本資料のうち，枠囲みの内容 は商業機密の観点から公開 できません。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－10－1－2－2－5 高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震性についての計算書

2021年8月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 11
3．評価部位 12
4．固有周期 13
4．1 固有周期の計算方法 13
4．2 固有周期の計算条件 14
4．3 固有周期の計算結果 14
5．構造強度評価 15
5.1 構造強度評価方法 15
5.2 荷重の組合せ及び許容応力 15
5．2．1 荷重の組合せ及び許容応力状態 15
5．2．2 許容応力 15
5．2．3 使用材料の許容応力評価条件 15
5.3 設計用地震力 20
5.4 計算方法 21
5．4．1 応力の計算方法 21
5.5 計算条件 36
5．5．1 胴板の応力計算条件 36
5．5．2 脚の応力計算条件 36
5．5．3 基礎ボルトの応力計算条件 36
5.6 応力の評価 37
5．6．1 胴の応力評価 37
5．6．2 脚の応力評価 37
5．6．3 基礎ボルトの応力評価 38
6．評価結果 39
6.1 設計基準対象施設としての評価結果 39
6．2 重大事故等対処設備としての評価結果 39
7．引用文献 39

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，高圧炉心スプレイ系ディーゼル発電設備軽油タンク が設計用地震力に対して十分な構造強度を有していることを説明するものである。その耐震評価は，応力評価により行う。

高圧炉心スプレイ系ディーゼル発電設備軽油タンクは，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備と しての構造強度評価及び動的機能維持評価を示す。

2．一般事項
2． 1 構造計画
高圧炉心スプレイ系ディーゼル発電設備軽油タンクの構造計画を表2－1 に示す。
O 2 （4）VI－2－10－1－2－2－5 R 1

計画の概要		概略構造図
基礎•支持構造	主体構造	
胴を脚で支持し，脚をそれ ぞれ基礎ボルトで基礎に据え付ける。	横置円筒形容器	

2.2 評価方針

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの応力評価は，添付書類「VI－2－ 1－9 機能維持の基本方針」のうち「3．1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す高圧炉心スプレイ系ディーゼル発電設備軽油タンクの部位を踏まえ「3。評価部位」にて設定する箇所 において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等 が許容限界に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価フローを図2－1に示 す。

図 2－1 高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
（2）原子力発電所耐震設計技術指針（ J E A G 4 6 O 1－1987）
（3）原子力発電所耐震設計技術指針（ J E A G 4 6 O 1－1991 追補版）
（4）J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A_{b}	基礎ボルトの軸断面積	mm^{2}
$\mathrm{A}_{\text {s }}$	脚の断面積	mm^{2}
$\mathrm{A}_{\text {s } 1}$	脚の長手方向に対する有効せん断断面積	mm^{2}
$\mathrm{A}_{\text {s } 2}$	脚の横方向に対する有効せん断断面積	mm^{2}
$\mathrm{A}_{\text {s } 3}$	脚の長手方向に対するせん断断面積	mm^{2}
$\mathrm{A}_{5} 4$	脚の横方向に対するせん断断面積	mm^{2}
a	脚底板の長手方向幅	mm
b	脚底板の横方向幅	mm
C 1	脚の胴つけ根部のアタッチメントの幅の 2 分の 1 （胴の横方向）	mm
C_{2}	脚の胴つけ根部のアタッチメントの幅の 2 分の 1 （胴の長手方向）	mm
$\mathrm{C}_{\mathrm{cj}}{ }^{\text {d }}$	周方向モーメントによる応力の補正係数（引用文献（2）より 得られる値）（ $j=1$ ：周方向応力，$j=2$ ：軸方向応力）	－
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\ell}{ }^{\text {j }}$	軸方向モーメントによる応力の補正係数（引用文献（2）より 得られる値）$(j=1$ ：周方向応力，$j=2$ ：軸方向応力）	－
C_{V}	鉛直方向設計震度	－
D_{i}	胴の内径	mm
d	ボルトの呼び径	mm
d_{1}	脚底板端面から基礎ボルト中心までの長手方向の距離	mm
d 2	脚底板端面から基礎ボルト中心までの横方向の距離	mm
Es	脚の縦弾性係数	MPa
e	脚中心から偏心荷重作用点までの距離	mm
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 又は SSB－3133に定める値	MPa
F_{b}	基礎ボルトに作用する引張力	N
$f_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{t}	脚の許容引張応力	MPa
$f_{\text {to }}$	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
G_{s}	脚のせん断弾性係数	MPa

記号	記号の説明	単位
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
H	水頭	mm
h_{1}	基礎から脚の胴つけ根部までの高さ	mm
h_{2}	基礎から胴の中心までの高さ	mm
I sx	脚の長手方向軸に対する断面二次モーメント	mm ${ }^{4}$
$I_{\text {s y }}$	脚の横方向軸に対する断面二次モーメント	mm ${ }^{4}$
$\mathrm{K}_{1 \mathrm{j}}, \mathrm{K}_{2 \mathrm{j}}$	引用文献（2）によるアタッチメントパラメータの補正係数 $(j=1$ ：周方向応力，$j=2$ ：軸方向応力）	－
K_{c}	脚のばね定数（胴の横方向に水平力が作用する場合）	N / mm
K_{ℓ}	脚のばね定数（胴の長手方向に水平力が作用する場合）	N / mm
K_{v}	脚のばね定数（胴に鉛直力が作用する場合）	N / mm
$\mathrm{K}_{\mathrm{cj}}, \mathrm{K}_{\ell \mathrm{j}}$	引用文献（2）によるアタッチメントパラメータの補正係数 $(j=1$ ：周方向応力，$j=2$ ：軸方向応力）	－
l	胴の横方向から見て，両端の脚の中心から鏡板重心までの距離	mm
ℓ_{H}	鏡板の端から鏡板の丸みの始まる箇所までの長さ	mm
$\ell_{\text {L }}$	鏡板の丸みの始まる箇所間の長さ	mm
ℓ_{0}	脚中心間距離	mm
$\ell_{\text {w }}$	当板における脚の取り付かない部分の長手方向長さ	mm
M	脚底板に作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {s i }}$	脚に作用する荷重及び脚つけ根の部分における曲げモーメ ント（ $\mathrm{i}=1 \sim 4$ ）	$\mathrm{N} \cdot \mathrm{mm}$
M_{1}	脚つけ根部における胴の運転時質量によるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{c}	横方向地震により胴の脚つけ根部に作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{c} 1}$	横方向地震により脚底面に作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{e}	長手方向地震による胴の脚つけ根部のモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{11}	長手方向地震により脚底面に働くモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{x}	胴に生じる軸方向の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}$
M_{ϕ}	胴に生じる周方向の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}$
m_{0}	容器の有効運転質量	kg
$\mathrm{m}_{\text {s }}$	脚1本当たりの質量	kg
N_{x}	胴に生じる軸方向の膜力	N / mm
N_{ϕ}	胴に生じる周方向の膜力	N / mm
n	脚 1 個当たりの基礎ボルトの本数	－

記号	記号の説明	単位
n 1	長手方向及び鉛直方向地震時に引張りを受ける基礎ボルト の本数	－
n 2	横方向及び鉛直方向地震時に引張りを受ける基礎ボルトの本数	－
P	運転時質量により胴の脚つけ根部に作用する反力	N
$\mathrm{P}_{\text {e }}$	鉛直方向地震により胴の脚つけ根部に作用する反力	N
P_{ℓ}	長手方向地震により胴の脚つけ根部に作用する鉛直荷重	N
$\mathrm{P}_{\text {s }}$	長手方向及び鉛直方向地震により脚底部に作用する鉛直荷重	N
$\mathrm{P}_{\mathrm{s} 1}$	横方向及び鉛直方向地震により脚底部に作用する鉛直荷重	N
R 1	脚に作用する荷重	N
R si	各脚に作用する荷重（ $\mathrm{i}=1 \sim 4)$	N
r_{m}	脚つけ根部における胴の平均半径	mm
r 0	脚つけ根部における胴の外半径	mm
S	設計•建設規格 付録材料図表 Part5 表5に定める値	MPa
S a	胴の許容応力	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(R T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料 の $40^{\circ} \mathrm{C}$ における値	MPa
S	基礎ボルトと基礎の縦弾性係数比	－
T ${ }_{1}$	長手方向の固有周期	S
T 2	横方向の固有周期	S
T3	鉛直方向の固有周期	S
t	脚側胴板の厚さ	mm
t e	脚つけ根部における胴の有効板厚	mm
w	胴部自重による等分布荷重	N / mm
X_{n}	基礎が圧縮力を受ける幅	mm
Z	引用文献（1）による胴の断面係数	mm^{3}
Z_{sx}	脚の長手方向軸に対する断面係数	mm^{3}
$\mathrm{Z}_{\text {s y }}$	脚の横方向軸に対する断面係数	mm^{3}
$\beta, \beta_{1}, \beta_{2}$	引用文献（2）によるアタッチメントパラメータ	－
γ	引用文献（2）によるシェルパラメータ	－
θ	引用文献（1）による胴の有効範囲角の 2 分の 1	rad
$\theta 0$	胴の脚端部より鉛直軸までの角度	rad

