本資料のうち、枠囲みの内容 は商業機密の観点から公開 できません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-19-0444_改 0
提出年月日	2021年8月17日

VI-2-10-1-2-2-5 高圧炉心スプレイ系ディーゼル発電設備 軽油タンクの耐震性についての計算書

2021年8月 東北電力株式会社

目次

1.	慨安:	
2.	一般事	耳項 · · · · · · · · · · · · · · · · · · ·
2.	1 構造	計画
2.	2 評価	5方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	3 適用]規格・基準等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	4 記号	テの説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	5 計算	『精度と数値の丸め方・・・・・・・・・・・・・・・・・・・・・・・・・1
3.	評価音	『位 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1
4.	固有周	引期 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1
4.	1 固有	「周期の計算方法 · · · · · · · · · · · · · · · · · · ·
4.	2 固有	「周期の計算条件 · · · · · · · · · · · · · · · · · · ·
4.	3 固有	f周期の計算結果・・・・・・・・・・・・・・・・・・・・・・・・ 1
5.	構造強	â度評価 · · · · · · · · · · · · · · · · · · ·
5.	1 構造	b強度評価方法 · · · · · · · · · · · · · · · · · · ·
5.	2 荷重	፤の組合せ及び許容応力・⋯⋯⋯⋯⋯⋯⋯⋯⋯1
	5. 2. 1	荷重の組合せ及び許容応力状態・・・・・・・・・・・・・・・・・1
	5. 2. 2	許容応力
	5. 2. 3	使用材料の許容応力評価条件・・・・・・・・・・・・・・・・・・・・・・・1
5.		十用地震力 ······························ 2
5.	4 計算	『方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2
	5.4.1	応力の計算方法 ・・・・・・・・・・・・・・・・・・・・ 2
5.	5 計算	『条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
	5. 5. 1	胴板の応力計算条件・・・・・・・・・・・・・・・・・3
	5. 5. 2	脚の応力計算条件 ・・・・・・・・・・・・・・・・・・・・・・・・ 3
	5. 5. 3	基礎ボルトの応力計算条件 ・・・・・・・・・・・・・・・・ 3
5.	6 応力]の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
	5. 6. 1	胴の応力評価 ・・・・・・・・・・・・・・・・・ 3
	5.6.2	脚の応力評価 ・・・・・・・・・・・ 3
	5. 6. 3	基礎ボルトの応力評価3
6.	評価組	5果 ・・・・・・・・・・・・・・・・・・・・・・・・・ 3
6.		H基準対象施設としての評価結果 ······3
6.		て事故等対処設備としての評価結果・・・・・・・・・・・・・・・・・3
7.	引用文	て献・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度 及び機能維持の設計方針に基づき、高圧炉心スプレイ系ディーゼル発電設備軽油タンク が設計用地震力に対して十分な構造強度を有していることを説明するものである。その 耐震評価は、応力評価により行う。

高圧炉心スプレイ系ディーゼル発電設備軽油タンクは、設計基準対象施設においては S クラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

2. 一般事項

2.1 構造計画

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの構造計画を表 2-1 に示す。

表 2-1 構造計画

次~ 1 (市山川 四	一里 24 27 121	医甲基甲	15256 脚板	(単位:mm)
	強	主体構造	横置円筒形容器	
	計画の概要	基礎・支持構造	間を脚で支持し、脚をそれ ぞれ基礎ボルトで基礎に 据え付ける。	

2.2 評価方針

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの応力評価は、添付書類「VI-2-1-9 機能維持の基本方針」のうち「3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す高圧炉心スプレイ系ディーゼル発電設備軽油タンクの部位を踏まえ「3. 評価部位」にて設定する箇所において、「4. 固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 評価結果」に示す。

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価フローを図 2-1 に示す。

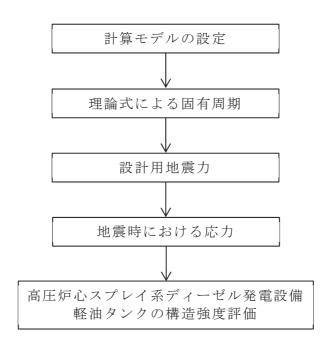


図 2-1 高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針 重要度分類·許容応力編 (JEAG 4 6 0 1· 補-1984)
- (2) 原子力発電所耐震設計技術指針 (JEAG4601-1987)
- (3) 原子力発電所耐震設計技術指針 (JEAG4601-1991 追補版)
- (4) JSME S NC1-2005/2007 発電用原子力設備規格 設計・建設規格 (以下 「設計・建設規格」という。)

2.4 記号の説明

Ab 基礎ボルトの軸断面積 As 脚の断面積 As1 脚の長手方向に対する有効せん断断面積 As2 脚の横方向に対する有効せん断断面積 As3 脚の長手方向に対するせん断断面積	mm ² mm ² mm ² mm mm ² mm mm ²
A _{s1} 脚の長手方向に対する有効せん断断面積 A _{s2} 脚の横方向に対する有効せん断断面積	mm ² mm ² mm ² 2
A _{s2} 脚の横方向に対する有効せん断断面積	mm 2 mm 2 mm 2 2
	mm 2 mm 2
MのEチャウンサナスナノ 転転工建	mm 2
A _{s3} 脚の長手方向に対するせん断断面積	
A _{s4} 脚の横方向に対するせん断断面積	
a 脚底板の長手方向幅	mm
b 脚底板の横方向幅	mm
C ₁ 脚の胴つけ根部のアタッチメントの幅の 2 分の	1(胴の横方 mm
向)	
C ₂ 脚の胴つけ根部のアタッチメントの幅の 2 分の	1 (胴の長手 mm
方向)	
Ccj 周方向モーメントによる応力の補正係数(引用	文献(2)より -
得られる値)(j=1:周方向応力, j=2:軸方向	前応力)
C _H 水平方向設計震度	_
CH ボーカ 内 設 司 長 及 Cli 軸方向モーメントによる応力の補正係数(引用)	立計(2) トル _
得られる値) (j=1:周方向応力, j=2:軸方向	
	73 / 12 / 23 /
C _v 鉛直方向設計震度	_
D _i 胴の内径	mm
d ボルトの呼び径	mm
d ₁ 脚底板端面から基礎ボルト中心までの長手方向	
d ₂ 脚底板端面から基礎ボルト中心までの横方向の	
E。 脚の縦弾性係数 脚中心から信心芸術作用点はでの距離	MPa
e 脚中心から偏心荷重作用点までの距離	mm
F 設計・建設規格 SSB-3121.1(1)に定める値 F* 設計・建設規格 SSB-3121.3 又は SSB-3133 に気	MPa MPa MPa
F 設計・建設規格 SSB-3121.3 又は SSB-3133 に	定める値 MPa MPa N
f_{sb} せん断力のみを受ける基礎ボルトの許容せん断 f_{t} 脚の許容引張応力	MPa MPa
f_{to} 引張力のみを受ける基礎ボルトの許容引張応力	МРа
f_{ts} 引張力とせん断力を同時に受ける基礎ボルトの	
力	
G _s 脚のせん断弾性係数	MPa

記号	記号の説明	単位
g	重力加速度 (=9.80665)	m/s^2
Н	水頭	mm
h ₁	基礎から脚の胴つけ根部までの高さ	mm
h ₂	基礎から胴の中心までの高さ	mm
Isx	脚の長手方向軸に対する断面二次モーメント	mm ⁴
Isy	脚の横方向軸に対する断面二次モーメント	mm ⁴
K_{1j} , K_{2j}	引用文献(2)によるアタッチメントパラメータの補正係数	_
	(j=1:周方向応力,j=2:軸方向応力)	
K _c	脚のばね定数 (胴の横方向に水平力が作用する場合)	N/mm
K_{ℓ}	脚のばね定数 (胴の長手方向に水平力が作用する場合)	N/mm
K_{v}	脚のばね定数 (胴に鉛直力が作用する場合)	N/mm
K_{cj} , $K_{\ell j}$	引用文献(2)によるアタッチメントパラメータの補正係数	_
	(j=1:周方向応力, j=2:軸方向応力)	
Q	胴の横方向から見て,両端の脚の中心から鏡板重心までの距	mm
	離	
ϱ_{H}	鏡板の端から鏡板の丸みの始まる箇所までの長さ	mm
$\varrho_{ ext{L}}$	鏡板の丸みの始まる箇所間の長さ	mm
Q _O	脚中心間距離	mm
$\varrho_{ m w}$	当板における脚の取り付かない部分の長手方向長さ	mm
M	脚底板に作用するモーメント	N•mm
$M_{s\ i}$	脚に作用する荷重及び脚つけ根の部分における曲げモーメ	N•mm
	\vee \ \ (i = 1 \sime 4)	
M_1	脚つけ根部における胴の運転時質量によるモーメント	N•mm
${ m M}_{ m c}$	横方向地震により胴の脚つけ根部に作用するモーメント	N•mm
$M_{\mathrm{c}1}$	横方向地震により脚底面に作用するモーメント	N•mm
M_{ℓ}	長手方向地震による胴の脚つけ根部のモーメント	N•mm
$M_{\ell1}$	長手方向地震により脚底面に働くモーメント	N•mm
M_{x}	胴に生じる軸方向の曲げモーメント	N·mm/mm
M_{ϕ}	胴に生じる周方向の曲げモーメント	N·mm/mm
m_0	容器の有効運転質量	kg
m _s	脚1本当たりの質量	kg
Nx	胴に生じる軸方向の膜力	N/mm
N_{ϕ}	胴に生じる周方向の膜力	N/mm
n	脚1個当たりの基礎ボルトの本数	_

記号	記号の説明	単位		
n 1	長手方向及び鉛直方向地震時に引張りを受ける基礎ボルト			
	の本数			
n 2	横方向及び鉛直方向地震時に引張りを受ける基礎ボルトの			
	本数			
Р	運転時質量により胴の脚つけ根部に作用する反力	N		
P_{e}	鉛直方向地震により胴の脚つけ根部に作用する反力	N		
P_{ℓ}	長手方向地震により胴の脚つけ根部に作用する鉛直荷重	N		
P _s	長手方向及び鉛直方向地震により脚底部に作用する鉛直荷	N		
	重			
P _{s 1}	横方向及び鉛直方向地震により脚底部に作用する鉛直荷重	N		
R 1	脚に作用する荷重	N		
R _{si}	各脚に作用する荷重 (i = 1~4)	N		
r m	脚つけ根部における胴の平均半径	mm		
r ₀	脚つけ根部における胴の外半径	mm		
S	設計・建設規格 付録材料図表 Part5 表 5 に定める値	MPa		
S _a	胴の許容応力	MPa		
Su	設計・建設規格 付録材料図表 Part5 表 9 に定める値	MPa		
Sy	設計・建設規格 付録材料図表 Part5 表 8 に定める値	MPa		
$S_y(RT)$	設計・建設規格 付録材料図表 Part5 表 8 に定める材料	MPa		
	の 40℃における値			
S	基礎ボルトと基礎の縦弾性係数比	_		
Т 1	長手方向の固有周期	S		
Т 2	横方向の固有周期	S		
Т з	鉛直方向の固有周期	S		
t	脚側胴板の厚さ	mm		
t e	脚つけ根部における胴の有効板厚	mm		
w	胴部自重による等分布荷重			
X _n	基礎が圧縮力を受ける幅			
Z	引用文献(1)による胴の断面係数			
Z _{sx}	脚の長手方向軸に対する断面係数			
Z_{sy}	脚の横方向軸に対する断面係数			
β , β ₁ , β ₂	引用文献(2)によるアタッチメントパラメータ			
γ	引用文献(2)によるシェルパラメータ			
θ	引用文献(1)による胴の有効範囲角の2分の1			
θ ο	胴の脚端部より鉛直軸までの角度	rad		

