準用	
		P = 2 S η t / (D0.8 t)	
		S (200 Cにおける 2/3 S。旗を使用) (Wa) 281 カ 部下効率 1,00	
		t 核互内点 (mm)	
		D。 脚の外径 (mm) 1066.80 P 200°Cには3ける許容圧力 (MPa) 10.698	
		10, 698 MPa > 0, 854 MPa (2Pd)	

柏崎刈羽原子力発電所第7号機	東海第二発電所	ける原子炉格納容器の放射性物質閉じ込め機能健全性について)
		記載表現の相違
		8.9 評価結果まとめ 配管貫通部の健全性評価結果を表 8-11 に示す。
		EC目 貝 連 部 の 使 主 注 計 山 結 木 ど 衣 の 11 (こ ハ り 。
		No. 評価項目 評価方法 評価 結果 設備の相違
		応力評価 添け書類 (M-2-2-3-1 原子中心和目再属原設備の強度計算書)。 「VI-3-3-3-3 展音炉合理材の機構設備の強度計算書」。 「VI-3-3-3-3 展音炉合理材 商業設備の強度計算書」。「VI-3-3-3-4 非常用炉心 冷却設備で心態原子が注水変像の強度計算書」。「VI-3-3-4-1 期神解動 水圧設備の強度計算書」。「VI-3-3-4-1 期神解動 水圧設備の強度計算書」。「VI-3-3-4-3 期神用空気設備の強度計算書」。「VI-3-3-6-2-8 期神用空気設備の強度計算書」。「VI-3-3-6-2-9 原子炉格前容器度全定機の強度計算書」。「VI-3-3-6-2-9 原子炉格前容器度全定機の強度計算書」。「VI-3-3-6-2-9 原子炉格前容器所強限設備の強度計算書」。「VI-3-3-6-2-9 原子炉格前容器所強限設備の強度計算書」。「VI-3-3-6-2-9 原子炉格前容器所強限效能の強度計算書」。「VI-3-3-6-2-9 原子炉格前容器所強限数定備の強度計算書」。「VI-3-3-6-2-9 原子炉格前容器所置。」 「成子生力」 「成子・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・大学・
		2 スリーブ 買通師の強度計算書」に記載 許容圧力 <u> </u>
		応力評価 部付書類「VI-3-3-6-1-4 原子が格前容器配管賞通部及び 電気影響資部の砂度計算書」に記載 選挙圧力 野価 大事板等等における許等圧力が評価に力が評価に 力が以上であることを確認した
		応力評価 添付書類「VI-3-3-6-1-2 機器樂出入口の強度計算書」に 記載 記載 記載 記載 記載 記載 記載 記載

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	東海第二発電所		<柏崎刈羽7号機との比較> 設備の相違 ・②の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	安川原子力発電所第2号機 本川原子力発電所第2号機	備考
		9. 電気配線貫通部	
		9.1 概要	
		電気配線貫通部について、限界温度、限界圧力環境下における放	記載表現の相違
		射性物質の閉じ込め機能が維持されることを確認する。	
		電気配線貫通部には、高電圧用と低電圧用の二種類があり、電気	
		配線貫通部本体のヘッダに高電圧用モジュール又は低電圧用モジ	相違
		ュールが設置されている。	
		電気配線貫通部 (高電圧用) の構造を図 9-1, 電気配線貫通部 (低電圧用) の構造を図 9-2 に示す。	
		電圧用がの構造を図 5~2 にかり。 高電圧用モジュールは、スリーブ~アダプタ間、アダプタ~へッ	設備を称の相違 設備構造の
		ダ間及びヘッダ〜モジュール間の溶接部並びにモジュール内部の	
		エチレンプロピレンゴム (以下「EPゴム」という。) によりシール	
		機能を維持する構造となっている。	
		低電圧用モジュールは,スリーブ~アダプタ間,アダプタ~ヘッ	設備名称の相違、設備構造の
		ダ間の溶接部、ヘッダ~モジュール間のメタルOリングによる金属	相違
		シール並びにモジュール内部のエポキシ樹脂によりシール機能を	設備構造の相違
		維持する構造となっている。	
		上記を踏まえ、以下の構成で健全性を確認する。	
		9.2 項では,電気配線貫通部(アダプタ)の構造健全性を確認す	
		る。	
		9.3 項では、電気配線貫通部(ヘッダ)の構造健全性を確認する。	
		9.4項では,電気配線貫通部(モジュール)のシール部の機能維	
		持を確認する。	
		なお, スリーブについては, 8.3 配管貫通部 (スリーブ) に含め	記載表現の相違
		て確認している。	

生行薬をプラントの記載との比較表 (W-1-8-1-別派 1 電大車が築時における原子位数納交界の放射性物質問じ込め機能健や性について)

柏崎刈羽原子力発電所第7号機	東海第二発電所	正子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		原子が集前容器 内側	設備構造の相違
		図 9-1 電気配線貫通部(高電圧用)概形図 <u>原子型機能容器 内質</u> <u>原子型機能容器 内質</u>	設備名称の相違
		マルフリング取付位置 C部開補 エネンル材 (エボキン推動) カーブル	
		図 9-2 電気配線貫通部(低電圧用)概形図	設備名称の相違

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における原子 東海第二発電所	女川原子力発電所第2号機	備考
		9.2 電気配線貫通部 (アダプタ)	
		9.2.1 評価方針	
		アダプタの設計時に考慮される機能喪失要因は、脆性破壊、疲労	<柏崎刈羽7号機との比較>
		破壊、座屈及び延性破壊が考えられる。今回の評価条件である重大	評価方針の相違
		事故等時の条件を考慮した場合, 脆性破壊が生じる温度域でないこ	・柏崎刈羽は,基本板厚計算書
		と、繰り返し荷重が作用しないこと及び過度の圧縮力がアダプタに	にて評価を実施している。
		生じないことから、脆性破壊、疲労破壊及び座屈は評価対象外と考	
		えることができる。	
		したがって, アダプタの機能喪失要因は, 高温状態で内圧による	
		過度な塑性変形に伴う延性破壊が想定される。	
		なお、電気配線貫通部は複数設置されているが、構造上は高電圧	
		用と低電圧用の2種類であることから、それぞれについて評価を実	
		施する。	
		9.2.2 評価	
		(1) 応力評価	記載表現の相違
		アダプタの強度評価方法及び評価結果は,添付書類「W-3-3-6-	・ ④の相違
		1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算	
		書」に記載する。	
		(2) 許容圧力評価	
		アダプタの構造健全性評価として,告示第501号第26条第1	
		項第1号に記載の評価式を準用し、許容引張応力に運転状態IVにお	
		ける一次一般膜応力の許容値である 200℃の 2/3Suを与えること	
		で許容圧力を算出し、重大事故等時の最高圧力を上回ることを確認	
		する。	

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-I-8-I-別旅 1 重大事故等時における原子炉格 東海第二発電所	女川原子力発電所第2号機	備考
		9.2.3 評価結果	
		(1) 応力評価	記載表現の相違
		アダプタの強度評価方法及び評価結果は、添付書類「VI-3-3-6-	④の相違
		1-4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書」に記載する。	
		自」(CHURA))(Jo	
		(2) 許容圧力評価	
		アダプタの構造健全性について, 既工認と同様の評価手法である	
		告示第501号に示される必要最小板厚の式を用い許容圧力を求	
		め、限界圧力(最高圧力)を上回ることを確認した。	

柏崎刈羽原子力発電所第7号機 東海第二発電所	おける原子が格納各番の放射性物質闭じ込め機能度主性について) 女川原子力発電所第2号機 備考

赤字:設備,運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	京高東 (VI-1-8-1-別添1 重大事政等時における原子が東海第二発電所		記載表現の相違 ・ ④の相違

2021年8月19日 02-工-B-08-0013_改 2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	「東海第二発電所 東海第二発電所		・④の相違・・④の相違