記号	記号の説明	単位
θ w	胴の脚端部より当板端部までの角度	rad
π	円周率	－
ρ^{\prime}	液体の密度 $\left(=\right.$ 比重 $\left.\times 10^{-6}\right)$	$\mathrm{kg} / \mathrm{mm}^{3}$
$\sigma 0$	胴の組合せ一次一般膜応力の最大値	MPa
$\sigma 0 \mathrm{c}$	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次一般膜応力	MPa
$\sigma 0 \mathrm{cx}$	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次一般膜応力の和	MPa
σ оc ϕ	横方向及び鉛直方向地震が作用した場合の胴の周方向一次一般膜応力の和	MPa
O oe	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一次一般膜応力	MPa
$\sigma 00 x$	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一次一般膜応力の和	MPa
$\sigma 00 \phi$	長手方向及び鉛直方向地震が作用した場合の胴の周方向一次一般膜応力の和	MPa
σ_{1}	胴の組合せ一次応力の最大値	MPa
$\sigma_{1 \mathrm{c}}$	横方向及び鉛直方向地震が作用した場合の胴の組合せ一次応力	MPa
$\sigma_{1 \mathrm{cx}}$	横方向及び鉛直方向地震が作用した場合の胴の軸方向一次応力の和	MPa
$\sigma_{1 \mathrm{c} \phi}$	横方向及び鉛直方向地震が作用した場合の胴の周方向一次応力の和	MPa
$\sigma 10$	長手方向及び鉛直方向地震が作用した場合の胴の組合せ一次応力	MPa
$\sigma_{11} \mathrm{x}$	長手方向及び鉛直方向地震が作用した場合の胴の軸方向一次応力の和	MPa
$\sigma{ }_{10}{ }^{\text {d }}$	長手方向及び鉛直方向地震が作用した場合の胴の周方向一次応力の和	MPa
O 2	地震動のみによる胴の組合せ一次応力と二次応力の和の変動値の最大値	MPa
$\sigma_{2} \mathrm{c}$	横方向及び鉛直方向地震のみによる胴の組合せ一次応力と二次応力の和	MPa
$\sigma 2 \mathrm{cx}$	横方向及び鉛直方向地震のみによる胴の軸方向一次応力と二次応力の和	MPa

記号	記号の説明	単位
$\sigma 2 \mathrm{c} \phi$	横方向及び鉛直方向地震のみによる胴の周方向一次応力と二次応力の和	MPa
O $2 e$	長手方向及び鉛直方向地震のみによる胴の組合せ一次応力 と二次応力の和	MPa
$\sigma 2 \ell x$	長手方向及び鉛直方向地震のみによる胴の軸方向一次応力 と二次応力の和	MPa
$\sigma{ }^{2 \ell}{ }^{\prime}$	長手方向及び鉛直方向地震のみによる胴の周方向一次応力 と二次応力の和	MPa
σ b	基礎ボルトに生じる引張応力の最大値	MPa
$\sigma \mathrm{b} 1$	長手方向及び鉛直方向地震により基礎ボルトに生じる引張応力	MPa
$\sigma \mathrm{b} 2$	横方向及び鉛直方向地震により基礎ボルトに生じる引張応力	MPa
σ s	脚の組合せ応力の最大値	MPa
σ s c	横方向及び鉛直方向地震が作用した場合の脚の組合せ応力	MPa
σ se	長手方向及び鉛直方向地震が作用した場合の脚の組合せ応力	MPa
σ s 1	運転時質量により脚に生じる圧縮応力	MPa
σ s 2	長手方向地震により脚に生じる曲げ及び圧縮応力の和	MPa
σ s 3	横方向地震により脚に生じる曲げ応力	MPa
σ s 4	鉛直方向地震により脚に生じる圧縮応力	MPa
$\sigma \times 1$	静水頭により胴に生じる軸方向一次応力	MPa
$\sigma \times 2$	運転時質量による長手方向曲げモーメントにより胴の脚つ け根部に生じる軸方向一次応力	MPa
$\sigma \times 3$	運転時質量により胴の脚つけ根部に生じる軸方向一次応力	MPa
$\sigma \times 41, \sigma \times 42$	長手方向地震により胴の脚つけ根部に生じる軸方向一次応力の和及び二次応力の和	MPa
$\sigma \times 411, \sigma \times 421$	長手方向地震による曲げモーメントにより胴の脚つけ根部 に生じる軸方向一次応力及び二次応力	MPa
$\sigma \times 412, \sigma \times 422$	長手方向地震による鉛直荷重により胴の脚つけ根部に生じ る軸方向一次応力及び二次応力	MPa
O $\times 143$	長手方向地震による水平方向荷重により胴に生じる軸方向一次応力	MPa
$\sigma \times 51, \sigma \times 52$	横方向地震による曲げモーメントにより胴の脚つけ根部に生じる軸方向一次応力及び二次応力	MPa

記号	記号の説明	単位
$\sigma \times 6$	鉛直方向地震による長手方向曲げモーメントにより胴の脚 つけ根部に生じる軸方向一次応力	MPa
$\sigma \times 71, \sigma \times 72$	鉛直方向地震により胴の脚つけ根部に生じる軸方向一次応力及び二次応力	MPa
$\sigma_{\phi 1}$	静水頭により胴に生じる周方向一次応力	MPa
$\sigma_{\phi 2}$	静水頭に鉛直地震力が加わり胴に生じる周方向一次応力	MPa
$\sigma_{\phi 3}$	運転時質量により胴の脚つけ根部に生じる周方向一次応力	MPa
$\sigma_{\phi 41}, \sigma_{\phi 42}$	長手方向地震により胴の脚つけ根部に生じる周方向一次応力の和及び二次応力の和	MPa
$\sigma_{\phi 411}, \sigma_{\phi 421}$	長手方向地震による曲げモーメントにより胴の脚つけ根部 に生じる周方向一次応力及び二次応力	MPa
$\sigma_{\phi 412}, \sigma_{\phi 422}$	長手方向地震による鉛直荷重により胴の脚つけ根部に生じ る周方向一次応力及び二次応力	MPa
$\sigma_{\phi 51}, \sigma_{\phi 52}$	横方向地震による曲げモーメントにより胴の脚つけ根部に生じる周方向一次応力及び二次応力	MPa
$\sigma_{\phi 71}, \sigma_{\phi 72}$	鉛直方向地震により胴の脚つけ根部に生じる周方向一次応力及び二次応力	MPa
τ b	基礎ボルトに生じるせん断応力の最大健	MPa
τ b 1	長手方向地震により基礎ボルトに生じるせん断応力	MPa
$\tau \mathrm{b} 2$	横方向地震により基礎ボルトに生じるせん断応力	MPa
τ c	横方向地震により胴の脚つけ根部に生じるせん断応力	MPa
τ_{ℓ}	長手方向地震により胴の脚つけ根部に生じるせん断応力	MPa
τ s2	長手方向地震により脚に生じるせん断応力	MPa
τ s 3	横方向地震により脚に生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
固有周期		S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度		－	小数点以下第 3 位	切上げ	小数点以下第 2 位
最高使用圧力		MPa	－	－	小数点以下第 2 位
温度		${ }^{\circ} \mathrm{C}$	－	－	整数位
比重		－	小数点以下第 3 位	四捨五入	小数点以下第 2 位
質量		kg	－	－	整数位
$\begin{aligned} & \text { 長 } \\ & \text { さ } \end{aligned}$	下記以外の長さ	mm	－	－	整数位＊${ }^{\text {P }}$
	胴板の厚さ	mm	－	－	小数点以下第 1 位
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
角度		rad	小数点以下第 4 位	四捨五入	小数点以下第 3 位
算出応力		MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3		MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降状点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価は「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる胴，脚及び基礎ボルトについて評価を実施する。

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震評価部位については，表2－ 1 の概略構造図に示す。

4．固有周期
4． 1 固有周期の計算方法
（1）計算モデル
モデル化に当たっては次の条件で行う。
a．容器及び内容物の質量は中心軸に集中するものとする。
b．容器の胴は 4 個の脚で支持され，脚はそれぞれ基礎ボルトで基礎に固定されて おり，固定端とする。
c．胴は剛とし，脚をはりと考え，変形モードは脚の曲げ及びせん断変形を考慮す る。
d．全脚固定とし，力は全脚で受けるものとする。
e．耐震計算に用いる寸法は，公称値を使用する。

図 4－1 長手方向の固有周期計算モデル

図 4－2 横方向の固有周期計算モデル

$\begin{aligned} \text { 図 4－3 } & \text { 鉛直方向の固有周期 } \\ & \text { 計算モデル }\end{aligned}$
（2）長手方向の固有周期
図4－1におけるばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\ell}=\frac{4}{\frac{\mathrm{~h}_{1}^{3}}{12 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sy}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 1}}} \tag{4.1.1}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{1}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{0}}{\mathrm{~K}_{\ell} \cdot 1000}} \tag{4.1.2}
\end{equation*}
$$

（3）横方向の固有周期
図4－2におけるばね定数は次式で求める。

$$
\mathrm{K}_{\mathrm{c}}=\frac{1}{\frac{\mathrm{~h}_{1}{ }^{2} \cdot\left(3 \cdot \mathrm{~h}_{2}-\mathrm{h}_{1}\right)}{6 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) \cdot \mathrm{h}_{1} \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1} / 2\right)}{\mathrm{E}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{sx}}}+\frac{\mathrm{h}_{1}}{\mathrm{G}_{\mathrm{s}} \cdot \mathrm{~A}_{\mathrm{s} 2}}}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{2}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{1}}{\mathrm{~g}}+\mathrm{m}_{\mathrm{s}}}{\mathrm{~K}_{\mathrm{c}} \cdot 1000}} \tag{4.1.4}
\end{equation*}
$$

（4）鉛直方向の固有周期
図 4－3 におけるばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{v}}=\frac{1}{\frac{\mathrm{~h}_{1}}{\mathrm{~A}_{\mathrm{s}} \cdot \mathrm{E}_{\mathrm{s}}}} \tag{4.1.5}
\end{equation*}
$$

固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{3}=2 \cdot \pi \cdot \sqrt{\frac{\frac{\mathrm{R}_{1}}{\mathrm{~g}}+\mathrm{m}_{\mathrm{s}}}{\mathrm{~K}_{\mathrm{v}} \cdot 1000}} \tag{4.1.6}
\end{equation*}
$$

4．2 固有周期の計算条件
固有周期の計算に用いる計算条件は，【高圧炉心スプレイ系ディーゼル発電設備軽油タンクの耐震性についての計算結果】の機器要目に示す。

4．3 固有周期の計算結果
固有周期の計算結果を表 4－1 に示す。計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。

