女川原子力発電所第2号機 工事計画審查資料				
資料番号	02-エ-B-19-0335_改 0			
提出年月日	2021 年 8 月 19 日			

Ⅵ-2-5-7-2-3 高圧炉心スプレイ補機冷却海水ポンプの 耐震性についての計算書

2021年8月

東北電力株式会社

1. 概要 ···································
2. 一般事項
2.1 構造計画
3. 固有値解析及び構造強度評価 ・・・・・・・・・・・・・
3.1 固有値解析及び構造強度評価方法 ・・・・・・・・・・
3.2 荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・
3.2.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・
3.2.2 許容応力 ······
3.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・
3.3 解析モデル及び諸元
3.4 固有周期 ·····
3.5 設計用地震力
3.6 サポート部の計算方法 ・・・・・・・・・・・・・・・・・・
3.6.1 記号の説明・・・・・・
3.6.2 応力の計算方法・・・・・
3.7 計算条件・・・・・
3.8 応力の評価・・・・・
3.8.1 ボルトの応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 機能維持評価
4.1 基本方針
4.2 ポンプの動的機能維持評価 ・・・・・・・・・・・・・・・・
4.2.1 評価対象部位
4.2.2 評価基準值
4.2.3 評価方法
4.3 原動機の動的機能維持評価 ・・・・・・・・・・・・・・・
4.3.1 評価対象部位
4.3.2 評価基準値
4.3.3 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

.6 サポート部の計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
3.6.1 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
3.6.2 応力の計算方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
.7 計算条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
.8 応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
3.8.1 ボルトの応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
機能維持評価	15
.1 基本方針	15
.2 ポンプの動的機能維持評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
4.2.1 評価対象部位 ······	16
4.2.2 評価基準値 ·····	16
4.2.3 評価方法	16
3 原動機の動的機能維持評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
4.3.1 評価対象部位 ······	17
4.3.2 評価基準値	17
4.3.3 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
4.3.4 評価方法 ······	19
評価結果	22

5.1 設計基準対象施設としての評価結果 5.2 重大事故等対処設備としての評価結果

.

.

.

.

.

.

.

.

.

.

.

.

5.

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき、高圧炉心スプレイ補機冷却海水ポンプが設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

高圧炉心スプレイ補機冷却海水ポンプは,設計基準対象施設においては S クラス施設 に,重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)に分類される。 以下,設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維 持評価を示す。

なお、高圧炉心スプレイ補機冷却海水ポンプは、添付書類「VI-2-1-13 機器・配管系の計算書作成の方法」に記載のたて軸ポンプであるため、添付書類「VI-2-1-13-5 たて 軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また,高圧炉心スプレイ補機冷却海水ポンプは,添付書類「VI-2-1-9 機能維持の基本 方針」に記載の立形斜流ポンプであり,高圧炉心スプレイ補機冷却海水ポンプの原動機は, 添付書類「VI-2-1-9 機能維持の基本方針」に記載の立形ころがり軸受電動機である。共 に機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから, 原子力発電所耐震設計技術指針(JEAG4601-1991追補版)(以下「JEAG46 01」という。)に定められた評価部位の健全性を詳細評価することで動的機能維持の確 認を行う。

2. 一般事項

2.1 構造計画

高圧炉心スプレイ補機冷却海水ポンプの構造計画を表 2-1 に示す。

計画の	の概要	概略構造図					
基礎・支持構造	主体構造						
ポンプはポンプベー	ターボ形						
スに固定され、ポン	(ターボ形たて軸ポ	原動機取付ポルト					
プベースは基礎ボル	ンプ <mark>(海水ポンプ)</mark>)						
トで基礎に据え付け		ボンプ取付ボルト 原動機合					
る。		基礎ボルト					
		第一中間サポート基礎ボルト					
		<u>第一中間サポート取付ポルト</u>					
		第二中間サポート取付ボルト					
		B~B矢相反	(単位:mm)				
	1	<u>P - P A DIN</u>					

表 2-1 構造計画

- 3. 固有値解析及び構造強度評価
- 3.1 固有値解析及び構造強度評価方法

高圧炉心スプレイ補機冷却海水ポンプの構造強度評価は、添付書類「VI-2-1-13-5 たて軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基 づき行う。

- 3.2 荷重の組合せ及び許容応力
 - 3.2.1 荷重の組合せ及び許容応力状態

高圧炉心スプレイ補機冷却海水ポンプの荷重の組合せ及び許容応力状態のうち 設計基準対象施設の評価に用いるものを表 3-1 に,重大事故等対処設備の評価に 用いるものを表 3-2 に示す。

3.2.2 許容応力

高圧炉心スプレイ補機冷却海水ポンプの許容応力は,添付書類「VI-2-1-9 機能維持の基本方針」に基づき表 3-3 及び表 3-4 のとおりとする。

3.2.3 使用材料の許容応力評価条件

高圧炉心スプレイ補機冷却海水ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3-5 に,重大事故等対処設備の評価に用いるものを表 3-6 に示す。

表 3-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却 原子炉補機		「補機 高圧炉心スプレイ	C	NT *1	$D + P_D + M_D + S d^*$	III _A S
系統施設		補機冷却海水ポンプ	5	Non ^{*1}	$D + P_D + M_D + S_S$	IV _A S

注記*:クラス3ポンプの荷重の組合せ及び許容応力状態を適用する。また、クラス3ポンプの支持構造物を含む。

表 3-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

	施設区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
					$D + P_D + M_D + S_s *^3$	IV _A S
原子炉	冷却 原子炉補機 設 冷却設備	高圧炉心スプレイ 補機冷却海水ポンプ	常設/防止 (DB 拡張)	重大事故等 クラス2ポンプ ^{*2}	$D + P_{SAD} + M_{SAD} + S_s$	V _A S (V _A Sとして IV _A Sの許容限界 を用いる。)

注記*1:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張)を示す。

*2:重大事故等クラス2ポンプの支持構造物を含む。

*3:「D+P_{SAD}+M_{SAD}+Ss」の評価に包絡されるため、評価結果の記載を省略する。

	許容限界*						
許容応力状態	一次一般膜応力	ー次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ピーク応力			
Ш _А S	S _ッ と 0.6・S _u の小さい方。 ただし, <mark>オーステナイト系ステ ンレス鋼</mark> 及び <u>高ニッケル合金</u> については上記値と 1.2・Sと の大きい方。	左欄の 1.5 倍の値	弾性設計用地震動Sd又は基準地震動Ssのみに 疲労解析を行い,疲労累積係数が1.0以下である ただし,地震動のみによる一次+二次応力の変動				
IV _A S			2・S _y 以下であれば疲労解析は不要。				
V₄S (V₄SとしてⅣ₄Sの許名 限界を用いる。)	0.6 · S u	左欄の 1.5 倍の値	基準地震動 S s のみによる 係数が 1.0 以下であること。 ただし,地震動のみによる 2・S _y 以下であれば疲労解	。 一次+二次応力の変動値 ¹			

表 3-3 許容応力(クラス 2,3 ポンプ及び重大事故等クラス 2 ポンプ)

注記*:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

	許容限界* ^{1,*2} (ボルト等)			
許容応力状態	一次応力			
	引張り	せん断		
III _A S	1.5 • f t	1.5 • f s		
IV _A S				
V _A S (V _A SとしてIV _A Sの許容限界を用いる。)	1.5 • f _t *	1.5 • f _s *		

表 3-4 許容応力(クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物)

注記 *1: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件		S (III)	S _y	S _u	S _y (RT)
		(°C)		(MPa)	(MPa)	(MPa)	(MPa)
コラムパイプ		最高使用温度	50				
基礎ボルト		周囲環境温度	50				
ポンプ取付ボルト		最高使用温度	50				
原動機取付ボルト		周囲環境温度	50				
第一中間サポート 基礎ボルト		周囲環境温度	50				
第一中間サポート 取付ボルト		周囲環境温度	50				
第二中間サポート 基礎ボルト		周囲環境温度	50				
第二中間サポート 取付ボルト		周囲環境温度	50				

