女川原子力発電所第 2 号機	
工事計画審査資料	
資料番号	02 －工－B－19－0256＿改 0
提出年月日	2021 年 8 月 17 日

VI－2－9－4－6－1－2 フィルタ装置の耐震性についての計算書 （原子炉格納容器フィルタベント系）

2021年8月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 構造計画 2
2.2 評価方針 4
2.3 適用規格•基準等 4
2．4 記号の説明 5
2.5 計算精度と数値の丸め方 15
3．評価部位 15
4．固有周期 16
4．1 固有周期の計算方法 16
4．2 固有周期の計算条件 28
4．3 固有周期の計算結果 28
5．構造強度評価 28
5.1 構造強度評価方法 28
5.2 荷重の組合せ及び許容応力 28
5．2．1 荷重の組合せ及び許容応力状態 28
5．2．2 許容応力 29
5．2．3 使用材料の許容応力評価条件 29
5.3 設計用地震力 34
5.4 計算方法 35
5．4．1 胴の応力 35
5．4．2 ラグの応力 50
5．4．3 取付ボルトの応力 53
5.5 計算条件 54
5． 6 応力の評価 55
5．6．1 胴の応力評価 55
5．6．2 ラグの応力評価 55
5．6．3 取付ボルトの応力評価 55
6．評価結果 56
6． 1 重大事故等対処設備としての評価結果 56
7．引用文献 69

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，フィルタ装置が設計用地震力に対して十分な構造強度を有してい ることを説明するものである。

フィルタ装置は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価 を示す。

2．一般事項
2.1 構造計画

フィルタ装置の構造計画を表2－1 に示す。

（装置室壁
注記＊：フィルタ装置は 3 台並列に設置されており，各フィルタ装置は同様の耐震評価になる。代表として A 号機の構造計画 を示す。
I \＆\quad Z－I－9－モ－6－Z－I

2.2 評価方針

フィルタ装置の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定 した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示すフィ ルタ装置の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」 にて算出した固有周期に基づく設計用地震力による応力等が許容限界に収まることを，

「5．構造強度評価」にて示す方法にて確認することで実施する。
フィルタ装置の耐震評価フローを図 2－1に示す。

図 2－1 フィルタ装置の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針
（ J EAG4601
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版）
（4）J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格
（以下「設計•建設規格」という。）

2． 4 記号の説明

記 号	記 号 の 説 明	単 位
k 3	上部胴の曲げ及びせん断による変形げね定数	N / mm
k_{4}	下部胴の曲げ及びせん断による変形ばね定数	N / mm
k 5	鉛直方向変位に対するばね定数	N / mm
k 6	鉛直荷重による上部胴の伸び変位に対するばね定数	N / mm
k_{7}	鉛直荷重による下部胴の伸び変位に対するばね定数	N / mm
L b	ボルトの有効長さ	mm
Mo	鉛直方向荷重による胴のラグつけ根部の鉛直方向モーメン	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{1}, \mathrm{M}_{2}$	水平力 F_{1} 及び F_{2} による胴のラグつけ根部の鉛直方向モー メント	$\mathrm{N} \cdot \mathrm{mm}$
M_{3}	水平力 F_{1} 及びF ${ }_{2}$ による胴のラグつけ根部のねじりモーメ	$\mathrm{N} \cdot \mathrm{mm}$
	ント	
M ${ }_{\text {c }}$	水平力 F_{1} 及びF L_{2} による胴のラグつけ根部の周方向モーメ	$N \cdot m m$
	ント	
Me	運転時質量による胴のラグつけ根部の鉛直方向モーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {eD }}$	鋁直下向き地震力による胴のラグつけ根部の鉛直方向モー	$\mathrm{N} \cdot \mathrm{mm}$
	メント	
MeU	鋁直上向き地震力による胴のラグつけ根部の鋁直方向モー	$N \cdot m m$
	メント	
$\mathrm{M}_{\text {ev }}$	鉛直方向地震力による胴のラグつけ根部の鉛直方向モーメ	$\mathrm{N} \cdot \mathrm{mm}$
M_{x}	胴に生じる軸方向の曲げモーメント（引用文献（1）の図表よ	$\mathrm{N} \cdot \mathrm{mm}$
M_{ϕ}	胴に生じる周方向の曲げモーメント（引用文献（1）の図表よ	$\mathrm{N} \cdot \mathrm{mm}$
	り）	
mo	容器の運転時質量	kg
m_{1}	ラグのアタッチメント中心より上部の運転時質量	kg
m_{2}	ラグのアタッチメント中心より下部の運転時質量	kg
N ${ }_{\text {x }}$	胴に生じる軸方向の膜力（引用文献（1）の図表より）	N / mm
N_{ϕ}	胴に生じる周方向の膜力（引用文献（1）の図表より）	N / mm
n	ラグ1個当たりのボルトの本数	－
P_{r}	最高使用圧力	MPa
Q	水平力 F_{1} 及び F_{2} による胴のラグつけ根部の周方向荷重	N
R	運転時質量によるラグつけ根部の鉛直方向反力	N

記 号	記 号 の 説 明	単 位
R 0	鉛直方向荷重によるラグつけ根部の鉛直方向反力	N
R ${ }_{1}$	水平力 F_{1} 及び F_{2} によるラグつけ根部の鉛直方向反力	N
R_{D}	鉛直下向き地震力による胴のラグつけ根部の鉛直方向反力	N
R_{U}	鉛直上向き地震力による胴のラグつけ根部の鉛直方向反力	N
R v	鉛直方向地震力による胴のラグつけ根部の鉛直方向反力	N
r m	胴の平均半径	mm
S	設計•建設規格 付録材料図表 Part5 表5に定める値	MPa
S a	胴の許容応力	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{y}（ R T ）	設計•建設規格 付録材料図表 Part5 表8に定める材料の	MPa
	$40^{\circ} \mathrm{C}$ における値	
T	水平方向固有周期	S
T v	鉛直方向固有周期	S
t	胴板の厚さ	mm
Z sp	ラグのねじり断面係数	mm^{3}
Z se	ラグの半径方向軸に対する断面係数	mm^{3}
Z st	ラグの周方向軸に対する断面係数	mm^{3}
$\Delta \times 1$	水平力 F_{1} 及びF ${ }_{2}$ による胴の中心軸の水平方向変位量	mm
$\Delta \times 2$	水平力 F_{1} による上部胴の曲げ及びせん断変形による水平方向変位量	mm
$\Delta \times 3$	水平力 F_{2} による下部胴の曲げ及びせん断変形による水平方向変位量	mm
$\begin{gathered} \beta, \beta_{1}, \beta_{2}, \\ \beta_{c}, \beta_{\ell} \end{gathered}$	引用文献（1）， （2）によるアタッチメントパラメータ	－
γ	引用文献 \square （1）， （2）によるシェルパラメータ	－
$\delta 11$	上部重心へ単位水平力をかけた場合の上部重心の水平方向変位量	mm
$\delta 12$	下部重心～単位水平力をかけた場合の上部重心の水平方向変位量	mm
$\delta 21$	上部重心へ単位水平力をかけた場合の下部重心の水平方向変位量	mm
ס 22	下部重心へ単位水平力をかけた場合の下部重心の水平方向変位量	mm

記 号	記 号 の 説 明	単 位
$\delta_{11 \mathrm{v}}$	上部重心へ単位鉛直力をかけた場合の上部重心の鉛直方向変位量	mm
$\delta 12 \mathrm{v}$	下部重心～単位鉛直力をかけた場合の上部重心の鋁直方向変位量	mm
$\delta 21 \mathrm{v}$	上部重心～単位鉛直力をかけた場合の下部重心の鉛直方向 変位量	mm
$\delta 22 \mathrm{v}$	下部重心へ単位鉛直力をかけた場合の下部重心の鉛直方向変位量	mm
ε	拘束係数（ラグの回転を拘束する場合：1，ラグの回転を拘束 しない場合：0）	－
θ	水平力 F 1_{1} 及びF 2_{2} による胴の中心軸の傾き角	rad
$\theta 0$	運転時質量による胴のラグつけ根部の局部傾き角	rad
θ OU	鉛直上向き地震力による胴のラグつけ根部の局部傾き角	rad
$\theta{ }_{1}$	水平力 F_{1} 及びF F_{2} による胴の第1ラグつけ根部の局部傾き角	rad
$\theta 2$	水平力 F_{1} 及びF F_{2} による胴の第3ラグつけ根部の局部傾き角	rad
$\theta 3$	水平力 F_{1} 及び F_{2} による胴の第 2 ラグ及び第 4 ラグの周方向 ねじれ角	rad
θ so	運転時質量によるラグの基礎又は架台に対する傾き角	rad
θ s ou	鉛直上向き地震力によるラグの基礎又は架台に対する傾き角	rad
θ s 1	水平力 F_{1} 及び F_{2} による第 1 ラグの基礎又は架台に対する傾 き角	rad
θ s 2	水平力 F_{1} 及び F_{2} による第 3 ラグの基礎又は架台に対する傾 き角	rad
π	円周率	－
ρ^{\prime}	液体の密度（ $=$ 比重 $\times 10^{-6}$ ）	$\mathrm{kg} / \mathrm{mm}^{3}$
$\sigma 0$	胴の一次一般膜応力の最大値	MPa
$\sigma 0{ }_{0}$	胴の周方向一次一般膜応力	MPa
$\sigma 0 \times$	胴の軸方向一次一般膜応力	MPa
σ_{1}	胴の一次応力の最大値	MPa
$\sigma 2$	胴の一次＋二次応力の変動値	MPa
σ_{11}, σ_{12}	Z 方向地震が作用した場合の胴の第1ラグつけ根部の第1評価点及び第2評価点における組合せ一次応力	MPa

σ s 5	X 方向地震による第1ラグ及び第4ラグの曲げ応力	MPa
σ s 6	X 方向地震による第2ラグ及び第3ラグの曲げ応力	MPa
σ s 7	鉛直方向地震力によるラグの曲げ応力	MPa
	静水頭又は内圧による胴の周方向及び軸方向応力	MPa
$\sigma{ }_{\phi}{ }^{\text {d }}$	静水頭に作用する鉛直方向地震力による胴の周方向応力	MPa
$\sigma \times 2$	運転時質量による胴の軸方向応力	MPa
	運転時質量により生じる鉛直方向モーメントによる胴の周方向及び軸方向応力	MPa
$\sigma \times 4$	水平方向地震が作用した場合の転倒モーメントによる胴の軸方向応力	MPa
$\sigma{ }_{\phi} 5, \quad \sigma \times 5$	Z 方向地震が作用した場合の鉛直方向モーメントによる第1 ラグつけ根部の胴の周方向及び軸方向一次応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	整数位 $* 1$	
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
断面二次モーメント	mm^{4}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 3$

注記 $~ 1 ~: ~$ 設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位
フィルタ装置の耐震評価は「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる胴，ラグ及び取付ボルトについて実施する。フィルタ装置の耐震評価部位 については，表 2－1 の構造計画図に示す。

4．固有周期
4． 1 固有周期の計算方法
フィルタ装置の固有周期の計算方法を以下に示す。
（1）計算モデル
モデル化に当たつては次の条件で行う。
a．容器及び内容物の質量は，ラグのアタッチメントの中心を基準にして，上部側，下部側に分け，それぞれの全質量が，それぞれの重心に集中するものとする。
b．ラグの基礎への取付けは，ボルトで行っているが，ラグと基礎との取付部でボ ルトの伸びを考慮する。又は鉛直方向荷重に対しては，ラグと基礎との取付部 でボルトの伸びを考慮する。
c．ラグは，胴の半径方向にスライド可能とし，半径方向の荷重は受けもたないも のとする。
d．ラグは，円周方向の荷重に対し，基礎台にピン構造で支持されているものとし， ボルト間の中心を軸に回転し得るものとする。ただし，ラグが外部サポートの支持により回転しない構造となっている場合は，ラグの回転を無視することが できるものとする。
e．水平方向は，胴を梁と考え，水平方向の変形モードは胴の曲げ及びせん断変形 を，鉛直方向は胴の伸び変形を考慮する。
f．胴板とラグとの取付部において胴板の局部変形を考慮する。
g．地震力は，容器に対して水平方向及び鉛直方向から個別に作用するものとし，原則として，強度評価において安全側に絶対値で組合せるものとする。なお，取付ボルトにおいては，作用する荷重の算出において組み合わせるものとする。
h．本評価式は鉛直方向反力 $\mathrm{F}_{11}, \mathrm{~F}_{12}, \mathrm{~F}_{21}, \mathrm{~F}_{22}$ が全て正の値の場合のみ適用 する。
i．本評価式は，ラグ一つに対し，ボルトが 2 本取付けられる場合にのみ適用する。
j．容器の胴は 4 個のラグで支持され，ラグはそれぞれ基礎にボルトで取付けられ るものとする。
k．架台は剛構造とする。
1．耐震計算に用いる寸法は公称値を使用する。

本容器は，前記の条件より図4－1 に示す下中間部でばね支持をされた 2 質点系振動モデルとして考える。
（2）水平方向固有周期
水平方向の 2 質点系振動の固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}=\frac{2 \pi}{\omega} \tag{4.1.1}
\end{equation*}
$$

ここで，振動系における角速度 ω は下記に示す 2 質点系の自由振動の式より求め る。

$$
\begin{equation*}
\frac{1}{10^{6}} \mathrm{~m}_{1} \mathrm{~m}_{2}\left(\delta_{11} \delta_{22}-\delta_{12} \delta_{21}\right) \omega^{4}-\frac{1}{10^{3}}\left(\delta_{11} \mathrm{~m}_{1}+\delta_{22} \mathrm{~m}_{2}\right) \omega^{2}+1=0 \tag{4.1.2}
\end{equation*}
$$

δ_{11} 及び $\delta 2_{2}$ は容器上部重心の位置へ単位水平力をかけた場合の上部及び下部重心の水平変位量であり，δ_{12} 及び δ_{22} は容器下部重心の位置へ単位水平力をか けた場合の上部及び下部重心の水平変位量である。