表 4－1 固有周期（s）

水平方向		鉛直方向	
長手	横	\begin{tabular}{\|c	}
\hline			
\end{tabular}			

5．構造強度評価

5.1 構造強度評価方法

4．1（1）項 a 。 e 。のほか，次の条件で計算する。概要図は表 $2-1$ を参照する。
（1）地震力は容器に対して水平方向及び鉛直方向に作用するものとする。ここで，水平方向地震は胴の長手方向に作用する場合と胴の横方向に作用する場合を考慮する。
（2）全脚は同形状であり，受ける荷重が最大の脚についての評価を計算書に記載する。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
高圧炉心スプレイ系ディーゼル発電設備軽油タンクの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表5－1に，重大事故等対処設備の評価に用いるものを表5－2に示す。

5．2．2 許容応力
高圧炉心スプレイ系ディーゼル発電設備軽油タンクの許容応力は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき表 5－3 及び表 5－4 のとおりとする。

5．2．3 使用材料の許容応力評価条件
高圧炉心スプレイ系ディーゼル発電設備軽油タンクの使用材料の許容応力評価条件のらち設計基準対象施設の評価に用いるものを表5－5に，重大事故等対処設備の評価に用いるものを表5－6に示す。
O 2 （4）VI－2－10－1－2－2－5 R 1
注記＊：クラス 2,3 容器及びクラス 2,3 支持構造物の荷重の組合せ及び許容応力を適用する。

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
		高圧炬心スプレイ系 ディーゼル発電設備軽油タンク	常設耐震／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}{ }^{* 3}$	$\mathrm{IV}_{4} \mathrm{~S}$
非常用電源 設備	非常用発電装置				$\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{A} S$ として IV A の の許容限界を用い る。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：重大事故等クラス 2 容器及び重大事故等クラス 2 支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。
O 2 （4）VI－2－10－1－2－2－5 R 1

許容応力状態		許 容	界＊1，＊2
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力 $\begin{aligned} & \text { 一次 }+ \text { 二次 }+ \\ & \text { ピーク応力 }\end{aligned}$
$\mathrm{III}_{A} \mathrm{~S}$	ただし，オーステナイト系 ステンレス鋼及び高ニッケ ル合金については上記値と 1．2•Sとの大きい方	左欄の 1.5 倍の値	弾性設計用地震動 S d 又は基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2•Sy以下であれば，疲労解析は不要。
$\mathrm{IV}_{A} \mathrm{~S}$			
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \end{gathered}$ の許容限界を用い る。）			基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 •Sy以下であれば，疲労解析は不要。

注記＊1：座屈による評価は，クラス MC容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
表 5－4 許容応力（クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	$\begin{aligned} & \text { 許容限界*1,*2 } \\ & \text { (ボルト等以外) } \end{aligned}$	許容限界＊1，＊2 （ボルト等）	
	一次応力	一次応力	
	引張り	引張り	せん断
$\mathrm{IIH}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}{ }^{*}$	$1.5 \cdot \mathrm{ft}{ }^{*}$	$1.5 \cdot \mathrm{fs*}$
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ $\left(\mathrm{V}_{\mathrm{A}} \mathrm{S}\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ 許容限界を用いる。）$) ~$			

＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
O 2 （4）VI－2－10－1－2－2－5 R 1
表 5－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
胴板	$\begin{gathered} \text { SM490C } \\ (16 \mathrm{~mm}<\text { 厚 } \searrow \leqq 40 \mathrm{~mm}) \end{gathered}$	最高使用温度	66	－	300	465	－
脚	$\begin{gathered} \text { SM490C } \\ (16 \mathrm{~mm}<\text { 厚 } さ \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	309	480	－
基礎ボルト	$\begin{gathered} \text { SNB7 } \\ (\text { 径 } \leqq 63 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	715	838	－

表 5－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
胴板	$\begin{gathered} \text { SM490C } \\ (16 \mathrm{~mm}<\text { 厚 } \searrow \leqq 40 \mathrm{~mm}) \end{gathered}$	最高使用温度	66	－	300	465	－
脚	$\begin{gathered} \text { SM490C } \\ (16 \mathrm{~mm}<\text { 厚 } さ \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	309	480	－
基礎ボルト	$\begin{gathered} \text { SNB7 } \\ (\text { 径 } \leqq 63 \mathrm{~mm}) \end{gathered}$	周囲環境温度	50	－	715	838	－

5.3 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

評価に用いる設計用地震力を表5－7 及び表 5－8に示す。

表 5－7 設計用地震力（設計基準対象施設）

据付場所及び	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
床面高さ （m）	水 平方 向	鉛 直方 向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
軽油タンク室（H） 0．P．6． $40^{* 1}$			－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=1.56$	$\mathrm{C}_{\mathrm{V}}=0.99$

注記＊1：基準床レベルを示す。
＊2：$\Pi_{A} S$ については，基準地震動 S s で評価する。

表 5－8 設計用地震力（重大事故等対処設備）

据付場所	固有周期（s）		基準地震動 S S	
床面高さ （m）	水 平方 向	鉛 直方 向	水平方向設計震度	鉛直方向設計震度
軽油タンク室（H） $\text { 0.P. 6. } 40^{*}$			$\mathrm{C}_{\mathrm{H}}=1.56$	$\mathrm{C}_{\mathrm{V}}=0.99$

注記＊：基準床レベルを示す。

5.4 計算方法

図 5－1 に荷重状態を示す。

図 5－1 荷重状態

5．4．1 応力の計算方法
応力計算における水平方向と鉛直方向の組合せについて，動的地震力を用いる
こととし，SRSS 法を用いるものとする。
5．4．1．1 胴の計算方法
（1）脚つけ根の部分における曲げモーメント

$$
\begin{equation*}
\mathrm{w}=\frac{\left(\mathrm{m}_{0}-4 \cdot \mathrm{~m}_{\mathrm{s}}\right) \cdot \mathrm{g}}{\ell_{\mathrm{L}}+\frac{4}{3} \cdot \ell_{\mathrm{H}}} \tag{5.4.1.1.1}
\end{equation*}
$$

第1脚及び第4脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{\mathrm{s} 1}=\mathrm{M}_{\mathrm{s} 4}=\frac{1}{2} \cdot \mathrm{w} \cdot \ell^{2} \tag{5.4.1.1.2}
\end{equation*}
$$

第2脚及び第3脚に作用する曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{\mathrm{s} 2}=\mathrm{M}_{\mathrm{s} 3}=\frac{\mathrm{w}}{10} \cdot\left(\ell_{0}^{2}-\ell^{2}\right) \tag{5.4.1.1.3}
\end{equation*}
$$

応力計算に使用する M_{1} は，$M_{s 1} \sim M_{s}$ のうち最大のものとする。
（2）静水頭による応力（鉛直方向地震時を含む。）

$$
\begin{align*}
& \sigma_{\phi 1}=\frac{\rho^{\prime} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{t}} \tag{5.4.1.1.4}\\
& \sigma_{\phi 2}=\frac{\rho^{\prime} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{V}}}{2 \cdot \mathrm{t}} \tag{5.4.1.1.5}\\
& \sigma_{\mathrm{x} 1}=\frac{\rho^{\prime} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{D}_{\mathrm{i}}}{4 \cdot \mathrm{t}} \ldots \tag{5.4.1.1.6}
\end{align*}
$$

（3）運転時質量及び鉛直方向地震により生じる長手方向曲げモーメントによる応力
（1）項で求めた曲げモーメントにより胴の脚つけ根部に生じる応力は次のよ うに求める。

引用文献（1）によれば，この曲げモーメントは胴の断面に対して一様に作用す るものではなく，脚つけ根部において円周方向の曲げモーメントに置き換えら れ，胴の局部変形を生じさせようとする。

長手方向の曲げモーメントによる胴の応力の影響範囲を脚上 $\theta_{0} / 6$ の点とす ると長手方向曲げモーメントに対する胴の有効断面積は図5－2に2•日 で示さ れる円殻である。

したがって，運転時質量による応力は次式で求める。

$$
\begin{equation*}
\sigma_{\times 2}=\frac{\mathrm{M}_{1}}{\mathrm{Z}} \tag{5.4.1.1.7}
\end{equation*}
$$

また，鉛直方向地震による応力は次式で求める。

$$
\begin{equation*}
\sigma_{\mathrm{x} 6}=\frac{\mathrm{M}_{1}}{\mathrm{Z}} \cdot \mathrm{C}_{\mathrm{V}} \tag{5.4.1.1.8}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{r}_{\mathrm{m}}=\frac{\mathrm{D}_{\mathrm{i}}+\mathrm{t}_{\mathrm{e}}}{2} \quad \cdots \ldots \operatorname{rin}^{2} \cdot \mathrm{t}_{\mathrm{e}} \cdot\left\{\frac{\theta+\sin \theta \cdot \cos \theta-2 \cdot \sin ^{2} \theta / \theta}{(\sin \theta / \theta)-\cos \theta}\right\} \tag{5.4.1.1.9}\\
& \left.\mathrm{Z}=\mathrm{r}_{\mathrm{m}}^{2}\right\}
\end{align*}
$$

（5．4．1．1．10）

図 5－2 脚つけ根部の有効範囲

胴の脚つけ根部に取り付く当板の大きさが
周方向範囲

$$
\begin{equation*}
\theta_{\mathrm{w}} \geqq{\frac{\theta_{0}}{6}}^{* 1} \tag{5.4.1.1.11}
\end{equation*}
$$

長手方向範囲 $\quad \ell_{\mathrm{w}} \geqq 1.56 \cdot \sqrt{\left(\frac{\mathrm{D}_{\mathrm{i}}+\mathrm{t}}{2}\right) \cdot \mathrm{t}}{ }^{* 2}$
である場合，脚つけ根部における胴の有効板厚 t eは胴板の厚さと当板の厚さ の合計とする。また，当板が上記の範囲を満たさない場合，teは胴板の厚さと する。

