

図 4－3（1）津波滞留時間（第2号機海水ポンプ室の場合）

図 4－3（2）津波滞留時間（第2号機放水立坑の場合）

図 4－3（3）津波滞留時間（第3号機海水ポンプ室の場合）

図 4－3（4）津波滞留時間（第3号機放水立坑の場合）

2．ボイリング対策の評価

2.1 基本方針

前述のとおり，防潮壁は津波時において防潮壁内部に海水が一時的に貯留されるため，その水位の影響によりフーチングならびに鋼桁下部の地盤に津波が浸透することを想定しボイリン グの影響について検討する。

2．2 評価方法

ボイリングの評価においては，「山留め設計指針 平成 29 年（日本建築学会）」に示されてい る式を用いて行った。（Terzaghi の方法）。ボイリングに対する安全性検討式（日本建築学会）を図 4－4に示す。

図 4－4 ボイリングに対する安全性検討式
「山留め設計指針 平成 29 年（日本建築学会）」より抜粋）

2．3 評価条件

ボイリングの評価にあたっては，入力津波水位並びに，地震時の揺すり込み沈下による根入 れ長の低減を考慮する。ボイリングを検討する評価対象位置を図4－5～図4－8に示す。なお，保守的に評価する観点から，2．3．1～2．3．3に示す内容について留意する。
（参考）4－5

図 4－5（1）ボイリング評価検討箇所（第 2 号機海水ポンプ室防潮壁）

図4－5（2）ボイリング評価検討箇所（第2号機海水ポンプ室防潮壁）

図 4－6（1）ボイリング評価検討箇所（第2号機放水立坑防潮壁）

図 4－6（2）ボイリング評価検討箇所（第 2 号機放水立坑防潮壁）

図 4－7（1）ボイリング評価検討箇所（第3号機海水ポンプ室防潮壁）

図 4－8（1）ボイリング評価検討箇所（第3号機放水立坑防潮壁）

図 4－8（2）ボイリング評価検討箇所（第3号機放水立坑防潮壁）
（参考）4－9

2．3．1 入力津波水位の設定

表 4－1 に示す入力津波水位を採用した。

表 4－1 構造物ごとの入力津波水位

設置箇所	入力津波水位 (m)
防潮壁 （第 2 号機海水ポンプ室）	0. P．+18.1
防潮壁 $($ 第 2 号機放水立坑）	0. P．+17.4
防潮壁 （第 3 号機海水ポンプ室）	0. P．+19.0
防潮壁 $($ 第 3 号機放水立坑）	0. P．+17.5

（参考）4－10

2．3．2 設計用地表面の設定

設計用地表面の設定にあたつては，地盤の揺すり込み沈下を考慮する。地下水位以浅の不飽和土の摇すり込み沈下量の算定においては，海野ら＊1 の知見を採用し，安全側に飽和土が完全に液状化した後の再圧密による体積収縮量と等しいと仮定した。地下水以深の飽和地盤については，過剰間隙水圧の消散に伴ら体積ひずみの関係から沈下量について算定 した。沈下量の算定に当たつては，図 4－9に示す体積ひずみと液状化抵抗率の関係 ${ }^{* 2}$ を考慮する。上記の検討からより揺すり込み沈下量が大きい場合を考慮し，設計用地表面は地下水位以浅，以深ともに対象位置の盛土厚さの 1.4% ，旧表土厚さの 2.8% の沈下量を考慮した。なお，揺すり込み沈下率の設定の詳細については，補足説明資料「補足－200－14可搬型重大事故等対処設備の保管場所及びアクセスルートについて」に示す。また，盛土，旧表土の層厚については，図 4－5～図4－8に示す地質断面図における各評価対象位置か ら読み取った。また，防潮堤との取り合い部について，構造概要を図4－10に示す。防潮堤との取り合い部については，図 4－11に示すように下端をセメント改良土にて埋め戻す方針とし，沈下量及び「2．3．4 評価モデル」に示す評価モデルに考慮することとした。な お，改良深さについては，隣接するフーチングの深度と同じ深さを基本とする。

各評価対象箇所の揺すり込み沈下量を表4－2に示す。各評価対象箇所の摇すり込み沈下量の最大値は 0.34 m であるが，ここでは保守的に一律 0.4 m を採用した（岩盤部及び全深度地盤改良部は除く）。揺すり込み沈下量を考慮した設計用地表面の一覧を表 2－3に示す。注記＊ 1 ：同一繰返しせん断履歴における乾燥砂と飽和砂の堆積収縮量の関係
（海野ら，2006）
注記 $* 2$ ：Evaluation Of Settlements In Sand Deposits Following Liquefaction During Earthquakes（石原ら，1992）

図 4－9 評価対象箇所の揺すり込み沈下量の算定方法

図 4－10 防潮堤取り合い部の構造概要

図 4－11（1）防潮堤取り合い部のセメント改良土埋戻し範囲 （第2号機海水ポンプ室：取り合い部（1）（2）

図 4－11（2）防潮堤取り合い部のセメント改良土埋戻し範囲 （第3号機海水ポンプ室：取り合い部（3）（4）

表 4－2（1）評価対象箇所の摇すり込み沈下量

構造物	設計対象箇所	評価モデル	盛土層厚（m） A	旧表土層厚（m） B	$\begin{gathered} \text { 沈下量 }(\mathrm{m}) \\ C(A \times 1.4 \%+B \times 2.4 \%) \end{gathered}$
防潮壁 （第2号機海水ポンプ 室）	（1）	鋼板部	0.00	0.00	0.00
	（2）	鋼板部	0.00	0.00	0.00
	（3）	鋼板部	13． 30	0.00	0． 19
	（4）	鋼板部	14.65	0.00	0.21
	（5）	鋼板部	16． 38	0.00	0.23
	（6）	鋼板部	16． 39	0.00	0.23
	（7）	鋼板部	16． 39	0.00	0.23
	（8）	鋼析部	16． 39	0.00	0.23
	（9）	鋼板部	16． 39	0.00	0.23
	（10）	鋼板部	16．39	0.00	0.23
	（10）${ }^{-}$	取り合い部	12.59	0.00	0.18
	（11）	鋼板部	0.00	0.00	0.00
	（11）${ }^{-}$	取り合い部	0.00	0.00	0.00

表 4－2（2）評価対象箇所の摇すり込み沈下量

構造物	設計対象断面	評価モデル	盛土層厚（m） A	旧表土層厚（m） B	沈下量（m） $\mathrm{C}(\mathrm{~A} \times 1.4 \%+\mathrm{B} \times 2.4 \%)$
防潮壁 （第2号機放水立坑）	（1）	鋼板部	0.00	0.00	0.00
	（2）	鋼板部	0.00	0.00	0.00
	（3）	鋼板部	0.00	0.00	0.00
	（4）	鋼板部	0． 00	0． 00	0． 00
	（5）	鋼板部	0.00	0.00	0． 00
	（6）	鋼析部	0.00	0.00	0.00
	（7）	鋼板部	0.00	0.00	0.00
	（8）	鋼板部	0.00	0.00	0.00
	（9）	鋼板部	0.00	0.00	0.00
	（11）	鋼板部	0.00	0.00	0.00
	（11）	鋼板部	0.00	0． 00	0． 00
	（12）	鋼板部	0.00	0.00	0.00
	（13）	鋼板部	0． 00	0． 00	0． 00
	（11）	鋼板部	0.00	0.00	0.00
	（15）	鋼板部	0.00	0.00	0.00
	（16）	鋼板部	0.00	0.00	0.00
	（17）	鋼板部	0.00	0.00	0.00
	（18）	鋼板部	0.00	0.00	0． 00
	（19）	鋼板部	0.00	0． 00	0． 00
	（20）	鋼板部	0.00	0.00	0.00
	（21）	鋼板部	0.00	0． 00	0． 00
	（2）	鋼板部	0.00	0.00	0.00
	（23）	鋼板部	0.00	0.00	0.00

表 4－2（3）評価対象箇所の摇すり込み沈下量

構造物	設計対象断面	評価モデル	盛土層厚（m） A	旧表土層厚（m） B	$\begin{gathered} \text { 沈下量 }(\mathrm{m}) \\ C(A \times 1.4 \%+B \times 2.4 \%) \end{gathered}$
防潮壁 （第3号機海水ポ ンプ室）	（1）	鋼板部	23． 80	0.00	$\underline{0.34}$
	（2）	鋼板部	23． 80	0.00	0.34
	（3）	鋼板部	17． 70	0.00	0.25
	（4）	鋼板部	17． 70	0.00	0． 25
	（4）${ }^{-}$	取り合い部	13． 20	0.00	0． 19
	（5）	鋼板部	17． 70	0.00	0.25
	（5）	取り合い部	13． 20	0． 00	0． 19
	（6）	鋼板部	22． 30	0.00	0.32
	（7）	鋼板部	23． 30	0.00	0.33
	（8）	鋼板部	23． 80	0.00	0.34
防潮壁 （第3号機放水立坑）	（1）	鋼板部	11．34	5.55	0.30
	（2）	鋼板部	16． 80	0.00	0． 24
	（3）	鋼板部	0.00	0.00	0.00
	（4）	鋼板部	0.00	0.00	0.00
	（5）	金岡桁部	0.00	0.00	0.00
	（6）	鋼板部	0.00	0.00	0． 00
	（7）	鋼板部	0.00	0.00	0.00
	（8）	鋼板部	0.00	0.00	0.00
	（9）	金岡桁部	0.00	0.00	0.00
	（10）	鋼板部	0.00	0.00	0.00
	（11）	鋼板部	0.00	0.00	0.00
	（12）	鋼板部	21． 30	0.00	0.30
	（13）	鋼板部	19． 80	1． 43	0． 32
	（14）	鋼板部	19． 80	0.00	0． 28
	（15）	鋼板部	19． 80	0.00	0． 28
	（16）	鋼板部	11.97	5． 79	0.31
	（17）	鋼板部	12． 07	4.98	0． 29
	（18）	鋼板部	12． 17	4.74	0． 29
	（19）	鋼板部	11.41	5． 70	0． 30

表 4－3 設計用地表面一覧

設置箇所	地表面 （m）	設計用地表面 （m） 地表面－0．4m
防潮壁 （第2号機海水ポンプ室）	0．P．+13.8	$\begin{aligned} & \text { 0. P. }+13.4 \\ & 0 . \text { P. }+13.8^{*} \end{aligned}$
防潮壁 （第2号機放水立坑）	0．P．+13.8	0．P．＋13． 8^{*}
防潮壁 （第3号機海水ポンプ室）	0．P．＋13． 8	0．P．＋13． 4
防潮壁 （第3号機放水立坑）	0．P．+13.8	0．P．＋13． 4

注記＊：岩盤部や全深度地盤改良部については，揺すり込み沈下が生じないことから設計用地表面を O．P．+13.8 m とする。

2．3．3 評価用地下水位の設定

浸透流解析から設定した防潮壁の設計用地下水位はフーチング底面以深になるが，ボイ リングに対する保守的な評価として，杭周辺の旧表土，盛土が飽和状態にあることを仮定 し，地表面に地下水位があるものとした。

2．3．4 評価モデル

「2．3 評価条件」により設定した評価モデルを図 4－12に示す。評価モデルは，鋼板部及び鋼桁部に大別される。

注記＊1：地盤の摇すり込み沈下量（0．4m）を考慮し，一律 0．P．＋13．4m とする。 （岩盤部及び全深度地盤改良部は除く） ＊2：ボイリングの検討において保守的となるよう地表面とする。

図 4－12（1）評価モデル（鋼板部）

注記＊1 ：地盤の摇すり込み沈下量（0．4m）を考慮し，一律 0. P．+13.4 m とする。 （岩盤部及び全深度地盤改良部は除く）
＊2：ボイリングの検討において保守的となるよう地表面とする。
＊ 3 ：海水ポンプ室の躯体に直接設置する第 2 号機及び第 3 号機の
鋼桁部については除く。
図 4－12（2）評価モデル（鋼桁部＊3）
（参考）4－18

注記＊1：地盤の摇すり込み沈下量（0．4m）を考慮し，一律 0. P．+13.4 m とする。
（岩盤部及び全深度地盤改良部は除く）
＊2：ボイリングの検討において保守的となるよう地表面とする。
図 4－12（3）評価モデル（防潮堤取り合い部）

2． 4 評価結果

ボイリングに対する安全性の評価にあたつての許容限界は 1.2 とする。評価結果を表 4－4 に示す。表のとおり，すべての評価構造において安全率 1.2 以上となった。