	柏崎刈羽原子力発電所第7号機	東海第二発電所	5原子炉格網谷器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
選友を製造の選挙 (チジュール) のシール材として、落意正用モジールには日本の主義を持続しているとめ、所子が応募があからは、変情をあかの違数であため、所子が応募があからした。反正のため、所子が応募があれる。 このため、200℃、空もでのモジュールの複合性高級について、透過を表現の前達 力が定型数を基にシール機能が発揮されることを確認する。 10 既じの電素肝による製酸結果を用いた評価(高電圧用モジュール) 流心圧用モジュールは、モジュール内部の 印 ゴムによりシール 世を必ず持しており、既じの電が用 「おおおお書館 東スキトー・ジェンル 村性を送すしており、現じの電が用 「おおお書館 東スキトー・ジェンル 村性を経験性 (30%) 報告的」におけるお認識をサールを対象している。 この収入場では、高速圧用モジュールを対象として、原子が格的の取気を見なることを確認している。 この収入場では、高速圧用モシールを対象として、原子が格的音楽内の収集を指示している。 この収入場では、高速圧用モンルを対象として、原子が格的音楽内の収集を指示されることとが認まった。 この収入場では、高速圧用モンル・のを対象として、原子が格的音楽内の収集を指示を高端のの取る発展を表とのでとした場合における複数を影響にあった。 正式 原本の表現を表現を表現を表現している。 また、現本の表現を表現している。 また、現本の表現している。 また、現本の表現している。また、また、現本の表現している。また、現本の表現している。また、現本の表現している。また、現本の表現している。また、現本の表現している。また、現本の表現している。また、現本の表現している。また、また、また。また、また、また、また、また、また。また、また、また、また、また。また、また、また、また。また、また、また。また、また、また。また、また。また、また、また。また、また、また。また、また。また。また。また、また。また。また。また。また、また。また。また。また。また。また。また。また。また。また。また。また。また。ま			9.4 電気配線貫通部 (モジュール)	
マールには、即 ゴム、松痘原用モジュールではなが多く 製造の場合の場合 表現がある。原子が格が設計り至力及では使の上昇に作う痛に 記載を現める このため、200℃、200℃、200℃、200℃、200℃のから、200			9.4.1 評価方針	
しているため、原子呼略納容器内の圧力及び温度の上昇に伴う高温 数化によるシール機能の低下が拡進される。 このため、200℃、空をでのモジュールの健全性確認について、済 去の検証気管を基にシール機能が確保されることを確認する。 記憶表現の相違 ・ (1) 歴任の職法際による試験結果を用いた評価(高電任用モジュール ・ (2) 海田・ (2) 海			電気配線貫通部(モジュール)のシール材として、高電圧用モジ	設備名称の相違
のため、200°C、201 でのモジュールの機会性経営について、適 記載表現の相違 記載表現の相違 記載表現の相違 記載表現の相違 記載表現の相違 記載表現の相違 ・①の相違 ・②の相違 ・※の ・※の ・※の ・※の ・※の ・※の ・※の ・※の ・ ・ ・ ・			ュールには EP ゴム, 低電圧用モジュールにはエポキシ樹脂を使用	設備名称の相違
このため、200°C、2Pd でのモジュールの健全性確認について、遺 記載表現の相違 表の確認試験を高にシール機能が確保されることを確認する。 記載表現の相違 ・ ①の細菌			しているため、原子炉格納容器内の圧力及び温度の上昇に伴う高温	設備構造の相違
このため、200°C、201°Cのモジュールの健全性確認について、過 去の検証実験を逃にシール機能が維係されることを確認する。 記載表現の相違 ・①の相違 9.4.2 評価 (1) 既在の選決時による試験結果を用いた評価(高電圧用モジュール)			劣化によるシール機能の低下が想定される。	記載表現の相違
表の検証試験を払にシール機能が確保されることを確認する。 9.4.2 評価 (1) 既往の磁共研による試験結果を用いた評価(高値圧用モジュール) (1) 既往の磁共研による試験結果を用いた評価(高値圧用モジュール) (2) 点性用モジュールは、モジュール内部の EP ゴムによりシール (2) 性能を維持しており、既往の電共研「検納容器電気ペネトレーションの制性確認試験 (5832) 報告書」における検証が数でシール機能が確保されることを確認している。 (3) この電共研では、高電圧用モジュールを対象として、原子炉格納容器両側の電気配度異通応結手箱部分の素規条件を200℃とした場合における電気配験異通応のシール性能について検証を行っている。 (3) 正成し、高電圧用モジュールの対象として、原子炉格納容器時間の電気配度異通応結手箱部分の素規条件を200℃とした場合における電気配験を対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対				記載表現の相違
表の検証試験を払にシール機能が確保されることを確認する。 9.4.2 評価 (1) 既往の磁共研による試験結果を用いた評価(高値圧用モジュール) (1) 既往の磁共研による試験結果を用いた評価(高値圧用モジュール) (2) 点性用モジュールは、モジュール内部の EP ゴムによりシール (2) 性能を維持しており、既往の電共研「検納容器電気ペネトレーションの制性確認試験 (5832) 報告書」における検証が数でシール機能が確保されることを確認している。 (3) この電共研では、高電圧用モジュールを対象として、原子炉格納容器両側の電気配度異通応結手箱部分の素規条件を200℃とした場合における電気配験異通応のシール性能について検証を行っている。 (3) 正成し、高電圧用モジュールの対象として、原子炉格納容器時間の電気配度異通応結手箱部分の素規条件を200℃とした場合における電気配験を対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対象に対				
9.4.2 評価 (1) 既往の電失所による試験結果を用いた評価(高電圧用モジュール)			このため,200℃,2Pd でのモジュールの健全性確認について,過	記載表現の相違
			去の検証試験を基にシール機能が確保されることを確認する。	
9.4.2 評価 (1) 既往の電共研による試験結果を用いた評価(高電圧用モジュール) 高電圧用モジュールは、モジュール内部の EP ゴムによりシール 性能を維持しており、既往の電果研「格納容器電気ペネトレーションの特性確認試験 (\$63/3) 報告書」における検証試験でシール機能が確保されることを確認している。 この電共研では、高電圧用モジュールを対象として、原子が格的容器内側の電気配線資通部場子循部分の環境条件を 200℃とした場合における電気配線資通部場子循部分の環境条件を 200℃とした場合における電気配線資通部のシール性能について検証を行っている。 「既往の電共研の試験結果を表も」に示す。 本書 電販の機能機能 (高度に対すジュール) 「展子等所が配料を開発を対象」。 「示す」 本書 電販の機能機能 (高度に対すジュール) 「展子等所が配料を開発を対象」。 「表現し、関係と、関係と、関係と、、、、、、、、、、、、、、、、、、、、、、、、、、、				記載表現の相違
(1) 既往の竜共研による試験結果を用いた評価(高電圧用モジュール)				・ ④の相違
(1) 既往の竜共研による試験結果を用いた評価(高電圧用モジュール)				
 一ル) 高電圧用モジュールは、モジュール内部の EP ゴムによりシール 性能を維持しており、既往の電共研「格納容器電気ベネトレーションの特性施設試験 (S63/3) 報告書」における検証試験でシール機能が確保されることを確認している。 この電共研では、高電圧用モジュールを対象として、原子炉格納容器内側の電気配線質通部場子箱部分の環境条件を 200℃とした場合における電気配線 質通部のシール性能について検証を行っている。 既往の電共研の試験結果を表 9・1 に示ける 大き・1 定点 では、高電圧・デュール) 東京・2 (高電用をジュール) 東京・2 (本のでは、高電用をジュール) 東京・2 (本のでは、高電圧・デュール) 東京・2 (本のでは、高電圧・デュール) 東京・2 (本のでは、大き・2 (本のでは、大き・2			9.4.2 評価	
高電圧用モジュールは、モジュール内部の EP ゴムによりシール 性能を維持しており、既往の電共研「格納容器電気ベネトレーションの特性確認試験 (\$63/3) 報告書」における検証試験でシール機能が確保されることを確認している。 この電共研では、高電圧用モジュールを対象として、原子炉格納容器内側の電気配線責通部端子箱部分の環境条件を 200℃とした場合における電気配線貫通部のシール性能について検証を行っている。 既往の電共研の試験結果を表 9-1 に示す。 東・1 定検が実験観 (新電エ用モジュール) 東・1 定検が実験を (第2 にごう 本の 単立 エン・人名 温度 (CC) ・ 本のの高点ななし コロ			(1) 既往の電共研による試験結果を用いた評価(高電圧用モジュ	記載表現の相違
性能を維持しており、既往の電共研「格納容器電気ペネトレーションの特性確認試験(S63/3)報告書」における検証試験でシール機能が確保されることを確認している。 この電共研では、高電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を 200℃とした場合における電気配線貫通部のシール性能について検証を行っている。 既往の電共研の試験結果を表 9-2 (に示す。 要件 電機器・			ール)	・女川は高電圧用と低電圧用
ンの特性確認試験 (S63/3) 報告書」における検証試験でシール機能が確保されることを確認している。 この電共研では、高電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を 200℃とした場合における電気配線貫通部のシール性能について検証を行っている。 既往の電共研の試験結果を表 9-3 (に示す。 「成子が格納容器内側が存储のなり 一次 一次 一次 一次 日報を指している。 既往の電共研の試験結果を表 9-3 (に示す。 「成子が格納容器内側が存储のなり 一次 一次 日報			高電圧用モジュールは、モジュール内部の EP ゴムによりシール	モジュール分けて記載してい
が確保されることを確認している。 この電共研では、高電圧用モジュールを対象として、原子炉格納 容器内側の電気配線貫通部端子箱部分の環境条件を 200℃とした場合における電気配線貫通部のシール性能について検証を行っている。 既往の電共研の試験結果を表 9-3 に示す。 既往の電共研の試験結果を表 9-3 に示す。 東9-1 電料の映像線 (高電圧用モジュール) 東9-1 電料の映像線 (高電圧用モジュール) 東9-1 電機を推			性能を維持しており, 既往の電共研「格納容器電気ペネトレーショ	る。
この電共研では、高電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部のシール性能について検証を行っている。 における電気配線貫通部のシール性能について検証を行っている。 既往の電共研の試験結果を表 9-3 に示す。 ます。 電機・			ンの特性確認試験 (S63/3) 報告書」における検証試験でシール機能	
容器内側の電気配線貫通部端子箱部分の環境条件を 200℃とした場合における電気配線貫通部のシール性能について検証を行っている。 既往の電共研の試験結果を表 9-3 に示す。 表9-3 に示す。 表9-4 電共研の試験結果 (高電圧用モジュール) 「原子が協計容器内側電子箱部分の ラー マル コネ コネ コネルー版 温度 (E) (C) ((P)a) (0) を開放 (C) ((C) ((P)a) ((D) を開放 (C) ((D) ((D) ((D) ((D) ((D) ((D) ((D)			が確保されることを確認している。	
合における電気配線費通部のシール性能について検証を行っている。			この電共研では、高電圧用モジュールを対象として、原子炉格納	
医注解 () () () () () () () () () (
既往の電共研の試験結果を表 9-3 に示す。 変りを発音を表す。 表9-3 に示す。 原子が格容器外側医力を依定としている。 の (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61 (20) (0,61			合における電気配線貫通部のシール性能について検証を行ってい	
表 9-3 選集所の試験結果(高電圧用モジュール) 原子 好格音容器内側端子 育部分の 選皮を 日				
原子 5 格納容器内側端子衛部分の 選度 圧力 1 時間 試験 温度 (CC) (UPa) (h) 雰囲気 (CC) (CD) (CD) (CD) (CD) (CD) (CD) (CD)			既往の電共研の試験結果を表 9- <mark>3</mark> に示す。	
			原子が格納容器内側端子箱部分の 環境条件 (C) (Wa) (h) 雰囲気 (C) (C) 一次 温度 温度 (C) (Wa) (h) 雰囲気 (C) (C) 温度 温度 (C) (C) 200 (0.61 (220) ~0.79) 62.0 乾熱 (220) ~0.79) 194 44 一次シール部の漏えいなし 二次シール部の漏えいなし ・ () 内数値は、試験記録のグラフからの該取値。 ・ 試験時の原子好格納容器外側圧力及び高電圧用モジュールのハウジング内圧力は0 kPa (大気	
			The state of the s	

