本資料のうち、枠囲みの内容は商業機密の観点や防護上の観点から公開できません。

女川原子力発電所第2号	号機 工事計画審査資料	
資料番号	02-工-B-19-0133_改 2	
提出年月日	2021年7月26日	

VI-2-10-2-7-1 水密扉 (浸水防止設備)の耐震性についての計算書

2021年7月

東北電力株式会社

VI-2-10-2-7-1 水密扉(浸水防止設備)の耐震性についての計算書

VI-2-10-2-7-1 水密扉 (浸水防止設備) の耐震性についての計算書

目 次

1. 概要 · · · · · · · · · · · · · · · · · ·	• 1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	2
2.1 検討対象水密扉一覧	2
2.2 配置概要 · · · · · · · · · · · · · · · · · · ·	• • 3
2.3 構造計画 · · · · · · · · · · · · · · · · · · ·	• 10
2.4 評価方針 · · · · · · · · · · · · · · · · · · ·	• 12
2.5 適用規格・基準等	• 14
2.6 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 15
3. 固有値解析 · · · · · · · · · · · · · · · · · · ·	• 17
3.1 固有振動数の算出方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 17
3.1.1 解析モデルの設定	• 17
3.2 固有振動数の算出条件等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 18
3.2.1 記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 18
3.2.2 固有振動数の算出方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 18
3.2.3 固有振動数の算出条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 20
3.3 固有振動数の算出結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 22
4. 耐震評価 · · · · · · · · · · · · · · · · · · ·	• 23
4.1 評価対象部位	• 23
4.2 荷重及び荷重の組合せ	• 27
4.2.1 荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 27
4.2.2 荷重	• 27
4.3 許容限界 · · · · · · · · · · · · · · · · · · ·	· 28
4.3.1 使用材料 · · · · · · · · · · · · · · · · · · ·	· 28
4.3.2 許容限界 · · · · · · · · · · · · · · · · · · ·	• 29
4.4 設計用地震力 · · · · · · · · · · · · · · · · · · ·	• 31
4.5 評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 32
4.5.1 応力算定 · · · · · · · · · · · · · · · · · · ·	• 32
4.5.2 断面検定	• 47
4.6 評価条件	• 53
5. 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 61

1. 概要

本計算書は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、浸水防止設備である第3号機海水熱交換器建屋の水密扉、原子炉建屋の水密扉及び制御建屋の水密扉(以下「水密扉」という。)が、設計用地震力に対して十分な構造強度を有していることを説明するものである。

その耐震評価は、水密扉に要求される機能の維持を確認するために、応力評価に基づく、構造 部材の健全性評価により行う。

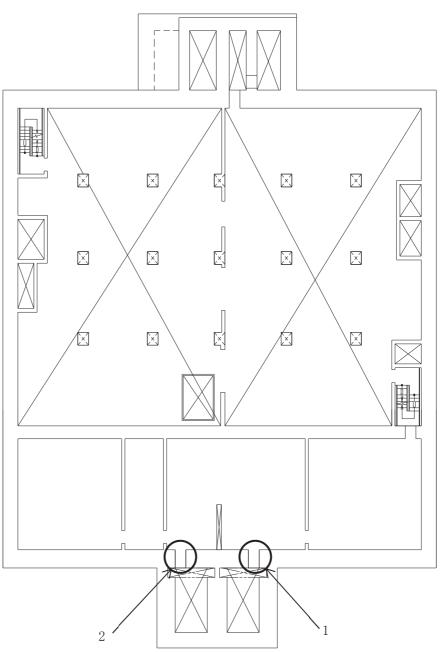
水密扉は、設計基準対象施設においては浸水防止設備に分類される。以下に設計基準対象施設としての構造強度評価を示す。

なお、水密扉の耐震評価においては、平成23年3月11日に発生した東北地方太平洋沖地震による地殻変動に伴い、牡鹿半島全体で約1mの地盤沈下が発生したことを考慮する。

2. 一般事項

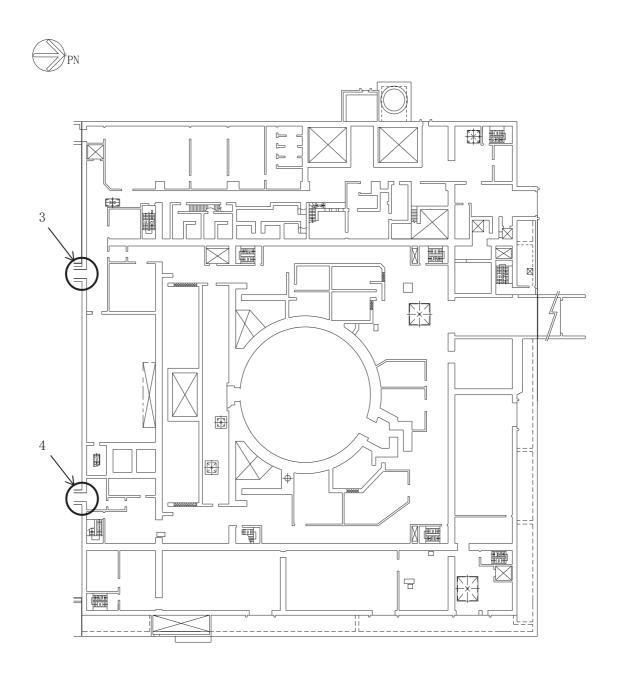
2.1 検討対象水密扉一覧 検討対象の水密扉を表 2-1 に示す。

表 2-1 検討対象水密扉一覧

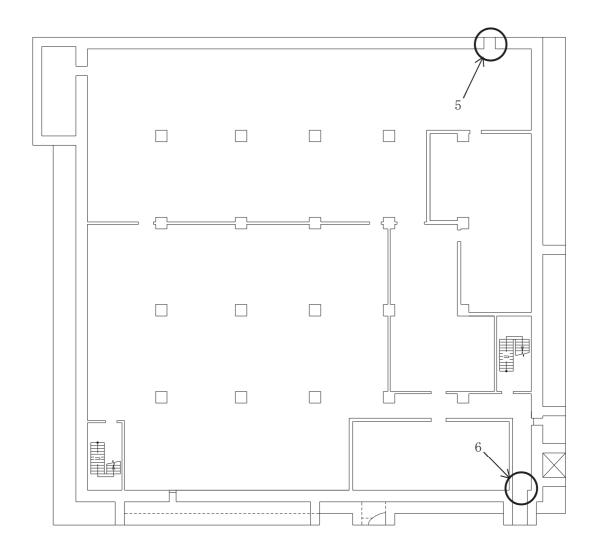

水密扉				
No.				
1	水密扉 (第3号機海水熱交換器建屋海水ポンプ設置エリア) (No.1)	2.00m		
2	水密扉 (第3号機海水熱交換器建屋海水ポンプ設置エリア) (No.2)	2.00m		
3	原子炉建屋浸水防止水密扉(No. 1)	14.00m		
4	原子炉建屋浸水防止水密扉(No. 2)	14.00m		
5	制御建屋空調機械(A)室浸水防止水密扉			
6	制御建屋空調機械(B)室浸水防止水密扉			
7	計測制御電源室(B)浸水防止水密扉(No. 3)			
8	制御建屋浸水防止水密扉(No. 1)			
9	制御建屋浸水防止水密扉(No. 2)	14.00m		
10	制御建屋浸水防止水密扉(No. 3)			
11	制御建屋浸水防止水密扉(No. 4)			
12	制御建屋浸水防止水密扉(No. 5)	14.00m		
13	第2号機 MCR 浸水防止水密扉			

注記*: 平成23年3月11日に発生した東北地方太平洋沖地震による地殻変動に伴い, 牡鹿半島全体で約1mの地盤沈下が発生していることを考慮した設計とし, 地盤沈下量を考慮した高さを示す。