表 4－4（1）評価結果

構造物	評価対 象位置	評価 モデル	入力津波水位（0．P．＋m）	設計用地表面 (0. P. +m)	根入れ 深さ D（m）	$\begin{gathered} \text { 水位差 } \\ \text { hw (m) } \end{gathered}$	土の水中単位体積重量 γ （ $\mathrm{kN} / \mathrm{m}^{3}$ ）	水の単位 体積重量 $\begin{gathered} \gamma \mathrm{w} \\ \left(\mathrm{kN} / \mathrm{m}^{3}\right) \end{gathered}$	安全率
防潮壁 （第 2 号機海 水ポン プ室）	（1）	鋼板部	18． 10	13． 80	3.50	4． 30	8.50	10． 10	1． 37
	（2）	鋼板部	18.10	13． 80	3.80	4． 30	8.50	10． 10	1． 48
	（3）	鋼板部	18． 10	13． 40	3.40	4． 70	8.50	10． 10	1． 21
	（4）	鋼板部	18． 10	13． 40	3.40	4． 70	8.50	10． 10	1． 21
	（5）	鋼板部	18． 10	13． 40	3.40	4． 70	8.50	10． 10	1． 21
	（6）	鋼板部	18． 10	13． 40	3.40	4． 70	8.50	10． 10	1． 21
	（7）	鋼板部	18． 10	13． 40	3.40	4． 70	8.50	10． 10	1． 21
	（8）	鋼桁部	18． 10	13． 40	3.40	4． 70	8.50	10． 10	1． 21
	（9）	鋼板部	18.10	13． 40	3.40	4． 70	8.50	10． 10	1.21
	（10）	鋼板部	18． 10	13． 40	3.40	4． 70	8.50	10． 10	1． 21
	（10）${ }^{-}$	取り合い部	18． 10	13． 40	3.40	4.70	8.50	10． 10	1． 21
	（11）	鋼板部	18． 10	13． 80	3.80	4． 30	8.50	10． 10	1． 48
	（11）${ }^{-}$	取り合い部	18． 10	13． 80	3.80	4． 30	8.50	10． 10	1． 48

表 4－4（2）評価結果

構造物	評価 対象 位置	$\begin{aligned} & \text { 評価 } \\ & \text { モデル } \end{aligned}$	入力 津波水位 (0. P. +m)	設計用地表面 $\text { (0. P. }+\mathrm{m} \text {) }$	根入れ 深さ D（m）	水位差 hw（m）	土の水中単位体積重量 γ （ $\mathrm{kN} / \mathrm{m}^{3}$ ）	水の単位 体積重量 $\gamma \mathrm{w}$ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	安全率
防潮壁 （第 2 号機放 水立坑）	（1）	鋼板部	17． 40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（2）	鋼板部	17.40	13． 80	3.80	3． 60	8.50	10． 10	1． 77
	（3）	鋼板部	17.40	13． 80	3.80	3.60	8． 50	10． 10	1． 77
	（4）	鋼板部	17.40	13.80	3.80	3.60	8.50	10． 10	1． 77
	（5）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（6）	鋼桁部	17． 40	13． 80	3.80	3.60	8． 50	10． 10	1． 77
	（7）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10.10	1． 77
	（8）	鋼板部	17． 40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（9）	鋼板部	17． 40	13． 80	3.80	3.60	8.50	10.10	1． 77
	（10）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（11）	鋼板部	17． 40	13.80	3.80	3.60	8.50	10． 10	1． 77
	（12）	鋼板部	17． 40	13． 80	3.80	3.60	8． 50	10． 10	1． 77
	（13）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（14）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（15）	鋼板部	17.40	13． 80	3.80	3.60	8． 50	10． 10	1． 77
	（16）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（17）	鋼板部	17.40	13． 80	3.80	3． 60	8． 50	10． 10	1． 77
	（18）	鋼板部	17.40	13． 80	3.80	3． 60	8.50	10． 10	1． 77
	（19）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（20）	鋼板部	17.40	13.80	3.80	3.60	8.50	10． 10	1． 77
	（21）	鋼板部	17.40	13． 80	3.80	3.60	8.50	10． 10	1． 77
	（22）	鋼板部	17.40	13.80	3.80	3.60	8.50	10． 10	1． 77
	（23）	鋼板部	17.40	13． 80	3.80	3． 60	8． 50	10． 10	1． 77

表 4－4（3）評価結果

構造物	評価 対象 位置	$\begin{aligned} & \text { 評価 } \\ & \text { モデル } \end{aligned}$	入力 津波水位 （0．P．+m ）	設計用 地表面 （0．P．+ m）	根入れ 深さ D（m）	水位差hw （m）	土の水中単位体積重量 γ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	水の単位 体積重量 $\gamma \mathrm{w}$ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	安全率
防潮壁 （第3 号機海 水ポン プ室）	（1）	鋼板部	19． 00	13． 40	4． 10	5． 60	8.50	10． 10	1． 23
	（2）	龬板部	19． 00	13． 40	4． 10	5． 60	8.50	10． 10	1． 23
	（3）	鋼板部	19．00	13.40	4． 10	5． 60	8.50	10． 10	1． 23
	（4）	鋼板部	19． 00	13． 40	4． 10	5． 60	8． 50	10． 10	1． 23
	（4）${ }^{-}$	取力合い沙	19． 00	13． 40	4． 10	5． 60	8.50	10． 10	1． 23
	（5）	鋼板部	19． 00	13.40	4.10	5.60	8.50	10． 10	1．23
	（5）${ }^{-1}$	取句い剠	19． 00	13． 40	4． 10	5． 60	8.50	10． 10	1．23
	（6）	鋼板部	19.00	13.40	4.10	5.60	8.50	10． 10	1． 23
	（7）	鋼板部	19.00	13.40	4.10	5． 60	8.50	10． 10	1． 23
	（8）	鋼板部	19．00	13.40	4． 10	5.60	8.50	10． 10	1． 23
防潮壁 （第 3 号機放 水立坑）	（1）	鋼板部	17.50	13． 40	3． 40	4.10	8.50	10.10	1． 39
	（2）	鋼板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（3）	鋼板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（4）	鋼板部	17.50	13． 40	3.40	4.10	8.50	10． 10	1． 39
	（5）	鋼析部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（6）	銅板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（7）	鋼板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（8）	鋼板部	17.50	13． 40	3． 40	4.10	8.50	10． 10	1． 39
	（9）	龬析部	17.50	13.40	3.40	4． 10	8.50	10． 10	1． 39
	（11）	鋼板部	17． 50	13.40	3.40	4． 10	8.50	10． 10	1． 39
	（11）	鋼板部	17.50	13.40	3.40	4． 10	8． 50	10． 10	1． 39
	（12）	鋼板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（13）	鋼板部	17.50	13． 40	3.40	4． 10	8． 50	10． 10	1． 39
	（14）	鋼板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（15）	銅板部	17.50	13． 40	3.40	4.10	8.50	10.10	1.39
	（16）	龬板部	17.50	13． 40	3． 40	4． 10	8.50	10． 10	1． 39
	（17）	鋼板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（18）	鋼板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39
	（19）	銅板部	17.50	13． 40	3.40	4． 10	8.50	10． 10	1． 39

（別紙1）設計津波水位に対するボイリングの検討
前述では，入力津波水位を用いてボイリングに対する安全性を評価したが，ここでは，より保守的な条件となる設計津波水位（入力津波水位 +0.5 m ）を用いてボイリングに対する安全性を評価する。なお，設計津波水位に対するボイリングの評価に当たっては，地盤の揺すり込み沈下量は各評価対象位置の盛土•旧表土の層厚を考慮して算出する。
評価結果を表4－5に示す。表4－5のとおり，ほぼすべての評価位置において安全率が 1.2以上となった。一方，第2号機，第3号機海水ポンプ室の鋼板部において，わずかに安全率1．2 を下回る結果となった。
評価結果を踏まえて，図 4－13 のとおり，各構造物側部をセメント改良土にて埋戻しするこ とにより，単位体積重量を上げて，ボイリングに対する裕度確保に配慮することとする。ここ で，「山留め設計指針 平成 29 年（日本建築学会）」によると，Terzaghi の方法によるボイリ ングの検討方法の中で，根切り面より上の山留め背面地盤内において，水頭損失の無いモデル とした場合，ボイリングが影響する幅について，山留の根入れ深さDの半分であることを実験 により確認している（図 4－14）ことから，セメント改良土の埋戻し範囲については根入れ長 の $1 / 2$ 以上の埋戻し幅を確保する。
セメント改良土による埋戻し後の評価結果を表 4－6に示す。セメント改良土による埋戻し後 の評価結果については，すべての評価位置において安全率が 1.2 以上となった。

表 4－5（1）評価結果

構造物	評価 対象 位置	$\begin{aligned} & \text { 評価 } \\ & \text { モデル } \end{aligned}$	設計津波水位 （0．P．＋m）	設計用地表面 （0．P．+m ）	$\begin{gathered} \text { 根入れ } \\ \text { 深さ } \\ \text { D (m) } \end{gathered}$	水位差 hw （m）	士の水中 単位体積 重量 γ （kN／m ${ }^{3}$ ）	水の単位 体積重量 γ w （kN／m ${ }^{3}$ ）	安全率
$\begin{array}{r} \text { 防潮壁 } \\ (\text { 第 } 2 \\ \text { 号機海 } \\ \text { 水ポン } \\ \text { プ室) } \end{array}$	（1）	鋼板部	18． 60	13． 80	3.50	4． 80	8.50	10． 10	1． 22
	（2）	鋼板部	18.60	13． 80	3． 80	4.80	8.50	10． 10	1.33
	（3）	鋼板部	18.60	13.61	3.61	4.99	8.50	10． 10	1.21
	（4）	鋼板部	18.60	13.59	3.59	5.01	8.50	10． 10	1． 20
	（5）	鋼板部	18.60	13.57	3.57	5.03	8.50	10． 10	1． 19
	（6）	鋼板部	18.60	13.57	3.57	5.03	8.50	10． 10	1． 19
	（7）	鋼板部	18.60	13.57	3.57	5.03	8.50	10． 10	1． 19
	（8）	鋼析部	18.60	13.57	3.57	5.03	8.50	10． 10	1． 19
	（9）	鋼板部	18.60	13.57	3.57	5.03	8.50	10． 10	1． 19
	（11）	鋼板部	18.60	13.57	3.57	5.03	8.50	10． 10	1． 19
	（10）${ }^{-}$	取り合い缡	18.60	13.62	3.62	4． 98	8． 50	10． 10	1． 22
	（11）	鋼板部	18.60	13.80	3.80	4.80	8.50	10． 10	1.33
	（11）${ }^{-}$	取的い暗	18.60	13． 80	3． 80	4． 80	8． 50	10． 10	1．33

表 4－5（2）評価結果

構造物	評価 対象 位置	$\begin{gathered} \text { 評価 } \\ \text { モデル } \end{gathered}$	設計津波水位 （0．P．＋m）	設計用地表面 $\text { (0. P. }+\mathrm{m} \text {) }$	根入れ 深さ D（m）	水位差 hw（m）	土の水中単位体積重量 γ （kN／m ${ }^{3}$ ）	水の単位 体積重量 $\begin{gathered} \gamma \mathrm{w} \\ \left(\mathrm{kN} / \mathrm{m}^{3}\right) \end{gathered}$	安全率
防潮壁 （第2 号機放 水立坑）	（1）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10.10	1.56
	（2）	鋼板部	17.90	13． 80	3.80	4.10	8． 50	10． 10	1.56
	（3）	鋼板部	17.90	13． 80	3.80	4.10	8． 50	10． 10	1.56
	（4）	鋼板部	17.90	13． 80	3.80	4.10	8． 50	10． 10	1.56
	（5）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10． 10	1． 56
	（6）	鋼桁部	17.90	13． 80	3.80	4.10	8.50	10． 10	1． 56
	（7）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10． 10	1.56
	（8）	鋼板部	17.90	13． 80	3.80	4.10	8． 50	10． 10	1． 56
	（9）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10． 10	1． 56
	（11）	鋼板部	17． 90	13． 80	3.80	4． 10	8． 50	10． 10	1.56
	（11）	鋼板部	17．90	13． 80	3.80	4.10	8.50	10． 10	1.56
	（12）	鋼板部	17.90	13． 80	3.80	4． 10	8.50	10． 10	1.56
	（13）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10． 10	1.56
	（14）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10． 10	1.56
	（15）	鋼板部	17.90	13． 80	3.80	4． 10	8． 50	10． 10	1． 56
	（16）	鋼板部	17.90	13． 80	3.80	4.10	8． 50	10． 10	1． 56
	（17）	鋼板部	17． 90	13． 80	3.80	4． 10	8． 50	10． 10	1.56
	（18）	鋼板部	17.90	13． 80	3.80	4． 10	8． 50	10． 10	1． 56
	（19）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10． 10	1.56
	（20）	鋼板部	17.90	13． 80	3.80	4.10	8.50	10.10	1.56
	（21）	鋼板部	17.90	13． 80	3.80	4．10	8.50	10． 10	1.56
	（22）	鋼板部	17.90	13． 80	3.80	4． 10	8.50	10． 10	1． 56
	（23）	鋼板部	17． 90	13． 80	3.80	4． 10	8． 50	10． 10	1． 56