「放射器があら、原子が解析等所がの環境を含め、の環境を含め、 「おり、ののでは、次の、の語のでは、のものであり、378 (大変)の表現の大変があり、表している。 「おり、本来の大変が対力は、別り、780の、190 (カリ・378 大変)のよう。 また、本来の大変が対力は、別り、780の、190 (カリ・378 大変)のよう。 また、現場では、380 (カリ・カラ・ルール・大変)のよう。 また、現場を含む、190 (カリ・カラ・ルール・カラ・カール・カラ・カール・カラ・カール・カラ・カール・カラ・カール・カラ・カール・カラ・カール・カール・カール・カール・カール・カール・カール・カール・カール・カール	柏崎刈羽原子力発電所第7号機	東海第二発電所	・る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
会社のいて選りいせかいことが発展するという。 20 以表表表の報道 以下であらが、実務の可能を持て過かってナーベル。 透明上の年力と対象がある。 20 は 20 からを力・機が成立を行す入している。 その内部に受えた的 2 連出している。 1 20 からを力・機が成立を力・大力・ステムの、資子があります。 2 連用上の年力と対象がある。 2 連加・スタールの 20 はいかは、その大力・スタールの 20 はいかは 2 を力・大力・大力・大力・大力・大力・大力・大力・大力・大力・大力・大力・大力・大力			試験結果から,原子炉格納容器内側端子箱部分の環境条件を	記載表現の相違
次は、必定数の対処理上がは、多の1999 (初しまの)であり、空間、 以下であるが、実際の対処性質質等のデジュールは、適用からに対しては対して かかかりまい。2000年に対している。そのため、原子原格情報内に対して かかかりまい。2000年に対している。そのため、原子原格情報内に対している。 に対し、8万00年とのと場合とは対して、安ラールの 正式に対しる に対し、8万00年とのと場合とは対して、安ラールの 正式に対しる 度配す10.8500年(労用 (0.199~0.190~) 190~) 190 高電圧用をジュールに対ける全部ガスがメーデ (2) 原在の定所による解除体を用いた評価(他面作用をジュールに対している。 の電圧用をジュールに対し、安ラールのエボキン機能によりシール 健電作用をジュールは、安ラールのエボキン機能によりシール 健電作用をジュールは、モジュールのエボキン機能によりシール 健電作用をジュールは、モジュールのエボキン機能によりシール 健電を機能しており、度にの重大所に検索器機がネキレーのシール 健性を発音しており、度にの重大所に対しませませませませませませませませませませませませませませませませませませませ			200℃とした試験においては、一次シール部及び二次シール部それ	
現下であるが、実験の形式を経験技術的のキジュールは、運転やにおります。 ・ 選用上の圧力と対象性力を したがら、その方面に空音を約 0.189~ 0.199の の圧力で解している。そのため、足力が自動で解した方 がが到ととなった場合においても、モジュールの 即じぶした助きる 正力は、0.1990年の大きの場合であり、実験条件は実現の 200条件を包絡 していると無明する。 選定性の必ま料による試験技术を担いた終何(仮心圧用モジュールにおける音楽が入射人のイメージを図ります。 ・ 選集性用モジュールにおけます。 ・ 選集性用モジュールにおけます。 ・ 選集性用モジュールにおけます。 ・ 選集を担いた。 ・ のの提出用・ジュールの大きから機能によりか、ル機能を維持しており、後さの近天時(成の近天時では、またが大きないの大きないの大きないの大きないの大きないの大きないの大きないの大きないの			ぞれについて漏えいはないことが確認できている。	
けるシール部の個名と小機器のため、その内部に営業を約 9. 即かつから取りとなった場合においても、モジェールの日本におから正力は、0. 1980 であった場合においても、モジェールの日本におから正力は、0. 1980 であった場合においても、モジェールの日本におから正力の1. 7880 に対してもることから、既験条件は実施の201 条件を包括していると制助する。			なお,本試験の試験圧力は,約0.79MPa(約1.8Pd)であり,2Pd	試験結果に対する考察の相違
			以下であるが、実機の電気配線貫通部のモジュールは、運転中にお	・運用上の圧力と試験圧力を
カが 201 となった場合においても、モジュールの PP ゴムに触わる 圧力は、0.70mの 大の 50m/で となる。そのため、 減入手の実験性 カしていると 判断する。 住記 * 0.856mの (22d) ー (0.15mの・0.15mの) より 高電圧用モジュールにおける室煮ガス利入のイメージを図9-3に 下す。 ***********************************			けるシール部の漏えい確認のため,その内部に窒素を約 0.1MPa~	比較し評価している。
度力は、の、704度a~9、754度a~9、でのため、電共研の状態に 力の、70ga~以下となるとから、大統条件は実施の定め上の位置 していると調理する。 注記 * 1.0.854度a(2Pd) - (0.12ga~0.15ga)より 高度は用モジュールにおける至素ガメ封入のイメージを図9-3に 示す。 (2) 既性の電共研による試験結果を用いた評価(低度は用モジュール) 感度に用モジュールは、モジュールのエボキン側指によりシール 接接を維持しており、球性の商素研「総修理器類ペペネトレーションの外性経験数数(502の)等表書とは、1237る検証減数でシール性が 複様されることを検定している。 この電生研では、低度は用モジュールを対象として、原子が核相 容認内側の電圧を観度している。 にの電生研では、低度は用モジュールを対象として、原子が核相 容認内側の電圧を観度している。 この電生研では、低度は用モジュールを対象として、原子が核相 容認内側の電圧を観度している。 この電生研では、低度は用モジュールを対象として、原子が核相 容認的側の電圧を開ビジュールを対象として、原子が核相 容認的のでとした場合における電気能検で過速のシール性能 について検			0.15MPa の圧力で封入している。そのため,原子炉格納容器内の圧	
カの、7900。以下となることから、交換条件は実機の 294 条件を包格していると判断する。			力が 2Pd となった場合においても, モジュールの EP ゴムに加わる	
していると判断する。 建設率:0.85409 (29d) = (0.1809-0.1509-0) より 高電圧用モジュールにおける室本ガス対人のイメージを図9-3に 示す。 (2) 既住の電共研による試験結果を用いた評価(塩電圧用モジュール) 仮破圧用モジュールは、キジュールのエボキシ制能によりシール 機能を推荐しており、既任の選を練び終めるペネトレーショ ンの特性感認を験(50.30 割合当)における検証機関・シール性が 連接合れることを確認している。 この電比研では、電配圧用モジュールを対象として、成型圧圧を設定する。(3.00 当時の高度を解決 通常分子高が分の要集を料を、2.20で及び 400でとした場合における確保配業ののシール性能について検			圧力は, 0.704MPa~0.754MPa*となる。そのため, 電共研の試験圧	
注記字:0.85WPa (2P4) = (0.19Pa~0.15WPa)より 第電圧用モジュールにおける意表ガス対人のイメージを図9-3に 下す。			力 0.79MPa 以下となることから、試験条件は実機の 2Pd 条件を包絡	
高電圧用モジュールにおける豪素ガス刺入のイメージを図9-3に 示す。 (2) 既往の電共研による教験結果を用いた評価(低電圧用モジュール) 低電圧用モジュールは、モジュールのエボキシ側部によりシール 機能を維持しており、既往の電共研「格制容器電気ペネトレーショ ンの特性・施設制を(852) 報告書」における検証対策でシール作が 確保されることを確認している。 この電共研では、低電圧用モジュールと対象として、原子が核対 容器内側の電気配験(西海の形成 音節 分の 環境条件を 200℃及び 400℃とした場合における電気配検責通部のシール性能について検			していると判断する。	
(2) 既他の電法研による就験結果を用いた評価(低電圧用モジュール) 低電圧用モジュールは、モジュールのエボキシ樹脂によりシール機能を維持しており、既住の電共研「格特容器電気ペネトレーションの特性施認試験(S63/3)報告書」における検証試験でシール性が確保されることを確認している。この電共研では、低値圧用セジュールを対象として、原干炉格納容器内側の電気配験両連の部分を対象として、原干炉格納容器内側の電気配験両連の部分の環境条件を 200で及び400でとした場合における電気配解賣連部のシール性能について検			注記*:0.854MPa (2Pd) - (0.1MPa~0.15MPa) より	
(2) 既住の電共研による試験結果を用いた評価(低電圧用モジュール) 低電圧用モジュールは、モジュールのエポキシ樹脂によりシール 機能を維持しており、既住の電共所「格納容器電気ペネトレーシュ ンの物性確認試験(863/3)報告書」における検証試験でシール性が 確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子が格納 容器内側の電気配線質・循絡では、原子が格納 容器内側の電気配線質・高部分の環境条件を 200℃及び 400℃とした場合における電気配線質通部のシール性能について検			高電圧用モジュールにおける窒素ガス封入のイメージを図9-3に	
(2) 既往の電共師による試験結果を用いた評価(低電圧用モジュール) 低温圧用モジュールは、モジュールのエボキシ樹脂によりシール 機能を維持しており、既住の電共研「格納容器電気ベネトレーションの特性施認試験 (S63/3) 報告書」における検証試験でシール性が確保をれることを確認している。 この電共研では、低電圧用モジュールを対象として、原子所格納容器内側の電気配験責通部第子額部分の環境条件を 200℃及び40℃とした場合における電気配線費通節のシール性能について検			示す。	
(2) 既往の電共研による試験結果を用いた評価(低電圧用モジュール) 低電圧用モジュールは、モジュールのエボキン樹脂によりシール 機能を維持しており、既往の電共研「格納容器電気ベネトレーションの特性確認試験(S63/3)報告書」における検証試験でシール性が確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を200℃及び400℃とした場合における電気配線貫通部のシール性能について検			- 法シール部	
(2) 既往の電共研による試験結果を用いた評価(低電圧用モジュール) に載表現の相違 ・女川は高電圧用と低電圧用 低電圧用モジュールは、モジュールのエボキシ樹脂によりシール 機能を維持しており、既往の電共研「格納容器電気ベネトレーションの特性確認試験 (S63/3) 報告書」における検証試験でシール性が確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び400℃とした場合における電気配線貫通部のシール性能について検			###/ARAO.1 We-0.15 West	
(2) 既往の電共研による試験結果を用いた評価(低電圧用モジュール) に載表現の相違 ・女川は高電圧用と低電圧用 低電圧用モジュールは、モジュールのエボキシ樹脂によりシール 機能を維持しており、既往の電共研「格納容器電気ベネトレーションの特性確認試験(S63/3)報告書」における検証試験でシール性が確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び400℃とした場合における電気配線貫通部のシール性能について検				
ール) 低電圧用モジュールは、モジュールのエポキシ樹脂によりシール 機能を維持しており、既往の電共研「格納容器電気ペネトレーショ ンの特性確認試験 (S63/3) 報告書」における検証試験でシール性が 確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納 容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び 400℃とした場合における電気配線貫通部のシール性能について検			図9-3 高竜圧用モジュールにおける蜜素ガス対入のイメージ	
低電圧用モジュールは、モジュールのエポキシ樹脂によりシール 横能を維持しており、既往の電共研「格納容器電気ペネトレーションの特性確認試験(S63/3)報告書」における検証試験でシール性が確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を200℃及び400℃とした場合における電気配線貫通部のシール性能について検			(2) 既往の電共研による試験結果を用いた評価(低電圧用モジュ	記載表現の相違
機能を維持しており、既往の電共研「格納容器電気ペネトレーションの特性確認試験(S63/3)報告書」における検証試験でシール性が確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を200℃及び400℃とした場合における電気配線貫通部のシール性能について検			ール)	・女川は高電圧用と低電圧用
ンの特性確認試験 (S63/3) 報告書」における検証試験でシール性が 確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納 容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び 400℃とした場合における電気配線貫通部のシール性能について検			低電圧用モジュールは、モジュールのエポキシ樹脂によりシール	
ンの特性確認試験 (S63/3) 報告書」における検証試験でシール性が 確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納 容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び 400℃とした場合における電気配線貫通部のシール性能について検				
確保されることを確認している。 この電共研では、低電圧用モジュールを対象として、原子炉格納 容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び 400℃とした場合における電気配線貫通部のシール性能について検				-
この電共研では、低電圧用モジュールを対象として、原子炉格納容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び 400℃とした場合における電気配線貫通部のシール性能について検				
容器内側の電気配線貫通部端子箱部分の環境条件を 200℃及び 400℃とした場合における電気配線貫通部のシール性能について検				
400℃とした場合における電気配線貫通部のシール性能について検				
			証を行っている。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		既往の電共研の試験結果を表 9- <mark>4</mark> に示す。	記載表現の相違
		表 9-	・女川は高電圧用と低電圧用
		原子が格量容別時職等 有部分の 一次 二次 二次 原文件 温度 圧力 時間 試験 温度 温度 温度 (C) (Wa) (b) 努明気 (C)	モジュール分けて記載してい
		200 (0.60~ 62.0 放験 127 69 一次シール部の漏えいなし	る。
		(230) 0.81) 二次シール部の漏えいなし	
		(430) 0,83) 二次シール部の漏えいなし	
		 ()内数値は、記録グラフからの歳取値。 ・試験時の原子炉格納容器外側圧力及び航電圧用モジュール内部の圧力は0 kPa(大気圧)で実施。 	
		試験結果から、原子炉格納容器内側端子箱部分の環境条件を	:
		200℃及び 400℃とした試験において、一次シール部及び二次シー	-
		ル部それぞれについて漏えいはないことが確認できている。	
		なお,本試験の試験圧力は,約0.81MPa(約1.8Pd)であり,2P	d 試験結果に対する考察の相違
		以下であるが、実機の電気配線貫通部のモジュールは、運転中に対	・運用上の圧力と試験圧力を
		けるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa-	- 比較し評価している。
		0.15MPa の圧力で封入している。そのため、原子炉格納容器内のE	
		力が 2Pd となった場合においても、モジュールのエポキシ樹脂に加	
		わる圧力は、0.704MPa~0.754MPa*となる。そのため、電共研の記	
		験圧力 0.81MPa 以下となることから、試験条件は実機の 2Pd 条件を	
		包絡していると判断する。 注記*: 0.854MPa (2Pd) - (0.1MPa~0.15MPa) より	
		在元 ・ 0.05年	
		低電圧用モジュールにおける窒素ガス封入のイメージを図9-44	_
		示す。	
		3300)29	
		-0.5-NB	
		東法 (0.1 Wa- 0.15 WA	
		図 9-4 低電圧用モジュールにおける選素ガス對入のイメージ	

