本資料のうち、枠囲みの内容は商業機密の観点から公開できません。

| 女川原子力発電所第2号 | 号機 工事計画審査資料        |
|-------------|--------------------|
| 資料番号        | 02-工-B-19-0324_改 0 |
| 提出年月日       | 2021年8月19日         |

VI-2-5-6-1-2 原子炉隔離時冷却系ポンプ駆動用 タービンの耐震性についての計算書

2021年8月

東北電力株式会社

# 目 次

| 1. 概要 · · · · · · · · · · · · · · · · · · |                     | <br> | • • • • • • • • • • • • • • • • • • • • | 1 |
|-------------------------------------------|---------------------|------|-----------------------------------------|---|
| 2. 一般事項 · · · · · · · · ·                 |                     | <br> |                                         | 1 |
| 2.1 構造計画 · · · · · · · ·                  |                     | <br> |                                         | 1 |
| 3. 構造強度評価 · · · · · ·                     |                     | <br> |                                         | 3 |
| 3.1 構造強度評価方法・                             |                     | <br> |                                         | 3 |
| 3.2 荷重の組合せ及び許                             | 容応力                 | <br> |                                         | 3 |
| 3.2.1 荷重の組合せ及び                            | び許容応力状態・・・          | <br> |                                         | 3 |
| 3.2.2 許容応力 · · · · ·                      |                     | <br> |                                         | 3 |
| 3.2.3 使用材料の許容原                            | 芯力評価条件 · · · ·      | <br> |                                         | 3 |
| 3.3 計算条件 · · · · · · · · ·                |                     | <br> |                                         | 3 |
| 4. 機能維持評価 · · · · · ·                     |                     | <br> |                                         | 7 |
| 4.1 動的機能維持評価方                             | 法 · · · · · · · · · | <br> |                                         | 7 |
| 5. 評価結果 · · · · · · · · ·                 |                     | <br> |                                         | 8 |
| 5.1 設計基準対象施設と                             | しての評価結果・            | <br> |                                         | 8 |
| 5.2 重大事故等対処設備                             | としての評価結果            | <br> |                                         | 8 |

# 1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度 及び機能維持の設計方針に基づき、原子炉隔離時冷却系ポンプ駆動用タービン(以下 「原子炉隔離時冷却系タービン」という。)が設計用地震力に対して十分な構造強度及 び動的機能を有していることを説明するものである。

原子炉隔離時冷却系タービンは、設計基準対象施設においてはSクラス施設に、重大 事故等対処設備においては常設重大事故防止設備(設計基準拡張)に分類される。以下、 設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価 を示す。

なお、原子炉隔離時冷却系タービンは、添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

# 2. 一般事項

#### 2.1 構造計画

原子炉隔離時冷却系タービンの構造計画を表 2-1 に示す。

表 2-1 構造計画

| 計画の村         | 既要        |                               |
|--------------|-----------|-------------------------------|
| H1 11 12 1   |           | 概略構造図                         |
| 基礎・支持構造      | 主体構造      |                               |
| タービンはタービンベー  | 背圧式蒸気タービン |                               |
| スに固定され, タービン |           |                               |
| ベースは基礎ボルトで基  |           |                               |
| 礎に据え付ける。     |           | タービン                          |
|              |           | タービン取付ボルト<br>基礎ボルト<br>(単位:mm) |

# 3. 構造強度評価

#### 3.1 構造強度評価方法

原子炉隔離時冷却系タービンの構造強度評価は、添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

#### 3.2 荷重の組合せ及び許容応力

#### 3.2.1 荷重の組合せ及び許容応力状態

原子炉隔離時冷却系タービンの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 3-1 に,重大事故等対処設備の評価に用いるものを表 3-2 に示す。

# 3.2.2 許容応力

原子炉隔離時冷却系タービンの許容応力は、添付書類「VI-2-1-9 機能維持の基本方針」に基づき、表 3-3 のとおりとする。

#### 3.2.3 使用材料の許容応力評価条件

原子炉隔離時冷却系タービンの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3-4 に,重大事故等対処設備の評価に用いるものを表 3-5 に示す。