記号	記号の説明	単位
θ w	胴の脚端部より当板端部までの角度	rad
π	円周率	_
ρ'	液体の密度(=比重×10 ⁻⁶)	kg/mm^3
σ 0	胴の組合せ一次一般膜応力の最大値	MPa
σос	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次	MPa
	一般膜応力	
σ _{0сх}	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次	MPa
	一般膜応力の和	
σосφ	横方向及び鉛直方向地震が作用した場合の胴の周方向一次	MPa
	一般膜応力の和	
σ οθ	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一	MPa
	次一般膜応力	
$\sigma_{0\ell x}$	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一	MPa
	次一般膜応力の和	
σ οιφ	長手方向及び鉛直方向地震が作用した場合の胴の周方向一	MPa
	次一般膜応力の和	
σ 1	胴の組合せ一次応力の最大値	MPa
О 1 с	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次	MPa
	応力	
σ _{1 с х}	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次	MPa
	応力の和	
σ 1 с φ	横方向及び鉛直方向地震が作用した場合の胴の周方向一次	MPa
	応力の和	
σ 10	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一	MPa
	次応力	
σ 10 χ	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一	MPa
	次応力の和	
σ 10φ	長手方向及び鉛直方向地震が作用した場合の胴の周方向一	MPa
	次応力の和	
σ 2	地震動のみによる胴の組合せ一次応力と二次応力の和の変	MPa
	動値の最大値	
σ 2 с	横方向及び鉛直方向地震のみによる胴の組合せ一次応力と	MPa
	二次応力の和	
σ 2 с х	横方向及び鉛直方向地震のみによる胴の軸方向一次応力と	MPa
	二次応力の和	

記号	記号の説明	単位
σ 2 с φ	横方向及び鉛直方向地震のみによる胴の周方向一次応力と	MPa
	二次応力の和	
σ 20	長手方向及び鉛直方向地震のみによる胴の組合せ一次応力	MPa
	と二次応力の和	
σ 20χ	長手方向及び鉛直方向地震のみによる胴の軸方向一次応力	MPa
	と二次応力の和	
σ 20φ	長手方向及び鉛直方向地震のみによる胴の周方向一次応力	MPa
	と二次応力の和	
σь	基礎ボルトに生じる引張応力の最大値	MPa
σ _{b1}	長手方向及び鉛直方向地震により基礎ボルトに生じる引張	MPa
	応力	
σь2	横方向及び鉛直方向地震により基礎ボルトに生じる引張応	MPa
	カ	
σs	脚の組合せ応力の最大値	MPa
σ _{в с}	横方向及び鉛直方向地震が作用した場合の脚の組合せ応力	MPa
σsℓ	長手方向及び鉛直方向地震が作用した場合の脚の組合せ応	MPa
	カ	
σ s 1	運転時質量により脚に生じる圧縮応力	MPa
σ s 2	長手方向地震により脚に生じる曲げ及び圧縮応力の和	MPa
σ s 3	横方向地震により脚に生じる曲げ応力	MPa
σ s 4	鉛直方向地震により脚に生じる圧縮応力	MPa
σ _{х 1}	静水頭により胴に生じる軸方向一次応力	MPa
σ χ 2	運転時質量による長手方向曲げモーメントにより胴の脚つ	MPa
	け根部に生じる軸方向一次応力	
σ х 3	運転時質量により胴の脚つけ根部に生じる軸方向一次応力	MPa
σ x 4 1, σ x 4 2	長手方向地震により胴の脚つけ根部に生じる軸方向一次応	MPa
	力の和及び二次応力の和	
σ_{x411} , σ_{x421}	長手方向地震による曲げモーメントにより胴の脚つけ根部	MPa
	に生じる軸方向一次応力及び二次応力	
σ _{x412} , σ _{x422}	長手方向地震による鉛直荷重により胴の脚つけ根部に生じ	MPa
	る軸方向一次応力及び二次応力	
σ x 4 1 3	長手方向地震による水平方向荷重により胴に生じる軸方向	MPa
	一次応力	
σ x 5 1, σ x 5 2	横方向地震による曲げモーメントにより胴の脚つけ根部に	MPa
	生じる軸方向一次応力及び二次応力	

記号	記号の説明	単位
σ x 6	鉛直方向地震による長手方向曲げモーメントにより胴の脚	MPa
	つけ根部に生じる軸方向一次応力	
σ _x 71, σ _x 72	鉛直方向地震により胴の脚つけ根部に生じる軸方向一次応	MPa
	力及び二次応力	
σ φ1	静水頭により胴に生じる周方向一次応力	MPa
σ φ 2	静水頭に鉛直地震力が加わり胴に生じる周方向一次応力	MPa
σ φ3	運転時質量により胴の脚つけ根部に生じる周方向一次応力	MPa
σ φ41, σ φ42	長手方向地震により胴の脚つけ根部に生じる周方向一次応	MPa
	力の和及び二次応力の和	
σ φ411, σ φ421	長手方向地震による曲げモーメントにより胴の脚つけ根部	MPa
	に生じる周方向一次応力及び二次応力	
σ φ 4 1 2, σ φ 4 2 2	長手方向地震による鉛直荷重により胴の脚つけ根部に生じ	MPa
	る周方向一次応力及び二次応力	
σ φ 5 1, σ φ 5 2	横方向地震による曲げモーメントにより胴の脚つけ根部に	MPa
	生じる周方向一次応力及び二次応力	
σ φ71, σ φ72	鉛直方向地震により胴の脚つけ根部に生じる周方向一次応	MPa
	力及び二次応力	
τь	基礎ボルトに生じるせん断応力の最大値	MPa
τ ь 1	長手方向地震により基礎ボルトに生じるせん断応力	MPa
τь2	横方向地震により基礎ボルトに生じるせん断応力	MPa
τ с	横方向地震により胴の脚つけ根部に生じるせん断応力	MPa
τ ρ	長手方向地震により胴の脚つけ根部に生じるせん断応力	MPa
τ s 2	長手方向地震により脚に生じるせん断応力	MPa
τ s 3	横方向地震により脚に生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりである。

表 2-2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
固有月		S	小数点以下第4位	四捨五入	小数点以下第3位
震度		_	小数点以下第3位	切上げ	小数点以下第2位
最高值	吏用圧力	MPa	_	_	小数点以下第2位
温度		$^{\circ}$ C	_	_	整数位
比重		_	小数点以下第3位	四捨五入	小数点以下第2位
質量	質量		_	_	整数位
長	下記以外の長さ	mm	_	_	整数位*1
さ	胴板の厚さ	mm	_	_	小数点以下第1位
面積	面積		有効数字 5 桁目	四捨五入	有効数字4桁*2
モー	メント	N • mm	有効数字 5 桁目	四捨五入	有効数字4桁*2
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
角度		rad	小数点以下第4位	四捨五入	小数点以下第3位
算出応力		MPa	小数点以下第1位	切上げ	整数位
許容师	芯力* ³	MPa	小数点以下第1位	切捨て	整数位

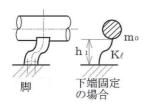
注記*1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

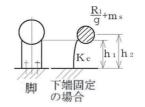
*2:絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ 及び降状点は、比例法により補間した値の小数点以下第1位を切り捨て、 整数位までの値とする。

3. 評価部位

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価は「5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる胴、脚及び基礎ボルトについて評価を実施する。


高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価部位については,表 2-1の概略構造図に示す。


4. 固有周期

- 4.1 固有周期の計算方法
 - (1) 計算モデル

モデル化に当たっては次の条件で行う。

- a. 容器及び内容物の質量は中心軸に集中するものとする。
- b. 容器の胴は 4 個の脚で支持され、脚はそれぞれ基礎ボルトで基礎に固定されて おり、固定端とする。
- c. 胴は剛とし、脚をはりと考え、変形モードは脚の曲げ及びせん断変形を考慮する。
- d. 全脚固定とし、力は全脚で受けるものとする。
- e. 耐震計算に用いる寸法は、公称値を使用する。

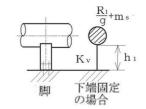


図 4-1 長手方向の固有周期 計算モデル

図 4-2 横方向の固有周期

図 4-3 鉛直方向の固有周期

計算モデル

計算モデル

(2) 長手方向の固有周期

図 4-1 におけるばね定数は次式で求める。

$$K_{\ell} = \frac{4}{\frac{h_1}{12 \cdot E_s \cdot I_{sv}} + \frac{h_1}{G_s \cdot A_{s1}}} \qquad (4.1.1)$$

固有周期は次式で求める。

$$T_1 = 2 \cdot \pi \cdot \sqrt{\frac{m_0}{K_{\ell} \cdot 1000}} \qquad \cdots \qquad (4.1.2)$$

(3) 横方向の固有周期

図 4-2 におけるばね定数は次式で求める。

$$K_{c} = \frac{1}{\frac{h_{1}^{2} \cdot (3 \cdot h_{2} - h_{1})}{6 \cdot E_{s} \cdot I_{sx}} + \frac{(h_{2} - h_{1}) \cdot h_{1} \cdot (h_{2} - h_{1}/2)}{E_{s} \cdot I_{sx}} + \frac{h_{1}}{G_{s} \cdot A_{s2}}}$$

$$\cdots \cdots \cdots (4.1.3)$$

固有周期は次式で求める。

$$T_2=2 \cdot \pi \cdot \sqrt{\frac{\frac{R_1}{g} + m_s}{K_c \cdot 1000}}$$
 (4. 1. 4)

(4) 鉛直方向の固有周期

図 4-3 におけるばね定数は次式で求める。

$$K_{v} = \frac{1}{\frac{h_{1}}{A_{s} \cdot E_{s}}} \qquad (4.1.5)$$

固有周期は次式で求める。

$$T_{3} = 2 \cdot \pi \cdot \sqrt{\frac{R_{1}}{g} + m_{s}}$$
 (4.1.6)

4.2 固有周期の計算条件

固有周期の計算に用いる計算条件は、【高圧炉心スプレイ系ディーゼル発電設備軽 油タンクの耐震性についての計算結果】の機器要目に示す。

4.3 固有周期の計算結果

固有周期の計算結果を表 4-1 に示す。計算の結果, 固有周期は 0.05 秒以下であり, 剛であることを確認した。

表 4-1 固有周期(s)

水平	鉛直方向	
長手		

5. 構造強度評価

- 5.1 構造強度評価方法
 - 4.1(1)項 a.~e.のほか,次の条件で計算する。概要図は表 2-1 を参照する。
 - (1) 地震力は容器に対して水平方向及び鉛直方向に作用するものとする。ここで、水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
 - (2) 全脚は同形状であり、受ける荷重が最大の脚についての評価を計算書に記載する。
- 5.2 荷重の組合せ及び許容応力
 - 5.2.1 荷重の組合せ及び許容応力状態

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 5-1 に, 重大事故等対処設備の評価に用いるものを表 5-2 に示す。

5.2.2 許容応力

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの許容応力は,添付書類「VI -2-1-9 機能維持の基本方針」に基づき表 5-3 及び表 5-4 のとおりとする。

5.2.3 使用材料の許容応力評価条件

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの使用材料の許容応力評価 条件のうち設計基準対象施設の評価に用いるものを表 5-5 に, 重大事故等対処設 備の評価に用いるものを表 5-6 に示す。

表 5-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

	•		
許容応力狀態	™AS	$ m IV_AS$	
荷重の組合せ	$D + P_D + M_D + S d *$ $D + P_D + M_D + S s$		
機器等の区分	<u>*</u>		
耐震 <mark>重</mark> 要度分類	S		
機器名称	圧炉心スプレイ	ケイーでが発電政御軽油タンク	
Ą	非常用 <mark>発電</mark>	業團	
施設区9	非常用電源	設備	
		施設区分 機器名称 耐震 重要度分類 機器等の区分 荷重の組合せ 許容応力状 常用電源 非常用 適圧炉心スプレイ系 D+Pp+Mp+Sd* III,S	

