女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－B－19－0342＿改 0
提出年月日	2021 年 8 月 19 日

VI－2－6－4－1－1 ほう酸水注入系ポンプの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 8
4.1 基本方針 8
4．2 往復動式ポンプの動的機能維持評価． 9
4．2．1 評価対象部位 9
4．2．2 評価基準値 9
4．2．3 評価対象部位ごとの記号説明および評価方法 10
4．3 原動機の動的機能維持評価 19
4．3．1 評価対象部位 19
4．3．2 評価基準値 19
4．3．3 記号の説明 20
4．3．4 評価方法 22
5．評価結果 27
5.1 設計基準対象施設としての評価結果 27
5.2 重大事故等対処設備としての評価結果 27

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ほう酸水注入系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

ほう酸水注入系ポンプは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象設備及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，ほう酸水注入系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横軸ポンプと類似の構造であるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につい ての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

ほら酸水注入系ポンプの構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ポンプはポンプベースに固定され，ポンプベースは基礎ボルトで基礎に据え付け る。	往復形 （往復形横軸ポンプ）	
		（単位：mm）

3．構造強度評価

3.1 構造強度評価方法

ほう酸水注入系ポンプの構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につ いての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
ほう酸水注入系ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価 に用いるものを表 3－1 に，重大事故等対処設備の評価に用いるものを表3－2 に示す。

3．2．2 許容応力
ほう酸水注入系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き，表 3－3 のとおりとする。

3．2．3 使用材料の許容応力評価条件

ほう酸水注入系ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3－4に，重大事故等対処設備の評価に用いるものを表3－5に示す。

3.3 計算条件

応力計算に用いる計算条件は，本計算書の【ほう酸水注入系ポンプの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	ほう酸水	ほう酸水注入系 ポンプ	S	クラス 2 ポンプ＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}$＊	$\mathrm{III}_{A} \mathrm{~S}$
系統施設	注入設備				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：クラス 2 ポンプの支持構造物を含む。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	ほう酸水注入設備	ほう酸水注入系 ポンプ	常設耐震／防止常設／緩和	重大事故等 クラス 2 ポンプ＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{A} \mathrm{~S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）
原子炉冷却系統施設	非常用炉心冷却設備その他原子 炉注水設備	ほう酸水注入系 ポンプ	常設耐震／防止	重大事故等 クラス 2 ポンプ＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）
原子炉 格納施設	圧力低減設備そ の他の安全設備	ほう酸水注入系 ポンプ	常設／緩和	重大事故等 クラス 2 ポンプ＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $~ 1 ~: ~ 「 ~$ 常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s} 」$ の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）
σ

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot{ }_{\text {f }}$	$1.5 \cdot \mathrm{f}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot{ }^{\text {f }}{ }^{*}$	$1.5 \cdot \mathrm{fs}^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト		周囲環境温度	50			－
ポンプ取付ボルト		最高使用温度	66			－
原動機取付ボルト		周囲環境温度	50			－
減速機取付ボルト		周囲環境温度	50			－

表 3－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト		周囲環境温度	66			－
ポンプ取付ボルト		最高使用温度	66			－
原動機取付ボルト		周囲環境温度	66			－
減速機取付ボルト		周囲環境温度	66			－
				枠囲みの内容は商業機密の観点から公開できません。		

4．機能維持評価
4． 1 基本方針
ほう酸水注入系ポンプ及び同原動機は，添付書類「VI－2－1－9 機能維持の基本方針」に記載 の横形 3 連往復動式ポンプ及び横形ころがり軸受電動機であり，機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから，J E A G 4 6 0 1 に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる設計用最大応答加速度（1．0ZPA）を設定する。

4． 2 往復動式ポンプの動的機能維持評価
4．2．1 評価対象部位
J EAG4601の往復動式ポンプの動的機能維持評価に従い，以下の部位について評価を実施する。
a．基礎ボルト
b．ポンプ取付ボルト
c．減速機取付ボルト
d．軸継手
e．クランク軸軸受
f．コネクティングロッド軸軸受
g．バルブシート
h．歯車軸軸受
i．減速機歯車
j．クランク軸
k．歯車軸
このうち「 a．基礎ボルト」，「b．ポンプ取付ボルト」，「c．減速機取付ボルト」につい ては，「3．構造強度評価」に従い評価を行った「5．評価結果」にて設計用地震力に対し て十分な構造強度を有していることを確認している。

以上より，本計算書においては，軸継手，クランク軸軸受，コネクティングロッド軸軸受，バルブシート，歯車軸軸受，減速機歯車，クランク軸，歯車軸を評価対象部位とする。

4．2．2 評価基準値

クランク軸，歯車軸の許容応力は，クラス 2 ポンプの許容応力状態 $I_{A} S$ に準拠し設定す る。またクランク軸軸受，歯車軸軸受は，メーカ規定の軸受の定格荷重を，コネクティン グロッド軸軸受，バルブシート，減速機歯車は，メーカ規定の許容値を，軸継手は，変位可能寸法を評価基準値として設定する。

4．2．3 評価対象部位ごとの記号説明および評価方法
（1）軸継手 \qquad
a．記号の説明
軸継手評価に使用する記号を表 4－2 に示す。

表 4－2 軸継手評価に関する記号の説明

記号	記号の説明	単位
D P	ピッチ円直径	mm
E	はりの縦弾性係数	$\mathrm{N} / \mathrm{m}^{2}$
h	重心までの高さ	m
I	はりの軸方向の断面二次モーメント	m^{4}
K	ばね定数	N／m
ℓ_{1}	軸たわみにて生ずるスプロケット傾きによる変位	mm
ℓ_{2}	地震による変位	mm
ℓ_{3}	軸受部軸方向クリアランス	mm
m	質量	kg
α	地震加速度	$\mathrm{m} / \mathrm{s}^{2}$
β_{1}	荷重による軸のたわみにて生ずるスプロケットの傾き	rad
δ	地震時に生じる軸方向変位	mm

b．評価方法
軸方向変位は

$$
\begin{equation*}
\delta=l_{1}+l_{2}+l_{3} \tag{4.2.3.1}
\end{equation*}
$$

$\ell_{1}=\frac{D_{P}}{2} \cdot \beta_{1}$
$\ell_{2}=\frac{\mathrm{m} \cdot \alpha}{\mathrm{K}}$
$\mathrm{K}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{h}^{3}}$
（4．2．3．4）
（2）クランク軸軸受
a．記号の説明
クランク軸軸受評価に使用する記号を表 4－3に示す。