2.2 配置概要

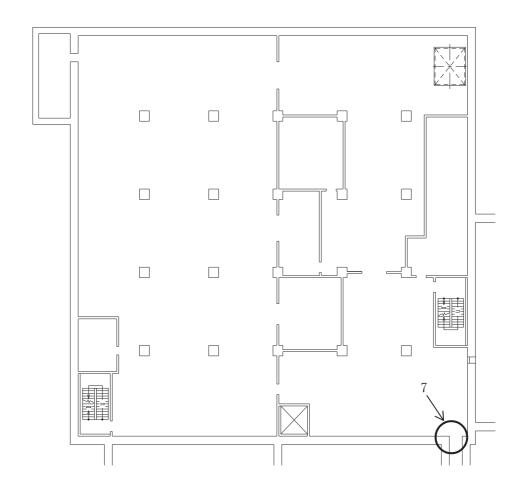

第3号機海水熱交換器建屋の水密扉の設置位置図を図2-1に、原子炉建屋の水密扉の設置位置図を図2-2に、制御建屋の水密扉の設置位置図を図2-3に示す。

1	水密扉 (第3号機海水熱交換器建屋海水ポンプ設置エリア) (No.1)
2	水密扉 (第3号機海水熱交換器建屋海水ポンプ設置エリア) (No.2)

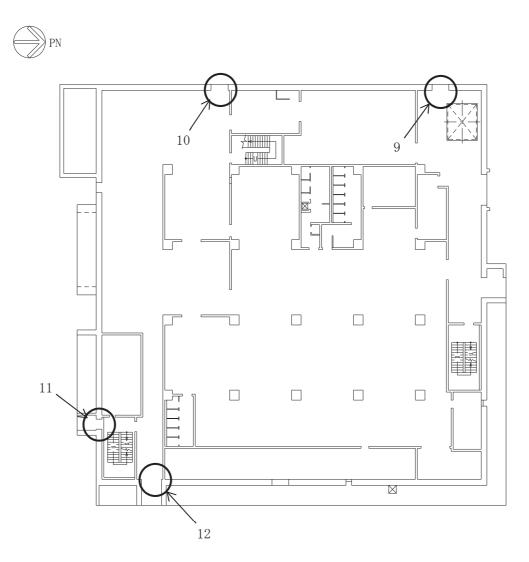

図 2-1 第3号機海水熱交換器建屋の水密扉の設置位置図 0.P.2.00m

3	原子炉建屋浸水防止水密扉(No. 1)
4	原子炉建屋浸水防止水密扉(No. 2)

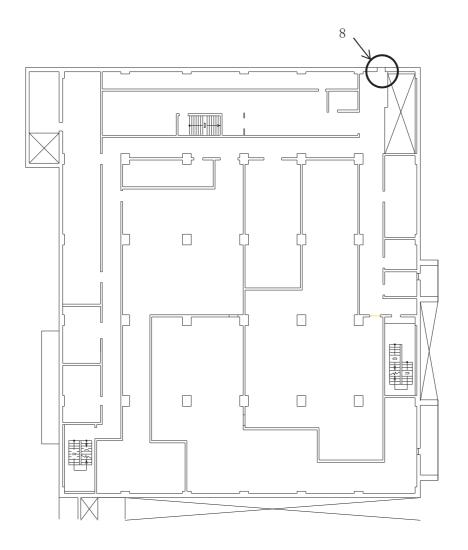
図 2-2 原子炉建屋の水密扉の設置位置図 0.P.14.00m



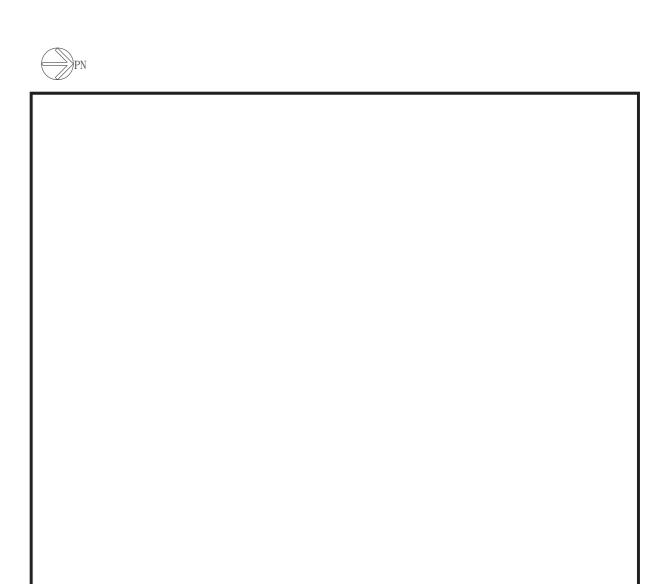
5	制御建屋空調機械(A)室浸水防止水密扉
6	制御建屋空調機械(B)室浸水防止水密扉


図 2-3 制御建屋の水密扉の設置位置図(1/5) 0. P. 0. 50m

7 計測制御電源室(B)浸水防止水密扉(No. 3)


図 2-3 制御建屋の水密扉の設置位置図(2/5) 0.P.7.00m

9	制御建屋浸水防止水密扉(No. 2)	
10 制御建屋浸水防止水密扉(No. 3)		
11	制御建屋浸水防止水密扉(No. 4)	
12	制御建屋浸水防止水密扉(No. 5)	


図 2-3 制御建屋の水密扉の設置位置図(3/5) 0.P.14.00m

8 制御建屋浸水防止水密扉(No.1)

図 2-3 制御建屋の水密扉の設置位置図(4/5) 0.P.18.50m

13 第 2 号機 MCR 浸水防止水密扉

図 2-3 制御建屋の水密扉の設置位置図(5/5) 0. P. 22. 50m

枠囲みの内容は防護上の観点から公開できません。

2.3 構造計画

水密扉は、片開き型の鋼製扉とし扉板の背面に芯材を配した構造である。また、閉止状態に おいて、カンヌキ及びカンヌキ受けにより固定され止水性を確保しており、アンカーボルトに よって建屋躯体に固定された扉枠にて支持する構造とする。

なお、くぐり戸付水密扉は、機器搬出入用の扉(以下、「大扉」という。)と人員用の扉(以下、「くぐり戸」という。)により構成された構造とする。

水密扉の構造計画を表 2-2 に示す。

表 2-2 水密扉の構造計画 (1/2)

計画の)概要	글 다 다 다 지
基礎・支持構造	主体構造	説明図
扉開放時においては,	片開き型の鋼製扉と	
ヒンジにより扉が扉	し, 鋼製の扉板に芯材	
枠に固定され, 扉閉止	を取付け, 扉に設置さ	
時においては, カンヌ	れたカンヌキを鋼製	
キにより, 扉と扉枠を	の扉枠に差込み, 扉体	
一体化する構造とす	と扉枠を一体化させ	
る。	る構造とする。	
扉枠はアンカーボル	また, 扉と建屋躯体の	
トにより建屋躯体へ	接続はヒンジを介す	
固定する構造とする。	る構造とする。	

表 2-2 水密扉の構造計画 (2/2)

計画の	が概要	説明図
基礎・支持構造	主体構造	(くぐり戸付水密扉)
大扉は扉開放時にお	大扉は片開き型の鋼	
いては, ヒンジにより	製扉とし,大扉に設置	
大扉が扉枠に固定さ	された扉固定部を扉	
れ, 扉閉止時において	枠と接合させ,大扉と	
は、扉固定部により、	扉枠を一体化させる	
大扉と扉枠を一体化	構造とする。	
する構造とする。	くぐり戸は片開き型	
くぐり戸は扉開放時	の鋼製扉とし,くぐり	
においては, ヒンジに	戸に設置されたくぐ	
よりくぐり戸が大扉	り戸用カンヌキを大	
に固定され, 扉閉止時	扉に設置されたカン	
においては, くぐり戸	ヌキ受けに差し込み,	
用カンヌキにより,大	くぐり戸と大扉を一	
扉に一体化する構造	体化させる構造とす	
とする。	る。	
扉枠はアンカーボル	また, 大扉と建屋躯体	
トにより建屋躯体へ	の接続は大扉のヒン	
固定する構造とする。	ジを介する構造とす	
	る。	

2.4 評価方針

水密扉の耐震評価は、添付書類「VI-2-1-9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.3 構造計画」に示す水密扉の構造を踏まえ、「4.1 評価対象部位」にて設定する評価部位において、「3. 固有値解析」で算出した固有振動数に基づく設計用地震力により算出した応力等が許容限界内に収まることを、「4.5 評価方法」に示す方法にて確認する。応力評価の確認結果を「5. 評価結果」にて確認する。

耐震評価フローを図 2-4 に示す。水密扉の耐震評価においては、その構造を踏まえ、基準地 震動 S s による地震荷重の作用方向及び伝達経路を考慮し、評価対象部位を設定する。

耐震評価においては、荷重を静的に作用させることにより、ヒンジ部(ヒンジ板、ヒンジピン、ヒンジボルト) 及びカンヌキ部(カンヌキ、カンヌキ受けピン、カンヌキ受けボルト)の発生応力並びにアンカーボルトの発生荷重を算定し、許容限界との比較を行う。