注記＊1：引用文献（1）より引用
＊2：引用文献（3）より引用
（4）脚に作用する荷重
第1脚及び第4脚に作用する荷重

$$
\begin{equation*}
\mathrm{R}_{\mathrm{s} 1}=\mathrm{R}_{\mathrm{s} 4}=\mathrm{w} \cdot \ell+\frac{\mathrm{w}}{2} \cdot \ell_{0}-\frac{\mathrm{M}_{\mathrm{s} 2}-\mathrm{M}_{\mathrm{s} 1}}{\ell_{0}} \cdots \cdots \cdots \cdots \cdots \tag{5.4.1.1.13}
\end{equation*}
$$

第2脚及び第3脚に作用する荷重

$$
\mathrm{R}_{\mathrm{s} 2}=\mathrm{R}_{\mathrm{s} 3}=\frac{\mathrm{w} \cdot \ell_{0}}{2}+\frac{\mathrm{w} \cdot \ell_{0}}{2}-\frac{\mathrm{M}_{\mathrm{s} 1}-\mathrm{M}_{\mathrm{s} 2}}{\ell_{0}}-\frac{\mathrm{M}_{\mathrm{s} 3}-\mathrm{M}_{\mathrm{s} 2}}{\ell_{0}}=\mathrm{w} \cdot \ell_{0}-\frac{\mathrm{M}_{\mathrm{s} 1}-\mathrm{M}_{\mathrm{s} 2}}{\ell_{0}}
$$

（5．4．1．1．14）
固有周期計算及び応力計算において R_{1} は $R_{s 1} \sim R_{s 4}$ のうち最大のものとする。
（5）運転時質量及び鉛直方向地震による脚つけ根部の応力
胴の脚つけ根部には脚反力による周方向応力及び軸方向応力が生じる。胴の脚つけ根部に作用する反力は次式で求める。

運転時質量による反力は，

$$
\begin{equation*}
\mathrm{P}=\mathrm{R}_{1} \tag{5.4.1.1.15}
\end{equation*}
$$

鉛直方向地震による反力は，

$$
\begin{equation*}
\mathrm{P}_{\mathrm{e}}=\mathrm{C}_{\mathrm{V}} \cdot \mathrm{R}_{1} \tag{5.4.1.1.16}
\end{equation*}
$$

この反力 P 及び P_{e} により生じる胴の周方向応力及び軸方向応力は，引用文献 （2）により次のように求める。

脚が胴に及ぼす力の関係を図5－3に示す。

図 5－3 脚が胴に及ぼす力の関係

ここで，シェルパラメータ γ 及びアタッチメントパラメータ β は以下のよう に定義する。

$$
\begin{align*}
& \gamma=\mathrm{r}_{\mathrm{m}} / \mathrm{t}_{\mathrm{e}} \tag{5.4.1.1.17}\\
& \beta_{1}=\mathrm{C}_{1} / \mathrm{r}_{\mathrm{m}} \tag{5.4.1.1.18}\\
& \beta_{2}=\mathrm{C}_{2} / \mathrm{r}_{\mathrm{m}} \tag{5.4.1.1.19}
\end{align*}
$$

$4 \geqq \beta_{1} / \beta_{2} \geqq 1$ のとき

$$
\begin{equation*}
\beta=\left\{1-\frac{1}{3} \cdot\left(\beta_{1} / \beta_{2}-1\right) \cdot\left(1-\mathrm{K}_{1 \mathrm{j}}\right)\right\} \cdot \sqrt{\beta_{1} \cdot \beta_{2}} \tag{5.4.1.1.20}
\end{equation*}
$$

ただし，$\beta \leqq 0.5$
$\frac{1}{4} \leqq \beta_{1} / \beta_{2}<1$ のとき

$$
\begin{equation*}
\beta=\left\{1-\frac{4}{3} \cdot\left(1-\beta_{1} / \beta_{2}\right) \cdot\left(1-\mathrm{K}_{2 \mathrm{j}}\right)\right\} \cdot \sqrt{\beta_{1} \cdot \beta_{2}} \tag{5.4.1.1.21}
\end{equation*}
$$

ただし，$\beta \leqq 0.5$

シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献（2）の図より値（以下＊を付記するもの）を求めることにより応力は次式で求める。

反力 Pによる応力は，
一次応力

$$
\begin{align*}
& \sigma_{\phi 3}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.4.1.1.22}\\
& \sigma_{\mathrm{x} 3}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.4.1.1.23}
\end{align*}
$$

反力 Pe_{e} による応力は，
一次応力

$$
\begin{align*}
& \sigma_{\phi 71}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P}_{\mathrm{e}} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.4.1.1.24}\\
& \sigma_{x 71}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{e}} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.4.1.1.25}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{\phi 72}=\left(\frac{\mathrm{M}_{\phi}}{\mathrm{P}_{\mathrm{e}}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\mathrm{e}}}{\mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.26}\\
& \sigma_{\times 72}=\left(\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{e}}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\mathrm{e}}}{\mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.27}
\end{align*}
$$

（6）長手方向地震による脚つけ根部の応力
全脚固定であり，脚つけ根部に生じる曲げモーメント及び鉛直荷重は次式で求める。

$$
\begin{align*}
& \mathrm{M}_{\ell}=\frac{1}{8} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{s}}\right) \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \quad \ldots \ldots \ldots \tag{5.4.1.1.28}\\
& \mathrm{P}_{\ell}=\left(\mathrm{m}_{0}-\mathrm{m}_{\mathrm{s}}\right) \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1} / 2\right) /\left(3 \cdot \ell_{0}\right) \tag{5.4.1.1.29}
\end{align*}
$$

曲げモーメント M_{ℓ} と鉛直荷重 P_{ℓ} により生じる胴の周方向応力及び軸方向応力は，シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献（2）の図より値（以下＊を付記するもの）を求めることより（5．4．1．1．31）式 ～（5．4．1．1．38）式で求める。

ここで，シェルパラメータ γ 及び P_{ℓ} の場合のアタッチメントパラメータ β は（5）と同じであるが， M_{e} の場合のアタッチメントパラメータ β は次式による。 ただし，二次応力を求める場合は更に $\mathrm{K}_{\ell \mathrm{j}}$ を乗じた値とする。

$$
\begin{equation*}
\beta=\sqrt[3]{\beta_{1} \cdot \beta_{2}{ }^{2}} \tag{5.4.1.1.30}
\end{equation*}
$$

ただし，$\beta \leqq 0.5$

曲げモーメント M_{e} により生じる応力は次式で求める。
一次応力

$$
\begin{gather*}
\sigma_{\phi 411}=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\ell} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\ell 1} \tag{5.4.1.1.31}\\
\ldots \ldots \ldots
\end{gather*} \sigma_{\mathrm{x411}}=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\ell} /\left(\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\ell 2} .
$$

（5．4．1．1．32）

二次応力

$$
\begin{align*}
& \sigma_{\phi 421}=\left\{\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{\mathrm{e}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.33}\\
& \sigma_{\mathrm{x} 421}=\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{e}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{e}}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.34}
\end{align*}
$$

鉛直荷重 P_{ℓ} により生じる応力は次式で求める。
一次応力

$$
\begin{align*}
& \sigma_{\phi 412}=\left(\frac{\mathrm{N}_{\phi}}{\mathrm{P}_{\ell} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\ell}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.4.1.1.35}\\
& \sigma_{\times 412}=\left(\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{P}_{\ell} / \mathrm{r}_{\mathrm{m}}}\right)^{*} \cdot\left(\frac{\mathrm{P}_{\ell}}{\mathrm{r}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{e}}}\right) \tag{5.4.1.1.36}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{\phi 422}=\left(\frac{\mathrm{M}_{\phi}}{\mathrm{P}_{\ell}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\ell}}{\mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.37}\\
& \sigma_{\times 422}=\left(\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{P}_{\ell}}\right)^{*} \cdot\left(\frac{6 \cdot \mathrm{P}_{\ell}}{\mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.38}
\end{align*}
$$

また，水平方向荷重により胴には，次式で求める引張応力が生じる。

$$
\begin{equation*}
\sigma_{x 413}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{~m}_{0}-\mathrm{m}_{\mathrm{s}}\right) \cdot \mathrm{g}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right) \cdot \mathrm{t}} \tag{5.4.1.1.39}
\end{equation*}
$$

したがって，曲げモーメント M_{ℓ} ，鉛直荷重 P_{ℓ} 及び水平方向荷重により生じる胴の応力は次式で求める。

一次応力

$$
\begin{align*}
& \sigma_{\phi 41}=\sigma_{\phi 411}+\sigma_{\phi 412} \cdots \tag{5.4.1.1.40}\\
& \sigma_{\times 41}=\sigma_{\times 411}+\sigma_{\times 412}+\sigma_{\times 413} \tag{5.4.1.1.41}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{\phi 42}=\sigma_{\phi 421}+\sigma_{\phi 422} \tag{5.4.1.1.42}\\
& \sigma_{x 42}=\sigma_{x 421}+\sigma_{x 422} \tag{5.4.1.1.43}
\end{align*}
$$

また，長手方向地震が作用した場合，脚つけ根部に生じるせん断応力は次式 で求める。

$$
\begin{equation*}
\tau_{\ell}=\frac{\left(\mathrm{m}_{0}-\mathrm{m}_{\mathrm{s}}\right) \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{16 \cdot \mathrm{C}_{2} \cdot \mathrm{t}} \tag{5.4.1.1.44}
\end{equation*}
$$

