本資料のうち，枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第 2 号機	
工事計画審査資料	
資料番号	02 －工－B－19－0084＿改 0
提出年月日	2021 年 8 月 19 日

VI－2－4－3－1－2 燃料プール冷却浄化系ポンプの耐震性についての計算書

2021年8月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 8
3．2．3 使用材料の許容応力評価条件 8
3.3 計算条件 3
4．機能維持評価 7
4． 1 動的機能維持評価方法 7
4.2 横形ポンプの動的機能維持評価 8
4．2．1 評価対象部位 8
4．2．2 評価基準値 8
4．2．3 記号の説明 9
4．2．4 評価方法 10
4．3 原動機の動的機能維持評価 12
4．3．1 評価対象部位 12
4．3．2 評価基準値 12
4．3．3 記号の説明 13
4．3．4 評価方法 15
5．評価結果 20
5.1 重大事故等対処設備としての評価結果 20

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，燃料プール冷却浄化系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

燃料プール冷却浄化系ポンプは，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。 なお，燃料プール冷却浄化系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横軸ポンプと類似の構造であるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性 についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

燃料プール冷却浄化系ポンプの構造計画を表2－1に示す。

3．構造強度評価

3.1 構造強度評価方法

燃料プール泠却浄化系ポンプの構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
燃料プール冷却浄化系ポンプの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表3－1 に示す。

3．2．2 許容応力

燃料プール冷却浄化系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，表 3－2 のとおりとする。

3．2．3 使用材料の許容応力評価条件

燃料プール冷却浄化系ポンプの使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表 3－3 に示す。

3.3 計算条件

応力計算に用いる計算条件は，本計算書の【燃料プール冷却浄化系ポンプの耐震性について の計算結果】の設計条件及び機器要目に示す。

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	使用済燃料貯蔵槽冷却浄化設備	燃料プール泠却浄化系ポンプ	常設耐震／防止	重大事故等$\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
核燃料物質の 取扱施設及び 貯蔵施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

[^0]表 3－2 許容応力（クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物）

[^1]| 評価部材 | 材料 | 温度条件
 $\left({ }^{\circ} \mathrm{C}\right)$ | | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 基礎ボルト | | 周囲環境温度 | 66 | | | － |
| ポンプ取付ボルト | | 最高使用温度 | 66 | | | － |
| 原動機取付ボルト | | 周囲環境温度 | 66 | | | － |

4．機能維持評価

4． 1 動的機能維持評価方法
燃料プール冷却浄化系ポンプ及び原動機は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の横形単段遠心式ポンプ及び横形ころがり軸受電動機であり，機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから，J E A G 4 6 0 1 に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる設計用最大応答加速度（1．0ZPA）を設定する。

4． 2 横形ポンプの動的機能維持評価
4．2．1 評価対象部位
J EAG4601の横形ポンプの動的機能維持評価に従い，以下の部位について評価を実施する。
a．基礎ボルト
b．ポンプ取付ボルト
c．軸
d．摺動部（インペラとライナーリングのクリアランス）
このうち「 a ．基礎ボルト」および「b。 ポンプ取付ボルト」については，「3．構造強度評価」に従い評価を行った「5．評価結果」にて設計用地震力に対して十分な構造強度 を有していることを確認している。

以上より，本計算書においては，軸，摺動部（インペラとライナーリングのクリアラン ス）を評価対象部位とする。

軸の許容応力は，クラス 2 ポンプの許容応力状態 $I I I_{A} S$ に準拠し設定する。摺動部（イン ペラとライナーリングのクリアランス）は，変位可能寸法を評価基準値として設定する。