また、くぐり戸付水密扉の大扉については、扉と躯体を固定する扉固定部(扉付固定ボルト、枠付固定ボルト、ブラケット)の発生応力を算定し、許容限界との比較を行う。

アンカーボルトは壁に埋め込まれた方向によって下記のとおりに呼ぶこととする。

- ・0° 方向配置:アンカーボルトが壁の厚さの直交方向に配置されている場合
- ・90°方向配置:アンカーボルトが壁の厚さの方向に配置されている場合

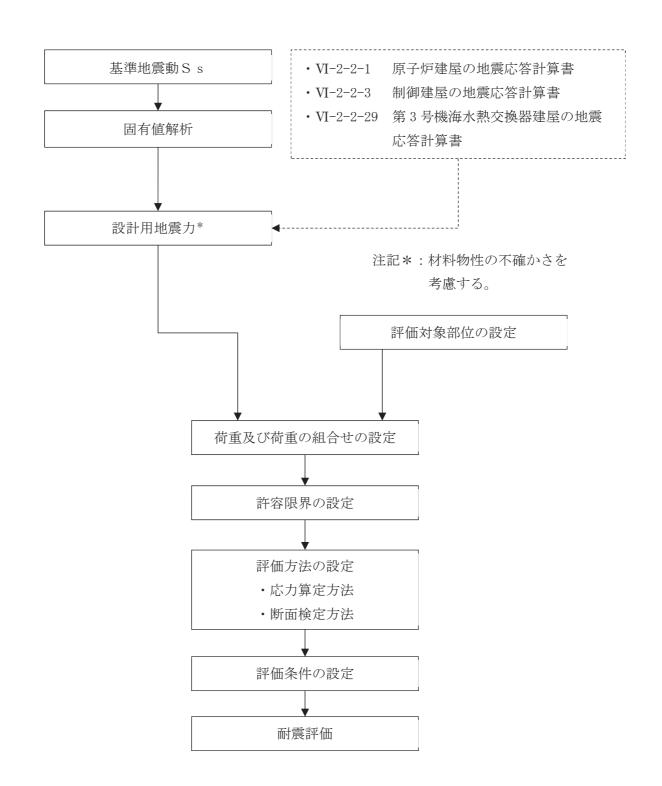


図 2-4 水密扉の耐震評価フロー

2.5 適用規格・基準等

適用する規格, 基準等を以下に示す。

- ·建築基準法 (昭和 25 年 5 月 24 日法律第 201 号)
- ・建築基準法施行令(昭和 25 年 11 月 16 日政令第 338 号)
- ・日本建築学会 2005年 鋼構造設計規準 -許容応力度設計法-
- ・日本建築学会 2010年 各種合成構造設計指針・同解説
- •日本機械学会 機械工学便覧

2.6 記号の説明

水密扉の耐震評価に用いる記号を表 2-3 に示す。

表 2-3 耐震評価に用いる記号(1/2)

記号	単位	定義	
W_1	kN	スラスト荷重	
G	kN	扉重量	
k _H	_	水平震度	
k _{UD}	_	鉛直震度	
F 1	N	転倒力	
F _{1 a}	N	扉と扉枠の重量を含んだ転倒力	
R 1	N	地震力に伴う荷重の反力	
L 1	mm	扉重心とヒンジ芯間距離	
L 2	mm	ヒンジ芯間距離	
L 3	mm	ヒンジ板の2軸間距離	
L 4	mm	ヒンジ板と受材間距離	
L 5	mm	カンヌキの突出長さ	
L p	mm	カンヌキ受けピンの軸支持間距離	
LA	mm	ボルト中心からブラケット端部の長さ	
L _D	mm	扉の幅	
H_D	mm	扉の高さ	
M	N•mm	曲げモーメント	
Т	N	引張力	
Q	N	せん断力	
n 1	本	ヒンジボルトの本数	
n 2	本	カンヌキの本数	
n 3	本	ヒンジ側アンカーボルトの本数	
n _b	本	<mark>カンヌキ受け</mark> ボルトの本数	
n c	本	扉付固定ボルト又は枠付固定ボルトの本数	
g	m/s^2	重力加速度	
W a	kN	扉枠の重量	
W _{1a}	N	扉と扉枠の重量を含んだスラスト荷重	
W _D	N/mm ²	扉下端に作用する静水圧荷重	
σ	N/mm ²	曲げ応力度	
σt	N/mm ²	引張応力度	
τ	N/mm ²	せん断応力度	
X	N/mm^2	組合せ応力度	

記号 単位 定義 ヒンジ板の高さ H_1 mm ヒンジ板の厚さ T $_1$ mm ヒンジピンの径 d_3 mm Z ${\rm mm}^3$ 断面係数 Α mm^2 断面積 mm^2 せん断断面積 A_s N アンカーボルト1本当たりに生じる引張力 T_d アンカーボルト1本当たりに生じるせん断力 Ν Q_d T_{a} N アンカーボルト1本当たりの短期許容引張力 N Q_{a} アンカーボルト1本当たりの短期許容せん断力

表 2-3 耐震評価に用いる記号(2/2)

3. 固有值解析

3.1 固有振動数の算出方法

水密扉の構造に応じて解析モデルを設定し、1次固有振動数を算出する。

3.1.1 解析モデルの設定

水密扉は、ヒンジ及びカンヌキにより扉と扉枠を支持する構造であることから、扉閉止時については両端ヒンジ梁又は四辺支持の長方形板に、扉開放時についてはヒンジ、自由端梁に単純化したモデルとし、モデル化に用いる芯材又は扉板の長さは保守的に扉幅とする。解析モデル図を図 3-1 に示す。

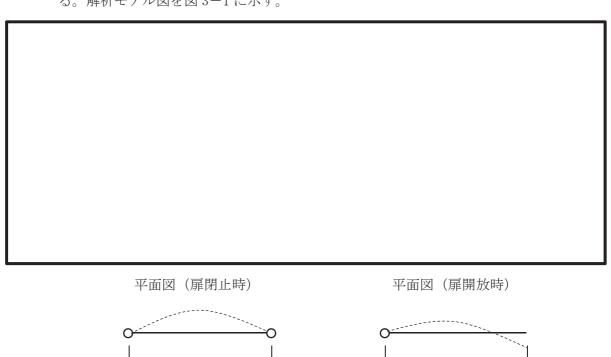


図3-1 水密扉の固有値解析モデル図

解析モデル(扉閉止時)

枠囲みの内容は商業機密の観点から公開できません。

L

解析モデル (扉開放時)

3.2 固有振動数の算出条件等

3.2.1 記号の説明

水密扉の固有振動数算出に用いる記号を表 3-1 に示す。

記号	単位	定義	
f	Hz	水密扉の1次固有振動数	
L	cm	モデル化に用いる芯材の長さ	
Е	kgf/cm ²	ヤング率	
I	cm^4	断面二次モーメント	
у т	kg/cm	質量分布	
t	cm	扉板の板厚	
a	cm	2 隣辺の長さ(扉の幅)	
b	cm	2隣辺の長さ(扉の高さ)	
ν	_	ポアソン比	
m	_	辺 a に平行な節線の数(1)	
n	_	辺 b に平行な節線の数(1)	
γ	kgf/cm ³	単位体積の重さ	
g	cm/s^2	重力加速度	

表 3-1 水密扉の固有振動数に用いる記号

3.2.2 固有振動数の算出方法

1 次固有振動数 f を「日本機械学会 機械工学便覧」に基づき以下の式より計算する。 ここで,固有振動数は水平方向(扉体面外方向)について算出するものとし,鉛直方向(扉体面内方向)については,扉に配された鉛直方向の芯材等の軸剛性が,面外方向の剛性に 比べて十分に大きいため,固有振動数の算出を省略する。

モデル化の対象は、扉板及び芯材の組合せによる断面を有する水密扉については芯材を、 芯材がなく扉板そのものにより断面を構成する水密扉については扉板とする。

(1) 扉閉止時

a. 両端ヒンジ梁モデル(芯材をモデル化)

$$f = \frac{\pi^2}{2 \cdot \pi \cdot L^2} \sqrt{\frac{E \cdot I \cdot g}{\gamma_m}}$$

b. 四辺支持の長方形板モデル (扉板をモデル化)

$$f = \frac{\pi \cdot t}{4} \cdot \left(\frac{m^2}{a^2} + \frac{n^2}{b^2}\right) \cdot \sqrt{\frac{E \cdot g}{3 \cdot \left(1 - v^2\right) \cdot \gamma}}$$