（7）横方向地震による脚つけ根部の応力
横方向地震が作用した場合，脚のつけ根部に生じる曲げモーメント M_{c} は次式で求める。

$$
\begin{gather*}
\mathrm{M}_{\mathrm{c}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{R}_{1} \cdot \mathrm{r}_{0} \tag{5.4.1.1.45}\\
\mathrm{r}_{0}=\frac{\mathrm{D}_{\mathrm{i}}}{2}+\mathrm{t}_{\mathrm{e}} \tag{5.4.1.1.46}
\end{gather*}
$$

この曲げモーメント M_{c} により生じる胴の周方向応力及び軸方向応力は，シェ ルパラメータ γ 及びアタッチメントパラメータ β によって引用文献（2）の図よ り値（以下＊を付記するもの）を求めることにより（5．4．1．1．48）式～ （5．4．1．1．51）式で求める。

ここで，シェルパラメータ γ は（5）と同じであるが，アタッチメントパラメー夕 β は次式による。ただし，二次応力を求める場合は更に K_{cj} を乗じた値とす る。

$$
\begin{equation*}
\beta=\sqrt[3]{\beta_{1}{ }^{2} \cdot \beta_{2}} \tag{5.4.1.1.47}
\end{equation*}
$$

ただし，$\beta \leqq 0.5$
したがって，応力は次式で求める。
一次応力

$$
\begin{align*}
& \sigma_{\phi 51}=\left\{\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{rm}_{\mathrm{m}}^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}}^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\mathrm{c} 1} \tag{5.4.1.1.48}\\
& \sigma_{\times 51}=\left\{\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}}^{2} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}}^{2} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}}\right) \cdot \mathrm{C}_{\mathrm{c} 2} \tag{5.4.1.1.49}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{\phi 52}=\left\{\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.50}\\
& \sigma_{\times 52}=\left\{\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}} \cdot \beta\right)}\right\}^{*} \cdot\left(\frac{6 \cdot \mathrm{M}_{\mathrm{c}}}{\mathrm{r}_{\mathrm{m}} \cdot \beta \cdot \mathrm{t}_{\mathrm{e}}{ }^{2}}\right) \tag{5.4.1.1.51}
\end{align*}
$$

また，横方向地震が作用した場合，脚つけ根部に生じるせん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{c}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{R}_{1}}{4 \cdot \mathrm{C}_{1} \cdot \mathrm{t}} \tag{5.4.1.1.52}
\end{equation*}
$$

（8）組合せ応力
（2）～（7）によって求めた脚つけ根部に生じる胴の応力は以下のように組み合 わせる。
a．一次一般膜応力
鉛直方向と長手方向地震が作用した場合

$$
\sigma 0 \ell=\operatorname{Max}\left\{\text { 周方向応力 }\left(\sigma 0_{\phi}\right) \text {, 軸方向応力 }\left(\sigma 0 \ell_{x}\right)\right\}
$$

$$
\begin{align*}
& \text { ここで, } \tag{5.4.1.1.53}\\
& \qquad \sigma_{0 \ell_{\phi}}=\sigma_{\phi 1}+\sigma_{\phi 2} \quad \ldots \ldots \ldots \ldots \tag{5.4.1.1.54}\\
& \sigma_{0 \ell_{\mathrm{x}}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+{\sqrt{\sigma_{\times 6}{ }^{2}+\sigma_{\times 413}^{2}}}^{2} \tag{5.4.1.1.55}
\end{align*}
$$

鉛直方向と横方向地震が作用した場合

$$
\begin{equation*}
\sigma_{0 \mathrm{c}}=\operatorname{Max}\left\{\text { 周方向応力 }\left(\sigma_{0 \mathrm{c} \phi}\right) \text {, 軸方向応力 }\left(\sigma_{0 \mathrm{cx}}\right)\right\} \tag{5.4.1.1.56}
\end{equation*}
$$

ここで

$$
\begin{align*}
& \sigma_{0 \mathrm{c} \phi}=\sigma_{\phi 1}+\sigma_{\phi 2} \\
& \text { (5.4.1.1.57) } \\
& \sigma_{0 \mathrm{cx}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 6} \tag{5.4.1.1.58}
\end{align*}
$$

したがって，胴に生じる一次一般膜応力の最大値は，

（5．4．1．1．59）
とする。
b．一次応力
鉛直方向と長手方向地震が作用した場合

$$
\sigma_{1 \ell}=\frac{1}{2} \cdot\left\{\sigma_{1 \ell \phi}+\sigma_{1 \ell \mathrm{x}}+\sqrt{\left(\sigma_{1 \ell \phi}-\sigma_{1 \ell \mathrm{x}}\right)^{2}+4 \cdot \tau_{\ell}^{2}}\right\}
$$

（5．4．1．1．60）
ここで，

$$
\begin{align*}
& \sigma_{1 \ell_{\phi}}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sqrt{\sigma_{\phi 41}{ }^{2}+\left(\sigma_{\phi 2}+\sigma_{\phi 71}\right)^{2}} \ldots \tag{5.4.1.1.61}\\
& \sigma_{1 \ell \mathrm{x}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+{\sqrt{\sigma_{\mathrm{x} 41}}{ }^{2}+\left(\sigma_{\mathrm{x} 6}+\sigma_{\mathrm{x} 71}\right)^{2}}^{2}
\end{align*}
$$

（5．4．1．1．62）

鉛直方向と横方向地震が作用した場合

$$
\sigma_{1 \mathrm{c}}=\frac{1}{2} \cdot\left\{\left(\sigma_{1 \mathrm{c} \phi}+\sigma_{1 \mathrm{cx}}\right)+\sqrt{\left(\sigma_{1 \mathrm{c} \phi}-\sigma_{1 \mathrm{cx}}\right)^{2}+4 \cdot \tau_{\mathrm{c}}^{2}}\right\}
$$

（5．4．1．1．63）
ここで，

$$
\begin{equation*}
\sigma_{1 \mathrm{c} \phi}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sqrt{\sigma_{\phi 51}{ }^{2}+\left(\sigma_{\phi 2}+\sigma_{\phi 71}\right)^{2}} \tag{5.4.1.1.64}
\end{equation*}
$$

$$
\sigma_{1 \mathrm{cx}}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sqrt{\sigma_{\times 51}^{2}+\left(\sigma_{\mathrm{x} 6}+\sigma_{\times 71}\right)^{2}}
$$

（5．4．1．1．65）
したがって，胴に生じる一次応力の最大値は，

とする。
c．地震動のみによる一次応力と二次応力の和の変動値鉛直方向と長手方向地震が作用した場合の変動値

$$
\begin{align*}
& \sigma_{2 \ell}=\left(\sigma_{2 \ell_{\phi}}+\sigma_{2 \ell \mathrm{x}}\right)+\sqrt{\left(\sigma_{2 \ell \phi}-\sigma_{2 \ell \mathrm{x}}\right)^{2}+4 \cdot \tau_{\ell}^{2}} \tag{5.4.1.1.67}\\
& \text { こ兀で, } \\
& \sigma_{2 \ell \phi}=\sqrt{\left(\sigma_{\phi 2}+\sigma_{\phi 71}+\sigma_{\phi 72}\right)^{2}+\left(\sigma_{\phi 41}+\sigma_{\phi 42}\right)^{2}} \tag{5.4.1.1.68}\\
& \sigma_{2 \ell \mathrm{x}}=\sqrt{\left(\sigma_{\times 41}+\sigma_{\times 42}\right)^{2}+\left(\sigma_{\mathrm{x} 6}+\sigma_{\times 71}+\sigma_{\times 72}\right)^{2}} \tag{5.4.1.1.69}
\end{align*}
$$

鉛直方向と横方向地震が作用した場合の変動値

$$
\begin{equation*}
\sigma_{2 \mathrm{c}}=\left(\sigma_{2 \mathrm{c} \phi}+\sigma_{2 \mathrm{cx}}\right)+\sqrt{\left(\sigma_{2 \mathrm{c} \phi}-\sigma_{2 \mathrm{cx}}\right)^{2}+4 \cdot \tau_{\mathrm{c}}{ }^{2}} \tag{5,4.1,1.70}
\end{equation*}
$$

ここで，

$$
\begin{align*}
& \sigma_{2 \mathrm{c} \phi}=\sqrt{\left(\sigma_{\phi 2}+\sigma_{\phi 71}+\sigma_{\phi 72}\right)^{2}+\left(\sigma_{\phi 51}+\sigma_{\phi 52}\right)^{2}} \tag{5.4.1.1.71}\\
& \sigma_{2 \mathrm{cx}}=\sqrt{\left(\sigma_{\times 51}+\sigma_{\times 52}\right)^{2}+\left(\sigma_{\times 6}+\sigma_{\times 71}+\sigma_{\times 72}\right)^{2}} \tag{5.4.1.1.72}
\end{align*}
$$

したがって，胴に生じる地震動のみによる一次応力と二次応力の和の変動値の最大値は，
（5．4．1．1．73）
とする。

5．4．1．2 脚の計算方法

（1）運転時質量による応力

$$
\begin{equation*}
\sigma_{\mathrm{s} 1}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{5.4.1.2.1}
\end{equation*}
$$

（2）鉛直方向地震による応力

$$
\begin{equation*}
\sigma_{s 4}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \cdot \mathrm{C}_{\mathrm{V}} \tag{5.4.1.2.2}
\end{equation*}
$$

（3）長手方向地震による応力
曲げ及び圧縮応力は次式で求める。

$$
\begin{align*}
& \sigma_{\mathrm{s} 2}=\frac{\mathrm{M}_{\ell_{1}}}{\mathrm{Z}_{\mathrm{s} \mathrm{y}}}+\frac{\mathrm{P}_{\ell}}{\mathrm{A}_{\mathrm{s}}} \quad \ldots \ldots \tag{5.4.1.2.3}\\
& \text { ここで, } \\
& \mathrm{M}_{\mathrm{Q}_{1}}=\frac{1}{8} \cdot \mathrm{~m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \tag{5.4.1.2.4}
\end{align*}
$$