4．2．3 記号の説明
燃料プール冷却材浄化系ポンプの動的機能維持評価に使用する記号を表4－2 に示す。
表4－2 記号の説明

記号	記号の説明	単位
C_{H}	水平方向設計震度	－
C_{P}	ポンプ振動による震度	－
C_{v}	鉛直方向設計震度	－
E	軸の縱弾性係数	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
I	軸の断面二次モーメント	mm^{4}
l	軸長さ	mm
ℓ_{1}	軸受間距離	mm
ℓ_{2}	羽根車側軸端から羽根車側軸受までの距離	mm
M	軸に作用する最大曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m_{c}	羽根車質量	kg
$\mathrm{m}_{\text {s }}$	回転体総質量	kg
$\mathrm{M}_{\mathrm{C} 2}$	羽根車側軸端に羽根車の質量が作用した場合の羽根車側軸受から羽根車側軸端での曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{P}	ポンプ回転により作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{MS}_{\text {2 }}$	羽根車側軸受から羽根車側軸端での曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
N	回転速度（原動機の同期回転速度）	rpm
P	原動機出力	kW
T	軸に作用するねじりモーメント	$\mathrm{N} \cdot \mathrm{mm}$
w	地震力を考慮した軸等分布荷重	N
W_{c}	地震力を考慮した羽根車側軸端部荷重	N
Z	軸の断面係数	mm^{3}
π	円周率	－
δ	軸のたわみ量	mm
$\delta \mathrm{s}$	軸自重に地震力を考慮した等分布荷重により羽根車側軸端部による軸 のたわみ量	mm
δ_{c}	地震時に羽根車側軸端部にかかる荷重による軸のたわみ量	mm
$\tau_{\text {max }}$	軸に生じる最大せん断応力	MPa

4．2．4 評価方法

（1）軸
軸の最大せん断応力

$$
\begin{equation*}
\tau_{\text {max }}=\frac{1}{2 \cdot \mathrm{Z}} \cdot \sqrt{\mathrm{M}^{2}+\mathrm{T}^{2}} \tag{4.2.4.1}
\end{equation*}
$$

軸に作用するねじりモーメント

$$
\begin{equation*}
T=M_{P} \tag{4.2.4.2}
\end{equation*}
$$

ポンプ回転により作用するモーメント

$$
\begin{equation*}
M_{P}=\left(\frac{60}{2 \cdot \pi \cdot \mathrm{~N}}\right) \times 10^{6} \times \mathrm{P} \tag{4.2.4.3}
\end{equation*}
$$

軸に作用する最大曲げモーメント

$$
\begin{equation*}
\mathrm{M}=\mathrm{M}_{\mathrm{S} 2}+\mathrm{M}_{\mathrm{C} 2} \tag{4.2.4.4}
\end{equation*}
$$

地震力を考慮した軸等分布荷重

$$
\mathrm{w}=\frac{\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g} \cdot \sqrt{\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right)^{2}+\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right)^{2}}}{\ell}
$$

羽根車側軸端に羽根車の質量が作用した場合の羽根車側軸受から羽根車側軸端での曲げモ ーメント

$$
\begin{equation*}
\mathrm{M}_{\mathrm{C} 2}=\mathrm{w}_{\mathrm{c}} \cdot \ell_{2} \tag{4.2.4.7}
\end{equation*}
$$

地震力を考慮した羽根車側軸端部荷重

$$
\begin{equation*}
\mathrm{w}_{\mathrm{C}}=\mathrm{m}_{\mathrm{c}} \cdot \mathrm{~g} \cdot \sqrt{\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right)^{2}+\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right)^{2}} \tag{4.2.4.8}
\end{equation*}
$$

（2）摺動部（インペラとライナーリングのクリアランス）
羽根車側軸端部の軸のたわみ量

$$
\begin{equation*}
\delta=\delta_{\mathrm{s}}+\delta_{\mathrm{c}} \tag{4.2.4.9}
\end{equation*}
$$