3容器及びクラス2,3支持構造物の荷重の組合せ及び許容応力を適用する。 注記*:クラス2,

表 5-2 荷重の組合せ及び許容応力状態 (重大事故等対処設備)

\$ 4 5 - 1	許谷心力状態	$IV_{A}S$	V _A S (V _A S として IV _A S の許容限 界を用い る。)								
	何里の組合せ	$D + P_D + M_D + S_S *^3$	$\mathrm{D} + \mathrm{P_{SAD}} + \mathrm{M_{SAD}} + \mathrm{S} \; \mathrm{s}$								
1 22	機器等の区分		°1 * 								
1 2 3 4 2 11	設備分類*!	常設/緩和常設/緩和									
1	機器名称	高圧炉心スプレイ系 ディーゼル発電設備 軽油タンク									
3	設区分	非常用発電機									
1171	施 影		非常用電源設備								

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2: 重大事故等クラス2容器及び重大事故等クラス2支持構造物の荷重の組合せ及び許容応力状態を適用する。

 $*3:[D+P_{SAD}+M_{SAD}+Ss]$ の評価に包絡されるため、評価結果の記載を省略する。

表 5-3 許容応力 (クラス 2, 3 容器及び重大事故等クラス 2 容器)

************************************	力状態 一次一般膜応力 一次十二次応力 一次一般膜応力 一次曲げ応力	Syと0.6・Suの小さい方 ただし、オーステナイト系 ステンレス鋼及び高ニッケ 左欄の1.5倍の値 ル合金については上記値と 1.2・Sとの大きい方	S 0.6・S _u 左欄の1.5倍の値 基準地震動Ssのみによる疲労解析を行い、疲労累積 ただし、地震動のみによる一次+二次応力の変動値が ただし、地震動のみによる一次+二次応力の変動値が
	許容応力状態	Sě	IV _A S V _A S (V _A S としてIV _A S の許容限界を用い

注記*1:座屈による<mark>評価は</mark>,クラスMC容器の座屈に対する評価式による。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

O 2 (4) VI-2-10-1-2-2-5 R 1

表 5-4 許容広力 (クラス? 3 支持権浩物及び盾大事故等クラス?支持権浩物)

	(・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	スセンシュストの一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の	
	許容限界*1,*2	許容限界*1, *2	*1, *2
	(ボルト等以外)	(ボルト等)	(幸)
許容応力状態	一次応力	一次応力	(J
	月張り	引張り	せん断
WγS	1.5 · f t	1.5 • f t	1.5 · f s
$ m IV_AS$		1	
V _A S (V _A SとしてIV _A Sの許容限界を用いる。)	1.5 • 1 t*	1.5 • 1 t*	1.5 • ts*

注記*1:応力の組合せが考えられる場合には,組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

0 2

表 5-5 使用材料の許容応力評価条件(設計基準対象施設)

++ 1☆ '田' 八三	<u> </u>	温度条件	S	Sy	\mathbf{S}_{u}	$S_y(RT)$
	<u> </u>	(°C)	(MPa)	(MPa)	(MPa)	(MPa)
胴板	$SM490C$ $(16mm < / \crede{p} \ge \le 40mm)$	最高使用温度 66	ı	300	465	1
脚	$SM490C$ $(16mm < / 2 \leq 40mm)$	周囲環境温度 50	ı	309	480	I
基礎ボルト	$SNB7$ (径 $\leq 63mm$)	周囲環境温度 50	1	715	838	1

<u> </u>	表 5-6 使用材料の許容応力評価条件	の許容応力評価条 	:件(重大 I	事故等対処設備	設備)		
		温度条件	11	S	S,	\mathcal{Q}_{a}	$S_{y}(RT)$
Ž		(₀ C)		(MPa)	(MPa)	(MPa)	(MPa)
SM490C (16mm<厚さ≦40mm)	n)	最高使用温度	99	_	300	465	_
SM490C (16mm<厚さ≦40mm)	1)	周囲環境温度	50	I	309	480	Ι
SNB7 (径≦≤63mm)		周囲環境温度	50	I	715	838	Ι

5.3 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、 添付書類「VI-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

評価に用いる設計用地震力を表 5-7 及び表 5-8 に示す。

表 5-7 設計用地震力(設計基準対象施設)

据付場所	H	1 有 周	1 #8 (,	,)	弾性設計用	地震動Sd	基準地震動 S s	
及び	ĮE	1117月 /円] 対 ()))	又は静	的震度	左 华地质	支到 3 8
床面高さ	水平		鉛	直	水平方向	鉛直方向	水平方向	鉛直方向
(m)		向	方	向	設計震度	設計震度	設計震度	設計震度
軽油タンク室 (H)				\neg	*2	*2	$C_{H} = 1.56$	C = 0.00
0. P. 6. 40*1					_	_	C _H -1.50	$C_{V} = 0.99$

注記*1:基準床レベルを示す。

*2: Ⅲ系については、基準地震動Ssで評価する。

表 5-8 設計用地震力 (重大事故等対処設備)

据付場所 及び	固	有质]期(s	;)	基準地震動 S s		
床面高さ (m)	水方	平向	鉛方	直向	水平方向 設計震度	鉛直方向 設計震度	
軽油タンク室 (H) 0.P. 6.40*					$C_H = 1.56$	$C_{V} = 0.99$	

注記*:基準床レベルを示す。

5.4 計算方法

図 5-1 に荷重状態を示す。

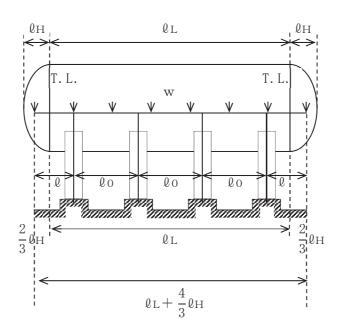


図 5-1 荷重状態

5.4.1 応力の計算方法

応力計算における水平方向と鉛直方向の組合せについて、動的地震力を用いることとし、SRSS 法を用いるものとする。

5.4.1.1 胴の計算方法

(1) 脚つけ根の部分における曲げモーメント

$$w = \frac{\left(m_0 - 4 \cdot m_s\right) \cdot g}{\ell_L + \frac{4}{3} \cdot \ell_H} \qquad (5. 4. 1. 1. 1)$$

第1脚及び第4脚に作用する曲げモーメント

$$M_{s1} = M_{s4} = \frac{1}{2} \cdot w \cdot \ell^2$$
 (5. 4. 1. 1. 2)

第2脚及び第3脚に作用する曲げモーメント

$$M_{s2} = M_{s3} = \frac{W}{10} \cdot (\ell_0^2 - \ell_0^2) \cdots \cdots \cdots \cdots \cdots \cdots \cdots (5.4.1.1.3)$$

応力計算に使用する M_1 は、 M_{s1} ~ M_{s4} のうち最大のものとする。

(2) 静水頭による応力(鉛直方向地震時を含む。)

$$\sigma_{\phi 1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{2 \cdot t} \qquad \cdots \qquad (5. 4. 1. 1. 4)$$

$$\sigma_{\phi 2} = \frac{\rho' \cdot g \cdot H \cdot D_i \cdot C_V}{2 \cdot t} \quad \dots \qquad (5.4.1.1.5)$$

$$\sigma_{x1} = \frac{\rho' \cdot g \cdot H \cdot D_i}{4 \cdot t} \qquad (5.4.1.1.6)$$

- (3) 運転時質量及び鉛直方向地震により生じる長手方向曲げモーメントによる応力
 - (1)項で求めた曲げモーメントにより胴の脚つけ根部に生じる応力は次のように求める。

引用文献(1)によれば、この曲げモーメントは胴の断面に対して一様に作用するものではなく、脚つけ根部において円周方向の曲げモーメントに置き換えられ、胴の局部変形を生じさせようとする。

長手方向の曲げモーメントによる胴の応力の影響範囲を脚上 θ o/6 の点とすると長手方向曲げモーメントに対する胴の有効断面積は図 5-2 に 2・ θ で示される円殻である。

したがって, 運転時質量による応力は次式で求める。

$$\sigma_{x2} = \frac{M_1}{Z} \qquad (5.4.1.1.7)$$

また,鉛直方向地震による応力は次式で求める。

$$\sigma_{x6} = \frac{M_1}{7} \cdot C_V \qquad (5.4.1.1.8)$$

ここで,

$$r_{m} = \frac{D_{i} + t_{e}}{2}$$
 (5. 4. 1. 1. 9)

$$Z = r_{m}^{2} \cdot t_{e} \cdot \left\{ \frac{\theta + \sin \theta \cdot \cos \theta - 2 \cdot \sin^{2} \theta / \theta}{\left(\sin \theta / \theta\right) - \cos \theta} \right\}$$
......(5.4.1.1.10)

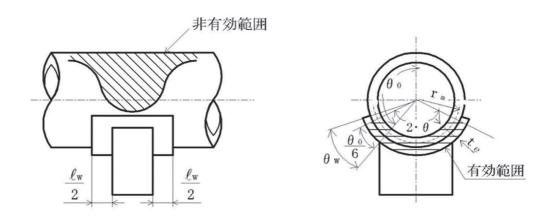


図 5-2 脚つけ根部の有効範囲

胴の脚つけ根部に取り付く当板の大きさが

周方向範囲
$$\theta_{\text{w}} \ge \frac{\theta_0}{6}^{*1}$$
 (5.4.1.1.11)

長手方向範囲
$$\ell_{\rm w} \ge 1.56 \cdot \sqrt{\left(\frac{{\rm D}_{\rm i} + {\rm t}}{2}\right) \cdot {\rm t}}$$
 *2 (5.4.1.1.12)

である場合、脚つけ根部における胴の有効板厚 t。は胴板の厚さと当板の厚さの合計とする。また、当板が上記の範囲を満たさない場合、 t。は胴板の厚さとする。

注記*1:引用文献(1)より引用

*2: 引用文献(3)より引用

(4) 脚に作用する荷重

第1脚及び第4脚に作用する荷重

第2脚及び第3脚に作用する荷重

$$R_{s2} = R_{s3} = \frac{w \cdot \ell_0}{2} + \frac{w \cdot \ell_0}{2} - \frac{M_{s1} - M_{s2}}{\ell_0} - \frac{M_{s3} - M_{s2}}{\ell_0} = w \cdot \ell_0 - \frac{M_{s1} - M_{s2}}{\ell_0}$$

固有周期計算及び応力計算において R_1 は $R_{s1} \sim R_{s4}$ のうち最大のものとする。

(5) 運転時質量及び鉛直方向地震による脚つけ根部の応力

胴の脚つけ根部には脚反力による周方向応力及び軸方向応力が生じる。胴の脚つけ根部に作用する反力は次式で求める。

運転時質量による反力は,

$$P = R_1$$
 (5. 4. 1. 1. 15)

鉛直方向地震による反力は,

$$P_{e} = C_{V} \cdot R_{1}$$
 (5. 4. 1. 1. 16)