これらは，次式で求める。

$$
\begin{align*}
& \delta_{11}=\frac{\mathrm{H}_{1}{ }^{2}}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}+\frac{1}{\mathrm{k}_{3}} \cdots . \tag{4.1.3}\\
& \delta_{21}=\delta_{12}=\frac{1}{\mathrm{k}_{2}}-\frac{\mathrm{H}_{1} \mathrm{H}_{2}}{\mathrm{k}_{1}} . \tag{4.1.4}\\
& \delta_{22}=\frac{\mathrm{H}_{2}^{2}}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}+\frac{1}{\mathrm{k}_{4}} \cdots . \tag{4.1.5}
\end{align*}
$$

図4－1 固有周期の計算モデル

図4－2 鉛直方向固有周期の計算モデル

ばね定数 $\mathrm{k}_{1}, \mathrm{k}_{2}$ ， k_{3} 及び k_{4} は以下により求める。
a．胴の中心軸の傾きに対するばね定数 k_{1} は次式で求める。

$$
\begin{equation*}
\mathrm{k}_{1}=\frac{\left|\mathrm{F}_{1} \mathrm{H}_{1}-\mathrm{F}_{2} \mathrm{H}_{2}\right|}{\theta} \tag{4.1.6}
\end{equation*}
$$

ここで，θ はそれぞれのラグ，ボルト及び胴について荷重，モーメント及び変位量の釣合い条件の方程式を作ることにより，以下により求める。

胴への荷重，モーメント及び胴の変位量について水平力の釣合いより

$$
\begin{equation*}
\mathrm{F}_{0}=\mathrm{F}_{1}+\mathrm{F}_{2}=2 \mathrm{Q} \tag{4.1.7}
\end{equation*}
$$

転倒モーメントの釣合いより

$$
\begin{equation*}
\mathrm{F}_{1} \mathrm{H}_{1}-\mathrm{F}_{2} \mathrm{H}_{2}-\mathrm{M}_{1}-\mathrm{M}_{2}-2 \mathrm{M}_{3}-2 \mathrm{R}_{1} \mathrm{r}_{\mathrm{m}}=0 \tag{4.1.8}
\end{equation*}
$$

ここで， r m は次式による。

$$
\begin{equation*}
\mathrm{r}_{\mathrm{m}}=\frac{\mathrm{D}_{\mathrm{i}}+\mathrm{t}}{2} \tag{4.1.9}
\end{equation*}
$$

転倒モーメントによる第1ラグ及び第3ラグの胴のつけ根部の局部傾き角は

$$
\begin{align*}
& \theta_{1}=\frac{M_{1} K_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{3} \beta_{\ell}{ }^{2} \mathrm{E}} \tag{4.1.10}\\
& \theta_{2}=\frac{\mathrm{M}_{2} \mathrm{~K}_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{3} \beta_{\ell}{ }^{2} \mathrm{E}}
\end{align*}
$$

ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合は M_{1} を $-\mathrm{M}_{1}$ 及び M_{2} を $-\mathrm{M}_{2}$ に置き換え る。

ここで， K_{e} は引用文献（2）に基づく胴のラグつけ根部における長手方向曲げ モーメントに対する局部ばね定数であり，シェルパラメータ γ 及びアタッチメン

$$
\begin{align*}
& \text { トパラメータ } \beta \text { は, 以下のように定義する。 } \\
& \gamma=\mathrm{r}_{\mathrm{m}} / \mathrm{t} \\
& \text { (4. 1. 12) } \\
& \beta_{1}=C_{1} / \mathrm{r}_{\mathrm{m}} \\
& \text { (4. 1.13) } \\
& \beta_{2}=\mathrm{C}_{2} / \mathrm{r} \mathrm{~m} \tag{4.1.14}\\
& \beta_{\ell}=\mathrm{k}_{\ell} \sqrt[3]{\beta_{1} \beta_{2}{ }^{2}}
\end{align*}
$$

図4－4 第3ラグに作用する モーメントと力

図4－5 第2ラグ及び第4ラグに作用するモーメントと力

第1ラグについて図4－3のように傾いたとき，モーメントの釣合いより

$$
\begin{equation*}
\mathrm{F}_{12} \mathrm{a}-\mathrm{F}_{11}(\mathrm{a}-\mathrm{b})+\mathrm{M}_{1}=0 \tag{4.1.16}
\end{equation*}
$$

ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合は a を（ $\mathrm{a}-\mathrm{b}-\mathrm{c}$ ）に置き換える。鉛直力の平衡条件より

$$
\begin{equation*}
\mathrm{F}_{12}-\mathrm{F}_{11}+\mathrm{R}_{1}=0 \tag{4.1.17}
\end{equation*}
$$

第3ラグについて図4－4のように傾いたとき，モーメントの釣合いより
$\mathrm{F}_{21}(\mathrm{a}-\mathrm{b})-\mathrm{F}_{2} 2(\mathrm{a}-\mathrm{b}-\mathrm{c})+\mathrm{M}_{2}=0$
ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合は（ $\mathrm{a}-\mathrm{b}-\mathrm{c}$ ）を a に置き換える。
鉛直力の平衡条件より
$\mathrm{F}_{22}-\mathrm{F}_{21}-\mathrm{R}_{1}=0$
第2ラグ及び第4ラグについて図4－5のように傾いたとき，モーメントの釣合いよ り

$$
\begin{equation*}
-\mathrm{F}_{31} \frac{\mathrm{~d}}{2}+\mathrm{F}_{32} \frac{\mathrm{~d}}{2}-\left(\mathrm{F}_{31}+\mathrm{F}_{32}\right) \mathrm{e}+\mathrm{M}_{3}=0 \tag{4.1.20}
\end{equation*}
$$

ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合は左辺第3項の「一（ $\left.\mathrm{F}_{31}+\mathrm{F}_{32}\right)$ 」を「＋（ F_{31}＋F B_{2} ）」に置き換える。
ボルトの伸びと力の関係より

$$
\begin{equation*}
\frac{F_{31}}{e+\frac{d}{2}}=\frac{F_{32}}{e-\frac{d}{2}} \tag{4.1.21}
\end{equation*}
$$

ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合は左辺分母の「 $\mathrm{e}+\frac{\mathrm{d}}{2} 」$ を「 $\mathrm{e}-\frac{\mathrm{d}}{2} 」$ 及 び右辺分母の「e－$\frac{\mathrm{d}}{2}$ 」を「 $\mathrm{e}+\frac{\mathrm{d}}{2}$ 」に置き換える。

ラグの基礎又は架台に対する傾き角はボルトの伸びと力の平衡条件により求め る。

第1ラグについて

$$
\begin{equation*}
\theta_{\mathrm{s} 1}=\frac{\mathrm{F}_{11} \mathrm{~L}_{\mathrm{b}}}{\mathrm{n}_{\mathrm{be}} \mathrm{E}_{\mathrm{b}} \mathrm{~b}} \tag{4.1.22}
\end{equation*}
$$

ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合はbをcに置き換える。
第3ラグについて

$$
\begin{equation*}
\theta_{\mathrm{s} 2}=\frac{\mathrm{F}_{21} L_{\mathrm{b}}}{\mathrm{n}_{\mathrm{be}} \mathrm{E}_{\mathrm{b}} \mathrm{c}} \tag{4.1.23}
\end{equation*}
$$

ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合は c をbに置き換える。
第2ラグ及び第4ラグについて

$$
\begin{equation*}
\theta=\frac{\mathrm{F}_{31} \mathrm{~L}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{be}} \mathrm{E}_{\mathrm{b}}\left(\mathrm{e}+\frac{\mathrm{d}}{2}\right)} \tag{4.1.24}
\end{equation*}
$$

ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2}$ • H_{2} の場合は F_{31} を F_{32} に置き換える。

図4－6 転倒モーメントによる胴及びラグの傾き角

胴中心軸の傾き角 θ ，ラグつけ根部の局部傾き角 θ_{1} 及び θ_{2} 並びにラグの基礎又は架台に対する傾き角 $\theta_{\mathrm{s} 1}$ 及 及 $\theta \mathrm{s} 2$ の間には次の関係が成立する。

$$
\begin{align*}
& \theta_{\mathrm{s} 1}-\theta_{1}+\theta=0 \tag{4.1.25}\\
& \theta_{\mathrm{s} 2}-\theta_{2}+\theta=0 \tag{4.1.26}
\end{align*}
$$

a $\theta_{\mathrm{s} 1}-2 \mathrm{rm}_{\mathrm{m}} \theta+(\mathrm{a}-\mathrm{b}-\mathrm{c}) \quad \theta_{\mathrm{s} 2}=0$
ただし， $\mathrm{F}_{1} \cdot \mathrm{H}_{1}<\mathrm{F}_{2} \cdot \mathrm{H}_{2}$ の場合は a を $(\mathrm{a}-\mathrm{b}-\mathrm{c})$ 及び（ $\mathrm{a}-\mathrm{b}-$ c）をaに置き換える。

したがって， 15 変数 $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{R}_{1}, \theta_{1}, \theta_{2}, \mathrm{~F}_{11}, \mathrm{~F}_{12}, \mathrm{~F}_{21}$ ， $\mathrm{F}_{22}, \mathrm{~F}_{31}, \mathrm{~F}_{32}, \theta_{\mathrm{s} 1}, \theta_{\mathrm{s} 2}$ 及び $\theta_{\text {に対して（4．1．10）式，（4．1．11）式及び }}$
（4．1．16）式～（4．1．27）式を連立させ，胴中心軸の傾き角 θ が求められ，（4．1．6）式に θ を代入することによりばね定数 k_{1} が求まる。

図4－7 水平力による胴の中心軸の変位量
b．胴の水平方向移動に対するばね定数 k_{2} は次式で求める。

$$
\begin{equation*}
\mathrm{k}_{2}=\mathrm{F}_{0} / \Delta_{\mathrm{x}_{1}} \tag{4.1.28}
\end{equation*}
$$

ここで， F_{o} は ${ }^{(4.1 .7)}$ 式で求められる値を用い，$\Delta_{\mathrm{x} 1}$ は

$$
\begin{equation*}
\Delta_{\mathrm{x} 1}=(\mathrm{a}-\mathrm{b}) \theta_{3} \tag{4.1.29}
\end{equation*}
$$

θ 3は（4．1．7）式で求められる Q の値を用いることにより以下により求める。第2ラグ及び第4ラグの曲げモーメントの釣合いにより

$$
\begin{equation*}
\mathrm{M}_{\mathrm{c}}=\mathrm{Q}(\mathrm{a}-\mathrm{b})(1-\varepsilon) \tag{4.1.30}
\end{equation*}
$$

水平力による第2ラグ及び第4ラグの胴のつけ根部の局部傾き角は，（4．1．10）式 の θ_{1} 又は（4．1．11）式の θ_{2} と同様にして，シェルパラメータ γ 及びアタッチメン トパラメータ β によって引用文献（2）の表より値を求めることにより次式で求め る。

$$
\begin{equation*}
\theta_{3}=\frac{M_{c} K_{c}}{r_{m}{ }^{3} \beta_{c}{ }_{c}{ }^{2} \mathrm{E}} \tag{4.1.31}
\end{equation*}
$$

ここで，β は次式による。

$$
\begin{equation*}
\beta_{\mathrm{c}}=\mathrm{k}_{\mathrm{c}} \sqrt[3]{\beta_{1}{ }^{2} \beta_{2}} \tag{4.1.32}
\end{equation*}
$$

c．水平力による上部側の胴の曲げ及びせん断による変形ばね定数 k 3 は次式で求 める。

$$
\begin{equation*}
\mathrm{k}_{3}=\mathrm{F}_{1} / \Delta \mathrm{x}_{2} \tag{4.1.33}
\end{equation*}
$$

ここで，$\Delta_{\mathrm{x} 2}$ は次式による。

$$
\begin{equation*}
\Delta_{\mathrm{x} 2}=\frac{\mathrm{F}_{1} \mathrm{H}_{1}^{3}}{3 \mathrm{E} \mathrm{I}}+\frac{\mathrm{F}_{1} \mathrm{H}_{1}}{\mathrm{GA}_{\mathrm{e}}} \tag{4.1.34}
\end{equation*}
$$

胴の断面性能は次のように求める。

$$
\begin{align*}
& I=\frac{\pi}{8}\left(D_{i}+t\right)^{3} t \tag{4.1.35}\\
& A_{e}=\frac{2}{3} \pi\left(D_{i}+t\right) t \tag{4.1.36}
\end{align*}
$$

d．水平力による下部側の胴の曲げ及びせん断変形によるばね定数 $\mathrm{k}{ }_{4}$ は次式で求 める。

$$
\begin{equation*}
\mathrm{k}_{4}=\mathrm{F}_{2} / \Delta_{\mathrm{x}_{3}} \tag{4.1.37}
\end{equation*}
$$

ここで，$\Delta_{\mathrm{x} 3}$ は次式で求める。

$$
\begin{equation*}
\Delta_{\mathrm{x} 3}=\frac{\mathrm{F}_{2} \mathrm{H}_{2}^{3}}{3 \mathrm{E} \mathrm{I}}+\frac{\mathrm{F}_{2} \mathrm{H}_{2}}{\mathrm{GA}_{\mathrm{e}}} \tag{4.1.38}
\end{equation*}
$$

以上より振動系の角速度 ω が求められ，（4．1．1）式に ω を代入することにより固有周期 Tが求まる。
（3）鉛直方向固有周期
鉛直方向の 2 質点系振動の固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{v}}=\frac{2 \pi}{\omega_{\mathrm{v}}} \tag{4.1.39}
\end{equation*}
$$

ここで，振動系における角速度 ω_{v} は下記に示す 2 質点系の自由振動の式より求 める。

$$
\frac{1}{10^{6}} \mathrm{~m}_{1} \mathrm{~m}_{2}\left(\delta_{11 \mathrm{v}} \delta_{22 \mathrm{v}}-\delta_{12 \mathrm{v}} \delta_{21 \mathrm{v}}\right) \omega_{\mathrm{v}}^{4}-\frac{1}{10^{3}}\left(\delta_{11 \mathrm{v}} \mathrm{~m}_{1}+\delta_{22 \mathrm{v}} \mathrm{~m}_{2}\right) \omega_{\mathrm{v}}^{2}+1=0
$$

（4．1．40）
$\delta_{11 \mathrm{v} \text { 及び } \delta_{21 \mathrm{v}} \mathrm{v} \text { は容器上部重心の位置へ単位鉛直力をかけた場合の上部及び下 }}$部重心の鉛直変位量であり，$\delta_{12} \mathrm{v}$ 及び $\delta 22 \mathrm{v}$ は容器下部重心の位置へ単位鉛直力 をかけた場合の上部及び下部重心の鉛直変位量である。