軸自重に地震力を考慮した等分布荷重により羽根車側軸端部による軸のたわみ量

$$
\begin{equation*}
\delta_{\mathrm{s}}=\frac{\mathrm{w} \cdot \ell_{2}{ }^{4}}{8 \cdot \mathrm{E} \cdot \mathrm{I}}+\frac{\mathrm{w} \cdot \ell_{1}}{24 \cdot \mathrm{E} \cdot \mathrm{I}}\left(4 \ell_{2}{ }^{2}-\ell_{1}^{2}\right) \tag{4.2.4.10}
\end{equation*}
$$

地震時に羽根車軸端部にかかる荷重による軸のたわみ量

$$
\begin{equation*}
\delta_{\mathrm{c}}=\frac{\mathrm{w}_{\mathrm{c}} \cdot \ell_{2}^{2}}{3 \cdot \mathrm{E} \cdot \mathrm{I}}\left(\ell_{1}+\ell_{2}\right) \tag{4.2.4.11}
\end{equation*}
$$

4． 3 原動機の動的機能維持評価
4．3．1 評価対象部位
J EAG4601の原動機の動的機能維持評価に従い，以下の部位について評価を実施 する。
a．取付ボルト
b．固定子
c．軸（回転子）
d．端子箱
e．軸受
f．固定子と回転子間のクリアランス
g．モータフレーム
このうち「 a 。 取付ボルト」については，「3．構造強度評価」に従い評価を行った「5．評価結果」にて設計用地震力に対して十分な構造強度を有していることを確認している。

以上より，本計算書においては，固定子，軸（回転子），端子箱，軸受，固定子と回転子間のクリアランス，モータフレームを評価対象部位とする。

4．3．2 評価基準値
モータフレーム及び端子箱の許容応力はクラス 2 支持構造物の許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に準拠し設定する。軸（回転子）の許容応力は，クラス 2 ポンプの許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ に準拠 し設定する。固定子の許容応力はクラス 2 支持構造物の許容応力状態 $I I I_{A} S$ に準拠し設定 する。また軸受については，メーカ規定の軸受の定格荷重を，固定子と回転子間のクリア ランスは，変位可能寸法を評価基準値として設定する。

4．3．3 記号の説明
燃料プール冷却浄化系ポンプ用原動機の動的機能維持評価に使用する記号を表 4－3に示 す。

表4－3 記号の説明

記号	記号の説明	単位
A_{p}	ピンの断面積	mm^{2}
A_{tb}	端子箱取付ボルトの断面積	mm^{2}
$\mathrm{A}_{\text {s }}$	脚部の断面積	mm^{2}
C_{P}	ポンプ振動による震度	－
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
D_{f}	フレームの内径	mm
d_{s}	軸の直径	mm
E	軸の縦弾性係数	MPa
F	ピンにはたらく合成荷重	N
F_{tb} ， $\mathrm{x}^{\text {d }}$	水平方向地震力が x 方向（横方向）によりボルトに作用する引張力	N
F_{tb} ，${ }^{\text {y }}$	水平方向地震力が y 方向（長手方向）によりボルトに作用する引張力	N
F_{1}	電動機の回転によりピンにはたらく荷重	N
F_{2}	水平方向（長手方向）地震力によりピンにはたらく荷重	N
F a	アキシアル荷重	N
$\mathrm{F}_{\mathrm{R} 1}$	地震力により軸に作用する荷重	N
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h_{c}	電動機取付面から電動機重心までの高さ	mm
h_{f}	電動機取付面から脚取付部までの高さ	mm
ht_{t}	端子箱取付面から端子箱重心までの高さ	mm
I	軸の断面二次モーメント	mm^{4}
$\mathrm{L}_{1, \mathrm{x}}$	端子箱重心と取付ボルトの水平方向距離（x 方向）	mm
$L_{2, x}$	端子箱重心と取付ボルトの水平方向距離（ x 方向）	mm
$\mathrm{L}_{1, \mathrm{y}}$	端子箱重心と取付ボルトの水平方向距離（ y 方向）	mm
L 2 ，y	端子箱重心と取付ボルトの水平方向距離（y 方向）	mm
l	電動機脚部中心間距離	mm
ℓ_{c}	脚中心から電動機重心までの水平方向距離	mm
$\ell_{\mathrm{b}, ~ L}$	反軸継手側•軸継手側（反負荷側•負荷側）軸受間距離	mm
$\ell_{\mathrm{r}, \mathrm{c}}$	軸（回転子）の重心位置	mm
M_{11}	水平方向地震力（横方向）により脚部底面に作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{Mmax}_{\text {max }}$	軸に生じる最大曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{P}	軸の回転によるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m	脚部重量を除いた電動機重量	kg
m_{r}	軸•回転子の重量	kg
m_{s}	固定子重量	kg