(2) 扉開放時

扉開放時において水密扉は、面外方向については剛体モード(固有振動数がほぼゼロ) となり、これに伴う荷重の増幅は生じないことから、本評価においては芯材又は扉板が自 由振動するものとして、下記の評価式にて固有振動数を算出することとした。

ヒンジ,自由端梁モデル

$$f = \frac{3.927^2}{2 \cdot \pi \cdot L^2} \cdot \sqrt{\frac{E \cdot I \cdot g}{\gamma_m}}$$

3.2.3 固有振動数の算出条件

水密扉の固有振動数の算出条件のうち、芯材をモデル化した場合の算出条件を表 3-2 に、扉板をモデル化した場合の算出条件を表 3-3 及び表 3-4 に示す。

表 3-2 芯材をモデル化した場合の算出条件 (扉閉止時及び扉開放時)

	我 0 2 心内 c c / / [[[[[]]]]] 并且不口		(AFM1TT-M1)X O AFM1/AXM1)		
水密扉		梁長さ	ヤング率	断面二次 モーメント	質量分布
No.	雇名称 No.		Е	I	γm
		(cm)	(kgf/cm^2)	(cm^4)	(kg/cm)
1	水密扉 (第 3 号機海水熱交換器建 屋海水ポンプ設置エリア) (No. 1)	90. 0	1.97×10^6	2310	1. 90
2	水密扉 (第 3 号機海水熱交換器建 屋海水ポンプ設置エリア) (No. 2)	90. 0	1.97×10^6	2310	1.90
3	原子炉建屋浸水防止水密扉(No. 1)	135. 0	2.09×10^6	2533	1. 98
4	原子炉建屋浸水防止水密扉(No. 2)	135. 0	2.09×10^6	2533	1. 98
5	制御建屋空調機械(A)室 浸水防止水密扉	101.7	2.09×10^6	4180	4.06
6	制御建屋空調機械(B)室 浸水防止水密扉	108.6	2.09×10^6	4180	4. 07
7	計測制御電源室(B) 浸水防止水密扉(No.3)	145. 9	2.09×10^6	6440	5. 16
8	制御建屋浸水防止水密扉(No. 1)	140.6	2.09×10^{6}	1380	3. 20
9	制御建屋浸水防止水密扉(No. 2)	140. 2	2.09×10^6	1380	2.91
10	制御建屋浸水防止水密扉(No. 3)	170.2	2.09×10^{6}	4180	3. 58
11	制御建屋浸水防止水密扉(No. 4)	94. 5	2.09×10^{6}	1380	2.62
12	制御建屋浸水防止水密扉(No. 5)	196. 2	2.09×10^6	4180	2.85

表 3-3 扉板をモデル化した場合の算出条件(扉閉止時)

			ヤング			ポア	単位
水密扉	扉名称	板厚	率	幅	高さ	ソン	体積
						比	の重さ
No.		t	Е	a	b	ν	γ
		(cm)	(kgf/cm^2)	(cm)	(cm)	(—)	(kg/cm^3)
	第 2 号機 MCR 浸水防止水密扉	11. 5	2.09×10^6	103. 0	220. 0	0.3	0. 010
13	(くぐり戸)	11. 5	2.09 \ 10	103.0	220.0	0.3	0.010
	第 2 号機 MCR 浸水防止水密扉	11 5	2.09×10^{6}	203. 0	260. 0	0.3	0.013
	(大扉)	11. 5					

表 3-4 扉板をモデル化した場合の算出条件(扉開放時)

水密扉	≓ h th.	梁長さ	ヤング率	断面二次 モーメント	質量分布
No.	雇名称	L	Е	I	γ m
		(cm)	(kgf/cm^2)	(cm^4)	(kg/cm)
10	第2号機 MCR 浸水防止水密扉 (くぐり戸)	103. 0	2.09×10^{6}	27880	24. 76
13	第 2 号機 MCR 浸水防止水密扉 (大扉)	203. 0	2.09×10^{6}	32950	<mark>39. 90</mark>

3.3 固有振動数の算出結果

水密扉の固有振動数の算出結果を表3-5に示す。各水密扉の固有振動数は20Hz以上であり、 剛構造であることを確認した。

表 3-5 固有振動数の算出結果

衣 3-3 自有振動数の昇口桁未					
しゆ言		固有振動数 f			
水密扉	扉名称				
No.		正 閉止時	雇開放時 (II.)		
		(Hz)	(Hz)		
1	水密扉(第 3 号機海水熱交換器建屋海水ポ	297. 06	464. 15		
	ンプ設置エリア)(No. 1)				
2	水密扉(第 3 号機海水熱交換器建屋海水ポ	297. 06	464. 15		
	ンプ設置エリア)(No. 2)	201.00	101.10		
3	原子炉建屋浸水防止水密扉(No. 1)	139. 56	218. 07		
	/// 1 // 足座仪/////////////////////////////////	100.00	210. 01		
4	原子炉建屋浸水防止水密扉(No. 2)	139. 56	218. 07		
		100,00	22000		
5	制御建屋空調機械(A)室浸水防止水密扉	220. 62	344. 71		
			011.11		
6	制御建屋空調機械(B)室浸水防止水密扉	193. 23	301. 93		
7	計測制御電源室(B)浸水防止水密扉(No. 3)	118. 02	184. 41		
		110.02			
8	制御建屋浸水防止水密扉(No. 1)	74. 70	116. 73		
	形所是建议外的亚尔山族 (NO: 1)	11.10	110.10		
9	制御建屋浸水防止水密扉(No. 2)	78. 79	123. 10		
9	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	10.19	123. 10		
10	制御建屋浸水防止水密扉(No. 3)	83. 88	131. 07		
10	前脚是座夜水奶亚水街旗(NO. 3)	03.00	131.07		
1.1	期知中民河水叶山水家豆(N4)	100 76	995 56		
11	制御建屋浸水防止水密扉(No. 4)	182. 76	285. 56		
10	期知中民祖本际 L. 本帝草 (A. L.)	70.75	110 55		
12	制御建屋浸水防止水密扉(No. 5)	70. 75	110. 55		
	## 0 日## MOD ヨルけ (し か ラ / / ^ / ^ / ^)	004 41	051.40		
	第 2 号機 MCR 浸水防止水密扉(くぐり戸)	284. 41	351. 46		
13	Mt o E Wayan Na Eta	0.1			
	第2号機 MCR 浸水防止水密扉(大扉)	84. 78	<mark>77. 49</mark>		
			l		

4. 耐震評価

4.1 評価対象部位

評価対象部位は、「2.3 構造計画」に示す水密扉の構造上の特徴を踏まえ選定する。

基準地震動 S s による地震荷重により水密扉に作用する慣性力は、ヒンジ部(ヒンジ板、ヒンジピン、ヒンジボルト)及びカンヌキ部(カンヌキ、カンヌキ受けピン、カンヌキ受けボルト)から扉枠に伝わり、扉枠を固定するアンカーボルトを介し、開口部周辺の建屋躯体に伝達されることから、評価対象部位をヒンジ部、カンヌキ部及びアンカーボルトとする。

くぐり戸付水密扉のくぐり戸に作用する慣性力は、ヒンジ部(ヒンジ板、ヒンジピン、ヒンジボルト)及びカンヌキ部(カンヌキ、カンヌキ受けピン、カンヌキ受けボルト)に伝わり、十分な裕度を有するボルトにて支持する。くぐり戸は扉開放時においては、ヒンジにより扉が大扉に固定され、扉閉止時においては、くぐり戸用カンヌキにより、大扉に一体化する構造としていることから、評価対象部位をヒンジ部及びカンヌキ部とする。なお、大扉の重量にはくぐり戸の重量を含めて評価する。

くぐり戸付水密扉の大扉に作用する慣性力は、ヒンジ部(ヒンジ板、ヒンジピン、ヒンジボルト)及び扉固定部(扉付固定ボルト、枠付固定ボルト、ブラケット)から扉枠に伝わり、扉枠を固定するアンカーボルトを介し、開口部周辺の建屋躯体に伝達されることから、評価対象部位をヒンジ部、扉固定部及びアンカーボルトとする。また、アンカーボルトに生じる応力が最大となる状態で評価を行うことを考慮し、扉が0°,90°又は180°の開閉状態における評価を行うとともに、地震荷重の作用により応力が集中する扉の状態を踏まえ、ヒンジ側アンカーボルトを評価対象とする。