表4－5（3）評価結果

構造物	評価 対象 位置	$\begin{gathered} \text { 評価 } \\ \text { モデル } \end{gathered}$	設計津波水位 (0. P. + m)	設計用地表面 $\text { (0. P. }+\mathrm{m} \text {) }$	根入れ 深さ D（m）	水位差 hw （m）	土の水中単位体積重量 γ （kN／m ${ }^{3}$ ）	水の単位 体積重量 $\begin{gathered} \gamma \mathrm{w} \\ \left(\mathrm{kN} / \mathrm{m}^{3}\right) \end{gathered}$	安全率
防潮壁 （第 3 号機海 水ポン プ室）	（1）	鋼板部	19． 50	13． 46	4． 16	6.04	8.50	10． 10	1.15
	（2）	鋼板部	19.50	13． 46	4． 16	6.04	8.50	10． 10	1.15
	（3）	鋼板部	19． 50	13． 55	4.25	5.95	8． 50	10． 10	1． 20
	（4）	鋼板部	19.50	13． 55	4.25	5.95	8.50	10． 10	1.20
	（4）${ }^{-}$	取り合い部	19． 50	13．61	4.31	5.89	8.50	10． 10	1.23
	（5）	鋼板部	19． 50	13.55	4.25	5.95	8.50	10.10	1.20
	（5）${ }^{-}$	取り合い部	19． 50	13.61	4.31	5.89	8.50	10． 10	1．23
	（6）	鋼板部	19． 50	13． 48	4.18	6.02	8.50	10.10	1.16
	（7）	鋼板部	19． 50	13． 47	4． 17	6． 03	8.50	10． 10	1． 16
	（8）	鋼板部	19． 50	13． 46	4． 16	6.04	8.50	10． 10	1.15
防潮壁 （第3 号機放 水立坑）	（1）	鋼板部	18.00	13． 50	3.50	4． 50	8． 50	10． 10	1． 30
	（2）	鋼板部	18.00	13.56	3.56	4． 44	8.50	10． 10	1.34
	（3）	鋼板部	18.00	13． 80	3.80	4． 20	8.50	10． 10	1． 52
	（4）	鋼板部	18.00	13． 80	3.80	4． 20	8.50	10． 10	1.52
	（5）	鋼桁部	18.00	13． 80	3.80	4． 20	8.50	10． 10	1.52
	（6）	鋼板部	18.00	13． 80	3.80	4． 20	8.50	10． 10	1． 52
	（7）	鋼板部	18.00	13． 80	3.80	4． 20	8.50	10． 10	1． 52
	（8）	鋼板部	18.00	13． 80	3.80	4． 20	8． 50	10． 10	1． 52
	（9）	鋼桁部	18.00	13． 80	3.80	4． 20	8． 50	10． 10	1.52
	（10）	鋼板部	18.00	13． 80	3． 80	4． 20	8． 50	10． 10	1.52
	（11）	鋼板部	18.00	13.80	3.80	4． 20	8． 50	10． 10	1.52
	（12）	鋼板部	18.00	13.50	3.50	4.50	8.50	10． 10	1.30
	（13）	鋼板部	18.00	13． 48	3.48	4． 52	8.50	10． 10	1． 29
	（14）	鋼板部	18.00	13． 52	3.52	4． 48	8.50	10． 10	1.32
	（15）	鋼板部	18.00	13． 52	3.52	4． 48	8.50	10． 10	1.32
	（16）	鋼板部	18.00	13． 49	3． 49	4.51	8． 50	10． 10	1.30
	（17）	鋼板部	18.00	13． 51	3.51	4． 49	8.50	10． 10	1． 31
	（18）	鋼板部	18．00	13． 51	3． 51	4． 49	8． 50	10． 10	1.31
	（19）	鋼板部	18.00	13． 50	3.50	4． 50	8.50	10.10	1.30

図 4－13 セメント改良土による埋戻し範囲概念図（鋼板部）

図6．3．5 テルツァーギの検討方法

図 4－14 Terzaghi の検討方法
「山留め設計指針 平成 29 年（日本建築学会）」より抜粋）
（参考）4－26

表 4－6 地盤改良後の評価結果（第2号機海水ポンプ室•第3号機海水ポンプ室）

構造物	評価 対象 位置	$\begin{gathered} \text { 評価 } \\ \text { モデル } \end{gathered}$	設計津波水位 （0．P．＋m）	設計用地表面 $\text { (0. P. }+\mathrm{m} \text {) }$	根入れ 深さ D（m）	水位差 hw （m）	土の水中 単位体積 重量 γ （kN／m）	水の単位 体積重量 $\begin{gathered} \gamma \mathrm{w} \\ \left(\mathrm{kN} / \mathrm{m}^{3}\right) \end{gathered}$	安全率
防潮壁 （第2 号機海 水ポン プ室）	（4）	鋼鈑部	18.60	13． 59	3.59	5.01	21.60	10． 10	3.06
	（5）	鋼鈑部	18.60	13． 57	3.57	5.03	21.60	10． 10	3.03
	（6）	鋼鈑部	18.60	13． 57	3.57	5.03	21.60	10． 10	3.03
	（7）	鋼鈑部	18.60	13.57	3.57	5.03	21.60	10． 10	3.03
	（8）	鋼桁部	18.60	13． 57	3.57	5.03	21.60	10． 10	3.03
	（9）	鋼鈑部	18.60	13.57	3.57	5.03	21.60	10． 10	3.03
	（10）	鋼鈑部	18.60	13.57	3.57	5.03	21.60	10.10	3.03
防潮壁 （第 3 号機海 水ポン プ室）	（1）	鋼板部	19.50	13． 46	4． 16	6.04	21.60	10． 10	2.94
	（2）	鋼板部	19． 50	13． 46	4． 16	6.04	21.60	10.10	2.94
	（3）	鋼板部	19． 50	13． 55	4． 25	5.95	21.60	10.10	3.05
	（4）	鋼板部	19． 50	13.55	4． 25	5.95	21.60	10． 10	3.05
	（5）	鋼板部	19． 50	13． 55	4． 25	5． 95	21.60	10． 10	3.05
	（6）	鋼板部	19． 50	13． 48	4． 18	6.02	21.60	10． 10	2.96
	（7）	鋼板部	19． 50	13． 47	4． 17	6． 03	21.60	10． 10	2.95
	（8）	鋼板部	19． 50	13． 46	4． 16	6.04	21.60	10． 10	2.94

（参考）4－27
（別紙 2）第 2 号機海水ポンプ室及び第 3 号機海水ポンプ室の鋼桁と構造物間の止水ラインについて
前述では，各評価対象位置におけるボイリングに対する安全性を評価した。ここでは，第 2号機海水ポンプ室及び第 3 号機海水ポンプ室の鋼桁と構造物間の止水ラインについての構造概要について示すとともに，ボイリング等による津波の回り込みが生じないことを説明する。結論として，鋼桁と構造物間について，フーチング下端位置までM型止水ジョイントにて止水対策を実施することから，構造物間からの津波の回り込みは生じないことを確認した。
第 2 号機海水ポンプ室及び第 3 号機海水ポンプ室の鋼桁と構造物間の止水ラインについて，位置を図 4－15に示す。また，各止水ラインの鋼柎と構造物間の概略構造を図 4－16～図4－18 に示す。ここで，それぞれの止水ラインの止水性確保の考え方について記す。
－止水ライン（1）について
防潮壁と第 2 号機海水ポンプ室間については，構造物に鋼製ブラケットを介してM型ジョイ ントをフーチング下端位置まで構築することにより止水ラインを確保する。また，構造物間に ついては約 1 m 程度のクリアランスがあるものの，盛土にて埋戻しを行らことから，前述した ボイリングの評価のとおりボイリングによる津波の回り込みは生じない。 －止水ライン（2）について
防潮壁と原子炉機器泠却海水配管ダクト間については，構造物に鋼製ブラケットを介してM型ジョイント及び Ω 型ジョイントをフーチング下端位置まで構築することにより止水ラインを確保する。なお，M型ジョイントと Ω 型ジョイントの接合部については，「6．39 杭基礎構造防潮壁の止水ジョイント部材及び止水シールについて」にて示すとおり，工場で一体成型して設置することにより，交差箇所の止水性を確保する。なお，構造物間については，約 10 cm 程度 のクリアランスがあることから，適切に密度管理した埋戻し材にて埋め戻すこととする。埋戻 し材を適切に密度管理することにより，前述したボイリングの評価と同様の安全率が確保され ることから，ボイリングによる津波の回り込みは生じない。
－止水ライン（3）について
防潮壁と第 3 号機海水ポンプ室間については，構造物に鋼製ブラケットを介してM型止水ジ ョイント及び鋼矢板をフーチング下端位置まで構築することにより止水ラインを確保する。
－止水ライン（4）について
防潮壁と第 3 号機海水ポンプ室間については，構造物に鋼製ブラケットを介してM型止水ジ ョイント及び鋼矢板をフーチング下端位置まで構築することにより止水ラインを確保する。

図 4－15（1）第2号機海水ポンプ室止水ライン位置（止水ライン（1）（2）

図 4－15（2）第 3 号機海水ポンプ室止水ライン位置（止水ライン（3），（4））

図 4－16 鋼标と構造物間の概略構造（第 2 号機海水ポンプ室）（止水ライン（1）

（平面図）
図 4－17（1）鋼桁と構造物間の概略構造（第2号機海水ポンプ室）（止水ライン（1）（2））

（正面図）
図 4－17（2）鋼桁と構造物間の概略構造（第2号機海水ポンプ室）（止水ライン（1）（2）
（参考）4－31

（平面図）
図 4－18（1）鋼析と構造物間の概略構造（第3号機海水ポンプ室）（止水ライン（3）（4）

図 4－18（2）鋼桁と構造物間の概略構造（第3号機海水ポンプ室）（止水ライン（3）（4））
（参考資料 5）鋼製扉の開閉運用について

1．概要

図 1－1 に防潮壁の平面位置図，図 $1-2$ に鋼製扉の構造，図 $1-3$ に津波波形を示す。
杭基礎構造防潮壁は，第2号機海水ポンプ室，第 2 号機放水立坑，第 3 号機海水ポンプ室，及び第 3 号機放水立坑に設置し，それら各場所においてメンテナンスのため車両が進入できるよう開閉可能な鋼製扉を設置する計画である。

この鋼製扉は基本設計の段階において，地震後の防潮壁への津波到達が 40 分程度であることを踏まえ裕度もつて閉止できるよう人力で 15 分以内に開閉可能な構造とし，その際に特別な設備（ク レーン等）は必要としない構造とすること等を示していた。

以下，詳細設計段階において，津波時に鋼製扉が確実に閉止できるよう具体化した開閉構造，並 びに開閉に要するタイムラインを評価した結果を示す。なお，詳細設計を踏まえた構造に基づく，扉体開放時における耐震性については別紙 1 に示す。

図 1－1 防潮壁の平面配置図

（閉門時）

（開門時）

図 $1-2$ 鋼製扉の構造図（平面図，正面図）

（第2号機海水ポンプ室 上昇側）

（第 2 号機放水立坑 上昇側）
図 $1-3$ 入力津波の時刻歴波形 $(1 / 2)$

（第3号機海水ポンプ室 上昇側）

（第3号機放水立坑 上昇側）

図 1－3 入力津波の時刻歴波形（2／2）

2．鋼製扉の運用方針
鋼製扉は，基本設計段階において，その運用方針を述べており，今回，それを踏まえ運用並びに設備の具体化を図っている。
（1）運用方針（基本設計段階）
基本設計段階において述べていた運用方針について，前述の内容を含め全体を以下に示す。

①防潮壁にはメンテナンス用の車両進入路部を配置しており，開閉可能な鋼製扉を設置する。鋼製扉は，地震後の津波到達に対し裕度をもって閉止できるよう人力で 15 分以内に開閉可能 な構造とし，これにより閉止する際に特別な設備（クレーン等）は必要としない構造とする。
（2）鋼製扉は，津波防護機能が十分に保持できるよう，地震力や津波に十分耐える設計にすると ともに原則閉止運用とし，開放後の確実な閉止操作，閉止されていない状態が確認された場合の閉止操作を確実に実施するための運用管理を行う。
（3）また，鋼製扉の閉止運用について，積雪，風等の様々な環境条件下でも確実に閉止できるこ ととするための配慮事項及び設備の保守•点検の方針をイ）～ホ）に示す。
イ）車両進入路部は，常時閉運用としており車両の進入が作業上必要な場合のみ一時的に開閉 するものである。
ロ）防潮壁に囲まれた海水ポンプ室スクリーンエリアに，メンテナンスのために人員が出入り する昇降設備（梯子など）を設置し，車両進入時以外は鋼製扉を開閉しない運用とする。 また，安全のため防潮壁外側から開閉操作ができるよう配慮する。
八）雪や風等に関する警報が発出されている場合には原則開操作を行わないこととするなど，閉止が困難となる可能性がある場合に開操作を行わない運用を定めることとする。
二）人力で確実に閉止できるようにするため，扉体重量や風に配慮し，動力を使わないアシス ト機構としての油圧装置を詳細設計の中で検討する。また，より水密性を確保するため， ロックを設けるとともに，人員用の昇降設備を設置し，閉止作業時に防嘏壁内側から鋼製扉を押すことが可能な設計とする。
ホ）設備の保守点検については，各部位の要求性能等を踏まえ，点検項目や点検方法等を定め て実施するものとする。鋼製扉については，確実に開閉可能であることを維持するため，動作を確認する点検を実施する。
～）また，交換が必要な部品については，作業中に鋼製扉が連続して開放状態にならないよう な配慮として，代替品を準備するなどの対応を行う。
（2）運用方針の具体化（詳細設計段階）
前述を踏まえ，鍵の管理や強風時の作業限界等を検討し，運用方針に係る基本的事項を以下の とおり纏めた。
なお，詳細な運用内容，先に示した運用方針のうち（3）のホ），へ）に示すメンテナンスの具体 に関しては，後段の保安規定審査の中で説明する。

防潮壁（鋼製扉）の運用に係る基本事項について

1．概 要
防潮壁には防潮壁内での作業を行うために，車両等が進入できる鋼製扉が設置されており，津波時に扉が確実に閉止できるように，以下の構造•機構及び運用とする方針である。
（1）通常巡視，点検時の作業員は，昇降用階段を使用し防潮壁内へ出入りし，原則扉の開閉は行わない運用とする。
定期点検時等により，扉開状態となる場合は，緊急時（地震発生時等）に速やかに閉操作 を行える人員を，扉付近に待機させる運用とする。
（2）扉の開閉操作は，油圧装置及び人力による操作が可能とし，水密性を確保するためのロッ ク機能を有する構造•機構とする。
また，鍵を設置し，第三者による扉開閉を防止する。
（3）閉操作は油圧装置及び人力により， 15 分以内で操作できる構造•機構とする。
（4）強風•暴風等により，閉操作が困難となる可能性がある場合は，原則開操作は行わない運用とする。