表 4－3 クランク軸軸受評価に関する記号の説明

記号	記号の説明	単位
F^{\prime}	ラジアル荷重	N
F_{R}	ラジアル最大軸受荷重（減速機側）	N
L	支点間距離	m
L_{1}	支点から荷重点1 1 までの距離	m
L_{2}	支点から荷重点2までの距離	m

b．評価方法

図 4－1 クランク軸軸受の計算モデル

クランク軸軸受に作用するラジアル最大軸受荷重（減速機側）は
$\mathrm{F}_{\mathrm{R}}=\mathrm{F}^{\prime} \cdot \frac{\left(\mathrm{L}-\mathrm{L}_{2}\right)}{\mathrm{L}}+\mathrm{F}^{\prime} \cdot \frac{\left(\mathrm{L}-\mathrm{L}_{1}\right)}{\mathrm{L}}$
（3）コネクティングロッド軸軸受
a．記号の説明
コネクティングロッド軸軸受に使用する記号を表 4－4 に示す。

表 4－4 コネクティングロッド軸軸受評価に関する記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\text {S }}$	小端部軸受軸投影面積	m^{2}
D ${ }_{\text {s }}$	小端部軸受内径	m
F	軸受荷重	N
N	回転速度	rpm
$\mathrm{P}_{\text {S }}$	小端部軸受面圧	MPa
V_{s}	小端部すべり速度	m／s
θ	㧾動角	rad

b．評価方法

図 4－2 コネクティングロッド軸軸受及びクロスベッドガイド部の計算モデル
＜コネクティングロッド小端部軸受＞
P V値 $=\mathrm{P}_{\mathrm{S}} \cdot \mathrm{V}_{\mathrm{S}} \cdot$
（4．2．3．6）

$$
\begin{align*}
& P_{\mathrm{S}}=\mathrm{F} \cdot \frac{10^{-6}}{\mathrm{~A}_{\mathrm{S}}} \cdots \cdots \cdots \tag{4.2.3.7}\\
& \mathrm{~V}_{\mathrm{S}}=\frac{\theta}{\pi} \cdot \frac{\pi \cdot \mathrm{D}_{\mathrm{S}} \cdot \mathrm{~N}}{60} . \tag{4.2,3.8}
\end{align*}
$$

a．記号の説明
バルブシート評価に使用する記号を表 4－5 に示す。

表 4－5 バルブシート評価に関する記号の説明

記号	記号の説明	単位
A	シート面投影面積	m^{2}
D	バルブ外径	m
F	シート面に作用する荷重	N
P	シート面の面圧	MPa
P d	吐出圧力	Pa
W	バルブ質量	kg
$\alpha_{\text {V }}$	鈖直方向地震加速度	$\mathrm{m} / \mathrm{s}^{2}$

b．評価方法

図 4－3 バルブシート部の計算モデル
シート面の面圧は

（5）歯車軸軸受
a．記号の説明
歯車軸軸受評価に使用する記号を表 4－6に示す。

表 4－6 歯車軸軸受評価に関する記号の説明

記号	記号の説明	単位
P_{r}	歯車軸軸受に作用する荷重	N
m	モジュール	－
F_{1}	接線力	N
F_{a}	スラスト荷重	N
$\mathrm{F}_{\mathrm{a}} 1$	スラスト荷重	N
F_{r}	ラジアル荷重	N
n_{1}	入力回転速度	rpm
N	伝達動力	kW
$\mathrm{R}_{\text {A }}$	合成反力（ラジアル荷重）	N
$\mathrm{R}_{\mathrm{A}}{ }^{\prime}$	接線力による反力	N
$\mathrm{R}_{\mathrm{A}}{ }^{\prime \prime}$	半径方向荷重による反力	N
$\mathrm{R}_{\mathrm{A}}{ }^{\prime},{ }^{\prime}$	スラスト荷重による反力	N
V 1	歯車周速	m / s
W 1	入力軸の小歯車質量	kg
W 2	出力軸の大歯車質量	kg
X	ラジアル荷重係数	－
Y	スラスト荷重係数	－
Z 1	小歯車歯数	－
$\alpha \mathrm{H}$	水平方向地震加速度	$\mathrm{m} / \mathrm{s}^{2}$
β_{2}	ねじれ角	－

b．評価方法
歯車軸軸受に作用する荷重は
$\mathrm{P}_{\mathrm{r}}=\mathrm{X} \cdot \mathrm{F}_{\mathrm{r}}+\mathrm{Y} \cdot \mathrm{F}_{\mathrm{a}}=\mathrm{X} \cdot \mathrm{R}_{\mathrm{A}}+\mathrm{Y} \cdot \mathrm{F}_{\mathrm{a} 1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(4.2 .3 .11)$
$\mathrm{R}_{\mathrm{A}}=\sqrt{\mathrm{R}_{\mathrm{A}},^{2}+\left(\mathrm{R}_{\mathrm{A}}^{\prime \prime}+\mathrm{R}_{\mathrm{A}}, \prime,\right)^{2}}$

$\mathrm{F}_{1}=\frac{1000 \cdot \mathrm{~N}}{\mathrm{~V}_{1}}+(\mathrm{W} 1+\mathrm{W} 2) \cdot \alpha \mathrm{H}$
（4．2．3．14）
（6）減速機歯車
a．記号の説明
減速機歯車評価に使用する記号を表4－7に示す。