表 3-5 使用材料の許容応力評価条件(設計基準対象施設)

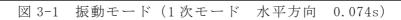
 $\overline{}$

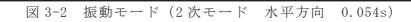
						1/114 /	
評価部材	材料	温度条件	温度条件		S _y	S _u	S _y (RT)
	1-1 1-1	(°C)		(MPa)	(MPa)	(MPa)	(MPa)
コラムパイプ		最高使用温度	50				
基礎ボルト		周囲環境温度	50				
ポンプ取付ボルト		最高使用温度	50				
原動機取付ボルト		周囲環境温度	50				
第一中間サポート 基礎ボルト		周囲環境温度	50				
第一中間サポート 取付ボルト		周囲環境温度	50				
第二中間サポート 基礎ボルト		周囲環境温度	50				
第二中間サポート 取付ボルト		周囲環境温度	50				

表 3-6 使用材料の許容応力評価条件(重大事故等対処設備)

3.3 解析モデル及び諸元

固有値解析及び構造強度評価に用いる解析モデル及び諸元は、本計算書の【高圧炉心 スプレイ補機冷却海水ポンプの耐震性についての計算結果】の機器要目及びその他の 機器要目に示す。解析コードは、「MSC NASTRAN」を使用し、解析コードの検証及び妥当 性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」 に示す。


3.4 固有周期


固有値解析の結果を表 3-7,振動モード図を図 3-1,図 3-2 に示す。固有周期は,0.05 秒を超えており,柔構造であることを確認した。また,鉛直方向の固有周期は0.05秒 以下であることを確認した。

モード	卓越方向	固有周期 水平方向刺激係数 (s) NS 方向 EW 方		刺激係数* E₩ 方向	鉛直方向 刺激係数*
1次	水平	0.074	0. 594	0. 594	0.000
2 次	水平	0.054	-0.623	-0.623	0.000
3次	水平	0.029	_	_	_

表 3-7 固有值解析結果

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリクスの積から算 出した値を示す。

3.5 設計用地震力

「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は、添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。また、減衰定数 は添付書類「VI-2-1-6 地震応答解析の基本方針」に記載の減衰定数を用いる。

評価に用いる設計用地震力を表 3-8 及び表 3-9 に示す。

A 5 6 段目/1/2展/7(段目至午对家旭段/								
据付場所及び 床面高さ(m)		海水ポンプ室(補機ポンプエリア) 0.P. 3.0*1						
固有周	期(s)		水平:	0.074^{*2}	鉛直:0.0	05以下		
減衰定義	数(%)		7	水平:1.0	鉛直:-	_		
地震	力		弾性設計用地震動 S d 又は静的震度		基準地震動 S s			
モード	固有周期 (s)	応答水平	Z震度*3	応答鉛直	応答水平震度*4 応答鉛		応答鉛直	
r		NS 方向	EW方向	震度*3	NS 方向	EW 方向	震度*4	
1次	0.074	* 7	* 7	—	8.30	8.30	—	
2 次	0.054	* 7	* 7	_	6.23	6.23	—	
3次	0.029	* 7	* 7	_	_	_	—	
動的地震	動的地震力*5		* 7	_	1.67	1.67	1.94	
静的地震	静的地震力*6		_ *7	_	_	_	_	

表 3-8 設計用地震力(設計基準対象施設)

注記*1:基準床レベルを示す。

*2:1次固有周期について記載。

*3:各モードの固有周期に対し,設計用床応答曲線(Sd)より得られる震度を示す。
*4:各モードの固有周期に対し,設計用床応答曲線(Ss)より得られる震度を示す。
*5:Ss又はSdに基づく設計用最大応答加速度(1.2・ZPA)より定めた震度を示す。
*6:静的震度(3.6・Ci及び1.2・Cv)を示す。

*7:Ⅲ_ASについては,基準地震動Ssで評価する。

据付場列 床面高		海水ポンプ室(補機ポンプエリア) 0.P. 3.0*1						
固有周	期(s)		水平:	0.074^{*2}	鉛直:0.0)5 以下		
減衰定数	数(%)		7.	水平:1.0	鉛直:-	-		
地震	力		設計用地震動 なは静的震闘		基準地震動 S s			
モード	固有周期	応答水	応答水平震度		応答水平震度*3 応答		応答鉛直	
	(s)	NS 方向	EW 方向	震度	NS 方向	EW 方向	震度 ^{*3}	
1次	0.074	—	—	—	8.30	8.30	—	
2 次	0.054	—	—	—	6.23	6.23	—	
3次	0.029	_	_	—	_	_	—	
動的地震力*4				—	1.67	1.67	1.94	
静的地	震力		_	_	_	_	_	

表 3-9 設計用地震力 (重大事故等対処施設)

注記*1:基準床レベルを示す。

*2:1次固有周期について記載。

*3:各モードの固有周期に対し,設計用床応答曲線(Ss)より得られる震度を示す。 *4:Ss又はSdに基づく設計用最大応答加速度(1.2・ZPA)より定めた震度を示す。 3.6 サポート部の計算方法

3.6.1 記号の説明

高圧炉心スプレイ補機冷却海水ポンプのサポート部の応力評価に使用する記号 を表 3-10 に示す。

表 3-10 記号の説明

記号	記号の説明	単位
W j	サポートボルトに作用する荷重	Ν
A _{s b j}	サポート取付ボルトの軸断面積	mm^2
n _{s j}	サポート取付ボルトの本数	—
ausbj	サポート取付ボルトに生じるせん断応力	MPa

3.6.2 応力の計算方法

TT7

多質点モデルを用いて応答計算を行い,得られた荷重Wにより,サポート取付ボ ルトに生じるせん断応力は次式で求める。

$$\tau_{s b j} = \frac{W_{j}}{A_{s b j} \cdot n_{s j}} \cdots (3.6.2.1)$$

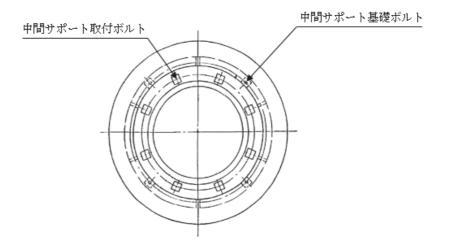


図 3-3 サポート部の応力計算モデル

3.7 計算条件

応力計算に用いる計算条件は,本計算書の【高圧炉心スプレイ補機冷却海水ポンプの 耐震性についての計算結果】の設計条件及び機器要目に示す。 3.8 応力の評価

3.8.1 ボルトの応力評価

3.6.2 項で求めたボルトのせん断応力 τ_{sbj} はせん断力のみを受けるボルトの許容応力 f_{ssbj} 以下であること。

ただし, f_{ssbj}は下表による。

	弾性設計用地震動Sd 又は静的震度による 荷重との組合せの場合	基準地震動Ssによる 荷重との組合せの場合
許容せん断応力 <i>f</i> ssbj	$\frac{\mathrm{F}_{j}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}_{j}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4. 機能維持評価

4.1 基本方針

高圧炉心スプレイ補機冷却海水ポンプ及び同原動機は,添付書類「VI-2-1-9 機能維持の基本方針」に記載の立形斜流ポンプ及び立形ころがり軸受電動機であり,機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから,JEAG 4601に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は,添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき,基準地震動Ssにより定まる設計用最大応答加速度(1.0ZPA)を設定する。