これらは，次式で求める。

$$
\begin{align*}
& \delta_{11 \mathrm{v}}=\frac{1}{\mathrm{k}_{5}}+\frac{1}{\mathrm{k}_{6}} \cdots \tag{4.1.41}\\
& \delta_{21 \mathrm{v}}=\delta_{12 \mathrm{v}}=\frac{1}{\mathrm{k}_{5}} . \tag{4.1.42}\\
& \delta_{22 \mathrm{v}}=\frac{1}{\mathrm{k}_{5}}-\frac{1}{\mathrm{k}_{7}} \cdots . \tag{4.1.43}
\end{align*}
$$

ばね定数 $\mathrm{k}_{5}, \mathrm{k}_{6}$ 及び k_{7} は以下により求める。
a．鋁直方向変位に対するばね定数 k 5 は，鉛直方向の力の釣合より

$$
\begin{equation*}
4 R_{0}-F_{v}=0 \tag{4.1.44}
\end{equation*}
$$

ラグについて，図4－8のように傾いたとき，モーメントとカの平衡条件により

$$
\begin{align*}
& (\mathrm{a}-\mathrm{b}-\mathrm{c}) \mathrm{F}_{02}-(\mathrm{a}-\mathrm{b}) \mathrm{F}_{01}-\mathrm{M}_{0}=0 \tag{4.1.45}\\
& \mathrm{~F}_{02}-\mathrm{F}_{01}-\mathrm{R}_{0}=0 \quad \cdots \cdots \ldots \ldots \ldots \tag{4.1.46}
\end{align*}
$$

ラグつけ根部の局部傾き角 θ o及びラグの架台に対する傾き角 θ soは， $4.1(2) \mathrm{a}$項の θ_{2} 及び $\theta \mathrm{s} 2$ と同様の方法で求められる。

$$
\begin{equation*}
\theta_{0}=\frac{\mathrm{M}_{0} \mathrm{~K}_{\ell}}{\mathrm{r}_{\mathrm{m}}{ }^{3} \beta_{\ell}{ }^{2} \mathrm{E}} \tag{4.1.47}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{s 0}=\frac{F_{01} L_{b}}{n A_{b e} E_{b} c} \tag{4.1.48}
\end{equation*}
$$

ここで，ラグつけ根部の局部傾き角 θ oとラグの架台に対する傾き角 $\theta \mathrm{so}$ o は等 しいから

$$
\begin{equation*}
\theta_{0}=\theta_{\mathrm{s} 0} \tag{4.1.49}
\end{equation*}
$$

以上の式を連立させて解くことにより θ soが得られ，これより鉛直方向変位量 （ $\mathrm{a}-\mathrm{b}-\mathrm{c}$ ）θ soが求まる。従って，鉛直方向変位に対するばね定数 k 5 は次式 で求められる。

$$
\begin{equation*}
\mathrm{k}_{5}=\frac{\mathrm{F}_{\mathrm{v}}}{(\mathrm{a}-\mathrm{b}-\mathrm{c}) \theta_{\mathrm{s} 0}} \tag{4.1.50}
\end{equation*}
$$

図4－8 鉛直下向き荷重により胴に生じるモーメントと力

図4－9 鉛直下向き荷重によりラグに作用するモーメントと力
b．鉛直荷重による上部胴の伸び変形に対するばね定数 k 6 は，次式により与えら れる。

$$
\begin{equation*}
\frac{1}{\mathrm{k}_{6}}=\frac{\mathrm{H}_{1}}{\mathrm{AE}} \tag{4.1.51}
\end{equation*}
$$

c．鉛直荷重による下部胴の伸び変形に対するばね定数 k 7 は，次式により与えら れる。

$$
\begin{equation*}
\frac{1}{\mathrm{k}_{7}}=\frac{\mathrm{H}_{2}}{\mathrm{AE}} \tag{4.1.52}
\end{equation*}
$$

4．2 固有周期の計算条件
固有周期の計算に用いる計算条件は，本計算書の【フィルタ装置の耐震性について の計算結果】の設計条件および機器要目に示す。
4.3 固有周期の計算結果

固有周期の計算結果を表4－1に示す。計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。

表 4－1 固有周期
（単位：s）

水平方向	
鉛直方向	

5．構造強度評価
5.1 構造強度評価方法

4．1項a．～j．の条件で計算する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
フィルタ装置の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表5－1に示す。

5．2．2 許容応力
フィルタ装置の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き，表5－2及び表5－3のとおりとする。

5．2．3 使用材料の許容応力評価条件
フィルタ装置の使用材料の許容応力評価条件のらち重大事故等対処設備の評価 に用いるものを表5－4に示す。

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	残留熱除去設備	フィルタ装置	常設耐震／防止	重大事故等$\text { クラス } 2 \text { 容器 } * 2$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
						$\begin{gathered} V_{A} S \\ \left(V_{A} S\right. \text { として } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）
原子炉格納施設	放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	フィルタ装置	常設／緩和	重大事故等$\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	IV ${ }_{\text {A }} \mathrm{S}$
						$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \\ \mathrm{IV} \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { の許容限界 } \\ \text { を用いる。) } \end{gathered}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
原子炉格納施設	圧力低減設備その他 の安全設備	フィルタ装置	常設／緩和	重大事故等 クラス 2 容器 $* 2$		$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。
表 5－2 許容応力（重大事故等クラス 2 容器）

注記＊1：座屈による評価が必要な場合には，クラス MC容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
＊3：2•Syを超えるときは弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313 を除く。 S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替 える。）の簡易弾塑性解析を用いる。

許容応力状態	許容限界＊1，＊2 （ボルト等以外）	許容限界＊1，＊2 （ボルト等）	
	一次応力	一次応力	
	組合せ	引張り	せん断
$I V_{\text {A }} \mathrm{S}$			
$V_{A} S$ （ $V_{A} S$ として $V_{A} S$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$	$1.5 \cdot \mathrm{f}{ }_{\text {s }}{ }^{\text {＊}}$

[^0]| 評価部材 | 材料 | 温度条件
 $\left({ }^{\circ} \mathrm{C}\right)$ | | $\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 胴 | SUS316L | 最高使用温度 | 200 | 107 | 120 | 407 | － |
| ラグ | SUS316L | 周囲環境温度 | 66 | － | 159 | 459 | 175 |
| 取付ボルト | $\stackrel{\text { SUS630 }}{\square}$ | 周囲環境温度 | 66 | － | | | |

5.3 設計用地震力

評価に用いる設計用地震力を表5－5 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－5 設計用地震力（重大事故等対処設備）

据付場所 及び	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
床面高さ	水平	鉛直	水平方向	鉛直方向	水平方向	鉛直方向
（m）	方向	方向	設計震度	設計震度	設計震度	設計震度
原子炉建屋						
OP．15．00			－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$
（OP．22．50＊1）						

注記＊1：基準床レベルを示す。

5．4 計算方法

5．4．1 胴の応力
応力計算における水平方向と鉛直方向の組合せについて，本評価においては絶対値和法を用いる。
（1）静水頭又は内圧による応力
静水頭による場合（鉛直方向地震動を含む）

$$
\begin{align*}
\sigma_{\phi 1} & =\frac{\rho^{\prime} \mathrm{gHD}_{\mathrm{i}}}{2 \mathrm{t}} . \tag{5.4.1.1}\\
\sigma_{\phi 2} & =\frac{\rho^{\prime} \mathrm{gHD}_{\mathrm{i}} \mathrm{C}_{\mathrm{V}}}{2 \mathrm{t}} \tag{5.4.1.2}\\
\sigma_{\mathrm{x} 1} & =0 \ldots \ldots \ldots \ldots \ldots \tag{5.4.1.3}
\end{align*}
$$

内圧による場合

$$
\begin{equation*}
\sigma_{\phi 1}=\frac{\mathrm{P}_{\mathrm{r}}\left(\mathrm{D}_{\mathrm{i}}+1.2 \mathrm{t}\right)}{2 \mathrm{t}} \tag{5.4.1.4}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\phi 2}=0 \tag{5.4.1.5}
\end{equation*}
$$

$\sigma_{\mathrm{x}_{1}}=\frac{\mathrm{P}_{\mathrm{r}}\left(\mathrm{D}_{\mathrm{i}}+1.2 \mathrm{t}\right)}{4 \mathrm{t}}$
（2）運転時質量による応力

$$
\begin{equation*}
\sigma_{x_{2}}=\frac{\mathrm{m}_{0} \mathrm{~g}}{\pi \mathrm{t}\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right)} \tag{5.4.1.7}
\end{equation*}
$$

（3）鉛直方向地震力により胴断面に生じる引張応力

$$
\begin{equation*}
\sigma_{\mathrm{x}_{11}}=\frac{\mathrm{m}_{0} \mathrm{~g} \mathrm{C}_{\mathrm{V}}}{\pi \mathrm{t}\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}\right)} \tag{5.4.1.8}
\end{equation*}
$$

（4）運転時質量による胴のラグつけ根部の応力

図5－1 鉛直荷重により胴及びラグに作用するモーメントと力

運転時質量 mo o による鉛直方向の力の平衡条件より

$$
\begin{equation*}
4 \mathrm{R}-\mathrm{m}_{0} \mathrm{~g}=0 \tag{5.4.1.9}
\end{equation*}
$$

上式を変形して

$$
\begin{equation*}
\mathrm{R}=\mathrm{m}_{0} \mathrm{~g} / 4 \tag{5.4.1.10}
\end{equation*}
$$

また，ラグについて図5－1のように傾いたとき，モーメントと力の平衡条件より

$$
\begin{align*}
& \mathrm{F}_{02}(\mathrm{a}-\mathrm{b}-\mathrm{c})-\mathrm{F}_{01}(\mathrm{a}-\mathrm{b})-\mathrm{M}_{\ell}=0 \tag{5.4.1.11}\\
& \mathrm{~F}_{02}-\mathrm{F}_{01}-\mathrm{R}=0 \quad \ldots \tag{5.4.1.12}
\end{align*}
$$

（5．3．1．11）式へ（5．3．1．12）式を代入して

$$
\begin{equation*}
\mathrm{F}_{01}=\frac{\mathrm{R}(\mathrm{a}-\mathrm{b}-\mathrm{c})-\mathrm{M}_{\ell}}{\mathrm{c}} \tag{5.4.1.13}
\end{equation*}
$$

運転時質量によるラグの局部傾き角 θ oを（4．1．10）式の θ_{1} 又は（4．1．11）式の θ_{2} と同様にして，次式で求める。

$$
\begin{equation*}
\theta_{0}=\frac{M_{\ell} K_{\ell}}{r_{m}^{3} \beta_{\ell}^{2} \mathrm{E}} \tag{5.4.1.14}
\end{equation*}
$$

運転時質量によるラグの基礎又は架台に対する傾き角 $\theta_{\mathrm{s} 0}$ oは，（4．1．22）式の $\theta_{\text {s } 1 \text { 又は }}$（4．1．23）式の $\theta_{\text {s } 2}$ と同様にして求める。

$$
\begin{equation*}
\theta_{\mathrm{s} 0}=\frac{\mathrm{F}_{01} L_{\mathrm{b}}}{\mathrm{n}_{\mathrm{be}} \mathrm{E}_{\mathrm{b}} \mathrm{c}} \tag{5.4.1.15}
\end{equation*}
$$

ここで，ラグつけ根部の局部傾き角 θ oとラグの傾き角 $\theta \mathrm{s}$ 。は等しいから

$$
\begin{equation*}
\theta_{0}=\theta_{\mathrm{s} 0} \tag{5.4.1.16}
\end{equation*}
$$

（5．4．1．16）式へ（5．4．1．14）式及び（5．4．1．15）式を代入して得られる $\mathrm{F}_{0}{ }_{1}$ の式と （5．4．1．13）式より，胴のラグつけ根部の鉛直方向モーメントを次式で求める。

$$
\begin{equation*}
M_{\ell}=\frac{R(a-b-c)}{1+\frac{n_{A_{e}} E_{b} K_{\ell} c^{2}}{r_{m}^{3} \beta_{\ell}^{2} E L_{b}^{2}}} \tag{5.4.1.17}
\end{equation*}
$$

鉛直方向曲げモーメント M_{ℓ} により生じる胴の周方向応力及び軸方向応力は，引用文献（1），（2）により次のようにして求める。

シェルパラメータ γ 及びアタッチメントパラメータ β は，以下のように定義 する。

$$
\begin{align*}
& \mathrm{r}_{\mathrm{m}}=\frac{\mathrm{D}_{\mathrm{i}}+\mathrm{t}}{2} \tag{5.4.1.18}\\
& \mathrm{r}=\mathrm{r}_{\mathrm{m}} / \mathrm{t} \tag{5.4.1.19}\\
& \beta_{1}=\mathrm{C}_{1} / \mathrm{r}_{\mathrm{m}} \tag{5.4.1.20}\\
& \beta_{2}=\mathrm{C}_{2} / \mathrm{r}_{\mathrm{m}} \tag{5.4.1.21}\\
& \beta_{\ell}=\sqrt[3]{\beta_{1} \beta_{2}^{2}} \tag{5.4.1.22}
\end{align*}
$$

シェルパラメータ γ 及びアタッチメントパラメータ β_{e} によって引用文献（1） の図より値（以下＊を付記するもの）を求めることにより，次式で求める。

$$
\begin{align*}
& \sigma_{\phi 3}=\left[\frac{N_{\phi}}{M_{\ell} /\left(r_{m}^{2} \beta\right)}\right]^{*}\left(\frac{M_{\ell}}{r_{m}^{2} \beta_{\ell} \mathrm{t}}\right) \mathrm{C}_{\ell 1} \tag{5.4.1.23}\\
& \sigma_{\mathrm{x} 3}=\left[\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\ell} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)}\right]^{*}\left(\frac{M_{\ell}}{r_{m}^{2} \beta_{\ell} \mathrm{t}}\right) \mathrm{C}_{\ell 2} \tag{5.4.1.24}
\end{align*}
$$