25 Surger (柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
### ((3) NUPEC 試験の試験結果を用いた評価	記載内容の比較のため、東海
の機能が終わられている。 この試験結果を表も			平成2年度から平成14年度に実施された重要構造物安全評価(原	第二及び柏崎刈羽の NUPEC の
			子炉格納容器信頼性実証事業) において, モジュールのシール性能	試験結果の記載順序を変更
別数			の確認試験が行われている。	
### ***			この試験結果を表 9- <mark>5</mark> に示す。	試験結果に対する記載表現の
2488年 248				相違
2488年 248				
数数結果から、200°C、約 1.8Pd (0.8MPa) において、 大変には、200°C、約 1.8Pd (0.8MPa) において、			表 9- <mark>5</mark> NUPEC 試験の試験結果	
			試験条件	
数数語			温度 圧力 時間 試験 破損時の 圧力 (MPa) (h) 雰囲気 温度 (C)	
「			モジュール 200 0.8 20 補欠いよし 400 0.8	
試験結果から、200℃、約 1. 8Pd(0. 8MPa)において、滴えいがないことが確認できている。また、低電圧用モジュールについては、約 2. 3Pd(1. 0MPa)までは圧力に依存せず、約 260℃までのシール機能が確認できている。 なお、実機の電気配線質通部のモジュールは、運転中におけるシールの図点とい確認のため、まの内部に窒素を約 0. 1MPa~0. 15MPaの圧力で対入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0. 704MPa~0. 754MPa [*] となり、NUPEC 試験の健全性確認試験圧力 0. 8MPa 以下と			版館圧用 200 0.8 20 漏テレンた 266~324 0.8~1.0	
試験結果から、200°C、約 1.8Pd(0.8MPa)において、漏えいがないことが確認できている。また、低電圧用モジュールについては、約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260°Cまでのシール機能が確認できている。 なお、実機の電気配験責通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa か 運用上の圧力と試験圧力をしているため、原子所格納容器内の圧力が2Pdとなった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa [*] となり、NUPEC試験の健全性確認試験圧力。3MPa以下と			 高電圧用モジュールについて、400℃まで漏えいなし。 ナゲし、400℃まで早星後、室温への降下時に漏えいなし。 	
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と			The second secon	
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
いことが確認できている。また、低電圧用モジュールについては、 約 2.3Pd(1.0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
約 2. 3Pd(1. 0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0. 1MPa~0. 15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0. 704MPa~ 0. 754MPa*となり、NUPEC 試験の健全性確認試験圧力 0. 8MPa 以下と			試験結果から, 200℃, 約 1.8Pd (0.8MPa) において, 漏えいがな	
約 2. 3Pd(1. 0MPa)までは圧力に依存せず、約 260℃までのシール 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0. 1MPa~0. 15MPa の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0. 704MPa~ 0. 754MPa*となり、NUPEC 試験の健全性確認試験圧力 0. 8MPa 以下と			いことが確認できている。また、低電圧用モジュールについては、	
 機能が確認できている。 なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0. 1MPa~0. 15MPa ・運用上の圧力と試験圧力をの圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~ 0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0. 8MPa 以下と 				
なお、実機の電気配線貫通部のモジュールは、運転中におけるシール部の漏えい確認のため、その内部に窒素を約 0. 1MPa~0. 15MPa ・運用上の圧力と試験圧力をの圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となった場合においても、モジュールに加わる圧力は、0.704MPa~0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と				
 ール部の漏えい確認のため、その内部に窒素を約 0.1MPa~0.15MPa ・運用上の圧力と試験圧力を の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となっ た場合においても、モジュールに加わる圧力は、0.704MPa~ 0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa以下と 				試験結果に対する考察の相違
の圧力で封入しているため、原子炉格納容器内の圧力が 2Pd となっ た場合においても、 モジュールに加わる圧力は、 0.704MPa~ 0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa 以下と				
た場合においても、モジュールに加わる圧力は、0.704MPa~ 0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa 以下と			· · · · · · · · · · · · · · · · · · ·	
0.754MPa*となり、NUPEC 試験の健全性確認試験圧力 0.8MPa 以下と			· · · · · · · · · · · · · · · · · · ·	
			なることから、2Pd での環境下において漏えいがないことが確認で	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		きていると判断する。	試験結果に対する考察の相違
		注記*:0.854MPa(2Pd)-(0.1MPa~0.15MPa)より	・運用上の圧力と試験圧力を
			比較し評価している。
		(4) 過去の試験結果を用いた評価	記載内容の比較のため、東海
		過去の電気配線貫通部の環境試験では、高電圧用モジュール及び	
		低電圧用モジュールを対象として、冷却材喪失事故模擬試験が実施	
		されており、高電圧用モジュール及び低電圧用モジュールのシール	(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(
		性能が確認されている。	試験結果に対する記載表現の
		この試験結果を表 9- <mark>6</mark> に示す。	相違
		表 9-6 冷却材喪失事故時の環境試験結果	
		温度(°C) 試験 湯えい有無 雰囲気	
		高進圧用 モジュール	
		鉄雅圧用 モジュール	
		既往の電共研による試験結果を用いた評価に示すとおり、原子炉	
		格納容器内を200℃と模擬した試験において、二次シール部は高電	
		圧用モジュールで 44℃, 低電圧用モジュールで 68℃となっており, のシール機能が確認された試験温度を下回って	
		いることから、原子炉格納容器が 200℃での環境下において漏えい	
		がないことが確認できていると判断する。	
		過去に実施した健全性が確認されている電気配線貫通部の積算	
		照射量は約 kGy であることから、重大事故等環境下における	
		電気配線貫通部のシール部のシール機能が確認できていると判断	
		する。	

2021年8月19日 02-工-B-08-0013_改 2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字:記載表現,設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別添1 重大事故等時における原子) 東海第二発電所	女川原子力発電所第2号機	備考
			試験結果に対する記載表現の
			相違