記号	記号の説明	単位
$\mathrm{m}_{\mathrm{s} 1}$	脚部の重量	kg
m_{t}	端子箱重量	kg
N	電動機定格回転速度	min^{-1}
n_{p}	ピンの本数	－
n t	端子箱取付ボルトの本数	－
$\mathrm{n}_{\mathrm{t}, 1, \mathrm{x}}$	引張力がはたらく端子箱取付ボルト本数（ x 方向）	－
$\mathrm{n}_{\mathrm{t} 1, \mathrm{y}}$	引張力がはたらく端子箱取付ボルト本数（ y 方向）	－
P	電動機定格出力	kW
P_{1}	静等価ラジアル荷重	N
P_{2}	静等価ラジアル荷重	N
Por， 1	反軸継手側のラジアル玉軸受の静等価ラジアル荷重	N
Por， 2	軸継手側のラジアル玉軸受の静等価ラジアル荷重	N
P_{0}	水平方向地震力（横方向）により脚取付部に作用する鉛直方向荷重	N
Q_{tb}	ボルトに作用するせん断力	N
R_{1}	脚部が受ける荷重	N
R_{L}	軸継手側軸受が受ける荷重	N
Ro	反軸継手側軸受が受ける荷重	N
T_{M}	電動機最大トルク	$\mathrm{N} \cdot \mathrm{m}$
Ts	電動機最大トルク	\％
Xo	軸受ラジアル荷重に対する係数	－
Yo	軸受アキシアル荷重に対する係数	－
$y_{\text {max }}$	軸の最大たわみ	mm
$\mathrm{Z}_{\text {s }}$	軸の断面係数	mm^{3}
$\mathrm{Z}_{\text {s y }}$	脚部の長手方向軸に対する断面係数	mm^{3}
σ b	軸にはたらく最大曲げ応力	MPa
σ t b	ボルト1本あたりにはたらく引張応力	MPa
$\sigma \mathrm{tb}, \mathrm{x}$	水平方向地震力が x 方向（横方向）によりボルト 1 本あたりにはたらく引張応力	MPa
$\sigma \mathrm{tb}, \mathrm{y}$	水平方向地震力が y 方向（長手方向）によりボルト 1 本あたりにはたら く引張応力	MPa
σ s	軸にはたらく組合せ応力	MPa
σ s	鉛直方向と水平方向（横方向）地震力が作用する組合せ応力	MPa
σ S 1	電動機重量による応力	MPa
σ S 2	水平方向地震力（横方向）による曲げ応力および圧縮応力	MPa
0 S 4	鉛直方向地震力による応力	MPa
τ tb	ボルト1本あたりにはたらくせん断応力	MPa
τ p	ピンにはたらくせん断応力	MPa
τ_{t}	軸に生じるねじり応力	MPa
τ S 2	水平方向地震力（横方向）によるせん断応力	MPa

4．3．4 評価方法

（1）固定子
a．電動機の回転による荷重
電動機の最大トルクは

$$
\begin{equation*}
\mathrm{T}_{\mathrm{M}}=\frac{\mathrm{P} \cdot 1000000}{2 \pi \cdot \mathrm{~N} / 60} \cdot \frac{\mathrm{~T}_{\mathrm{S}}}{100} \tag{4.3.4.1}
\end{equation*}
$$