反力 R によるせん断応力は

$$
\begin{equation*}
\tau_{\ell 1}=\frac{\mathrm{R}}{4 \mathrm{C}_{2} \mathrm{t}} \tag{5.4.1.25}
\end{equation*}
$$

（5）鉛直方向地震力による胴のラグつけ根部の応力
鉛直方向地震力による胴のラグつけ根部の応力は，下記a及びb項より得られ

一次応力

$\sigma \times 12=\max \left[|\sigma \times 12 \mathrm{D}|,\left|\sigma_{\mathrm{x} 12 \mathrm{U}}\right|\right]$
二次応力
$\sigma_{2 \phi 12}=\max \left[\left|\sigma_{2 \phi 12 \mathrm{D}}\right|, \left\lvert\, \begin{array}{ll}\sigma \phi 12 \mathrm{U} \mid\end{array}\right.\right]$
$\sigma_{2 \times 12}=\max \left[\left|\sigma_{2 \times 12 \mathrm{D}}\right|,\left|\sigma_{2 \times 12 \mathrm{U}}\right|\right]$
反力によるせん断応力

$$
\tau_{\ell 6}=\max \left[\begin{array}{lll}
\tau_{\ell 6}, & \tau_{\ell 6 \mathrm{U}} \tag{5.4.1.30}
\end{array}\right]
$$

a．鉛直下向き地震力による胴のラグつけ根部の応力
鉛直下向き地震荷重により生じる応力は（4）で与えられた連立方程式におい て，$m_{0 g}$ g mogCvに置き換えて解くことにより求められる。

$$
\begin{equation*}
\mathrm{R}_{\mathrm{D}}=\mathrm{m}_{0} \mathrm{~g} \mathrm{C}_{\mathrm{v}} / 4 \tag{5.4.1.31}
\end{equation*}
$$

$$
\begin{equation*}
M_{\ell D}=\frac{R_{D}(a-b-c)}{1+\frac{n^{A_{b e}} E_{b} K_{\ell} c^{2}}{r_{m}^{3} \beta_{\ell}^{2} E L_{b}}} \tag{5.4.1.32}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}_{01 \mathrm{D}}=\frac{\mathrm{R}_{\mathrm{D}}(\mathrm{a}-\mathrm{b}-\mathrm{c})-\mathrm{M}_{\ell \mathrm{D}}}{\mathrm{c}} \tag{5.4.1.33}
\end{equation*}
$$

鉛直方向地震力による鉛直方向曲げモーメント $\mathrm{M}_{\ell \mathrm{D}}$ により生じる周方向応力及び軸方向応力はシェルパラメータ γ 及びアタッチメントパラメータ β_{ℓ} によ つて引用文献（1）の表より値を求める（以下＊を付記する）ことによって次式で求められる。

一次応力

$$
\begin{equation*}
\sigma_{\phi 12 \mathrm{D}}=\left[\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\ell \mathrm{D}} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)}\right]^{*}\left(\frac{\mathrm{M}_{\ell \mathrm{D}}}{\mathrm{r}_{\mathrm{m}}^{2} \beta_{\ell} \mathrm{t}}\right) \mathrm{C}_{\ell 1} \tag{5.4.1.34}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{x 12 \mathrm{D}}=\left[\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\ell \mathrm{D}} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)}\right]^{*}\left(\frac{\mathrm{M}_{\ell \mathrm{D}}}{\mathrm{r}_{\mathrm{m}}{ }^{2} \beta_{\ell} \mathrm{t}}\right) \mathrm{C}_{\ell 2} \tag{5.4.1.35}
\end{equation*}
$$

二次応力

$$
\begin{equation*}
\sigma_{2 \phi 12 \mathrm{D}}=\left[\frac{\mathrm{M}_{\phi}}{\mathrm{M}_{\ell \mathrm{D}} /\left(\mathrm{r}_{\mathrm{m}} \beta\right)}\right]^{*}\left(\frac{6 \mathrm{M}_{\ell \mathrm{D}}}{\mathrm{r}_{\mathrm{m}} \beta_{\ell} \mathrm{t}^{2}}\right) \tag{5.4.1.36}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{2 \times 12 \mathrm{D}}=\left[\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{M}_{\ell D} /\left(\mathrm{r}_{\mathrm{m}} \beta\right)}\right]^{*}\left(\frac{6 \mathrm{M}_{\ell \mathrm{D}}}{\mathrm{r}_{\mathrm{m}} \beta_{\ell} \mathrm{t}^{2}}\right) \tag{5.4.1.37}
\end{equation*}
$$

ここでアタッチメントパラメータ β_{8} は次式で表される。ただし，二次応力を求める場合は更に k_{e} を乗じた値とする。

$$
\begin{equation*}
\beta_{\ell}=\sqrt[3]{\beta_{1} \beta_{2}^{2}} \tag{5.4.1.38}
\end{equation*}
$$

反力 R_{D} によるせん断応力は次式で表される。

$$
\begin{equation*}
\tau_{\ell 6 \mathrm{D}}=\frac{\mathrm{R}_{\mathrm{D}}}{4 \mathrm{C}_{2} \mathrm{t}} \tag{5.4.1.39}
\end{equation*}
$$

b．鉛直上向き地震力による胴のラグつけ根部の応力
鉛直上向き地震力 $\left(\mathrm{C}_{\mathrm{V}}-1\right) \mathrm{m}_{0}$ gによる鉛直方向の力の均衡条件より

$$
\begin{equation*}
4 \mathrm{R}_{\mathrm{U}}-\left(\mathrm{C}_{\mathrm{V}}-1\right) \mathrm{m}_{0} \mathrm{~g}=0 \tag{5.4.1.40}
\end{equation*}
$$

また，ラグについて図5－2のように傾いたとき，モーメントとカの平衡条件よ り

$$
\begin{align*}
& F_{02 U} a^{-}-F_{01 U}(a-b)+M_{Q U}=0 \tag{5.4.1.41}\\
& F_{02 U}-F_{01 U}+R_{U}=0 \ldots \ldots \ldots \ldots \ldots \ldots \tag{5.4.1.42}
\end{align*}
$$

図5－2 鉛直上向き荷重により胴及びラグに作用するモーメントと力

ラグつけ根部の局部傾き角 $\theta_{0 \mathrm{U}}$ は， $4.1(2) \mathrm{a}$ 項の θ_{1} 又は θ_{2} と同様に次式で求める。

$$
\begin{equation*}
\theta_{o U}=\frac{M_{\ell U} K_{\ell}}{r_{m}{ }^{3} \beta_{\ell}{ }^{2} E} \tag{5.4.1.43}
\end{equation*}
$$

ラグの基礎に対する傾き角 $\theta_{\mathrm{s} 0 \mathrm{U}}$ は，4．1（2） a 項の $\theta_{\mathrm{s} 1}$ 又は $\theta_{\mathrm{s} 2}$ と同様に次式で求める。

$$
\begin{equation*}
\theta_{\mathrm{sOU}}=\frac{F_{01 U} L_{b}}{\mathrm{n} \mathrm{~A}_{b e} \mathrm{E}_{\mathrm{b}} \mathrm{~b}} \tag{5.4.1.44}
\end{equation*}
$$

ここで，ラグつけ根布の局部傾き角 $\theta_{\text {ou }}$ とラグの基礎に対する傾き角 θ sou は等しいから

$$
\begin{equation*}
\theta_{\mathrm{ou}}=\theta_{\mathrm{sou}} \tag{5.4.1.45}
\end{equation*}
$$

以上の式を連立させて解くことにより $\mathrm{R}_{\mathrm{U}}, \mathrm{M}_{\ell \mathrm{U}}, \mathrm{F}_{01 \mathrm{u}}$ は次式で求められる。

$$
\begin{equation*}
\mathrm{R}_{\mathrm{U}}=\left(\mathrm{C}_{\mathrm{V}}-1\right) \mathrm{m}_{0 \mathrm{~g}} / 4 \tag{5.4.1.46}
\end{equation*}
$$

$$
\begin{align*}
& M_{\ell U}=\frac{R_{U} a^{a}}{1+\frac{n_{A_{e}} E_{b} K_{\ell} b^{2}}{r_{m}^{3} \beta_{\ell}^{2} E L_{b}}} \tag{5.4.1.47}\\
& F_{01 U}=\frac{-R_{U} a+M_{\ell U}}{b} \ldots \ldots . \tag{5.4.1.48}
\end{align*}
$$

鉛直上向き地震力による鉛直方向曲げモーメント M_{eU} により生じる周方向応力及び軸方向応力は，シェルパラメータ γ 及びアタッチメントパラメータ β_{e} に よって引用文献（1）の表より値を求める（以下，＊と付記する）ことによって，次式で求められる。

一次応力

$$
\begin{align*}
& \sigma_{\phi 12 U}=\left[\frac{N_{\phi}}{M_{\ell U} /\left(r_{m}^{2} \beta\right)}\right]^{*}\left(\frac{M_{\ell U}}{r_{m}^{2} \beta_{\ell}{ }^{2}}\right) C_{\ell 1} \tag{5.4.1.49}\\
& \sigma_{x 12 U}=\left[\frac{N_{x}}{M_{\ell U} /\left(r_{m}^{2} \beta\right)}\right]^{*}\left(\frac{M_{\ell U}}{r_{m}^{2} \beta_{\ell}{ }^{2}}\right) C_{\ell 2}
\end{align*}
$$

二次応力

$$
\begin{align*}
& \sigma_{2 \phi 12 U}=\left[\frac{M_{\phi}}{M_{\ell U} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{6 M_{\ell U}}{r_{m} \beta_{\ell} t^{2}}\right) \tag{5.4.1.51}\\
& \sigma_{2 \times 12 U}=\left[\frac{M_{x}}{M_{\ell U} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{6 M_{\ell U}}{r_{m} \beta_{\ell} t^{2}}\right)
\end{align*}
$$

ここでアタッチメントパラメータ β_{ℓ} は次式で表される。ただし，二次応力を求める場合は更に k eを乗じた値とする。

$$
\begin{equation*}
\beta_{\ell}=\sqrt[3]{\beta_{1} \beta_{2}^{2}} \tag{5.4.1.53}
\end{equation*}
$$

反力 R_{U} によるせん断応力は次式で表される。

$$
\begin{equation*}
\tau_{\ell 6 \mathrm{U}}=\frac{\mathrm{R}_{\mathrm{U}}}{4 \mathrm{C}_{2} \mathrm{t}} \tag{5.4.1.54}
\end{equation*}
$$

（6）水平方向地震による胴の曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{x} 4}=\frac{\mathrm{C}_{\mathrm{H}} \mathrm{~m}_{1} \mathrm{gH}_{1}\left(\mathrm{D}_{\mathrm{i}}+2 \mathrm{t}\right)}{2 \mathrm{I}} \tag{5.4.1.55}
\end{equation*}
$$

ただし， $\mathrm{m}_{1} \cdot \mathrm{~g} \cdot \mathrm{H}_{1}<\mathrm{m}_{2} \cdot \mathrm{~g}$ • H_{2} の場合は $\mathrm{m}_{1} \cdot \mathrm{~g}$ • H_{1} を $\mathrm{m}_{2} \cdot \mathrm{~g}$ • H_{2} に置き換える。
（7）Z 方向地震による胴のラグつけ根部の応力
水平力 F_{1} を $\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{1} \cdot \mathrm{~g}$ 及び F_{2} を $\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{2} \cdot \mathrm{~g}$ に置き換えて得られる $\mathrm{M}_{1}, ~ \mathrm{M}_{2}$ ， R_{1} 及び M_{3} の値を使用する。

鉛直方向モーメント M_{1} 及び M_{2} により生じる胴の周方向応力及び軸方向応力は $\sigma_{\phi} 3$ 及び $\sigma \times 3$ と同様にして

一次応力

$$
\left.\begin{array}{rl}
\sigma_{\phi 5} & =\left[\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{1} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)}\right]^{*}\left(\frac{\left|\mathrm{M}_{1}\right|}{\mathrm{r}_{\mathrm{m}}^{2} \beta_{\ell} \mathrm{t}}\right) \mathrm{C}_{\ell 1} \\
\sigma_{\mathrm{x5}}= & \mathrm{N}_{\mathrm{x}} \tag{5.4.1.57}\\
\mathrm{M}_{1} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)
\end{array}\right]^{*}\left(\frac{\left|\mathrm{M}_{1}\right|}{\mathrm{r}_{\mathrm{m}}^{2} \beta_{\ell} \mathrm{t}}\right) \mathrm{C}_{\ell 2} .
$$

二次応力

$$
\begin{align*}
& \sigma_{2 \phi 5}=\left[\frac{M_{\phi}}{M_{1} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{6\left|M_{1}\right|}{r_{m} \beta_{\ell} t^{2}}\right) \tag{5.4.1.58}\\
& \sigma_{2 \times 5}=\left[\frac{M_{x}}{M_{1} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{6\left|M_{1}\right|}{r_{m} \beta_{\ell} t^{2}}\right) \tag{5.4.1.59}
\end{align*}
$$

一次応力

$$
\begin{equation*}
\sigma_{\phi 6}=\left[\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{2} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)}\right]^{*}\left(\frac{\left|\mathrm{M}_{2}\right|}{\mathrm{r}_{\mathrm{m}}{ }^{2} \beta_{\ell}^{\mathrm{t}}}\right) \mathrm{C}_{\ell 1} \tag{5,4.1.60}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{x 6}=\left[\frac{N_{x}}{M_{2} /\left(r_{m}^{2} \beta\right)}\right]^{*}\left(\frac{\left|M_{2}\right|}{r_{m}^{2} \beta_{\ell} \mathrm{t}}\right) C_{\ell 2} \tag{5.4.1.61}
\end{equation*}
$$

二次応力

$$
\begin{align*}
& \sigma_{2 \phi 6}=\left[\frac{M_{\phi}}{M_{2} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{6\left|M_{2}\right|}{r_{m} \beta_{e} t^{2}}\right) \tag{5.4.1.62}\\
& \sigma_{2 \times 6}=\left[\frac{M_{x}}{M_{2} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{6\left|M_{2}\right|}{r_{m} \beta_{e} t^{2}}\right) \tag{5,4,1,63}
\end{align*}
$$

