本資料のうち、枠囲みの内容 は商業機密の観点から公開 できません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0326_改 0
提出年月日	2021年8月19日

VI-2-5-6-2-1 復水移送ポンプの耐震性についての計算書

2021年8月

東北電力株式会社

目 次

1. 概要	• 1
2. 一般事項 ······	• 1
2.1 構造計画	• 1
3. 構造強度評価	• 3
3.1 構造強度評価方法	• 3
3.2 荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 3
3.2.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 3
3.2.2 許容応力	• 3
3.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.3 計算条件 ·····	• 3
4. 機能維持評価	. 8
4.1 動的機能維持評価方法 · · · · · · · · · · · · · · · · · · ·	. 8
5. 評価結果	. 9
5 1 重大事故等対処設備としての評価結果	. 9

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、復水移送ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

復水移送ポンプは、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重 大事故緩和設備に分類される。以下、重大事故等対処設備としての構造強度評価及び動的機能維 持評価を示す。

なお、復水移送ポンプは、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載のポンプと類似の構造であるため、添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

復水移送ポンプの構造計画を表 2-1 に示す。

表 2-1 構造計画

表 2−1 構造計画 									
計画の	概要	概略構造図							
基礎・支持構造	主体構造	Man 特地区							
ポンプはポンプベースに固定され、ポンプベースは基礎ボルトで基礎に据え付ける。	うず巻形(うず巻形横軸ポンプ)	770 ポンプ取付ボルト 原動機 ボンプ 基礎ボルト							
		(単位:mm)							

3. 構造強度評価

3.1 構造強度評価方法

復水移送ポンプの構造強度評価は,添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3.2.1 荷重の組合せ及び許容応力状態

復水移送ポンプの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 3-1 に示す。

3.2.2 許容応力

復水移送ポンプの許容応力は、添付書類「VI-2-1-9 機能維持の基本方針」に基づき、表 3-2 のとおりとする。

3.2.3 使用材料の許容応力評価条件

復水移送ポンプの使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 3-3 に示す。

3.3 計算条件

応力計算に用いる計算条件は、本計算書の【復水移送ポンプの耐震性についての計算結果】 の設計条件及び機器要目に示す。

表 3-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
	非常用炉心				$D + P_D + M_D + S_{S}^{*3}$	IV _A S
原子炉冷却 系統施設	冷却設備 その他原子炉 注水設備	復水移送ポンプ	常設耐震/防止常設/緩和	重大事故等 クラス2ポンプ* ²	$D+P_{SAD}+M_{SAD}+S$ s	V _A S (V _A S として IV _A S の許容限界 を用いる。)
	圧力低減設備			$D + P_D + M_D + S_{S}^{*3}$	IV _A S	
原子炉格納施設	その他の安全 設備の原子炉 格納容器安全 設備 原子炉 格納容器 下部注水系	復水移送ポンプ	常設/緩和	重大事故等 クラス2ポンプ* ²	$D + P_{SAD} + M_{SAD} + S_S$	V _A S (V _A S として IV _A S の許容限界 を用いる。)

57

(続き)

	圧力低減設備				$D + P_D + M_D + S_{S}^{*3}$	IV _A S
	その他の安全					
	設備の原子炉					
	格納容器安全	復水移送ポンプ	常設耐震/防止	重大事故等		V _A S
	設備	復小物医ホンノ	常設/緩和	クラス2ポンプ*2	$D+P_{SAD}+M_{SAD}+S_S$	(VAS ELT
	原子炉格納					IV _A S の許容限界
百乙烷换如	容器代替スプ					を用いる。)
原子炉格納	レイ冷却系					
施設	圧力低減設備				$D + P_D + M_D + S_S^{*3}$	IV _A S
	その他の安全					
	設備の原子炉			手上車状效		${f V}_{A}{f S}$
	格納容器安全	復水移送ポンプ	常設/緩和	重大事故等		(VAS として
	設備			クラス2ポンプ*2	$D+P_{SAD}+M_{SAD}+S_S$	IV _A S の許容限界
	低圧代替					を用いる。)
	注水系					

O 2 ③ VI-2-5-6-2-1 R 1

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2: 重大事故等クラス2ポンプの支持構造物を含む。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

表 3-2 許容応力 (重大事故等クラス 2 支持構造物)

	許容限界* ^{1,*2} (ボルト等)				
許容応力状態	一次応力				
	引張り	せん断			
IV _A S					
V _A S (V _A S としてIV _A S の許容限界を用いる。)	1.5 • f _t *	1.5 · f s*			

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3-3 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条何(℃)	温度条件 (℃)		S u (MPa)	S _y (RT) (MPa)
基礎ボルト		周囲環境温度	66			
ポンプ取付ボルト		最高使用温度	66			_
原動機取付ボルト		周囲環境温度	66			_

4. 機能維持評価

4.1 動的機能維持評価方法

復水移送ポンプの動的機能維持評価は,添付書類「VI-2-1-13-4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

復水移送ポンプは地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため,添付書類「VI-2-1-9 機能維持の基本方針」に記載の機能<mark>確認済</mark>加速度を適用する。機能<mark>確認済</mark>加速度を表 4-1 に示す。