強風： 10 分間平均風速が毎秒 10 m 以上
暴風：瞬間風速が毎秒 30 m 以上
（5）扉開放時には，現場ブザーにより注意喚起し，閉止忘れを防止する。

3．鋼製扉の開閉構造並びに開閉手順具体化した運用方針を踏まえ検討した開閉構造並びに閉止手順を以下に示す。
（1）開閉構造
開閉装置の平面図並びにその正面図を図 3－1～図3－2に，扉閉止時並びに開放時の平面図を図 3－3に，開閉操作の動作概要を図 3－4に，締付装置の動作概要を図 $3-5$ に示す。

また，各部位の名称と役割を表3－1に示す。
開閉は，手動油圧ポンプ並びに油圧ジャッキ，或いは人力により行う。
閉止時には締付装置を用い水密性を確保するとともに扉体を固定する。開放時には，回り止め を用い扉体の回り過ぎを防止するとともに開放時の扉体を固定する。

図 3－1 開閉装置平面図並びに正面図

図 3－2 開閉装置図

閉止時平面図

開閉操作時の油圧ポンプ及び油圧ジャッキの動作概要

閉止操作時の平面図

開放操作時の平面図

図 3－4 開閉装置（油圧ポンプ，油圧ジャッキ）の動作概要及び操作時の平面図

図 3－5（1）締め付け装置の動作概要

図 3－5（2）締め付け装置の動作概要（摺動（しゅうどう）部の概要）

表 3－1 各部位の名称と役割

名 称	役割等
回転軸	開閉動作のとき扉体とともに回転し扉体の重量を支持する。
手動油圧ポンプ	油圧ジャッキに作動油を送り，開閉の動力として用いる。 人力で確実に閉止できるようにす
油圧ジャッキ	扉体の金具を押し引きし扉体に回転を与える。 動力を使わないアシスト機構。
手回し式ジャッキ	締付装置の動力として用いる。
締付装置	扉体外周の水密ゴムを締め付け，水密性を確保するとともに閉止時に扉体を固定する。
回り止め	扉体の回り過ぎを防止するとともに開放時の扉体を固定する。
昇降階段	メンテナンス，閉止作業用昇降設備（車両進入時以外は鋼製扉を開閉 しない運用）。
現場ブザー	扉開放時には，現場ブザーにより注意喚起し，閉止忘れを防止する。

（2）閉止手順
運用方針に係る基本的事項を踏まえ，手動油圧ポンプを用いた場合の閉止フローを図 3－6に示す。鋼製扉の回転並びに締め付け・固定の詳細は別紙2に示す。

鋼製扉の開放にあたり，鍵の貸し出しを受けるとともに閉止操作に係る人員を確保する。その後，鋼製扉の開放を行い，速やかに閉止操作を行う。鋼製扉の回転は，油圧ジャッキ，或いは人力により行う。閉止操作が速やかに実施できるよう，閉止に係る人員は所定の操作位置付近で待機しておく。

図 3－6 鋼製扉の閉止フロー（手動油圧ポンプ使用）

4．鋼製扉の閉止時間の評価
ここでは，図 3－4に示す手動油圧ポンプを用いた鋼製扉の閉止フロー（図 3－6）に従って，最も厳しい環境条件下においても人力で所要の閉止時間である 15 分を満足できるか，室内の模擬試験 を行い評価した結果を示す。

扉体の閉止にあたり最も厳しい環境条件としては風荷重を受けた場合が考えられ，今回の試験で は，運用に係る基本事項で定めている作業限界である平均風速 $10 \mathrm{~m} / \mathrm{s}$ に余裕を見込み風速 $20 \mathrm{~m} / \mathrm{s}$ を考慮した負荷を与えた。

また，室内試験と実際の現場では操作性や作業効率が一致しない可能性に鑑み，模擬試験から得 られた操作時間の 50% を加えたうえで整数値に切り上げ評価値とした。
評価結果を表4－1に示す。操作時間は11分であり15分以内であることを確認した。

表 4－1 鋼製扉の閉止時間の評価結果（手動油圧ポンプ，風速 $20 \mathrm{~m} / \mathrm{s}$ ）

所要時間（分）	作業員A	作業員 B	根拠
1	上部ピン取り外し	下部ピン取り外し	棒状の部材を手で引き抜く作業 として 1 分間を想定
2	RC 支柱上部ジャッキ操作部に移動	地上部締付装置近傍 に移動し待機•準備	数 m 程度の移動として 1 分間を想定
3	油圧ジャッキの操作 （約 8 分間）		4．（1）a．手動油圧開閉装置（手動油圧ポンプ・油圧ジャッキ）操作時間の測定 参照
4			
5			
6			
7			
8			
9			
10			
11	待機	締付装置のハンドル 操作（約 1 分間）	4．（1）b．締付装置（手回し式ジャ ッキ）操作時間の測定 参照
12	余裕時間	余裕時間	
13	\downarrow	\downarrow	
14	\downarrow	\downarrow	
15	\downarrow	\downarrow	

（1）試験内容と結果
a．手動油圧開閉装置（手動油圧ポンプ・油圧ジャッキ）操作時間の測定
模擬試験は，現地で使用予定の機器と類似の構造を持つ手動油圧ポンプを用い所要手動力を負荷として与え行い，実機における 1 回当たりの操作時間に変換し，閉止時操作回数を掛け合 わせて操作時間を評価した。試験概要図を図 4－1に，試験結果を表4－1に示す。詳細は別紙3 に示す。

図 4－1 試験概要図（3人で 30 回ずつ操作する）

表 4－1 測定結果と実機換算

測定項目	1 回目	2 回目	3 回目	平均
操作回数（回）（1）	30	30	30	30
所要時間（s）（2）	38.13	40.09	41.12	39.78
1 回の所要時間（s／回）（2）\div（1）	1.27	1.34	1.37	1.33
実機換算（s／回）（2）$\div(1) \times 1.67^{*}$	2.12	2.23	2.28	2.21

注記＊：試験用のジャッキと実機のジャッキにおける操作長比率から求めた換算係数

実機換算した油圧ポンプ 1 操作あたりの時間に，実機における閉止時操作回数を掛け合わせ たうえで操作時間を求め，その操作時間の 50% を加えたうえで整数値に切り上げ評価値とした。

実機における閉止時操作時間 $=2.21 ~(\mathrm{~s} /$ 回）$\times 143 * ~($ 回）$\div 60 \times 1.5=5.3$（分）$\times 1.5=7.9$ （分）
評価値 $=8.0$（分）［7．9（分）を整数値に切り上げ丸め］
注記＊：閉止時操作回数で閉止のためのジャッキストローク長と 1 操作あたりのシリンダ移動距離より算定。
b．締付装置（手回し式ジャッキ）操作時間の測定
模擬試験は，手回し式ジャッキと同様の機器を用い操作時間を測定し，締付装置の操作時間算定の根拠とした。

模擬試験は，手回し式ジャッキと同様の機器を用い定格トルクに相当する荷重を負荷として与え行い，1回当たりの操作時間に変換し，締付に必要な入力回転数を掛け合わせて操作時間 を評価した。試験概要図を図4－2に，試験結果を表4－2に示す。詳細は別紙4に示す。

作業の概略図

図 4－2 試験概要図（3 人で 15 回ずつ操作する）

表 4－2 測定結果と実機換算

測定項目	1 回目	2 回目	3 回目	平均
操作回数（回）（1）	15	15	15	15
所要時間（ s ）（2）	5.9	7.21	8.2	7.1
1 回の所要時間（ $\mathrm{s} /$ 回）（2）\div（1）	0.39	0.48	0.55	0.47

手回しジャッキ 1 回あたりの時間に，実機における締付に必要な入力回転数を掛け合わせた うえで操作時間を求め，その操作時間の 50% を加えたうえで整数値に切り上げ評価値とした。

$$
\text { 実機における閉止時操作時間 }=0.47(\mathrm{~s} / \text { 回 }) \times 80 * ~(\text { 回 }) ~ \div 60 \times 1.5=0.6 ~(\text { 分 }) ~ \times 1.5=0.9
$$ （分）

評価値 $=1.0$（分）
［0．9（分）を整数値に切り上げ丸め］

注記 $*: ~$ 締付に必要な入力回転数で，ねじ軸の所要ストローク長，減速比，及びねじ軸リ ード長より算定。

5．まとめ

今回，複数人による模擬試験を通じ， 15 分以内で閉操作が可能な見通しであることを確認した。 タイムラインの計算にあたつては，室内試験と実際の現場では操作性や作業効率が一致しない可能性に鑑み，模擬試験から得られた操作時間の 50% を加えたうえで整数値に切り上げ評価値とした。 なお，本鋼製扉の据付後，訓練を行う予定であり，それを通じタイムラインを検証する方針とす る。

（別紙 1 ）鋼製扉の扉体開放時の耐震性について

鋼製扉は，前述のとおり，原則閉止運用とし，通常巡視，点検時においては，作業員は昇降用階段を使用し防潮壁内へ出入りし，原則扉の開閉は行わない運用とするとともに，開放後の確実な閉止操作及び閉止されていない状態が確認された場合の閉止操作を確実に実施するための運用管理 を行う方針とする。また，人力で 15 分以内に開閉可能な構造としている。

よって，鋼製扉が開状態である時間は限られた時間のみであり，その状態で地震力が作用する可能性については極めて低いものと考えられるが，その可能性を完全に否定することは困難であるこ とから，開状態において地震力が作用した場合についても構造健全性が保持されることを確認する。

1．評価方針

鋼製扉開放時の評価は，「6．3．4 鋼製扉の耐震計算に関する補足説明資料」に示す評価方針に準 じて実施する。

評価項目は「6．3．4 鋼製扉の耐震計算に関する補足説明資料」に示す評価項目に準じるが，閉止時に機能する固定部については，主たる荷重である扉体からの反力が作用せず，評価としては閉止時よりも十分に裕度を有することは明白であるため，評価を省略する。

許容限界は「6．3．4 鋼製扉の耐震計算に関する補足説明資料」に示す評価項目と同様とする。照査は設計震度が大きい鋼製扉 2 について行う。

扉体の構造概要図を図 1 に，鋼製扉開放時の耐震評価フローを図 2 に，評価項目を表 1 に示す。

図 1 （1）扉体の構造概要図

【ヒンジ部水平荷重支承部】

図1（2）扉体の構造概要図
(ヒンジ部)

図2 鋼製扉開放時の耐震評価フロー

表1（1）鋼製扉開放時の耐震評価項目

部位		評価方法	許容限界	閉止時	開放時
扉体部	スキンプレート, 主桁，鉛直桁	発生する応力（曲げ・軸力，せん断力）が許容限界以下であること を確認	短期許容応力度	\bigcirc	\bigcirc
ヒンジ部 （水平荷重支承 部）	$\begin{aligned} & \text { ヒンジリブ, 回転 } \\ & \text { 軸, 軸受ハウジン } \\ & \text { グ, 軸受ハウジン } \\ & \text { グ固ボルト, 軸 } \\ & \text { 受文持金物, エン } \\ & \text { カーフーボルト, アン } \\ & \text { カーボル } \end{aligned}$	発生する応力（曲げ・軸力，せん断力）が許容限界以下であること を確認	短期許容応力度	\bigcirc	\bigcirc
	ころがり軸受	作用荷重が許容荷重以下であることを確認	許容荷重	\bigcirc	\bigcirc
ヒンジ部 （鋁直荷重支承 部）	すべり軸受	発生する応力（支圧応力）が許容限界以下で あることを確認	短期許容支圧応力度	\bigcirc	\bigcirc
	支柱	発生する応力（曲げ・軸力，せん断力）が許容限界以下であること を確認	短期許容応力度	\bigcirc	\bigcirc
	蓋固定ボルト	作用荷重が許容荷重以下であることを確認	許容荷重	\bigcirc	\bigcirc
固定部	扉体フック部，摺動ブロック，回転 アーム，アーム回転軸，アーム軸受架台，アーム軸受架台基部，エンド プレート，アンカ ーボルト，戸当り （腹板）	発生する応力（曲げ・軸力，せん断力）が許容限界以下であること を確認	短期許容応力度	\bigcirc	－
	アーム軸受	作用荷重が許容荷重以下であることを確認	許容荷重	\bigcirc	－

表1（2）鋼製扉開放時の耐震評価項目

部位	評価方法	許容限界	閉止時	開放時
RC 支柱	発生する応力（曲げ・軸力，せん断力）が許容限界以下であること を確認	短期許容応力度 （曲げ・軸力） 及びせん断耐力 ＊ 1,2	\bigcirc	\bigcirc
フーチング	発生する応力（曲げ・軸力，せん断力）が許容限界以下であること を確認	短期許容応力度 （曲げ・軸力）及びせん断耐力 ＊1，2	\bigcirc	\bigcirc
鋼管杭	発生する応力（曲げ・軸力，せん断力）が許容限界以下であること を確認	降伏強度及びせ乙断強度＊${ }^{*}$	\bigcirc	\bigcirc
基礎地盤	$\begin{aligned} & \text { 発生する応力 (杭頭の } \\ & \text { 鉛直力) が許容限界以 } \\ & \text { 下であることを確認 } \\ & \hline \end{aligned}$	極限支持力＊1	\bigcirc	\bigcirc