- 4.2 ポンプの動的機能維持評価
 - 4.2.1 評価対象部位

JEAG4601に記載の立形斜流ポンプの動的機能維持評価に従い,以下の部 位について評価を実施する。

a. 基礎ボルト,ポンプ取付ボルト,原動機取付ボルト

- b. コラムパイプ
- c. ストッパ
- d. 軸受

このうち「a. 基礎ボルト,ポンプ取付ボルト,原動機取付ボルト」「b. コラ ムパイプ」「c. ストッパ」については、「3. 固有値解析及び構造強度評価」に従 い評価を行った「5. 評価結果」にて設計用地震力に対して十分な構造強度を有し ていることを確認している。

以上より,本計算書においては,軸受を評価対象部位とする。

4.2.2 評価基準値

軸受については、メーカ規定の許容値を評価基準値として設定する。

4.2.3 評価方法

軸受については,多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果を用い,得られた軸受の発生荷重に係数4.3を乗じ評価する。

- 4.3 原動機の動的機能維持評価
 - 4.3.1 評価対象部位

JEAG4601の電動機の動的機能維持評価に従い,以下の部位について評価 を実施する。

- a. 取付ボルト
- b. 固定子
- c. 軸 (回転子)
- d. 端子箱
- e. 軸受
- f. 固定子と回転子のクリアランス
- g. モータフレーム
- h. 軸継手

このうち「a. 取付ボルト」については、「3. 固有値解析及び構造強度評価」 に従い評価を行った「5. 評価結果」にて設計用地震力に対して十分な構造強度を 有していることを確認している。

以上より,本計算書においては,固定子,軸(回転子),端子箱,軸受,固定子と 回転子のクリアランス,モータフレームを評価対象部位とする。なお,軸継手はポ ンプ軸とモータ軸をリジットに接続するタイプであり,相対変位が発生しないこと, および地震荷重については軸受で負担するため軸継手部には有意な応力が発生し ないことから,計算書の評価対象外とする。

4.3.2 評価基準値

軸(回転子)及びモータフレームの許容応力は、クラス2ポンプの許容応力状態 ⅢASに準拠し設定する。固定子の許容応力はクラス2支持構造物の許容応力状態Ⅲ ASに準拠し設定する。端子箱の許容応力はクラス2支持構造物の許容応力状態ⅣAS に準拠し設定する。また軸受については、メーカ規定の軸受の定格荷重を、固定子 と回転子間のクリアランスは、変位可能寸法を評価基準値として設定する。 4.3.3 記号の説明

高圧炉心スプレイ補機冷却海水ポンプ用原動機の動的機能維持評価に使用する 記号を表 4-2 に示す。

	衣4-2 記方の説明	
記号	記号の説明	単位
A _{b t}	端子箱取付ボルトの断面積	mm^2
A f	モータフレームの断面積	mm^2
A p	ピンの断面積	mm^2
A s	軸の断面積	mm^2
Ср	ポンプ振動による震度	_
Сн	水平方向設計震度	_
Снт	端子箱部の最大応答加速度による水平方向震度	—
C _v	鉛直方向設計震度	_
D	固定子の外径	mm
d s	軸の径	mm
F _k	固定子に生じる組合せ荷重	Ν
F _{bt}	端子箱取付ボルトに作用する引張力	N
F	端子箱取付面に対し左右方向の水平方向地震により作用する引	N
<mark>F_{bt,a}</mark>	<mark>張力</mark>	IN
F _{bt} , b	端子箱取付面に対し前後方向の水平方向地震により作用する引	N
	<mark>張力</mark>	- 1
F k g	自重及び地震力により固定子に生じる荷重	Ν
F _{kt}	電動機の回転による荷重	Ν
g	重力加速度(=9.80665)	m/s^2
<mark>h t</mark>	端子箱取付面から端子箱重心までの高さ	mm
L _{1 i}	重心と下側ボルト間の鉛直方向距離	mm
L _{2 i}	上側ボルトと下側ボルト間の鉛直方向距離	mm
L _{3 i}	左側ボルトと右側ボルト間の水平方向距離	mm
M f	モータフレームに作用する曲げモーメント	N•mm
M s	軸に作用する曲げモーメント	N•mm
Ν	電動機の回転速度	\min^{-1}
n _p	固定子取付ピンの本数	—
n _t	端子箱取付ボルトの本数	_
n _{t1,y}	引張力がはたらく端子箱取付ボルト本数(y方向)	_
n _{tl,z}	引張力がはたらく端子箱取付ボルト本数(z 方向)	—
Р	電動機出力	k₩
Q b t	端子箱取付ボルトに生じるせん断力	Ν
Qbt, a	水平方向地震によりボルトに作用するせん断力	N N
Q _{bt,b}	鉛直方向地震によりボルトに作用するせん断力	N
T _m	電動機の回転による発生トルク	N•m

表4-2 記号の説明

記号	記号の説明	単位
T m a	電動機最大トルク	%
T _s	ポンプ運転による発生トルク	N•mm
W _c	固定子コイル及びコア質量	kg
W f	モータフレーム質量	kg
W s	軸の質量	kg
W _t	端子箱質量	kg
Zf	モータフレームの断面係数	mm^3
Z _s	軸の断面係数	mm^3
σ_{m}	モータフレームに生じる組合せ応力	MPa
σ	軸に生じる組合せ応力	MPa
σ _{bt}	端子箱取付ボルトに生じる引張応力	MPa
σ _{fm}	モータフレームに生じる曲げ応力	MPa
σ _{fw}	自重及び鉛直方向地震力によりモータフレームに生じる応力	MPa
σ _{sm}	軸に生じる曲げ応力	MPa
σ _{sw}	自重及び鉛直方向地震力により軸に生じる応力	MPa
$ au_{ m k}$	固定子に生じるせん断応力	MPa
au s	ポンプ運転によるねじり応力	MPa
τ _{bt}	端子箱取付ボルトに生じるせん断応力	MPa

4.3.4 評価方法

(1) 固定子

電動機の最大荷重(トルク)は次式で求める。

$$T_{m} = \frac{974 \cdot P \cdot g}{N} \cdot \frac{T_{ma}}{100} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot (4.3.4.1)$$

電動機の回転による荷重は次式で求める。

$$F_{k t} = \frac{T_{m}}{1/2 \cdot D} \qquad (4.3.4.2)$$

自重及び鉛直方向地震力により発生する荷重は次式で求める。

せん断応力は次式で求める。

$$\tau_{k} = \frac{F_{k}}{n_{p} \cdot A_{p}} \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (4.3.4.5)$$

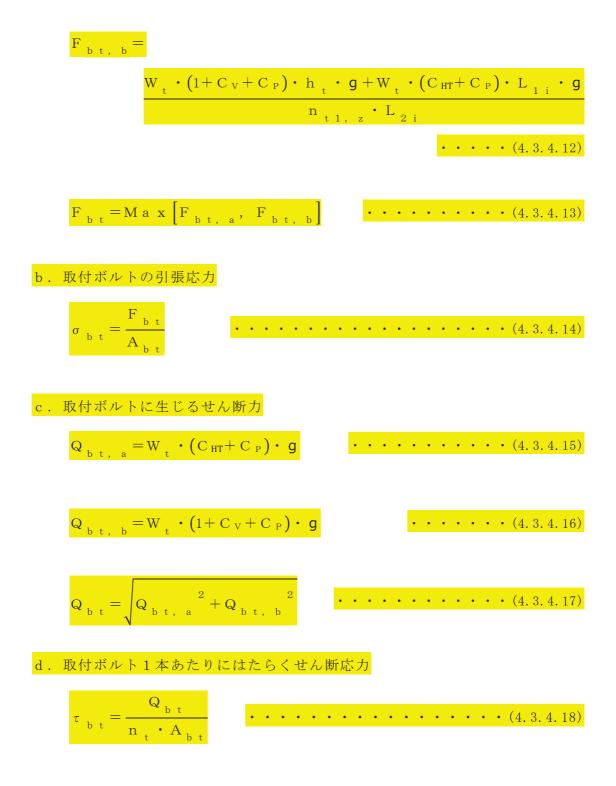
- (2) 軸<mark>(回転子)</mark>
 - a. 曲げ応力

多質点はりモデルを用いて応答計算を行い,得られたモーメントにより,曲 げ応力は以下のようになる。

b. 自重及び鉛直方向地震力による応力

$$\sigma_{sw} = \frac{\left(1 + C_{v} + C_{P}\right) \cdot W_{s} \cdot g}{A_{s}} \qquad \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (4.3.4.7)$$

c. ねじり応力


$$T_{s} = \frac{P}{2\pi \swarrow 60 \cdot N} \cdot 10^{6} \qquad \cdots \qquad (4.3.4.8)$$

d. 組合せ応力

$$\sigma_{s} = \frac{1}{2} \cdot \left(\sigma_{sm} + \sigma_{sw} \right) + \frac{1}{2} \cdot \sqrt{\left(\sigma_{sm} + \sigma_{sw} \right)^{2} + 4 \tau_{s}^{2}}$$
. (4.3.4.10)