#### 3.3 計算条件

応力計算に用いる計算条件は、本計算書の【原子炉隔離時冷却系ポンプ駆動用ター ビンの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 3-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

| 施設    | 区分機器名称 |                    | 耐震重要度分類 機器等の区分      |   | 荷重の組合せ                  | 許容応力状態                    |
|-------|--------|--------------------|---------------------|---|-------------------------|---------------------------|
| 原子炉冷却 | 原子炉冷却材 | 原子炉隔離時冷却系          | c                   | * | $D + P_D + M_D + S d *$ | <b>III</b> <sub>A</sub> S |
| 系統施設  | 補給設備   | ルンノ MV 期 円<br>タービン | ポンプ駆動用 S -*<br>タービン |   | $D + P_D + M_D + S s$   | IV <sub>A</sub> S         |

注記\*:クラス2ポンプの荷重の組合せ及び許容応力状態を適用する。また、クラス2ポンプの支持構造物を含む。

表 3-2 荷重の組合せ及び許容応力状態 (重大事故等対処設備)

| 施設         | 施設区分機器名称     |                  | 設備分類*1 機器等の区分    |      | 荷重の組合せ                        | 許容応力状態                                      |
|------------|--------------|------------------|------------------|------|-------------------------------|---------------------------------------------|
|            | 非常用炉心        |                  |                  |      | $D + P_D + M_D + S s^{*3}$    | IV <sub>A</sub> S                           |
| 原子炉冷却 系統施設 | 冷却設備その他原子炉注水 | 原子炉隔離時冷却系 ポンプ駆動用 | 常設/防止<br>(DB 拡張) | _ *2 | D   D   M   C -               | V <sub>A</sub> S<br>(V <sub>A</sub> S としてIV |
| 71100000   | 設備           | タービン             | (22 3/2 3/2)     |      | $D + P_{SAD} + M_{SAD} + S s$ | ASの許容限界<br>を用いる。)                           |

注記\*1:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張)を示す。

\*2: 重大事故等クラス2ポンプの荷重の組合せ及び許容応力状態を適用する。また,重大事故等クラス2ポンプの支持構造物を含む。

\*3:  $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$  の評価に包絡されるため、評価結果の記載を省略する。

|                          | 許容限                    | 界 * 1, * 2             |  |  |  |
|--------------------------|------------------------|------------------------|--|--|--|
| 許容応力状態                   | (ボルト等)                 |                        |  |  |  |
| 计                        | 一次応力                   |                        |  |  |  |
|                          | 引張り                    | せん断                    |  |  |  |
| III <sub>A</sub> S       | 1.5 · f t              | 1.5 • f s              |  |  |  |
| IV <sub>A</sub> S        |                        |                        |  |  |  |
| $ m V_A S$               | 1.5 • f <sub>t</sub> * | 1.5 • f <sub>s</sub> * |  |  |  |
| (VAS としてIVAS の許容限界を用いる。) |                        |                        |  |  |  |

注記\*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

\*2: 当該の応力が生じない場合, 規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

 $\mathcal{O}$ 

# O 2 ③ VI-2-5-6-1-2 R 1

表 3-4 使用材料の許容応力評価条件(設計基準対象施設)

| 評価部材          | 材料    | 温度条件   |     | S y   | S u   | S y (RT) |
|---------------|-------|--------|-----|-------|-------|----------|
|               | 12/14 | (℃)    |     | (MPa) | (MPa) | (MPa)    |
| 基礎ボルト         |       | 周囲環境温度 | 66  |       |       | _        |
| タービン取付<br>ボルト |       | 最高使用温度 | 302 |       |       | _        |

# 表 3-5 使用材料の許容応力評価条件(重大事故等対処設備)

| 評価部材          | <b>*オ*!</b> | 想度条件<br>材料 |     |       |       | S <sub>y</sub> (RT) |
|---------------|-------------|------------|-----|-------|-------|---------------------|
|               | 12/19       | (℃)        |     | (MPa) | (MPa) | (MPa)               |
| 基礎ボルト         |             | 周囲環境温度     | 66  |       |       | _                   |
| タービン取付<br>ボルト |             | 最高使用温度     | 302 |       |       | _                   |