注記 $* 1$ ：妥当な安全余裕を考慮する。
＊2：断面が降伏に至らない状態及びせん断耐力を下回れば，漏水が生じるような顕著な（部材 を貫通するような）ひび割れは発生しないことから，曲げ・軸力系の破壊（面外変形） についてはコンクリート及び鉄筋の短期許容応力度を，せん断破壊についてはせん断耐力を下回ることを確認する。

2．評価方法

2． 1 解析モデル
地震応答解析で用いる解析モデルは，「VI－2－10－2－3－3 杭基礎構造防潮壁 鋼製扉の耐震性につ いての計算書」と同様の考え方に準じ，扉体部について最大開状態（ 90° ）を想定したモデル化と する。

ここで，地震応答解析における加振方向は，扉体軸方向（Z 方向）とする。これは，開状態にお いてはヒンジ部側のみで扉体を支持する状態となり，その支持部が回転ヒンジであることから，扉体に作用する面外方向（X 方向）の地震力に対してはピン支持状態となり回転慣性が伝達されない構造であるため，ヒンジ部及び RC 支柱においてより扉体の影響が生じると考えられ，また，構造全体系の弱軸方向でありロッキング等の影響による扉体の鉛直慣性力が大きくなると考えられる ためである。なお，その際の RC 支柱と扉体間の境界条件は拘束条件とする。

扉開放時の地震応答解析モデルを図 3 に，扉体と RC 支柱接合部の境界条件を図 4 に示す。

図3 鋼製扉開放時の地震応答解析モデル

方向	拘束条件	
	固定部側（扉体開閉側）	ヒンジ部側
扉体軸直交方向（X 方向）	-	剛結
鉛直方向（Y 方向）	-	剛結
扉体軸方向（Z 方向）	-	剛結
扉体軸直交方向（X 方向）周り	-	剛結
鉛直方向 $(Y$ 方向）周り	-	剛結
扉体軸方向（Z 方向）周り	-	剛結

図4 扉体と RC 支柱接合部の境界条件

2． 3 評価方法

各部位の評価は，「VI－2－10－2－3－3 杭基礎構造防潮壁 鋼製扉の耐震性についての計算書」と同様の方法により発生応力等の評価を行う。

扉体部について別途実施する静的解析の境界条件については，開放状態を想定した境界条件によ り評価を行う。地震荷重の作用方向は前述のとおり扉体軸方向とするが，風荷重の影響については受圧面が大きい扉体軸直交方向に作用させる。

荷重の組合せを表2に，扉体部の静的解析に用いる荷重の組合せケースを表3に，作用荷重の概要図を図5に，扉体の静的フレーム解析に用いる設計震度を表4に，境界条件を図6に示す。

表2 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $\left(\mathrm{S}_{\mathrm{s}}\right)$	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+\mathrm{S}_{\mathrm{s}}$

G：固定荷重
P_{s} ：積雪荷重
P_{k} ：風荷重
S_{S} ：地震荷重

表 3 荷重の組合せ（扉体の静的解析）

ケース No．	荷重の組合せ
1	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\mathrm{sH}}+0.4 \mathrm{~S} \mathrm{~Sv}$
2	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\mathrm{sH}}-0.4 \mathrm{~S} \mathrm{~Sv}$
3	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}-1.0 \mathrm{~S}_{\mathrm{SH}}+0.4 \mathrm{~S} \mathrm{~Sv}$
4	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}-1.0 \mathrm{~S}_{\mathrm{sH}}-0.4 \mathrm{~S} \mathrm{~Sv}$
5	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S} \mathrm{~Sv}$
6	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S} \mathrm{~Sv}$
7	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S} \mathrm{~Sv}$
8	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}-0.4 \mathrm{~S} \mathrm{SH}-1.0 \mathrm{~S} \mathrm{SV}$

G：固定荷重
P_{s} ：積雪荷重
P_{k} ：風荷重
S_{SH} ：水平方向地震荷重（自重 $\times \mathrm{K}_{\mathrm{H}}$ ）
$S_{S V}$ ：鉛直方向地震荷重（自重 $\times K_{V}$ ）

図5 作用荷重の概要図

表4 設計震度

断面	地震による設計震度	
	水平方向 K_{H}	鋁直方向 K_{V}
鋼製扉 2	4.3	$1.2 \sim 6.1$ （下図参照）

（震度設定の概要）

方向	拘束条件	
	固定部側 （扉体開閉側）	ヒンジ側
扉体軸方向（Z 方向）	自由	拘束
鉛直方向（Y 方向）	自由	拘束（下端部）

（水平荷重作用時 $(+Z$ 方向））

方向	拘束条件	
	固定部側 （扉体開閉側）	ヒンジ側
扉体軸方向 $(Z$ 方向）	自由	拘束
鉛直方向 $(Y$ 方向）	自由	拘束（下端部）

（水平荷重作用時（ -Z 方向））
図6（1）扉体部における静的フレーム解析時の境界条件
（参考）5－26

方向	拘束条件	
	固定部側 （扉体開閉側）	ヒンジ側
扉体軸方向（Z 方向）	自由	拘束
鉛直方向 Y 方向）	自由	拘束（上端部）

（鉛直荷重作用時（ +Y 方向））

方向	拘束条件	
	固定部側 （扉体開閉側）	ヒンジ側
扉体軸方向（Z 方向）	自由	拘束
鉛直方向 $(Y$ 方向）	自由	拘束（下端部）

（鉛直荷重作用時（ -Y 方向））
図6（2）扉体部における静的フレーム解析の境界条件

3．照査結果
鋼製扉における曲げ・軸力系の破壊及びせん断破壊に対する各部材の照査結果を表5に示す。こ の結果から，鋼製扉開放時の発生応力が許容限界以下であることを確認した。

表5（1）開放時の照査結果（扉体（主桁•鉛直桁））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	$\begin{gathered} \text { 照査値 } \\ (\mathrm{a} / \mathrm{b}) \end{gathered}$
鋼製扉2	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	253	378	0.67
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S} \mathrm{SV}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	22	217	0.11
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0． 45	1.2	0． 38

表5（2）開放時の照査結果（ヒンジリブ，回転軸）

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
鋼製扉2	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	132	222	0.60
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	40	136	0． 29
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	合成応力度 $(-)$	0.38	1.2	0． 32

表5（3）開放時の照査結果（ヒンジ部水平荷重支承部（ころがり軸受））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重軸受 1	$\frac{8}{\left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right)}$	作用荷重 （KN）	600	1670	0． 36
水平荷重 軸受 2	$\begin{gathered} 4 \\ \left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$		281	1670	0.17
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$		372	1670	0． 23
水平荷重 軸受4	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$		1051	1670	0． 63

表5（4）開放時の照査結果（ヒンジ部水平荷重支承部（軸受けハウジング円筒部））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重軸受 1	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S} \mathrm{SV}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	77	222	0.35
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	26	127	0． 21
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.38	1.1	0.35
水平荷重軸受 2	$\frac{4}{\left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S}_{\mathrm{SV}}\right)}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	36	222	0． 17
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	2	127	0.02
	$\begin{gathered} 4 \\ \left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{sH}}-0.4 \mathrm{~S}_{\mathrm{s} \mathrm{~V}}\right) \end{gathered}$	合成応力度 $(-)$	0． 17	1.1	0.16
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	48	222	0． 22
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S} \mathrm{SV}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	2	127	0.02
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	合成応力度 $(-)$	0． 22	1.1	0． 20
水平荷重軸受 4	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	135	222	0.61
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	2	127	0.02
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.61	1.1	0.56

表5（4）開放時の照査結果（ヒンジ部水平荷重支承部（軸受けハウジング接合部））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重軸受 1	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{s} \mathrm{~V}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	49	222	0． 23
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	5	127	0.04
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0． 22	1.1	0． 20
水平荷重軸受 2	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	6	222	0.03
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	1	127	0.01
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	合成応力度 $(-)$	0.03	1.1	0.03
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	8	222	0.04
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S} \mathrm{SV}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	1	127	0.01
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	合成応力度 $(-)$	0.04	1.1	0.04
水平荷重軸受 4	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	16	222	0.08
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	1	127	0.01
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.08	1． 1	0.08

表5（5）開放時の照查結果（ヒンジ部水平荷重支承部（軸受けハウジング固定ボルト））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重 軸受 1	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	274	447	0． 62
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	82	258	0． 32
	$\left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right)$	合成応力度 $(-)$	0.69	1.1	0.63
水平荷重 軸受 2	$\underset{\left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S}_{\mathrm{sV}}\right)}{4}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	105	447	0． 24
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	6	258	0． 03
	$\begin{gathered} 4 \\ \left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{sH}}-0.4 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	合成応力度 $(-)$	0． 24	1.1	0． 22
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	143	447	0． 32
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	6	258	0.03
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	合成応力度 $(-)$	0.32	1.1	0． 30
水平荷重軸受4	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	169	447	0.38
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	7	258	0． 03
	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	合成応力度 $(-)$	0． 38	1.1	0． 35

表5（6）開放時の照査結果（ヒンジ部水平荷重支承部（軸受けハウジングエンドプレート））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重軸受 1	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	174	222	0． 79
水平荷重軸受 2	$\frac{4}{\left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S}_{\mathrm{SV}}\right)}$		67	222	0.31
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$		91	222	0． 41
水平荷重軸受 4	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$		108	222	0． 49

表5（7）開放時の照査結果（ヒンジ部水平荷重支承部（軸受支持金物））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重軸受 1	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	53	237	0． 23
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	15	136	0.12
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0． 25	1.1	0.23
水平荷重軸受 2	$\frac{4}{\left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S}_{\mathrm{SV}}\right)}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	8	237	0.04
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	1	136	0.01
	$\begin{gathered} 4 \\ \left(\mathrm{G}-1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	合成応力度 $(-)$	0.04	1.1	0.04
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	11	237	0.05
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	1	136	0.01
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.05	1.1	0.05
水平荷重軸受 4	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	25	237	0.11
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	2	136	0.02
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.11	1.1	0． 10

表5（8）開放時の照査結果（ヒンジ部水平荷重支承部（エンドプレート））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重軸受 1	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	164	222	0． 74
水平荷重軸受 2	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$		48	222	0． 22
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$		65	222	0． 30
水平荷重軸受 4	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$		47	222	0． 22

表5（9）開放時の照査結果（ヒンジ部水平荷重支承部（エンドプレート下面コンクリート））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重 軸受 1	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	6． 67	8.8	0． 76
水平荷重 軸受 2	$\frac{2}{\left(\mathrm{G}+1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S} \mathrm{SV}_{\mathrm{SV}}\right)}$		1． 11	8.8	0.13
水平荷重 軸受 3	$\stackrel{1}{\left(\mathrm{G}+1.0 \mathrm{~S}_{\mathrm{SH}}-0.4 \mathrm{~S}_{\mathrm{sV}}\right)}$		1． 02	8.8	0.12
水平荷重 軸受 4	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$		2.74	8.8	0.32

表5（10）開放時の照査結果（ヒンジ部水平荷重支承部（アンカーボルト））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
水平荷重軸受 1	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{sV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	166	182	0.92
	$\begin{gathered} 5 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	33	103	0.33
	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	合成応力度 $(-)$	0.93	1	0.93
水平荷重軸受 2	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	51	182	0． 29
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	4	103	0.04
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.08	1	0.08
水平荷重軸受 3	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	曲げ応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	68	182	0.38
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S} \mathrm{~S} \mathrm{~V}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	4	103	0.04
	$\begin{gathered} 8 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	合成応力度 $(-)$	0.15	1	0.15
水平荷重軸受 4	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{s} \mathrm{v}}\right) \end{gathered}$	曲げ応力度 (N/mm2)	48	182	0． 27
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm} 2$ ）	3	103	0.03
	$\begin{gathered} 6 \\ \left(\mathrm{G}-0.4 \mathrm{~S}_{\mathrm{sH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.07	1	0.07

表5（11）開放時の照査結果（ヒンジ部水平荷重支承部（すべり軸受））

部位	荷重の組合せケース	応力成分	応力度 (a)	許容限界 (b)	照査値 $(\mathrm{a} / \mathrm{b})$
水平荷重 軸受 4	7	支圧応力度 $\left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right)$	58	67	0.87

表5（12）開放時の照査結果（ヒンジ部鉛直荷重支承部（支柱））

部位	荷重の組合せケース	応力成分	応力度 （a）	許容限界 （b）	照査値 （a／b）
鉛直荷重軸受 4	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{sH}}-1.0 \mathrm{~S}_{\mathrm{sv}}\right) \end{gathered}$	垂直応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	45	160	0． 29
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	5	93	0.06
	$\begin{gathered} 7 \\ \left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}-1.0 \mathrm{~S}_{\mathrm{SV}}\right) \end{gathered}$	合成応力度 $(-)$	0.28	1.1	0． 26

表5（13）開放時の照査結果（ヒンジ上向き荷重伝達部（蓋固定ボルト））

部位	荷重の組合せケース	応力成分	応力度 (a)	許容限界 (b)	照査値 $(\mathrm{a} / \mathrm{b})$
水平荷重 軸受 4	5	作用荷重 $\left(\mathrm{G}+0.4 \mathrm{~S}_{\mathrm{SH}}+1.0 \mathrm{~S}_{\mathrm{SV}}\right)$	390	444	0.88