電動機の回転によりピンにはたらく荷重は

$$
\begin{equation*}
\mathrm{F}_{1}=\frac{\mathrm{T}_{\mathrm{M}}}{\frac{1}{2} \cdot \mathrm{D}_{\mathrm{f}}} \tag{4.3.4.2}
\end{equation*}
$$

b．水平方向（長手方向）地震力によりピンにはたらく荷重

$$
\mathrm{F}_{2}=\mathrm{m}_{\mathrm{S}} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right)
$$

c．ピンにはたらくせん断応力
a．，b．の合成荷重は

$$
\mathrm{F}=\sqrt{\mathrm{F}_{1}{ }^{2}+\mathrm{F}_{2}{ }^{2}}
$$

ピンにはたらくせん断応力は

$$
\tau_{\mathrm{p}}=\frac{\mathrm{F}}{\mathrm{n}_{\mathrm{p}} \cdot \mathrm{~A}_{\mathrm{p}}}
$$

\square
（2）軸（回転子）
a．各部にはたらく荷重
地震力により軸に作用する荷重は

$$
\begin{equation*}
F_{R 1}=\sqrt{\left(C_{H}+C_{P}\right)^{2}+\left(1+C_{V}+C_{P}\right)^{2}} \cdot m_{r} \cdot g \tag{4.3.4.6}
\end{equation*}
$$

軸継手側軸受が受ける荷重および反軸継手側軸受が受ける荷重は

$$
R_{L}=F_{R 1} \cdot \frac{\ell_{r, c}}{\ell_{b, L}}
$$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{O}}=\mathrm{F}_{\mathrm{R} 1} \cdot\left(1-\frac{\ell_{\mathrm{r}, \mathrm{c}}}{\ell_{\mathrm{b}, \mathrm{~L}}}\right) \tag{4.3.4.8}
\end{equation*}
$$

b．曲げ応力
軸に生じる最大曲げモーメントは

$$
M_{\max }=\frac{\mathrm{F}_{\mathrm{R} 1} \cdot \ell_{\mathrm{r}, \mathrm{c}} \cdot\left(l_{\mathrm{b}, \mathrm{~L}}-\ell_{\mathrm{r}, \mathrm{C}}\right)}{\ell_{\mathrm{b}, \mathrm{~L}}}
$$

軸にはたらく最大曲げ応力は

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{max}}}{\mathrm{Z}_{\mathrm{S}}}
$$

c．ねじり応力
軸の回転によるモーメントは

$$
\mathrm{M}_{\mathrm{P}}=\frac{60}{2 \cdot \pi \cdot \mathrm{~N}} \cdot 10^{6} \cdot \mathrm{P}
$$

```
................(4.3.4.11)
```

軸に生じるねじり応力は

$$
\begin{equation*}
\tau_{\mathrm{t}}=\frac{16 \cdot \mathrm{M}_{\mathrm{P}}}{\pi \cdot \mathrm{~d}_{\mathrm{S}}{ }^{3}} \tag{4.3.4.12}
\end{equation*}
$$

d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\sqrt{\sigma_{\mathrm{b}}{ }^{2}+3 \cdot \tau_{\mathrm{t}}{ }^{2}} \tag{4.3.4.13}
\end{equation*}
$$