この反力 P 及び P_e により生じる胴の周方向応力及び軸方向応力は、引用文献 (2) により次のように求める。

脚が胴に及ぼす力の関係を図5-3に示す。

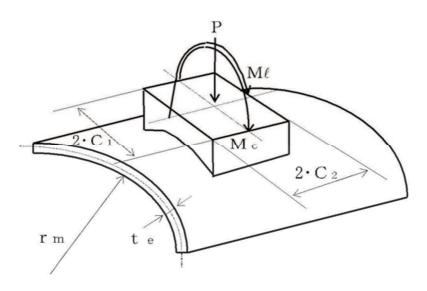


図 5-3 脚が胴に及ぼす力の関係

ここで、シェルパラメータ γ 及びアタッチメントパラメータ β は以下のように定義する。

$$\beta_1 = C_1 / r_m \qquad \cdots \qquad (5.4.1.1.18)$$

 $4 \ge \beta_1 / \beta_2 \ge 1$ のとき

ただし、 $\beta \leq 0.5$

$$\frac{1}{4} \le \beta_1 / \beta_2 < 1 \text{ obs}$$

ただし、 $\beta \leq 0.5$

シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることにより応力は次式で求める。

反力 Pによる応力は,

一次応力

$$\sigma_{\phi 3} = \left(\frac{N_{\phi}}{P / r_{m}}\right)^{*} \cdot \left(\frac{P}{r_{m} \cdot r_{s}}\right) \qquad \cdots \qquad (5. 4. 1. 1. 22)$$

$$\sigma_{x3} = \left(\frac{N_x}{P / r_m}\right)^* \cdot \left(\frac{P}{r_m \cdot t_e}\right) \qquad \cdots \qquad (5.4.1.1.23)$$

反力 Peによる応力は,

一次応力

$$\sigma_{\phi71} = \left(\frac{N_{\phi}}{P_{e}/r_{m}}\right)^{*} \cdot \left(\frac{P_{e}}{r_{m} \cdot t_{e}}\right) \qquad \cdots \cdots \cdots \cdots (5.4.1.1.24)$$

$$\sigma_{x71} = \left(\frac{N_x}{P_e / r_m}\right)^* \cdot \left(\frac{P_e}{r_m \cdot t_e}\right) \qquad \cdots \qquad (5.4.1.1.25)$$

二次応力

$$\sigma_{\phi72} = \left(\frac{M_{\phi}}{P_{e}}\right)^{*} \cdot \left(\frac{6 \cdot P_{e}}{t_{e}}\right) \qquad \cdots \qquad (5.4.1.1.26)$$

$$\sigma_{x72} = \left(\frac{M_x}{P_e}\right)^* \cdot \left(\frac{6 \cdot P_e}{t_e^2}\right)$$
 (5. 4. 1. 1. 27)

(6) 長手方向地震による脚つけ根部の応力

全脚固定であり、脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式で 求める。

$$M_{\ell} = \frac{1}{8} \cdot (m_0 - m_s) \cdot C_H \cdot g \cdot h_1$$
 (5. 4. 1. 1. 28)

$$P_{\ell} = (m_0 - m_s) \cdot C_H \cdot g \cdot (h_2 - h_1/2)/(3 \cdot \ell_0) \cdot \cdots (5.4.1.1.29)$$

曲げモーメント M_0 と鉛直荷重 P_0 により生じる胴の周方向応力及び軸方向応力は、シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることより(5.4.1.1.31)式 \sim (5.4.1.1.38) 式で求める。

ここで、シェルパラメータ γ 及び P_{ℓ} の場合のアタッチメントパラメータ β は(5)と同じであるが、 M_{ℓ} の場合のアタッチメントパラメータ β は次式による。ただし、二次応力を求める場合は更に $K_{\ell j}$ を乗じた値とする。

$$\beta = \sqrt[3]{\beta_1 \cdot \beta_2} \qquad \cdots \qquad (5.4.1.1.30)$$

$$\not \approx \not \approx \downarrow, \quad \beta \leq 0.5$$

曲げモーメントMaにより生じる応力は次式で求める。

一次応力

二次応力

$$\sigma_{\phi 421} = \left\{ \frac{M_{\phi}}{M_{\ell} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{\ell}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \qquad (5. 4. 1. 1. 33)$$

$$\sigma_{x421} = \left\{ \frac{M_{x}}{M_{\ell} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{\ell}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \qquad (5. 4. 1. 1. 34)$$

鉛直荷重Paにより生じる応力は次式で求める。

一次応力

$$\sigma_{\phi \, 4 \, 1 \, 2} = \left(\frac{N_{\phi}}{P_{\ell} / r_{m}}\right)^{*} \cdot \left(\frac{P_{\ell}}{r_{m} \cdot t_{e}}\right) \qquad \cdots \qquad (5. \, 4. \, 1. \, 1. \, 35)$$

$$\sigma_{x412} = \left(\frac{N_x}{P_{\ell} / r_m}\right)^* \cdot \left(\frac{P_{\ell}}{r_m \cdot t_e}\right) \qquad \cdots \qquad (5.4.1.1.36)$$

二次応力

$$\sigma_{\phi 422} = \left(\frac{M_{\phi}}{P_{\ell}}\right)^* \cdot \left(\frac{6 \cdot P_{\ell}}{t_e^2}\right) \qquad (5. 4. 1. 1. 37)$$

$$\sigma_{x422} = \left(\frac{M_x}{P_\ell}\right)^* \cdot \left(\frac{6 \cdot P_\ell}{t_e^2}\right) \qquad (5.4.1.1.38)$$

また,水平方向荷重により胴には,次式で求める引張応力が生じる。

$$\sigma_{x413} = \frac{C_{H} \cdot (m_0 - m_s) \cdot g}{\pi \cdot (D_i + t) \cdot t} \qquad (5.4.1.1.39)$$

したがって、曲げモーメント M_{ℓ} 、鉛直荷重 P_{ℓ} 及び水平方向荷重により生じる胴の応力は次式で求める。

一次応力

$$\sigma_{\phi 41} = \sigma_{\phi 411} + \sigma_{\phi 412} \qquad \cdots \qquad (5. 4. 1. 1. 40)$$

$$\sigma_{x41} = \sigma_{x411} + \sigma_{x412} + \sigma_{x413} \qquad \cdots \qquad (5.4.1.1.41)$$

二次応力

$$\sigma_{\phi 42} = \sigma_{\phi 421} + \sigma_{\phi 422} \qquad \cdots \qquad (5. 4. 1. 1. 42)$$

$$\sigma_{x42} = \sigma_{x421} + \sigma_{x422} \quad \cdots \quad (5.4.1.1.43)$$

また,長手方向地震が作用した場合,脚つけ根部に生じるせん断応力は次式で求める。

$$\tau_{\ell} = \frac{\left(\mathbf{m}_{0} - \mathbf{m}_{s}\right) \cdot \mathbf{C}_{H} \cdot \mathbf{g}}{16 \cdot \mathbf{C}_{2} \cdot \mathbf{t}} \qquad (5.4.1.1.44)$$

(7) 横方向地震による脚つけ根部の応力

横方向地震が作用した場合、脚のつけ根部に生じる曲げモーメント M。は次式で求める。

$$M_c = C_H \cdot R_1 \cdot r_0 \qquad \cdots \qquad (5.4.1.1.45)$$

$$r_0 = \frac{D_i}{2} + t_e$$
 (5. 4. 1. 1. 46)

この曲げモーメントM。により生じる胴の周方向応力及び軸方向応力は、シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることにより(5.4.1.1.48)式~(5.4.1.1.51)式で求める。

ここで、シェルパラメータ γ は(5)と同じであるが、アタッチメントパラメータ β は次式による。ただし、二次応力を求める場合は更に K_{cj} を乗じた値とする。

$$\beta = \sqrt[3]{\beta_1^2 \cdot \beta_2} \qquad \cdots \qquad (5.4.1.1.47)$$

ただし、 $β \le 0.5$

したがって, 応力は次式で求める。

一次応力

$$\sigma_{\phi 5 1} = \left\{ \frac{N_{\phi}}{M_{c} / \left(r_{m}^{2} \cdot \beta\right)} \right\}^{*} \cdot \left(\frac{M_{c}}{r_{m}^{2} \cdot \beta \cdot t_{e}}\right) \cdot C_{c 1} \quad \cdots \quad (5. 4. 1. 1. 48)$$

$$\sigma_{x51} = \left\{ \frac{N_x}{M_c / (r_m^2 \cdot \beta)} \right\}^* \cdot \left(\frac{M_c}{r_m^2 \cdot \beta \cdot t_e} \right) \cdot C_{c2} \quad \cdots \quad (5.4.1.1.49)$$

二次応力

$$\sigma_{\phi 5 2} = \left\{ \frac{M_{\phi}}{M_{c} / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M_{c}}{r_{m} \cdot \beta \cdot t_{e}^{2}} \right) \qquad (5.4.1.1.50)$$

$$\sigma_{x52} = \left\{ \frac{M_x}{M_c / (r_m \cdot \beta)} \right\}^* \cdot \left(\frac{6 \cdot M_c}{r_m \cdot \beta \cdot t_e^2} \right) \qquad \cdots \qquad (5.4.1.1.51)$$

また、横方向地震が作用した場合、脚つけ根部に生じるせん断応力は次式で 求める。

$$\tau_{c} = \frac{C_{H} \cdot R_{1}}{4 \cdot C_{1} \cdot t} \qquad (5.4.1.1.52)$$

(8) 組合せ応力

(2) \sim (7) によって求めた脚つけ根部に生じる胴の応力は以下のように組み合わせる。

a. 一次一般膜応力

鉛直方向と長手方向地震が作用した場合

$$\sigma_{0\ell} = \text{Max}\{ 周方向応力(\sigma_{0\ell\phi}), 軸方向応力(\sigma_{0\ell x}) \}$$

$$\cdots \cdots (5.4.1.1.53)$$

ここで,

$$\sigma_{0\ell\phi} = \sigma_{\phi 1} + \sigma_{\phi 2} \qquad \cdots \qquad (5. 4. 1. 1. 54)$$

$$\sigma_{0\ell_x} = \sigma_{x1} + \sigma_{x2} + \sqrt{\sigma_{x6}^2 + \sigma_{x413}^2} \quad \cdots \qquad (5.4.1.1.55)$$

鉛直方向と横方向地震が作用した場合

$$\sigma_{0c} = Max\{ 周方向応力(\sigma_{0c\phi}), 軸方向応力(\sigma_{0cx}) \}$$

 $\cdots \cdots (5.4.1.1.56)$

ここで

$$\sigma_{0c\phi} = \sigma_{\phi 1} + \sigma_{\phi 2} \qquad \cdots \qquad (5.4.1.1.57)$$

$$\sigma_{0cx} = \sigma_{x1} + \sigma_{x2} + \sigma_{x6} \qquad \cdots \qquad (5.4.1.1.58)$$

したがって, 胴に生じる一次一般膜応力の最大値は,

とする。

b. 一次応力

鉛直方向と長手方向地震が作用した場合

ここで,

$$\sigma_{1\ell\phi} = \sigma_{\phi 1} + \sigma_{\phi 3} + \sqrt{\sigma_{\phi 41}^2 + (\sigma_{\phi 2} + \sigma_{\phi 71})^2}$$
 (5. 4. 1. 1. 61)

$$\sigma_{1\ell x} = \sigma_{x1} + \sigma_{x2} + \sigma_{x3} + \sqrt{\sigma_{x41}^{2} + (\sigma_{x6} + \sigma_{x71})^{2}}$$

(5.4.1.1.62)

鉛直方向と横方向地震が作用した場合

ここで,

$$\sigma_{1c\phi} = \sigma_{\phi 1} + \sigma_{\phi 3} + \sqrt{\sigma_{\phi 51}^2 + (\sigma_{\phi 2} + \sigma_{\phi 71})^2}$$
 (5. 4. 1. 1. 64)

$$\sigma_{1cx} = \sigma_{x1} + \sigma_{x2} + \sigma_{x3} + \sqrt{\sigma_{x51}^{2} + (\sigma_{x6} + \sigma_{x71})^{2}}$$

したがって, 胴に生じる一次応力の最大値は,

$$\sigma_1 = \text{Max} \{ E = f \cap 地震時応力(\sigma_1 \varrho), 横 f \cap 地震時応力(\sigma_1 \varrho) \}$$

 \cdots (5. 4. 1. 1. 66)