ここでアタッチメントパラメータ β_{e} は次式で表される。ただし，二次応力を求める場合は更に k eを乗じた値とする。

$$
\begin{equation*}
\beta_{\ell}=\sqrt[3]{\beta_{1} \beta_{2}^{2}} \tag{5.4.1.64}
\end{equation*}
$$

周方向曲げモーメント Mcにより生じる胴の周方向応力及び軸方向応力は一次応力

$$
\begin{align*}
& \sigma_{\phi 7}=\left[\frac{\mathrm{N}_{\phi}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)}\right]^{*}\left(\frac{\left|\mathrm{M}_{\mathrm{c}}\right|}{\mathrm{r}_{\mathrm{m}}^{2} \beta_{\mathrm{c}} \mathrm{t}}\right) \mathrm{C}_{\mathrm{c}_{\mathrm{c} 1}} \tag{5.4.1.65}\\
& \sigma_{\mathrm{x} 7}=\left[\frac{\mathrm{N}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{c}} /\left(\mathrm{r}_{\mathrm{m}}^{2} \beta\right)}\right]^{*}\left(\frac{\left|\mathrm{M}_{\mathrm{c}}\right|}{\mathrm{r}_{\mathrm{m}}^{2} \beta_{\mathrm{c}} \mathrm{t}}\right) \mathrm{C}_{\mathrm{c} 2}
\end{align*}
$$

二次応力

$$
\begin{equation*}
\sigma_{2 \phi 7}=\left[\frac{M_{\phi}}{M_{c} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{{ }_{6}\left|M_{c}\right|}{r_{m} \beta_{c} t^{2}}\right) \tag{5.4.1.67}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{2 \times 7}=\left[\frac{M_{x}}{M_{c} /\left(r_{m} \beta\right)}\right]^{*}\left(\frac{6\left|M_{c}\right|}{r_{m} \beta_{c} t^{2}}\right) \tag{5,4,1,68}
\end{equation*}
$$

ここでアタッチメントパラメータ $\beta_{\text {c }}$ は次式で表される。ただし，二次応力 を求める場合は更に k cを乗じた値とする。

$$
\begin{equation*}
\beta_{c}=\sqrt[3]{\beta_{1}^{2} \beta_{2}} \tag{5.4.1.69}
\end{equation*}
$$

（4．1．7）式より求まる周方向せん断力 Q によるせん断応力は

$$
\begin{equation*}
\tau_{\mathrm{c} 1}=\frac{|\mathrm{Q}|}{4 \mathrm{C}_{1} \mathrm{t}} \tag{5.4.1.70}
\end{equation*}
$$

鉛直方向せん断力 R ，によるせん断応力

$$
\begin{equation*}
\tau_{\ell 2}=\frac{\left|\mathrm{R}_{1}\right|}{4 \mathrm{C}_{2} \mathrm{t}} \tag{5.4.1.71}
\end{equation*}
$$

ねじりモーメント M_{3} により生じる胴のせん断応力は

$$
\begin{equation*}
\tau_{3}=\frac{\left|\mathrm{M}_{3}\right|}{2 \pi \mathrm{C}_{1}^{2} \mathrm{t}} \tag{5.4.1.72}
\end{equation*}
$$

ただし， $\mathrm{C}_{1}>\mathrm{C}_{2}$ の場合は C_{1} を C_{2} に置き換える。
（8）X方向地震による胴のラグつけ根部の応力
（5．4．1．56）式～（5．4．1．59）式，（5．4．1．60）式～（5．4．1．63）式及び（5．4．1．65）式 $~(5.4 .1 .68)$ 式までの右辺に $1 / \sqrt{2}$ を乗じて得られる値を使用し，鉛直方向曲げモ ーメント M_{1} による場合には $\sigma \phi 8, ~ \sigma \times 8, ~ \sigma 2 \phi 8$ 及び $\sigma 2 \times 8$ ，鉛直方向曲げモー

また，（5．4．1．70）式～（5．4．1．72）式の右辺に $1 / \sqrt{2}$ を乗じて得られる値を使用し，周方向せん断力 Q による場合には $\tau \mathrm{c} 4$ ，鉛直方向せん断力 R 1 による場合は $\tau e 5$