（別紙3）手動油圧開閉装置（手動油圧ポンプ・油圧ジャッキ）操作時間の測定詳細
1．試験内容
現地で使用予定の機器と類似の構造を持つ手動油圧ポンプの操作時間を測定し，鋼製扉の開閉に用いる手動油圧開閉装置（手動油圧ポンプ・油圧ジャッキ）の操作時間算定の根拠とした。試験用油圧ポンプのレバーの長さは実機と同等となるよう長さを調整した。
試験内容と時間評価の流れは以下のとおり。
（1）風の負荷に相当する荷重を取り付けたうえで試験用の手動油圧ポンプを異なる 3 人で 30 回ずつ操作し，所要時間を測定して 1 操作分の平均時間（a）を求める。
（2）試験用ポンプのレバー操作長（b）と実機のレバー操作長（c）が異なる点を踏まえ（図 1 ）， レバー操作長換算 $((\mathrm{c}) \div(\mathrm{b}))$ を行い実機における 1 操作分の所要時間 $((\mathrm{d})=(\mathrm{a}) \times(\mathrm{c})$ \div（b））を求める（表1）。
（3）実機における閉止時操作回数（g）を，閉止のためのジャッキストローク長（e，図 2）と1操作あたりのシリンダ移動距離（f，図3）から求める $(\mathrm{g})=(\mathrm{e}) \div(\mathrm{f})$ ，表 2 ）。
（4）実機における 1 操作分の所要時間（d）と実機における閉止時操作回数（g）を掛け合わせ操作時間を求め，その操作時間の 50% を加えたらえで整数値に切り上げ評価値とする （（d）$\times(\mathrm{g}) \times 1.5)$ 。

実機

試験機

図1 試験機並びに実機の油圧ポンプの概略図

図2 油圧ジャッキ 扉体開閉時におけるストローク長概要図

図 3 レバー操作長概要図

表1 試験機並びに実機の油圧ポンプ諸元
$\left.\begin{array}{|c|c|c|c|}\hline \text { 項目 } & \begin{array}{c}\text { レバー長 } \\ (\mathrm{mm})\end{array} & \begin{array}{c}\text { レバー回転角度 } \\ \left({ }^{\circ}\right)\end{array} & \text { レバー操作長等 }\end{array}\right]$

表2 実機における閉止時操作回数

項目	値
閉止のためのジャッキストローク長（mm，e）	953
1 操作あたりのシリンダ移動量（mm／回，f）	6.67
実機における閉止時操作回数（回， $\mathrm{g}=\mathrm{e} \div \mathrm{f})$	143

2．所要手動力の算定
手動油圧ポンプの所要手動力（負荷）は，扉体，ヒンジ部の自重及び積雪荷重により支承部軸受に生じる摩擦抵抗に加え，風速に応じた風荷重を鋼製扉の回転時の抵抗として考慮した所要推力より以下の式にて求める。鉛直方向荷重による扉体の倒れ込みに抵抗するために支承部軸受に生じる水平方向荷重は自重及び積雪による支点反力の大きさを合計して求めた。また，風荷重は扉体高さが最も高く受圧面積が大きい第 3 号機海水ポンプ室を対象に算定する。
$\mathrm{Fh}=\mathrm{F} j \times \mathrm{St} 1 \div \mathrm{L} ; \mathrm{g} \times 1000$

ここに，Fh：所要手動力（kgf）
F j ：所要推力〈回転時の抵抗荷重〉（kN）
St1：閉止シリンダ移動量 $6.67 \mathrm{~mm} /$ 回
Lp ：ポンプレバー操作長 $1151.9 \mathrm{~mm} /$ 回
g ：重力加速度 $9.80665 \mathrm{~m} / \mathrm{s}^{2}$

図4 ジャッキ所要手動力の計算諸元の概要図

算定結果を表 3 に示す。風速 20 m のときの所要手動力は 31 kgf であり丸め 35 kgf とする。

表3 開閉時の負荷に対する所要手動力の算定

F j ：所要推力く回転時の抵抗荷重〉（kN）			Fh ：所要手動力（kgf）			
風圧抵抗： a（kN•m）	摩擦抵抗： b（kN•m）	所要推力： F j (kN)	閉止シ リンダ 移動量： St1（mm ／回）	ポンプレバ 一操作長： Lp（mm／回）	重力加速度： $\mathrm{g} \quad\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	所要手動力： Fh（kgf）
18.641	3． 2689	52． 291	6.67	1151.9	9． 80665	31
$\begin{aligned} & \mathrm{a}=\mathrm{P} \mathrm{w} \times \\ & \mathrm{A} \mathrm{~g} \times \mathrm{Rg} \end{aligned}$	$\begin{gathered} \mathrm{b}=\mathrm{F} \mathrm{~s} \times \mathrm{R} \\ \mathrm{~s} \times \mu \mathrm{s}+\mathrm{Fb} \\ \times \mathrm{Rb} \times \mu \mathrm{b} \end{gathered}$	$\begin{gathered} F j=(a+b) \div \\ R j \end{gathered}$	F h $=\mathrm{F} j \times \mathrm{St} 1 \div \mathrm{Lp} \div \mathrm{g} \times 1000$			

ここに， P w ：風荷重 ${ }^{* 1} 0.15 \mathrm{kN} / \mathrm{m}^{2}$
A g ：扉体の受圧面積（ 3 号機海水ポンプ室の鋼製扉 縦 $6.15 \mathrm{~m} \times$ 横 5.9 m より） $36.285 \mathrm{~m}^{2}$ R g ：扉体の回転中心から扉体中央までの距離 3.425 m
F s ：鉛直方向荷重を受けるすべり軸受に生じる荷重の大きさ＊3162．320 kN
$R \mathrm{~s}$ ：鉛直方向荷重を受けるすべり軸受の摺動部の半径 0.075 m
$\mu \mathrm{S}$ ：鉛直方向荷重を受けるすべり軸受の摩擦係数＊2 0.2
F b ：水平方向荷重を受けるころがり軸受に生じる荷重の大きさ＊3 の合計値 308.938 kN
Rb ：水平方向荷重を受けるころがり軸受の平均半径 0.135 m
$\mu \mathrm{b}:$ 水平方向荷重を受けるころがり軸受の摩擦係数＊2 0.02
$R \mathrm{j}$ ：扉体の回転中心からジャッキの推力作用線までの最小距離 0.419 m
注記 $* 1$ ：風荷重は「建設基準法施行令第 87 条」及び「建設省告示第 1454 号」による計算式に基づき風速 $20 \mathrm{~m} / \mathrm{s}$ に相当する単位荷重を計算した。
注記 $~ 2 ~ 2: ~$ 軸受の摩擦係数は「水門鉄管技術基準 水門扉編（水門鉄管協会，平成 31 年）」 に示される，開閉装置の容量計算に用いる軸受の摩擦係数より設定した。
注記 $~ * ~ 3: ~$ 扉体自重と積雪荷重，並びに扉体の倒れ込みを考慮し，鉛直力と水平力に分解 した値。荷重の作用点は下図のとおり。

3．実機における閉止時操作回数の想定
負荷に対する所要手動力に相当する荷重（35kgf）を取り付けたらえで試験用の手動油圧ポンプ を異なる 3 人で 30 回ずつ操作し，所要時間を測定して 1 操作分の平均時間を求めた。

試験用ポンプのレバー操作長と実機のレバー操作長が異なる点を踏まえ，レバー操作長換算を行 い実機における 1 操作分の所要時間を求めた。測定結果を表 4 に示す。

表4 測定結果と実機換算

測定項目	1 回目	2 回目	3 回目	平均
操作回数（回）（1）	30	30	30	30
所要時間（s）（2）	38.13	40.09	41.12	39.78
1 回の所要時間（s／回）（2）\div（1）	1.27	1.34	1.37	1.33
実機換算（s／回）（2）$\div(1) \times 1.67^{*}$	2.12	2.23	2.28	2.21

＊：表1に示す 1 操作分の所要時間を求める場合の係数

4．実機における閉止時操作時間の想定
実機換算した油圧ポンプ 1 操作あたりの時間に，実機における閉止時操作回数を掛け合わせたら えで操作時間を求め，その操作時間の 50% を加えたらえで整数値に切り上げ評価値とした。

実機における閉止時操作時間 $=2.21 ~(\mathrm{~s} /$ 回）$\times 143$（回）$\div 60 \times 1.5=5.3$（分）$\times 1.5=7.9$（分）評価値 $=\underline{8.0}$（分）［7．9（分）を整数値に切り上げ丸め］
（別紙 4）締付装置（手回し式ジャッキ）操作時間の測定詳細
1．試験内容
手回し式ジャッキと同様の機器を用い操作時間を測定し，締付装置の操作時間算定の根拠とした。

試験内容と時間評価の流れは以下のとおり。
（1）手回し式ジャッキの操作時における定格トルクに相当する荷重を取り付けたうえで試験用の手回し式ハンドルを異なる 3 人で 15 回ずつ操作し，所要時間を測定して 1 回転分の平均時間（a）を求める。本試験では実機の手回し式ジャッキと同等のハンドル径の ものを用いる（表1）。
（2）実機における締付に必要な入力回転数（b）を，ねじ軸の所要ストローク長（c，図1），減速比（d），ねじ軸リード長（e）から求める $((b)=(c) \times(d) \div(e)$ ，表 2）。
（3）実機における 1 回転分の所要時間（a）と実機における締付に必要な入力回転数（b）を掛 け合わせ操作時間を求め，その操作時間の 50% を加えたらえで整数値に切り上げ評価値 とする（（a）$\times(\mathrm{b}) \times 1.5)$ 。

表1 試験機並びに実機の手回しジャッキ諸元

項目	ハンドル径 (mm)	周長 $(\mathrm{mm} /$ 回）
試験機	315	1979.2
実機	315	1979.2

図 1 ねじ軸の所要ストローク長

表2 実機における締付に必要な入力回転数

項目	値
ねじ軸の所要ストローク長（mm，c）	160
減速比（d）	2.5
ねじ軸リード長 ${ }^{*}(\mathrm{~mm}, \mathrm{e})$	5
実機における締付に必要な入力回転数（回， $\mathrm{b}=\mathrm{c} \times \mathrm{d} \div \mathrm{e}$ ）	80

注記＊：ジャッキ内部のギヤ 1 回転当たりに対するねじ軸の軸方向移動量

2．手回しジャッキの操作時における定格トルク
開閉用動力が手動式であることから，定格トルクは，ダム・堰基準より，人力を 100 N （ $\fallingdotseq 10 \mathrm{kgf}$ ） として求めたトルクとする。

3．締付装置（手回し式ジャッキ）操作時間の想定
手回しジャッキの操作時における定格トルクに相当する荷重（10kgf）を取り付けたらえで試験用の手回しジャッキを異なる 3 人で 15 回ずつ操作し，所要時間を測定して 1 操作分の平均時間を求めた。測定結果を表 3 に示す。

表3 測定結果と実機換算

測定項目	1 回目	2 回目	3 回目	平均
操作回数（回）（1）	15	15	15	15
所要時間 $(\mathrm{s})(2)$	5.9	7.21	8.2	7.1
1 回の所要時間（s／回）（2）$\div(1)$	0.39	0.48	0.55	0.47

4．実機における閉止時操作時間の想定
手回しジャッキ 1 回あたりの時間に，実機における締付に必要な入力回転数を掛け合わせたらえ で操作時間を求め，その操作時間の 50% を加えたらえで整数値に切り上げ評価値とした。

実機における閉止時操作時間 $=0.47$（ $\mathrm{s} /$ 回）$\times 80$（回）$\div 60 \times 1.5=0.6$（分）$\times 1.5=0.9$（分）評価値 $=\underline{1.0 ~(\text { 分）} \quad[0.9 ~(\text { 分）を整数値に切り上げ丸め }] ~}$
（参考資料 6 ）鋼板部断面（5）における入力地盤応答の妥当性について

1．概要
杭基礎構造防潮壁（鋼板部）のうち，断面（5）については全断面の中で最も同一基礎内 の杭長差を有することから，評価対象断面として選定し耐震及び強度評価を行っている。鋼板部断面（5）における耐震•強度評価モデルを図 6－1 に示す。地震応答解析におい ては，地盤変位及び加速度応答は最も杭長が長い杭位置の地盤応答を入力している。

本資料では，断面（5）における解析手法（入力地盤応答）の妥当性確認として，最も短 い杭位置の地盤応答ベースでの比較【検討1】を実施した上で，現行の地震応答解析と，最も短い杭位置の地盤応答を用いた構造物の地震応答解析による構造物の応答ベースで の比較【検討2】を行った。

検討の結果，【検討1】で，地盤の地震応答解析の結果から，杭（1）位置と杭（3）位置の地盤応答において，構造物に作用する加速度に有意な差は無く，Ss－D2 において杭（1）位置の加速度応答の方が僅かに大きくなる結果となった。その上で，【検討2】で，代表波として Ss－D2 を用いた構造物の地震応答解析の結果から，杭（1）位置に比べ杭③位置の地盤応答を用いた場合の方が構造物の応答（最大発生応力度）が大きく評価され，安全側の評価になっていることを確認した。

図 6－1（1）鋼板部断面（5）の概要

図6－1（2）鋼板部断面（5）の概要
（周辺地質分布：2号機放水立坑防潮壁縦断方向）

2．評価方針
現行の耐震•強度評価においては，最も杭長が長い杭位置（杭③）の地質モデルに基 づく地盤応答（変位，加速度，速度）を入力した地震応答解析を実施している。