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		10. 原子炉格納容器隔離弁	
		10.1 概要	
		原子炉格納容器隔離弁の限界温度、限界圧力環境下における健全	記載表現の相違
		性を確認する。	記載内容の充実
		原子炉格納容器隔離弁の耐圧部は、弁箱、弁体、ボンネット及び	
		シール部等で構成しており、弁体、グランド部及びボンネット部等	設備名称の相違
		には、シール材を使用している。	
		原子炉格納容器隔離弁のうち、原子炉格納容器調気系バタフライ	設備名称の相違
		弁, 移動式炉心内計装系電磁弁及び移動式炉心内計装系ボール弁に	評価設備の相違
		は、非金属材料シール材を使用しており、高温劣化によるシール機	設備構成の相違
		能の低下が想定される。	
		また, 弁の耐圧部については, 機能喪失要因として, 脆性破壊,	
		疲労破壊, 座屈及び変形が考えられるが, 200℃, 2Pd の環境下では,	
		脆性破壊が生じる温度域ではないこと,繰り返し荷重が作用しない	
		こと、圧縮力が弁耐圧部に生じないことから、脆性破壊、疲労破壊	
		及び座屈は考慮する必要がない。	記載表現の相違
		したがって,原子炉格納容器隔離弁のうち,原子炉格納容器調気	設備名称の相違
		系バタフライ弁, 移動式炉心内計装系電磁弁及び移動式炉心内計装	評価設備の相違
		系ボール弁の耐圧部の機能喪失要因は、高温状態で内圧を受け、過	
		度な変形(一次応力)が想定されるため、以下の構成で健全性を確	
		認する。	
		10.2 項では、原子炉格納容器調気系バタフライ弁の機能維持を	設備名称の相違
		確認する。	
		10.3 項では、移動式炉心内計装系電磁弁の機能維持を確認する。	評価設備の相違
		10.4 項では、移動式炉心内計装系ボール弁の機能維持を確認す	設備名称の相違
		る。	
		上記以外の原子炉格納容器隔離弁については,以下の理由により	
		200℃, 2Pd の環境下で健全性を有している。	
		・弁の呼び圧力は各配管ラインの設計圧力に応じて適切なものが選	記載表現の相違
		定されており(耐圧性能が最小のものでも 1.03MPa),耐圧上問題と	記載表現の相違
		なることはない。	
		・弁のグランド部及びボンネット部のシール部には、黒鉛製パッキ	設備名称, 記載表現及び図書
		ン,ガスケット等の耐熱性に優れたものを使用しており,耐熱性上	構成の相違
		問題となることはない。	
		・弁座シート部は金属製である。	設備構成の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	・る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		10.2 原子炉格納容器隔離弁 (原子炉格納容器調気系バタフライ弁)	設備名称の相違
		10.2.1 評価方針	
		(1) 耐圧機能	記載表現の相違
		弁箱について,設計・建設規格 別表 1-1 に示す弁の許容圧力が,	
		200℃, 2Pd の環境条件を上回ることを確認する。	
		(2) 隔離機能	記載表現の相違
		原子炉格納容器調気系バタフライ弁は、弁座シート部に EPDM 材	設備名称の相違
		を使用しており、シール材の劣化によるシール性能の低下が想定さ	記載表現の相違
		れる。このため、弁座シート部については、より耐熱性能を向上さ	記載表現の相違
		せた改良 EPDM 製シール材への変更を実施することとしている。し	
		たがって、改良 EPDM 製シール材を用いた原子炉格納容器調気系バ	
		タフライ弁について,原子炉格納容器内が 200℃,2Pd の環境下に	
		おけるシール部への影響を検討する。	
		原子炉格納容器調気系バタフライ弁の評価対象を図10-1に示す。	設備名称の相違
			記載表現の相違
		**************************************	設備構造の相違
		図 10-1 原子炉格納容器調気系バタフライ弁の評価対象	設備名称の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	5原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
			記載表現の相違
		10.2.2 評価結果 (1) 耐圧機能 当該弁の圧力クラスは 1.03MPa (150LB) であり, 弁耐圧部の 200℃ における許容圧力 1.40MPa は, 2Pd (0.854MPa) を上回る。これにより, 弁耐圧部については, 200℃, 2Pd 環境下において健全性が維	記載表現の相違設計条件の相違
		持されることを確認した。 圧力クラス 1. 03MPa の弁の温度 — 許容圧力を図 10-2 に示す。 2.5	試験条件の相違による試験結 果の相違
		図 10-2 原子炉格納容器調気系バタフライ弁 (1.03 MPa (150LB) 圧力級) の温度一許容圧力	設備名称及び記載表現の相違
		(2) 隔離機能 隔離機能は,添付1に示す改良 EPDM 製シール材の 200℃, 2Pd の環境下における圧縮永久ひずみ試験結果に有意な劣化が認められないことから,シール機能が維持されることを確認した。	記載表現の相違
		また,実機相当の蒸気加熱漏えい試験を実施した結果,200℃, 2Pd 環境下において,弁座シート部からの漏えいはなく,弁座シート部の隔離機能が維持することを確認した。蒸気加熱漏えい試験条件を表 10-1 に示す。	記載表現の相違 設備名称の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	竹科谷帝の成別性物質団 したの機能障害性について) 女川原子力発電所第2号機	備考
		表 10-1 蒸気加熱漏えい試験条件 試験圧力	試験条件の相違
		以上のことから,原子炉格納容器調気系バタフライ弁について,限界温度,限界圧力環境下でも,放射性物質の閉じ込め機能を維持可能である。	
		10.3 原子炉格納容器隔離弁 (移動式炉心内計装系電磁弁) 10.3.1 評価方針 (1) 耐圧機能 弁箱について、設計・建設規格別表 1-1 に示す弁の許容圧力が、 200℃、2Pd の環境条件を上回ることを確認する。	設備の相違・②の相違
		(2) 隔離機能 移動式炉心内計装系電磁弁は、弁体シート部及び弁ふたシール部 に EPDM 材を使用しており、シール材の劣化によるシール性能の低下が想定される。このため、弁体シート部については、金属製シートへ変更し、弁ふたシール部については、より耐熱性能を向上させた改良 EPDM 製シール材への変更を実施することとしている。金属製シートは、200℃、2Pd の環境下における健全性を有している。また、改良 EPDM 製シール材は、200℃、2Pd 環境下におけるシール部への影響を検討する。 移動式炉心内計装系電磁弁の評価対象を図 10-3 に示す。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		#ふたシール製 様 動式炉心内計装系電磁车の評価対象	設備の相違 ・②の相違 <柏崎刈羽 7 号機との比較> 設備構造の相違
		10.3.2 評価結果 (1) 耐圧機能 当該弁の圧力クラスは 1.03MPa (150LB) であり, 弁耐圧部の 200℃における許容圧力 1.46MPa は 2Pd (0.854MPa) を上回る。これにより, 弁耐圧部については, 200℃, 2Pd 環境下において健全性が維持されることを確認した。 圧力クラス 1.03MPa の弁の温度ー許容圧力を図 10-4 に示す。	設備の相違・②の相違
		2.5 1.03MPalE力級(SUSF304)の許容圧力 A SA時環境(200℃、2P4) A SA時環境(200℃、2P4) 0.5 0.5 0.5 0.6 0 50 100 150 200 250 300 350 400 450 温度(℃) 図 10-4 移動式炉心内計族系電磁弁の温度一許容圧力	<柏崎刈羽 7 号機との比較> 試験条件の相違による試験結 果の相違
		(2) 隔離機能 隔離機能 隔離機能は、弁体シート部については、金属製シートであるため、200℃、2Pdの環境下においても、シール機能を維持可能である。また、弁ふたシール部については、添付1に示す改良 EPDM 製シール材の200℃、2Pd の環境下における圧縮永久ひずみ試験結果に有意な劣化が認められないことから、シール機能が維持されることを確	設備の相違・②の相違

柏崎刈羽原子力発電所第7号機	載との比較衣(VI-1-8-1-加添1 里人争放寺時にわける原士》。 東海第二発電所	女川原子力発電所第2号機	備考
		認した。	設備の相違
		以上のことから,移動式炉心内計装系電磁弁について,限界温度,	・②の相違
		限界圧力環境下でも、放射性物質の閉じ込め機能を維持可能であ	
		る。	
		10.4 原子炉格納容器隔離弁 (移動式炉心内計装系ボール弁)	設備名称の相違
		10.4.1 評価方針	
		(1) 耐圧機能	記載表現の相違
		弁箱について、設計・建設規格別表 1-1 に示す弁の許容圧力が、	
		200℃, 2Pd の環境条件を上回ることを確認する。	
		(2) 隔離機能	
		移動式炉心内計装系ボール弁は、弁座シート部にフッ素樹脂、弁	設備名称の相違
		ふたシール部に <mark>シリコンゴムを</mark> 使用しているため、シール材の劣化	弁仕様の相違
		によるシール機能の低下が考えられる。	記載表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		このため、弁座シート部及び弁ふたシール部については、より耐性の高い PEEK 製シール材又は改良 EPDM 製シール材への変更を実施することとしている。したがって、PEEK 製シール材は一般的な材料特性の確認により、改良 EPDM 製シール材は圧縮永久ひずみ試験の結果により、シール機能が確保されることを確認する。移動式炉心内計装系ボール弁の評価対象を図 10-5 に示す。	
		図 10-5 移動式炉心内計装系ボール弁の評価対象	設備構造の相違 設備名称の相違
			記載表現の相違
			記載表現の相違

柏崎刈羽原子力発電所第7号機	□取との比較衣 (VI-1-8-1-加你 1 単入争び寺時にわける原士炉1 東海第二発電所	女川原子力発電所第2号機	備考
		10. 4. 2 評価結果	記載表現の相違
		(1) 耐圧機能 当該弁の圧力クラスは 1. 03MPa (150LB) であり, 弁耐圧部の 200℃における許容圧力 1. 32MPa は 2Pd (0. 854MPa) を上回る。これにより, 弁耐圧部については, 200℃, 2Pd 環境下において健全性が維持されることを確認した。 圧力クラス 1. 03MPa の弁の温度一許容圧力を図 10-6 に示す。	記載表現の相違 設計条件の相違 試験条件の相違による試験結 果の相違
		図 10-6 移動式炉心内計装系ボール弁の温度-圧力	設備名称の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		女川原子力発電所第2号機 (2) 隔離機能	かけばの相違 設備名称の相違 記載表現の相違 設備名称の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	原子炉格網容器の放射性物質閉じ込め機能煙全性について) 女川原子力発電所第2号機	備考
		添付1 重大事故等時条件におけるガスケット健全性について	記載表現の相違
			・東海第二は各章の設備ごと
		1. はじめに	に記載している。
		原子炉格納容器のフランジシール部は、内圧が低い段階ではボル	
		トの初期締付けにより開口は抑制されているが、内圧の上昇に伴っ	
		て開口量が増加することにより、外部への漏えい経路を形成する。	
		ただし、フランジ部が開口しても、フランジ部の密閉性を担保して	
		いるシール材が健全であれば、シール材が開口に追従するため外部	
1		への漏えいを防止することができる。しかしながら, 重大事故等時	
1		の環境に晒されると、フランジシール部に使用されているシール材	
1		が劣化し、フランジの開口に追従できなくなり原子炉格納容器閉じ	
		込め機能を損なう可能性がでてくる。	
		そこで、原子炉格納容器フランジシール部に使用されているシー	
		ル材(シリコンゴム)について,重大事故等時の環境下の耐性が優	
		れた改良 EPDM 製シール材に変更して原子炉格納容器閉じ込め機能	
		の強化を図る。したがって、改良 EPDM 製シール材について、重大	
		事故等時の温度や放射線による劣化特性を試験により確認し、想定	
		される事故シナリオにおけるシール機能を評価する。なお、フラン	
		ジ部のシール材は、プラントの定期事業者検査時に開放される場合	
		には取替えを実施しており、通常運転中における劣化は軽微である	
		ことから、通常運転時の劣化を考慮せず重大事故等時の条件下での	
		評価を実施する。	
		2. 改良 EPDM 製シール材の試験について	
		2.1 改良 EPDM 製シール材の圧縮永久ひずみ試験について	
		改良 EPDM 製シール材の重大事故等時の環境における劣化特性を	
		確認するために、JIS K 6262「加硫ゴム及び熱加塑性ゴ	
		ムの常温・高温及び低温における圧縮永久ひずみの求め方」に準じ	
		た圧縮永久ひずみ試験を実施した。その結果を表1に示す。なお、	
		圧縮永久ひずみ測定とは、所定の圧縮率をかけ変形させた後、開放	
		時の戻り量を評価するものである。完全に元の形状に戻った場合を	
		0%とし、全く復元せずに完全に圧縮された状態のままである状態	