(2) 端子箱
a. 取付ボルトに作用する引張力

$$F_{bt,a} =$$

 $\frac{W_{t} \cdot (1 + C_{v} + C_{P}) \cdot h_{t} \cdot g}{n_{t1, z} \cdot L_{2i}} + \frac{W_{t} \cdot (C_{HT} + C_{P}) \cdot h_{t} \cdot g}{n_{t1, y} \cdot L_{3i}}$
 $\cdot \cdot \cdot \cdot (4.3.4.11)$

(3) 軸受

多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果 を用い,軸受の発生荷重を評価する。 (4) 固定子と回転子のクリアランス

多質点はりモデルによる高圧炉心スプレイ補機冷却海水ポンプの応答解析結果 を用い,固定子一軸(回転子)の相対変位が固定子一軸(回転子)間空隙寸法を 下回ることを確認する。

(5) モータフレーム

a. 曲げ応力

多質点はりモデルを用いて応答計算を行い,得られたモーメントにより,曲 げ応力は以下のようになる。

b. 自重及び鉛直方向地震力による応力

$$\sigma_{\rm fw} = \frac{\left(1 + C_{\rm V} + C_{\rm P}\right) \cdot W_{\rm f} \cdot g}{A_{\rm f}} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (4.3.4.20)$$

c. 組合せ応力

$$\sigma_{\rm m} = \sigma_{\rm f m} + \sigma_{\rm f w} \qquad \cdots \qquad (4.3.4.21)$$

5. 評価結果

5.1 設計基準対象施設としての評価結果

高圧炉心スプレイ補機冷却海水ポンプの設計基準対象施設としての耐震評価結果を 以下に示す。発生値は許容限界を満足しており,設計用地震力に対して十分な構造強度 及び動的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。なお,弾性設計用地震動 S d 及び静的 震度は基準地震動 S s を下回っており,基準地震動 S s による発生値が,弾性設計用 地震動 S d 又は静的震度に対する評価における許容限界を満足するため,弾性設計用 地震動 S d 又は静的震度による発生値の算出を省略した。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

5.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ補機冷却海水ポンプの重大事故等時の状態を考慮した場合の耐震 評価結果を以下に示す。発生値は許容限界を満足しており,設計用地震力に対して十分 な構造強度及び動的機能を有していることを確認した。

- (1) 構造強度評価結果
 - 構造強度評価の結果を次頁以降の表に示す。
- (2)機能維持評価結果動的機能維持評価の結果を次頁以降の表に示す。

【高圧炉心スプレイ補機冷却海水ポンプの耐震性についての計算結果】

1. 設計基準対象施設

1.1 構造強度評価

1.1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ	固有周	『期(s)	弾性設計用# 又は静的		基準地震	動Ss	ポンプ振動		周囲環境	最高使用止力
校选在产力化小	展里安皮刀翔	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	による震度	温度 (℃)	温度 (°C)	(MPa)
高圧炉心スプレイ 補機冷却海水 ポンプ	S	海水ポンプ室 (補機ポンプエリア) 0. P. 3. 0*1	0.074	0.05 以下	_*2	_*2	С _н =1.67	$C_V = 1.94$		50	50	<mark>0. 78</mark>

注記*1:基準床レベルを示す。

*2:Ⅲ、Sについては、基準地震動Ssで評価する。

1.1.2 機器要目 (1) ボルト

24

													·				
部材	m _i (kg)	D _i (mm)	d _i (mm)	A _{b i} (mm ²)	n i	n _{f i}	M _p (N·mm)	S _{yi} (MPa)	S _{ui} (MPa)	F _i (MPa)	F _i * (MPa)	部材	S (MPa)	S _y (MPa)	S _u (MPa)	D _C (mm)	t (mm)
基礎ボルト (i=1)		<u>.</u>			6	6	_		•			コラムパイプ					
ポンプ取付ボルト (i=2)					16	16	3.820×10^5					注記*:最高使用	温度で算	出			
原動機取付ボルト (i=3)					8	8	3.820 $\times 10^{5}$										

注記*1:最高使用温度で算出

*2:周囲環境温度で算出

(2) コラムパイプ

部材	S	S _y	S _u	D _C	t
	(MPa)	(MPa)	(MPa)	(mm)	(mm)
コラムパイプ					

(3) サポート取付ボルト

部材	A _{sbj} (mm²)	n _{s j}	S _{yj} (MPa)	S _{uj} (MPa)	S _{yj} (RT) (MPa)	F j (MPa)	F ;* (MPa)
第一中間サポート 基礎ボルト		4					
(j =1)							
第一中間サポート							
取付ボルト (j=2)		8					
第二中間サポート							
基礎ボルト		4					
(j=3) 第二中間サポート							
取付ボルト		8					
(j=4)							

注記*1:周囲環境温度で算出

子想最大両振幅	回転速度
(µm)	(rpm)

1.1.3 計算数値

(1) ボルトに作用する力

(2)コラムパイプに作用する力

(単位:N•mm)

	\mathbf{M}_{i} (N • mm)		F _{b i} (N)		${ m Q}_{ m b~i}$ (N)		
部材	弹性設計用地震動Sd	基準地震動	弹性設計用地震動Sd	基準地震動	弹性設計用地震動Sd	基準地震動	
	又は静的震度	S s	又は静的震度	S s	又は静的震度	S s	
基礎ボルト							
(i = 1)							
ポンプ取付ボルト							
(i=2)							
原動機取付ボルト							
(i=3)							

	М	
部材	弾性設計用地震動Sd	基準地震動
	又は静的震度	S s
コラムパイプ		
注記*:Ⅲ _A S につ	いては、基準地震動Ss	で評価する。

注記*:Ⅲ」Sについては、基準地震動Ssで評価する。

(3) サポート取付ボルトに作用する力

 (単位:N)
 部 材
 部 材
 弾性設計用地震動 S d 又は静的震度
 基準地震動S s
 第一中間サポート基礎ボルト (j=1)
 第一中間サポート取付ボルト (j=2)
 第二中間サポート基礎ボルト (j=3)
 第二中間サポート取付ボルト (j=4)
 注記*: III,S については、基準地震動S s で評価する。

1.1.4 結論

26

1.1.4.1 固有周期	(単位:s)					
モード	固有周期					
水平 1次	T _{H1} =0.074					
鉛直 1次	Τ _{V1} =0.05以下					

