```
本資料のうち，朹囲みの内容 は商業機密の観点から公開でき
ません。
```

| 女川原子力発電所第2号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－9－4－4－2－2 可燃性ガス濃度制御系再結合装置ブロワの耐震性についての計算書

2021年8月
東北電力株式会社

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 4
2.3 適用規格•基準等 5
2.4 記号の説明 6
2.5 計算精度と数値の丸め方 8
3．評価部位 9
4．固有周期 10
4.1 固有周期の計算方法 10
4．2 固有周期の計算条件 11
4．3 固有周期の計算結果 11
5．構造強度評価 12
5.1 構造強度評価方法 12
5.2 荷重の組合せ及び許容応力 13
5．2．1 荷重の組合せ及び許容応力状態 13
5．2．2 許容応力 13
5．2．3 使用材料の許容応力評価条件 13
5.3 設計用地震力 17
5.4 計算方法 18
5．4．1 応力の計算方法 18
5.5 計算条件 20
5．5．1 ブレースの応力計算条件 20
5．5．2 ベース取付溶接部の応力計算条件 20
5． 6 応力の評価 21
5．6．1 ブレースの応力評価 21
5．6．2 ベース取付溶接部の応力評価 21
6．機能維持評価 22
6.1 基本方針 22
6． 2 ブロワの動的機能維持評価 23
6．2．1 評価対象部位 23
6．2．2 評価基準値 24
6．2．3 記号の説明 24
6．2．4 評価方法 26
6． 3 原動機の動的機能維持評価 40
6．3．1 評価対象部位 40
6．3．2 評価基準値 40
6．3．3 記号の説明 41
6．3．4 評価方法 43
7．評価結果 47
7． 1 設計基準対象施設としての評価結果 47

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，可燃性ガス濃度制御系再結合装置ブロワ（以下「ブ ロワ」という。）が設計用地震力に対して十分な構造強度及び動的機能を有していること を説明するものである。

ブロワは，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び動的機能維持評価を示す。

2．一般事項
2.1 構造計画

ブロワの構造計画を表2－1，2－2 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
遠心式ブロワと原動機 は，これを収めるキャン と共にサポートプレー トに固定される。サポー トプレートはスキッド ベース上にベース及び ブレースにより支持さ れる構造となっている。 よって，キャン及びその内側の遠心式ブロワと原動機の荷重は，サポー トプレート，ベース取付溶接部を経てスキッド ベースに伝達する。ま た，サポートプレートか らはブレース，ベースを経てもスキッドベース に荷重が伝達される。	キャンド形遠心式（キ ャンに遠心式ブロワと原動機を収めた構造）	

表 2－2 構造計画

計画の概要		概略構造図
基䂰•支持構造	主体構造	
キャン内部の構造につ いて，サポートプレート にボルトで取り付けら れたブラケット上に原 動機がボルトにより据 付られ，出力軸にはイン ペラが直接取付けられ る。インペラを覆うブロ ワケーシングはボルト で原動機ケーシングに 固定される。	キャンド形遠心式（キャ ンに遠心式ブロワと原動機を収めた構造）	

2.2 評価方針

ブロワの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」のうち「3．1構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示すブロワの部位を踏まえ「3．評価部位」にて設定する箇所におい て，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。

また，ブロワの機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の遠心直動型ファン及び横形ころがり軸受電動機であり，機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから，原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）（以下「J E A G 4 6 0 1 」という。）に定 められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

ブロワの耐震評価フローを図2－1 に示す。

図 2－1 ブロワの耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 O 1 •補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版）
（4）J S M E S N C I－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

記号	記号の説明	単位
A	鉛直方向荷重を受ける支持構造物の断面積	mm^{2}
A_{b}	ブレースの断面積	mm^{2}
A s	水平方向荷重を受ける支持構造物の有効せん断断面積	mm^{2}
$\mathrm{A}_{5} \mathrm{~b}$	ブレースの有効せん断断面積	mm^{2}
$\mathrm{A}_{s} \mathrm{~s}$	サポートプレートの有効せん断断面積	mm^{2}
A_{HW}	水平方向荷重を受ける溶接部の有効断面積	mm^{2}
A_{VW}	鉛直方向荷重を受ける溶接部の有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\text {v }}$	鉛直方向設計震度	－
C_{P}	ブロワ振動による震度	－
E	支持構造物の縦弾性係数	MPa
F	設計•建設規格SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 に定める値	MPa
F_{c}	ブレースに作用する圧縮力	N
F_{H}	ブレースに作用する水平方向反力	N
F_{HW}	ベース取付溶接部に作用する水平方向せん断荷重	N
F_{v}	ブレースに作用する鉛直方向反力	N
F_{vw}	ベース取付溶接部に作用する鉛直方向せん断荷重	N
$f_{\mathrm{b}} \mathrm{c}$	ブレースの許容圧縮応力	MPa
$f_{\text {w s }}$	ベース取付溶接部の許容せん断応力	MPa
G	支持構造物のせん断弾性係数	MPa
9	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
H_{P}	予想最大両振幅	$\mu \mathrm{m}$
h	ブロワ水平方向重心位置	mm
I_{H}	水平方向荷重を受ける支持構造物の断面二次モーメント	mm^{4}
I_{b}	ブレースの断面二次モーメント	mm^{4}
I V	サポートプレート（鉛直方向荷重を受ける支持構造物） の断面二次モーメント	mm ${ }^{4}$
i	座屈軸についての断面二次半径	mm
K_{H}	水平方向ばね定数	N / m
K_{V}	水平方向ばね定数	N / m
L	ブロワ中心高さおよび重心高さ	mm
l	ブロワベース長さ	mm
$\ell_{\text {b }}$	ブレース水平方向投影長さ	mm
ℓ_{k}	ブレース長さ	mm
m	ブロワ質量	kg

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
縦弾性係数 $* 1$	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁 $* 2$
せん断弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁 $* 2$
断面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
断面二次モーメント	mm^{4}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
設計震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	mm	-	整数位
長さ	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
整数位 ${ }^{* 3}$				
力 算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 4$

注記 $~ 1 ~: ~$ 設計•建設規格 付録材料図表に記載された温度の中間における縦弾性係数は，比例法により補間した値の有効数字 4 桁目を四捨五入し，有効数字 3 桁までの値とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊ 3 ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊4：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

ブロワの耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳 しくなるブレース及びベース取付溶接部について実施する。ブロワの耐震評価部位につ いては，表2－1 の概略構造図に示す。

4．固有周期

4.1 固有周期の計算方法

ブロワの固有周期の計算方法を以下に示す。
（1）計算モデル
a．ブロワの質量は，重心に集中するものとする。
b．ブロワは溶接によりスキッドベースに固定されており，固定端とする。ここ で，スキッドベースについて剛となるよう設計する。
c．耐震計算に用いる寸法は，公称値を使用する。
ブロワは，図 4－1 及び図4－2に示す下端固定の1質点系振動モデルとして考 える。

図 4－1 水平方向固有周期の計算モデル

図 4－2 鉛直方向固有周期の計算モデル
（2）水平方向固有周期
曲げ及びせん断変形によるばね定数 K_{H} は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{H}}=\frac{1000}{\frac{\mathrm{~L}^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{H}}}+\frac{\mathrm{L}}{\mathrm{G} \cdot \mathrm{~A}_{\mathrm{S}}}} \tag{4.1.1}
\end{equation*}
$$

したがって，水平方向固有周期 T_{H} は次式で求める。
$\mathrm{T}_{\mathrm{H}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}_{\mathrm{H}}}}$
ここで，水平方向荷重を受ける支持構造物の断面二次モーメントは，
$I_{H}=I_{V}+2 \cdot I_{b}$
水平方向荷重を受ける支持構造物の有効せん断断面積は，

$$
\begin{equation*}
\mathrm{A}_{\mathrm{s}}=\mathrm{A}_{\mathrm{s} s}+2 \cdot \mathrm{~A}_{\mathrm{sb}} \tag{4.1.4}
\end{equation*}
$$

（3）鉛直方向固有周期
軸方向変形によるばね定数 K V は次式で求める。
$K_{v}=\frac{1000}{\frac{L \cdot h^{2}}{E \cdot I_{v}}+\frac{L}{E \cdot A}}$
したがって，鉛直方向固有周期 T_{V} は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{V}}=2 \cdot \pi \sqrt{\frac{\mathrm{~m}_{\mathrm{K}}}{\mathrm{~K}_{\mathrm{V}}}} \tag{4.1.6}
\end{equation*}
$$