2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点 (設計方針の相違) 緑字: 記載表現, 設備名称の相違 (実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	
14-14-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	71910970 700 10071	を100%としている。圧縮永久ひずみが表1で示す「 %」は、シール材の初期締付量が mm であるとき、 mm 戻ることを意味する。この場合, mm のフランジ部開口まではシール機能が確保可能である。	<柏崎刈羽7号機との比較>
		表1 改良 EPIM 製シール材の圧縮水久 ひずみ試験*1 結果 談験温度	
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			女川は 2.3 項に記載の実機フランジ模擬試験の結果から、
			改良EPDM製シール材の実機へ
			の適用性を記載している。

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			女川は 2.3 項に記載の実機フ
			ランジ模擬試験の結果から,
			改良EPDM製シール材の実機へ
			の適用性を記載している。
		2.2 改良 EPDM 製シール材の実機フランジモデル性能確認試	験
		改良 EPDM 製シール材のシール機能の性能確認として,実	
		ンジを模擬した小型試験装置(ガスケット径:約250mm)を	用いた
		実機フランジ模擬試験 (実機フランジモデル試験) を実施して	おり,
		実機条件に近い状態でのシール健全性の確認を行っている。	試験装
		置は図1,図2に示しており、試験フランジの溝断面形状は	実機フ
		ランジで採用されているタング&グルーブ型(T&G型), 甲丸	型の 2
		種類を模擬している。フランジ断面形状は実機と同形状であ	り, 中
		心径のみを縮小した試験装置とする。試験試料の断面形状は	実機と
		同じとし、中心径を縮小した試験試料とする。あらかじめ γ 対	泉照射
		したシール材を用いて試験体を作り、高温環境に曝露した後	こ気密
		確認試験を実施する。	
		試験条件としては, 重大事故等時の条件を模擬するために	,放射
		線照射量はフランジガスケット部の重大事故後 7 日間の累	漬放射

先行審査プラントの記載との比較表(WI-1-8-1-別添1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 線量の目安である kGy を用いて実施している。また、EPDMの 劣化は一般的に酸素により引き起こされるとの知見に基づき、高温 曝露は蒸気ではなく高温空気(乾熱)で曝露し、温度については、 原子炉格納容器限界温度である 200℃と、更に余裕を見た 250℃、 300℃とし、それぞれ定める期間を一定温度で高温曝露する。また、 内圧作用時の実機フランジの開口を模擬するため、フランジ面に調 整シムを挟んで押し込み量を調整できる装置にしている。 本試験装置によりシール材を高温曝露した後, 気密確認試験を実 施した。気密確認試験では、原子炉格納容器限界圧力 2Pd(0.854MPa) を包絡する圧力で気密性を確認した。 図1 実機フランジ模擬試験の装置概要 試験装置外観 (フランジ開放時) 試験装置外観 (フランジ密閉時) 図2 実機フランジ模擬試験装置の外観 試験結果を表 2 に示す。フランジによるガスケット試験体の押込 み量が最小限 (0mm) であっても, 有意な漏えいは発生せず, 200℃・ 168 時間, 250℃・96 時間の耐性が確認された。300℃のケースにお いては試験途中にリークが発生したケースがあったものの, 概ね24 時間程度の耐性を有することが確認された。 図 3 に 200℃・168 時間の試験ケースにおける試験体の外観を示 す。図3より、フランジとガスケット試験体との接触面を境界とし

柏崎刈羽原子力発電所第7号機	②記載との比較表(VI-1-8-1-別称 1 重大事故等時における原 東海第二発電所	女川原子力発電所第2号機	備考
		て劣化(表面のひび割れ)は内周側で留まり、外周側に有意な劣化	
		が見られないことから, フランジ接触面でシール機能を維持できて	
		いることが確認された。また。断面形状より、劣化(表面のひび割	
		れ) はガスケット試験体の表面層のみで留まっているため、有意な	
		劣化が進行していないことが確認された。	
		表2 重大事故等条件での試験結果	<柏崎刈羽7号機との比較>
		No. フランジ型式 試験体 温度 継続時間 押し込み 漏えいの 量 有無	試験条件及びフランジ形状の
		1 T&G型 改良EPDM 200℃ 168時間 0 mm なし	相違による試験結果の相違
		2 甲丸型 改良 EPDM 200 °C 168 時間 0 mm なし 3 TAG型 改良 EPDM 250 °C 96 時間 0 mm なし	
		4 甲丸型 改良 EPDM 250 ℃ 96 時間 0 mm なし 5 T&G 型 改良 EPDM 300 ℃ 24 時間 0 mm なし	
		6 田東期 改真 FPDM 300 °C 24 時間 0 mm なり *2	
		注記*1: 下記条件は全ケース共通 試験圧力: 2 Pd 以上: (0.854 MPa 以上) 放射金属研制	
		注記*1: 下記条件は全ケース共通 10.854 MPa以上) 放射圧力: 2 Pd以上: (0.854 MPa以上) 放射経期対量 10.56	
		*2:継続時間 22 時間で漏えいが発生。	
		The state of the s	
		-800	
		160 00X 10X 10X	
		16262	
		図3 200℃・168 時間試験後の試験体外観(左:T&G型,右:甲丸型)	

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
	の記載との比較表(VI-1-8-1-別添 1 重天事政等時における原 東海第二発電所		(備考) < 名相崎刈羽7号機との比較> 代表原子炉格納容器貫通配管 の選定を記載しているが、女川では当該計算書にて定めて いることから、本図書では記載しない。

2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし)

: 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		る原子炉格納容器の放射性物質閉じ込め機能健全性について)	(備考) < 柏崎刈羽 7 号機との比較> 代表原子炉格納容器貫通配管 の選定を記載しているが、女 川では当該計算書にて定めて いることから、本図書では記載しない。

柏崎刈羽原子力発電所第7号機	東海第二発電所	・る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		添付2 原子炉格納容器隔離弁の抽出について 原子炉格納容器隔離弁について、原子炉格納容器限界温度、限界 圧力 (200℃, 2Pd) での健全性を確認するため、図1のフローに従 い対象弁を抽出した。	
		原子炉格納容器隔離弁 NO WES WES WES VES VES VES VES VES	
		図1 原子炉格納容器隔離弁の評価対象抽出フロー	図中の記載表現及び設備名称の相違

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-I-8-I-別旅 1 重大事故等時における原 東海第二発電所	女川原子力発電所第2号機	備考
相輸刈剁原子刀発電所第7号機	果海第二発電所 	財紙1 原子炉格納容器 限界温度・圧力に対する経年劣化の影響について 1. はじめに 原子炉格納容器の限界温度・圧力に関する評価における評価対象 部位について、放射性物質の閉じ込め機能が、経年劣化により低下していないことを確認し、今回の限界温度・圧力に関する評価結果に影響しないことを確認する。なお、考慮する経年劣化事象については、東海第二発電所において実施した高経年化技術評価を参考に検討する。 2. 原子炉格納容器本体 原子炉格納容器本体 原子炉格納容器本体については、経年劣化事象として腐食が考えられるが、原子炉格納容器本体は、鋼板表面に防食塗装を施すとともに、保全計画に基づく外観点検において表面の腐食、塗膜等の異常があれば、補修塗装を実施するとともに適切な肉厚管理を実施している。また、保全計画に基づき、計画的に肉厚測定を実施していることから、有意な劣化はないと考えられる。なお、原子炉格納容器本体に対して、一般社団法人日本電気協会電気技術規程「原子炉格納容器の漏えい率試験規程(JEAC4203)」(以下、「JEAC4203」という。)に基づく、全体漏えい率試験(1回/1定検)を実施し、放射性物質の閉じ込め機能の健全性を継続的に確認している。	<柏崎刈羽 7 号機との比較>
		3. 原子炉格納容器本体以外 原子炉格納容器本体以外の評価部位について、考慮する経年劣化 事象は以下のとおり。 ・ステンレス鋼配管については、塩分付着による外面の応力腐食割 れが考えられるが、社内規則に基づき計画的な塩化物付着量測定を 実施し、基準を満足しない場合は、純水拭きを実施することにより、 塩化物付着量を応力腐食割れ発生のしきい値未満に管理している	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		大の原子が格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機 ことから、有意な劣化はないと考えられる。 ・炭素鋼配管については、流れ加速型腐食による減肉が考えられるが、社内規則に基づき計画的な肉厚測定を実施し、基準を満足しない場合は、計画的に取替えを行うなど、適切な管理を行っている。・原子が格納容器隔離弁については、保全計画に基づく、計画的な分解点検、目視・表面検査を実施していることから、有意な劣化はないと考えられる。 ・電気配線貫通部については、経年劣化事象として樹脂等の劣化が考えられる。これらの部位の経年劣化については、長期健全性試験により、健全性を確認している。 ・機器搬出入用ハッチ等に使用しているガスケット等については、保全計画に基づく定期的な取替を実施していることから、経年劣化事象とはならない。 ・JEAC4203に基づく、全体漏えい率検査(1回/1定検)を実施し、放射性物質の閉じ込め機能の健全性を継続的に確認している。 以上のことから、経年劣化による原子炉格納容器の限界温度・圧力への影響はないと考える。	設備名称の相違

2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽 7 号機との比較>
			記載表現の相違

2021年8月19日 02-工-B-08-0013_改2

赤字: 設備, 運用又は体制の相違点(設計方針の相違) 緑字: 記載表現, 設備名称の相違(実質的な相違なし) : 前回提出時からの変更箇所

柏崎刈羽原子力発電所第7号機	の記載との比較衣(VI-1-8-1-別称1 里入事放寺時における原 東海第二発電所	女川原子力発電所第2号機	備考
		【当該記載項目なし】	<柏崎刈羽7号機との比較>
			記載表現の相違