（3）端子箱
a．端子箱取付ボルトに生じる引張力

$$
\mathrm{F}_{\mathrm{tb}, \mathrm{x}}=\frac{\mathrm{m}_{\mathrm{t}} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{h}_{\mathrm{t}} \cdot \mathrm{~g}-\mathrm{m}_{\mathrm{t}} \cdot\left\{1-\left(\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{P}}\right)\right\} \cdot \mathrm{L}_{2, \mathrm{x}} \cdot \mathrm{~g}}{\mathrm{n}_{\mathrm{t} 1, \mathrm{x}} \cdot\left(\mathrm{~L}_{1, \mathrm{x}}+\mathrm{L}_{2, \mathrm{x}}\right)}
$$

$$
\begin{equation*}
F_{t b, y}=\frac{m_{t} \cdot\left(C_{H}+C_{P}\right) \cdot h_{t} \cdot g-m_{t} \cdot\left\{1-\left(C_{v}+C_{P}\right)\right\} \cdot L_{2, y} \cdot g}{n_{t 1, y} \cdot\left(L_{1, y}+L_{2, y}\right)} \tag{4.3.4.15}
\end{equation*}
$$

b．端子箱取付ボルト 1 本あたりにはたらく引張応力

$$
\begin{aligned}
& \sigma_{t b, x}=\frac{F_{t b, x}}{A_{t b}} \\
& \sigma_{t b, y}=\frac{F_{t b, y}}{A_{t b}}
\end{aligned}
$$

. (4. 3. 4. 16)
. (4. 3. 4. 17)

$$
\sigma_{\mathrm{tb}}=\mathrm{Max}\left[\begin{array}{llll}
\sigma_{\mathrm{tb}}, & \mathrm{x}^{\prime} & \sigma_{\mathrm{tb},}
\end{array}\right]
$$

－•••••••（4．3．4．18）
c．端子箱取付ボルトに生じるせん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{tb}}=\mathrm{m}_{\mathrm{t}} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{g} \tag{4.3.4.19}
\end{equation*}
$$

d．端子箱取付ボルト 1 本あたりにはたらくせん断応力

$$
\begin{equation*}
\tau_{t b}=\frac{Q_{t b}}{n_{t} \cdot A_{t b}} \tag{4.3.4.20}
\end{equation*}
$$

（4）軸受
a．反軸継手側のラジアル玉軸受の静等価ラジアル荷重は
b．軸継手側のラジアル玉軸受の静等価ラジアル荷重は
$\mathrm{P}_{1}=\mathrm{X}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}+\mathrm{Y}_{\mathrm{O}} \cdot \mathrm{F}_{\mathrm{a}}$
$\mathrm{P}_{2}=\mathrm{R}_{\mathrm{L}}$
．．．．．．．．．．．．．．．．．．．．．（4．3．4．25）

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{X}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{O}}+\mathrm{Y}_{\mathrm{O}} \cdot \mathrm{~F}_{\mathrm{a}} \\
& \text { - (4. 3. 4. 21) } \\
& P_{2}=R_{0} \\
& \text {. (4. 3. 4. 22) } \\
& P_{\text {or, } 1}=\mathrm{Max}\left[\mathrm{P}_{1}, \mathrm{P}_{2}\right]
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{P}_{\text {or }, 2}=\mathrm{Max}\left[\mathrm{P}_{1}, \mathrm{P}_{2}\right] \tag{4.3.4.26}
\end{equation*}
$$

（5）固定子と回転子間のクリアランス
a．軸の断面二次モーメント

$$
\begin{equation*}
\mathrm{I}=\frac{\pi \cdot \mathrm{d}_{\mathrm{S}}{ }^{4}}{64} \tag{4.3.4.27}
\end{equation*}
$$

b．軸の最大たわみ

$$
\begin{equation*}
\mathrm{y}_{\max }=\frac{\left.\mathrm{F}_{\mathrm{R} 1} \cdot \ell_{\mathrm{r}, \mathrm{C}} \cdot\left(\ell_{\mathrm{b}, \mathrm{~L}}{ }^{2}-\ell_{\mathrm{r}, \mathrm{c}}\right)^{2}\right)^{3 / 2}}{9 \cdot \sqrt{3} \cdot \mathrm{E} \cdot \mathrm{I} \cdot \ell_{\mathrm{b}, \mathrm{~L}}} \tag{4.3.4.28}
\end{equation*}
$$