4．2 固有周期の計算条件
固有周期の計算に用いる計算条件は，本計算書の【ブロワの耐震性についての計算結果】の機器要目に示す。

4． 3 固有周期の計算結果

固有周期の計算結果を表 4－1 に示す。計算の結果，固有周期は 0.05 s 以下であり，剛であることを確認した。

表 4－1 固有周期
（単位：s）

水平方向	鉛直方向	

5．構造強度評価

5.1 構造強度評価方法

4．1項 a．～c．のほか，次の条件で評価する。
（1）地震力はブロワに対して水平方向及び鉛直方向から作用するものとする。
（2）ブレース
a．ブロワの質量は， 2 本のブレースに均等にかかるため， 1 本のブレースについて計算す る。
b．荷重方向はブレースの応力が最も厳しい方向として図 5－1 の方向を計算する。

図 5－1 ブレースに作用する荷重
（3）ベース取付溶接部
a．荷重がベース取付溶接部に水平方向せん断荷重として作用する場合と，転倒モーメン トによる鉛直方向せん断荷重として作用する場合について計算する。
b．転倒方向はベース取付溶接部に対する鉛直方向せん断荷重が最も厳しい方向として図 5－2 の転倒支点を支点とする方向を計算する。

図 5－2 ベース取付溶接部に作用する荷重

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態

ブロワの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 5－1 に示す。

5．2．2 許容応力
ブロワの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－2 のと おりとする。

5．2．3 使用材料の許容応力評価条件
ブロワの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| 施設区分 | | 機器名称 | 耐震重要度分類 | 機器等の区分 | 荷重の組合せ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

注記 $*: ~ そ の$ 他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

O 2 （3）VI－2－9－4－4－2－2 R 1

表 5－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）	
	一次応力	
	圧縮	せん断
III ${ }_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{fc}$	$1.5 \cdot \mathrm{fs}$
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ff}_{\mathrm{c}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

O 2 （3）VI－2－9－4－4－2－2 R 1

表 5－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
ブレース		最高使用温度	171	201	373	－
ベース取付溶接部		最高使用温度	171	201	373	－

5.3 設計用地震力

評価に用いる設計用地震力を表5－4に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－4 設計用地震力（設計基準対象施設）

据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉建屋 $\text { 0.P. } 22.50 \text { * }$			$\mathrm{C}_{\mathrm{H}}=1.13$	$\mathrm{C}_{\mathrm{v}}=0.91$	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$

注記＊：基準床レベルを示す。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 ブレースの応力
（1）圧縮応力
ブレースに作用する水平方向反力は
$\mathrm{F}_{\mathrm{H}}=\mathrm{P}=\frac{1}{2} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{g}$
（5．4．1．1．1）

ここで，C P はブロワ振動による振幅及び原動機の同期回転速度を考慮して定 める値である。

$$
\begin{equation*}
\mathrm{C}_{\mathrm{P}}=\frac{\frac{1}{2} \cdot \frac{\mathrm{H}_{\mathrm{P}}}{1000} \cdot\left(2 \cdot \pi \cdot \frac{\mathrm{~N}}{60}\right)^{2}}{\mathrm{~g} \cdot 1000} \tag{5.4.1.1.2}
\end{equation*}
$$

ブレースに作用する鉛直方向反力は

$\mathrm{F}_{\mathrm{V}}=\frac{\frac{1}{2} \cdot\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{g} \cdot \mathrm{h}+\frac{1}{2} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{g} \cdot \mathrm{L}}{\ell_{\mathrm{b}}}$
（5．4．1．1．3）
ブレースに作用する圧縮力は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{C}}=\sqrt{\mathrm{F}_{\mathrm{H}}^{2}+\mathrm{F}_{\mathrm{v}}^{2}} \tag{5.4.1.1.4}
\end{equation*}
$$

圧縮応力

$$
\begin{equation*}
\sigma_{\mathrm{c}}=\frac{\mathrm{F}_{\mathrm{c}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.5}
\end{equation*}
$$

5．4．1．2 ベース取付溶接部の応力

（1）水平方向せん断応力
水平方向せん断荷重はベース取付溶接部に作用するものとして計算する。水平方向せん断荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{HW}}=\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{~g} \tag{5.4.1.2.1}
\end{equation*}
$$

水平方向せん断応力
$\tau_{W 1}=\frac{F_{H W}}{A_{H W}}$
（2）鉛直方向せん断応力
転倒方向はベース取付溶接部に対する鉛直方向せん断荷重が最も厳しい方向と して表5－2の転倒支点を支点とする方向を計算する。

鉛直方向せん断荷重
$\mathrm{F}_{\mathrm{VW}}=\frac{\left(\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}-1\right) \cdot \mathrm{m} \cdot \mathrm{g} \cdot \mathrm{h}+\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m} \cdot \mathrm{g} \cdot \mathrm{L}}{\ell}$
（5．4．1．2．3）
鉛直方向せん断応力
$\tau_{W_{2}}=\frac{\mathrm{F}_{\mathrm{VW}}}{\mathrm{A}_{\mathrm{VW}}}$
（3）ベース取付溶接部の応力
$\tau_{\mathrm{W}}=\operatorname{Max}$［水平方向せん断力 $\left(\tau_{\mathrm{W}} 1\right)$ ，鉛直方向せん断力 $\left(\tau \mathrm{W}_{2}\right)$ ］
（5．4．1．2．5）

5.5 計算条件

5．5．1 ブレースの応力計算条件
ブレースの応力計算に用いる計算条件は，本計算書の【ブロワの耐震性につい ての計算結果】の設計条件及び機器要目に示す。

5．5．2 ベース取付溶接部の応力計算条件
ベース取付溶接部の応力計算に用いる計算条件は，本計算書の【ブロワの耐震性についての計算結果】の設計条件及び機器要目に示す。
5.6 応力の評価

5．6．1 ブレースの応力評価

5．4．1．1 項で求めたブレースの圧縮応力 $\sigma \mathrm{c}$ は許容圧縮応力 $f_{\mathrm{b}} \mathrm{c}$ 以下であるこ と。ただし，f $f_{\mathrm{b} \mathrm{c}}$ は下表による。

	弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合	基準地震動 S s による荷重との組合せの場合
許 容 圧 縮応 力 $f \mathrm{bc}$	$\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}}{\nu} \cdot 1.5$	$\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}^{*}}{v} \cdot 1.5$

ここで，入は，圧縮材の有効細長比で，次の計算式による。

$$
\begin{equation*}
\lambda=\frac{\ell_{\mathrm{k}}}{\mathrm{i}} \tag{5.6.1.1}
\end{equation*}
$$

」は，圧縮材の限界細長比で，次の計算式による。
$\Lambda=\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}}}$
注：基準地震動 S s 評価の場合は，Fを F ＊に置き換える
vは，次の計算式による。
$v=1.5+\frac{2}{3}\left(\frac{\lambda}{\Lambda}\right)^{2}$

5．6．2 ベース取付溶接部の応力評価
5．4．1．2 項で求めたベース取付溶接部に作用するせん断応力 $\tau \mathrm{w}$ は許容せん断応力 $f_{\mathrm{w} s}$ 以下であること。ただし，f_{ws} は下表による。

	弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合	基準地震動地震動 S s によ る荷重との組合せの場合
許 容 せ ん 断応 力 $f_{\mathrm{w} \text { s }}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6.1 基本方針

ブロワは，添付書類「VI－2－1－9 機能維持の基本方針」に記載の遠心直動型ファ ン及び横形ころがり軸受電動機と同等の構造であり，機能維持評価において機能維持評価用加速度が表6－1 に示す機能確認済加速度を上回ることから，J E A G 4 6 0 1 に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる設計用最大応答加速度（1．0ZPA） を設定する。

6.2 ブロワの動的機能維持評価

6．2．1 評価対象部位

ブロワは，横置型の原動機にインペラを直接取り付けた遠心式ブロワであり，
J EAG4601に示される遠心直動型ファンと同等の構造であるため，JEA G4601に記載のファンの動的機能維持評価項目を基に，以下の部位について評価を実施する。
a．軸
b．軸受
c．インペラとファンケーシング間のクリアランス
d．ファンケーシング
e．軸シール
f．軸系架台
g．ファンケーシング固定ボルト
h．電動機固定ボルト
i．基礎ボルト
「a．軸」および「b．軸受」は，原動機の動的機能維持評価に含まれる。
「d．ファンケーシング」は，キャン，ブロワケーシングが該当するが，これ らは十分な剛性を有しており，地震時にはこれらの固定ボルトに最も荷重が作用 することから，キャン，ブロワケーシング自体は評価対象外とする。