表 4－7 減速機歯車評価に関する記号の説明

記号	記号の説明	単位
A	プランジャ断面積	mm^{2}
F G	歯車に作用する荷重（地震時）	N
F g	歯車に作用する荷重（通常時）	N
N	回転速度	rpm
L w	伝達動力	kW
M	地震時考慮される部品質量	kg
Mg	地震時考慮される荷重	N
m	モジュール	－
P	吐出圧力	MPa
Pr	吐出圧力比	－
P v	圧力	MPa
V	歯車周速	m／s
Z	歯数	－
$\alpha \mathrm{H}$	水平方向地震加速度	$\mathrm{m} / \mathrm{s}^{2}$
β_{2}	ねじれ角	－

b．評価方法
歯車に作用する荷重は
$\mathrm{F} G=\mathrm{F} \mathrm{g} \cdot \mathrm{P} \mathrm{r}$
（4．2．3．16）
$\mathrm{Fg}=\frac{1000 \cdot \mathrm{~L}_{\mathrm{w}}}{\mathrm{V}}$
（4．2．3．17）
$\mathrm{V}=\frac{\mathrm{m} \cdot \mathrm{Z} \cdot \pi \cdot \mathrm{N}}{1000 \cdot 60 \cdot \cos \beta_{2}}$
$\mathrm{Pr}=\frac{\mathrm{P} v+\mathrm{P}}{\mathrm{P}}$
（4．2．3．19）
$P_{v}=\frac{M g}{A}$
$\mathrm{Mg}=\mathrm{M} \cdot \alpha \mathrm{H} \cdot$
（7）クランク軸
a．記号の説明
クランク軸評価に使用する記号を表 4－8 に示す。

表 4－8 クランク軸評価に関する記号の説明

記号		単位
M	曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
T	ねじりモーメント	$\mathrm{N} \cdot \mathrm{mm}$
Z	断面係数	mm ${ }^{3}$
Z_{P}	極断面係数	mm ${ }^{3}$
τ	ねじり応力	MPa
$\sigma_{\text {c }}$	曲げ応力	MPa
os	組合せ応力	4 Pa

b．評価方法
組合せ応力は

$$
\begin{equation*}
\sigma_{\mathrm{S}}=\frac{1}{2} \cdot{ }_{\sigma_{\mathrm{C}}}+\frac{1}{2} \cdot \sqrt{\sigma_{\mathrm{C}}{ }^{2}+4 \cdot{ }_{\tau_{\mathrm{C}}}{ }^{2}} . \tag{4.2.3.22}
\end{equation*}
$$

${ }_{\sigma}{ }_{C}=\frac{\mathrm{M}}{\mathrm{Z}}$.
${ }^{\tau}{ }_{C}=\frac{T}{Z_{P}}$.
（4．2．3．24）
（8）歯車軸
a．記号の説明
歯車軸評価に使用する記号を表 4－9に示す。

表 4－9 歯車軸評価に関する記号の説明

記号	\quad 記号の説明	単位
a	支点 A から荷重点までの距離	mm
b	支点 B から荷重点までの距離	mm
c	支点間距離	mm
F_{1}	接線力	N
F S	半径方向荷重	N
M	曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
Z	断面係数	mm^{3}
σ_{G}	曲げ応力	MPa

b．評価方法
曲げ応力は

$M=\frac{\left(\mathrm{F}_{1}+\mathrm{FS}_{1}\right) \cdot \mathrm{a} \cdot \mathrm{b}}{\mathrm{c}} \ldots \ldots$（4．2．3．26）

4．3 原動機の動的機能維持評価
4．3．1 評価対象部位
J EAG4601の原動機の動的機能維持評価に従い，以下の部位について評価を実施 する。
a．取付ボルト
b．固定子
c．軸（回転子）
d．端子箱
e．軸受
f．固定子と回転子間のクリアランス
g．モータフレーム
h．軸継手
このうち「 a ．取付ボルト」については，「3．構造強度評価」に従い評価を行った「5．評価結果」にて設計用地震力に対して十分な構造強度を有していることを確認している。以上より，本計算書においては，固定子，軸（回転子），端子箱，軸受，固定子と回転子間のクリアランス，モータフレーム及び軸継手を評価対象部位とする。なお，軸継手にお いては，ポンプの動的機能維持評価に含まれている。

4．3．2 評価基準値

モータフレーム及び端子箱の許容応力はクラス 2 支持構造物の許容応力状態 $V_{A} \mathrm{~S}$ に準拠 し設定する。軸（回転子）の許容応力は，クラス 2 ポンプの許容応力状態 $I I I A_{A} S$ に準拠し設定する。固定子の許容応力はクラス 2 支持構造物の許容応力状態 $I_{A} \mathrm{~S}$ に準拠し設定する。 また軸受については，メーカ規定の軸受の定格荷重を，固定子と回転子間のクリアランス は，変位可能寸法を評価基準値として設定する。

4．3．3 記号の説明
ほう酸水注入系ポンプ用原動機の動的機能維持評価に使用する記号を表 4－10に示す。
表4－10 記号の説明

記号	記号の説明	単位
A_{p}	ピンの断面積	mm^{2}
A_{tb}	端子箱取付ボルトの断面積	mm^{2}
As	脚部の断面積	mm^{2}
C_{P}	ポンプ振動による震度	－
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
Df	フレームの内径	mm
d s	軸の直径	mm
E	軸の縦弾性係数	MPa
F	ピンに作用する合成荷重	N
$F_{t b}, \mathrm{a}$	端子箱取付面に対し左右方向の水平方向地震により作用する引張力	N
$\mathrm{F}_{\mathrm{tb}}, \mathrm{b}$	端子箱取付面に対し前後方向の水平方向地震により作用する引張力	N
F_{tb}	ボルトに作用する引張力	N
F_{1}	電動機の回転によりピンに作用する荷重	N
F_{2}	水平方向（長手方向）地震力によりピンに作用する荷重	N
Fa_{a}	アキシアル荷重	N
$\mathrm{F}_{\mathrm{R} 1}$	地震力により軸に作用する荷重	N
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h_{c}	電動機取付面から電動機重心までの高さ	mm
h_{f}	電動機取付面から脚取付部までの高さ	mm
h_{t}	端子箱取付面から端子箱重心までの高さ	mm
I	軸の断面二次モーメント	mm^{4}
$\mathrm{L}_{1}, \mathrm{y}$	端子箱重心と取付ボルトの水平方向距離（ y 方向）	mm
L_{2} ，y	端子箱重心と取付ボルトの水平方向距離（ y 方向）	mm
$\mathrm{L}_{1},{ }_{2}$	端子箱重心と取付ボルトの鉛直方向距離（z 方向）	mm
$\mathrm{L}_{2},{ }_{2}$	端子箱重心と取付ボルトの鉛直方向距離（z 方向）	mm
¢	電動機脚部中心間距離	mm
ℓ c	脚中心から電動機重心までの水平方向距離	mm
$\ell_{\mathrm{b}}, \mathrm{L}$	反軸継手側•軸継手側（反負荷側•負荷側）軸受間距離	mm
$\ell_{\mathrm{r}}, \mathrm{c}$	軸（回転子）の重心位置	mm
M_{01}	水平方向地震力（横方向）により脚部底面に作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$M_{\text {max }}$	軸に生じる最大曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{P}	軸の回転によるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m	脚部重量を除いた電動機重量	kg
m_{r}	軸•回転子の重量	kg
ms	固定子重量	kg