評価結果が厳しい評価対象部位を有する水密扉を代表として評価するものとし、水密扉 No. 6, 11, 12 及び 13 を抽出した。

水密扉閉止時に水密扉に作用する荷重の作用図を図 4-1 に、水密扉開放時に水密扉に作用する荷重の作用図を図 4-2 に示す。

▼ : 評価対象	象部位に作用する 象部位 	5荷重	

図 4-1 水密扉に作用する荷重の作用図(水密扉閉止時) (1/2)

■: 評価対象部位に作用する荷重 「': 評価対象部位	ب

〈くぐり戸付水密扉〉

図 4-1 水密扉に作用する荷重の作用図(水密扉閉止時)(2/2)

◀ :評価対	象部位に作用する荷重 象部位	

図 4-2 水密扉に作用する荷重の作用図(水密扉開放時)

4.2 荷重及び荷重の組合せ

4.2.1 荷重の組合せ

水密扉の評価に用いる荷重の組合せを以下に示す。

G+Ss

ここで,

G : 固定荷重(kN)

Ss:基準地震動Ssによる地震荷重(kN)

水密扉は、上載物の荷重を負担する又は、影響を受ける構造となっていないことから、 積載荷重については考慮しない。

4.2.2 荷重

(1) 固定荷重(G)

固定荷重として水密扉の自重を考慮する。自重は「4.6 評価条件」に示す。

(2) 地震荷重(Ss)

基準地震動Ssによる荷重を考慮する。「4.4 設計用地震力」で設定した設計震度を用いて、次式により算定する。

 $S s = G \cdot k$

ここで,

Ss:基準地震動Ssによる地震荷重(kN)

G : 固定荷重(kN)k : 設計震度

なお,水平及び鉛直地震力による組合せ応力が作用する部位の評価は,水平方向と鉛直 方向の地震力が同時に作用するものとして評価する。

4.3 許容限界

許容限界は,「VI-2-1-9 機能維持の基本方針」にて設定している許容限界を踏まえて設定する。

4.3.1 使用材料

水密扉を構成するヒンジ部,カンヌキ部,扉固定部及びアンカーボルトの使用材料を表4-1に示す。

表 4-1 使用材料

		材質	仕様
H I III	ヒンジ板	SS400	高さ(mm) 85, 100, 120, 150, 250 厚さ(mm)
ヒンジ部	L ン ン fix	55400	40, 50, 60, 75, 80, 95, 120 100, 130
	ヒンジピン	S45C SCM440 SCM440H	径(mm) 45, 50, 55, 60, 110
	ヒンジボルト	10.9(SCM435)	M16, M20, M24, M30
	カンヌキ	SUS304N2 SCM440 SUS304	径(mm) 50, 60, 65, 90
カンヌキ部	カンヌキ受けピン	SUS304N2 SCM435	径(mm) 30, 40, 60
	カンヌキ受けボルト	10.9 (SCM435, SCM440)	M16, M20
	扉付固定ボルト	10.9(SCM435)	M20
扉固定部	枠付固定ボルト	10.9(SCM435)	M20
	ブラケット	SS400	厚さ(mm) 13
アン	カーボルト	SS400 SUS304	M16, M20, M24

 $^{\circ}$

4.3.2 許容限界

(1) 鋼材の許容応力度

鋼材の許容応力度は,「日本建築学会 2005 年 鋼構造設計規準 -許容応力度設計法 -」を踏まえて表 4-2 の値とする。

短期許容応力度(N/mm²) 材質·強度区分*1 曲げ・引張 せん断 $SS400 (t \le 40)^{*2}$ 235 135 $SS400 (40 < t \le 100)^{*2}$ 215 124 SS400 (100 < t) *2 205 118 205 SUS304 118 SUS304N2 345 199 S45C 345 199 SCM435 651 375 686 396 SCM440 686 396 SCM440H

表 4-2 鋼材の許容限界

注記*1:許容応力度を決定する基準値Fは、JISに基づく。

10.9 (SCM435, SCM440)

*2: t は板厚(mm)を示す。

(2) アンカーボルトの許容限界の算定値

アンカーボルトの許容限界は、「4.1 評価対象部位」に記載したアンカーボルトに作用する荷重の向きを踏まえて、「日本建築学会 2010年 各種合成構造設計指針・同解説」に基づき算定する。

728

420

地震荷重を考慮する場合のアンカーボルトの許容限界を表 4-3 に示す。

なお、評価対象部位のアンカーボルトが引張力を受ける場合においては、アンカーボルトの降伏により決まる許容応力、及び付着力またはコーン状破壊により決まる許容応力を比較して、いずれか小さい値を採用する。また、評価対象部位のアンカーボルトがせん断力を受ける場合においては、アンカーボルトのせん断強度により決まる許容応力、定着したコンクリート躯体の支圧強度により決まる許容応力及びコーン状破壊により決まる許容応力を比較して、いずれか小さい値を採用する。

表 4-3 アンカーボルトの許容限界

水密扉	豆々 か	許容耐力* (N/本)		
No.		引張	せん断	
6	制御建屋空調機械(B)室浸水防止水密扉	67315	58068	
11	制御建屋浸水防止水密扉(No. 4)	34073	25826	
12	制御建屋浸水防止水密扉(No. 5)	67315	58068	
13	第 2 号機 MCR 浸水防止水密扉	57575	40302	

注記*:扉が開放状態のとき、地震力による応力がヒンジ側に集中する扉の構造を考慮し、 ヒンジ側アンカーボルトのみ選定した。

4.4 設計用地震力

「3. 固有値解析」に示したとおり、水密扉の固有振動数が 20Hz 以上であることを確認したため、水密扉の耐震評価で用いる設計震度は、材料物性の不確かさを考慮したものとして「VI-2-2-1 原子炉建屋の地震応答計算書」、「VI-2-2-3 制御建屋の地震応答計算書」及び「VI-2-2-29 第 3 号機海水熱交換器建屋の地震応答計算書」によることとし、建屋の階ごとの設計震度を表 4-4 に示す。

ここで,最大応答加速度を保守的に評価するために,最大応答加速度の抽出位置は水密扉設置階の上階の値とする。

表 4-4 設計震度

冲 昆	VFF.	0 D *	設計震度			
建屋	階	0. P. *	水平方向kн	鉛直方向 k uD		
	CRF	41. 20m	2.86	1.58		
	3F	33. 20m	2. 21	1.47		
	2F	22. 50m	1.77	1.30		
原子炉建屋	1F	15.00m	1.65	1.15		
	B1F	6.00m	1. 31	0.91		
	B2F	-0.80m	1. 11	0.73		
	B3F	-8. 10m	0.82	0.57		
	RF	29. 15m	2. 42	1.75		
	3F	22. 95m	2. 32	1.54		
知知 建 民	2F	19.50m	1. 90	1.34		
制御建屋	1F	15.00m	1.87	1.09		
	B1F	8.00m	1.62	0.79		
	B2F	1.50m	1. 13	0.60		
第3号機海水熱 交換器建屋	B1F	8.00m	1.87	1. 11		

注記*:各建屋の地震応答計算書における 0.P. を示す。

4.5 評価方法

4.5.1 応力算定

(1) ヒンジ部

ヒンジ部は、ヒンジ板、ヒンジピン及びヒンジボルトで構成されており、次式により算定するスラスト荷重(回転軸線方向荷重)及び転倒力から、各部材に発生する応力を算定する。ここで、扉の重量は2箇所のヒンジで支持することから、ヒンジ部に作用する転倒力には、扉上半分の重量を慣性力として作用させるものとする。ヒンジ部に作用する荷重の例を図4-3に示す。

$$W_1 = G \cdot 10^3 + k_{UD} \cdot G \cdot 10^3$$

$$F_1 = W_1 \cdot \frac{L_1}{L_2} + \frac{k_H \cdot G \cdot 10^3}{2}$$

ここで,

W₁ : スラスト荷重(N)

G : 扉重量(kN)

k H : 水平震度

k UD :鉛直震度

F₁ : 転倒力(N)

L₁ : 扉重心とヒンジ芯間距離(mm)

L₂ :ヒンジ芯間距離(mm)