とする。

地震動のみによる一次応力と二次応力の和の変動値

鉛直方向と長手方向地震が作用した場合の変動値

$$\sigma_{2\ell} = \left(\sigma_{2\ell\phi} + \sigma_{2\ell x}\right) + \sqrt{\left(\sigma_{2\ell\phi} - \sigma_{2\ell x}\right)^2 + 4 \cdot \tau_{\ell}^2} \quad \cdots \qquad (5. 4. 1. 1. 67)$$

$$\Xi \subseteq \mathcal{C},$$

$$\sigma_{2\ell\phi} = \sqrt{\left(\sigma_{\phi 2} + \sigma_{\phi 71} + \sigma_{\phi 72}\right)^{2} + \left(\sigma_{\phi 41} + \sigma_{\phi 42}\right)^{2}} \quad \cdots \qquad (5. \ 4. \ 1. \ 1. \ 68)$$

$$\sigma_{2\ell x} = \sqrt{\left(\sigma_{x41} + \sigma_{x42}\right)^{2} + \left(\sigma_{x6} + \sigma_{x71} + \sigma_{x72}\right)^{2}} \quad \cdots \qquad (5. \ 4. \ 1. \ 1. \ 69)$$

$$\sigma_{2\ell x} = \sqrt{\left(\sigma_{x41} + \sigma_{x42}\right)^2 + \left(\sigma_{x6} + \sigma_{x71} + \sigma_{x72}\right)^2} \quad \cdots \qquad (5.4.1.1.69)$$

鉛直方向と横方向地震が作用した場合の変動値

$$\sigma_{2c} = (\sigma_{2c\phi} + \sigma_{2cx}) + \sqrt{(\sigma_{2c\phi} - \sigma_{2cx})^2 + 4 \cdot \tau_c^2}$$

(5.4.1.1.70)

ここで,

$$\sigma_{2c\phi} = \sqrt{\left(\sigma_{\phi2} + \sigma_{\phi71} + \sigma_{\phi72}\right)^{2} + \left(\sigma_{\phi51} + \sigma_{\phi52}\right)^{2}} \quad \cdots \quad (5.4.1.1.71)$$

$$\sigma_{2cx} = \sqrt{(\sigma_{x51} + \sigma_{x52})^2 + (\sigma_{x6} + \sigma_{x71} + \sigma_{x72})^2} \quad \cdots \quad (5.4.1.1.72)$$

したがって, 胴に生じる地震動のみによる一次応力と二次応力の和の変動 値の最大値は,

とする。

- 5.4.1.2 脚の計算方法
 - (1) 運転時質量による応力

$$\sigma_{s1} = \frac{R_1 + m_s \cdot g}{A_s} \qquad \cdots \qquad (5.4.1.2.1)$$

(2) 鉛直方向地震による応力

$$\sigma_{s4} = \frac{R_1 + m_s \cdot g}{A_s} \cdot C_V \qquad \cdots \qquad (5.4.1.2.2)$$

(3) 長手方向地震による応力

曲げ及び圧縮応力は次式で求める。

$$\sigma_{s2} = \frac{M_{\ell_1}}{Z_{sy}} + \frac{P_{\ell}}{A_s}$$
 (5. 4. 1. 2. 3)

ここで.

$$\mathbf{M}_{\ell 1} = \frac{1}{8} \cdot \mathbf{m}_0 \cdot \mathbf{C}_{\mathsf{H}} \cdot \mathbf{g} \cdot \mathbf{h}_1 \qquad \cdots \qquad (5. 4. 1. 2. 4)$$

せん断応力は次式で求める。

$$\tau_{s2} = \frac{m_0 \cdot C_H \cdot g}{4 \cdot A_{s3}} \qquad (5.4.1.2.5)$$

(4) 横方向地震による応力

曲げ応力は次式で求める。

$$\sigma_{s3} = \frac{C_{H} \cdot (R_1 + m_s \cdot g) \cdot h_2}{Z_{sx}} \qquad \cdots \qquad (5.4.1.2.6)$$

せん断応力は次式で求める。

$$\tau_{s3} = \frac{C_{H} \cdot (R_1 + m_s \cdot g)}{A_{s4}} \qquad (5.4.1.2.7)$$

(5) 組合せ応力

鉛直方向と長手方向地震が作用した場合

$$\sigma_{s\ell} = \sqrt{\left(\sigma_{s1} + \sqrt{\sigma_{s2}^2 + \sigma_{s4}^2}\right)^2 + 3 \cdot \sigma_{s2}^2} \qquad (5.4.1.2.8)$$

鉛直方向と横方向地震が作用した場合

$$\sigma_{sc} = \sqrt{\left(\sigma_{s1} + \sqrt{\sigma_{s3}^2 + \sigma_{s4}^2}\right)^2 + 3 \cdot \sigma_{s3}^2} \quad \cdots \qquad (5.4.1.2.9)$$

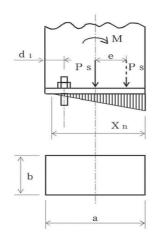
したがって, 脚に生じる最大応力は,

とする。

5.4.1.3 基礎ボルトの計算方法

- (1) 鉛直方向と長手方向地震が作用した場合
 - a. 引張応力

長手方向地震が作用した場合に脚底面に作用するモーメントは次式で求める。


$$\mathbf{M} = \mathbf{M}_{\ell 1} \qquad \cdots \qquad (5. 4. 1. 3. 1)$$

鉛直荷重は

である。ここで、モーメントと鉛直荷重の比を

$$e = M / P_s \qquad \cdots \qquad (5.4.1.3.3)$$

とする。

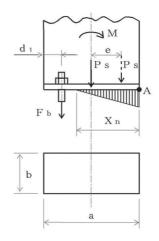


図 5-4 基礎部に作用する外 図 5-5 基礎部に作用する外 荷重より生じる荷重 の関係(その1) の関係(その2)

図 5-4 のように脚底面においてボルト位置に圧縮荷重がかかる状況では基礎ボルトに引張力は作用しないため、引張力の評価は行わない。

一方,図 5-5 のように、ボルト位置に圧縮荷重がかからない状況に相当する

$$e > \frac{a}{6} + \frac{d_1}{3}$$
 (5. 4. 1. 3. 4)

のとき, 基礎ボルトに引張力が生じる。

このとき図 5-5 において、鉛直荷重の釣合い、A点回りのモーメントの釣合い、基礎ボルトの伸びと基礎の縮みの関係から中立軸の位置 X_n は

$$X_{n}^{3} + 3 \cdot \left(e - \frac{a}{2}\right) \cdot X_{n}^{2} - \frac{6 \cdot s \cdot A_{b} \cdot n_{1}}{b} \cdot \left(e + \frac{a}{2} - d_{1}\right)$$

 $\cdot (a - d_{1} - X_{n}) = 0$ (5. 4. 1. 3. 5)

より求めることができ、基礎ボルトに生じる引張力は

$$F_{b} = \frac{P_{s} \cdot \left(e - \frac{a}{2} + \frac{X_{n}}{3}\right)}{a - d_{1} - \frac{X_{n}}{3}} \qquad (5.4.1.3.6)$$

となる。

したがって、基礎ボルトに生じる引張応力は次のようになる。

$$\sigma_{b1} = \frac{F_b}{n_1 \cdot A_b} \qquad \cdots \qquad (5.4.1.3.7)$$

ここで、基礎ボルトの軸断面積Abは次式により求める。

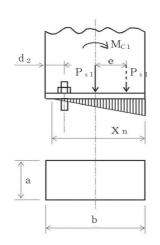
$$A_b = \frac{\pi}{4} \cdot d^2$$
 (5. 4. 1. 3. 8)

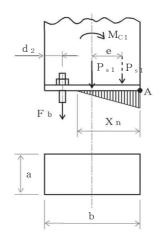
b. せん断応力

$$\tau_{b1} = \frac{m_0 \cdot C_H \cdot g}{4 \cdot n \cdot A_b} \qquad \cdots \qquad (5.4.1.3.9)$$

- (2) 鉛直方向と横方向地震が作用した場合
 - a. 引張応力

横方向地震が作用した場合に脚底面に作用するモーメントは次式で求める。


$$M = M_{c1} = C_H \cdot (R_1 + m_s \cdot g) \cdot h_2$$
 (5. 4. 1. 3. 10)


鉛直荷重は

$$P_{s1} = (1 - C_V) \cdot (R_1 + m_s \cdot g)$$
 (5. 4. 1. 3. 11)

である。ここで、モーメントと鉛直荷重の比を

$$e = M_{c1} / P_{s1}$$
 (5.4.1.3.12)

重より生じる荷重の関 係 (その1)

図 5-6 基礎部に作用する外荷 図 5-7 基礎部に作用する外荷 重より生じる荷重の関 係 (その2)

図 5-6 のように脚底面においてボルト位置に圧縮荷重がかかる状況では基 礎ボルトに引張力は作用しないため、引張力の評価は行わない。

一方、図 5-7 のように、ボルト位置に圧縮荷重がかからない状況に相当す る

$$e > \frac{b}{6} + \frac{d_2}{3}$$
 (5. 4. 1. 3. 13)

のとき、基礎ボルトに引張力が生じる。

このとき図 5-7 において、鉛直荷重の釣合い、A点回りのモーメントの釣 合い、基礎ボルトの伸びと基礎の縮みの関係から中立軸の位置Xnは

$$X_{n}^{3} + 3 \cdot \left(e - \frac{b}{2} \right) \cdot X_{n}^{2} - \frac{6 \cdot s \cdot A_{b} \cdot n_{2}}{a} \cdot \left(e + \frac{b}{2} - d_{2} \right)$$

 $\cdot \left(b - d_{2} - X_{n} \right) = 0$... (5. 4. 1. 3. 14)

より求めることができ、基礎ボルトに生じる引張力は

$$F_{b} = \frac{P_{s1} \cdot \left(e - \frac{b}{2} + \frac{X_{n}}{3}\right)}{b - d_{2} - \frac{X_{n}}{3}} \qquad (5.4.1.3.15)$$

となる。

したがって, 基礎ボルトに生じる引張応力は次のようになる。

$$\sigma_{b2} = \frac{F_b}{n_2 \cdot A_b} \qquad \cdots \qquad (5.4.1.3.16)$$

ここで、基礎ボルトの軸断面積Abは次式により求める。

$$A_b = \frac{\pi}{4} \cdot d^2$$
 (5. 4. 1. 3. 17)

b. せん断応力

$$\tau_{b2} = \frac{C_{H} \cdot (R_1 + m_s \cdot g)}{n \cdot A_b} \qquad (5.4.1.3.18)$$

(3) 基礎ボルトに生じる最大応力

(1)及び(2)より求められた基礎ボルトの応力のうち最大のものを σ_b 及び τ_b とする。

a. 基礎ボルトの最大引張応力

b. 基礎ボルトの最大せん断応力

$$\tau_b = Max{長手方向地震時応力(\tau_{b1}), 横方向地震時応力(\tau_{b2})}$$
(5.4.1.3.20)

5.5 計算条件

5.5.1 胴板の応力計算条件

胴板の応力計算に用いる計算条件は、本計算書の【高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

5.5.2 脚の応力計算条件

脚の応力計算に用いる計算条件は、本計算書の【高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

5.5.3 基礎ボルトの応力計算条件

基礎ボルトの応力計算に用いる計算条件は、本計算書の【高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5.6.1 胴の応力評価

5.4.1.1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S_a 以下であること。ただし、 S_a は下表による。