及びねじりモーメント M_{3} による場合には $\tau 6$ とする。
（9）組合せ応力
（1）～（8）によって算出される胴のラグつけ根部に生じる応力は以下により組合 わされる。
a．一次一般膜応力

```
\[
\sigma_{0}=\max \left[\begin{array}{llll}
\sigma & 0 & \phi, & \sigma \tag{5.4.1.73}
\end{array} 0_{x}\right]
\]
\[
\begin{equation*}
\sigma_{0 \phi}=\sigma_{\phi 1}+\sigma_{\phi 2} \tag{5.4.1.74}
\end{equation*}
\]
\[
\begin{equation*}
\sigma 0 \times x_{\times 1}+\sigma \times 2+\sigma \times 11+\sigma \times 4 \tag{5.4.1.75}
\end{equation*}
\]


図5－3 胴の評価点
b．一次応力
\[
\begin{array}{r}
\sigma_{1}=\max \left[\begin{array}{llllllll}
\sigma_{11}, & \sigma_{12}, & \sigma_{13}, & \sigma_{14}, & \sigma_{15}, & \sigma_{16}, \\
\sigma_{17}, & \sigma_{18}, & \sigma_{19}, & \sigma_{11}
\end{array}\right]
\end{array}
\]
（a）水平方向地震力（ Z 方向）及び鉛直方向地震力が作用した場合の一次応力 イ．第1ラグのつけ根部

第1評価点については
\[
\begin{equation*}
\sigma_{11}=\frac{1}{2}\left\{\sigma_{\phi z 1}+\sigma_{\mathrm{xz} 1}+\sqrt{\left(\sigma_{\phi \mathrm{z} 1}-\sigma_{\mathrm{xz} 1}\right)^{2}}\right\} \tag{5.4.1.77}
\end{equation*}
\]

ここで，
\[
\sigma_{\phi z 1}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 5}+\sigma_{\phi 2}+\sigma_{\phi 12}
\]
\[
\begin{equation*}
\sigma_{\mathrm{x} z 1}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 5}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12} \tag{5.4.1.79}
\end{equation*}
\]

第 2 評価点については
\[
\sigma_{12}=\frac{1}{2}\left\{\sigma_{\phi z_{2}}+\sigma_{\mathrm{xz} 2}+\sqrt{\left(\sigma_{\phi \mathrm{z} 2}-\sigma_{\mathrm{xz} 2}\right)^{2}+4\left(\tau_{\ell 1}+\tau_{\ell 2}+\tau_{\ell 6}\right)^{2}}\right\}
\]
\[
\begin{align*}
& \text { ここで, } \\
& \qquad \begin{aligned}
\sigma_{\phi \mathrm{z} 2} & =\sigma_{\phi 1}+\sigma_{\phi 2} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\sigma_{\mathrm{xz} 2} & =_{\sigma_{\mathrm{x} 1}}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 11}
\end{aligned} \tag{5.4.1.81}
\end{align*}
\]

ロ。 第 2 及び第 4 ラグのつけ根部
第1評価点については
\(\sigma_{13}=\frac{1}{2}\left\{\sigma_{\phi \mathrm{z} 3}+\sigma_{\mathrm{xz} 3}+\sqrt{\left(\sigma_{\phi \mathrm{z} 3}-\sigma_{\mathrm{xz} 3}\right)^{2}+4\left(\tau_{\mathrm{c} 1}+\tau_{3}\right)^{2}}\right\}\)

ここで，
\[
\begin{align*}
& \sigma_{\phi \mathrm{z} 3}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 2}+\sigma_{\phi 12} \ldots \ldots \ldots .  \tag{5.4.1.84}\\
& \sigma_{\mathrm{xz} 3}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12} \tag{5,4.1.85}
\end{align*}
\]

第2評価点については
\(\sigma_{14}=\frac{1}{2}\left\{\sigma_{\phi \mathrm{z} 4}+\sigma_{\mathrm{xz} 4}+\sqrt{\left(\sigma_{\phi \mathrm{z} 4}-\sigma_{\mathrm{xz} 4}\right)^{2}+4\left(\tau_{\ell 1}+\tau_{3}+\tau_{\ell 6}\right)^{2}}\right\}\)
\[
\begin{align*}
& \text { ここで, }  \tag{5.4.1.86}\\
& \qquad \sigma_{\phi \mathrm{z} 4}=\sigma_{\phi 1}+\sigma_{\phi 7}+\sigma_{\phi 2} \quad \ldots \ldots \ldots .  \tag{5.4.1.87}\\
& \sigma_{\mathrm{xz} 4}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 7}+\sigma_{\mathrm{x} 11} \tag{5,4,1,88}
\end{align*}
\]

八．第 3 ラグのつけ根部
第1評価点については
\[
\begin{equation*}
\sigma_{15}=\frac{1}{2}\left\{\sigma_{\phi \mathrm{z} 5}+\sigma_{\mathrm{xz5}}+\sqrt{\left(\sigma_{\phi \mathrm{z} 5}-\sigma_{\mathrm{xz} 5}\right)^{2}}\right\} \tag{5.4.1.89}
\end{equation*}
\]

ここで，
\[
\begin{align*}
& \sigma_{\phi \mathrm{z} 5}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 6}+\sigma_{\phi 2}+\sigma_{\phi 12} \cdots \ldots \ldots(5.4 .1 .9) \\
& \sigma_{\mathrm{xz} 5}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 6}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12}
\end{align*}
\]

\section*{第2評価点については}
\(\sigma_{16}=\frac{1}{2}\left\{\sigma_{\phi \mathrm{z} 6}+\sigma_{\mathrm{xz6}}+\sqrt{\left(\sigma_{\phi \mathrm{z} 6}-\sigma_{\mathrm{xz6}}\right)^{2}+4\left(\tau_{\ell 1}+\tau_{\ell 2}+\tau_{\ell 6}\right)^{2}}\right\}\)

ここで，
\[
\begin{align*}
\sigma_{\phi \mathrm{z} 6} & =\sigma_{\phi 1}+\sigma_{\phi 2} \quad \ldots \ldots \ldots \ldots \ldots \ldots  \tag{5.4.1.93}\\
\sigma_{\mathrm{xz} 6} & \sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 11} \tag{5.4.1.94}
\end{align*}
\]
（b）水平方向地震力（ X 方向）及び鉛直方向地震力が作用した場合の組合せ一次応力
イ。 第1及び第4ラグのつけ根部
第1評価点については
\(\sigma_{17}=\frac{1}{2}\left\{\sigma_{\phi \times 1}+\sigma_{\mathrm{xx} 1}+\sqrt{\left(\sigma_{\phi \mathrm{x} 1}-\sigma_{\mathrm{xx} 1}\right)^{2}+4\left(\tau_{\mathrm{c} 4}+\tau_{6}\right)^{2}}\right\}\)

ここで，
\[
\begin{equation*}
\sigma_{\phi \times 1}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 8}+\sigma_{\phi 2}+\sigma_{\phi 12} \tag{5.4.1.96}
\end{equation*}
\]
\(\sigma_{\mathrm{xx} 1}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 8}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12}\)

第2評価点については
\(\sigma_{18}=\frac{1}{2}\left\{\sigma_{\phi \times 2}+\sigma_{\mathrm{xx2} 2}+\sqrt{\left.\left(\sigma_{\phi \times 2}-\sigma_{\mathrm{xx2} 2}\right)^{2}+4\left(\tau_{\ell 1}+\tau_{\ell 5}+\tau_{6}+\tau_{\ell 6}\right)^{2}\right\}}\right.\)
（5．4．1．98）
ここで，
\(\sigma_{\phi \times 2}=\sigma_{\phi 1}+\sigma_{\phi 10}+\sigma_{\phi 2}\)
\(\sigma_{\mathrm{xx} 2}=_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+_{\sigma_{\mathrm{x} 4}}+\sigma_{\mathrm{x} 10}{ }^{+} \sigma_{\mathrm{x} 11}\)
（5．4．1．100）

ロ。 第 2 及び第 3 ラグのつけ根部
第1評価点については
\[
\sigma_{19}=\frac{1}{2}\left\{\sigma_{\phi \times 3}+\sigma_{\mathrm{xx} 3}+\sqrt{\left.\left(\sigma_{\phi \times 3}-\sigma_{\mathrm{xx} 3}\right)^{2}+4\left(\tau_{\mathrm{c} 4}+\tau_{6}\right)^{2}\right\}}\right.
\]
\[
\begin{align*}
& \text { ここで, }  \tag{5.4.1.101}\\
& \qquad \sigma_{\phi \mathrm{x} 3}=\sigma_{\phi 1}+\sigma_{\phi 3}+\sigma_{\phi 9}+\sigma_{\phi 2}+\sigma_{\phi 12} \quad \ldots \ldots \ldots \text { (5.4.1. }  \tag{5.4.1.102}\\
& \sigma_{\mathrm{xx} 3}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 9}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12}
\end{align*}
\]
（5．4．1．103）
第2評価点については
\(\sigma_{110}=\frac{1}{2}\left\{\sigma_{\phi \mathrm{x} 4}+\sigma_{\mathrm{xx4}}+\sqrt{\left(\sigma_{\phi \mathrm{x} 4}-\sigma_{\mathrm{xx} 4}\right)^{2}+4\left(\tau_{\ell 1}+\tau_{\ell 5}+\tau_{6}+\tau_{\ell 6}\right)^{2}}\right\}\)
（5．4．1．104）
ここで，
\[
\begin{equation*}
\sigma_{\phi \times 4}=\sigma_{\phi 1}+\sigma_{\phi 10}+\sigma_{\phi 2} \tag{5.4.1.105}
\end{equation*}
\]
\(\sigma_{\mathrm{xx} 4}=\sigma_{\mathrm{x} 1}+\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 10}+\sigma_{\mathrm{x} 11}\)
c．一次 + 二次応力の変動値
\[
\begin{array}{r}
\sigma_{2}=\max \left[\begin{array}{lllllllllll}
\sigma & 21, & \sigma 22, & \sigma 23, & \sigma & 24, & \sigma 25, & \sigma & 26, \\
& \sigma 27, & \sigma 28, & \sigma & 29, & \sigma & 210
\end{array}\right]
\end{array}
\]
（a）水平方向地震力（Z方向）及び鉛直方向地震力が作用した場合の地震のみ による一次 + 二次応力の変動値

イ．第 1 ラグのつけ根部
第1評価点については
\[
\begin{equation*}
\sigma_{21}=\sigma_{2 \phi z 1}+\sigma_{2 x z 1}+\sqrt{\left(\sigma_{2 \phi z 1}-\sigma_{2 \times z 1}\right)^{2}} \tag{5.4.1.108}
\end{equation*}
\]

ここで，
\[
\begin{align*}
& \sigma_{2 \phi \mathrm{z} 1}=\sigma_{\phi 5}+\sigma_{2 \phi 5}+\sigma_{\phi 2}+\sigma_{\phi 12}+\sigma_{2 \phi 12} \cdots(5.4 .  \tag{5.4.1.109}\\
& \sigma_{2 \mathrm{xz} 1}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 5}+\sigma_{2 \mathrm{x} 5}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12}+\sigma_{2 \mathrm{x} 12} \tag{5.4.1.110}
\end{align*}
\]

第2評価点については
\[
\begin{align*}
& \sigma_{22}=\sigma_{2 \phi \mathrm{z} 2}+\sigma_{2 \mathrm{xz2}}+\sqrt{\left(\sigma_{2 \phi \mathrm{z} 2}-\sigma_{2 \mathrm{xz} 2}\right)^{2}+4\left(\tau_{\ell 6}+\tau_{\ell 2}\right)^{2}} \\
& \text { (5.4.1.111) } \\
& \text { ここで, } \\
& \sigma_{2 \phi \mathrm{z} 2}=\sigma_{\phi 2}  \tag{5.4.1.112}\\
& \sigma_{2 \mathrm{xz} 2}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 11} \tag{5.4.1.113}
\end{align*}
\]

ロ。 第 2 及び第 4 ラグのつけ根部
第1評価点については
\(\sigma_{23}=\sigma_{2 \phi \mathrm{z} 3}+\sigma_{2 \mathrm{xz} 3}+\sqrt{\left(\sigma_{2 \phi \mathrm{z} 3}-\sigma_{2 \mathrm{xz} 3}\right)^{2}+4\left(\tau_{\mathrm{c} 1}+\tau_{3}\right)^{2}}\)
（5．4．1．114）
ここで，

\(\sigma_{2 \mathrm{xz} 3}=\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12}+\sigma_{2 \mathrm{x} 12}\)

第2評価点については
\(\sigma_{24}=\sigma_{2 \phi z^{4}}+\sigma_{2 \mathrm{xz} 4}+\sqrt{\left(\sigma_{2 \phi \mathrm{z}_{2}}-\sigma_{2 \mathrm{xz4}}\right)^{2}+4\left(\tau_{\ell 6}+\tau_{3}\right)^{2}}\)
（5．4．1．117）
ここで，
\[
\begin{align*}
\sigma_{2 \phi \mathrm{z} 4} & =\sigma_{\phi 7}+\sigma_{2 \phi 7}+\sigma_{\phi 2}  \tag{5.4.1.118}\\
\sigma_{2 \times \mathrm{z} 4} & =\sigma_{\mathrm{x} 7}+\sigma_{2 \mathrm{x} 7}+\sigma_{\mathrm{x} 11} \tag{5.4.1.119}
\end{align*}
\]

八．第 3 ラグのつけ根部
第1評価点については
\[
\begin{equation*}
\sigma_{25}=\sigma_{2 \phi \mathrm{z} 5}+\sigma_{2 \mathrm{xz5}}+\sqrt{{\left(\sigma_{2 \phi \mathrm{z} 5}-\sigma_{2 \mathrm{xz} 5}\right)^{2}}{ }^{2}} \tag{5.4.1.120}
\end{equation*}
\]

ここで，
\[
\begin{align*}
& \sigma_{2 \phi \mathrm{z} 5}=\sigma_{\phi 6}+\sigma_{2 \phi 6}+\sigma_{\phi 2}+\sigma_{\phi 12}+\sigma_{2 \phi 12} \cdots(5.4 .1 .  \tag{5.4.1.121}\\
& \sigma_{2 \mathrm{xz} 5}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 6} \mathrm{~F}_{2 \mathrm{x} 6}+\sigma_{\mathrm{x} 11} \mathrm{o}_{\mathrm{x} 12}+\sigma_{2 \mathrm{x} 12} \tag{5.4.1.122}
\end{align*}
\]

第2評価点については
\[
\begin{align*}
& \sigma_{26}=\sigma_{2 \phi z 6}+\sigma_{2 \mathrm{xz} 6}+\sqrt{\left(\sigma_{2 \phi z 6}-\sigma_{2 \mathrm{xz} 6}\right)^{2}+4\left(\tau_{\ell 6}+\tau_{\ell 2}\right)^{2}} \\
& \text { (5.4.1.123) } \\
& \text { ここで, } \\
& \sigma_{2 \phi z 6}=\sigma_{\phi 2}  \tag{5.4.1.124}\\
& \sigma_{2 \times z 6}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 11} \tag{5.4.1.125}
\end{align*}
\]
（b）水平方向地震力（ X 方向）及び鉛直方向地震力が作用した場合の地震のみ による一次＋二次応力の変動値
イ．第1ラグ及び第4ラグのつけ根部
第1評価点については
\(\sigma_{27}=\sigma_{2 \phi \times 1}+\sigma_{2 \times \mathrm{x} 1}+\sqrt{\left(\sigma_{2 \phi \times 1}-\sigma_{2 \times \times 1}\right)^{2}+4\left(\tau_{\mathrm{c} 4}+\tau_{6}\right)^{2}}\)

ここで，
\[
\begin{equation*}
\sigma_{2 \phi \mathrm{x} 1}=\sigma_{\phi 8}+\sigma_{2 \phi 8}+\sigma_{\phi 2}+\sigma_{\phi 12}+\sigma_{2 \phi 12} \tag{5.4.1.127}
\end{equation*}
\]
\(\sigma_{2 \times x 1}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 8}+\sigma_{2 \mathrm{x} 8}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12}+\sigma_{2 \mathrm{x} 12}\)
（5．4．1．128）
第2評価点について
\(\sigma_{28}=\sigma_{2 \phi \times 2}+\sigma_{2 \times \times 2}+\sqrt{\left(\sigma_{2 \phi \times 2}-\sigma_{2 \times \times 2}\right)^{2}+4\left(\tau_{6}+\tau_{\ell 5}+\tau_{\ell 6}\right)^{2}}\)
（5．4．1．129）
ここで，
\[
\begin{align*}
& \sigma_{2 \phi \times 2}=\sigma_{\phi 10}+\sigma_{2 \phi 10}+\sigma_{\phi 2} \quad \cdots \ldots \ldots .  \tag{5.4.1.130}\\
& \sigma_{2 \times 2}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 10}+\sigma_{2 \times 10}+\sigma_{\mathrm{x} 11} \tag{5.4.1.131}
\end{align*}
\]

口．第 2 及び第 3 ラグのつけ根部
第1評価点については
\(\sigma_{29}=\sigma_{2 \phi \times 3}+\sigma_{2 \times \times 3}+\sqrt{\left(\sigma_{2 \phi \times 3}-\sigma_{2 \times \times 3}\right)^{2}+4\left(\tau_{\mathrm{c} 4}+\tau_{6}\right)^{2}}\)
（5．4．1．132）
ここで，
\[
\begin{align*}
& \sigma_{2 \phi \mathrm{x} 3}=_{\phi 9}+\sigma_{2 \phi 9}+\sigma_{\phi 2}+\sigma_{\phi 12}+\sigma_{2 \phi 12} \cdots(5.4 . \\
& \sigma_{2 \mathrm{xx} 3}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 9}+\sigma_{2 \mathrm{x} 9}+\sigma_{\mathrm{x} 11}+\sigma_{\mathrm{x} 12}+\sigma_{2 \mathrm{x} 12} \tag{5,4.1,134}
\end{align*}
\]

\section*{第2評価点については}
\(\sigma_{210}=\sigma_{2 \phi \times 4}+\sigma_{2 \times \mathrm{x} 4}+\sqrt{\left(\sigma_{2 \phi \times 4}-\sigma_{2 \mathrm{xx} 4}\right)^{2}+4\left(\tau_{6}+\tau_{\ell 5}+\tau_{\ell 6}\right)^{2}}\)
（5．4．1．135）
ここで，