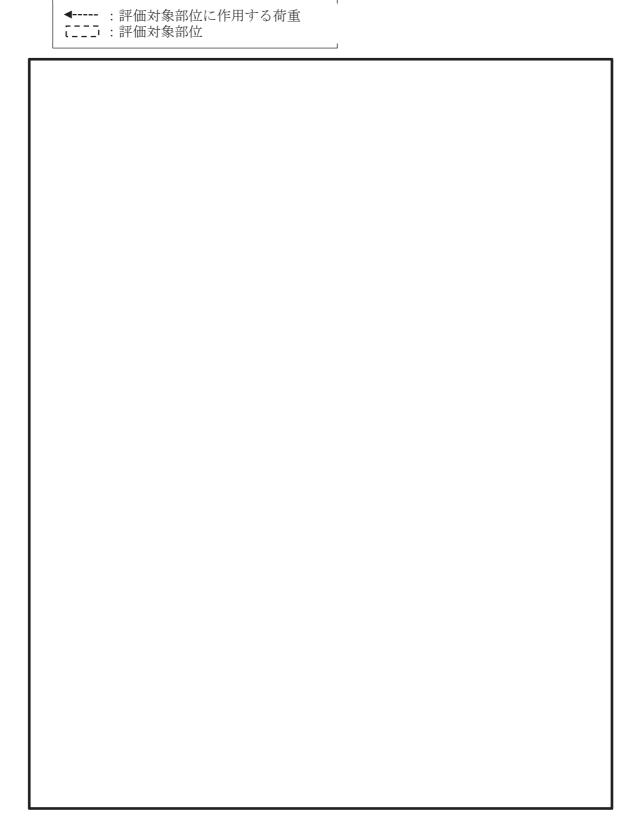


図4-3 ヒンジ部に作用する荷重

a. ヒンジ板

ヒンジ板に生じる応力は、次式により算定する。ヒンジ板に作用する荷重の例を 図 4-4 に示す。

$$\mathbf{M} = \mathbf{W}_1 \cdot \mathbf{L}_3$$

$$\mathbf{Q} = \mathbf{W}_1$$

ここで,

M:ヒンジ板に生じる曲げモーメント(N·mm)

W₁ : スラスト荷重(N)

L₃ : ヒンジ板の 2 軸間距離 (mm) Q : ヒンジ板に生じるせん断力 (N)

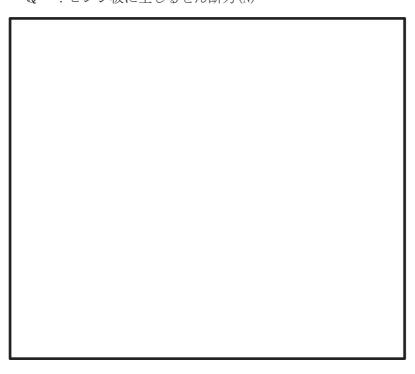


図4-4 ヒンジ板に作用する荷重の例

b. ヒンジピン

ヒンジピンに生じる応力は、次式により算定する。ヒンジピンに作用する荷重の例を 図 4-5 に示す。

(a) 受材が1箇所の場合

$$M = F_1 \cdot L_4$$

$$Q = F_1$$

(b) 受材が2箇所の場合

$$M = F_1 \cdot \frac{1}{2} \cdot L_4$$

$$Q = F_1 \cdot \frac{1}{2}$$

ここで,

M : ヒンジピンに生じる曲げモーメント(N·mm)

F₁:転倒力(N)

L4:ヒンジ板と受材間距離(mm)

Q:ヒンジピンに生じるせん断力(N)

(受材が1箇所の場合)	(受材が2箇所の場合)

図 4-5 ヒンジピンに作用する荷重の例

c. ヒンジボルト

ヒンジボルトに生じる応力は、次式により算定する。ヒンジボルトに作用する荷重の 例を図 4-6 に示す。

(a) 受材が1箇所の場合

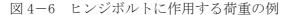
$$Q = \sqrt{(W_{1}/n_{1})^{2} + (F_{1}/n_{1})^{2}}$$

(b) 受材が2箇所の場合

$$Q = \sqrt{(W_1/n_1)^2 + (F_1 \cdot \frac{1}{2 \cdot n_1})^2}$$

ここで,

Q:ヒンジボルト1本当たりに生じるせん断力(N)


W₁ : スラスト荷重(N)

F₁:転倒力(N)

n₁ : ヒンジボルトの本数

(受材が1箇所の場合)

(受材が2箇所の場合)

(2) カンヌキ部

カンヌキ部は,カンヌキ,カンヌキ受けピン及びカンヌキ受けボルトで構成されており, カンヌキ部に生じる応力は、次式により算定する。カンヌキ部に作用する荷重の例を図 4 -7に示す。

$$R_1 = k_H \cdot G \cdot 10^3 / n_2$$

ここで,

R₁:地震力に伴う荷重の反力(N)

k H : 水平震度 G : 扉重量 (kN) n₂:カンヌキの本数

◀----::評価対象部位に作用する荷重

[____: 評価対象部位

図 4-7 カンヌキ部に作用する荷重の例

a. カンヌキ

カンヌキに生じる応力は、次式により算定する。なお、算定にあたっては、カンヌキ受けピン中心位置を固定端とした片持ち梁として評価し、カンヌキの取付部位に応じて作用する応力を考慮する。カンヌキに作用する荷重の例を図 4-8 に示す。

$$M = R_1 \cdot L_5$$

$$Q = R_1$$

ここで,

M :カンヌキに生じる最大曲げモーメント(N·mm)

R₁ : 地震力に伴う荷重の反力(N) L₅ : カンヌキの突出長さ(mm)

Q :カンヌキに生じる最大せん断力(N)

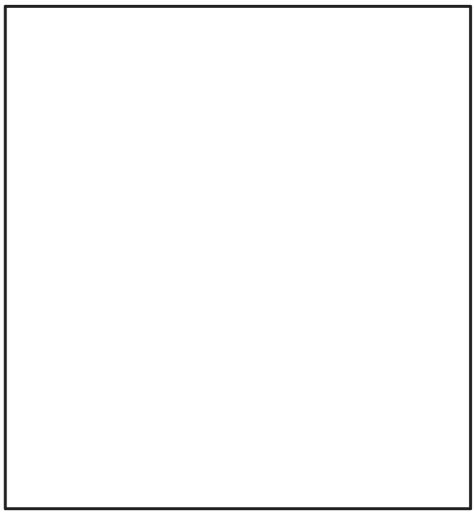


図4-8 カンヌキに作用する荷重の例

b. カンヌキ受けピン

カンヌキ受けピンに生じる応力は、カンヌキ受けピンを集中荷重が作用する単純梁とみなし、次式により算定する。カンヌキ受けピンに作用する荷重の例を図4-9に示す。

$$M = R_1 \cdot L_p \cdot \frac{1}{4}$$

$$Q = R_1 \cdot \frac{1}{2}$$

ここで,

M:カンヌキ受けピンに生じる最大曲げモーメント(N·mm)

R₁:地震力に伴う荷重の反力(N)

Lp:カンヌキ受けピンの軸支持間距離(mm)

Q:カンヌキ受けピンに生じる最大せん断力(N)

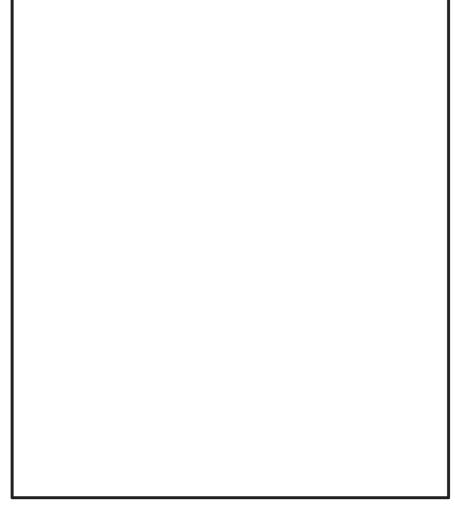


図 4-9 カンヌキ受けピンに作用する荷重の例

c. カンヌキ受けボルト

カンヌキ受けボルトに生じる応力は、次式により算定する。カンヌキ受けボルトに作用する荷重の例を図4-10に示す。

$$T = \frac{R_1}{n_b}$$

ここで,

T: カンヌキ受けボルトに生じる最大引張力(N)