「e．軸シール」は，メカニカルシールに該当するが，遠心直動型ファンの構成部材にはない為，評価対象外とする。

「f．軸系架台」は，ブロワの構成部材にはない為，評価対象外とする。
「e．基礎ボルト」は，基礎ボルトに相当するブレース及びベース取付溶接部 が「7．評価結果」にて設計用地震力に対して十分な構造強度を有していること を確認している。

また，原動機の端子箱はブロワのサポートプレートに取付けられているためフ アン側の評価対象部位だが，端子箱は箱状の構造物で十分な剛性を有しており，軽量であること，及び当該機器に掛かる荷重は原動機取付ボルトで代表されるこ とから，評価対象外とする。

以上より，本計算書においては，電動機固定ボルトに相当する部材として原動機取付ボルトとブラケット取付ボルト，ファンケーシング固定ボルトに相当する部材としてキャン取付ボルトとブロワケーシング取付ボルト，インペラとファン ケーシング間のクリアランスに相当する部位としてインペラとブロワケーシング とのクリアランスを評価対象部位とする。

6．2．2 評価基準値

原動機取付ボルト，ブラケット取付ボルト，キャン取付ボルト，ブロワケーシ ング取付ボルトの許容応力は，その他支持構造物の許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ に準拠し設定する。

インペラとブロワケーシング間のクリアランスは設計許容隙間を評価基準値と して設定する。

6．2．3 記号の説明

ブロワの動的機能維持評価に使用する記号を表6－1に示す。

表6－1 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{bi}}{ }^{* 1}$	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
C_{P}	ブロワ振動による震度	－
D cb	キャン取付ボルト位置直径	mm
$\mathrm{D}_{\mathrm{c} \text { I }}$	キャン内径	mm
D_{fb}	ブロワケーシング取付ボルト位置直径	mm
$\mathrm{d}_{\mathrm{i}}{ }^{* 1}$	ボルトの呼び径	mm
$\mathrm{Fbii}^{* 1}$	ボルトに作用する引張力（1本当たり）	N
9	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
H_{P}	予想最大両振幅	$\mu \mathrm{m}$
$\mathrm{h}_{1 \mathrm{i}} \sim \mathrm{h}_{3 \mathrm{i}} * 1$	ボルト位置を示す鉛直距離	mm
$\ell_{1 \mathrm{i}} \sim \ell_{5 \mathrm{i}} * 1$	ボルト位置を示す水平距離	mm
M_{P}	原動機回転により作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{m}_{1 \mathrm{i}}, \mathrm{m}_{2 \mathrm{i}} * 1$	運転時質量	kg
N	回転速度（原動機の同期回転速度）	rpm
n i	ボルト本数	－
$\mathrm{n}_{\mathrm{f} 1 \mathrm{i},} \mathrm{n}_{\mathrm{f} 2 \mathrm{i}} * 1$	引張力を受けるとして期待するボルトの本数	－
P_{d}	原動機出力	kW
P_{0}	最高使用圧力	MPa
$\mathrm{Qb} \mathrm{i}^{* 1}$	ボルトに作用するせん断力	N
$\sigma_{\mathrm{bi}} \mathrm{i}{ }^{\text {d }}$	ボルトに生じる引張応力	MPa
$\tau_{\mathrm{b} i}{ }^{*}$	ボルトに生じるせん断応力	MPa
π	円周率	－
Δ	インペラとブロワケーシングとの相対変位	mm

注記 $*_{1}: \mathrm{A}_{\mathrm{bi}}, \mathrm{d}_{\mathrm{i}}, \mathrm{F}_{\mathrm{bi}}, \mathrm{h}_{1 \mathrm{i}} \sim \mathrm{h}_{3 \mathrm{i}}, \ell_{1 \mathrm{i}} \sim_{\ell_{5 i}}, \mathrm{~m}_{1 \mathrm{i}}, \mathrm{m}_{2 \mathrm{i}}, \mathrm{n}_{\mathrm{i}}, \quad \mathrm{n}_{\mathrm{f} 1 \mathrm{i}}$ ， $\mathrm{n}_{\mathrm{f} 2 \mathrm{i}}, \mathrm{Q}_{\mathrm{b}} \mathrm{i}$ ，$\sigma_{\mathrm{b}} \mathrm{i}$ 及び $\tau_{\mathrm{b}} \mathrm{i}$ の添字 i の意味は，以下のとおりとする。
$\mathrm{i}=1$ ：原動機取付ボルト
$\mathrm{i}=2$ ：ブラケット取付ボルト
$\mathrm{i}=3$ ：キャン取付ボルト
$\mathrm{i}=4$ ：ブロワケーシング取付ボルト
＊2： $\mathrm{h}_{1 \mathrm{i}} \sim \mathrm{h}_{3 \mathrm{i}}$ 及び $\ell_{1 \mathrm{i}} \sim \ell_{5 \mathrm{i}}$ の寸法は図6－1 から図6－4に詳細な位置を示す。

6．2．4 評価方法

6．2．4．1 計算条件
（1）評価対象機器の質量は各々の重心に集中するものとする。
（2）地震力は機器に対して水平方向及び鉛直方向から個別に作用するものとし，応力計算において組み合わせる。
（3）ブロワは運転状態とする。
（4）地震力を加える方向は，作用する引張力が厳しくなる方向とする。
（5）荷重の組合せは，「VI－2－1－9 機能維持の基本方針」に従い，動的地震力は二乗和平方根（SRSS），その他の荷重については代数和とする。
（6）原動機はブラケットを固定端としてボルトにより固定されている。ブラケッ ト及びキャンはサポートプレートを固定端としてボルトにより固定されている。 ブロワケーシングは原動機を固定端としてボルトにより固定されている。

6．2．4．2 引張応力

（1）矩形配置のボルトの場合，ボルトに対する引張力は最も厳しい条件として，図 6－1 及び図 6－2 で最外列のボルトを支点とする転倒を考え，これを片側の最外列 のボルトで受けるものとして計算する。

円形配置のボルトの場合，ボルトに対する引張力は支点から正比例した力が作用するものとし，最も厳しい条件として支点から最も離れたボルトについて計算する。（図 6－3 及び図 6－4）

6．2．4．3 せん断応力

（1）ボルトに対するせん断力はボルト全本数で受けるものとして計算する。

6．2．4．4 応力の計算方法

（1）原動機取付ボルト（矩形配置）

図 6－1 原動機取付ボルト評価概要
a．引張力
イ．Z 方向に水平荷重が作用し，軸直角方向に転倒する場合地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{Z}}=\frac{\left(\mathrm{m}_{11}+\mathrm{m}_{21}\right) \cdot \mathrm{g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{11}}{\mathrm{n}_{\mathrm{f} 11} \cdot\left(\ell_{11}+\ell_{21}\right)} \tag{6.2.4.3.1}
\end{equation*}
$$

その他の荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 1_{-} \beta-Z}=\frac{\left(\mathrm{m}_{11}+\mathrm{m}_{21}\right) \cdot \mathrm{g} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{~h}_{11}+\mathrm{M}_{\mathrm{P}}}{\mathrm{n}_{\mathrm{f} 11} \cdot\left(\ell_{11}+\ell_{21}\right)} \tag{6.2.4.3.2}
\end{equation*}
$$

口。 X 方向に水平荷重が作用し， a 点及び b 点を支点に軸方向に転倒する場合地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{X}}=\frac{\left(\mathrm{m}_{11}+\mathrm{m}_{21}\right) \cdot \mathrm{g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{11}}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)} \tag{6.2.4.3.3}
\end{equation*}
$$

その他の荷重
$\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{X}}=\frac{\left(\mathrm{m}_{11}+\mathrm{m}_{21}\right) \cdot \mathrm{g} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{h}_{11}}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)}$

八．Y 方向に鉛直荷重が作用し，軸直角方向に転倒する場合 $\left(\ell_{11}=l_{21}\right)$地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 1_{-\alpha-\mathrm{Y} 1}}=\frac{\left(\mathrm{m}_{11}+\mathrm{m}_{21}\right) \cdot \mathrm{g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \ell_{11}}{\mathrm{n}_{\mathrm{f} 11} \cdot\left(\ell_{11}+\ell_{21}\right)} \tag{6.2.4.3.5}
\end{equation*}
$$