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		別紙 2	
		原子炉格納容器限界温度・圧力負荷後の耐震性の影響について	記載表現の相違
		1. 検討方針	
		原子炉格納容器バウンダリ構成部の評価対象の各部位に対し、限	記載表現の相違
		界温度・圧力 (200℃, 2Pd) 負荷時に部材が弾性域又は塑性域のい	記載表現の相違
		ずれにあるか、また、除荷後に残留ひずみが生じるかを確認すると	
		ともに、除荷後の残留ひずみの挙動により、耐震性への影響を評価	
		する。	
		0 PV-21-(4-18	
		2. 検討結果 ・ の影響を無いていては、 となった。	
		残留ひずみの有無及び耐震性への影響有無については、一次応力	
		のみ考慮する部位と一次+二次応力を考慮する部位に分けて次の	
		とおり判断する。	3744年110年
		限界温度・圧力負荷時に周囲の部材の変形の影響を受けず二次応	記載衣現の相違
		力を考慮する必要がない場合は、一次応力が Sy を超えるか否かで	
		残留ひずみの有無を確認する。この場合、一次応力が Sy 以下の場	
		合は、除荷後に残留ひずみは生じない(図1,0→a→0)。Sy を超え	
		る場合は、除荷後に残留ひずみが生じる(図 1,0→a→b→c)。一次	
		応力は与えられた荷重に対して決定する応力であるため,同じ荷重 が作用した場合の変化は土は12年後よりであるため。同じ荷重	21 半ま印の担告
		が作用した場合の発生応力は除荷後も同等であり、限界温度・圧力	記載表現の相違 適用規格の相違
		負荷前と同じ弾性的挙動を示す(図1, c→b)。また、告示第501 号 の許容値は荷重を変形前の断面積で割った公称応力を基に設定	適用規格の相選・女川は,告示第501号を通
		でいける他は何里を変形前の例面傾く割った公外心力を差に放足されているため(図2)、告示第501号の許容値内であれば発生応	用している。(以降同様)
		力を算出する際に変形前の断面積を用いることに問題ない。	力している。(外件内物)
		かる 対料に予めひずみが作用した場合について、作用した予ひ	
		ずみ(~約19%)だけ応力ーひずみ曲線をシフトしたものと、予ひ	
		ずみが作用しない材料の応力ーひずみ曲線がほぼ一致するという	
		知見*が得られており、十分小さな残留ひずみであれば発生応力に	
		年える影響はないといえる。	記載表現の相違
		地震(許容応力状態 <mark>IV.S</mark>)の一次応力の許容応力は, <mark>運転状態IV</mark>	適用規格の相違
		の許容応力の制限内で同等であり、更に限界温度・圧力負荷前と同	
		が計各応力の制限的で向等であり、更に限外温度・圧力負荷削と向 様の挙動を示すことから、耐震性に影響はないと判断できる。	山製水がパ川建

柏崎刈羽原子力発電所第7号機	載との比較表(VI-1-8-1-別添 1 重大事故等時におけ 東海第二発電所	女川原子力発電所第2号機	備考
		注記*:一般社団法人 日本溶接協会「建築鉄骨の地震被害と鋼材	
		セミナー(第 12 回溶接構造用鋼材に関する研究成果発表	
		会)」 JWES-IS-9701, (1997)	
		1回目の荷重Fによる挙動	適用規格の相違
		真応力での引張強さ (費重を変形中の所面積で割った値) (費重を変形中の所面積で割った値) な S. な な (適用規格の相違
		図2 公称応力と真応力について	
		次に、限界温度・圧力負荷時に周囲の部材の変形の影響を受ける	記載表現の相違
		ため、局部的に発生する二次応力を考慮する必要がある場合は、構	
		造不連続部に発生する二次応力も考慮して,一次+二次応力で残留	
		ひずみの有無を確認する。一次+二次応力が Sy を超えると塑性域	
		に入るが(図 3(<mark>告示第 5 0 1 号 第 13 条解説</mark>), 0→A→B), 2Sy 以	適用規格の相違
		下の場合は除荷時にひずみが減少し、除荷後に残留ひずみは生じな	
		い (図 3 (<mark>告示第 5 0 1 号 第 13 条解説</mark>), B→C)。また, その後の	適用規格の相違
		挙動は図3のB-C上の弾性的挙動を示し、これは限界温度・圧力負	記載表現の相違
		荷前と同じである。	
		一次+二次応力が 2Sy を超える場合は, 残留ひずみ有と判断する	
		(図3(応力S1が2Sy超の場合))。しかし、十分小さな残留ひずみ	
		であれば、上述のとおり、発生応力に与える影響はないといえる。	記載表現の相違
		地震(許容応力状態 <mark>IV、S</mark>)の一次+二次応力の許容応力は,今回	
		の一次+二次応力の許容応力と同等であることから, 地震による外	
		力が加わったとしても一次+二次応力の許容応力の制限内であり,	
		さらに限界温度・圧力負荷前と同様の挙動を示すことから、耐震性	記載表現の相違
		に影響はないと判断できる。	
		なお, 一次応力が Sy を超える部位については, 残留ひずみ有と	
		判断する。このとき、上述のとおり、十分小さな残留ひずみであれ	

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		ば発生応力に与える影響はないといえる。	記載表現の相違
		原子炉格納容器隔離弁については、一次応力が判定値を超えないため、残留ひずみは生じない。 その他の評価部位については、一次応力が <mark>運転状態IV</mark> の許容応力の制限内であり、また、残留ひずみは十分に小さい。	
		したがって、耐震評価にて考慮する許容応力に対応する地震が生 じた場合、地震による外力が加わったとしても今回の評価で考慮し た許容応力の制限内であり、更に限界温度・圧力負荷前と同様の挙 動を示すことから、耐震性への影響はないと考える。	記載表現の相違

柏崎刈羽原子力発電所第7号機	: の比較表(VI-1-8-1-別添 1 重大事故等時における原 東海第二発電所	女川原子力発電所第2号機
		表1 各部位の評価温度・圧力負荷時の状況 設備の相違
		評価部位 評価部位 対策値 機能Uずみ 有無 これがませんのものとき
		原子が格納容器 ドライウ — 次十
		ドライウェル主 同左 おけ書類「VI-3-3-6-1-1 原子炉格納容器木体の強度計算書」に記 表
		機器搬出入用へ 阿左 節付書類「VI-3-3-6-1-2 機器搬出入口の強度計算書」に記載 ²
		別御棒壓動機構
		透がし安全弁際 同た 近仕事権「Ⅵ-2-2-5-6-1-2 維別原刊スロの胎中斗首業」(この絵*)
		対する場 「いーラー・ロードの (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		力を費出している (計種は18付22を90)。 #3:一次応力が運転状態Nの許容応力の制限やであり、また、代報ひずみは十分に小さい。 #4:設計・捷設規格 別表 1-1による 200℃での年の計容圧力。

柏崎刈羽原子力発電所第7号機	<u> </u>	女川原子力発電所第2号機	備考
		別紙3	
		原子炉格納容器貫通部の核分裂生成物沈着による影響について	
		炉心溶融時の原子炉格納容器の各貫通部において、よう素等の核	
		分裂生成物(以下「FP」という。)が沈着して発熱することにより、	
		温度上昇することが考えられる。このときの温度上昇を評価し、原	and the land of the safe
		子炉格納容器限界温度以下となることを確認する。	記載表現の相違
		1	
		1. 原子炉格納容器貫通部のFP 沈着による温度評価 にい窓頭味の原子炉放納窓器内のFD の沈着による温度 ト見につ	
		炉心溶融時の原子炉格納容器内の FP の沈着による温度上昇について, 格納容器破損防止対策の有効性評価における評価事故シーケ	
		ンスのうち雰囲気圧力・温度による静的負荷(格納容器過圧・過温	
		破損)を想定した条件にて、原子炉格納容器のリークパスへFPが	
		飛散し、リークパス内が FP で満たされ、目詰まりしたと保守的に	
		仮定し、FEM 解析により温度分布を確認した。	
		評価結果としては、原子炉格納容器の貫通部リークパス箇所の最	
		高温度は約178℃となり、原子炉格納容器限界温度である200℃を	解析結果に伴う最高温度の相
		下回ることから原子炉格納容器限界温度に影響ないことを確認し	違
		7c.	7
		注:原子炉格納容器内の FP の挙動としては、「シビアアクシデント	
		時格納容器內多次元熱流動及び FP 挙動解析 (原子力安全基盤	
		機構(JNES))」において、FPが飛散してもその多くは重力	
		沈降により原子炉格納容器内の床や壁表面にとどまり原子炉	
		格納容器自由空間に飛散しないという知見が得られているが、	
		リークパスへ FP が飛散し導かれたと仮定する。リークパスへ	
		のFPの捕集量についての知見はないことから保守的にFPが満	
		たされた状態と仮定する。(FP が満たされた状態は、漏えい量	
		は0となるが温度評価のため保守的に仮定する。)	記載表現の相違
		○原子炉格納容器貫通部の FP 沈着による温度評価	
		炉心溶融時の原子炉格納容器内の FP が貫通部のリークパスに付	
		着した場合の温度上昇について、下記条件にて評価する。イメージ	記載内容の充実
		図を図1に示す。	

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		a. 雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損) を	
		想定する。	
		b. 重大事故等時における原子炉格納容器内の FP の飛散について	
		は「シビアアクシデント時格納容器内多次元熱流動及び FP 挙動解	
		析(原子力安全基盤機構(JNES))」において、FP のほとんどが	
		重力沈降により原子炉格納容器内の床や壁表面に付着し原子炉格	
		納容器自由空間に飛散しないという知見が得られているが, FP が	
		飛散し貫通部リークパスへ到達したと仮定する。	
		c. 貫通部の仮定するリークパスは、原子炉格納容器の漏えい試験	
		に、 負週部の仮たするリークハスは、原子が恰納存益の備えい試験 結果をもとに約 1mm ² のリークパスと仮定する。	記載表現の相違
		結末をもこに約1mmrのリークハ人と収止する。	11、11、11、11、11、11、11、11、11、11、11、11、11、
		d. FP が飛散した貫通部リークパスにおける FP の捕集量について	記載表現の相違
		は、知見がないことから保守的にリークパスに FP が満たされた状	HOTAL SUIT FIRE
		態を仮定する。(リークパスへFP が満たされた状態では、漏えい率	
		は 0%/d となるが温度評価のため保守的に仮定する。)	記載表現の相違
		e. 原子炉格納容器貫通部リークパスに沈着した FP の発熱量は、N	
		UREG-1465 の炉心内の FP 量に対する原子炉格納容器内への放	
		出割合を核種ごとの発熱量に乗じて算出する。	
		f. FP の発熱量は、時間経過により低下するが、本評価では保守的	
		に沈着後の時間経過による発熱量の低下は考慮しない。	
		よう素については事象進展により化学組成が変動することが考え	
		られるが、寄与割合の大きなセシウムについて密度の高いC s I	
		(よう化セシウム)の密度を想定し, FP 質量の保守性を考慮し算出	
		する。	
		上記条件による評価結果として、原子炉格納容器内壁面温度が雰	
		田気圧力・温度による静的負荷(格納容器過圧・過温破損)時の最	
		西风圧力・価及による証的負債(格納谷益週圧・週価級負)時の取 大値である約171℃となる時、FPによる温度上昇は、約7℃であり	解析結果の相違
		へ旭でめる約1/10となる時、FPによる温度上升は、約10でめり 原子炉格納容器の貫通部表面温度は、約178℃となり原子炉格納容	
		原士炉恰納谷奋の貝迪部衣囬温度は、約1/8しとなり原士炉格納谷	門が花米の恒基

先行審査プラントの記載との比較表(WI-1-8-1-別添1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について)