1.1.4.2 ボルトの応力

(単位:MPa) 1.1

部 材	材 料	応 力		用地震動Sd 静的震度 許容応力	基準地	也震動S s 許容応力
基礎ボルト		引張り	穿山心刀 σ _{b1} =33 <mark>*2</mark>	計谷心刀 f _{ts1} =153 <mark>*1</mark>	昇山心刀 σ _{b1} =33	計符応力 f _{ts1} =153 <mark>*1</mark>
(i=1)		せん断	τ _{b1} =12 ^{*2}	f _{sb1} =118	τ _{b1} =12	f _{sb1} =118
ポンプ取付ボルト	1	引張り	σ _{b2} =21 ^{*2}	f _{ts2} =505 ^{*1}	σ _{b2} =21	f _{ts2} =505 <mark>*1</mark>
(i=2)		せん断	$\tau_{\rm b2}=3^{*2}$	$f_{\rm sb2}=389$	τ _{b2} =3	$f_{s b 2} = 389$
原動機取付ボルト		引張り	σ _{b4} =18 ^{*2}	$f_{t s 4} = 505^{*1}$	σ _{b4} =18	f _{ts4} =505 ^{*1}
(i=3)		せん断	τ _{b4} =9 <mark>*</mark> 2	$f_{s b 4} = 389$	τ _{b4} =9	$f_{\rm sb4}=389$
すべて許容広力以下で	あろ	注記 *1	• f =Min	$1 4 \cdot f = 1 6 \cdot$	τ f	トの質出

		1.1.4.3 コラムパイプの応力 (単位:M								
		部材	材料	一次一般膜応力						
		司	的科		算出応力	許容応力				
		コラムパイプ		弾性設計用地震動Sd 又は静的震度	$\sigma = 61^*$	S a =199				
				基準地震動S s	$\sigma = 61$	S a =306				
		すべて許容応力は	人下である。	<mark>注記*:基</mark>	準地震動S s	による算出値				

すべて計浴応刀以下である。

注記*<mark>1</mark>:f_{tsi}=Min[1.4·f_{toi}-1.6·τ_{bi}, f_{toi}]より算出 *2:基準地震動Ssによる算出値

27

1.1.4.4 サポート取付ボルトの応力

(単位:MPa)

部 材	材	料	応 力	弾性設計用地震動	Sd 又は静的震度	基準地震動S s		
				算出応力	許容応力	算出応力	許容応力	
第一中間サポート 基礎ボルト (j=1)			せん断	τ _{sb1} =18 <mark>*</mark>	f _{ssb1} =118	τ _{sb1} =18	f _{ssb1} =142	
第一中間サポート 取付ボルト (j=2)			せん断	τ _{sb2} =12 <mark>*</mark>	f _{ssb2} =118	τ _{sb2} =12	f _{ssb2} =142	
第二中間サポート 基礎ボルト (j=3)			せん断	τ _{sb3} =17 <mark>*</mark>	f _{ssb3} =118	τ _{sb3} =17	f _{ssb3} =142	
第二中間サポート 取付ボルト (j=4)			せん断	τ _{sb4} =10 <mark>*</mark>	f _{ssb4} =118	τ _{sb4} =10	f _{ssb4} =142	
すべて許容値以下である。							地震動Ssによる算出値	

1.2 動的機能維持評価

1.2.1 設計条件

機器名称	形式	定格容量 (m³/h)	据付場所及び	固有周期(s)		基準地震動S s		ポンプ振動	最高使用	
			床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	による震度	温度 (℃)	温度 (℃)
高圧炉心スプレイ 補機冷却海水ポンプ	立形斜流ポンプ	250	海水ポンプ室 (補機ポンプエリア) 0. P. 3. 0*	0. 074	0.05 以下	C _H =1.40	$C_{V} = 1.61$		50	50

注記*:基準床レベルを示す。

機器名称	形式	形式 (kW)	据付場所及び 床面高さ	固有周期(s)		基準地震動S s		ポンプ振動	端子箱部の最大応答加速度	最高使用	周囲環境
				水平方向 鉛直方向	秋古七白	水平方向	鉛直方向	1	による水平方向震度	温度	温度
			(m)	水平力间	亚国.//川川	設計震度	設計震度			(°C)	(°C)
高圧炉心スプレイ	立形ころがり軸受		海水ポンプ室		0.05						
補機冷却海水ポンプ	電動機	60	(補機ポンプエリア)	0.074	0.05 以下	$C_{\rm H} = 1.40$	$C_V = 1.61$		$C_{\rm HT} = 1.40$	—	50
用原動機	电影//茂		0. P. 3. 0*		BL						

注記*:基準床レベルを示す。

1.2.2 機器要目

28

(2) 軸<mark>(回転子)</mark> (1) 固定子 $T_{\rm ma}$ $W_{\rm c}$ M_s Z_s W_s Ν D A_{p} A_s Ν 部 材 部 材 n_{p} (mm^3) (min⁻¹) (%) (mm^2) (kg) (kg) (mm^2) (min⁻¹) (mm) (N·mm) $2.376 \times$ $1.633 \times$ 9.344 \times 軸 固定子 1500 200 430 187.5 8 59 200 1500 10^{4} 10^{4} 10^{3}

(3) 端子箱											(4) モータフレ
部 材	W _t (kg)	n t	n _{t 1, y}	n _{t 1, z}	A _{bt} (mm²)	Q _{bt}	L _{1 i} (mm)	L _{2i} (mm)	L _{3i} (mm)	h _t (mm)	部材
端子箱	70	10	2	2	113. 1	1.131×10^{5}	110	<mark>110</mark>	<mark>110</mark>	<mark>250</mark>	モータフレー

レーム

部材	$M_{\rm f}$	$Z_{\rm f}$	$W_{\rm f}$	A_{f}	
同時	(N·mm)	(mm^3)	(kg)	(mm^2)	
モータフレーム	3.379 \times	2.259 \times	100	$2.097 \times$	
	10^{6}	10^{6}	190	10^{4}	

 $d_{\rm s}$

(mm)

55

1.2.3 結論

1.2.3.1 機能確認済加速度との比較

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度						
ポンプ	水平方向	3. 18	10.0						
	鉛直方向	1.61	1.0						
原動機	水平方向	1.40	2.5						
/示要//茂	鉛直方向	1.61	1.0						

注記*:基準地震動Ssにより定まる応答加速度とする。

ポンプは、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。 原動機は、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。

1.2.3.2 立形斜流ポンプの動的機能維持評価

1.2.3.2.1 代表評価項目の評価

基礎ボルト、ポンプ取付ボルト、コラムパイプ、ストッパについては、構造強度評価にて設計用地震力に対して十分な構造強度を有しているため、計算は省略する。

1.2.3.2.2 上記以外の基本評価項目の評価

1.2.3.2.2.1 軸受の評価

(単位:N)

評価部位	発生荷重	許容荷重
ポンプ軸受(1段目)	4.626×10^{3}	7.060×10^{3}
ポンプ軸受 (2 段目)	4.291×10^{3}	2.118×10^4
ポンプ軸受 (3 段目)	4.510×10^{3}	2.118×10^4
ポンプ軸受(4段目)	4. 196×10^3	2. 118×10^4
ポンプ軸受 (5段目)	4. 160×10^3	2. 118×10^4
ポンプ軸受 (6 段目)	5.535 $\times 10^{3}$	2. 118×10^4
ポンプ軸受(7段目)	4. 565×10^3	2.118×10^4
ポンプ軸受 (8 段目)	4. 142×10^3	2. 118×10^4
ポンプ軸受 (9 段目)	4. 041×10^3	2. 118×10^4

すべて許容値以下である。

1.2.3.3 立形ころがり軸受電動機の動的機能維持評価

1.2.3.3.1 代表評価項目の評価

原動機取付ボルトについては、構造強度評価にて設計用地震力に対して十分な構造強度を有しているため、計算は省略する。

1.2.3.3.2 上記以外の基本評価項目の評価

1.2.3.3.2.1 固定子の評価

(単位:MPa)

評価部位	応力	発生応力	許容応力
固定子	せん断	5	121

すべて許容応力以下である。

1.2.3.3.2.2 軸(回転子)の評価

(単位:MPa)