その他の荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 1_{_\beta __} \mathrm{Y} 1}=\frac{\left(\mathrm{m}_{11}+\mathrm{m}_{21}\right) \cdot \mathrm{g} \cdot\left(\mathrm{C}_{\mathrm{P}}-1\right) \cdot \ell_{11}}{\mathrm{n}_{\mathrm{f} 11} \cdot\left(\ell_{11}+\ell_{21}\right)} \tag{6.2.4.3.6}
\end{equation*}
$$

原動機取付ボルトに作用する荷重 $\mathrm{F}_{\mathrm{b} \text { 1＿Y } 1 \text { は，}}$ は，

$$
\begin{align*}
\mathrm{F}_{\mathrm{b} 1_{-} \mathrm{Y} 1} & ={\sqrt{\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{X}}}{ }^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{Y} 1}^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{Z}}}^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{X}} \\
& +\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Y} 1}+\mathrm{F}_{\mathrm{b} 1_{-} \beta-\mathrm{Z}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{6.2.4.3.7}
\end{align*}
$$

二． Y 方向に鉛直荷重が作用し， a 点を支点に軸方向に転倒する場合鉛直上向きの場合
地震荷重
$\mathrm{F}_{\mathrm{b} 1 _\alpha _ \text {Y } 2 _u \mathrm{p}}=\frac{\mathrm{m}_{11} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \ell_{31}-\mathrm{m}_{21} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot\left(\ell_{51}-\ell_{31}\right)}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)}$
（6．2．4．3．8）
その他の荷重
$\mathrm{F}_{\mathrm{b} 1_{-} \beta_{_} \mathrm{Y}_{2} \text { up }}=\frac{\mathrm{m}_{11} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{P}}-1\right) \cdot \ell_{31}-\mathrm{m}_{21} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{P}}-1\right) \cdot\left(\ell_{51}-\ell_{31}\right)}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)}$

原動機取付ボルトに作用する荷重 F ${ }_{\text {b 1＿Y 2＿u p }}$ は，

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 1_{-} \mathrm{Y} \mathrm{Z}_{-} \mathrm{up}}=\sqrt{\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{X}^{2}}{ }^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{Y} 2_{-} \mathrm{up}^{2}}{ }^{2} \mathrm{~F}_{\mathrm{b} 1_{-\alpha-} \mathrm{Z}^{2}}{ }^{2}} \\
& +\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{X}}+\mathrm{F}_{\mathrm{b} 1_{-\beta-} \mathrm{Y}_{2-} \mathrm{up}}+\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Z}} \tag{6.2.4.3.10}
\end{align*}
$$

鉛直下向きの場合
地震荷重
$\mathrm{F}_{\mathrm{b} 1_{1} \alpha_{-} \mathrm{Y} \text { 2＿down }^{\prime}}=\frac{-\mathrm{m}_{11} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \ell_{31}+\mathrm{m}_{21} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot\left(\ell_{51}-\ell_{31}\right)}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)}$
（6．2．4．3．11）
その他の荷重
$\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Y} 2_{\text {＿}} \text { own }}=$
$\frac{-\mathrm{m}_{11} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{P}}+1\right) \cdot \ell_{31}+\mathrm{m}_{21} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{P}}+1\right) \cdot\left(\ell_{51}-\ell_{31}\right)}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)}$
（6．2．4．3．12）
原動機取付ボルトに作用する荷重 F b 1＿Y 2＿down は，

$$
\begin{aligned}
\mathrm{F}_{\mathrm{b} 1_{-} \mathrm{Y} 2_{-} \mathrm{down}} & =\sqrt{\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{X}}{ }^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \alpha-\mathrm{Y} 2_{-} \mathrm{down}}{ }^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \alpha-}{ }^{2}} \\
& +\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{X}}+\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Y} 2_{-} \mathrm{down}}+\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Z}}
\end{aligned}
$$

（6．2．4．3．13）

ホ． Y 方向に鉛直荷重が作用し， b 点を支点に軸方向に転倒する場合地震荷重
$\mathrm{F}_{\mathrm{b} 1_{-\alpha _} \mathrm{Y}_{3}}=\frac{\mathrm{m}_{11} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \ell_{41}+\mathrm{m}_{21} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot\left(\ell_{41}+\ell_{51}\right)}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)}$
（6．2．4．3．14）
その他の荷重
$\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Y} 3}=\frac{\mathrm{m}_{11} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{P}}-1\right) \cdot \ell_{41}+\mathrm{m}_{21} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{P}}-1\right) \cdot\left(\ell_{41}+\ell_{51}\right)}{\mathrm{n}_{\mathrm{f} 21} \cdot\left(\ell_{31}+\ell_{41}\right)}$

原動機取付ボルトに作用する荷重 F ${ }_{\text {b 1＿Y }}$ は，

$$
\begin{align*}
\mathrm{F}_{\mathrm{b} 1_{-} \mathrm{Y} 3} & ={\sqrt{\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{X}}{ }^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{Y} 3}^{2}+\mathrm{F}_{\mathrm{b} 1_{-} \alpha_{-} \mathrm{Z}}{ }^{2}}}+\mathrm{F}_{\mathrm{b} 1_{-\beta-} \mathrm{X}}+\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Y} 3}+\mathrm{F}_{\mathrm{b} 1_{-} \beta_{-} \mathrm{Z}} \cdots
\end{align*}
$$

X，Y，Z 方向に荷重が作用した場合にボルトが受ける荷重を求め，各々の場合において組合せ荷重を計算しっ一番大きくなった組合せ荷重を評価に用いる。

$$
\mathrm{F}_{\mathrm{b} 1}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1_{-} \mathrm{Y} 1}, \mathrm{~F}_{\mathrm{b} 1_{-} \mathrm{Y} 2_{-} \mathrm{up}}, \quad \mathrm{~F}_{\mathrm{b} 1_{-} \mathrm{Y} 2_{-} \mathrm{down}}, \quad \mathrm{~F}_{\mathrm{b} 1_{-} \mathrm{Y} 3}\right)
$$

（6．2．4．3．17）

ここで，Cpはブロワ振動による振幅及び原動機の同期回転数を考慮して定め る値であり，Mpは原動機回転により作用するモーメントで軸直角方向のみ考慮 する。

$$
\begin{equation*}
\mathrm{C}_{\mathrm{P}}=\frac{\frac{1}{2} \cdot \frac{\mathrm{H}_{\mathrm{p}}}{1000} \cdot\left(2 \cdot \pi \cdot \frac{\mathrm{~N}}{60}\right)^{2}}{\mathrm{~g} \cdot 1000} \tag{6.2.4.3.18}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{P}}=\left(\frac{60}{2 \cdot \pi \cdot \mathrm{~N}}\right) \cdot 10^{6} \cdot \mathrm{P}_{\mathrm{d}} \tag{6.2,4.3,19}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b} 1}=\frac{\mathrm{F}_{\mathrm{b} 1}}{\mathrm{~A}_{\mathrm{b} 1}} \tag{6.2.4.3.20}
\end{equation*}
$$

ここで，ボルトの軸断面 A_{bi} は

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 1}=\frac{\pi}{4} \cdot \mathrm{~d}_{1}^{2} \tag{6.2,4.3.21}
\end{equation*}
$$

b．せん断力
原動機取付ボルトに作用する荷重 $\mathrm{Q}_{\mathrm{b} 1}$ は，

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b} 1}=\left(\mathrm{m}_{11}+\mathrm{m}_{21}\right) \cdot \mathrm{g} \cdot\left(\sqrt{\mathrm{C}_{\mathrm{H}}^{2}+\mathrm{C}_{\mathrm{H}}^{2}}+\sqrt{\mathrm{C}_{\mathrm{P}}^{2}+\mathrm{C}_{\mathrm{P}}^{2}}\right) \tag{6.2.4.3.22}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b} 1}=\frac{\mathrm{Q}_{\mathrm{b} 1}}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b} 1}} \tag{6.2.4.3.23}
\end{equation*}
$$

（2）ブラケット取付ボルト（矩形配置）

図6－2 ブラケット取付ボルト評価概要
a．引張力
イ． Z 方向に水平荷重が作用し，軸直角方向に転倒する場合地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 2_{_\alpha _\mathrm{Z}}}=\frac{\mathrm{m}_{12} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \ell_{32}+\mathrm{m}_{22} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \ell_{42}}{\mathrm{n}_{\mathrm{f} 12} \cdot\left(\ell_{12}+\ell_{22}\right)} \tag{6.2.4.3.24}
\end{equation*}
$$