R₁ : 地震力に伴う荷重の反力(N) n_b : カンヌキ受けボルトの本数

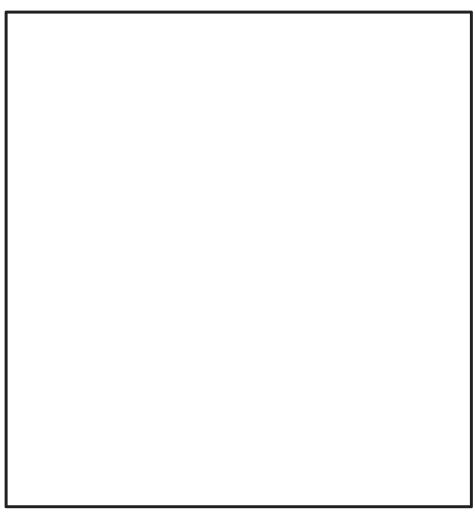


図 4-10 カンヌキ受けボルトに作用する荷重の例

(3) 扉固定部

扉固定部は、扉付固定ボルト、枠付固定ボルト及びブラケットで構成されている。扉固 定部に作用する荷重の例を図 4-11 に示す。

a. 扉付固定ボルト及び枠付固定ボルト 扉付固定ボルト及び枠付固定ボルトに生じる応力は、次式により算定する。

$$T = \frac{k_H \cdot G \cdot 10^3}{n_c}$$

$$Q = \frac{k_H \cdot G \cdot 10^3}{n_c}$$

ここで,

T: 扉付固定ボルト又は枠付固定ボルトに生じる最大引張力(N)

k_H: 水平震度 G: 扉重量(kN)

n。: 扉付固定ボルト又は枠付固定ボルトの本数

Q: 扉付固定ボルト又は枠付固定ボルトに生じる最大せん断力(N)

b. ブラケット ブラケットに生じる応力は、次式により算定する。

$$M = \frac{k_H \cdot G \cdot 10^3}{n_c} \cdot L_A$$

$$Q = \frac{k_H \cdot G \cdot 10^3}{n_c}$$

ここで,

M : ブラケットに生じる最大曲げモーメント(N·mm)

k H : 水平震度

G : 扉重量 (kN)

L_A : ボルト中心からブラケット端部の長さ(mm) n_c : 扉付固定ボルト又は枠付固定ボルトの本数

Q:ブラケットに生じる最大せん断力(N)

◄:: 評価対象部位に作用する荷重 □:: 評価対象部位	

図 4-11 扉固定部に作用する荷重の例

(<mark>4</mark>) アンカーボルト

アンカーボルトに生じる応力は、「4.1 評価対象部位」に基づき、地震荷重を考慮する場合はヒンジ側のアンカーボルトで荷重を負担するものとして算出する。ここで、アンカーボルトに作用する荷重は、引張力又はせん断力として作用する。評価対象のアンカーボルトの範囲の例は図 4-12 に示すとおり、転倒力が作用するヒンジ付近に限定し、枠の慣性力は枠全体の重量の 1/2 を評価において保守的に考慮する。また、扉体の開放角度ごとの荷重の作用状況を図 4-13 に示す。

$$F_{1a} = F_1 + k_H \cdot w_a \cdot 10^3 \cdot \frac{1}{2}$$

$$W_{1a} = W_1 + (k_{UD} \cdot w_a + w_a) \cdot 10^3 \cdot \frac{1}{2}$$

ここで,

F₁a: 扉と扉枠の重量を含んだ転倒力(N)

F₁ : 転倒力(N)

W₁a: 扉と扉枠の重量を含んだスラスト荷重(N)

W₁ : スラスト荷重(N)

 k_H
 : 水平震度

 k_{UD}
 : 鉛直震度

w_a : 扉枠の重量(kN)

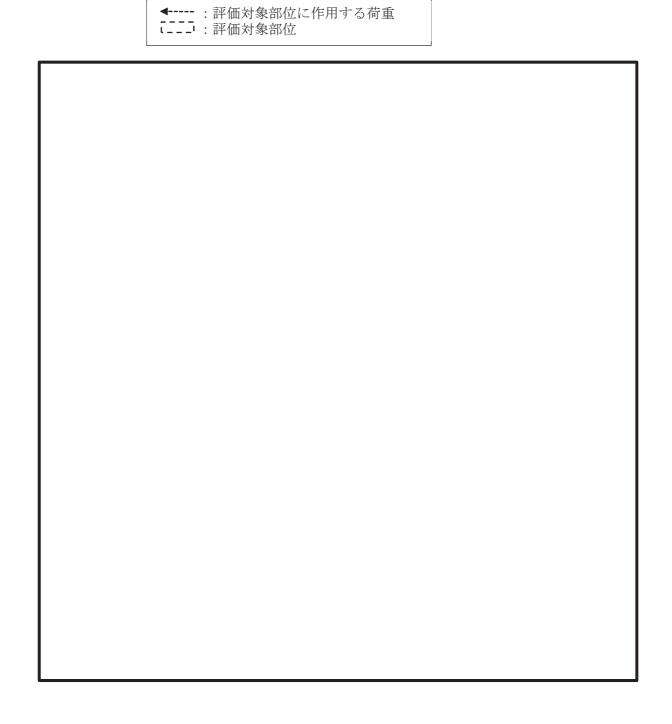


図 4-12 評価対象のアンカーボルトの範囲の例

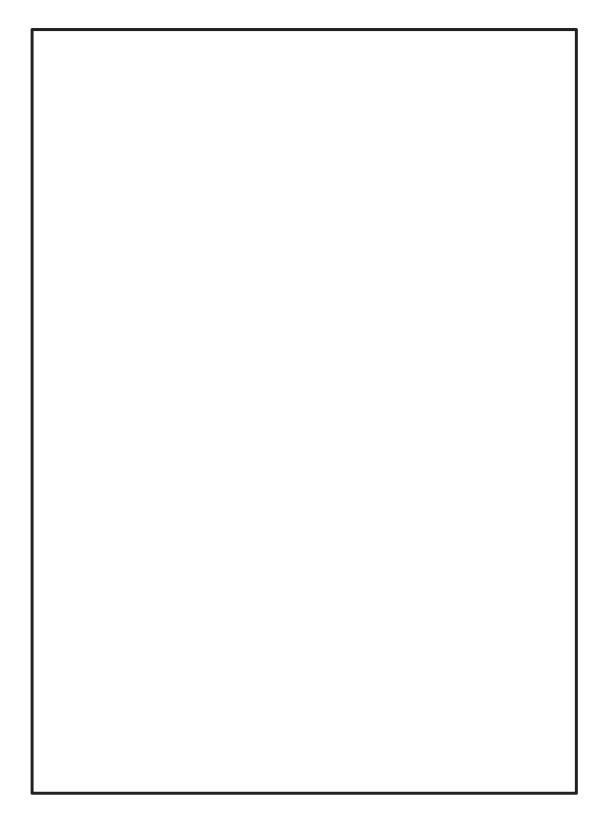


図 4-13 扉の開放角度別の荷重の作用状況

4.5.2 断面検定

各部材に生じる応力より算定する応力度等が、許容限界値を下回ることを確認する。なお、異なる荷重が同時に作用する部材については、組合せを考慮する。

(1) ヒンジ部

a. ヒンジ板

ヒンジ板に生じる曲げ応力度及びせん断応力度から、組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法一」に基づく次式により算定し、ヒンジ 板の短期許容応力度を下回ることを確認する。

$$x = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

ここで,

x :組合せ応力度(N/mm²)

 $\sigma = M/Z$

σ : ヒンジ板に生じる曲げ応力度 (N/mm²)

M : ヒンジ板に生じる曲げモーメント(N·mm)

Z : ヒンジ板の断面係数(mm³)

 $\tau = Q/A_s$

τ : ヒンジ板に生じるせん断応力度(N/mm²)

Q : ヒンジ板に生じるせん断力(N)A_s : ヒンジ板のせん断断面積(mm²)

b. ヒンジピン

ヒンジピンに生じる曲げ応力度とせん断応力度から、組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法一」に基づく次式により算定し、ヒンジピンの短期許容応力度を下回ることを確認する。

$$x = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

ここで,

x :組合せ応力度(N/mm²)

 $\sigma = M/Z$

 σ : ヒンジピンに生じる曲げ応力度 (N/mm^2)

M : ヒンジピンに生じる曲げモーメント(N·mm)

Z : ヒンジピンの断面係数(mm³)

 $\tau = Q/A_s$

τ : ヒンジピンに生じるせん断応力度(N/mm²)