評価部位	発生応力	許容応力
軸(回転子)	16	474

すべて許容応力以下である。

1.2.3.3.2.3 端子箱の評価

(単位:MPa)

評価部位	応力	発生応力	許容応力
端子箱	引張り	<mark>11</mark>	184
	せん断	<mark>2</mark>	142

すべて許容応力以下である。

1.2.3.3.2.4 軸受の評価

(単位:N)

評価部位	発生荷重	許容荷重
上部軸受	2.712×10^{2}	
下部軸受	2. 809×10^3	

すべて許容荷重以下である。

1.2.3.3.2.5 固定子と回転子のクリアランスの評価

(単位:mm)

評価部位	回転子のたわみ	許容変位量
固定子と回転子のクリアランス	0. 01	0.8

すべて許容変位量以下である。

1.2.3.3.2.6 モータフレームの評価

(単位 : MPa)

評価部位	発生応力	許容応力
モータフレーム	3	<mark>45</mark>

すべて許容応力以下である。

1.3 その他の機器要目

(1) 節点データ

節点番号	節点座標(mm)		
即尽备亏	Х	У	Z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

(公士	+.	1
(余元)	A)
VI94	<u> </u>	/

節点番号		節点座標(mm)	
即尽留万	Х	у	Z
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			

枠囲みの内容は商業機密の観点から公開できません

(2) 要素の断面性状

断面特性番号				
	要素両端の節点	材料	断面積	断面二次 モーメント
(要素番号)	番号	番号	(mm^2)	(mm^4)
1	1-2	111		6. 362×10^5
2	2-3	111		6. 362×10^5
3	3-4	111		6. 362×10^5
4	4-5	111		6. 362×10^5
5	5-6	111		6. 362×10^5
6	6-7	111		6. 362×10^5
7	7-8	111		6. 362×10^5
8	8-9	111		6. 362×10^5
9	9-10	111		6. 362×10^5
10	10-11	111		6. 362×10^5
11	11-12	111		6. 362×10^5
12	12-13	111		6. 362×10^5
13	13-14	111		6. 362×10^5
14	14-15	111		6. 362×10^5
15	15-16	111		6. 362×10^5
16	16-17	111		6. 362×10^5
17	17-18	111		6. 362×10^5
18	18-19	111		6. 362×10^5
19	19-20	111		6. 362×10^5
20	20-21	111		6. 362×10^5
21	21-22	111		2. 198×10^5
22	22-23	112		3.220×10^{6}
23	23-24	112		5.970 $\times 10^{6}$
24	24-25	112		1.180×10^{6}
25	26-27	111		1.554×10^{8}
26	27-28	111		4. 632×10^8
27	28-29	111		4. 632×10^8
28	29-30	111		6. 287×10^7
29	30-31	111		6. 287×10^7
30	31-32	111		6. 287×10^7
31	32-33	111		6. 287×10^7
32	33-34	111		6. 287×10^7
33	34-35	111		6. 287×10^7
34	35-36	111		6. 287×10^7
35	36-37	111		6. 287×10^7
36	37-38	111		6. 287×10^7
37	38-39	111		6. 287×10^7
38	39-40	111		6. 287×10^7
39	40-41	111		6. 287×10^7
40	41-42	111		6. 287×10^7

(続き)

断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm ²)	断面二次 モーメント (mm ⁴)
41	42-43	111		6. 287×10^7
42	43-44	111		6. 287×10^7
43	44-45	111		6. 287×10^7
44	45-46	111		6. 287×10^7
45	46-47	111		6. 287×10^7
46	47-48	111		6. 287×10^7
47	48-49	111		2. 546×10^{6}
48	50-51	113		3.588×10^9
49	51-52	113		2.769 $\times 10^9$
50	52-53	113		1.861×10^{9}
51	53-54	113		2.769 $\times 10^9$
52	54-55	113		3.677×10^9
53	55-56	114		4. 540×10^8
54	56-57	114		4. 540×10^8
55	57-58	114		8.820×10^8
56	58-59	8-59 114		
57	59-60	114	8.820×10^8	
58	60-61	3.520×10^8		
59	61-62	114		3.520×10^8

(3) ばね結合部の指定

ばねの両端	の節点番号	ばね定数
2	29	
5	32	
7	34	
9	36	
11	38	
13	40	
15	42	
18	45	
21	48	
23	56	
24	61	
47	51	
31	-	
37	_	
50	_	
50	-	

(4) 節点の質量

節点番号	質量(kg)
即示面力	<u>貝里(Ng)</u>
2	
3	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
16	
17	
18	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

枠囲みの内容は商業機密の観点から公開できません。

(続き)	
節点番号	質量(kg)
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

枠囲みの内容は商業機密の観点から公開できません。

(5) 材料物性值

材料番号	温度 (℃)	縦弾性係数 (MPa)	質量密度 (kg/mm ³)	ポアソン比 (-)	材質	部位
111	50			0. 3		ポンプ
112	50			0.3		原動機
113	50			0. 3		ポンプ
114	50			0.3		原動機

【高圧炉心スプレイ補機冷却海水ポンプの耐震性についての計算結果】

2. 重大事故等対処設備

2.1 構造強度評価

2.1.1 設計条件

松思友开	機器名称 設備分類	備分類		期(s)		目地震動Sd 争的震度	基準地震	動Ss	ポンプ振動	最高使用		最高使用上力
你英国产妇们小	₩ <i>刀</i> ૠ	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	による震度	温度 (℃)	温度 (℃)	(MPa)
高圧炉心スプレイ 補機冷却海水 ポンプ	常設/防止 (DB 拡張)	海水ポンプ室 (補機ポンプエリア) 0.P.3.0*	0.074	0.05 以下	_	_	С _н =1.67	$C_V = 1.94$		50	50	<mark>0. 78</mark>

注記*:基準床レベルを示す。

2.1.2 機器要目

40

(1) ボルト												(2) コラムパイフ	r				
部材	m_{i}	D _i	d i	A_{bi}	n i	n _{fi}	$M_{\rm p}$	S_{yi}	Sui	F _i	F_i^*	部材	S	S _y	S _u	$D_{\rm C}$	t
14 UT	(kg)	(mm)	(mm)	(mm ²)	11 i	11 † 1	(N·mm)	(MPa)	(MPa)	(MPa)	(MPa)	다가 너희	(MPa)	(MPa)	(MPa)	(mm)	(mm)
基礎ボルト					6	6	_					コラムパイプ					
(i=1)					0	0						1)4/4/					
ポンプ取付ボルト					16	16	3.820×10^{5}					注記*:最高使用	温度で算る	Ц			
(i=2)					10	10	3. 820 ^ 10										
原動機取付ボルト					8	0	3.820×10^{5}										
(i=3)					0	0	3. 820 ^ 10										

注記*1:最高使用温度で算出

*2:周囲環境温度で算出

(2) コラムパイプ

(3) サポート取付ボルト

部材	A _{sbj} (mm²)	n _{s j}	S _{yj} (MPa)	S _{uj} (MPa)	S _{yj} (RT) (MPa)	F j (MPa)	Fj* (MPa)
第一中間サポート 基礎ボルト		4					
(j=1)		4					
第一中間サポート 取付ボルト		8					
(j=2)		0					
第二中間サポート		4					
基礎ボルト (j=3)		4					
第二中間サポート							
取付ボシレト (j=4)		8					

41

注記<mark>*1</mark>:周囲環境温度で算出

予想最大両振幅	回転速度
(μm)	(rpm)

2.1.3 計算数値

(1) ボルトに作用する力

(2) コラムパイプに作用する力

(単位:N•mm)