その他の荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 2 _\beta _\mathrm{Z}}=\frac{\mathrm{m}_{12} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{p}} \cdot \ell_{32}+\mathrm{m}_{22} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{P}} \cdot \ell_{42}}{\mathrm{n}_{\mathrm{f} 12} \cdot\left(\ell_{12}+\ell_{22}\right)} \tag{6.2.4.3.25}
\end{equation*}
$$

口．X 方向に水平荷重が作用し，鉛直方向に転倒する場合地震荷重
$\mathrm{F}_{\mathrm{b} 2_{2} \alpha-\mathrm{X}}=\frac{\mathrm{m}_{12} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{h}_{22}+\mathrm{m}_{22} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{h}_{32}}{\mathrm{n}_{\mathrm{f} 22} \cdot \mathrm{~h}_{12}}$

その他の荷重
$\mathrm{F}_{\mathrm{b} 2_{-} \beta_{-} \mathrm{X}}=\frac{\mathrm{m}_{12} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{h}_{22}+\mathrm{m}_{22} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{h}_{32}}{\mathrm{n}_{\mathrm{f} 22} \cdot \mathrm{~h}_{12}}$
（6．2．4．3．27）

八．Y 方向に鉛直荷重が作用し，鉛直方向に転倒する場合地震荷重
$\mathrm{F}_{\mathrm{b} 2 _\alpha _\mathrm{Y}}=\frac{\mathrm{m}_{12} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \ell_{32}+\mathrm{m}_{22} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \ell_{42}}{\mathrm{n}_{\mathrm{f} 22} \cdot \mathrm{~h}_{12}}$
（6．2．4．3．28）

その他の荷重
$\mathrm{F}_{\mathrm{b} 2_{-} \beta \beta_{-} \mathrm{Y}}=\frac{\mathrm{m}_{12} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{P}}\right) \cdot \ell_{32}+\mathrm{m}_{22} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{P}}\right) \cdot \ell_{42}}{\mathrm{n}_{\mathrm{f} 22} \cdot \mathrm{~h}_{12}}$
（6．2．4．3．29）

ブラケット取付ボルトに作用する荷重F ${ }_{\text {b } 2}$ は

$$
\begin{align*}
\mathrm{F}_{\mathrm{b} 2} & =\sqrt{\mathrm{F}_{\mathrm{b} 2_{-} \alpha_{-}} \mathrm{X}^{2}+\mathrm{F}_{\mathrm{b} 2_{-} \alpha_{-}} \mathrm{Y}^{2}+\mathrm{F}_{\mathrm{b} 2_{-} \alpha_{-} \mathrm{Z}^{2}}} \\
& +\mathrm{F}_{\mathrm{b} 2_{-} \beta_{-} \mathrm{X}}+\mathrm{F}_{\mathrm{b} 2_{-} \beta_{-} \mathrm{Y}}+\mathrm{F}_{\mathrm{b} 2_{-} \beta_{-} \mathrm{Z}^{2}} \ldots \tag{6.2.4.3.30}
\end{align*}
$$

引張応力
$\sigma_{\mathrm{b} 2}=\frac{\mathrm{F}_{\mathrm{b} 2}}{\mathrm{~A}_{\mathrm{b} 2}}$
ここで，ボルトの軸断面 $\mathrm{A}_{\mathrm{b} 2}$ は
$\mathrm{A}_{\mathrm{b} 2}=\frac{\pi}{4} \cdot \mathrm{~d}_{2}{ }^{2}$
b．せん断力
ブラケット取付ボルトに作用する荷重 $\mathrm{Q}_{\mathrm{b} 2}$ は，
$Q_{b 2}=\left(m_{12}+\mathrm{m}_{22}\right) \cdot \mathrm{g} \cdot\left(\sqrt{\mathrm{C}_{\mathrm{H}}{ }^{2}+\mathrm{C}_{\mathrm{V}}{ }^{2}}+\sqrt{\mathrm{C}_{\mathrm{P}}{ }^{2}+\left(1+\mathrm{C}_{\mathrm{P}}\right)^{2}}\right)+\frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{h}_{22}}$
（6．2．4．3．33）

せん断応力
$\tau_{\mathrm{b} 2}=\frac{\mathrm{Q}_{\mathrm{b} 2}}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}$
（6．2．4．3．34）
（3）キャン取付ボルト（円形配置）

図 6－3 キャン取付ボルト評価概要
a．引張力
イ．Z 方向に荷重が作用する場合（Y軸回り）
地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 3_{-} \mathrm{y}_{-} \mathrm{ch} \mathrm{z}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{c} \mathrm{~b}}} \cdot\left(\mathrm{~m}_{13} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{13}\right) \tag{6.2.4.3.35}
\end{equation*}
$$

ロ。 Y 方向に荷重が作用する場合（Z 軸回り）
地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 3_{-} \mathrm{z}_{-} \mathrm{c} \mathrm{v}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{cb}}} \cdot\left(\mathrm{~m}_{13} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{~h}_{13}\right) \tag{6.2.4.3.36}
\end{equation*}
$$

その他の荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 3_{-} \mathrm{z}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{cb}}} \cdot\left(\mathrm{~m}_{13} \cdot \mathrm{~g} \cdot \mathrm{~h}_{13}\right) \tag{6.2,4.3.37}
\end{equation*}
$$

八。 X 方向に荷重が作用する場合（ YZ 平面上は常に一定）
地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 3_{-} \mathrm{y}_{-} \mathrm{ch} \mathrm{hx}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{cb}}} \cdot\left(\mathrm{~m}_{13} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \frac{\mathrm{D}_{\mathrm{cb}}}{2}\right) \tag{6.2.4.3.38}
\end{equation*}
$$

その他の荷重
$\mathrm{F}_{\mathrm{b} 3_{-y z}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{cb}}} \cdot\left(\frac{\pi}{4} \cdot \mathrm{D}_{\mathrm{c} 1}{ }^{2} \cdot \mathrm{P}_{0} \cdot \frac{\mathrm{D}_{\mathrm{cb}}}{2}\right)$

キャン取付ボルトに作用する荷重 F ${ }_{\mathrm{b} 3}$ は，

$$
\begin{align*}
\mathrm{F}_{\mathrm{b} 3} & ={\sqrt{\mathrm{F}_{\mathrm{b} 3_{-} \mathrm{y}_{-} \mathrm{ch} \mathrm{z}^{2}}+\mathrm{F}_{\mathrm{b} 3_{-} z_{-} \mathrm{c} v^{2}} \mathrm{~F}_{\mathrm{b} 3_{-} \mathrm{y}_{z_{-} \mathrm{ch}}}{ }^{2}}}+\mathrm{F}_{\mathrm{b} 3_{-} \mathrm{z}}+\mathrm{F}_{\mathrm{b} 3_{-} \mathrm{y} z^{2}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{align*}
$$

引張応力
$\sigma_{\mathrm{b} 3}=\frac{\mathrm{F}_{\mathrm{b} 3}}{\mathrm{n}_{\mathrm{f} 13} \cdot \mathrm{~A}_{\mathrm{b} 3}}$
ここで，ボルトの軸断面 $\mathrm{A}_{\mathrm{b} 3}$ は

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 3}=\frac{\pi}{4} \cdot \mathrm{~d}_{3}^{2} \tag{6.2.4.3.42}
\end{equation*}
$$

b．せん断力

キャン取付ボルトに作用する荷重 $\mathrm{Q}_{\mathrm{b} 3}$ は，

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b} 3}=\mathrm{m}_{13} \cdot \mathrm{~g} \cdot\left({\sqrt{\mathrm{C}_{\mathrm{H}}}{ }^{2}+\mathrm{C}_{\mathrm{V}}}^{2}+1\right) \tag{6.2.4.3.43}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b} 3}=\frac{\mathrm{Q}_{\mathrm{b} 3}}{\mathrm{n}_{3} \cdot \mathrm{~A}_{\mathrm{b} 3}} \tag{6.2.4.3.44}
\end{equation*}
$$

（4）ブロワケーシング取付ボルト（円形配置）

図 6－4 ブロワケーシング取付ボルト評価概要
a．引張力
イ．Z 方向に荷重が作用する場合（ Y 軸回り）
地震荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{y}_{-} \mathrm{ch} \mathrm{z}^{2}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{fb}}} \cdot \mathrm{~m}_{14} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{14} \tag{6.2.4.3.45}
\end{equation*}
$$

その他の荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{y}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{fb}}} \cdot \mathrm{~m}_{14} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{~h}_{14} \tag{6,2,4.3,46}
\end{equation*}
$$