この妥当性確認として，以下に示す方法で確認する。
最も杭長が短い杭位置（杭（1））の地質モデルに基づく地盤応答と杭（3）の地質モデ ルに基づく地盤応答について比較する。ここで，比較を行う指標としては，断面 （5）は杭周辺の盛土•旧表土を地盤改良していることから，地盤変位は僅かであり構造物の設計においては上部工（フーチング含む）に作用する加速度が支配的と なるため，加速度（杭下端位置）に着目する。【検討1】

その上で，代表地震波において，現行の杭③の入力加速度を用いた地震応答解析 （ケース A）と，杭①の入力加速度（杭下端位置）を用いた地震応答解析（ケー ス B）を行い，構造物に与える応答の違いについて比較する。検討モデルの概要 を図6－2に示す。【検討2】

（ケース A）

（ケース B）

図 6－2 【検討 2】における検討モデルの概要

3.1 評価結果【検討1】

杭（1）及び杭（3）位置の地質モデルに基づく 1 次元地震応答解析による，杭下端位置での地盤の加速度応答スペクトルの比較を図6－3に示す。

防潮壁（断面（5））の固有周期帯（1 次モード）付近においては，杭（1）位置と杭（3）位置 の地盤応答ベースでは有意な差は無い結果となっているが，Ss－D2 においては杭（1）の方 が，加速度が大きい結果となっている。

（Ss－D1）

（Ss－D3）

（Ss－D2）

（Ss－F1）

図 6－3（1）断面（5）杭下端位置における地盤の応答加速度応答スペクトルの比較

図6－3（2）断面（5）杭下端位置における地盤の応答加速度応答スペクトルの比較

3.2 評価結果【検討2】

杭（1）位置における地質モデルを用いて算出した入力加速度と杭③位置における地質モデ ルを用いて算出した入力加速度を用いて，それぞれ地震応答解析を行った結果を表 6－1 に示す。なお，地震応答解析は，現行の照査において照査値が最も厳しく，かつ【検討1】 において杭下端位置における固有周期帯付近の加速度の差が大きい Ss－D2 を代表波として検討した。

比較の結果，現行の評価手法であるケース A（杭（3）の加速度応答を入力）の方が，ケー ス B（杭（1）の加速度応答を入力）よりも，全体的に応答値（最大発生応力度等）は大きく なっている。

図 6－4に示す，杭頭位置（フーチング底面）における構造物の地震応答解析に基づく加速度応答スペクトルのとおり， 3 本の杭いずれにおいても若干ケース A の方が固有周期 （1次モード）付近での加速度が大きくなっていることとも整合的と判断される。

表6－1 ケース A•Bにおける地震応答解析結果の比較

評価部位	応答成分	単位	最大発生応力度等	
			ケース A （現行）	$\begin{gathered} \text { ケース B } \\ \text { (杭 (1)入力) } \end{gathered}$
鋼板	曲げ応力度	$\mathrm{N} / \mathrm{mm}^{2}$	154	115
	せん断応力度	$\mathrm{N} / \mathrm{mm}^{2}$	88	65
	合成応力度	－	0． 27	0.15
鋼製支柱	曲げ応力度	$\mathrm{N} / \mathrm{mm}^{2}$	341	249
	せん断応力度	$\mathrm{N} / \mathrm{mm}^{2}$	106	77
	合成応力度	－	0.87	0.46
固定ボルト	引張応力度	$\mathrm{N} / \mathrm{mm}^{2}$	364	269
フーチング	曲げ応力度（鉄筋）	$\mathrm{N} / \mathrm{mm}^{2}$	71	72
	せん断力	k N	2622	2169
鋼管杭	曲げモーメント	kN•m	8104	6162
	せん断応力度	$\mathrm{N} / \mathrm{mm}^{2}$	104	87
鋼管杭（杭頭）	曲げモーメント	kN • m	8104	6262
基礎地盤	押し込み	$\mathrm{N} / \mathrm{mm}^{2}$	1.2	1． 2

（杭（1）杭頭）

（杭（2）杭頭）

（杭③杭頭）

図6－4 ケース A•Bにおける地震応答解析結果の比較 （各杭頭位置における加速度応答スペクトル）

4．まとめ
地盤変位及び加速度応答は最も杭長が長い杭位置の地盤応答を入力している。
本資料では，断面（5）における解析手法（入力地盤応答）の妥当性確認として，最も短 い杭位置と地盤応答ベースで比較した。【検討1】

その上で，最も短い杭位置の地盤応答を用いた構造物の地震応答解析を行い，現行の地震応答解析と，構造物の応答ベースで比較した。【検討2】

検討の結果，【検討1】では，地盤の地震応答解析の結果から，杭（1）位置と杭（3）位置 の地盤応答において，構造物に作用する加速度に有意な差は無く，Ss－D2 において杭①位置の加速度応答の方が僅かに大きくなる結果となった。その上で，【検討2】では，代表波として Ss－D2を用いた構造物の地震応答解析の結果から，杭①位置に比べ杭③位置の地盤応答を用いた場合の方が，構造物の応答値（最大発生応力度等）が大きく評価 され，安全側の評価になっていることを確認した。

以上のことから，現行の評価手法が妥当であることを確認した。

1．概要

鋼製遮水壁（鋼板）は，鋼製遮水壁（鋼板）は，十分に遮水性のある鋼板を，フーチ ングと一体となった鋼製支柱にボルト接合により設置する構造としており，鋼製支柱の フーチング接合部については，フーチング及びにペデスタルに根入れすることで，一体 で鋼板に作用する津波荷重等に抵抗する設計としている。

この接合部については，複合構造標準示方書（2014 年，土木学会）に基づき異種部材接合部として設計を行っている。

本資料では，まず，鋼製遮水壁（鋼板）における鋼製支柱接合部における設計体系に ついて，複合構造標準示方書（2014 年，土木学会）に基づく設計体系の概要を示した うえで，同様の構造に対して設計体系が示されている「鋼構造接合部設計指針（日本建築学会）」と比較し，概ね同様の設計体系であることを確認した。（軸引張力について は，土木と建築での基準の差異があるものの，現行の設計において十分な安全余裕を有 していることから，現行の設計手法に基づく設計で問題ないと判断される。）

その上で，曲げ及びせん断に対して，「鋼構造接合部設計指針（日本建築学会）」に示される評価手法を適用した場合の評価を行い，健全性を有することを確認した。

以上のことから，現行の設計手法及び結果について，妥当な設計内容であることを確認した。

（断面図）

（平面図）

図 17－1 鋼製支柱接合部の構造概要 （鋼板断面（6）の例）

2．設計の概要

2.1 複合構造標準示方書について

複合構造標準示方書（2014 年，土木学会）の適用範囲に関して，＂鋼とコンクリート などで構成される一般の複合構造物の設計の標準仕様を示すものである＂と記されてい る。

このらち，異種部材接合部編において，図 17－2に示すよう＂桁と橋脚，柱と杭，函体構造の隅角部，桁と桁，橋脚とフーチング等の部位＂を想定した仕様を規定しており，橋脚とフーチングに示される直角方式－埋め込み接合の場合，鋼材から伝達される曲げ モーメントやせん断力によって接合部に生じる鋼材とコンクリート間の支圧と摩擦が主 な荷重の伝達要素（損傷モード）として，安全性照査に関する設計手法が示されている。

鋼製遮水壁（鋼板）の鋼製支柱のフーチング接合部については，フーチングに鋼製支柱に根入れすることで，鋼板に作用する津波荷重等をフーチングに荷重を伝達し抵抗す る設計としていることを踏まえ，構造や荷重の伝達機構の観点から適用性を有するもの と考えられる。

よって，設計確認項目としては，「複合構造標準示方書（2014 年，土木学会）」を参照し，鋼製支柱根入れ部に生じる曲げモーメント・軸力及びせん断力によって鋼材か らフーチング部及びペデスタル部に伝達される支圧荷重に対して，健全性を確認する方針としている。なお，摩擦については，本構造について上部構造が軽量かつ作用荷重も水平方向の荷重が支配的であるため，後述のとおり引き抜き力が根入れ長に基づく付着強度に対して十分な安全余裕を有することから，摩擦に対する評価は省略する。

異種部材接合部の分類を図 17－2，荷重の伝達概要を図17－3に，鋼材の定着に関する概要を図 17－4に示す。

解説 図4．2．1 異種部材接合部の適用例

蛙説 表4．2．1 異種部材接合部の適用例

	接合部の分皟	対发する蓑	伝達要素	
			曲伃がーメント相方向力	せん断力
$\begin{gathered} \text { 直列 } \\ \text { 方式 } \end{gathered}$	理込孙接合	$\begin{array}{r} 12 \text { 意コンクリート宅填餇管部材 } \\ \text { (ソケット方式) } \end{array}$	支正，摩擦，（デれ止め）	
	場込み接合以外	8 章緉标上 PC 析	年れ止め，支压	
		9 京刮柼と PC 标	支正	摩復
$\begin{aligned} & \hline \text { 直角 } \\ & \text { 方式 } \end{aligned}$	埋込矢桉合	$\begin{aligned} & 11 \text { 京コンクリート充填䞒管部材と } \\ & \text { RCフーチング (理込み方方式) } \end{aligned}$	支珃，䝉祭	支压
	照込为接合以外		－「゙れ止：か，支圧	ずれ止め（釷 第）
		10 章コンクリート无填鍼警部材を RCフーチング（アンカーフレーム）式	支圧	ずれ止め （てっだずが）

図 17－2 異種部材接合部の分類
（複合構造標準示方書（2014年，土木学会）より引用）

11．4．2 断面破壊に対する照査

（1）按合部の断面破壊に対する照査は，曲げモーメント，軠方向力，せん断力に対して行らものとする。
（2）曲げモ一メントと軘方向圧絔力が作用する場合の設計由げ耐力は，銅管とコンクリートとの支圧力 により抵抗するとして求めた埋込み部の力の釣合い式から算定してよい。
（3）曲げモーメントのみおよび曲げモーメントと軸方向引張力が作用する場合の設計曲げ耐力は，ベー スプレートとコンクリートとの文圧力を期待せずに求めた埋込み部の力の鍁合い式から算定してよい。

図 17－2 異種部材接合部の断面破壊に対する照査の概要 （複合構造標準示方書（2014年，土木学会）より引用）

```
8.3.2.3 澵村の定着
```



```
W.
(1) コンクリート中に鈤め远み, コンクリートの付着により定着する.
```



```
(3) 定着板等を取り付けて,䋛㭜的に定着する。
```

図 17－4 鋼材の定着についての概要 （複合構造標準示方書（2014年，土木学会）より引用）

2.2 現行の設計内容について

接合部における現行の評価の概要を表17－1に示す。評価は「複合構造標準示方書 （2014 年，土木学会）」に基づき，接合部における支圧強度に対して評価を行う。

また，「埋込み柱表面から基礎構造物端面までの距離が少ない場合には，主に柱基部 または埋込み端部からせん断破壊を起こす。これに対しては，主に埋込み深さを大きく するとともに，基礎構造物の埋め込み部周辺の主筋や帯鉄筋を増やすことにより防止で きる」との記載があり，ペデスタル部には図 17－1 に示すようせん断補強筋を配置する ことでせん断破壊が生じない設計としていることから，鋼製支柱埋込部周辺に配置した せん断補強筋に対する押し抜きせん断についての評価も行う。

なお，許容限界の設定にあたつては，「複合構造標準示方書（2014 年，土木学会）」 に基づき，「コンクリート標準示方書［構造性能照査編］（（社）土木学会，2002年制定）」を参照する。
（詳細は「6．3．1 鋼製遮水壁（鋼板）の耐震性についての計算書に関する補足説明」 （3．8．4（2）フーチング（ペデスタル部）に示す）

表 17－1 評価方法について

評価項目	評価方法
支圧	「複合構造標準示方書（2014 年，土木学会）」における異種部材接合部の性能照査編を参照し，鋼製支柱から伝達さ
押し抜きせん断	れる曲げモーメント及びせん断力によって生じる支圧応力度及びせん断力に対して，許容限界以下であることを確認 （図17－5参照）

図 17－5 接合部における曲げとせん断によって生じる発生応力度の概念図
（鋼材の定着長について）
定着長について，以下に示す付着強度と引き抜き力の関係式により安全率を算定す る。

最も引き抜き方向（鉛直上向き）の軸方向荷重（応答震度 \times 上部工重量）が最大とな る断面（5）の場合で， $\mathrm{T}=2555 \mathrm{kN}, \mathrm{F}=129 \mathrm{kN}$ により $\mathrm{fs}=19.8$ と十分な安全裕度を有してい る。

$$
\mathrm{fs}=\frac{\mathrm{T}}{\mathrm{~F}}
$$

```
F = (|Ay| -1) x W/n
    ここに
```

 Ay: 最大鉛直方向応答震度
 W: 鋼板と鋼製支柱の重量 (kN)
 n : 鋼製支柱の本数 (本)
 $T=\left(f_{\operatorname{bod}} \mathrm{X} L\right) \mathrm{x}$ Ast
ここに
$\mathrm{f}_{\text {bod }}$: 設計付着応力度 ${ }^{*}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$
L1: 根入れ長 (mm)
Ast: 鋼製支柱周長 (mm)
注記 $*: ~$ 複合構造標準示方書を参照し, 普通丸鋼の $1 / 2$ の付着強度とする。

3．建築基準との比較

3.1 鋼構造接合部設計指針（2012 年改定，日本建築学会）の概要

建築の規準では，「鋼構造接合部設計指針（2012 年改定，日本建築学会）」に示さ れる柱脚部のらち根巻き柱脚および埋込み柱脚に構造が類似する。

図 17－6に柱脚部の種別を，図 17－7に根巻き柱脚の設計の概要を，図17－8に埋込み柱脚の設計の概要を示す。
（1）：弾性闑性の評估法
（2）：耐力の評健位檤（