	記号	記号の説明	単位
	$\mathrm{m}_{\mathrm{s} 1}$	脚部の重量	kg
	m_{t}	端子箱重量	kg
	N	電動機定格回転速度	min^{-1}
	n p	ピンの本数	－
	n_{t}	端子箱取付ボルトの本数	－
	n t1， $\mathrm{y}^{\text {d }}$	引張力がはたらく端子箱取付ボルト本数（y 方向）	－
	$\mathrm{n}_{\mathrm{ti}}, \mathrm{z}$	引張力がはたらく端子箱取付ボルト本数（z 方向）	－
	P	電動機定格出力	kW
	P_{1}	静等価ラジアル荷重	N
	P_{2}	静等価ラジアル荷重	N
	$P_{o r}, 1$	反軸継手側のラジアル玉軸受の静等価ラジアル荷重	N
	$\text { Por, } \quad 2$	軸継手側のラジアル玉軸受の静等価ラジアル荷重	N
	Pe_{0}	水平方向地震力（横方向）により脚取付部に作用する鉛直方向荷重	N
	$Q_{t b}{ }^{\text {a }}$ a	水平方向地震によりボルトに作用するせん断力	N
	$Q_{t b},{ }^{\text {b }}$	鉛直方向地震によりボルトに作用するせん断力	N
\％	Q_{tb}	ボルトに作用するせん断力	N
	R_{1}	脚部が受ける荷重	N
	R_{L}	軸継手側軸受が受ける荷重	N
	Ro	反軸継手側軸受が受ける荷重	N
5	T_{M}	電動機最大トルク	$N \cdot m$
（1）	Ts	電動機最大トルク	\％
	X_{0}	軸受ラジアル荷重に対する係数	－
	Yo	軸受アキシアル荷重に対する係数	－
	$y_{\text {max }}$	軸の最大たわみ	mm
	Zs	軸の断面係数	mm^{3}
	$\mathrm{Z}_{\mathrm{s} \mathrm{y}}$	脚部の長手方向軸に対する断面係数	mm^{3}
	$\sigma_{\text {b }}$	軸に作用する最大曲げ応力	MPa
	$\sigma \mathrm{tb}$	ボルト1本あたりに作用する引張応力	MPa
	σ s	軸に作用する組合せ応力	MPa
	$\sigma \mathrm{s}$	鉛直方向と水平方向（横方向）地震力が作用する組合せ応力	MPa
	0 s 1	電動機重量による応力	MPa
	0 S 2	水平方向地震力（横方向）による曲げ応力および圧縮応力	MPa
	σ S 4	鉛直方向地震力による応力	MPa
	$\tau \mathrm{tb}$	ボルト1本あたりに作用するせん断応力	MPa
	τ_{p}	ピンに作用するせん断応力	MPa
	τ t	軸に作用するねじり応力	MPa
	τ s 2	水平方向地震力（横方向）によるせん断応力	MPa

4．3．4 評価方法

（1）固定子
a．電動機の回転による荷重電動機の最大トルクは

$$
\mathrm{T}_{\mathrm{M}}=\frac{\mathrm{P} \cdot 1000000}{2 \pi \cdot \frac{\mathrm{~N}}{60}} \cdot \frac{\mathrm{~T}_{\mathrm{S}}}{100}
$$

電動機の回転によりピンに作用する荷重は

$$
\mathrm{F}_{1}=\frac{\mathrm{T}_{\mathrm{M}}}{\frac{1}{2} \cdot \mathrm{D}_{\mathrm{f}}}
$$

b．水平方向（長手方向）地震力によりピンに作用する荷重

$$
\mathrm{F}_{2}=\mathrm{m}_{\mathrm{S}} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{p}}\right)
$$

c．ピンに作用するせん断応力
a．，b．の合成荷重は
$\mathrm{F}=\sqrt{\mathrm{F}_{1}{ }^{2}+\mathrm{F}_{2}{ }^{2}}$

ピンに作用するせん断応力は
$\tau_{p}=\frac{F}{n_{p} \cdot A_{p}}$

```
.......................... (4.3.4.5)
```

（2）軸（回転子）
a．各部に作用する荷重
地震力により軸に作用する荷重は
$\mathrm{F}_{\mathrm{R} 1}=\sqrt{\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right)^{2}+\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right)^{2}} \cdot \mathrm{~m}_{\mathrm{r}} \cdot \mathrm{g}$

軸継手側軸受が受ける荷重及び反軸継手側軸受が受ける荷重は

$$
R_{L}=F_{R 1} \cdot \frac{\ell_{r, c}}{\ell_{b, L}}
$$

$R_{o}=F_{R 1} \cdot\left(1-\frac{\ell_{r, ~}}{\ell_{b, L}}\right)$
b．曲げ応力
軸に作用する最大曲げモーメントは
$M_{\text {max }}=\frac{F_{R 1} \cdot \ell_{r, C} \cdot\left(l_{b, L}-l_{r, C}\right)}{l_{b, L}}$

軸に作用する最大曲げ応力は

$\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{max}}}{\mathrm{Z}_{\mathrm{S}}}$
c．ねじり応力
軸の回転によるモーメントは

$$
\mathrm{M}_{\mathrm{P}}=\frac{60}{2 \cdot \pi \cdot \mathrm{~N}} \cdot 10^{6} \cdot \mathrm{P}
$$