	許容応	5カSa
応力の種類	弾性設計用地震動Sd又は	基準地震動Ssによる荷重
心力分性類	静的震度による荷重との組	との組合せの場合
	合せの場合	
一次一般膜応力	設計降伏点Sуと設計引張	設計引張強さ Suの 0.6 倍
	強さSuの 0.6 倍のいずれ	
	か小さい方の値。ただし,オ	
	ーステナイト系ステンレス	
	鋼及び高ニッケル合金にあ	
	っては許容引張応力Sの	
	1.2 倍の方が大きい場合は,	
	この大きい方の値とする。	
一次応力	上記の 1.5 倍の値	上記の 1.5 倍の値
一次応力と二次	地震動のみによる一次応力と	と二次応力の和の変動値が設
応力の和	計降伏点Syの2倍以下であれ	ηば,疲労解析は不要とする。

5.6.2 脚の応力評価

5.4.1.2 項で求めた脚の組合せ応力が許容引張応力 f_t 以下であること。 ただし、 f_t は下表による。

	弾性設計用地震動 S d 又は 静的震度による荷重との組 合せの場合	基準地震動 Ssによる荷重 との組合せの場合
許容引張応力 ft	$\frac{F}{1.5} \cdot 1.5$	$\frac{F^*}{1.5} \cdot 1.5$

5.6.3 基礎ボルトの応力評価

5.4.1.3 項で求めた基礎ボルトの引張応力 σ_b は次式により求めた許容引張応力 f_{ts} 以下であること。ただし、 f_{to} は下表による。

$$f_{\rm t\ s} = {\rm Min} \Big[1.4 \cdot f_{\rm t\ o} - 1.6 \cdot \tau_{\rm b} \,, \ f_{\rm t\ o} \Big] \qquad \cdots \cdots (5.6.3.1)$$

せん断応力 τ_b はせん断力のみ受ける基礎ボルトの許容せん断応力 f_{sb} 以下であること。ただし、 f_{sb} は下表による。

	弾性設計用地震動Sd又 は静的震度による荷重と の組合せの場合	基準地震動Ssによる荷 重との組合せの場合
許容引張応力 ft.	$\frac{F}{2} \cdot 1.5$	$\frac{\text{F}^*}{2} \cdot 1.5$
許容せん断応力 f _{sb}	$\frac{F}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6. 評価結果

6.1 設計基準対象施設としての評価結果

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

なお、弾性設計用地震動Sd及び静的震度は基準地震動Ssを下回っており、基準地震動Ssによる発生値が、弾性設計用地震動Sd又は静的震度に対する評価における許容限界を満足するため、弾性設計用地震動Sd又は静的震度による発生値の算出を省略した。

6.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

7. 引用文献

- (1) Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports, Welding Research Supplement, Sep. 1951.
- (2) Wichman, K.R. et al. :Local Stresses in Spherical and Cylindrical Shells due to External Loadings, Welding Research Council bulletin, March 1979 revision of WRC bulletin 107 / August 1965.
- (3) 日本産業規格 JIS B 8278(2003)「サドル支持の横置圧力容器」

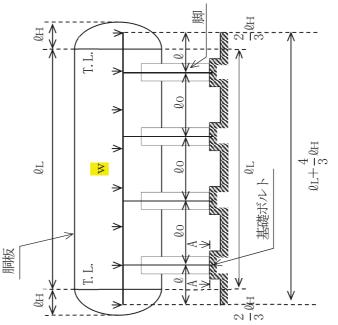
【高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震性についての計算結果】

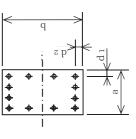
設計基準対象施設
 設計条件

#	キ 甲州 井巡 / 当 岩里牛方	固有周期	勇 (s)	弹性設計用地震動S	S d 又/講的標度	基準地震動S	劃S s	具合作用厂土	具合併田油庫	住民华朝王田	
₽	1817/397/1818 (m)	水平方向	鉛直力向	水平方向 設計賽度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	E K S			五
	軽油タンク室 (H) 0.P.6.40*1			**	* 	C _H =1.56	C _v =0.99	静水頭	99	50	98.0

注記*1:基準床レベルを示す。

*2: II,S については、基準地震動S s C評価する。


Н	(mm)	.05 4000
R_1	2	7. 162×10 ⁵
M_1	(N·mm)	4. 277×10^8 7.
W	(N/mm)	151.9
$\theta_{ m L}$	(mm)	13200
$\ell_{\rm H}$	(mm)	1028
0	(mm)	2373


θ_{w} (rad)	0. 378	
h ₂ (mm)	2400	θ
h 1 (mm)	1320. 9	θ 0
$\ell_{\rm O}$ (mm)	3275 1:	Z
t e (mm)	56.0*1	Zsx
t (mm)	28.0 56	Isv
D _i	4000	Isx
m _s (kg)	П	C_2
mo (kg)	Ħ	C_1

 $\ell_{\rm w}$

750

A-A 矢視図

A_{s4} (mm ²)	7. 698×10^4
A_{s3} (mm ²)	$1.307{ imes}10^5$
$ m A_{s2}$	9.371×10^4
$A_{s \ 1}$ (mm ²)	1. 683×10^5
G _s (MPa)	7730 <mark>0</mark>
E _s (MPa)	201000
$A_{\rm s}$ (mm 2)	$2.909{ imes}10^5$

C c 2	-	1. 21		
C_{c1}	1 52	L. 37		
$C_{\ell 2}$	02.0	0.12		
$C_{\ell 1}$	60 0	0. 95		
${ m K_{c}}_2$	90	0.30		
$ m K_{c1}$	1	1. 13		
$K_{ heta2}$	1.03			
$\mathrm{K}_{\ell 1}$	1.08			
${ m K_{22}}^{*2}$	1 1			
${ m K_2}_1^{*2}$	1 1			
${ m K_{12}}^{*2}$	1.68	1.20		
$\mathrm{K}_{11}{}^{*2}$	0.91	1.76		

d ₂ (mm)	400
d ₁ (mm)	210
$A_{ m b}$ (mm ²)	1.810×10^{3}
(ww) P	48 (M48)
b (mm)	3700
a (mm)	1950
n_2	4
¹ u	4
и	12
S	15

F* (基礎ボルト) (MPa)	586
F (基礎ボルト) (MPa)	286
S _u (基礎ボルト) (MPa)	838*4 (径≦63mm)
S _y (基礎ボルト) (MPa)	715*4 (径≤63mm)
F* (脚) (MPa)	336
F (脚) (MPa)	309
S _u (財) (MPa)	480*4 (16mm<厚さ≦40mm)
S _y (財) (MPa)	309*4 (16mm<厚さ≦40mm)
S (明林友) (MPa)	I
S _u (開板) (MPa)	465*3 (16mm<厚さ≦40mm)
S _y (明雨核) (MPa)	300^{*3} (16mm

注記*1:本計算においては当板を有効とした。 *2:表中で上段は一次応力,下段は二次応力の係数とする。 *3:最高使用温度で算出 *4:周囲環境温度で算出

計算数値
 1.3.1 胴に生じる応力
 (1) 一次一般関応力

対象の海地		連州田卡岭孙 惠	東灣小韓千12 P S 小東雲州田十号紀末州斯			其准批信	其 注 注 注 注 注 注 注 注 注 注 注 注 注 注 注 注 注 注 注	
対象の方向	iii	長手方向		横方向	単	長手方向		横方向
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周为向応力	軸方向応力	周为向応力	軸方向応力
静水頃による応力	ο _{φ1} =-*	σ _{x1} = <mark>*</mark>	σ _{φ1} =-*	σ _{×1} =-*	$\sigma_{\phi 1}$ =3	$\sigma_{x1}=2$	$\sigma_{\phi 1}=3$	$\sigma_{x1}=2$
静水頭による応力 (鉛直力向地震時)	σ _{φ2} == <mark>*</mark>	I	ο _{φ2} == <mark>*</mark>	I	$\sigma_{\phi 2}$ =3	I	$\sigma_{\phi 2}=3$	I
連ば質量による長手方向曲げ モーメントにより生じる応力	I	σ _{x2} =-*	I	σ x2=-*	ı	σ _{x2} =6	I	σ _{x2} =6
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	I	*—=9 ^x Ω	I	«—=9× ο	I	9= ^{9 x} Ω	I	9=9× Ω
長手方向地震により肺軸断面 全面に生じる引張応力	ı	σ _{x413} =-*	ı	-	1	$\sigma_{x413} = 11$	ı	ı
組合せ応力	Ο 00	α ο ₀ =*	0.00	α 0 c= <mark></mark> *	0 00	σ ₀₀ =19	ο 0 ο	σ _{0c} =13
注記*・ⅢSについては、基準地震動Ssで評価する。								

l							
为 向	軸方向応力	$\sigma_{x1}=2$	I	$\sigma_{x2}=6$	ο × ₆ =6	$\sigma_{x3}=17$	σ_{x71} =17
横	周方向応力	$\sigma_{\phi 1} = 3$	$\sigma_{\phi 2}$ =3	-	ı	$\sigma_{\phi 3}$ =17	$\sigma_{\phi71}$ =17
5向	軸方向応力	$\sigma_{x1}=2$	I	$\sigma_{x2}=6$	9= ^{9 x} ο	σ_{x3} =17	σ _{x71} =17
長手	周为向応力	$\sigma_{\phi 1}$ =3	$\sigma_{\phi 2}=3$	I	I	σ +3=17	O φ71=17
前	軸方向応力	σ _{x1} = <mark>*</mark>	I	σ _{x2} =-*	ο x6=-*	σ _{x3} =-*	σ _{x71} = <mark>*</mark>
横方	周方向応力	$\sigma_{\phi 1} = -*$	ο _{φ2} =*	-	I	σ _{φ3} = <mark>*</mark>	σ _{φ 7 1} = <mark>*</mark>
为向	軸方向応力	$\sigma_{x1} = -*$	I	σ _{x2} =-*	*—=9x 0	ο x3=*	σ _{x71} = <mark>*</mark>
手 <u></u>	周方向応力	ο _{φ1} = <mark>*</mark>	α _{φ 2} == <mark>-*</mark>	ı	I	Ω ^{φ 3} == <mark>*</mark>	σ _{φ71} =-*
地震の方向	応力の方向	静水頭による応力	静水頃による応力 (鉛直方向地震時)	運動は質量による長手方向曲げ モーメントにより生じる応力	鉛直方向地震による長手方向曲げ モーメントにより生じる応力	運転時質量による脚反力 により生じる応力	鉛直方向地震による脚反力 により生じる応力
	地震の方向 長手方向 横方向 横方向 横方向 横方向 横方向	長手方向 横方向 横方向 長手方向 横方向 横方向 横方向 横方向 上	地震の方向 長手方向 横方向 横方向 横方向 横方向 横方向 横方向 横方向 横方向 がたりの方向 周方向応力 離方向応力 周方向応力 間方向応力 間方向応力 間方向応力 間方向応力 離立向応力 間方向応力 $\sigma_{\phi 1} = - \omega$	地震の方向 長手方向 横方向 中	(の方向	分向 長手方向 横方向 重 横方向 横方向 横方向 横方向 横方向 重 横方向 重 横方向 重 中 横方向 重 中 横方向 重 上 横方向 上	(権力向