（6）モータフレーム
a．電動機重量による応力
脚部が受ける荷重は

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{m} \cdot \mathrm{~g} \cdot \frac{\ell-\ell_{\mathrm{c}}}{\ell} \tag{4.3.4.29}
\end{equation*}
$$

電動機重量による応力は

$$
\begin{equation*}
\sigma_{\mathrm{s} 1}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{4.3.4.30}
\end{equation*}
$$

b．鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{S} 4}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \cdot\left(\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \tag{4.3.4.31}
\end{equation*}
$$

c．水平方向地震力（横方向）による応力
水平方向地震力（横方向）により脚部底面に作用する曲げモーメントは

$$
\begin{equation*}
M_{11}=\left(C_{H}+C_{P}\right) \cdot \mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{~h}_{\mathrm{f}} \tag{4.3.4.32}
\end{equation*}
$$

水平方向地震力（横方向）により脚取付部に作用する鉛直方向荷重は

$$
\begin{equation*}
\mathrm{P}_{\mathrm{I}}=\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{~g} \cdot \frac{\mathrm{~h}_{\mathrm{c}}}{\ell} \tag{4.3.4.33}
\end{equation*}
$$

曲げ応力および圧縮応力は

$$
\begin{equation*}
\sigma_{\mathrm{s} 2}=\frac{\mathrm{M}_{\ell 1}}{\mathrm{Z}_{\mathrm{sy}}}+\frac{\mathrm{P}_{\ell}}{\mathrm{A}_{\mathrm{s}}} \tag{4.3.4.34}
\end{equation*}
$$

せん断応力は

$$
\begin{equation*}
\tau_{\mathrm{S} 2}=\frac{\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{4.3.4.35}
\end{equation*}
$$

d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{S}}=\sqrt{\left(\sigma_{\mathrm{S} 1}+\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{S} 4}\right)^{2}+3 \cdot_{\mathrm{S}_{2}}} \tag{4.3.4.36}
\end{equation*}
$$

5．評価結果
5.1 重大事故等対処設備としての評価結果

燃料プール冷却浄化系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【燃料プール泠却浄化系ポンプの耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

$$
\begin{array}{|c}
\text { 機器名称 } \\
\hline \text { 燃料プール冷 } \\
\text { 浄化系ポン } \\
\hline
\end{array}
$$

注記 $* 1$ ：基淮床レ
＊2：固有周期は十分に小さく，計算は省略する。
1.2 機器要目

部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{i}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動S d又は静的震度	$\begin{gathered} \text { 基淮地震動 } \\ \text { S } \end{gathered}$	
基礎ボルト $(\mathrm{i}=1)$					－	軸直角方向	－
$\begin{gathered} \text { ポンプ取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$					－	軸方向	－
原動機取付ボルト $(i=3)$					－	軸方向	－

注記＊1：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の
愪出軸方向転倒に対する評価時の要目を示す。
＊2：最高使用温境瑥度で算出

機器名称	設備分類	据付場所及び床面高さ	固有周期（s）		弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度		基淮地震動S s		ポンプ振動に よる震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	鍦直方向 設計震度	水平方向 設計震度	鉛直方向設計震度			
燃料プール冷却浄化系ポンプ	常設而震／防止	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \mathrm{P} .15 .00^{* 1} \end{gathered}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$		66	66

注記＊ 1 ：基淮床レベルを示す
1.4 .1 ボルトの心力

部 材	材 料
基礎ボルト $(\mathrm{i}=1)$	
ポンプ取付ボルト $(\mathrm{i}=2)$	
原動機取付ボルト $(\mathrm{i}=3)$	

1.4 結論

すべて許容応力以下である。

1.5 動的機能維持評価

1．5．1 設計条件
機器名称

機器名称	形式	揚水量 $\left(\mathrm{m}^{3} / \mathrm{h}\right)$
然料プール冷却 浄化系ポンプ	横形単段 遠心式ポンプ	160