# 4. 機能維持評価

# 4.1 動的機能維持評価方法

原子炉隔離時冷却系タービン<mark>の</mark>動的機能維持評価は、添付書類「VI-2-1-13-4 横 軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行 う。

原子炉隔離時冷却系タービンは地震時動的機能維持が確認された機種と類似の構造 及び振動特性であるため、添付書類「VI-2-1-9 機能維持の基本方針」に記載の機能 確認済加速度を適用する。機能確認済加速度を表 4-1 に示す。

表 4-1 機能確認済加速度  $(×9.8 \text{m/s}^2)$ 

| 評価部位 | 形式         | 方向                 | 機能確認済加速度 |
|------|------------|--------------------|----------|
| タービン | 原子炉隔離時冷却系  | 水平 <mark>方向</mark> | 2. 4     |
| 7-67 | ポンプ駆動用タービン | 鉛直 <mark>方向</mark> | 1.0      |

#### 5. 評価結果

#### 5.1 設計基準対象施設としての評価結果

原子炉隔離時冷却系タービンの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び動 的機能を有していることを確認した。

## (1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお、弾性設計用地震動Sd及び 静的震度は基準地震動Ssを下回っており、基準地震動Ssによる発生値が、弾 性設計用地震動Sd又は静的震度に対する評価における許容限界を満足するた め、弾性設計用地震動Sd又は静的震度による発生値の算出を省略した。

# (2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

## 5.2 重大事故等対処設備としての評価結果

原子炉隔離時冷却系タービンの重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造 強度及び動的機能を有していることを確認した。

# (1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

# (2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

【原子炉隔離時冷却系ポンプ駆動用タービンの耐震性についての計算結果】

#### 1. 設計基準対象施設

# 1.1 設計条件

| 100 HD 12 Th        | 耐震重要度分類 据付場所及び床面高さ |                                      | 固有周期(s) |      | 弾性設計用地震動Sd又は静的震度 |              |                      |               | タービン振動 | 最高使用温度 | 周囲環境温度 |
|---------------------|--------------------|--------------------------------------|---------|------|------------------|--------------|----------------------|---------------|--------|--------|--------|
| 機器名称                | 删展里安皮万短            | (m)                                  |         | 鉛直方向 | 水平方向<br>設計震度     | 鉛直方向<br>設計震度 | 水平方向<br>設計震度         | 鉛直方向<br>設計震度  | による震度  |        | (°C)   |
| 原子炉隔離時冷却系ポンプ駆動用タービン | S                  | 原子炉建屋<br>0. P8. 10*1<br>(0. P7. 162) | *2      | *2   | *3               | *3           | C <sub>H</sub> =1.04 | $C_{V}$ =0.72 |        | 302    | 66     |

注記 \*1: 基準床レベルを示す。

\*2:固有周期は十分に小さく、計算は省略する。 \*3:ⅢSについては、基準地震動Ssで評価する。

#### 1.2 機器要目

|   | 部材        | m i<br>(kg) | h i<br>(mm) | ℓ <sub>1i</sub> *1<br>(mm) | Q 2 i *1<br>(mm) | d <sub>i</sub><br>(mm) | $A_{\mathrm{b}\mathrm{i}} \ (\mathrm{mm}^2)$ | n i | n <sub>f i</sub> *1 |
|---|-----------|-------------|-------------|----------------------------|------------------|------------------------|----------------------------------------------|-----|---------------------|
| ſ | 基礎ボルト     |             |             |                            |                  |                        |                                              | 6   | 3                   |
|   | (i = 1)   |             |             |                            |                  |                        |                                              | б   | 2                   |
|   | タービン取付ボルト |             |             |                            |                  |                        |                                              | 0   | 2                   |
|   | (i = 2)   |             |             |                            |                  |                        |                                              | 0   | 2                   |

|                      | 0                        | 0                        | F.   | F.*  | 転倒方向                  | ]            | 3.4                                   |  |
|----------------------|--------------------------|--------------------------|------|------|-----------------------|--------------|---------------------------------------|--|
| 部材                   | S <sub>yi</sub><br>(MPa) | S <sub>ui</sub><br>(MPa) | MPa) | MPa) | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動<br>S s | $M_{ m p} \ (	ext{N} ullet 	ext{mm})$ |  |
| 基礎ボルト<br>( i =1)     |                          |                          |      |      | _                     | 軸直角          | $7.639 \times 10^{5}$                 |  |
| タービン取付ボルト<br>( i =2) |                          |                          |      |      | _                     | 軸直角          | $7.639 \times 10^{5}$                 |  |

| 予想最大両振幅 | 回転速度  |
|---------|-------|
| (μm)    | (rpm) |
|         |       |

注記 \*1:各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の 要目を示し、下段は軸方向転倒に対する評価時の要目を示す。 \*2:周囲環境温度で算出