柏崎刈羽原子力発電所第7号機 東海第二発電所 女川原子力発電所第2号機 備考 器限界温度 (200℃) を下回り原子炉格納容器限界温度に影響のな 記載表現の相違 いことを確認した。 炉内内蔵量のうち NUREG-1465 の PCV 放出割合及びリークバスの体 積を考慮した割合を核種ごとの発熱 量に乗じて評価 貫通部リークパスへ FPが沈着 原子炉格納容器 SA 時のPPは、原子 炉格納容器内の床及 び壁にほとんどが付 着するが、飛散する と仮定 リークバスの想定さ ・リークパスの想定される箇所 機器搬出入用ハッチ, 添がし安全弁験出入 ロ、制御棒駆動機構搬 出入口,所員用エアロック,配管貫通部等 格納容器内温度:約 169 °C (格納容器壁面温度最大時の雰囲気温度) (格納容器壁面温度と同じ) 最高温度:約178℃ 解析結果 (コンタ図) 図1 FP 沈着による温度上昇評価イメージ 格納容器型式及び解析条件の 相違による評価結果の相違

柏崎刈羽原子力発電所第7号機	記載との比較表(VI-1-8-1-別称 1 重大事政等時における原子炉格 東海第二発電所	女川原子力発電所第2号機	備考
		参考1	
		○FP 沈着による温度評価における保守性について	
		・リークパスを 1 箇所と仮定。	
		原子炉格納容器のリークパスは、数箇所の可能性もあるが評価に	
		おいては1箇所に集中してFPが捕集されたと仮定する。	記載表現の相違
		・リークパスに捕集される FP の量がリークパスに満たされた状態	記載表現の相違
		を仮定。	
		FP の捕集量については、原子炉格納容器信頼性実証事業放射性	
		物質捕集特性試験 (NUPEC) の結果より FP が配管に目詰まりする事	
		象が確認されており、目詰まりはリークパス入口部で生じているこ	
		とも確認されているが、捕集量に関しての知見は得られていないこ	
		とからリークパスに FP が満たされた状態を仮定する。	記載表現の相違
		・リークパスに捕集される FP の質量を発熱量の寄与割合が高いも	
		のの内、密度の高い核種として算出。	
		発熱の寄与割合が高い核種は, C s I (よう化セシウム) である	
		ことから、FP の密度は、C s I の約 4.5g/cm ³ を用いて FP の質量を	
		求める。	
		・FP の発熱量は,発熱量が最大である事故直後の熱量,原子炉格納	
		容器内温度は最大となる時点の温度にて評価。	
		FP の発熱量は, 時間の経過とともに低下するが, 評価においては	
		NUREG-1465 の FP の核種の放出割合をもとに, FP の発熱量が	
		最大となる事故直後 (プラント停止直後) の発熱量より求められた	設計条件の相違
		約4.88×10 ³ kWとし,原子炉格納容器壁面温度は最高となる約5時	解析結果の相違
		間後の 171℃を使用し評価した。(5 時間後は、約 2.55×10°kW(事	
		故直後の約 0.5 倍)。)	
			<柏崎刈羽7号機との比較>
			格納容器型式の相違

本名 2 「PF 発熱の板種の常多割合とつ」で 「PF の発熱の枝種での寄与割合を表 1」と報告する。 よう南で等を別合が約 5%、% たとかく、その他は様の枝色の等等 別合は約 15.4%であり結果への寄号割合 支援	柏崎刈羽原子力発電所第7号機	載との比較衣(VI-1-8-1-70/6) 単入事政寺時にわりる原 東海第二発電所	女川原子力発電所第2号機 備考
FP の発熱の核種での寄与割合を表 1 に整理する。 よう素の寄与割合は低い。 表 1 核種グループごとの熱量の寄与割合 核種グループ 熱量寄与割合 はう素 約 85.6 % センウム類 約 2.2 % アンチモン 約 1.5 % テルル 約 2.5 % ストロンチウム 約 4.2 % メリウム 約 2.5 % ストロンチウム 約 4.2 % メリウム 約 2.5 % ストロンチウム 約 4.2 % メリウム 約 2.5 % ストロンチウム 約 4.2 %	<u> </u>		参考 2
よう素の寄与割合が約 85.6%と高く、その他核種の発熱の寄与 割合は約 14.4%であり熱量への寄与割合 核種グループ			○FP 発熱の核種の寄与割合について
よう素の寄与割合が約 85.6%と高く、その他核種の発熱の寄与 割合は約 14.4%であり熱量への寄与割合 核種グループ			
割合は約 14. 4%であり熱量への寄与割合は低い。 表 1 核種グループごとの熱量の寄与割合 核種グループ 熱量寄与割合 よう素 約 85.6 % セシウム類 約 2.2 % アンチモン 約 1.5 % テルル 約 2.5 % ストロンチウム 約 4.2 % パリウム 約 2.5 % ルテニウム類 約 0.1 % セリウム類 約 0.4 % ランタン類 約 0.9 %			FP の発熱の核種での寄与割合を表 1 に整理する。
表1 核種グループ			よう素の寄与割合が約85.6%と高く、その他核種の発熱の寄与 設計条件の相違
核種ダループ 熟量寄与割合 よう素 約85.6 % セシウム類 約2.2 % アンチモン 約1.5 % テルル 約2.5 % ストロンチウム 約4.2 % バリウム 約2.6 % ルテニウム類 約0.1 % セリウム類 約0.4 % ランタン類 約0.9 %			割合は約14.4%であり熱量への寄与割合は低い。
核種ダループ 熟量寄与割合 よう素 約85.6 % セシウム類 約2.2 % アンチモン 約1.5 % テルル 約2.5 % ストロンチウム 約4.2 % バリウム 約2.6 % ルテニウム類 約0.1 % セリウム類 約0.4 % ランタン類 約0.9 %			
よう素 約 85.6 % セシウム類 約 2.2 % アンチモン 約 1.5 % テルル 約 2.5 % ストロンチウム 約 4.2 % バリウム 約 2.5 % ルテニウム類 約 0.1 % セリウム類 約 0.4 % ランタン類 約 0.9 %			表1 核種グループごとの熱量の寄与割合
よう素 約 85.6 % セシウム類 約 2.2 % アンチモン 約 1.5 % テルル 約 2.5 % ストロンチウム 約 4.2 % バリウム 約 2.5 % ルテニウム類 約 0.1 % セリウム類 約 0.4 % ランタン類 約 0.9 %			核種グループ 熱量寄与割合
アンチモン 約1.5 % テルル 約2.5 % ストロンチウム 約4.2 % バリウム 約2.5 % ルテニウム類 約0.1 % セリウム類 約0.4 % ランタン類 約0.9 %			
テルル 約2.5 % ストロンチウム 約4.2 % バリウム 約2.5 % ルテニウム類 約0.1 % セリウム類 約0.4 % ランタン類 約0.9 %			セシウム類 約2.2 %
ストロンチウム 約4.2 % バリウム 約2.5 % ルテニウム類 約0.1 % セリウム類 約0.4 % ランタン類 約0.9 %			アンチモン 約1.5 %
バリウム約 2.5 %ルテニウム類約 0.1 %セリウム類約 0.4 %ランタン類約 0.9 %			テルル 約2.5 %
ルテニウム類約 0.1 %セリウム類約 0.4 %ランタン類約 0.9 %			ストロンチウム 約4.2 %
セリウム類 ランタン類 約0.4 % 約0.9 %			バリウム 約2.5 %
ランタン類 約 0.9 %			ルテニウム類 約 0.1 %
20 20 30 30 30 30 30 30 30 30 30 30 30 30 30			セリウム類 約0.4 %
合計 100 %			The state of the s
			合計 100 %

柏崎刈羽原子力発電所第7号機	東海第二発電所	る原子炉格納容器の放射性物質閉じ込め機能健全性について) 女川原子力発電所第2号機	備考
		参考3	
		○原子炉格納容器の漏えい試験結果をもとに算出した約 1mm² のリークパスの算出方法について	
		ラブスの発出が伝に ラグ・C	
		今回の評価における原子炉格納容器のリークパスは、「原子炉格	
		納容器信頼性実証事業放射性物質捕集特性試験 (NUPEC)」及び「流	
		体力学実教出版株式会社第 21 版」を参考とした下記評価方法によ	
		り算出した。	
		$m \cdot R \cdot T_o$	
		$A_e = \frac{\sqrt{\frac{2 \cdot \gamma}{\gamma - 1} \left(\frac{P_b}{P_o}\right)^{\frac{2}{\nu}} - \left(\frac{P_b}{P_o}\right)^{\frac{(\gamma - 1)}{\gamma}}}}{\frac{(P_b)^{\frac{2}{\nu} - (P_b)^{\frac{(\gamma - 1)}{\gamma}}}}{\gamma}}\right\}$	
		ここで、 m: 質量流量 A。: 漏えい等価面積	
		P _O :1 次侧压力 P _b :2 次侧压力	
		γ: 比熱比 T ₀ : I 次側温度	
		R: ガス定数	
		上記式中の1次側及び2次側のパラメータは,それぞれ原子炉格	
		納容器内外の値を使用する。	
		原子炉格納容器内のパラメータは、原子炉格納容器漏えい試験の	
		圧力,温度,原子炉格納容器外の圧力は大気圧として評価する。 記載 質量流量 (m) は原子炉格納容器内の密度×体積×漏えい率より	載表現の相違
		「真里加里(m)は原丁炉恰桝谷番内の省及×体積×備えい率より 「算出する。	
		#HI / VO	

柏崎刈羽原子力発電所第7号機	東海第二発電所	女川原子力発電所第2号機	備考
		参考 4	
		○原子炉格納容器のリークパスに満たされた核種の割合について	
		今回の評価における原子炉格納容器のリークパスに満たされた	
		核種は、表 2 に示す NUREG-1465 の炉心内の FP 量に対する原	
		子炉格納容器内への放出割合を使用しリークパスにおける発熱量 を評価する。	
		表2 NUREG-1465の原子伊格納容器内放出割合 Table 3.12 BWR Releases Into Containment*	
		Gap Release*** Early In-Vessel Ex-Vessel Late In-Vessel	
		Duration (Hourn) 0.5 1.5 3.0 10.0	
		Lanthanides 0 0.0002 0.005 0 *Values shown are fractions of core inventey. **Sec Table 3.6 for a listing of the elements in each group ***Gap retases is 3 protent if lengterm field cooling is maintained.	
		出典: NUREG-1465 [Accident Source Terms for Light-Water Nuclear Power Plants]	
		リークパスの体積は、リークパス面積 1mm² と鋼板厚さ mm より cm³ であるため、原子炉格納容器内に放出された FP のうち支配的な C s I (よう化セシウム)の密度を想定し、リークパスに詰まる FP の量は約 g となる。また、この量は原子炉格納容器内に放出された FP のうち約 %が詰まっている想定となる。この割合とNUREG-1465の放出割合を基にリークパスでの発熱量を算出する。	計条件の相違