注記 $* 1$ ：基淮床レベルを示す。
$\quad * 2$ ：固有周期は十分に小さく，計算は省略する。
$* 2$ ：固有周期は十分に小さく，計算は省略する。
（

機器名称	形式	$\begin{aligned} & \underset{(\mathrm{k} 力}{(\mathrm{kW})} \end{aligned}$	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度		基準地震動S s		ポンブ振動に よる震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ ${ }^{\circ}$ C）
				水平方向	鉛直方向	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鉛直方向 設計震度			
燃料プール冷却浄化系ポンプ用電動機	横形ころがり軸受電動機	75	$\begin{array}{\|c\|} \hline \text { 原子炉建屋 } \\ \hline \text { O.P. } 15.00^{* *} \\ \hline \end{array}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.65$	$\mathrm{C}_{\mathrm{V}}=1.15$		66	66
注記＊1 ：基漼床レベルを示す。												

注記 $*$ ：固有周期は十分に小さく，計算は省略する。
1．5．2 機器要目
1．5．2．1 横形単段遠心式ポンプの機器要目
（1）軸

1．5．2．2 横形ころがり軸受電重機の機器要目
（1）固定子

（2）軸（回転子）

部材	d_{s} (mm)	$1_{\mathrm{b},}^{\mathrm{L}}$ (mm)	$1_{\mathrm{r}, \mathrm{c}} \mathrm{c}$ (mm)	m_{r} (kg)	N $\left(\mathrm{min}^{-1}\right)$	P (kW)	Z_{s} $\left(\mathrm{mm}^{3}\right)$
軸（回転子）	52	859	418.5	273	3000	75	13800

（3）端子箱

（5）固定子と回転子間のクリアランス

I Y $\quad Z-$ I－- －$-Z-\mathrm{I} \Lambda$

[^2]
1．5．3．2 横形単段遠心式ポンプの動的機能維持評価

1．5．3．2．1 代表評価項目の評価

基礎ボルトおよびポンプ取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
1.5 .3 .2 .2 上記以外の基本評価項目の評価 1．5．3．2．2．1 軸の評価 評価部位 単位：MPa） 軸 応力 発生応力\quad 許容応力

[^3]
1．5．3．2．2．2 摺動部

評価部位	変位	変位量	許容変位量
インペラとライナーリングのクリアランス	軸のたわみ	0.42	\square

[^4]| 1．5．3．2．1 代表評価項目の評価 | | | |
| :---: | :---: | :---: | :---: |
| 基礎ボルトおよびポンプ取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。 | | | |
| 1．5．3．2．2 上記以外の基本評価項目の評価 | | | |
| 1．5．3．2．2．1 軸の評価 | | | （単位：M |
| 評価部位 | 応力 | 発生応力 | 許容応力 |
| 軸 | せん断 | 28 | 429 |

信

1．5．3． 3 横形ころがり軸受電動機の動的機能維持評価
1．5．3．3．1 代表評価項目の評価

1．5．3．3．2．3	（端子箱の評価	（単位：MPa）	
評価部位	応力	発生応力	許容応力
端子箱	引張り	5	210
	せん断	2	161

すべて許容応力以下である。

すべて許容荷重以下である。

1.5 .3 .3 .2 .5	固定子と回転子間のクリアランスの評価	（単位 ：mm）
評価部位	回転子のたわみ	許容変位量
固定子と回転子間のクリアランス	1.44	2.00

すべて許容変位量以下である。

1.5 .3 .3 .2 .6	モータフレームの評価	（単位：MPa）
評価部位	発生応力	許容応力
モータフレーム	33	35

すべて許容応力以下である。

[^0]: 注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
 ＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

[^1]: 注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
 ＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

[^2]: ポンプは，水平方向およひ鉛直方向の機能維持平価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。原動機は，鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。

[^3]: すべて許容応力以下である。

[^4]: すべて許容変位量以下である。