ロ。 Y 方向に荷重が作用する場合（Z 軸回り）
地震荷重
$\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{z}_{-} \mathrm{c} \mathrm{v}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{fb}}} \cdot \mathrm{m}_{14} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{h}_{14}$
その他の荷重
$\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{z}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{fb}}} \cdot \mathrm{m}_{14} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{h}_{14}$

八． X 方向に荷重が作用する場合（YZ平面上は常に一定）
地震荷重
$\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{y} \mathrm{z}_{-} \mathrm{ch} \mathrm{h}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{fb}}} \cdot \mathrm{m}_{14} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \frac{\mathrm{D}_{\mathrm{fb}}}{2}$
（6．2．4．3．49）

その他の荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 4_{-\mathrm{y}}}=\frac{8}{3 \cdot \mathrm{D}_{\mathrm{fb}}} \cdot \mathrm{~m}_{14} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{P}} \cdot \frac{\mathrm{D}_{\mathrm{f} \mathrm{~b}}}{2} \tag{6.2,4.3.50}
\end{equation*}
$$

ブロワケーシング取付ボルトに作用する荷重 $\mathrm{F}_{\mathrm{b} 4}$ は，
$\mathrm{F}_{\mathrm{b} 4}=\sqrt{\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{y}-\mathrm{ch} \mathrm{z}^{2}}{ }^{2} \mathrm{~F}_{\mathrm{b} 4_{-} \mathrm{z}_{-} \mathrm{c} \mathrm{v}^{2}}+\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{y} \mathrm{z}_{-} \mathrm{Ch} \mathrm{x}}{ }^{2}}$

$$
\begin{equation*}
+\sqrt{\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{y}}{ }^{2}+\mathrm{F}_{\mathrm{b} 4_{-} \mathrm{z}}}{ }^{2} \mathrm{~F}_{\mathrm{b} 4_{-} \mathrm{yz}} \tag{6.2,4.3.51}
\end{equation*}
$$

引張応力
$\sigma_{\mathrm{b} 4}=\frac{\mathrm{F}_{\mathrm{b} 4}}{\mathrm{n}_{\mathrm{f} 14} \cdot \mathrm{~A}_{\mathrm{b} 4}}$
ここで，ボルトの軸断面 $\mathrm{A}_{\mathrm{b} 4}$ は

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 4}=\frac{\pi}{4} \cdot \mathrm{~d}_{4}^{2} \tag{6.2.4.3.53}
\end{equation*}
$$

b．せん断力
ブロワケーシング取付ボルトに作用する荷重 $\mathrm{Q}_{\mathrm{b} 4}$ は，
$\mathrm{Q}_{\mathrm{b} 4}=\mathrm{m}_{14} \cdot \mathrm{~g} \cdot\left(\sqrt{\mathrm{C}_{\mathrm{H}}{ }^{2}+\mathrm{C}_{\mathrm{V}}{ }^{2}}+\sqrt{\mathrm{C}_{\mathrm{P}}{ }^{2}+\left(1+\mathrm{C}_{\mathrm{P}}\right)^{2}}\right)$
（6．2．4．3．54）

せん断応力
$\tau_{\mathrm{b} 4}=\frac{\mathrm{Q}_{\mathrm{b} 4}}{\mathrm{n}_{4} \cdot \mathrm{~A}_{\mathrm{b} 4}}$
（5）インペラとブロワケーシングとのクリアランス
FEM解析により，地震による震度及び自重により生じるインペラとブロワケ ーシングとのクリアランスが設計許容隙間を下回ることを確認する。

ブロワの解析モデル（2 次元はりモデル）を図6－5に，解析モデルの概要を以下に示す。機器の諸元を6－3表に示す。
a．解析モデルは，各部材をはり要素でモデル化する。各要素の荷重は要素荷重 として各々の要素で考慮し，インペラ，原動機回転子，キャン，キャンフラン ジおよび内装品等は集中重量として考慮する。
b．図6－5中の 中 は は要素，」Vはばね要素を示す。
c．拘束条件として，サポートプレートとスキッドベース，およびブレースとス キッドベース溶接接合部の並進方向，X軸回転方向を拘束し，原動機取付ボル ト，ブロワケーシング取付ボルトを完全拘束する。溶接部及び取付ボルトは剛体として評価する。
d．解析コードは，「M S C N A S T R A N 」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コー ド）の概要」に示す。
e．解析に用いる寸法は公称値を使用する。

図6－6 ブロワ構造図

表 6－3 機器諸元

項目	記号	単位	入力値
材質	－	－	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	171
			$\begin{aligned} & 1.93 \times 10^{5} \text { (キャン, ブラケット, サ } \\ & \text { ポートプレート } \end{aligned}$
	L		1． 92×10^{5}（電動機軸，ブロワケーシ ング）
ポアソン比	v	－	0.3
要素数	－	個	
節点数	－	個	

6.3 原動機の動的機能維持評価

6．3．1 評価対象部位
J EAG4601の原動機の動的機能維持評価に従い，以下の部位について評価を実施する。
a．取付ボルト
b．固定子
c．軸（回転子）
d．端子箱
e．軸受
f．固定子と回転子間のクリアランス
g．モータフレーム
h．軸継手
以上より，本計算書においては，固定子，軸（回転子），端子箱，軸受，固定子と回転子間のクリアランス，モータフレームを評価対象部位とする。なお，取付ボルトおよび端子箱においては，ブロワの動的機能維持評価に含まれている。 また，軸継手は遠心直動型ファンのため，評価対象外とする。

6．3．2 評価基準値

モータフレーム及び端子箱の許容応力はクラス 2 支持構造物の許容応力状態IV ${ }_{A} \mathrm{~S}$ に準拠し設定する。軸（回転子）の許容応力は，クラス 2 ポンプの許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ に準拠し設定する。固定子の許容応力はクラス 2 支持構造物の許容応力状態 III_{A} S に準拠し設定する。また軸受については，メーカ規定の軸受の定格荷重を，固定子と回転子間のクリアランスは，変位可能寸法を評価基準値として設定する。

6．3．3 記号の説明

可燃性ガス濃度制御系再結合装置ブロワ用原動機の動的機能維持評価に使用す る記号を表6－4に示す。

表6－4 記号の説明

記号	記号の説明	単位
A_{p}	ピンの断面積	mm^{2}
A s	脚部の断面積	mm^{2}
C_{P}	ブロワ振動による震度	－
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
D f	フレームの内径	mm
d s	軸の直径	mm
E	軸の縦弾性係数	MPa
F	ピンにはたらく合成荷重	N
F ${ }_{1}$	原動機の回転によりピンにはたらく荷重	N
F_{2}	水平方向（長手方向）地震力によりピンにはたらく荷重	N
F a	アキシアル荷重	N
FR1	地震力により軸に作用する荷重	N
FR2	ラジアル荷重	N
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h c	原動機取付面から原動機重心までの高さ	mm
h_{f}	原動機取付面から脚取付部までの高さ	mm
I	軸の断面二次モーメント	mm^{4}
1	原動機脚部中心間距離	mm
1 c	脚中心から原動機重心までの水平方向距離	mm
$1 \mathrm{~b}, \mathrm{~L}$	反負荷側•負荷側軸受間距離	mm
1 f	ラジアル荷重の作用位置	mm
$1 \mathrm{r}, \mathrm{C}$	軸（回転子）の重心位置	mm
M_{1}	反負荷側軸受から軸（回転子）の重心位置の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{2}	反負荷側軸受から負荷側軸受の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M ${ }_{1} 1$	水平方向地震力（横方向）により脚部底面に作用する曲げモー メント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{Mmax}_{\text {m }}$	軸に生じる最大曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{P}	軸の回転によるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m 3	脚部重量を除いた原動機重量	kg
m_{r}	軸•回転子の重量	kg
m_{s}	固定子重量	kg
m s 1	脚部の重量	kg
N	回転速度（原動機の同期回転速度）	rpm
n p	ピンの本数	－
P_{d}	原動機出力	kW