表 4-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

評価部位	形式	方向	機能確認済加速度					
ポンプ			軸直角方向	<mark>3. 2</mark>				
	横形単段遠心式 ポンプ	水平 <mark>方向</mark>	軸方向	1.4				
		鉛直 <mark>方向</mark>	1.0					
原動機	横形ころがり	水平 <mark>方向</mark>	4.7					
	軸受電動機	鉛直 <mark>方向</mark>	1.0					

5. 評価結果

5.1 重大事故等対処設備としての評価結果

復水移送ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。

(1) 構造強度評価結果 構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

【復水移送ポンプの耐震性についての計算結果】 1. 重大事故等対処設備

1.1 設計条件

+=/-1.	担け相手ながよるする	固有周	期(s)	弾性設計用地震動	Sd又は静的震度	基準地別	長動Ss	よい一を担割に	見方は田沢田本	田田海路月本	
機器名称	設備分類	据付場所及び床面高さ (m)		鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	ポンプ振動に よる震度	最高使用温度 (℃)	周囲環境温度 (℃)
復水移送ポンプ	常設耐震/防止 常設/緩和	原子炉建屋 0.P0.80*1	*2	*2	_	_	C _H =1.34	$C_{V} = 0.88$		66	66

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく、計算は省略する。

1.2 機器要目

部 材	m _i (kg)	h i (mm)	0 1i*1 (mm)	0 2i*1 (mm)	d i (mm)	$A_{b~i} \ (ext{mm}^2)$	n i	n _{f i} *1
基礎ボルト							6	3
(i = 1)							0	2
ポンプ取付ボルト (i =2)							4	2
(i = 2)							4	2
原動機取付ボルト							4	2
(i = 3)							4	2

	S _{yi} S _{ui}	S _{ui}	F :	* F.	転倒方	向	M _p
部材	(MPa)	(MPa)	(MPa)	(MPa)	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	(N • mm)
基礎ボルト (i=1)			_		_	軸直角	_
ポンプ取付ボルト (i =2)			_		_	軸	
原動機取付ボルト (i=3)			_		_	軸	_

Ηр Ν (μm) (rpm) 注記*1:各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の

要目を示し、下段は軸方向転倒に対する評価時の要目を示す。

*2:周囲環境温度で算出 *3:最高使用温度で算出

1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

	F	b i	$Q_{\ b\ i}$						
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s					
基礎ボルト (i =1)	_		_						
ポンプ取付ボルト (i =2)	_		_						
原動機取付ボルト (i=3)	_		_						

1.4 結論

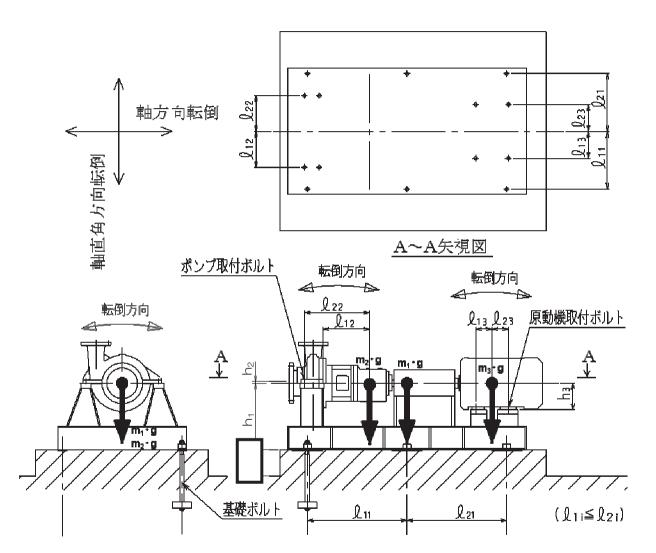
1.4.1 ボルトの応力

(単位:MPa)

部 材	材料	応力	弾性設計用地震動Sd又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	_	_	$\sigma_{b1} = 8$	$f_{\text{t s 1}} = 202*$
(i = 1)		せん断	_	_	$\tau_{b1} = 7$	$f_{\rm s\ b\ 1} = 155$
ポンプ取付ボルト		引張り	_	_	$\sigma_{b2} = 14$	$f_{\text{t s 2}} = 202*$
(i = 2)		せん断	_	_	τ _{b2} = 7	$f_{\rm s\ b\ 2} = 155$
原動機取付ボルト (i =3)		引張り	_	_	$\sigma_{b3} = 13$	f _{t s 3} =185*
		せん断	_	_	$\tau_{b3} = 8$	$f_{\rm s\ b\ 3} = 142$

すべて許容応力以下である。

注記*: f_{tsi} = Min[1.4 · f_{toi}-1.6 · τ_{bi}, f_{toi}]


1.4.2 動的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$

1. 1. 2 到6 7 及 6 ~ 7 1						
		機能維持評価用加速度*	機能確認済加速度			
	水平方向	1, 11	3.2(<mark>軸直角</mark>)			
ポンプ	ハーカド	1.11	1.4(<mark>軸</mark>)			
w 2 2	鉛直方向	0.73	1.0			
百套松	水平方向	1. 11	4. 7			
原動機	鉛直方向	0.73	1.0			

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)は,すべて機能確認済加速度以下である。

O 2 ③ VI-2-5-6-2-1 R 1 E