\*3:最高使用温度で算出

#### 1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

|                      | F <sub>bi</sub>       |              | $Q_{bi}$              |              |
|----------------------|-----------------------|--------------|-----------------------|--------------|
| 部材                   | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動<br>S s | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動<br>S s |
| 基礎ボルト<br>( i =1)     | _                     |              | _                     |              |
| タービン取付ボルト<br>( i =2) | _                     |              | -                     |              |

# 1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

| <b>☆</b> 77 ++ | 部 材 料 応力 |     | 弾性設計用地震動            | IS d 又は静的震度                    | 基準地震動S s            |                                |  |
|----------------|----------|-----|---------------------|--------------------------------|---------------------|--------------------------------|--|
| 前 材            |          |     | 算出応力                | 許容応力                           | 算出応力                | 許容応力                           |  |
| 基礎ボルト          |          | 引張り | σ <sub>b1</sub> =40 | f <sub>ts1</sub> =169*         | σ <sub>b1</sub> =40 | $f_{\text{t s 1}} = 202*$      |  |
| (i = 1)        |          | せん断 | τ <sub>b1</sub> =21 | $f_{\text{s b 1}} = 130$       | τ <sub>b1</sub> =21 | $f_{\rm s \ b \ 1} = 155$      |  |
| タービン取付ボルト      |          | 引張り | σ <sub>b2</sub> =40 | $f_{\rm t \ s \ 2} = 443^*$    | σ <sub>b2</sub> =40 | $f_{\rm t \ s \ 2} = 444^*$    |  |
| (i = 2)        |          | せん断 | τ <sub>b2</sub> =10 | <b>f</b> <sub>s b 2</sub> =341 | τ <sub>b2</sub> =10 | <b>f</b> <sub>s b 2</sub> =342 |  |

すべて許容応力以下である。

注記  $*: f_{tsi} = Min[1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi}]$ より算出

1.4.2 動的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$ 

|      |      | 機能維持評価用加速度* | 機能確認済加速度 |
|------|------|-------------|----------|
| タービン | 水平方向 | 0.86        | 2. 4     |
| ダービン | 鉛直方向 | 0. 59       | 1.0      |

注記\*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)は、すべて機能確認済加速度以下である。

## 【原子炉隔離時冷却系ポンプ駆動用タービンの耐震性についての計算結果】

# 2. 重大事故等対処設備

#### 2.1 設計条件

| 松兒夕新                | 機器名称 設備分類 据付場所及び床面高さ (m) |                                                  | 固有周期(s) |      | 弾性設計用地震動Sd又は静的震度 |              |              |              |       | 最高使用温度 | 周囲環境温度 |
|---------------------|--------------------------|--------------------------------------------------|---------|------|------------------|--------------|--------------|--------------|-------|--------|--------|
| 70%在6个口77           |                          |                                                  | 水平方向    | 鉛直方向 | 水平方向<br>設計震度     | 鉛直方向<br>設計震度 | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | による震度 | (°C)   | (°C)   |
| 原子炉隔離時冷却系ポンプ駆動用タービン | 常設/防止<br>(DB 拡張)         | 原子炉建屋<br>0. P8. 10* <sup>1</sup><br>(0. P7. 162) | *2      | *2   |                  | _            | $C_H=1.04$   | $C_V = 0.72$ |       | 302    | 66     |