	記号	記号の説明	単位
	P ${ }_{1}$	静等価ラジアル荷重	N
	P_{2}	静等価ラジアル荷重	N
	Por， 1	反負荷側のラジアル玉軸受の静等価ラジアル荷重	N
	Por， 2	負荷側のラジアル玉軸受の静等価ラジアル荷重	N
	P_{1}	水平方向地震力（横方向）により脚取付部に作用する鉛直方向荷重	N
	R 1	脚部が受ける荷重	N
	R_{L}	負荷側軸受が受ける荷重	N
	R 。	反負荷側軸受が受ける荷重	N
	T_{M}	原動機最大トルク	$\mathrm{N} \cdot \mathrm{m}$
	T s	原動機最大トルク	\％
	X o	軸受ラジアル荷重に対する係数	－
	Yo	軸受アキシアル荷重に対する係数	－
\checkmark	$y_{\text {max }}$	軸の最大たわみ	mm
\sim	Z s	軸の断面係数	mm^{3}
ง	Z sy	脚部の長手方向軸に対する断面係数	mm^{3}
＋	σ b	軸にはたらく最大曲げ応力	MPa
$\stackrel{1}{6}$	σ s	軸にはたらく組合せ応力	MPa
i	$\sigma \mathrm{s}$	鉛直方向と水平方向（横方向）地震力が作用する組合せ応力	MPa
5	σ S 1	原動機重量による応力	MPa
（c）	σ S 2	水平方向地震力（横方向）による曲げ応力および圧縮応力	MPa
\sim	σ S 4	鉛直方向地震力による応力	MPa
\bigcirc	τ_{p}	ピンにはたらくせん断応力	MPa
	τ t	軸に生じるねじり応力	MPa
	$\tau \mathrm{S} 2$	水平方向地震力（横方向）によるせん断応力	MPa

6．3．4 評価方法

（1）固定子
a．原動機の回転による荷重
原動機の最大トルクは

$$
\begin{equation*}
\mathrm{T}_{\mathrm{M}}=\frac{\mathrm{P}_{\mathrm{d}} \cdot 1000000}{2 \pi \cdot \mathrm{~N} / 60} \cdot \frac{\mathrm{~T}_{\mathrm{S}}}{100} \tag{6.3.4.1}
\end{equation*}
$$

原動機の回転によりピンにはたらく荷重は

$$
\begin{equation*}
\mathrm{F}_{1}=\frac{\mathrm{T}_{\mathrm{M}}}{1 / 2 \cdot \mathrm{D}_{\mathrm{f}}} \tag{6.3.4.2}
\end{equation*}
$$

b．水平方向（長手方向）地震力によりピンにはたらく荷重

$$
\begin{equation*}
\mathrm{F}_{2}=\mathrm{m}_{\mathrm{S}} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \tag{6.3.4.3}
\end{equation*}
$$

c．ピンにはたらくせん断応力
a．，b．の合成荷重は
$\mathrm{F}=\sqrt{\mathrm{F}_{1}{ }^{2}+\mathrm{F}_{2}{ }^{2}}$

ピンにはたらくせん断応力は

$$
\begin{equation*}
\tau_{\mathrm{p}}=\frac{\mathrm{F}}{\mathrm{n}_{\mathrm{p}} \cdot \mathrm{~A}_{\mathrm{p}}} \tag{6.3.4.5}
\end{equation*}
$$

（2）軸（回転子）
a．各部にはたらく荷重
地震力により軸に作用する荷重は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{R} 1}=\sqrt{\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right)^{2}+\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right)^{2}} \cdot \mathrm{~m}_{\mathrm{r}} \cdot \mathrm{~g} \tag{6.3.4.6}
\end{equation*}
$$

負荷側軸受が受ける荷重および反負荷側軸受が受ける荷重は

$$
\begin{equation*}
R_{L}=\frac{\mathrm{F}_{\mathrm{R} 1} \cdot \mathrm{l}_{\mathrm{r}, \mathrm{C}}+\mathrm{F}_{\mathrm{R} 2} \cdot \mathrm{l}_{\mathrm{f}}}{\mathrm{l}_{\mathrm{b}, \mathrm{~L}}} \tag{6.3.4.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{O}}=\frac{\left(\mathrm{l}_{\mathrm{b}, \mathrm{~L}}-\mathrm{l}_{\mathrm{r}, \mathrm{C}}\right) \cdot \mathrm{F}_{\mathrm{R} 1}+\left(\mathrm{l}_{\mathrm{f}}-\mathrm{l}_{\mathrm{b}, \mathrm{~L}}\right) \cdot \mathrm{F}_{\mathrm{R} 2}}{\mathrm{l}_{\mathrm{b}, \mathrm{~L}}} \tag{6.3.4.8}
\end{equation*}
$$

b．曲げ応力
軸に生じる最大曲げモーメントは

$$
\mathrm{M}_{2}=\mathrm{F}_{\mathrm{R} 2} \cdot\left(1_{\mathrm{b}, \mathrm{~L}}-1_{\mathrm{f}}\right) \quad \cdot \cdot(6.3 .4 .10)
$$

$$
\begin{equation*}
M_{\text {max }}=M \text { a } x\left[\left|M_{1}\right|,\left|M_{2}\right|\right] \tag{6.3.4.11}
\end{equation*}
$$

軸にはたらく最大曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{max}}}{\mathrm{Z}_{\mathrm{s}}} \tag{6.3.4.12}
\end{equation*}
$$

c．ねじり応力
軸の回転によるモーメントは

$$
\begin{equation*}
\mathrm{M}_{\mathrm{P}}=\frac{60}{2 \pi \cdot \mathrm{~N}} \cdot 10^{6} \cdot \mathrm{P}_{\mathrm{d}} \tag{6.3.4.13}
\end{equation*}
$$

軸に生じるねじり応力は

$$
\begin{equation*}
\tau_{\mathrm{t}}=\frac{16 \cdot \mathrm{M}_{\mathrm{P}}}{\pi \cdot \mathrm{~d}_{\mathrm{S}}^{3}} \tag{6.3.4.14}
\end{equation*}
$$

d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\sqrt{\sigma_{\mathrm{b}}^{2}+3 \cdot \tau_{\mathrm{t}}^{2}} \tag{6.3.4.15}
\end{equation*}
$$

（3）軸受
a．反負荷側のラジアル玉軸受の静等価ラジアル荷重は

$$
\begin{align*}
& \mathrm{P}_{1}=\mathrm{X}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{O}}+\mathrm{Y}_{\mathrm{O}} \cdot \mathrm{~F}_{\mathrm{a}} \\
& \mathrm{P}_{2}=\mathrm{R}_{\mathrm{O}} \quad \text { ••••••••••••••••••••(6.3.4.17) } \\
& \mathrm{P}_{\text {or, }}=\mathrm{Max}\left[\mathrm{P}_{1}, \mathrm{P}_{2}\right] \tag{6,3,4.18}
\end{align*}
$$

b．負荷側のラジアル玉軸受の静等価ラジアル荷重は

$$
\begin{align*}
& \mathrm{P}_{1}=\mathrm{X}_{\mathrm{O}} \cdot \mathrm{R}_{\mathrm{L}}+\mathrm{Y}_{\mathrm{O}} \cdot \mathrm{~F}_{\mathrm{a}} \\
& \mathrm{P}_{2}=\mathrm{R}_{\mathrm{L}} \text { •••••••••••••••••••••(6.3.4.20) } \\
& \mathrm{P}_{\text {or, }}{ }_{2}=\mathrm{Max}\left[\begin{array}{ll}
\mathrm{P}_{1}, & \mathrm{P}_{2}
\end{array}\right] \tag{6.3.4.21}
\end{align*}
$$

（4）固定子と回転子間のクリアランス
a．軸の断面二次モーメント

$$
\begin{equation*}
\mathrm{I}=\frac{\pi \cdot \mathrm{d}_{\mathrm{s}^{4}}^{64}}{6} \tag{6.3.4.22}
\end{equation*}
$$

b．軸の最大たわみ

$$
\begin{equation*}
\mathrm{y}_{\mathrm{max}}=\frac{\mathrm{F}_{\mathrm{R} 1} \cdot \mathrm{l}_{\mathrm{r}, \mathrm{C}} \cdot\left(\mathrm{l}_{\mathrm{b}, \mathrm{~L}}{ }^{2}-\mathrm{l}_{\mathrm{r}, \mathrm{C}}\right)^{2 / 2}}{9 \cdot \sqrt{3} \cdot \mathrm{E} \cdot \mathrm{I}^{3 / \mathrm{l}_{\mathrm{b}, \mathrm{~L}}}} \tag{6.3.4.23}
\end{equation*}
$$

（5）モータフレーム
a．原動機重量による応力
脚部が受ける荷重は

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{m}_{3} \cdot \mathrm{~g} \cdot \frac{\mathrm{l}-\mathrm{l}_{\mathrm{c}}}{\mathrm{l}} \tag{6.3.4.24}
\end{equation*}
$$