せん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{s} 2}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{4 \cdot \mathrm{~A}_{\mathrm{s} 3}} \tag{5.4.1.2.5}
\end{equation*}
$$

（4）横方向地震による応力
曲げ応力は次式で求める。

$$
\begin{equation*}
\sigma_{\mathrm{s} 3}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}\right) \cdot \mathrm{h}_{2}}{\mathrm{Z}_{\mathrm{sx}}} \tag{5.4.1.2.6}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{equation*}
\tau_{\mathrm{s} 3}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}\right)}{\mathrm{A}_{\mathrm{s} 4}} \tag{5.4.1.2.7}
\end{equation*}
$$

（5）組合せ応力
鉛直方向と長手方向地震が作用した場合

$$
\begin{equation*}
\sigma_{\mathrm{s} \ell}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sqrt{\sigma_{\mathrm{s} 2}{ }^{2}+\sigma_{\mathrm{s} 4}{ }^{2}}\right)^{2}+3 \cdot \tau_{\mathrm{s} 2}^{2}} \tag{5.4.1.2.8}
\end{equation*}
$$

鉛直方向と横方向地震が作用した場合

$$
\begin{equation*}
\sigma_{\mathrm{sc}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+{\sqrt{\sigma_{\mathrm{s} 3}}{ }^{2}+\sigma_{\mathrm{s} 4}^{2}}^{2}\right)^{2}+3 \cdot \tau_{\mathrm{s} 3}{ }^{2}} \tag{5.4.1.2.9}
\end{equation*}
$$

したがって，脚に生じる最大応力は，

とする。

5．4．1．3 基礎ボルトの計算方法

（1）鉛直方向と長手方向地震が作用した場合
a．引張応力
長手方向地震が作用した場合に脚底面に作用するモーメントは次式で求め る。

$$
\begin{equation*}
\mathrm{M}=\mathrm{M}_{\mathrm{e}_{1}} \tag{5.4.1.3.1}
\end{equation*}
$$

鉛直荷重は

$$
\begin{equation*}
\mathrm{P}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}-\sqrt{\left\{\mathrm{C}_{\mathrm{V}} \cdot\left(\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}\right)\right\}^{2}+\mathrm{P}_{\ell}^{2}} \tag{5.4.1.3.2}
\end{equation*}
$$

である。ここで，モーメントと鉛直荷重の比を

$$
\begin{equation*}
\mathrm{e}=\mathrm{M} / \mathrm{P}_{\mathrm{s}} \tag{5.4.1.3.3}
\end{equation*}
$$ とする。

図 5－4 基礎部に作用する外 図 5－5 基礎部に作用する外荷重より生じる荷重 の関係（その1）
荷重より生じる荷重 の関係（その 2）

図 5－4のように脚底面においてボルト位置に圧縮荷重がかかる状況では基礎ボルトに引張力は作用しないため，引張力の評価は行わない。

一方，図 5－5 のように，ボルト位置に圧縮荷重がかからない状況に相当す る

$$
\begin{equation*}
e>\frac{a}{6}+\frac{d_{1}}{3} \tag{5.4.1.3.4}
\end{equation*}
$$

のとき，基礎ボルトに引張力が生じる。

このとき図5－5において，鉛直荷重の釣合い，A点回りのモーメントの釣合い，基礎ボルトの伸びと基礎の縮みの関係から中立軸の位置 X_{n} は

$$
\begin{align*}
& X_{n}^{3}+3 \cdot\left(e-\frac{a}{2}\right) \cdot X_{n}^{2}-\frac{6 \cdot \mathrm{~s} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n}_{1}}{\mathrm{~b}} \cdot\left(\mathrm{e}+\frac{\mathrm{a}}{2}-\mathrm{d}_{1}\right) \\
& \cdot\left(\mathrm{a}-\mathrm{d}_{1}-\mathrm{X}_{\mathrm{n}}\right)=0 \cdots \cdots \cdots \tag{5.4.1.3.5}
\end{align*}
$$

より求めることができ，基礎ボルトに生じる引張力は

$$
\begin{equation*}
F_{b}=\frac{P_{s} \cdot\left(e-\frac{a}{2}+\frac{X_{n}}{3}\right)}{a-d_{1}-\frac{X_{n}}{3}} \tag{5.4.1.3.6}
\end{equation*}
$$

となる。
したがって，基礎ボルトに生じる引張応力は次のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{b} 1}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.3.7}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4,1.3.8}
\end{equation*}
$$

b．せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b} 1}=\frac{\mathrm{m}_{0} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}}{4 \cdot \mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.3.9}
\end{equation*}
$$

（2）鉛直方向と横方向地震が作用した場合
a．引張応力
横方向地震が作用した場合に脚底面に作用するモーメントは次式で求める。

$$
\begin{equation*}
\mathrm{M}=\mathrm{M}_{\mathrm{c} 1}=\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}\right) \cdot \mathrm{h}_{2} \tag{5.4.1.3.10}
\end{equation*}
$$

鉛直荷重は

$$
\begin{equation*}
\mathrm{P}_{\mathrm{s} 1}=\left(1-\mathrm{C}_{\mathrm{V}}\right) \cdot\left(\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}\right) \tag{5.4.1.3.11}
\end{equation*}
$$

である。ここで，モーメントと鉛直荷重の比を

$$
\begin{equation*}
\mathrm{e}=\mathrm{M}_{\mathrm{c} 1} / \mathrm{P}_{\mathrm{s} 1} \tag{5.4.1.3.12}
\end{equation*}
$$

とする。

図 5－6 基礎部に作用する外荷 図 5－7 基礎部に作用する外荷重より生じる荷重の関係（その1）
重より生じる荷重の関係（その 2 ）

図 5－6のように脚底面においてボルト位置に圧縮荷重がかかる状況では基礎ボルトに引張力は作用しないため，引張力の評価は行わない。

一方，図5－7のように，ボルト位置に圧縮荷重がかからない状況に相当す る

$$
\begin{equation*}
e>\frac{b}{6}+\frac{d_{2}}{3} \tag{5,4.1.3,13}
\end{equation*}
$$

のとき，基礎ボルトに引張力が生じる。
このとき図 5－7 において，鉛直荷重の釣合い，A点回りのモーメントの釣合い，基礎ボルトの伸びと基礎の縮みの関係から中立軸の位置 X_{n} は

$$
\begin{align*}
& \mathrm{X}_{\mathrm{n}}^{3}+3 \cdot\left(\mathrm{e}-\frac{\mathrm{b}}{2}\right) \cdot \mathrm{X}_{\mathrm{n}}^{2}-\frac{6 \cdot \mathrm{~s} \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{n}_{2}}{\mathrm{a}} \cdot\left(\mathrm{e}+\frac{\mathrm{b}}{2}-\mathrm{d}_{2}\right) \\
& \cdot\left(\mathrm{b}-\mathrm{d}_{2}-\mathrm{X}_{\mathrm{n}}\right)=0 \cdots \cdots \cdots \tag{5.4.1.3.14}
\end{align*}
$$

より求めることができ，基礎ボルトに生じる引張力は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{P}_{\mathrm{s} 1} \cdot\left(\mathrm{e}-\frac{\mathrm{b}}{2}+\frac{\mathrm{X}_{\mathrm{n}}}{3}\right)}{\mathrm{b}-\mathrm{d}_{2}-\frac{\mathrm{X}_{\mathrm{n}}}{3}} \tag{5.4.1.3.15}
\end{equation*}
$$

となる。
したがって，基礎ボルトに生じる引張応力は次のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{b} 2}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.3.16}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.1.3.17}
\end{equation*}
$$

b．せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b} 2}=\frac{\mathrm{C}_{\mathrm{H}} \cdot\left(\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s}} \cdot \mathrm{~g}\right)}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.3.18}
\end{equation*}
$$

（3）基礎ボルトに生じる最大応力
（1）及び（2）より求められた基礎ボルトの応力のらち最大のものを σ_{b} 及び τ bとする。
a．基礎ボルトの最大引張応力

b．基礎ボルトの最大せん断応力
（5．4．1．3．20）
5.5 計算条件

5．5．1 胴板の応力計算条件
胴板の応力計算に用いる計算条件は，本計算書の【高圧炉心スプレイ系ディー ゼル発電設備軽油タンクの耐震性についての計算結果】の設計条件及び機器要目 に示す。

5．5．2 脚の応力計算条件
脚の応力計算に用いる計算条件は，本計算書の【高圧炉心スプレイ系ディーゼ ル発電設備軽油タンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

5．5．3 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【高圧炉心スプレイ系 ディーゼル発電設備軽油タンクの耐震性についての計算結果】の設計条件及び機器要目に示す。
5.6 応力の評価

5．6．1 胴の応力評価
5．4．1．1項で求めた組合せ応力が胴の最高使用温度における許容応力 S a以下で あること。ただし， S_{a} は下表による。

応力の種類	許容応力 Sa_{a}	
	弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合	基準地震動 S s による荷重 との組合せの場合
一次一般膜応力	設計降伏点 S_{y} と設計引張強さ S_{u} の 0.6 倍のいずれ か小さい方の値。ただし，オ ーステナイト系ステンレス鋼及び高ニッケル合金にあ つては許容引張応力Sの 1．2倍の方が大きい場合は， この大きい方の値とする。	設計引張強さ S_{u} の 0.6 倍
一次応力	上記の 1.5 倍の値	上記の 1.5 倍の値
一次応力と二次応力の和	地震動のみによる一次応力と二次応力の和の変動値が設計降伏点 S_{y} の 2 倍以下であれば，疲労解析は不要とする。	

5．6．2 脚の応力評価
5．4．1．2 項で求めた脚の組合せ応力が許容引張応力 f_{t} 以下であること。
ただし，f_{t} は下表による。

	弾性設計用地震動 S d 又は 静的震度による荷重との組 合せの場合	基準地震動 S s による荷重 との組合せの場合
許容引張応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5} \cdot 1.5$