基準地震動

S s

		$\mathbf{M}_{\mathrm{i}}\left(\mathrm{N} extsf{mm} ight)$		F _{bi} (N)		$\mathbf{Q}_{\mathrm{b}\ \mathrm{i}}$ (N)				М
	部材	弾性設計用地震動Sd	基準地震動	弹性設計用地震動Sd	基準地震動	弾性設計用地震動Sd	基準地震動		部 材	弹性設計用地震動
		又は静的震度	Ss	又は静的震度	Ss	又は静的震度	S s			Sd又は静的震度
ſ	基礎ボルト							_	コラムパイプ	
	(i = 1)							-		
ſ	ポンプ取付ボルト									
	(i=2)									
	原動機取付ボルト									
	(i=3)									

(3) サポート取付ボルトに作用する力

		(単位:N)
部材	W	Τ _j
部材	弾性設計用地震動 S d 又は静的震度	基準地震動S s
第一中間サポート基礎ボルト	うな人は時日の反反	
(j=1) 第一中間サポート取付ボルト		
(j=2) 第二中間サポート基礎ボルト		
(j=3)		
第二中間サポート取付ボルト (j=4)		

2.1.4 結論

42

2.1.4.1 固有周期	(単位:s)			
モード	固有周期			
水平 1次	$T_{H1} = 0.074$			
鉛直 1次	T _{V1} =0.05以下			

2.1.4.2 ボルトの応力

2.1.4.3	コラムパイプの応力
2.1.1.0	

(単位:MPa)

部材	材 料	応 力		地震動Sd又は 的震度	基準地	震動S s
			算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	_	_	σ _{b1} =33	$f_{t s 1} = 184^*$
(i=1)		せん断	_	—	τ _{b1} =12	f _{sb1} =142
ポンプ取付ボルト		引張り	_	_	σ _{b2} =21	$f_{t s 2} = 505^*$
(i=2)		せん断	_	_	$\tau_{b2}=3$	$f_{\rm sb2}=389$
原動機取付ボルト		引張り	_	_	$\sigma_{b4} = 18$	$f_{t s 4} = 505^*$
(i=3)		せん断	_	_	τ _{b4} =9	$f_{\rm sb4}=389$
すべて許容応力以下で	ご ある。	注記*:	$f_{\rm tsi} = Min \left[1\right]$	$.4 \cdot f_{\rm toi} - 1.6$	$\cdot \tau_{bi}$, f_{to}	, _i]より算出

部材材		料	一次一般膜応力					
다가 대학	12]	14		算出応力	許容応力			
コラムパイプ	コラムパイプ		弾性設計用地震動Sd 又は静的震度	_	_			
			基準地震動S s	$\sigma = 61$	S a =306			

すべて許容応力以下である。

43

2.1.4.4 サポート取付ボルトの応力

(単位:MPa)

材料	応力	弾性設計用地震動	ISd 又は静的震度	基準地震動S s					
		算出応力	許容応力	算出応力	許容応力				
	せん断	_	_	τ _{sb1} =18	f _{ssb1} =142				
	せん断	_	_	τ _{sb2} =12	f _{ssb2} =142				
	せん断	_	_	τ _{sb3} =17	f _{ssb3} =142				
	せん断	_	_	τ _{sb4} =10	f _{ssb4} =142				
	材 料	せん断 せん断 せん断	材料 応力 算出応力 せん断 せん断 せん断 せん断	算出応力 許容応力 せん断 ー せん断 ー せん断 ー せん断 ー	材料 応力 算出応力 許容応力 算出応力 単ん断 - - てsb1=18 せん断 - - てsb2=12 せん断 - - てsb2=17				

すべて許容値以下である。

2.2 動的機能維持評価

2.2.1 設計条件

		定格容量	据付場所及び	固有周	副期(s)	基準地震	動S s	ポンプ振動	最高使用	周囲環境
機器名称	形式	(m³/h)	床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	による震度	温度 (℃)	温度 (℃)
高圧炉心スプレイ 補機冷却海水ポンプ	立形斜流 ポンプ	250	海水ポンプ室 (補機ポンプエリア) 0. P. 3. 0*	0. 074	0.05 以下	$C_{\rm H} = 1.40$	$C_{v} = 1.61$		50	50

注記*:基準床レベルを示す。

			据付場所及び	固有周期(s)		基準地震動S s		ポンプ振動	端子箱部の最大応答加速度	最高使用	周囲環境
機器名称	形式	出力 (kW)	床面高さ			水平方向	鉛直方向		による水平方向震度	温度	温度
	(11)		(m)	水平方回	鉛直方向	設計震度	設計震度			(°C)	(°C)
高圧炉心スプレイ	立形ころがり軸受		海水ポンプ室		0.05						
補機冷却海水ポンプ用	エルころかり軸叉	60	(補機ポンプエリア)	0.074	0.05 以下	$C_{\rm H} = 1.40$	$C_{\rm V} = 1.61$		$C_{HT} = 1.40$	_	50
原動機	电期//效		0. P. 3. 0*		- 以下						

注記*:基準床レベルを示す。

2.2.2 機器要目

44

(1) 固定子							_	(2) 軸 <mark>(回転子)</mark>						
部材	N (min ⁻¹)	T _{ma} (%)	D (mm)	A _p (mm ²)	W _c (kg)	n _p		部 材	M₅ (N·mm)	Z _s (mm ³)	W _s (kg)	A s (mm²)	N (min ⁻¹)	d _s (mm)
固定子	1500	200	430	187.5	200	8		軸	9.344× 10⁴	1.633×10^4	59	2.376×10^{3}	1500	55

(3)	端子箱
(-)	110 0 111

部材	W _t (kg)	n t	n _{t 1, y}	n _{t 1, z}	A _{bt} (mm²)	Q _{bt}	L _{1 i} (mm)	L _{2i} (mm)	L _{3i} (mm)	h _t (mm)
端子箱	70	10	2	2	113. 1	1.131×10^{5}	110	<mark>110</mark>	<mark>110</mark>	<mark>250</mark>

(4) モータフレーム

部材	$M_{\rm f}$	$Z_{\rm f}$	$W_{\rm f}$	$A_{\rm f}$
司。小	(N· mm)	(mm^3)	(kg)	(mm^2)
モータフレーム	$3.379 \times$	2.259×	190	2.097 \times
	10^{6}	10^{6}	190	10^{4}

2.2.3 結論

2.2.3.1 機能確認済加速度との比較

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度						
ポンプ	水平方向	3. 18	10.0						
~~ /	鉛直方向	1.61	1.0						
原動機	水平方向	1.40	2.5						
原動機	鉛直方向	1.61	1.0						

注記*:基準地震動Ssにより定まる応答加速度とする。

ポンプは、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。 原動機は、鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため、以下の項目について評価する。

2.2.3.2 立形斜流ポンプの動的機能維持評価

2.2.3.2.1 代表評価項目の評価

基礎ボルト、ポンプ取付ボルト、コラムパイプ、ストッパについては、構造強度評価にて設計用地震力に対して十分な構造強度を有しているため、計算は省略する。

2.2.3.2.2 上記以外の基本評価項目の評価

2.2.3.2.2.1 軸受の評価

(単位 : N)

評価部位	発生荷重	許容荷重
ポンプ軸受(1段目)	4.626×10^{3}	7.060×10^{3}
ポンプ軸受(2段目)	4.291×10^{3}	2. 118×10^4
ポンプ軸受 (3 段目)	4.510×10^{3}	2. 118×10^4
ポンプ軸受 (4 段目)	4. 196×10^3	2.118×10^{4}
ポンプ軸受 (5段目)	4. 160×10^3	2. 118×10^4
ポンプ軸受 (6 段目)	5.535×10^{3}	2. 118×10^4
ポンプ軸受(7段目)	4. 565×10^3	2. 118×10^4
ポンプ軸受 (8 段目)	4. 142×10^3	2.118×10^{4}
ポンプ軸受 (9 段目)	4.041×10^3	2. 118×10^4
トッインサンティトス		