軸に作用するねじり応力は

$\tau_{\mathrm{t}}=\frac{16 \cdot \mathrm{M}_{\mathrm{P}}}{\pi \cdot \mathrm{d}_{\mathrm{S}}{ }^{3}}$
d．組合せ応力

$$
\sigma_{\mathrm{s}}=\sqrt{\sigma_{\mathrm{b}}{ }^{2}+3 \cdot \tau_{\mathrm{t}}{ }^{2}}
$$．．．．．．．．．．．．．．．．．．．．．．（4．3．4．13）

（3）端子箱
a．端子箱取付ボルトに作用する引張力

$$
F_{t b, a}=\frac{m_{t} \cdot\left(1+C_{V}+C_{p}\right) \cdot h_{t} \cdot g_{t 1, z} \cdot\left(L_{1, z}+L_{2, z}\right)}{n_{t} \cdot \frac{m_{t} \cdot\left(C_{H}+C_{p}\right) \cdot h_{t} \cdot g}{n_{t 1, y} \cdot\left(L_{1, y}+L_{2, y}\right)}}
$$

$$
\begin{equation*}
F_{t b, b}=\frac{m_{t} \cdot\left(1+C_{V}+C_{P}\right) \cdot h_{t} \cdot g_{t} m_{t} \cdot\left(C_{H}+C_{p}\right) \cdot L_{1, z} \cdot g}{n_{t 1, z} \cdot\left(L_{1, z}+L_{2, z}\right)} \tag{4.3.4.14}
\end{equation*}
$$

$$
F_{\mathrm{tb}}=\mathrm{Max}\left[\begin{array}{lll}
F_{\mathrm{tb}, \mathrm{a}}, & F_{\mathrm{tb}, \mathrm{~b}} \tag{4,3,4.15}
\end{array}\right]
$$

b．端子箱取付ボルト 1 本あたりに作用する引張応力

$$
\sigma_{t b}=\frac{F_{t b}}{A_{t b}}
$$

c．端子箱取付ボルトに作用するせん断力

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{tb}, \mathrm{a}}=\mathrm{m}_{\mathrm{t}} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{g} \quad \ldots(4.3 .4 .18) \\
& \mathrm{Q}_{\mathrm{tb}, \mathrm{~b}}=\mathrm{m}_{\mathrm{t}} \cdot\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{g} \quad \cdots \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot(4.3 .4 .19)
\end{aligned}
$$

d．端子箱取付ボルト 1 本あたりに作用するせん断応力

$$
\tau_{\mathrm{tb}}=\frac{\mathrm{Q}_{\mathrm{tb}}}{\mathrm{n}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{tb}}}
$$

（4）軸受
a．反軸継手側のラジアル玉軸受の静等価ラジアル荷重は

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{X}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{O}}+\mathrm{Y}_{\mathrm{O}} \cdot \mathrm{~F}_{\mathrm{a}} \\
& \text {. (4. 3. 4. 22) } \\
& \mathrm{P}_{2}=\mathrm{R}_{\mathrm{O}} \\
& \text {. (4. 3. 4. 23) } \\
& \mathrm{P}_{\text {or, } 1}=\mathrm{Max}\left[\mathrm{P}_{1}, \mathrm{P}_{2}\right]
\end{aligned}
$$

b．軸継手側のラジアル玉軸受の静等価ラジアル荷重は

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{R}_{\mathrm{L}} \quad \text {. (4.3.4.26) } \\
& \mathrm{P}_{\text {or }, 2}=\mathrm{Max}\left[\begin{array}{ll}
\mathrm{P}_{1}, & \left.\mathrm{P}_{2}\right]
\end{array}\right.
\end{aligned}
$$

（5）固定子と回転子間のクリアランス
a．軸の断面二次モーメント

$$
\mathrm{I}=\frac{\pi \cdot \mathrm{d}_{\mathrm{s}}{ }^{4}}{64}
$$

b．軸の最大たわみ

$$
\mathrm{y}_{\text {max }}=\frac{\left.\mathrm{F}_{\mathrm{R} 1} \cdot \ell_{\mathrm{r}, \mathrm{c}} \cdot\left(\ell_{\mathrm{b}, \mathrm{~L}}{ }^{2}-\ell_{\mathrm{r}, \mathrm{c}}\right)^{2}\right)^{3 / 2}}{9 \cdot \sqrt{3} \cdot \mathrm{E} \cdot \mathrm{I} \cdot \ell_{\mathrm{b}, \mathrm{~L}}}
$$

（6）モータフレーム
a．電動機重量による応力
脚部が受ける荷重は

$$
\mathrm{R}_{1}=\mathrm{m} \cdot \mathrm{~g} \cdot \frac{\ell-\ell_{\mathrm{c}}}{\ell}
$$

電動機重量による応力は

$$
\sigma_{\mathrm{S} 1}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}}
$$

b．鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{s} 4}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \cdot\left(\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \tag{4.3.4.32}
\end{equation*}
$$

c．水平方向地震力（横方向）による応力
水平方向地震力（横方向）により脚部底面に作用する曲げモーメントは

$$
\begin{equation*}
M_{\ell 1}=\left(C_{H}+C_{P}\right) \cdot m \cdot g \cdot h_{f} \tag{4.3.4.33}
\end{equation*}
$$

水平方向地震力（横方向）により脚取付部に作用する鉛直方向荷重は

$$
\begin{equation*}
\mathrm{P}_{\mathrm{e}}=\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{~g} \cdot \frac{\mathrm{~h}_{\mathrm{c}}}{\ell} \tag{4.3.4.34}
\end{equation*}
$$

曲げ応力及び圧縮応力は
${ }_{\sigma}{ }_{\mathrm{s} 2}=\frac{\mathrm{M}_{\ell 1}}{\mathrm{Z}_{\mathrm{s} y}}+\frac{\mathrm{P}_{\ell}}{\mathrm{A}_{\mathrm{s}}}$

せん断応力は
$\tau_{\mathrm{S}_{2}}=\frac{\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{g}}{\mathrm{A}_{\mathrm{s}}}$

d．組合せ応力

$$
\sigma_{\mathrm{s}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{S} 2}+\sigma_{\mathrm{s} 4}\right)^{2}+3 \cdot \tau_{\mathrm{s} 2}}{ }^{2}
$$