原動機重量による応力は

$$
\begin{equation*}
\sigma_{\mathrm{s} 1}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{6.3,4.25}
\end{equation*}
$$

b．鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{S} 4}=\frac{\mathrm{R}_{1}+\mathrm{m}_{\mathrm{s} 1} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \cdot\left(\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \tag{6.3.4.26}
\end{equation*}
$$

c．水平方向地震力（横方向）による応力
水平方向地震力（横方向）により脚部底面に作用する曲げモーメントは $M_{11}=\left(C_{H}+C_{p}\right) \cdot m_{3} \cdot g \cdot h_{f}$

水平方向地震力（横方向）により脚取付部に作用する鉛直方向荷重は

$$
\begin{equation*}
\mathrm{P}_{\mathrm{l}}=\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m}_{3} \cdot \mathrm{~g} \cdot \frac{\mathrm{~h}_{\mathrm{c}}}{\mathrm{l}} \tag{6.3.4.28}
\end{equation*}
$$

曲げ応力および圧縮応力は
$\sigma_{\mathrm{s}_{2}}=\frac{\mathrm{M}_{11}}{\mathrm{Z}_{\mathrm{sy}}}+\frac{\mathrm{P}_{1}}{\mathrm{~A}_{\mathrm{s}}}$

せん断応力は

$$
\begin{equation*}
\tau_{\mathrm{S} 2}=\frac{\left(\mathrm{C}_{\mathrm{H}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{m}_{3} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{6.3.4.30}
\end{equation*}
$$

d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{S}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{S} 2}+\sigma_{\mathrm{S} 4}\right)^{2}+3 \cdot \tau_{\mathrm{S} 2}{ }^{2}} \tag{6.3.4.31}
\end{equation*}
$$

7．評価結果

7． 1 設計基準対象施設としての評価結果
ブロワの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界 を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有しているこ とを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【ブロワの耐震性についての計算結果】
1．設計基漼対象施設
1．1 構造強度評価

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		ブロワ振動 による震度	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 周囲擐境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
可燃性ガス濃度制御系再結合装置ブロワ	S	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } 22.50^{*} \end{gathered}$			$\mathrm{C}_{\mathrm{H}}=1.13$	$\mathrm{C}_{\mathrm{v}}=0.91$	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{v}}=1.56$		171	－

注記＊：基準床レベルを示す。

部材	A_{HW} $\left(\mathrm{mm}^{2}\right)$	A_{VW} $\left(\mathrm{mm}^{2}\right)$	A $\left(\mathrm{mm}^{2}\right)$	i (mm)	E (MPa)	G (MPa)	I_{b} $\left(\mathrm{mm}^{4}\right)$	I_{V} $\left(\mathrm{mm}^{4}\right)$
ブレース及び								
ベース取付容接部								

部材	$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{u}}$	$\begin{gathered} F \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}^{*}}$	転倒方向	
					弾性設計用地震動 S d又は静的震度	基準地震動S s
$\begin{aligned} & \text { ブレース及び } \\ & \text { ベース取付溶接部 } \end{aligned}$	201＊1	373＊1	201	241	軸	軸

注記 $* 1$ ：最高使用温度で算出。

1．1．3 計算数値

部材	F_{H}		F V		F_{c}	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
ブレース						

部材	材料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
ブレース		圧縮	$\sigma_{\mathrm{c}}=6$	$f_{\text {b c }}=179$	$\sigma_{\mathrm{c}}=10$	$f_{\text {b c }}=210$
ベース取付溶接部		せん断	$\tau_{\mathrm{w}}=20$	$f_{\text {w s }}=116$	$\tau_{\mathrm{w}}=40$	$f_{\text {w s }}=139$

1.2 動的機能維時評価

機器名称	形式	定格容量 （ $\mathrm{Nm}^{3} / \mathrm{h}$ ）	据付場所及び床面高さ （m）	固有周期（s）		基準地震動S d		基準地震動S s		ブロワ振動 による震度	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	$\begin{array}{\|c\|} \hline \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array}$
				水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度			
可燃性ガス濃度制御系再結合装置ブロワ	遠心直動型 ファン		$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } 22.50^{* 1} \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.77$	$\mathrm{C}_{\mathrm{v}}=1.30$		171	－

注記 $* 1$ ：基漼床レベルを示す。
＊2：構造強度評価にて算出した結果を記載。

（2）原動機取付ボルト，ブラケット取付ボルト，キャン取付ボルト，ブロワケーシング取付ボルト

コ（3）固定子

部材	A_{p} $\left(\mathrm{mm}^{2}\right)$	D_{f} (mm)	m_{s} (kg)	N (rpm)	n_{p}	P_{d} (kW)	T_{s} $(\%)$
固定子	121.7	350	121	3000	2	11	200

部材	$\begin{gathered} \mathrm{d}_{\mathrm{s}} \\ (\mathrm{~mm}) \end{gathered}$	$\mathrm{F}_{\mathrm{R} 2}$ （N）	$\begin{gathered} 1_{\mathrm{b}, \mathrm{~L}} \mathrm{~L}, \end{gathered}$	$\begin{gathered} 1_{\mathrm{f}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 1_{\mathrm{r}, \mathrm{C}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{r}} \\ & (\mathrm{~kg}) \end{aligned}$	$\underset{(\mathrm{rpm})}{\mathrm{N}}$	$\begin{aligned} & \mathrm{P}_{\mathrm{d}} \\ & (\mathrm{~kW}) \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{S}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$
軸（回転子）	30	213.8	475.8	631.1	234.3	66	3000	11	2651

（5）軸受

部材	F_{a} (N)	X_{\circ}	Y_{\circ}
軸受	0	0.6	0.5

（6）固定子と回転子間のクリアランス

（6）固定子と回転子間のクリア	d_{s} (mm)	E (MPa)	$1_{\mathrm{b}, \mathrm{L}}$ (mm)	$1_{\mathrm{r}, \mathrm{c}}$ (mm)
固定子と回転子間の クリアランス	30	206000	475.8	234.3

（7）モータフレーム

部材	A_{s} $\left(\mathrm{mm}^{2}\right)$	h_{c} (mm)	h_{f} (mm)	1 $(\mathrm{~mm})$	1_{c} (mm)	m_{3} $(\mathrm{~kg})$	$\mathrm{m}_{\mathrm{s} 1}$ $(\mathrm{~kg})$
モータフレーム	5490	225	74	256	128	310	10

1．2．3 結論
엉

ブロワ	水平方向	機能維持評価用加速度 $*$	機能碓認済加速度
	鉛直方向	1.77	2.6
	水平方向	1.30	1.0
	鉛直方向	1.77	4.7

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
ブロワは，鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。
原動機は，鉛直方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。

1．2．3．2 ブロワの動的機能維持評価

1．2．3．2．1 代表評価項目の評価
ブレース，ベース取付溶接部については，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
1．2．3．2．2 上記以外の基本評価項目の評価
1．2．3．2．2．1 取付ボルトの評価
（単位：MPa）

評価部位	材料	応力	発生応力	許容応力
原動機取付ボルト		引張	20	158
		せん断	14	122
ブラケット取付ボルト		引張	45	158
		せん断	7	122
キャン取付ボルト		引張	18	275
		せん断	1	211
ブロワケーシング取付ボルト		引張	11	152
		せん断	5	117

> すべて許容応力以下である。

1．2．3．2．2．2 インペラとブロワケーシングとのクリアランスの評価

O 2 （3）VI－2－9－4－4－2－2 R 1

1．2．3．3 原動機の動的機能維持評価

1．2．3．3．1 代表評価項目の評価
原動機取付ボルトについては，ブロワの動的機能維持評価にて確認しているため，計算は省略する。
1．2．3．3．2 上記以外の基本評価項目の評価

1．2．3．3．2．1	固定子の評価	（単位：MPa）		
	評価部位	応力	発生応力	許容応力
	固定子	せん断	10	110

1．2．3．3．2．2 軸（回転子）の評価

軸（回転子）の評価
評価部位
軸（回転子）
単位：MPa）
発生応力
すべて許容応力以下である。

1．2．3．3．2．3 軸受の評価

軸受の評価
評価部位
負荷側
反負荷側
発生荷重

1．2．3．3．2．4 固定子と回転子間のクリアランスの評価
（単位：mm）

評価部位	（単位：mm）	
回転子のたわみ	許容変位量	
固定子と回転子間のクリアランス	0.57	1.00

[^0]$$
\text { O } 2 \text { (3) VI-2-9-4-4-2-2 R } 1 \text { E }
$$

1．2．3．3．2．5 モータフレームの評価
（単位：MPa）

評価部位	発生応力	（年位： MPa ）
モータフレー容応力		
モーム	36	40

すべて許容応力以下である。

[^0]: すべて許容変位量以下である