すべて許容値以下である。

2.2.3.3 立形ころがり軸受電動機の動的機能維持評価

2.2.3.3.1 代表評価項目の評価

原動機取付ボルトについては、構造強度評価にて設計用地震力に対して十分な構造強度を有しているため、計算は省略する。

- 2.2.3.3.2 上記以外の基本評価項目の評価
- 2.2.3.3.2.1 固定子の評価

(単位:MPa)

評価部位	応力	発生応力	許容応力
固定子	せん断	5	121

すべて許容応力以下である。

2.2.3.3.2.2 軸 (回転子)の評価

(単位:MPa)

評価部位	発生応力	許容応力
軸(回転子)	16	474

すべて許容応力以下である。

2.2.3.3.2.3 端子箱の評価

(単位:MPa)

評価部位	応力	発生応力	許容応力
エルフを	引張り	<mark>11</mark>	184
端子箱	せん断	2	142

すべて許容応力以下である。

2.2.3.3.2.4 軸受の評価

(単位:N)

評価部位	発生荷重	許容荷重
上部軸受	2. 712×10^2	
下部軸受	2.809×10^{3}	

すべて許容荷重以下である。

2.2.3.3.2.5 固定子と回転子のクリアランスの評価

(単位:mm)

評価部位	回転子のたわみ	許容変位量
固定子と回転子のクリアランス	0.01	0.8

すべて許容変位量以下である。

2.2.3.3.2.6 モータフレームの評価

(単位 : MPa)

評価部位	発生応力	許容応力
モータフレーム	3	<mark>45</mark>

すべて許容応力以下である。

2.3 その他の機器要目

(1) 節点データ

9 Mr H TE H		節点座標(mm)			
節点番号	Х	У	Z		
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					

11.	<u> </u>		>
12	=	F)
11	ЯΓ.	0)

節点番号		節点座標(mm)	
即尽留力	Х	у	Z
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			

(2) 要素の断面性状

断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm ²)	断面二次 モーメント
(安糸留方)	省 万	留万	(mm²)	(mm^4)
1	1-2	111		6. 362×10^5
2	2-3	111		6. 362×10^5
3	3-4	111		6. 362×10^5
4	4-5	111		6. 362×10^5
5	5-6	111		6. 362×10^5
6	6-7	111		6. 362×10^5
7	7-8	111		6. 362×10^5
8	8-9	111		6. 362×10^5
9	9-10	111		6. 362×10^5
10	10-11	111		6. 362×10^5
11	11-12	111		6. 362×10^5
12	12-13	111		6. 362×10^5
13	13-14	111		6. 362×10^5
14	14-15	111		6. 362×10^5
15	15-16	111		6. 362×10^5
16	16-17	111		6. 362×10^5
17	17-18	111		6. 362×10^5
18	18-19	111		6. 362×10^5
19	19-20	111		6. 362×10^5
20	20-21	111		6. 362×10^5
21	21-22	111		2. 198×10^5
22	22-23	112		3.220×10^{6}
23	23-24	112		5.970 $\times 10^{6}$
24	24-25	112		1.180×10^{6}
25	26-27	111		1.554×10^{8}
26	27-28	111		4. 632×10^8
27	28-29	111		4. 632×10^8
28	29-30	111		6. 287×10^7
29	30-31	111		6. 287×10^7
30	31-32	111		6. 287×10^7
31	32-33	111		6. 287×10^7
32	33-34	111		6. 287×10^7
33	34-35	111		6. 287×10^7
34	35-36	111		6. 287×10^7
35	36-37	111		6. 287×10^7
36	37-38	111		6. 287×10^7
37	38-39	111		6. 287×10^7
38	39-40	111		6. 287×10^7
39	40-41	111		6. 287×10^7
40	41-42	111		6. 287×10^7

(続き)

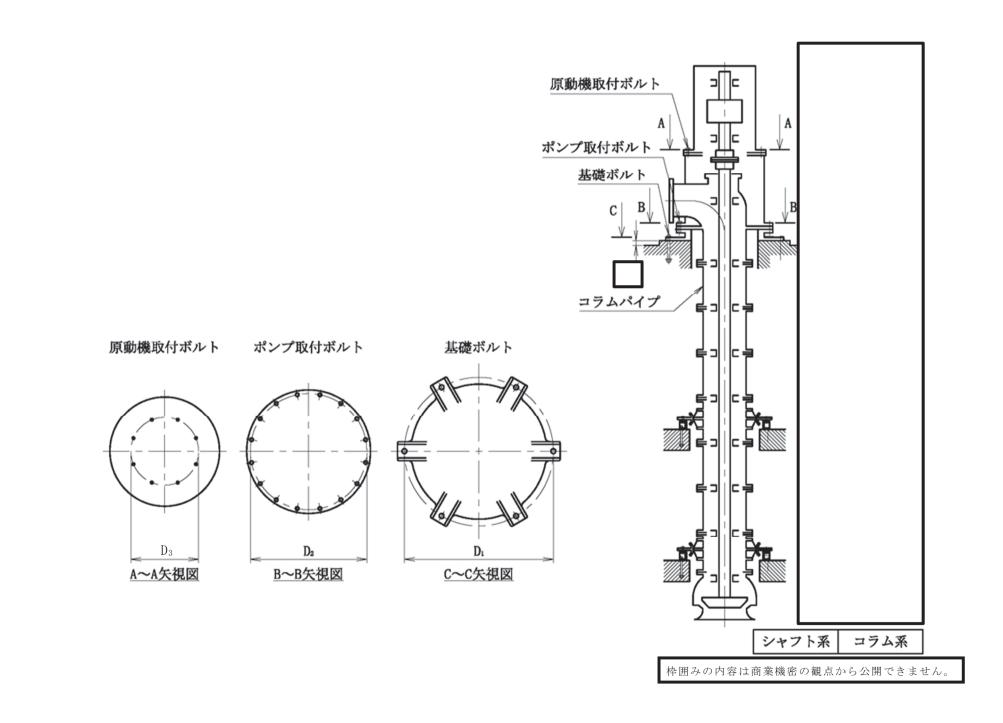
断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm ²)	断面二次 モーメント (mm ⁴)
41	42-43	111		6. 287×10^7
42	43-44	111		6. 287×10^7
43	44-45	111		6. 287×10^7
44	45-46	111		6. 287×10^7
45	46-47	111		6. 287×10^7
46	47-48	111		6. 287×10^7
47	48-49	111		2. 546×10^{6}
48	50-51	113		3. 588×10^9
49	51-52	113		2.769 $\times 10^9$
50	52-53	113		1.861×10^{9}
51	53-54	113		2.769 $\times 10^9$
52	54-55	113		3.677×10^9
53	55-56	114		4. 540×10^8
54	56-57	114		4. 540×10^8
55	57-58	114		8.820 $\times 10^{8}$
56	58-59	114		8.820 $\times 10^{8}$
57	59-60	114		8.820 $\times 10^{8}$
58	60-61	114		3.520×10^8
59	61-62	114		3. 520×10^8

(3) ばね結合部の指定

ばねの両端の節点番号		ばね定数
2	29	
5	32	
7	34	
9	36	
11	38	
13	40	
15	42	
18	45	
21	48	
23	56	
24	61	
47	51	
31	_	
37	_	
50	_	
50	_	

(4) 節点の質量

岱占亚旦	<u> </u>
節点番号	質量(kg)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	


(続き)	
節点番号	質量(kg)
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	

枠囲みの内容は商業機密の観点から公開できません。

(5) 材料物性值

材料番号	温度 (℃)	縦弾性係数 (MPa)	質量密度 (kg/mm ³)	ポアソン比 (-)	材質	部位
111	50			0. 3		ポンプ
112	50			0.3		原動機
113	50			0.3		ポンプ
114	50			0.3		原動機

O 2 ⑤ VI-2-5-7-2-3 R 1