（7）軸継手
軸継手（原動機～減速機）の評価は，4．2．3（1）のポンプの動的機能維持評価に含まれて いる。

5．評価結果

5.1 設計基準対象施設としての評価結果

ほう酸水注入系ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していること を確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度 は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 $\mathrm{S} d$ 又 は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

ほう酸水注入系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有し ていることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

$$
\text { O } 2 \text { (3) VI-2-6-4-1-1 } \quad \mathrm{R} 1
$$

【ほら酸水注入系ポンプの耐震性についての計算結果】
1．設計基準対象施設

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又 は静的震度		基準地震動S s		ポンプ振動に よる震度		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鈖直方向	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	水平万向設計震度	鈖直方闹 設鿁震度			
ほう酸水注入系ポンプ	S	$\begin{aligned} & \text { 原子炬建坔 } \\ & 0 . \text { P. } 22.50^{* 1} \end{aligned}$	－＊2	－＊2	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{v}}=1.56$		66	50

∞

予想最大両振幅 $(\mu \mathrm{m})$	ポンプ回転速度 (rpm)	原重严幾回転速度 (rpm)
$\mathrm{H}_{\mathrm{p}}=90$		

注記 $* 1$ ：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の
要目を示し，下段は軸万向転倒に対する評価時の要目を示す。
＊2
＊3 ：周囲擐境温度で算出
枠囲みの内容は商業機密の観点から公開できません。

O 2 （3）VI－2－6－4－1－1 R
1.3 計算数値

注記＊：㻢Sについては，基準地震動 S_{S} で評価する。

$$
\text { O } 2 \text { (3) VI-2-6-4-1-1 } \quad \text { R } 1
$$

1．5．2．2 横形ころがり軸受電重機の機器要目

（2）軸（回転子）

部才才	d_{s} (mm)	$\ell_{\mathrm{b}, \mathrm{L}} \mathrm{L}$ (mm)	$\ell_{\mathrm{r}, \mathrm{c}}^{\mathrm{c}}$ (mm)	m_{r} (kg)	N $\left(\mathrm{min}^{-1}\right)$	P (kW)	Z_{s} $\left(\mathrm{mm}^{3}\right)$
軸（回転子）	55	469.5	235.5	81.5	1500	37	16330

$$
\text { O } 2 \text { (3) VI-2-6-4-1-1 } \quad \text { R } 1
$$

（5）固定子と回転子間のクリアランス

部材	d_{s} (mm)	E (MPa)	$\ell_{\mathrm{b}, \mathrm{L}}$ (m)	$\ell_{\mathrm{r}, \mathrm{c}}(\mathrm{c}$ (mm)
固定子と回転子間のクリアランス	55	206000	469.5	235.5

（7）材料物性値

部材	温度 $\left.{ }^{\circ} \mathrm{C}\right)$	材質 原動機${ }^{66}$
SS 400 S 40 C $\mathrm{FC1} 150$		

O 2 （3）VI－2－6－4－1－1 R 1

1．5．3 結論
1．5．3．1 機能確認済加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認济加速度
ポンプ	水平方向	1． 77	1.6
	鉛直方向	1． 30	1.0
原動機	水平方向	1． 77	4.7
	鋁直方向	1.30	1.0

注記＊：基漼地震動S s により定まる応答加速度とする。
ポンプは，水平方向およひ鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。原動機は，鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。

O 2

```
        1.5.3.2 横形 }3\mathrm{ 連往復動式ポンプの動的機能維持評価
        1.5.3.2.1 代表評価項目の評価
                基礎ボルト,ポンプ取付ボルト, 減速機取付ボルトについては, 構造強度評価にて設計用地震力に対して十分な構造強度を有しているため,計算は省略する。
        1.5.3.2.2 上記以外の基本評価項目の評伍
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{1．5．3．2．2．1 軸継手の評価} & （単位：mm） \\
\hline 評価部位 & 発生変位量 & 許容変位量 \\
\hline 軸継手 & 0.54 & \\
\hline
\end{tabular}
すべて許容変位量以下である。
```



```
すべて許容荷重以下である。
\ominus
1．5．3．2．2．3 コネクティングロッド軸受の評価（単位： \(\mathrm{N} / \mathrm{mm}^{2} \cdot \mathrm{~m} / \mathrm{s}\) ）
\begin{tabular}{|c|c|c|c|}
\hline 評価部位 & 発生値 & \multicolumn{2}{|c|}{ 許容値 } \\
\hline コネクティングロッド䌷受 & 0.5 & & \\
\hline
\end{tabular}
すべて許容値以下である。
1．5．3．2．2．4 バルブシート面の評価
\begin{tabular}{|c|c|c|c|}
\hline 年 & \multicolumn{2}{c|}{（単位： \(\mathrm{N} / \mathrm{mm}^{2}\) ）} \\
\hline 評価部位 & 面圧 & 発生値 & 許容値 \\
\hline バルブシート面 & - & 30 & \(\square\) \\
\hline
\end{tabular}
すべて許容値以下である。
```