5．6．3 基礎ボルトの応力評価
5．4．1．3 項で求めた基礎ボルトの引張応力 σ bは次式により求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} は下表による。

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{5.6.3.1}
\end{equation*}
$$

せん断応力 τ_{b} はせん断力のみ受ける基礎ボルトの許容せん断応力 f_{sb} 以下であ ること。ただし，f_{sb} は下表による。

	弾性設計用地震動 S d 又 は静的震度による荷重と の組合せの場合	基準地震動 S s による荷 重との組合せの場合
許容引張応力 f_{to}	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{~F}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．評価結果

6． 1 設計基準対象施設としての評価結果
高圧炉心スプレイ系ディーゼル発電設備軽油タンクの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。

（1）構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。
なお，弾性設計用地震動 S d 及び静的震度は基準地震動 S s を下回っており，基準地震動S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価に おける許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値 の算出を省略した。
6.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ系ディーゼル発電設備軽油タンクの重大事故等時の状態を考慮し た場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

7．引用文献
（1）Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports，Welding Research Supplement，Sep． 1951.
（2）Wichman，K．R．et al．：Local Stresses in Spherical and Cylindrical Shells due to External Loadings，Welding Research Council bulletin，March 1979 revision of WRC bulletin 107 ／August 1965.
（3）日本産業規格 J I S B 8 2 7 8（2003）「サドル支持の横置圧力容器」
【高圧炉ふスプレイ系ディーゼル発電設備軽油タンクの而震性についての計算結果】
1．設計基䍜対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設言用地震動S d又は静的震度		基漼地震動S s			最高使用温度 （ ${ }^{\text {C）}}$	周囲環境温度 （ ${ }^{\text {C）}}$	比重
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				
$\begin{gathered} \text { 高圧炬心スプレイ系 } \\ \text { ディーゼル発電設備 } \\ \text { 軽油タンク } \end{gathered}$	S	$\begin{gathered} \text { 軽油タンク室 (H) } \\ \text { O.P.6. } 40^{* 1} \end{gathered}$			－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=1.56$	$\mathrm{C}_{\mathrm{v}}=0.99$	静水頭	66	50	0.86

＊2：패S S については，基準地震動 S s で評価する。
1.2 機器要目

ℓ (mm)	ℓ_{H} (mm)	ℓ_{L} (mm)	w $(\mathrm{N} / \mathrm{mm})$	M_{1} $(N \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	H (mm)
2373	1028	13200	151.9	4.277×10^{8}	7.162×10^{5}	4000

m_{0} $(\mathrm{~kg})$	m_{s} (kg)	D_{i} (mm)	t (mm)	t_{e} (mm)	ℓ_{0} $(\mathrm{~mm})$	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	θ_{w} (rad)	ℓ_{w} (mm)
		4000	28.0	$56.0^{* 1}$	3275	1320.9	2400	0.378	750

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{4}\right)$	I_{sy} $\left(\mathrm{mm}^{1}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)
1750	875	4.622×10^{11}	5.003×10^{10}	2.641×10^{8}	5.717×10^{7}	2.123	1.372

A－A 矢視図

A_{s} $\left(\mathrm{mm}^{2}\right)$	E_{s} $(\mathbb{N P a})$	G_{s} (MPa)	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 3}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{~mm}^{2}\right)$
2.909×10^{5}	201000	77300	1.683×10^{5}	9.371×10^{4}	1.307×10^{5}	7.698×10^{4}

$\mathrm{K}_{11}{ }^{* 2}$	$\mathrm{~K}_{12}{ }^{* 2}$	$\mathrm{~K}_{21}{ }^{* 2}$	$\mathrm{~K}_{22}{ }^{* 2}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\ell 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$
0.91	1.68	-	-	1.08	1.03	1.15	0.96	0.93	0.72	1.57	1.21
1.76	1.20	-	-								

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
15	12	4	4	1950	3700	48 $(\mathrm{M} 48)$	1.810×10^{3}	210	400

[^0]
（単位： MPa ）

$\mathrm{SF}_{\text {ster }}$	地震の種類	弾性設計用地震動S d 又は静的震度				基準地震動S s			
\bigcirc	地震の方向	長手方向		横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力		$\sigma_{\phi 1}=$－＊	$\sigma_{\times 1}=$－＊	$\sigma_{\phi 1}={ }^{*}$	$\sigma_{\times 1}=$－＊	$\sigma_{\phi 1}=3$	$\sigma_{\times 1}=2$	$\sigma_{\phi 1}=3$	$\sigma_{\times 1}=2$
静水頭による応力 （鉛直方向地震時）		$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=$－＊	－	$\sigma_{\phi 2}=3$	－	$\sigma_{\phi 2}=3$	－
運転時質量による長手方向曲げ モーメントにより生じる応力		－	$\sigma_{\times 2}=$－＊	－	$\sigma_{\times 2}=-*$	－	$\sigma_{\times 2}=6$	－	$\sigma_{\times 2}=6$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力		－	$\sigma_{\times 6}=$－＊	－	$\sigma_{\times 6}=$－＊	－	$\sigma_{\times 6}=6$	－	$\sigma_{\times 6}=6$
運転時質量による脚反力 により生じる応力		$\sigma_{\phi 3}=$－＊	$\sigma_{\times 3}=-*$	$\sigma_{\phi 3}=-*$	$\sigma_{\times 3}=$－＊	$\sigma_{\phi 3}=17$	$\sigma_{\times 3}=17$	$\sigma_{\phi 3}=17$	$\sigma_{\times 3}=17$
鉛直方向地震による脚反力 により生じる応力		$\sigma_{\phi 71}=$－＊	$\sigma_{\times 71}=$－＊	$\sigma_{\phi 71}=$－＊	$\sigma_{\times 71}=-*$	$\sigma_{\phi 71}=17$	$\sigma_{\times 71}=17$	$\sigma_{\phi 71}=17$	$\sigma_{\times 71}=17$
水平方向地震 による応力	引張り	$\begin{aligned} & \sigma_{\phi 411}=-* \\ & \sigma_{\phi 412}=-* \end{aligned}$	$\begin{aligned} & \sigma_{\times 411}=-* \\ & \sigma_{\times 412}=-* \\ & \sigma_{\times 413}=-* \end{aligned}$	$\sigma_{\phi 51}=$－＊	$\sigma_{\times 51}=$－＊	$\begin{gathered} \sigma_{\phi 411}=7 \\ \sigma_{\phi 412}=15 \end{gathered}$	$\begin{gathered} \sigma_{\times 411}=3 \\ \sigma_{\times 412}=15 \\ \sigma_{\times 413}=11 \end{gathered}$	$\sigma_{\phi 51}=20$	$\sigma_{\times 51}=62$
		$\sigma_{\phi 41}=$－＊	$\sigma_{\times 41}=$－＊			$\sigma_{\phi 41}=21$	$\sigma_{\times 41}=28$		
	せん断	$\tau_{\ell}={ }^{*}$		$\tau_{\mathrm{c}}=$－＊		$\tau_{\ell}=10$		$\tau_{\mathrm{c}}=6$	
組合せ応力		$\sigma_{18}=$－＊		$\sigma_{1 \mathrm{c}}=$－＊		$\sigma_{10}=65$		$\sigma_{1 \mathrm{c}}=91$	

部 材	材 料	応力	弾生設計用地震動S d又は静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
胴板	SU490C	一次一般谟	$\sigma_{0}=19 * 2$	$\mathrm{S}_{\mathrm{a}}=279 * 2$	$\sigma_{0}=19$	$\mathrm{S}_{\mathrm{a}}=279$
		一次	$\sigma_{1}=91 * 2$	$\mathrm{S}_{\mathrm{a}}=418^{* 2}$	$\sigma_{1}=91$	$\mathrm{S}_{\mathrm{a}}=418$
		一次＋三次	$\sigma_{2}=414^{* 2}$	$\mathrm{S}_{\mathrm{a}}=601^{* 2}$	$\sigma_{2}=414$	$\mathrm{S}_{\mathrm{a}}=601$
脚	SM490C	組合せ	$\sigma_{\mathrm{s}}=30^{* 2}$	$f_{\mathrm{t}}=309 * 2$	$\sigma_{\text {s }}=30$	$f_{\mathrm{t}}=336$
基礎ボルト	S\B7	引張り	$\sigma_{\mathrm{b}}=125^{* 2}$	$f_{\text {ts }}=440 * 1$	$\sigma_{\mathrm{b}}=125$	$f_{\text {ts }}=440 * 1$
		せん断	$\tau_{\mathrm{b}}=54 * 2$	$f_{\text {sb }}=338 * 2$	$\tau_{\mathrm{b}}=54$	$f_{\text {sb }}=338$

[^1]2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設計用地震動S d又は静的震度		基淮地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ ${ }^{\text {C）}}$	周囲環境昷度 （ ${ }^{\circ} \mathrm{C}$ ）	比重
			水平方向	鉛直方向	水平方向設計震度	鈖直方向設計震度	水平方向設計震度	鉛直方向設計震度				
$\begin{gathered} \text { 高圧炬心スプレイ系 } \\ \text { ディーゼル発電設備 } \\ \text { 軽油タタン } \end{gathered}$	常設而震／防止常設／（萲和	$\begin{gathered} \text { 軽油タンク室 (H) } \\ \text { 0.P.6. } 40^{*} \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.56$	$\mathrm{C}_{\mathrm{V}}=0.99$	静水頭	66	50	0.86