注記 \*1: 基準床レベルを示す。

\*2:固有周期は十分に小さく、計算は省略する。

#### 2.2 機器要目

| 部材        | m <sub>i</sub><br>(kg) | h i<br>(mm) | 0 1 i *1<br>(mm) | 0 2 i *1<br>(mm) | d <sub>i</sub><br>(mm) | $A_{\mathrm{b}\mathrm{i}} \pmod{2}$ | n i | n <sub>f i</sub> *1 |
|-----------|------------------------|-------------|------------------|------------------|------------------------|-------------------------------------|-----|---------------------|
| 基礎ボルト     |                        |             |                  |                  |                        |                                     | 6   | 3                   |
| (i = 1)   |                        |             |                  |                  |                        |                                     | 0   | 2                   |
| タービン取付ボルト |                        |             |                  |                  |                        |                                     | 0   | 2                   |
| ( i =2)   |                        |             |                  |                  |                        |                                     | 0   | 2                   |

|                      | C                        | 2                        |              | г * | 転倒方                   | M            |                                    |
|----------------------|--------------------------|--------------------------|--------------|-----|-----------------------|--------------|------------------------------------|
| 部材                   | S <sub>yi</sub><br>(MPa) | S <sub>ui</sub><br>(MPa) | ui   Fi   Fi |     | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動<br>S s | $	ext{M}_{	ext{p}} 	ext{(N • mm)}$ |
| 基礎ボルト<br>( i =1)     |                          |                          |              |     | _                     | 軸直角          | $7.639 \times 10^5$                |
| タービン取付ボルト<br>( i =2) |                          |                          |              |     | _                     | 軸直角          | $7.639 \times 10^{5}$              |

予想最大両振幅 回転速度  $(\mu m)$ (rpm)

注記 \*1:各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の 要目を示し、下段は軸方向転倒に対する評価時の要目を示す。 \*2:周囲環境温度で算出

\*3:最高使用温度で算出

#### 2.3 計算数値

2.3.1 ボルトに作用する力

(単位:N)

|                      | F <sub>bi</sub>       |              | Q <sub>b i</sub>      |              |
|----------------------|-----------------------|--------------|-----------------------|--------------|
| 部材                   | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動<br>S s | 弾性設計用地震動S d<br>又は静的震度 | 基準地震動<br>S s |
| 基礎ボルト<br>( i =1)     | _                     |              | -                     |              |
| タービン取付ボルト<br>( i =2) | _                     |              | _                     |              |

# 2.4 結論

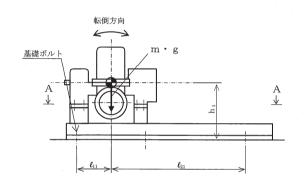
2.4.1 ボルトの応力

(単位:MPa)

| <del>☆</del> 77 ++ | 部材料料 |     | 弹性設計用地震動 | Sd又は静的震度 | 基準地震動S s            |                                |  |
|--------------------|------|-----|----------|----------|---------------------|--------------------------------|--|
| 司 7/7              |      |     | 算出応力     | 許容応力     | 算出応力                | 許容応力                           |  |
| 基礎ボルト              |      | 引張り | _        | _        | σ <sub>b1</sub> =40 | $f_{\text{t s 1}} = 202*$      |  |
| (i = 1)            |      | せん断 | _        | _        | τ <sub>b1</sub> =21 | <i>f</i> <sub>s b 1</sub> =155 |  |
| タービン取付ボルト          | 1    | 引張り | _        | _        | σ <sub>b2</sub> =40 | f <sub>t s 2</sub> =444*       |  |
| ( i =2)            |      | せん断 | _        | _        | τ <sub>b2</sub> =10 | f <sub>s b 2</sub> =342        |  |

ー すべて許容応力以下である。 注記 $*: f_{tsi} = Min[1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi}]$ より算出

2.4.2 動的機能の評価結果


 $(\times 9.8 \text{m/s}^2)$ 

|        |      | 機能維持評価用加速度* | 機能確認済加速度 |
|--------|------|-------------|----------|
| タービン - | 水平方向 | 0.86        | 2.4      |
|        | 鉛直方向 | 0. 59       | 1.0      |

注記\*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)は、すべて機能確認済加速度以下である。

枠囲みの内容は商業機密の観点から公開できません。





B~B 矢視図

転倒方向

m·g

タービン取付ボルト

基礎ボルト