O 2 （3）VI－2－6－4－1－1 R 1

すべて許容荷重以下である。

すべて許容荷重以下である。

1．5．3．2．2．7					クランク軸の評価	（単位 ： MPa ）
評価部位 応力 発生応力 許容応力 クランク軸 組合せ 95 482						

${ }_{\sim}^{\sim}$
すべて許容応力以下である。

1．5．3．2．2．8					歯車軸の評価	（単位 $: \mathrm{MPa})$
評価部位 応力 発生応力 許容応力 歯車軸 曲げ 48 822						

すべて許容応力以下である。

O 2

```
        1.5.3.3 横形ころがり車㖟電喠機の動的機能維持評価
        1.5.3.3.1 代表評価項目の評価
                原動機取付ボルトについては, 構造強度評価にて設計用地震力に対して十分な構造強度を有しているため,計算は省略する。
        1.5.3.3.2 上記以外の基本評価項目の評価
\begin{tabular}{|c|c|c|c|}
\hline 1．5．3．3．2．1 & 固定子の評価 & \multicolumn{2}{c|}{（単位： MPa ）} \\
\hline 評価部位 & 応力 & 発生応力 & 許容応力 \\
\hline 固定子 & せん断 & 14 & 130 \\
\hline
\end{tabular}
すべて許容応力以下である。
\begin{tabular}{|c|c|c|}
\multicolumn{1}{l}{ 1．5．3．3．2．2 } & 軸（回転子）の評価 & \\
\hline （単位 ： MPa ） \\
\hline 評価部位 & 発生応力 & 許容応力 \\
\hline 固定子 & 23 & 456 \\
\hline
\end{tabular}
すべて許容応力以下である。
\(\omega_{\circ}^{\infty}\)
\begin{tabular}{|c|c|c|c|}
\multicolumn{1}{l}{ 1．5．3．3．2．3 } & 端子箱の評価 & （単位： MPa ） \\
\hline 評価部位 & 応力 & 発生応力 & 許容応力 \\
\hline \multirow{2}{*}{ 端子箱 } & 引張り & 4 & 202 \\
\cline { 2 - 4 } & せん断 & 1 & 155 \\
\hline
\end{tabular}
すべて許容応力以下である。
\begin{tabular}{|c|c|c|}
\hline 評価部位 & 発生荷重 & 許容荷重 \\
\hline 䡍継手側 & 1231 & \\
\hline 反㜞継手側 & 1223 & \\
\hline
\end{tabular}
すべて許容荷重以下である。
```

O 2 （3）VI－2－6－4－1－1 R 1

1．5．3．3．2．5 固定子と回転子間のクリアランスの評価		（単位：mm）
評価部位	回転子のたわみ	許容変位量
固定子と回転子間のクリアランス	0.06	0.65

1．5．3．3．2．6 モータフレームの評価

（評価部位 $: ~$	MPa $)$	
モータフレーム	発生応力	許容応力
すべて許容応力以下である。	21	40

$$
\text { O } 2 \text { (3) VI-2-6-4-1-1 } \quad \text { R } 1
$$

【ほう酸水注入系ポンプの耐震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ	固有周期（s）		弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度		基漼地震動S s		ポンプ振動に よる震度	最高使用温度$\left({ }^{\circ} \mathrm{C}\right)$	
			水平方向	鈖直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	鉛直方向 設計震度			
ほら酸水注入系ポンプ	常設而振 $/$ 防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 22.50^{* 1} \end{aligned}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{v}}=1.56$		66	66

注記 $* 1$ ：基漼床レベルを示す。
＊2：固有周期は十分に小さく，計算は省略する
2.2 機器要目
∞

| 部 材 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

予想最大両振幅 $(\mu \mathrm{m})$	ポンプ回転速度 (rpm)	原動機回転速度 (rpm)
$\mathrm{H}_{\mathrm{p}}=90$		

注記＊1：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，下段は軸方向転倒に対する評価時の要目を示す。
＊2：最高使用温度で算 ${ }^{(1)}$
＊3 ：周井噮境温度て算出

O 2 （3）VI－2－6－4－1－1 R 1
2.3 計算数値

2.4 結論

部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
基碟ボルト		引張り	－	－	$\sigma_{\text {b } 1}=67$	$f_{\text {ts } 1}=202^{*}$
$(\mathrm{i}=1)$		せん断	－	－	$\tau_{\mathrm{b} 1}=23$	$f_{\text {s b } 1}=155$
ポンプ取付ボルト		引張り	－	－	$\sigma_{\text {b } 22}=33$	$f_{\text {t } 2}=185^{*}$
（ $\mathrm{i}=2$ ）		せん断	－	－	$\tau_{\mathrm{b} 2}=22$	$f_{\text {s b } 2}=142$
原動機取付ボルト		引張り	－	－	$\sigma_{\text {b } 3}=16$	$f_{\text {ts } 3}=202^{*}$
（ $\mathrm{i}=3)$		せん断	－	－	$\tau_{\mathrm{b} 3}=9$	$f_{\text {s b } 3}=155$
減速機取付ボルト		引張り	－	－	$\sigma_{\text {b } 4}=14$	$f_{\text {t } 4}=202^{*}$
（ $\mathrm{i}=4)$		せん断	－	－	$\tau_{\text {b } 4}=5$	$f_{\text {s b } 4}=155$

O 2
VI－2－6－4－1－1
R 1

機器名称	形式	$\left(\begin{array}{c} \text { 容量 } \\ (\ell \text { min }) \end{array}\right.$	据付場所及び （m）	固有周期（s）		弾性設計用地震動S d 又は静的震度		基淮地震動S s		ポンフ振動に	$\begin{gathered} \text { 最高使用温度 } \\ \left({ }^{\circ} \mathrm{C}\right. \text { 路 } \end{gathered}$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 叞計震度 } \end{aligned}$	水平方向 設計震度				
$\begin{gathered} \hline \text { ほう酸水注入系 } \\ \text { ボンプ } \end{gathered}$	横形 3 連往復動式 ポンプ	163	$\begin{aligned} & \hline \text { 原子炉建尿 } \\ & \text { O. P. } 22.50^{* 1} \end{aligned}$	－＊2	－＊2	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=1.77$	$\mathrm{C}_{\mathrm{V}}=1.30$		66	66

注記＊\quad ：：唭有榬期は十分に小ささく，計算は省略する
＊3：$\Pi_{A} S$ については，基漼地震動 S_{s} で評価する。

機器名称	形式	$\underset{(\mathrm{kW})}{\underset{(\mathrm{w}}{\mathrm{m}}}$	据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又は静的震度		基漼地震動S s		ポンプ振動に よる震度	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { 最温度 } \end{array}$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鎮南向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{gathered} \text { 鉛直方向 } \\ \text { 設㯰震度 } \end{gathered}$			
ほう酸水注入系 ポンプ用電動機	横形ころがり軸受電動機	37	$\begin{aligned} & \hline \text { 原子炉建尿 } \\ & \text { O.P. } 22.50^{* 1} \end{aligned}$	－＊2	－＊2	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=1.77$	$\mathrm{C}_{\mathrm{V}}=1.30$		66	66