2.2 機㗊要目

ℓ (mm)	ℓ_{H} (mm)	ℓ_{L} (mm)	w $(\mathrm{N} / \mathrm{mm})$	M_{1} $(\mathrm{~N} \cdot \mathrm{~mm})$	R_{1} $(\mathrm{~N})$	H (mm)
2373	1028	13200	151.9	4.277×10^{8}	7.162×10^{5}	4000

m_{0}	$\begin{array}{r} \mathrm{m}_{\mathrm{s}} \\ (\mathrm{~kg}) \end{array}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{e}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{l\|} \hline \ell_{0} \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{h}_{1} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{h}_{2} \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{gathered} \theta_{\mathrm{w}} \\ (\mathrm{rad}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{w}} \\ & (\mathrm{~mm}) \end{aligned}$
		4000	28.0	56． $0^{* 1}$	3275	1320.9	2400	0． 378	750
$\begin{aligned} & \mathrm{C}_{1} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{2} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{sx}} \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{sy}} \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\begin{aligned} & Z_{s x} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{sy}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{gathered} \hline \theta_{0} \\ (\mathrm{rad}) \end{gathered}$	$\begin{gathered} \theta \\ (\mathrm{rad}) \end{gathered}$		
1750	875	4． 622×10^{11}	5.003×10^{10}	2.641×10^{8}	5． 717×10^{7}	2.123	1． 372		

注記 $~: ~$ 基準床レベルをボす。

A_{s} $\left(\mathrm{mm}^{2}\right)$	E_{s} $(\mathbb{M P a})$	G_{s} $(\mathbb{M P a})$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s}} 3$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{~mm}^{2}\right)$
2.909×10^{5}	201000	77300	1.683×10^{5}	9.371×10^{4}	1.307×10^{5}	7.698×10^{4}

$\mathrm{K}_{11}{ }^{* 2}$	$\mathrm{K}_{12}{ }^{* 2}$	$\mathrm{K}_{21}{ }^{* 2}$	$\mathrm{K}_{22}{ }^{* 2}$	K_{01}	$\mathrm{K}_{\ell 2}$	$\mathrm{K}_{\mathrm{c} 1}$	$\mathrm{K}_{\mathrm{c} 2}$	C_{61}	C_{82}	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$
0.91	1.68	－	－	1.08	1.03	1． 15	0.96	0． 93	0． 72	1.57	1.21
1.76	1.20	－	－								

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
15	12	4	4	1950	3700	48 $(\mathrm{M} 48)$	1.810×10^{3}	210	400

[^2]O 2 （4）VI－2－10－1－2－2－5 R 1
2.3 計算数値
2．3．1 胴に生じる応力
（1）

運車时質量による長手方向曲げ
鈖直方向地震による長手方向曲げ
長手方向地震により胴軸断面
$\frac{\text { 全面に生じる引張応力 }}{\text { 組合せ応力 }}$

（1）一次一般膜応力					（単位： MPa ）			
	弾性設計用地震動S d 又は静的震度				基淮地震動S s			
－地震の方向	長手方向		横方向		長手方向		横方向	
－応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力	－	－	－	－	$\sigma_{\phi 1}=3$	$\sigma_{\mathrm{x} 1}=2$	$\sigma_{\phi 1}=3$	$\sigma_{\times 1}=2$
静水頭による応力 （鈖直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=3$	－	$\sigma_{\phi 2}=3$	－
$\begin{gathered} \text { 運軾时質量による長手方向曲げ } \\ \text { モーメントにより生じる応力 } \end{gathered}$	－	－	－	－	－	$\sigma_{\times 2}=6$	－	$\sigma_{\times 2}=6$
$\begin{gathered} \text { 鉛直方向地震による長手方向曲げ } \\ \text { モーメントにり生じる応力 } \end{gathered}$	－	－	－	－	－	$\sigma_{\text {x } 6}=6$	－	$\sigma_{\times 6}=6$
長手方向地震により胴电断面全面に生じる引張応力	－	－	－	－	－	$\sigma_{\times 413}=11$	－	－
組合せ応力	－		－		$\sigma_{0 \ell}=19$		$\sigma_{0 \mathrm{c}}=13$	

（2）一次応力						（単位： MPa ）			
						基淮地震動S s			
\bigcirc	地震の方向	長手方向		横方向		長手方向		横方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
静水頭による応力		－	－	－	－	$\sigma_{\phi 1}=3$	$\sigma_{\times 1}=2$	$\sigma_{\phi 1}=3$	$\sigma_{\times 1}=2$
静水頭による応力 （鉛直方向地震時）		－	－	－	－	$\sigma_{\phi 2}=3$	－	$\sigma_{\phi 2}=3$	－
運転時質量による長手方向曲げ モーメントにより生じる応力		－	－	－	－	－	$\sigma_{\times 2}=6$	－	$\sigma_{\times 2}=6$
$\begin{gathered} \text { 鋁直方向地震による長手方向曲げ } \\ \text { モーメントにより生じる応力 } \end{gathered}$		－	－	－	－	－	$\sigma_{x 6}=6$	－	$\sigma_{\mathrm{x} 6}=6$
運転時質量による脚反力 により生じる応力		－	－	－	－	$\sigma_{\phi 3}=17$	$\sigma_{\times 3}=17$	$\sigma_{\phi 3}=17$	$\sigma_{\times 3}=17$
$\begin{gathered} \hline \text { 鉛直方向地震による脚反力 } \\ \text { により生じる応力 } \end{gathered}$		－	－	－	－	$\sigma_{\phi 71}=17$	$\sigma_{\times 71}=17$	$\sigma_{\phi 71}=17$	$\sigma_{\times 71}=17$
水平方向地震 による応力	引張り	－	－	－	－	$\begin{gathered} \sigma_{\phi 411}=7 \\ \sigma_{\phi 412}=15 \end{gathered}$	$\begin{gathered} \sigma_{\times 411}=3 \\ \sigma_{\times 412}=15 \\ \sigma_{\times 413}=11 \\ \hline \end{gathered}$	$\sigma_{\phi 51}=20$	$\sigma_{\times 51}=62$
		－	－			$\sigma_{\phi 41}=21$	$\sigma_{\times 41}=28$		
	せん断	－		－		$\tau_{\ell}=10$		$\tau_{\mathrm{c}}=6$	
組合せ応力		－		－		$\sigma_{1 \ell}=65$		$\sigma_{1 \mathrm{c}}=91$	

O 2 （4）VI－2－10－1－2－2－5 R 1

O 2 （4）VI－2－10－1－2－2－5 R 1 E

すべて許容応力以下である。 注記米：$f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出

[^0]: | $\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (䐔板) } \\ (\mathbb{M P a}) \end{gathered}$ | $\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (朋板) } \\ (\mathbb{N P a}) \end{gathered}$ | $\begin{gathered} \hline \text { S (月月肺) } \\ (\mathrm{NPa}) \end{gathered}$ | $\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ (\mathrm{NPPa}) \end{gathered}$ | $\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ (\mathrm{NPa}) \end{gathered}$ | $\begin{gathered} \text { F (脚) } \\ \left(\begin{array}{l} (\mathbb{R P a}) \end{array}\right) \end{gathered}$ | $\begin{gathered} \mathrm{F}^{*} \text { (脚) } \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (基碍ボルト) } \\ (\mathrm{MPa}) \end{gathered}$ | | $\begin{gathered} \text { F (基礯ボルト) } \\ (\text { NPa) } \end{gathered}$ | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | － | $\begin{gathered} 309 * 4 \\ (16 \mathrm{~mm}<⿸ 厂 ⿱ 日 子 \\ \text { 字さ } \leqq 40 \mathrm{~mm}) \end{gathered}$ | $\begin{gathered} 480^{* 4} \\ (16 \mathrm{~mm}<\text { 厚さ} \leqq 40 \mathrm{~mm}) \end{gathered}$ | 309 | 336 | $\begin{gathered} 715^{* 4} \\ (\text { (径 } \leq 63 \mathrm{~mm}) \end{gathered}$ | $\begin{gathered} 838^{* 4} \\ (\text { 径 } \leq 63 \mathrm{~mm}) \end{gathered}$ | 586 | 586 |

 $* 2$ ：表中で上段は一次応力，下段は一次応力の俰数とする。
 $* 3:$ 最高使用温度で算出
 $* 4$ ：周井環摬昷度で算出

[^1]: すべて許容応力以下である。 注記 $* 1: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出。

[^2]: | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \begin{array}{c} \text { (朋同板) } \\ (\mathbb{N P a}) \end{array} \end{gathered}$ | | $\begin{gathered} \mathrm{S} \\ \hline(\text { 胴板 }) \\ (\mathbb{R P a}) \end{gathered}$ | $\begin{aligned} & \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ & (\mathrm{NPa}) \end{aligned}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (脚) } \\ (\mathbb{N P a}) \end{gathered}$ | $\begin{aligned} & \text { F (脚) } \\ & (\mathbb{N P a}) \end{aligned}$ | $\begin{gathered} \mathrm{F}^{*}(\text { (脚 }) \\ (\mathbb{N P a}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (基礎ボルト) } \\ \text { (MPa) } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (基碮ボルト) } \\ (\mathrm{NPa}) \end{gathered}$ | $\begin{gathered} \hline \text { F (基礎ボルト) } \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{F}^{*} \text { (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $\begin{gathered} 300 * 3 \\ (16 \mathrm{~mm}</ \text { 㫗さ } \leqq 40 \mathrm{~mm}) \end{gathered}$ | $\begin{gathered} 465 * 3 \\ (16 \mathrm{~mm}<\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$ | － | $\begin{gathered} 309 * 4 \\ (16 \mathrm{~mm}<\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$ | $\begin{gathered} 480^{* 4} \\ (16 \mathrm{~mm}<\text { 厚さ} \leqq 40 \mathrm{~mm}) \end{gathered}$ | － | 336 | $\begin{gathered} 715^{* 4} \\ (\text { 径 } \leq 63 \mathrm{~mm}) \end{gathered}$ | $\begin{gathered} 833^{* 4} \\ (\text { 径 } \leq 63 \mathrm{~mm}) \end{gathered}$ | － | 586 |

 $* 3:$ 最高使用温度で算出
 $* 4$ ：周井環竸㳑度で算出