【解 説】

柱非は一般に柱下部を指す用語として使われるが，本指針では以下と定義する。
－露出柱脚についてはベースブレート，アンカーボルトおよび基礰コンクリートから成る部分を柱踋とし，柱㑢と鐗柱下部を合わせて柱脚部とする。

- 根卷き柱罌については根卷きコンクリートの上端より下の部分を柱脚とする。
- 埋込み柱脚については基䂣コンクリートの上端より下の部分を柱脚とする。

図 17－6 柱脚部の種別
（「鋼構造接合部設計指針（2012 年改定，日本建築学会）」より引用）

7.3 根巻き柱脚の設計

（1）根浂き柱脚の基本事項
1）根巻き柱脚では，軸力は鋼柱脚部のベースプレートを介して基䂾に伝達されるように設計し，由 げモーメントとせん断力は根巻き鉄鳤コンクリート部分で伝逯されるように設計する。ただし，全塑性彵げ耐力の算定では鋼柱脚部の負担酎力を覑算できる。
2）根巻き鉄筋コンクリートの高ざは，柱せいの 2.5 倍以上かつ $r_{r} l / r d \geqq 1.0$ とする。
記号 $r l$ ：ベースプレート下面から根巻き鉄䈈コンクリートの最上部帶筋までの距離 ${ }_{r} d$ ：圧絠䋺から引張主筋重心までの距㒀
3）根巻き鉄筋コンクリートには異形鉄筋を用い，根巻きコンクリート内の寅さは $25 d_{a}$ 以上（ d_{a} ：鉄筋の直径）とし，頂部にはフックを設ける，また，根巻きコンクリートの主筋は基礎または基礎梁 に十分定着させる。
4）根巻き鉄筋コンクリート部には，少なくとも通常の鉄筋コンクリート柱の場合と同程度のせん断補強筋（带筋）を配置しなければならない。带筋の直径，問隔および带筋比の最小値は本会の「鉄筋コンクリート䉍造計算規準」に準じて設計し，特に，主筋頂部の带筋は少なくとも 2 段配筋とし， その間隔は $30 \sim 50 \mathrm{~mm}$ 程度とする。
5）ベースプレート下のモルタル下面位甫は基礎（梁）上端位䈯とし，ベースプレートは「7．2露出柱脚の設計」に準じて設計する。
6）鋼管柱の場合には龬管壁の局部変形が生じないように設計する。
（2）弾性剛性
根巻き柱脚を有する鋼柱の岡性は，ベースプレート下面位置を固定として算定する。
（3）降伏耐力
1）降伏曲げ酎力
根巻き柱眭の降伏曲げ耐力 M_{y} は，図7．1（a）に示す有効断面に対して算定する。引張鉄筋比が釣合 い鉄笏比以下の場合，M_{y} は（7．17）式による。

$$
\begin{equation*}
M_{y}=a_{t} \cdot F_{r y} \cdot r_{j} \tag{7.17}
\end{equation*}
$$

記号 a_{t} ：引張主算の断面枚
$F_{r y}$ ：主筋の降伏強さ

図 17－7（1）根巻き柱脚の設計の概要
（「鋼構造接合部設計指針（2012 年改定，日本建築学会）」より引用）
$r j$ ：根巻き鉄筋コンクリート部分の応力中心間距離で，$r^{j}=(7 / 8)_{r} d$ とすることができる。根巻き鉄筋コンクリート部分の引張鉄筋此が釣合い鉄筋比を超えるときは，「鉄筋コンクリート䉏造計算規準」10\％に準拠して設計する。
2）降伏せん断耐力
根巻き柱脚の降伏せん断耐力 Q_{y} は，根巻き鉄筋コンクリート部分の降伏せん断耐力とし，（7．18）式による。

$$
\begin{equation*}
Q_{y}=b_{e} \cdot r j\left(F_{c s y}+0.5 F_{w y} \cdot p_{w}\right) \tag{7.18}
\end{equation*}
$$

記号 b_{e} ：コンクリートの有効幅（図7．1（b）参照〕
$F_{\text {csy }}:$ コンクリートの降伏せん断強度で，コンクリートの短期許容せん断応力度を用いる。 $F_{w y}$ ：せん断䙘強箩（帶䈈）の降伏強さ
p_{w} ：带節比 $\left(=a_{w} /\left(b_{e} \cdot x\right)\right), \quad p_{w} \geqq 1.2 \%$ の場合は $p_{w}=1.2 \%$ として計算する。
$a_{w}: 1$ 組の帶筋の断面積
$x:$ 帶蝣の問啹
3）降伏䡌方向耐力
根巻き柱㑢の降伏引張軸方向耐力は全アンカーボルトの降伏引張耐力の和とする。

図7．1 根卷き鉄筋コンクリート部分の有効断面

図 17－7（2）根巻き柱脚の設計の概要
（「鋼構造接合部設計指針（2012 年改定，日本建築学会）」より引用）
（1）埋込み柱脚の基本事項
 に設計し，幽げモーメントとせん断力は基礎コンクリートと埋込み部鉄骨との間の支圧により伝遠 されるように設計する。ベースプレートは弾性を維持するよう設計する。
2）基礰コンクリートへの鋼柱の埋込み深さ d は，柱の断面せい D_{c} の 2 倍以上とする．
3）埋込み部鉄骨周りには適切な補強筋を配する。特に側柱柱脚の場合には，基礎梁のない側のコン クリートの適切なかぶり厚さの確保，あるいは適切な袹強笩の配置に留意する。
（2）弾性㴊性
埋込み柱御を有する鋼柱の剛性は，特に検討を行わない場合には基磻コンクリート上端加ら1．5 D_{c}下がった位緺を固定として算定する。
（3）除伏耐力
1）降伏曲げ耐力
布から導かれた（7．24）式による。また，そのときの柱せん断力 Q_{y} は（7．25）式による。

$$
\begin{align*}
& M_{y}=\frac{F_{c y} \cdot B_{c} \cdot l \cdot d^{2}}{2(3 l+2 d)} \tag{7.24}\\
& Q_{y}=\frac{M_{y}}{l} \tag{7.25}
\end{align*}
$$

記号 M_{y} ：埋込み柱蒯の基礎梁上端における降伏曲げ耐力
$Q_{y}:$ 降伏曲げ耐力時の柱せん断力
B_{c} ：柱幅
d ：埋込み深さ
l ：基檚コンクリート上端から柱の反曲点までの高さ
－$F_{c y}$ ：装礎コンクリートの降伏支圧強度 $\left(=2 / 3 F_{c}\right)$

F_{c} ：葓硶コンクリートの設計基準強度
2）降伏帊方向耐力
埋込み柱脚の降伏圧縮柪方向耐力 ${ }^{(1)} N_{y}$ はベースプレート下面と基礎コンクリートとの間の降伏支圧耐力とし，降伏引張軸方向耐力 N_{y} はベースブレート上面と基礎コンクリートとの問の降伏支圧耐 カとアンカーボルトの降伏引張耐力のうちいずれか大きい方の値とす！る。ただし，アンカーボルトに十分な定着か撕待できない場合はアンカーボルトの耐力を考感しない。

$$
\begin{align*}
& { }_{c} N_{y}=B \cdot D \cdot F_{c y} \tag{7.26}\\
& { }_{c y} N_{y}=\max \left\{A_{b p u} \cdot F_{c y}, n_{a b} \cdot p_{b y}\right\} \tag{7.27}
\end{align*}
$$

$$
\begin{array}{ll}
\text { 記号 } & B: \text { 桠面直交方向のベースプレートの幅 } \\
& D: \text { 構面方向のベースプレートの幅 }
\end{array}
$$

$A_{b p u}:$ ペースプレート上面においてコンクリートの下向きの支圧が生じる部分の面䅡
$n_{a b}$ ：アンカーボルトの有効本数
$p_{b y}:$ アンカーボルト 1 本当たりの降伏引張耐力
図 17－8 埋込み柱脚の設計の概要
（「鋼構造接合部設計指針（2012 年改定，日本建築学会）」より引用）

$$
\text { (参考) } 17-12
$$

3.2 建築基準との比較

表 17－2 に複合構造標準示方書（2014年，土木学会）における異種材料接合部と鋼構造接合部設計指針（2012 年改定，日本建築学会）における柱脚部の設計に関する比較 を示す。

鋼材の定着に関する規定の違いがあるが，照査方法については概ね同様の設計体系で あると考えられる。鋼材の定着については，前述のとおり，上部構造が軽量かつ作用荷重が水平方向が卓越すること等から，鋼材とコンクリート面における付着強度に対して発生上向き力は十分小さいこと等を踏まえ，健全性において土木の規準に基づく現行の評価で問題ないと考えられる。

表 17－2 複合構造標準示方書と鋼構造接合部設計指針の比較

項目	複合構造標準示方書 （土木学会）	鋼構造接合部設計指針 （日本建築学会）
a．全体設計体系	異種部材接合部のらち直角方式－埋め込み接合の設計体系につい て，接合部に生じる支圧や摩擦 に対して性能照査することが規定されている。	柱脚部の設計として，根巻き柱脚や埋込み柱脚等の設計体系に ついて，根巻き部や埋込み部の降伏耐力等が確保されるよう性能照査することが規定されてい る。
b．接合部の照査	接合部の断面破壊に対する照査 は，曲げモーメント，軸力，せ ん断力に対して行うこととし て，鋼管とコンクリートの支圧力による力の釣り合い式から曲 げ耐力を算定してよいとされて いる。 また，埋込み柱表面から基礎構造物端面までの距離が少ない場合には，主に埋込み深さを大き くするとともに，基礎構造物の埋め込み部周辺の主筋や帯鉄筋 を増やすことで防止するとされ ている。	根巻き柱脚及び埋込み柱脚それ ぞれにおいて，曲げ・せん断•軸力に対する降伏耐力等の算定式が規定されている（せん断は根巻き柱脚のみ）。
c．鋼材の定着	鋼材の定着方法として，以下の いずれかの方法により定着する ことが規定されている。 （1）コンクリート中に埋め込み， コンクリートの付着により定着する。 （2）ずれ止め等を取り付けて，ず れ止めによって定着する。 （3）定着板等を取り付けて，機械的に定着する。	鋼柱脚部に設置したベースプレ ートを介して軸力を基礎に伝達 し，軸方向力（引き抜き）に対 しては，ベースプレートと基礎 コンクリートの支圧とアンカー ボルトの引張耐力の大きい方 （根巻き柱脚の場合はアンカー ボルトのみ）により抵抗する設計が示されている。

3.3 建築基準に基づく接合部の照査結果

「b．接合部の照査」について，現行の評価手法の妥当性を確認する目的として，「鋼構造接合部設計指針」に示される評価方法を適用した場合の照査を実施した。用いる荷重及び断面諸元は，照査値が最大となる下記に示す断面及び検討ケースとする。

- 曲げ 鋼製遮水壁（鋼板）断面（6）Sd－D2（＋＋）ケース（3）（地盤物性値－1o）
- せん断 鋼製遮水壁（鋼板）断面（6） $\mathrm{Sd}-\mathrm{D} 2(++)$ ケース（3）（地盤物性値 -10 ）

照査の結果を表1－2に示す。建築基準を適用した場合においても健全性を満足するこ とを確認した。

表 15－2 曲げの照査結果

検討ケース	発生曲げモーメントM $(\mathrm{kN} \cdot \mathrm{m})$	降伏曲げ耐力 My $(\mathrm{kN} \cdot \mathrm{m})$	照査値 $(\mathrm{M} / \mathrm{My})$
根巻き柱脚 ${ }^{* 1}$	3624	6099	0.60
埋込み柱脚＊2	1585	2863	0.56

注記＊1：根巻き部の基部（ペデスタル部基部）位置を照査対象とする。（図17－9） ＊2：接合部最上端（鋼製支柱下端）位置を照査対象とする。（図 17－10）

表 15－2 せん断の照査結果

検討ケース	発生せん断力 Q $(\mathrm{kN} \cdot \mathrm{m})$	降伏せん断耐力 Qy $(\mathrm{kN} \cdot \mathrm{m})$	照査値 $(\mathrm{Q} / \mathrm{Qy})$
根巻き柱脚＊	1627	2793	0.59

注記＊：根巻き部の基部（ペデスタル部基部）位置を照査対象とする。（図17－9）

図 17－9 根巻き柱脚の評価に用いる断面力抽出位置
（鋼製遮水壁（鋼板）断面（6））

図 17－10 埋込み柱脚の評価に用いる断面力抽出位置 （鋼製遮水壁（鋼板）断面（6））

4．まとめ
鋼製遮水壁（鋼板）における鋼製支柱接合部における設計体系について，複合構造標準示方書（2014 年，土木学会）に基づく設計体系の概要を示したうえで，同様の構造 に対して設計体系が示されている「鋼構造接合部設計指針（日本建築学会）」と比較し，概ね同様の設計体系であることを確認した。

曲げ及びせん断に対しては，「鋼構造接合部設計指針（日本建築学会）」に示される評価手法を適用した場合の評価を行い，健全性を有することを確認した。

軸引張力については，基準の差異があるものの，上部構造が軽量かつ水平方向の作用荷重が支配的である等，軸引張力が卓越するような構造でないこと及び評価にて十分な安全余裕を有していることから，現行の設計及び構造で問題ないと判断される。

以上のことから，現行の設計手法及び結果について，妥当な設計内容であることを確認した。