\(\sigma_{2 \phi \times 4}=\sigma_{\phi 10}+\sigma_{2 \phi 10}+\sigma_{\phi 2}\)
（5．4．1．136）
\(\sigma_{2 \times \mathrm{x} 4}=\sigma_{\mathrm{x} 4}+\sigma_{\mathrm{x} 10}+\sigma_{2 \mathrm{x} 10}+\sigma_{\mathrm{x} 11}\)

\section*{5．4．2 ラグの応力}
（1）運転時質量による応力
\[
\begin{align*}
\sigma_{s 1} & =\frac{\mathrm{M}_{\ell}}{\mathrm{Z}_{\mathrm{s} t}}  \tag{5.4.2.1}\\
\tau_{\mathrm{s} 1} & =\frac{\mathrm{R}}{\mathrm{~A}_{\mathrm{s} 1}} . \tag{5.4.2.2}
\end{align*}
\]
（2）鉛直方向地震力による応力
\[
\begin{align*}
& \sigma_{s_{7}}=\frac{\mathrm{M}_{\ell \mathrm{V}}}{\mathrm{Z}_{\mathrm{st}}} .  \tag{5.4.2.3}\\
& \tau_{\mathrm{s} 7}=\frac{\mathrm{R}_{\mathrm{V}}}{\mathrm{~A}_{\mathrm{s} 1}}  \tag{5.4.2.4}\\
& \text { ここで, } \mathrm{M}_{\ell V}, R_{V} \text { は } \mathrm{M}_{\ell \mathrm{D}}, \mathrm{M}_{\ell U}, \mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{U}} \text { を用いて下式で求める。 } \\
& \mathrm{R}_{\mathrm{V}}=\max \left[\left|\mathrm{R}_{\mathrm{D}}\right|,\left|\mathrm{R}_{\mathrm{U}}\right|\right] \tag{5.4.2.6}
\end{align*}
\]
（3）\(\quad\) Z 方向地震による応力
第 1 ラグについて
\[
\begin{aligned}
& \sigma_{s_{2}}=\frac{\left|M_{1}\right|}{Z_{s_{s t}}}
\end{aligned}
\]

第 2 ラグ及び第 4 ラグについて
\[
\begin{align*}
\sigma_{\mathrm{s} 3} & =\frac{\left|\mathrm{M}_{\mathrm{c}}\right|}{\mathrm{Z}_{\mathrm{s} \ell}} \ldots \ldots \ldots \ldots  \tag{5.4.2.9}\\
\tau_{\mathrm{s} 3} & =\frac{\left|\mathrm{M}_{3}\right|}{\mathrm{Z}_{\mathrm{s} \mathrm{p}}}+\frac{|\mathrm{Q}|}{\mathrm{A}_{\mathrm{s} 2}} \tag{5.4.2.10}
\end{align*}
\]

第 3 ラグについて
\[
\begin{align*}
\sigma_{\mathrm{s} 4} & =\frac{\left|\mathrm{M}_{2}\right|}{\mathrm{Z}_{\mathrm{s} \mathrm{t}}}  \tag{5.4.2.11}\\
\tau_{\mathrm{s} 4} & =\tau_{\mathrm{s} 2} . \tag{5.4.2.12}
\end{align*}
\]
（4）X方向地震による応力
第 1 ラグ及び第 4 ラグについて
\[
\begin{align*}
\sigma_{\mathrm{s} 5} & =\frac{\left|\mathrm{M}_{1}\right|}{\sqrt{2} Z_{\mathrm{st}}}+\frac{\left|\mathrm{M}_{\mathrm{c}}\right|}{\sqrt{2} Z_{\mathrm{s} \ell}} \ldots \ldots \ldots \ldots \ldots \ldots  \tag{5.4.2.13}\\
\tau_{\mathrm{s} 5} & =\frac{\left|\mathrm{R}_{1}\right|}{\sqrt{2} \mathrm{~A}_{\mathrm{s} 1}}+\frac{\left|\mathrm{M}_{3}\right|}{\sqrt{2} Z_{\mathrm{sp}}}+\frac{|\mathrm{Q}|}{\sqrt{2} \mathrm{~A}_{\mathrm{s} 2}} . \tag{5.4.2.14}
\end{align*}
\]

第 2 ラグ及び第 3 ラグについて
\[
\begin{align*}
& \sigma_{\mathrm{s} 6}=\frac{\left|\mathrm{M}_{2}\right|}{\sqrt{2} Z_{\mathrm{s} \mathrm{t}}}+\frac{\left|\mathrm{M}_{\mathrm{c}}\right|}{\sqrt{2} Z_{\mathrm{s} \ell}}  \tag{5.4.2.15}\\
& \tau_{\mathrm{s} 6}=\tau_{\mathrm{s} 5} \quad \ldots \ldots \ldots \ldots \tag{5.4.2.16}
\end{align*}
\]
（5）組合せ応力
ラグの最大応力は次式で求める。
a． Z 方向地震が作用した場合
第 1 ラグについて
\[
\begin{equation*}
\sigma_{1 \mathrm{~s}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 2}+\sigma_{\mathrm{s} 7}\right)^{2}+3\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 2}+\tau_{\mathrm{s} 7}\right)^{2}} \tag{5.4.2.17}
\end{equation*}
\]

第 2 ラグ及び第 4 ラグについて
\[
\begin{equation*}
\sigma_{2 \mathrm{~s}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 3}+\sigma_{\mathrm{s} 7}\right)^{2}+3\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 3}+\tau_{\mathrm{s} 7}\right)^{2}} \tag{5.4.2.18}
\end{equation*}
\]

第 3 ラグについて
\[
\begin{equation*}
\sigma_{3 \mathrm{~s}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 4}+\sigma_{\mathrm{s} 7}\right)^{2}+3\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 4}+\tau_{\mathrm{s} 7}\right)^{2}} \tag{5.4.2.19}
\end{equation*}
\]
b． X 方向地震が作用した場合
第1ラグ及び第 4 ラグについて
\[
\sigma_{4 \mathrm{~s}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 5}+\sigma_{\mathrm{s} 7}\right)^{2}+3\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 5}+\tau_{\mathrm{s} 7}\right)^{2}}
\]
（5．4．2．20）

第 2 ラグ及び第 3 ラグについて
\[
\begin{equation*}
\sigma_{5 \mathrm{~s}}=\sqrt{\left(\sigma_{\mathrm{s} 1}+\sigma_{\mathrm{s} 6}+\sigma_{\mathrm{s} 7}\right)^{2}+3\left(\tau_{\mathrm{s} 1}+\tau_{\mathrm{s} 6}+\tau_{\mathrm{s} 7}\right)^{2}} \tag{5.4.2.21}
\end{equation*}
\]
c．組合せ応力の最大値
ここで， a 項及び b 項により組み合わせた組合せ応力のうち最大のものを \(\sigma\) sとする。
\[
\sigma \mathrm{s}=\max \left[\begin{array}{llllllllll}
\sigma & 1 \mathrm{~s}, & \sigma & 2 \mathrm{~s}, & \sigma & 3 \mathrm{~s}, & \sigma & 4 \mathrm{~s}, & \sigma & 5 \mathrm{~s} \tag{5.4.2.22}
\end{array}\right]
\]

\section*{5．4．3 取付ボルトの応力}

取付ボルトにかかる応力の大きい方について計算する。
（1）Z 方向地震が作用した場合
\[
\begin{equation*}
\sigma_{\mathrm{b} 1}=\frac{\left|\mathrm{F}_{11}\right|+\mathrm{F}_{01}+\mathrm{F}_{01 \mathrm{~V}}}{\mathrm{n}_{\mathrm{b}}} \tag{5.4.3.1}
\end{equation*}
\]

第 2 ラグ及び第 4 ラグについて
\[
\begin{align*}
\sigma_{\mathrm{b} 2} & =\frac{\max ^{\left[\left|\mathrm{F}_{31}\right|,\left|\mathrm{F}_{32}\right|\right]}}{\mathrm{A}_{\mathrm{b}}}+\frac{\mathrm{F}_{01}+\mathrm{F}_{01 \mathrm{~V}}}{\mathrm{n} \mathrm{~A}_{\mathrm{b}}} \\
\tau_{\mathrm{b} 2} & =\frac{|\mathrm{Q}|(1-\varepsilon)}{\mathrm{n} \mathrm{~A}_{\mathrm{b}}} \ldots \tag{5.4.3.3}
\end{align*}
\]

第 3 ラグについて
\[
\begin{equation*}
\sigma_{\mathrm{b} 3}=\frac{\left|\mathrm{F}_{21}\right|+\mathrm{F}_{01}+\mathrm{F}_{01 \mathrm{~V}}}{\mathrm{n}_{\mathrm{b}}} \tag{5.4.3.4}
\end{equation*}
\]

ここで，F 01 v は \(\mathrm{F}_{01 \mathrm{D}}\) ， \(\mathrm{F}_{0} 0 \mathrm{~L}\) を用いて下式で求める。
\(\mathrm{F}_{0} \mathrm{l}_{\mathrm{V}}=\max \left[\begin{array}{lll}\mathrm{F} & 01 \mathrm{D}, & \mathrm{F}_{0} 1 \mathrm{u}\end{array}\right]\)
（2）X方向地震が作用した場合
第 1 ラグ及び第 4 ラグについて
\[
\begin{equation*}
\sigma_{\mathrm{b} 4}=\frac{\left|\mathrm{F}_{11}\right|}{\sqrt{2} \mathrm{n}_{\mathrm{b}}}+\frac{\max \left[\left|\mathrm{F}_{31}\right|,\left|\mathrm{F}_{32}\right|\right]_{\mathrm{b}}}{\sqrt{2} \mathrm{~A}_{\mathrm{b}}}+\frac{\mathrm{F}_{01}+\mathrm{F}_{01 \mathrm{~V}}}{\mathrm{n} \mathrm{~A}_{\mathrm{b}}} \ldots \tag{5.4.3.6}
\end{equation*}
\]
\[
\begin{equation*}
\tau_{\mathrm{b} 4}=\frac{|\mathrm{Q}|(1-\varepsilon)}{\sqrt{2} \mathrm{n}_{\mathrm{b}}} \tag{5,4.3.7}
\end{equation*}
\]

第 2 ラグ及び第 3 ラグについて
\[
\begin{align*}
\sigma_{\mathrm{b} 5} & =\frac{\left|\mathrm{F}_{21}\right|}{\sqrt{2} \mathrm{n}_{\mathrm{A}_{\mathrm{b}}}}+\frac{\max \left[\left|\mathrm{F}_{31}\right|,\left|\mathrm{F}_{32}\right|\right]}{\sqrt{2} \mathrm{~A}_{\mathrm{b}}}+\frac{\mathrm{F}_{01}+\mathrm{F}_{01 \mathrm{~V}} \ldots}{\mathrm{n} \mathrm{~A}_{\mathrm{b}}} \ldots  \tag{5.4.3.8}\\
\tau_{\mathrm{b} 5} & =\frac{|\mathrm{Q}|\left(1-\varepsilon_{\varepsilon}\right)}{\sqrt{2} \mathrm{n}_{\mathrm{b}}} \ldots \tag{5.4.3.9}
\end{align*}
\]
（3）ボルトに生じる最大応力
（1）及び（2）により求められたボルトの応力のうち最大のものを \(\sigma_{\mathrm{b}}\) 及び \(\tau_{\mathrm{b}}\) と する。
a．ボルトの最大引張応力
\[
\sigma_{\mathrm{b}}=\max \left[\begin{array}{llllllll}
\sigma & \mathrm{b}_{1}, & \sigma_{\mathrm{b}} 2, & \sigma \mathrm{~b} 3, & \sigma \mathrm{~b} 4, & \sigma \mathrm{~b} 5 \tag{5.4.3.10}
\end{array}\right]
\]
b．ボルトの最大せん断応力
\(\tau_{\mathrm{b}}=\max \left[\begin{array}{llll}\tau_{\mathrm{b} 2}, & \tau_{\mathrm{b} 4}, & \tau_{\mathrm{b} 5}\end{array}\right]\)

\section*{5.5 計算条件}

応力計算に用いる計算条件は，本計算書の【フィルタ装置の耐震性についての計算結果】の設計条件及び機器要目に示す。

5．6．1 胴の応力評価
5．4．1（8）項で求めた組合せ応力は胴の最高使用温度における許容応力 \(\mathrm{S}_{\mathrm{a}}\) 以下 であること。
ただし, S a は5.3項 表5-2による。

5．6．2 ラグの応力評価
5．4．2（4）項で求めた組合せ応力は許容引張応力 \(f_{\mathrm{t}}\) 以下であること。 ただし，\(f_{\mathrm{t}}\) は下表による。
\begin{tabular}{|c|c|}
\hline & 基準地震動 S s による荷重との組合せの場合 \\
\hline 許容引張応力 & \\
\(\mathrm{f}_{\mathrm{t}}\) & \(\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5\) \\
\hline
\end{tabular}

5．6．3 取付ボルトの応力評価
5．4．3（3）項で求めた取付ボルトの引張応力 \(\sigma \mathrm{b}\) は次式より求めた許容引張応力 \(f_{\mathrm{t}}\)以下であること。

ただし，\(f_{\mathrm{t} \text { o }}\) は次表による。
\[
\begin{equation*}
f_{\mathrm{ts}}=\min \left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \tag{5.6.3.1}
\end{equation*}
\]

せん断応力 \(\tau_{\mathrm{b}}\) はせん断力のみを受けるボルトの許容せん断応力 \(f_{\mathrm{s} \mathrm{b}}\) 以下である こと。

ただし，\(f_{\mathrm{s} \text { bは次表による。 }}\)
\begin{tabular}{|c|c|}
\hline & 基準地震動 S s による荷重との組合せの場合 \\
\hline \begin{tabular}{c} 
許容引張応力 \\
\(f_{\mathrm{to}}\)
\end{tabular} & \(\frac{\mathrm{F}^{*}}{2} \cdot 1.5\) \\
\hline \begin{tabular}{c} 
許容せん断応力 \\
\(f_{\mathrm{sb}}\)
\end{tabular} & \(\frac{\mathrm{F}^{*}}{1.5 \sqrt{3}} \cdot 1.5\) \\
\hline
\end{tabular}

\section*{6．評価結果}

6． 1 重大事故等対処設備としての評価結果
フィルタ装置の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
【フィルタ装置の耐震性についての計算結果】
1．重大事故等対処設備
1．1 1 設計条件

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \mathrm{A}_{\mathrm{s}} 1 \\
& \left(\mathrm{~mm}^{2}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{A}_{\mathrm{s}}{ }^{2}{ }_{\left(\mathrm{m}^{2}\right)}
\end{aligned}
\] & \[
\underset{\substack{\mathrm{sm}^{3} \\\left(\mathrm{~m}^{2}\right)}}{ }
\] & \[
\begin{gathered}
\mathrm{Z}_{\mathrm{se}} \\
\left(\mathrm{~mm}^{3}\right)
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{Z}_{\mathrm{s}} \mathrm{t} \\
& \left(\mathrm{~mm}^{3}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{k}_{\mathrm{c}} \\
& (-)
\end{aligned}
\] & \(\stackrel{\mathrm{k}_{\mathrm{e}}}{(-)}\) & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{el}_{1}} \\
& (-)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C}_{62} \\
& (-)
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{c}}{ }^{1} \\
& (-)^{2}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{c}}{ }_{(-)}
\end{aligned}
\] \\
\hline 2． \(535 \times 10^{4}\) & 3． \(221 \times 10^{4}\) & 1． \(409 \times 10^{7}\) & 9． \(400 \times 10^{6}\) & 1． \(053 \times 10^{7}\) & 1.04 & 1.07 & & & & \\
\hline \[
\stackrel{( }{(-)}
\] & \[
\underset{(\mathrm{mm})}{{ }^{2}}
\] & \[
\begin{gathered}
\mathrm{c}_{\mathrm{b}} \\
(\mathrm{~mm})
\end{gathered}
\] & \[
\begin{gathered}
c \\
(\mathrm{~mm})
\end{gathered}
\] & \[
\underset{(\mathrm{mm})}{\mathrm{d}}
\] & \[
\begin{gathered}
\hline \mathrm{L}_{\mathrm{b}} \\
(\mathrm{~mm})
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{d}_{0} \\
(\mathrm{~mm})
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{A}_{\mathrm{b}} \\
\left(\mathrm{~mm}^{2}\right)
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{A}_{\mathrm{b}} \mathrm{e} \\
& \left(\mathrm{~mm}^{2}\right)
\end{aligned}
\] & & \\
\hline 2 & 312.5 & 125 & 95 & 246 & 126 & \[
\begin{gathered}
30 \\
\text { (M30) }
\end{gathered}
\] & 706.8 & 603.8 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 部材 & \begin{tabular}{c}
\(\mathrm{S}_{\mathrm{y}}\) \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{S}_{u}\) \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c}
S \\
\((\mathrm{MPa})\)
\end{tabular} \\
\hline 胴板 & \(120^{* 1}\) & \(407^{* 1}\) & \(107^{* 1}\) \\
\hline \multicolumn{4}{|c|}{} \\
\hline 部材 & \begin{tabular}{c}
\(\mathrm{S}_{\mathrm{y}}\) \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{S}_{\mathrm{u}}\) \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c}
F \\
\((\mathrm{MPa})\)
\end{tabular} \\
\hline ラグ & \(159^{* 2}\) & \(459^{* 2}\) & - \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|l|}{弾性設計用地震動 S d 又 \({ }^{\text {又 }}\) 静的震度} & \multicolumn{4}{|l|}{基準地震動 S s} \\
\hline & \multicolumn{2}{|l|}{Z 方向} & \multicolumn{2}{|l|}{X方向} & \multicolumn{2}{|l|}{Z 方向} & \multicolumn{2}{|l|}{X方向} \\
\hline & 周方向応力 & 軸方向応力 & 周方向応力 & 軸方向応力 & 周方向応力 & 軸方向応力 & 周方向応力 & 軸方向応力 \\
\hline 静水頭又は内圧による応力 & － & － & － & － & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0
\end{gathered}
\] & \(\sigma_{\times 1}=23\) & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0
\end{gathered}
\] & \(\sigma_{\times 1}=23\) \\
\hline 静水頭又は内圧による応力 （鉛直方向地震時） & － & － & － & － & － & － & － & － \\
\hline 運転時質量による応力 & － & － & － & － & － & \(\sigma \times 2=2\) & － & \(\sigma \times 2=2\) \\
\hline 鉛直方向地震力により胴断面に生じる引張応力 & － & － & － & － & － & \(\sigma_{\times 11}=3\) & － & \(\sigma_{\times 11}=3\) \\