＊3：IIS S については，基淮地震動 S sで評価する。
台
5.2 機器要目

2．5．2．1 横形 3 連往復動式ポンプの機器要目
（1）軸繙手

（3）コネクティングロッド軸軸受

部材	F (N)	A_{s} $\left(\mathrm{m}^{2}\right)$	θ (rad)	D_{s} (m)	N (rpm)
コネクティイングロッド軸軸绶	24490	3.3×10^{-3}	0.335		

（2）軸（回転子）

部材	d_{s} (mm)	$\ell_{\mathrm{b}, \mathrm{L}} \mathrm{L}$ (mm)	$\ell_{\mathrm{r}, \mathrm{c}}^{\mathrm{c}}$ (mm)	m_{r} (kg)	N $\left(\mathrm{min}^{-1}\right)$	P (kW)	Z_{s} $\left(\mathrm{mm}^{3}\right)$
軸（回転子）	55	469.5	235.5	81.5	1500	37	16330

$$
\text { O } 2 \text { (3) VI-2-6-4-1-1 } \quad \text { R } 1
$$

（5）固定子と回転子間のクリアランス

部材	d_{s} (mm)	E (MPa)	$\ell_{\mathrm{b}, \mathrm{L}}$ (m)	$\ell_{\mathrm{r}, \mathrm{c}}(\mathrm{c}$ (mm)
固定子と回転子間のクリアランス	55	206000	469.5	235.5

（7）材料物性値

部材	温度 $\left.{ }^{\circ} \mathrm{C}\right)$	材質 原動機${ }^{66}$
SS 400 S 40 C $\mathrm{FC1} 150$		

O 2 （3）VI－2－6－4－1－1 R 1

2．5．3 結論
2．5．3．1 機能確認済加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認济加速度
ポンプ	水平方向	1． 77	1.6
	鉛直方向	1． 30	1.0
原動機	水平方向	1． 77	4.7
	鋁直方向	1.30	1.0

注記＊：基漼地震動S sにより定まる応答加速度とする。
ポンプは，水平方向およひ鉛直方向の機能維持軯価用加速度が機能碓認済加速度を超えるため，以下の項目について評価する。原動機は，鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。

O 2

```
        2.5.3.2 横形 }3\mathrm{ 連往復動式ポンプの動的機能維持評価
            2.5.3.2.1 代表評価項目の評価
                基礎ボルト,ポンプ取付ボルト,減速機取付ボルトについては, 構造強度評価にて設計用地震力に対して十分な構造強度を有しているため,計算は省略する。
            2.5.3.2.2 上記以外の基本評価項目の評価
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{2．5．3．2．2．1 䡐継手の評価} & （単位：mm） \\
\hline 評価部位 & 発生変位量 & 許容変位量 \\
\hline 㜞継手 & 0.54 & \\
\hline
\end{tabular}
すべて許容変位量以下である。
```



```
\(\not{ }^{*}\)
\begin{tabular}{|c|c|c|}
\hline 2．5．3．2．2．3 & \multicolumn{2}{c}{ コネクティングロッド軸受の評価 }
\end{tabular} （単位 \(: \mathrm{N} / \mathrm{mm}^{2} \cdot \mathrm{~m} / \mathrm{s}\) ）
すべて許容値以下である。
2．5．3．2．2．4 バルブシート面の評価
\begin{tabular}{|c|c|c|c|}
\hline 評価部位 & 面圧 & （単位 ： \(\mathrm{N} / \mathrm{mm}^{2}\) ） \\
\hline バルブシート面 & - & 発生値 & 許容値 \\
\hline
\end{tabular}
すべて許容値以下である。
```


O 2 （3）VI－2－6－4－1－1 R 1

O 2

```
            2.5.3.3 横形ころがり軸受電喠機の動的機能維持評価
            2.5.3.3.1 代表評価項目の評価
                原喠機取付ボルトについては, 構造強度評価にて設計用地震力に対して十分な構造強度を有しているため,計算は省略する。
            2.5.3.3.2 上記以外の基本評価項目の評価
\begin{tabular}{|c|c|c|c|}
\hline 2．5．3．3．2．1 & 固定子の評価 & （単位 ： MPa ） \\
\hline 評価部位 & 応力 & 発生応力 & 許容応力 \\
\hline 固定子 & せん断 & 14 & 130 \\
\hline
\end{tabular}
すべて許容応力以下である。
\begin{tabular}{|c|c|c|}
\multicolumn{1}{l}{ 2．5．3．3．2．2 } & 軸（回転子） の評価 & （単位： MPa ） \\
\hline 評価部位 & 発生応力 & 許容応力 \\
\hline 固定子 & 23 & 456 \\
\hline
\end{tabular}
すべて許容応力以下である。
出
\begin{tabular}{|c|c|c|c|}
\multicolumn{2}{l}{ 2．5．3．3．2．3 端子箱の評価 } & \multicolumn{1}{c|}{（単位： MPa ）} \\
\begin{tabular}{|c|c|c|c|}
\hline 評価部位 & 応力 & 発生応力 & 許容応力 \\
\hline \multirow{2}{*}{ 端子箱 } & 引張り & 4 & 202 \\
\cline { 2 - 4 } & せん断 & 1 & 155 \\
\hline
\end{tabular}
\end{tabular}
すべて許容応力以下である。
\begin{tabular}{|c|c|c|}
\multicolumn{1}{l}{ 2．5．3．3．2．4 軸受の評価 } & （単位：N） \\
\hline 評価部位 & 発生荷重 & 許容荷重 \\
\hline 轓手側 & 1231 & \\
\hline 反軸繙側 & 1223 & \\
\hline
\end{tabular}
すべて許容荷重以下である。
```

O 2 （3）VI－2－6－4－1－1 R 1

2．5．3．3．2．6 モータフレームの評価

モ．	（単位： MPa ）	
評価部位	発生応力	許容応力
モータフレーム	21	40
すべて許容応力以下である。		

O 2 （3）VI－2－6－4－1－1 R 1 E

48

$A \sim A$ 矢視図
（基礎ボルト）

$\mathrm{C} \sim \mathrm{C}$ 矢視図
（原動機取付ボルト）

D～D 矢視図
（減速機取付ボルト）

$B \sim B$ 矢視図
（ポンプ取付ボルト）