註※:II.S については,基準地震動Ssで評価する。 組合也応力

 $\sigma_{x\,5\,1}{=}62$

 $\sigma_{\phi\,5\,1}{=}20$

 $\sigma_{x411} = 3$ $\sigma_{x412} = 15$ $\sigma_{x413} = 11$

 $\begin{array}{c} \sigma_{\phi 4111} = 7 \\ \sigma_{\phi 4112} = 15 \end{array}$

 $\sigma_{x51} = -*$

 $\sigma_{\phi \, 5 \, 1} = -*$

 $\sigma_{x412} = \sigma_{x413} = -$

 $\sigma_{\phi 411} = -*$ $\sigma_{\phi 412} = -*$

引展り

水平方向地震 による応力

 $\sigma_{x41} = -$

 $\sigma_{\phi 41} = -$

+ — = 0 2 σ₁₀=-*

せん新

 $\sigma_{x411} =$

 σ_{x41} =28

 $\sigma_{\phi 41}$ =21

 $\sigma_{1c} = -*$

 $\sigma_{\rm \,1\,c}{=}91$ 9= 3 2

 $\sigma_{1l}=65$ $\tau_{\ell}=10$

(3) 地震動のみこよる一次応力と二次応力の和の変動値	二次応力の和の変動	州							(単位: MPa)
	地震の種類		弹性設計用地震動	弾性設計用地震動Sd又は静的震度			基準地震動Ss	劃S s	
	地震の方向	手 <u></u>	長手方向	横	横方向	向 年子子	为向	横方向	が向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周为向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力 総直方向地震時)	七 も	σ _{φ2} == <mark>*</mark>	I	σ _{φ2} =-*	I	σ _{φ2} =3	I	$\sigma_{\phi 2}$ =3	ı
鉛直方向地震による長手方向 曲げモーメン Nこより生じる応力	妻手方向 ヒじる応力	I	*—=9× 0	I	*—=9 ^x 0	I	ο x 6=6	I	9= ^{9×} ο
鉛直方向地震による脚反力 により生じる応力	脚反力 カ	$\begin{array}{c} \sigma_{\phi71} = -* \\ \sigma_{\phi72} = -* \end{array}$	$\sigma_{x71} = -*$ $\sigma_{x72} = -*$	$\begin{array}{c} \sigma_{\phi71} = -* \\ \sigma_{\phi72} = -* \end{array}$	$\begin{array}{c} \sigma_{\times 71} = -* \\ \sigma_{\times 72} = -* \end{array}$	$\begin{array}{c} \sigma_{\phi71}{=}17 \\ \sigma_{\phi72}{=}74 \end{array}$	$\begin{array}{c} \sigma_{x71} \!=\! 17 \\ \sigma_{x72} \!=\! 42 \end{array}$	$\begin{array}{c} \sigma_{\phi71} = 17 \\ \sigma_{\phi72} = 74 \end{array}$	$\begin{array}{c} \sigma_{x71} = 17 \\ \sigma_{x72} = 42 \end{array}$
		σ _{φ41} = <mark>-*</mark>	$\sigma_{x41} = -*$	$\sigma_{\phi 5 1} = -*$	$\sigma_{x51} = -*$	$\sigma_{\phi 41}$ =21	$\sigma_{x41} = 28$	$\sigma_{\phi 51} = 20$	σ _{x51} =62
水平方向地震	引張り	$\sigma_{\phi 421} = -*$ $\sigma_{\phi 422} = -*$	$\sigma_{x421} = -*$ $\sigma_{x422} = -*$	O + 522 == **	σ _{x52} == **	$\begin{array}{c} \sigma_{\phi 421} = 8 \\ \sigma_{\phi 422} = 67 \end{array}$	$\sigma_{x421} = 17$ $\sigma_{x422} = 38$	$\sigma_{\phi52}$ =165	σ x52=82
(人が(のよう)		σ _{φ42} ==-*	σ _{x42} =-*			σ _{φ42} =74	σ _{x42} =55		
	せん断	=0.7	*—=°2	α c ===================================	*	=02	τ_{ϱ} =10	, T	τ c=6
組合也応力		Ø 20	σ 20=-*	0 2 c=	σ _{2c} =-*	$\sigma_{20} = 271$	=271	0 2 c	σ_{2c} =414
111111111111111111111111111111111111111	1								1

	州鳥の種類	4年4号4年	禅性設計用地震動Sd又法静的震度		基準加震動 S s
	地震の方向	長手方向	横方向	長手方向	横方向
連辞質量による応力	紫田	σ _{s1} = <mark>-*</mark>	0 s1=-*	σ s1=3	σ _{s1} =3
鉛直方向地震による応力	舞	σ _{s4} =-*	σ ₈₄ =-*	0 84=3	$\sigma_{s4}=3$
- 一十八十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	手手	σ _{s2} =-*	σ s3=-*	$\sigma_s = 13$	σ_{s3} =11
人士と日西東によるでく	せん断	r s2=-*	*—=ε° 1	τ s2=7	τ s3=16
組合也応力		ο s _θ = <mark>-*</mark>	*—=°° Ω	$\sigma_{s\ell}$ =20	σ_{sc} =30
TR: Wis Now Talk 基準地震地 S s T	「評価する。				

この相話などとに、一世ののでと					(平元: MEA)
	地震の種類	聯性設計用地震動S d	Sd又/讨静的震度	基準地震動S s	劃S s
	地震の方向	長手方向	横方向	長手力向	横方向
鉛直力向地震及び 水平方向地震による応力	り暖り	σ _{b1} = <mark>*</mark>	o _{b2} =*	σ _{b1} =68	$\sigma_{b2} = 125$
水平方向地震による応力	せん断	τ _{b1} = <mark>*</mark>	*——= ²⁹ 2	τ _{b1} =43	τ b 2 = 54

日本:III.S については、基準的震動Ssで部所する。

1.4 結論

(単位: s)	有周期			
	114月	$=^{\mathrm{I}}\mathrm{L}$	$=$ ² \perp	$=^{\varepsilon} \mathbf{L}$
1.4.1 固有周期	方 向	長手方向	横方向	鉛直

1.4.2 応力

(単位: MPa) $f_{\rm ts} = 440^{*1}$ $S_a = 279$ $S_a = 418$ $f_{\rm s\,b}$ =338 $S_a = 601$ $f_t = 336$ 許容応力 基準地震動Ss $\sigma_{\rm b}$ =125 $\sigma_2 = 414$ 算出応力 $\sigma_s = 30$ $\sigma = 19$ σ_1 =91 τ _b=54 弾性設計用地震動Sd 双注静的震度 $S_a = 418^{*2}$ $f_{\rm t} = 309^{*2}$ $f_{\rm ts} = 440^{*1}$ $S_a = 601^{*2}$ $S_a = 279^{*2}$ $f_{\rm s\,b} = 338^{*2}$ 許容応力 $\sigma_s = 30^{*2}$ $\sigma_2 = 414^{*2}$ σ_b=125*2 算出応力 $\sigma_0 = 19^{*2}$ $\sigma_1 = 91^{*2}$ τ_b=54*2 一次十二次 一次一般膜 組合社 せん野 \mathcal{F} 引暖り —次 授 较 SM490C SM490C SNB7 K 基礎ボルト $^{\triangleright}$ 肺板 幽 超

注記* $\mathbf{1}$: $f_{\mathrm{t\,s}} = \mathrm{Min} [1.4 \cdot f_{\mathrm{t\,o}} - 1.6 \cdot \tau \, \mathrm{b}, f_{\mathrm{t\,o}}]$ より算出。 すべて許容応力以下である。

*2: 基準地震動Ssによる算出値。

A 矢硯図

料囲みの内容は商業機密の観点から公開できません。

 里大事故寺对处設備 設計条件 	加										
		4 甲州中3/25世十7年	割期	(s)	弹性設計用地震動 \$	Sd又は静的震度	基準地震動S s	劃S s	自古併田二十	自合任田沿市	世界地面建国
機器名称	設備分類	記り参加文の木田両の (m)	水平方向	松直大的	水平方向	鉛直方向	水平方向	鉛直方向	東南南田 (MPa)	東南医力高を	
		(Arra)			設計震度	設計震度	設計震度	設計震度			
高田炉いスプレイ系		(1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
ディーゼル発電設備	旺	軽田タンク(H)			I	I	$C_{H}=1.56$ $C_{V}=0.99$	$C_{V} = 0.99$	静水頭	99	20
軽油タンク	, 吊送/綾和	0. P. 6. 40°					:	-			
注記*:基準末レベルを示す。	を示す。										

0.86

型

	M	 ¥+	 			<u></u>	-	14 TA	
月同枝		V		→ → → →			00 V V V V V V V V V V V V V V V V V V		2 i i
				$ ho_{ m w}$ (mm)	750				
				θ w (rad)	0.378		θ (rad)	1. 372	
,	ı		ı	h ₂ (mm)	2400		$\begin{array}{c c} \theta_{0} & \theta_{0} \\ \text{(rad)} & \text{(ra} \end{array}$	2, 123 1, 3	
	H (mm)	4000		h 1 (mm)	1320.9				
	$\stackrel{\textstyle \times}{\otimes}_1$	151.9 $4.277 \times 10^{8} 7.162 \times 10^{5} $		$\ell_{\rm O}$	3275		$Z_{\rm sy}$ (mm ³)	108 5.717	
	M_1 (N·mm)	L 277×10 ⁸		t _e (mm)	56.0*1		Z _{sx} (mm ³)	2.641×	
	w (M/mm)	151.9 4		t (mm)	28.0		I sy (mm ⁴)	5.003×10^{10}	
	θ_{L} (mm)	13200		D i	4000		I sx (mm ⁴)	$4.622 \times 10^{11} 5.003 \times 10^{10} 2.641 \times 10^{8} 5.717 \times 10^{7}$	
ш	$ ho_{ m H}$ (mm)	1028		m _s (kg)			C ₂	875	
2 機器要目	(mm)	2373		m _o (kg)			(mm)	1750	

A_{s4} (mm ²)	7. 698×10^4
A_{s3} (mm ²)	1.307×10^{5}
$A_{\mathrm{s}2}$ (mm ²)	9.371×10^4
$A_{\mathrm{s}1}$	1.683×10^{5}
G s (MPa)	7730 <mark>0</mark>
E _s (MPa)	201000
$A_{\rm s}$ (mm ²)	2.909×10^{5}

C_{c2}	1 01	1. 21		
C_{c1}	-	1. 0.1		
$C_{\ell 2}$	02.0	0.12		
$C_{\ell 1}$	60	0.93		
$ m K_{c2}$	50 0	0.30		
$ m K_{c1}$	<u> </u>	1. 13		
$K_{\theta 2}$	60	1.00		
$K_{\ell 1}$	1. 08			
${ m K_{22}}^{*2}$	I	-		
K_{21}^{*2}	I	1		
${ m K_{12}}^{*2}$	1.68	1.20		
K_{11}^{*2}	0.91	1. 76		

•	d ₂ (mm)	400
	d ₁ (mm)	210
	$A_{ m b}$ (mm ²)	1.810×10^{3}
	(шш) Р	48 (M48)
	(ww) q	0028
	a (mm)	0261
	n_2	4
	¹ u	4
	u	12
	S	15

F* (基礎ボルト) (MPa)	586
F (基礎ボルト) (MPa)	_
S _u (基礎ボルト) (MPa)	838*4 (径≤63mm)
S _y (基礎ボルト) (MPa)	715*4 (径≦63mm)
F* (期) (MPa)	336
F (財) (MPa)	-
S _u (脚) (MPa)	480*4 (16mm<厚さ≦40mm)
S _y (脚) (MPa)	309^{*4} (16mm <math \overline{p} $\stackrel{?}{\sim}$ $\stackrel{?}{=}$ 40mm)
S (明林反) (MPa)	1
S _u (明琳友) (MPa)	465*3 (16mm<厚さ≦40mm)
S _y (明時反) (MPa)	300*3 (16mm<厚さ≦40mm)