\hline 水平方向地震による転倒モーメン トによる胴の曲げ応力 & － & － & － & － & － & \(\sigma \times 4=5\) & － & \(\sigma_{\times 4}=5\) \\
\hline 組合せ応力 & \multicolumn{2}{|l|}{－} & \multicolumn{2}{|l|}{－} & \multicolumn{4}{|l|}{\(\sigma_{0}=45\)} \\
\hline
\end{tabular}
1.3 計算数値
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & （2） & & 応力 & & & & & & & & & & （単位：MPa） \\
\hline \multirow[t]{4}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{評価点}} & \multirow[t]{4}{*}{応力} & \multirow[t]{4}{*}{\begin{tabular}{l}
内圧による \\
応力
\end{tabular}} & \multirow[t]{4}{*}{内圧による応力 （鉛直方向地震時）} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{運転時質量による応力}} & \multicolumn{5}{|l|}{地震による応力} & \multirow[t]{4}{*}{\begin{tabular}{l}
組合せ \\
一次応力
\end{tabular}} \\
\hline & & & & & & & & \multicolumn{5}{|l|}{弾性設計用地震動 S d 又 \({ }^{\text {又 }}\) 静的震度} & \\
\hline & & & & & & & & \multicolumn{3}{|l|}{水平方向地震} & \multicolumn{2}{|l|}{鉛直方向地震} & \\
\hline & & & & & & \[
\begin{aligned}
& \text { 自重による } \\
& \text { 応力 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 曲げモーメ } \\
& \text { ントによる } \\
& \text { 応力 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 転倒モーメ } \\
& ン ト に よ る ~ \\
& \text { 応力 }
\end{aligned}
\] & 鉛直方向モ ーメントに よる応力 & 周方向モー メントによ る応力 & 引張応力 & 鉛直方向モ ーメントに よる応力 & \\
\hline \multirow[t]{18}{*}{\[
\begin{aligned}
& \mathrm{Z} \\
& \text { 方 } \\
& \text { 向 }
\end{aligned}
\]} & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { 第 } \\
& \frac{1}{ラ} \\
& \text { グ } \\
& \text { 側 }
\end{aligned}
\]} & \multirow[t]{3}{*}{第
1
1
評
価
点} & 周方向 & － & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{－} \\
\hline & & & 軸方向 & － & － & － & － & － & － & － & － & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline & & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 第 } \\
2 \\
2 \text { 評 } \\
\text { 価 } \\
\text { 点 }
\end{gathered}
\]} & 周方向 & － & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{－} \\
\hline & & & 軸方向 & － & － & － & － & － & － & － & － & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{c|c} 
& 第 \\
第 & 1 \\
2 & 評 \\
及 & 価 \\
び & 点
\end{tabular}}} & 周方向 & － & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{－} \\
\hline & & & 軸方向 & － & － & － & － & － & － & － & － & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline & 4 & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 第 } \\
& 2 \\
& 2 \\
& \text { 評 } \\
& \text { 価 } \\
& \text { 点 }
\end{aligned}
\]} & 周方向 & － & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{－} \\
\hline & グ & & 軸方向 & － & － & － & － & － & － & － & － & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { 第 } \\
& 3 \\
& \frac{7}{7} \\
& \text { グ } \\
& \text { 側 }
\end{aligned}
\]} & \multirow[t]{3}{*}{第
1
評
価
点} & 周方向 & － & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{－} \\
\hline & & & 軸方向 & － & － & － & － & － & － & － & － & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline & & 第 & 周方向 & － & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{－} \\
\hline & & 評 & 軸方向 & － & － & － & － & － & － & － & － & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{評価点}} & \multirow[t]{4}{*}{応力} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { 内圧による } \\
\text { 応力 }
\end{gathered}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
内圧による応力 \\
（鉛直方向地震時）
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{運転時質量による応力}} & \multicolumn{5}{|l|}{地震による応力} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 組合せ } \\
& \text { 一次応力 }
\end{aligned}
\]} \\
\hline & & & & & & & & \multicolumn{5}{|l|}{基準地震動 S s} & \\
\hline & & & & & & & & \multicolumn{3}{|l|}{水平方向地震} & \multicolumn{2}{|l|}{鉛直方向地震} & \\
\hline & & & & & & 自重による応力 & \[
\begin{aligned}
& \text { 曲げモーメ } \\
& ン ト に よ る ~ \\
& \text { 応力 }
\end{aligned}
\] & 転倒モーメ ントによる応力 & 鉛直方向モ ーメントに よる応力 & 周方向モー メントによ る応力 & 引張応力 & 鉛直方向モ ーメントに よる応力 & \\
\hline \multirow[t]{18}{*}{\[
\begin{aligned}
& \mathrm{Z} \\
& \text { 方 } \\
& \text { 向 }
\end{aligned}
\]} & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { 第 } \\
& 1 \\
& ラ \\
& \text { グ } \\
& \text { 側 }
\end{aligned}
\]} & \multirow[t]{3}{*}{第
1
1
評
価
点} & 周方向 & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0 \\
\hline
\end{gathered}
\] & － & － & \(\sigma_{\phi 3}=2\) & － & \(\sigma_{\phi 5}=2\) & － & － & \(\sigma_{\phi 12}=3\) & \multirow[t]{3}{*}{\(\sigma_{11}=50\)} \\
\hline & & & 軸方向 & \(\sigma_{\times 1}=23\) & － & \(\sigma_{\times 2}=2\) & \(\sigma \times 3=1\) & \(\sigma \times 4=5\) & \(\sigma \times 5=1\) & － & \(\sigma \times 11=3\) & \(\sigma_{\times 12}=2\) & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline & & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 第 } \\
2 \\
2 \text { 評 } \\
\text { 価 } \\
\text { 点 }
\end{gathered}
\]} & 周方向 & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0 \\
\hline
\end{gathered}
\] & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{\(\sigma_{12}=47\)} \\
\hline & & & 軸方向 & \(\sigma_{\times 1}=23\) & － & \(\sigma_{\times 2}=2\) & － & \(\sigma \times 4=5\) & － & － & \(\sigma \times 11=3\) & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{\(\tau_{\ell 1}=2\)} & \multicolumn{3}{|l|}{\(\tau_{\ell 2}=1\)} & \multicolumn{2}{|l|}{\(\tau_{\ell 6}=4\)} & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{c|c} 
& 第 \\
第 & 1 \\
2 & 評 \\
及 & 価 \\
び & 点
\end{tabular}}} & 周方向 & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0 \\
\hline
\end{gathered}
\] & － & － & \(\sigma_{\phi 3}=2\) & － & － & － & － & \(\sigma_{\phi 12}=3\) & \multirow[t]{3}{*}{\(\sigma_{13}=52\)} \\
\hline & & & 軸方向 & \(\sigma_{\times 1}=23\) & － & \(\sigma_{\times 2}=2\) & \(\sigma \times 3=1\) & － & － & － & \(\sigma \times 11=3\) & \(\sigma_{\times 12}=2\) & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{\(\tau_{3}=0 \quad \tau_{\mathrm{c} 1}=9\)} & \multicolumn{2}{|l|}{－} & \\
\hline & \(\frac{4}{5}\) & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 第 } \\
& 2 \\
& 2 \text { 評 } \\
& \text { 価 } \\
& \text { 点 }
\end{aligned}
\]} & 周方向 & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0
\end{gathered}
\] & － & － & － & － & － & \(\sigma_{\phi 7}=0\) & － & － & \multirow[t]{3}{*}{\(\sigma_{14}=46\)} \\
\hline & グ
側 & & 軸方向 & \(\sigma_{\times 1}=23\) & － & \(\sigma_{\times 2}=2\) & － & － & － & \(\sigma_{\times 7}=0\) & \(\sigma_{\times 11}=3\) & － & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{\(\tau_{\ell 1}=2\)} & \multicolumn{3}{|l|}{\(\tau_{3}=0\)} & \multicolumn{2}{|l|}{\(\tau_{\ell 6}=4\)} & \\
\hline & \multirow[t]{6}{*}{\[
\begin{gathered}
\text { 第 } \\
3 \\
\text { ラ } \\
\text { グ } \\
\text { 側 }
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 第 } \\
& 1 \\
& \text { 評 } \\
& \text { 価 } \\
& \text { 点 }
\end{aligned}
\]} & 周方向 & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0 \\
\hline
\end{gathered}
\] & － & － & \(\sigma_{\phi 3}=2\) & － & \(\sigma_{\phi 6}=1\) & － & － & \(\sigma_{\phi 12}=3\) & \multirow[t]{3}{*}{\(\sigma_{15}=49\)} \\
\hline & & & 軸方向 & \(\sigma_{\times 1}=23\) & － & \(\sigma_{\times 2}=2\) & \(\sigma_{\times 3}=1\) & \(\sigma \times 4=5\) & \(\sigma_{\times 6}=1\) & － & \(\sigma \times 11=3\) & \(\sigma_{\times 12}=2\) & \\
\hline & & & せん断 & － & － & \multicolumn{2}{|l|}{－} & \multicolumn{3}{|l|}{－} & \multicolumn{2}{|l|}{－} & \\
\hline & & 第 & 周方向 & \[
\begin{gathered}
\sigma_{\phi 1}=45 \\
\sigma_{\phi 2}=0 \\
\hline
\end{gathered}
\] & － & － & － & － & － & － & － & － & \multirow[t]{3}{*}{\(\sigma_{16}=47\)} \\
\hline & & \[
\frac{2}{2}
\] & 軸方向 & \(\sigma_{\times 1}=23\) & － & \(\sigma_{\times 2}=2\) & － & \(\sigma \times 4=5\) & － & － & \(\sigma_{\times 11}=3\) & － & \\
\hline & & 点 & せん断 & － & － & \multicolumn{2}{|l|}{\(\tau_{\ell 1}=2\)} & \multicolumn{3}{|l|}{\(\tau_{\ell 2}=1\)} & \multicolumn{2}{|l|}{\(\tau_{\ell 6}=4\)} & \\
\hline
\end{tabular}




O 2 (2) VI-2-9-4-6-1-2 R 1


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{1．3．2 ラグに生じる応力} & （単位：MPa） \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{地震の方向}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{運転時質量による応力}} & \multicolumn{8}{|l|}{地震による応力} & \multirow[t]{4}{*}{組合せ応力} \\
\hline & & & & \multicolumn{4}{|l|}{弾性設計用地震動 S d 又 \({ }^{\text {又 }}\) 静的震度} & \multicolumn{4}{|l|}{基準地震動 S s} & \\
\hline & & & & \multicolumn{2}{|l|}{水平方向地震} & \multicolumn{2}{|l|}{鉛直方向地震} & \multicolumn{2}{|l|}{水平方向地震} & \multicolumn{2}{|l|}{鉛直方向地震} & \\
\hline & & 曲げ & せん断 & \\
\hline \multirow[t]{3}{*}{Z 方向} & 第1ラグ側 & \multirow[t]{5}{*}{\(\sigma_{\mathrm{s} 1}=1\)} & \multirow[t]{5}{*}{\(\tau_{\mathrm{s} 1}=3\)} & － & － & － & － & \(\sigma_{\mathrm{s} 2=1}\) & \(\tau_{\mathrm{s} 2}=1\) & \multirow[t]{5}{*}{\(\sigma_{\mathrm{s} 7}=1\)} & \multirow[t]{5}{*}{\(\tau_{\mathrm{s} 7}=5\)} & \(\sigma_{1 \mathrm{~s}}=14\) \\
\hline & \[
\begin{gathered}
\text { 第 } 2 \text { 及び } \\
\text { 第 } 4 \text { ラグ側 } \\
\hline
\end{gathered}
\] & & & － & － & － & － & \(\sigma_{\mathrm{s}_{3}}=0\) & \(\tau_{\text {s } 3}=10\) & & & \(\sigma_{2 \mathrm{~s}}=29\) \\
\hline & 第3ラグ側 & & & － & － & － & － & \(\sigma_{\text {s } 4}=1\) & \(\tau_{\text {s } 4}=1\) & & & \(\sigma_{3 \mathrm{~s}}=14\) \\
\hline \multirow[t]{2}{*}{X 方向} & 第1及び第4ラグ側 & & & － & － & － & － & \(\sigma_{\text {s } 5}=1\) & \(\tau_{\text {s } 5}=8\) & & & \(\sigma_{4 \mathrm{~s}}=25\) \\
\hline & \[
\begin{gathered}
\text { 第 } 2 \text { 及び } \\
\text { 第 } 4 \text { ラグ側 }
\end{gathered}
\] & & & － & － & － & － & \(\sigma_{\mathrm{s} 6}=1\) & \(\tau_{\text {s } 6}=8\) & & & \(\sigma_{5 \mathrm{~s}}=25\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{1．3．3 取付ボルトに生じる応力} & & & \multicolumn{2}{|l|}{（単位：MPa）} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{地震の方向}} & \multicolumn{2}{|l|}{弾性設計用地震動 S d 又 \({ }^{\text {又 }}\) は静的震度} & \multicolumn{2}{|l|}{基準地震動 S s} \\
\hline & & 引張応力 & せん断応力 & 引張応力 & せん断応力 \\
\hline \multirow[t]{3}{*}{Z 方向及び鉛直方向} & 第1ラグ側 & － & － & \(\sigma_{\text {b } 1}=44\) & － \\
\hline & 第2及び第4ラグ側 & － & － & \(\sigma_{\mathrm{b}_{2}}=36\) & \(\tau_{\mathrm{b} 2}=210\) \\
\hline & 第3ラグ側 & － & － & \(\sigma_{\text {b } 3}=33\) & － \\
\hline \multirow[t]{2}{*}{X方向及び鉛直方向} & 第1及び第4ラグ側 & － & － & \(\sigma_{\text {b } 4}=44\) & \(\tau_{\mathrm{b} 4}=149\) \\
\hline & 第 2 及び第 3 ラグ側 & － & － & \(\sigma_{\mathrm{b} 5}=36\) & \(\tau_{\mathrm{b} 5}=149\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multirow[t]{2}{*}{部材} & \multirow[t]{2}{*}{材料} & \multirow[t]{2}{*}{応力} & \multicolumn{2}{|l|}{弾性設計用地震動 Sd 又は静的震度} & & \\
\hline & & & 算出応力 & 許容応力 & 算出応力 & 許容応力 \\
\hline \multirow[t]{3}{*}{胴板} & \multirow[t]{3}{*}{SUS316L} & 一次一般膜 & － & － & \(\sigma_{0}=45\) & \(\mathrm{S}_{\mathrm{a}}=244\) \\
\hline & & 一次 & － & － & \(\sigma_{1}=52\) & \(\mathrm{S}_{\mathrm{a}}=366\) \\
\hline & & 一次＋二次 & － & － & \(\sigma_{2}=37\) & \(\mathrm{S}_{\mathrm{a}}=240\) \\
\hline ラグ & SUS316L & 組合せ & － & － & \(\sigma_{\text {s }}=29\) & \(f_{\mathrm{t}}=210\) \\
\hline \multirow[t]{2}{*}{取付ボルト} & \multirow[t]{2}{*}{SUS630} & 引張 & － & － & \(\sigma_{\mathrm{b}}=44\) & \\
\hline & & せん断 & － & － & \(\tau_{\mathrm{b}}=210\) & \\
\hline すべて許容応 & 下であ & & & & \(\mathrm{ts}^{\text {a }}\) minli． & \(f_{\text {ta }}\) により算出 \\
\hline
\end{tabular}

\section*{7．引用文献}
（1）K．R．Wichman et al．，Local Stresses in Spherical and Cylindrical Shells due to External Loadings，Welding Research Council bulletin，WRC bulletin 107，August 1965.
（2）P．P．Bijlaard，Stresses from Radial Loads and External Moments in Cylindrical Pressure Vessels，We1d．J．，1955．（Research Supp1．）```


[^0]:    注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
    ＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