注記*1:本計算においては当板を有効とした。 *2:表中で上段は一次応力,下段は二次応力の係数とする。 *3:最高使用温度で算出 *4:周囲環境温度で算出

2.3 計算数値 2.3.1 胴で生じる応力 (1) 一次一般関応力

(1) 一次一般對南方力								(単位: MPa)
地震の種類		弹性設計用地震動	弾性設計用地震動Sd 又は静的震度			基準地	基準地震動S s	
地震の方向	上	長手方向	横	横方向	手 <u></u>	長手方向	横	横方向
応力の方向	周方向応力	軸方向応力	人之向之间	大心向大神	人之,而为一	軸方向応力	周方向応力	軸方向応力
静水頭による応力	I	I	-	-	$\sigma_{\phi 1} = 3$	$\sigma_{x1}=2$	$\sigma_{\phi 1}$ =3	$\sigma_{x1}=2$
静水頭による応力 (約直力向地震時)	I	_	_	_	$\sigma_{\phi 2}$ =3	1	$\sigma_{\phi 2}$ =3	-
運動時質量による長手方向曲げ モーメントにより生じる応力	I	_	_	_	_	$\sigma_{x2}=6$	_	$\sigma_{x2}=6$
鉛直力向地震による長手力向曲げ モーメントにより生じる応力	I	_	_	_	_	0 × 6=6	_	0 x 6 = 6
長手方向地震により胴軸断面 全面に生じる引張応力	I	_	_	_	_	$\sigma_{x413} = 11$	_	-
組合セ応力		_	•	_	0.0	$\sigma_{0 \ 0 \ 0} = 19$	Ο 0 σ	σ_{0c} =13

	横方向	力軸力向応力	$\sigma_{x1}=2$	-	σ _{×2} =6	0 x 6=6	7 o _{x3} =17	$0 \times 71 = 17$	$\sigma_{x51} = 62$		σ c=6	.0
基準地震動S s		周方向応力	$\sigma_{\phi 1}=3$	$\sigma_{\phi 2} = 3$	l	I	$\sigma_{\phi 3}$ =17	$\sigma_{\phi71}$ =17	σ _{φ51} =20			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
基準批	長手方向	軸方向応力	$\sigma_{x1}=2$	I	σ _{x2} =6	9=9× ο	σ_{x3} =17	σ_{x71} =17	$\sigma_{x411} = 3$ $\sigma_{x412} = 15$ $\sigma_{x413} = 11$	$\sigma_{x41} = 28$	$\tau_{\ell}=10$	
	色	周为向応力	$\sigma_{\phi 1}$ =3	$\sigma_{\phi 2}$ =3	Ι	I	$\sigma_{\phi 3}$ =17	$\sigma_{\phi71}$ =17	$\begin{array}{c} \sigma_{\phi 411} = 7 \\ \sigma_{\phi 412} = 15 \end{array}$	$\sigma_{\phi 41}$ =21	02	
	横方向	軸方向応力	I	I	I	I	I	-	I			
弾性設計用地震動SdXは静的震度	横	周方向応力	1	I	I	I	I	_	I			
弹性設計用地震動	長手方向	軸方向応力	1	I	I	I	I	_	1 1	1	_	- α ₁₁₀ =65
	手	周方向応力	ı	I	I	I	I	_	1 1	ı	I	- α ₁₁ =65
地震の種類	地震の方向	応力の方向	H.	动	e 方向曲げ じる応力	手方向曲げ じる応力	脚反力 込	脚反力 、力	引展り		せん断	
			静水頭による応力	静水頭による応力 (鉛直力向地震時)	連は背量による長手方向曲げ モーメントにより生じる応力	鉛直方向地震による長手方向曲げ モーメントにより生じる応力	運転時質量による脚反力 により生じる応力	鉛直方向地震による脚反力 により生じる応力	水平方向地震	でよるがひ		

	地震動のみこよる一次応力と二次応力の和の変動値	二次応力の和の変量	が値		111111111111111111111111111111111111111			111177744	() 1	(単位: MPa)
2		地震の権類		伸性設計用地震車	カS d 又は静的震度				S	
1		地震の方向	各	手方向	横	ゴ 向	音	手方向	横	疖
込力 一 一 一 一 一 の 20=3 一 の 20=3 一 の 20=3 一 の 20=3 一 一 の 20=3 一		応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	人为向人为	軸方向応力	用方向応力	軸方向応力
展手方向 一 一 一 一 一 一 中央第十分 (株式 1 = 1) 中央 (本式 1 = 1) 中本 (本式 1 =	静水頭による応う (鉛直方向地震時	力 き	I	ı	ı	I	ο φ2=3	I	ο _{φ2} =3	I
の期支力 一 一 一 一 一 0 0 571 = 17 0 0 571 = 17 0 0 571 = 17 0 0 571 = 17 0 0 571 = 17 0 0 571 = 17 0 0 571 = 17 0 0 572 = 42 0 0 57	直方向地震による長 テーメントにより生	手方向 ごろ応力	I	I	ı	I	I	9=9× ο	I	$\sigma_{x6}=6$
分方 一 一 一 一 一 一 0 6.72 = 74 0 8.72 = 42 0 8.72 = 42 0 8.72 = 42 0 8.72 = 42 0 8.72 = 42 0 8.72 = 74 0	直方向地震による脚	期反力	I	ı	ı	ı	$\sigma_{\phi71}=17$	$\sigma_{x71} = 17$	$\sigma_{\phi 71}$ =17	$\sigma_{x71} = 17$
中 中 中 中 中 中 中 中 中 中	により生じる応	7	-	-	_	_	$\sigma_{\phi72}=74$	σ_{x72} =42	$\sigma_{\phi72}$ =74	σ_{x72} =42
中央			1	1	_	-	$\sigma_{\phi 41}$ =21	$\sigma_{x41} = 28$	$\sigma_{\phi 51} = 20$	$\sigma_{x51} = 62$
1.1kt	過季型	日産り	ı	ı			$\sigma_{\phi 421} = 8$	$\sigma_{x421} = 17$		
一	プロ四原ストナ	クロがり	I	1	I	I	$\sigma_{\phi 422} = 67$	$\sigma_{x422} = 38$	$\sigma_{\phi52}$ =165	$\sigma_{x52} = 82$
1			ı	ı			$\sigma_{\phi 42}=74$	$\sigma_{x42} = 55$		
地震の種類 神性殺計用地源的S d 又は静分源度 基準地源的S a	l	せん断		. 1					2	9=
地震の種類 選出援計用地震動S d 又は静的震度 基準地震動S s 加震の方向 長手方向 模力向 長手方向 横力 力 圧縮 - - 0 s s 1 = 3 0 s s s 4 = 3 力 圧縮 - - 0 s s 4 = 3 0 s s s s s = 13 力 世代斯 - - 0 s s s = 13 0 s s s s = 13 也 - - - 0 s s s s = 20 0 s s s s s = 20 也 地震の有額 弾性設計用地震動S d 又は静的震度 基準地震動S s s s s s s s s s s s s s s s s s s s	組合せ応力			1		-	σ 2	₀ =271	0 2 c	=414
地震の方向 長手方向 横方向 長手方向 横方向 上层8 0 b b 2		地急	長の種類	弹性設計用地震動S	3 d 又以静的震度					
り 圧縮 一 一 の s₁=3 の s₁ 力 圧縮 一 一 の s₂=13 の s₂3 力 せん断 一 一 の s₂=13 の s₂3 地震力 一 一 の s₂=13 の s₂3 地震力 一 一 の s₂=2 の s₂3 地震力(強力(大力向 機力向 機力向 機力向 機力向 力 せん断 一 の s₂=13 の s₂3 の s₂3 力 せん断 一 の s₂=13 の s₂3 力 せん断 一 の s₂=13 の s₂3 カー 中の s₂ 中の s₂ の s₂ の s₂ カー 世人断 一 の s₂ の s₂ カー 中の s₂ の s₂ の s₂ の s₂ カー 中の s₂ の s₂ の s₂ の s₂ カー 中の s₂ の s₂ の s₂ の s₂ カー 中の s₂ の s₂ の s₂ の s₂ カー 中の s₂ の s₂ の s₂ の s₂ カー 中の s₂ の s₂ の s₂ の s₂ カー の s₂ の s₂ の s₂ の s₂ カー の s₂ の s₂ の s₂ の s₂ <td></td> <td></td> <td>夏の方向</td> <td>長手方向</td> <td>横方向</td> <td>長手力</td> <td>前</td> <td>横方向</td> <td></td> <td></td>			夏の方向	長手方向	横方向	長手力	前	横方向		
力 圧縮 一 一 の s,4=3 の s,4=3 力 せん断 一 一 の s,2=13 の s,2=13 せた力 一 一 で s,2=7 で s,3 せた力 一 一 の s,2=7 で s,3 地震の種類 単生活力向 横方向 大 日展り 一 長手力向 横方向 横方向 横方向 大 力 せん断 一 の b,1=68 の b,2= カー 一 で b,1=43 で b,5	時質量による応力		紫田	ı	I	σ_{s1} =	=3	σ_{s1} =3		
力 曲げ 一 一 の s, 2 = 13 の s, 8 = 13 地震力権 一 一 「 s, 2 = 7 で s,	1向地震による応力		出	ı	I	0 s4=	=3	$\sigma_{s4}=3$		
地震の種類 単社が同 一 で s ₂ =7 で s ₃ 地震の種類 単生設計用地震動 S d 又は静的震度 基準地震動 S a 又は静的震度 力 月展り 一 で b ₁ =68 で b ₂ =7 カ セン断 一 で b ₁ =43 で b ₂ カ セン断 一 で b ₁ =43 で b ₂	古光順アトスドナ		曲げ	ı	I	σ s 2=	=13	σ_{s3} =11		
地震の種類 単性設計用地震動Sd又は持的震度 長手方向 模力向 長手方向 機力向 機力向 機力向 機力向 力 七人断 一 0 b 1 = 68 0 b b 2 = 力 七人断 一 0 b 1 = 48 0 b b 2 =	これは関係によるがいし		ナん断	ı	I	=2s 7	L=	τ s3=16		
地震の種類 単端の方向 長手方向 長手方向 長手方向 長手方向 長手方向 長手方向 大 七人断 一 0 0 b 2 = 0 0 0 b 2 = 0 0 0 b 2 = 0 0 0 b 2 = 0 0 0 b 2 = 0 0 0 b 2 = 0 0 0 0 b 2 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	組合也	芯力		-	1	Ο ε ε	=20	σ_{sc} =30		
地震の相類 単性設計用地震動 S d 又は静的震度 基準地震動 S a 及は静的震度 地震の方向 長手方向 長手方向 引張り - - せん断 - - で b 1 = 43 -	トに生じる応力							(単位: MPa)		
地震の方向 長手方向 横方向 長手方向 引張り - - 0 b1=68 セン断 - - 0 b1=43		地是	夏の種類	弹性設計用地震動S	3 d 又/講的震度					
引張り - - 0 b1=68 せん断 - - -		地	夏の 方向	長手方向	横方向	長手力	前	横方向		
せん断 c b 1 = 43	直方向地震及び 汀向地震による応力		一張り	ı	1	σ _{b1} =	89-	$\sigma_{b2} = 125$		
	が向地震による応力		さん断	I	I	=19 2	-43	τ _{b2} =54		

2.4 結論

(単位: s)				
	固有周期	$T_1 =$	$T_2 =$	$T_3 =$
2.4.1 固有周期	力 向	長手方向	横方向	鉛直

Z. 4. 2 Miv)				1		(甲以: Mra)
44 44		+	單性設計用地震	動Sd 又は静的震度	基準的	基準地震動Ss
	\$	() S	算出応力	許容応力	算出応力	化少学指
		一次一般模	I	I	$\sigma_{0} = 19$	8 = 279
肺板	SM490C	一次	1	I	σ_1 =91	$S_a = 418$
		一次十二次	1	I	$\sigma_2 = 414$	$S_a = 601$
脚	SM490C	組合せ	I	I	$\sigma_s = 30$	f_{1} =336
1、1、1、1、1	ZEINS	引張り	1	I	$\sigma_b = 125$	*047
神器イントト	JONE	せん断	1	I	τ _b =54	$f^{\rm p}=338$
	1	1	_			

注記*: $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau$ b, $f_{to}]$ より算出。 すべて許容応力以下である。