Q : ヒンジピンに生じるせん断力(N) A 。: ヒンジピンのせん断断面積(mm^2)

c. ヒンジボルト

ヒンジボルトに生じるせん断応力度を次式により算定し、ヒンジボルトの短期許容応 力度を下回ることを確認する。

 $\tau = Q/A_s$

ここで,

τ : ヒンジボルトに生じる最大せん断応力度(N/mm²)

Q:ヒンジボルトに生じる最大せん断力(N)

A。: ヒンジボルトのせん断断面積(mm²)

(2) カンヌキ部

a. カンヌキ

カンヌキに生じる曲げ応力度及びせん断応力度から、組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法一」に基づく次式により算定し、カンヌキの短期許容応力度を下回ることを確認する。

$$x = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

ここで,

x : 組合せ応力度(N/mm²)

 $\sigma = M/Z$

σ : カンヌキに生じる最大曲げ応力度 (N/mm²)

M : カンヌキに生じる最大曲げモーメント(N·mm)

Z : カンヌキの断面係数 (mm³)

 $\tau = Q/A_s$

τ : カンヌキに生じる最大せん断応力度(N/mm²)

Q:カンヌキに生じる最大せん断力(N)

A。:カンヌキのせん断断面積(mm²)

b. カンヌキ受けピン

カンヌキ受けピンに生じる曲げ応力度及びせん断応力度を次式により算定し、カンヌキ受けピンの短期許容応力度を下回ることを確認する。

 $\sigma = M/Z$ $\tau = Q/A_s$

ここで,

σ : カンヌキ受けピンに生じる最大曲げ応力度(N/mm²)

M:カンヌキ受けピンに生じる最大曲げモーメント(N·mm)

Z:カンヌキ受けピンの断面係数(mm³)

τ : カンヌキ受けピンに生じる最大せん断応力度(N/mm²)

Q:カンヌキ受けピンに生じる最大せん断力(N)

A。:カンヌキ受けピンのせん断断面積(mm²)

c. カンヌキ受けボルト

カンヌキ受けボルトに生じる引張応力度を次式により算定し、カンヌキ受けボルトの 短期許容応力度を下回ることを確認する。

 $\sigma_t = T/A$

ここで,

σ_t: <mark>カンヌキ受け</mark>ボルトに生じる最大引張応力度(N/mm²)

T: カンヌキ受けボルトに生じる最大引張力(N)

A : <mark>カンヌキ受け</mark>ボルトの断面積(mm²)

(3) 扉固定部

a. 扉付固定ボルト及び枠付固定ボルト

扉付固定ボルト及び枠付固定ボルトに生じる引張応力度又はせん断応力度を次式により算定し、扉付固定ボルト及び枠付固定ボルトの短期許容応力度を下回ることを確認する。

$$\sigma_t = T/A$$

$$\tau = Q/A_s$$

ここで,

σ₊: 扉付固定ボルト又は枠付固定ボルトに生じる最大引張応力度 (N/mm²)

T:扉付固定ボルト又は枠付固定ボルトに生じる最大引張力(N)

A: 扉付固定ボルト又は枠付固定ボルトの断面積(mm²)

τ : 扉付固定ボルト又は枠付固定ボルトに生じる最大せん断応力度 (N/mm²)

Q:扉付固定ボルト又は枠付固定ボルトに生じる最大せん断力(N)

A。: 扉付固定ボルト又は枠付固定ボルトのせん断断面積(mm²)

b. ブラケット

ブラケットに生じる曲げ応力度及びせん断応力度から、組合せ応力度を「日本建築学会 2005年 鋼構造設計規準 一許容応力度設計法一」に基づく次式により算定し、ブラケットの短期許容応力度を下回ることを確認する。

$$x = \sqrt{\sigma^2 + 3 \cdot \tau^2}$$

ここで,

x :組合せ応力度(N/mm²)

 $\sigma = M/Z$

σ:ブラケットに生じる最大曲げ応力度(N/mm²)

M : ブラケットに生じる最大曲げモーメント(N·mm)

Z : ブラケットの断面係数(mm³)

 $\tau = Q/A_s$

τ : ブラケットに生じる最大せん断応力度(N/mm²)

Q :ブラケットに生じる最大せん断力(N)

A。:ブラケットのせん断断面積(mm²)

 $_{\odot}$

(<mark>4</mark>) アンカーボルト

アンカーボルト1本当たりに生じる引張力及びせん断力を次式により算定し、アンカーボルトの許容荷重を下回ることを確認する。また、引張力とせん断力が同時に作用する場合は、組合せ応力を「日本建築学会 2010年 各種合成構造設計指針・同解説」に基づく次式により算定し、アンカーボルトの許容荷重を下回ることを確認する。

$$(Q_d/Q_a) \le 1.0$$

$$(T_d/T_a)^2 + (Q_d/Q_a)^2 \le 1.0$$

ここで,

 $T_d = F_{1a} / (n_{b3} / 2)$

T_a : 転倒力によるアンカーボルト1本当たりに生じる引張力(N)

F₁a: 扉と扉枠の重量を含んだ転倒力(N)

пьз : ヒンジ側アンカーボルトの本数

 $Q_{d1} = F_{1a} / (n_{b3} / 2)$

Q_{d1}:転倒力によるアンカーボルト1本当たりに生じるせん断力(N)

 $Q_{d2} = W_{1a} / n_{b3}$

Qd2 : スラスト荷重によるアンカーボルト1本当たりに生じるせん断力(N)

 W_{1a} : 扉と扉枠の重量を含んだスラスト荷重(N)

 $Q_d = \sqrt{(Q_{d1}^2 + Q_{d2}^2)}$

 Q_d :アンカーボルト1本当たりに生じるせん断力(N)

Ta:アンカーボルト1本当たりの短期許容引張力(N)

Q。: アンカーボルト1本当たりの短期許容せん断力(N)

4.6 評価条件

「4.5 評価方法」に用いる評価条件を表 4-5 に示す。

表 4-5 耐震評価に用いる評価条件(1/8)

水密扉 No. 6 14.12 1.62 0.79 837.5 1226
14. 12 1. 62 0. 79 837. 5
1. 62 0. 79 837. 5
0. 79 837. 5
837.5
1226
25270
28700
570
109
4
33. 5
108
19
4
61
6
105
6
1
110
5
1
4
7

表 4-5 耐震評価に用いる評価条件(2/8)

		7(1 0				
対象部位		記号	単位	定義	水密扉 No.	
		記方	半江	<u></u>	6	
アンカーボルト		w a	kN	扉枠の重量	14. 32	
		n 3	本	ヒンジ側アンカーボルトの本数	3	
		T d	N	アンカーボルト1本当たりに生じる引張力	26870	
		Q _d	N	アンカーボルト1本当たりに生じるせん断力	29720	
		Т	N	アンカーボルト1本当たりの	67915	
		T a	N	短期許容引張耐力	67315	
		Q a	a N	アンカーボルト1本当たりの	58068	
				短期許容せん断耐力		
	芯材	L	cm	梁長さ	108.6	
		Е	kgf/cm ²	ヤング率	2.09×10^6	
		Ι	cm ⁴	断面二次モーメント	4180	
		γ т	kg/cm	質量分布	4.07	
固有		t	cm	扉板厚さ	_	
振動数		а	cm	2隣辺の長さ(扉の幅)	_	
	三七	b	cm	2隣辺の長さ(扉の高さ)	_	
	扉板	Е	kgf/cm ²	ヤング率	_	
		γ	kg/cm ³	単位体積の重さ	_	
		ν	-	ポアソン比	_	

表 4-5 耐震評価に用いる評価条件(3/8)

					水密扉 No.
対象部位		記号	単位	定義	11
		G	kN	扉重量	7. 65
		k _H	_	水平震度	1. 90
		k _{UD}	_	鉛直震度	1. 34
共通		L 1	mm	扉重心とヒンジ芯間距離	592. 5
		L 2	mm	ヒンジ芯間距離	1677
		W_1	N	スラスト荷重	17900
		F 1	N	転倒力	13590
		L 3	mm	ヒンジ板の2軸間距離	320
	ヒンジ板	σ	N/mm^2	曲げ応力度	86
		τ	N/mm^2	せん断応力度	5
ヒン	ヒ ジ 部 ヒンジピン	L 4	mm	ヒンジピンの作用点間距離	33. 5
ジッ		σ	N/mm^2	曲げ応力度	51
ПВ		τ	N/mm^2	せん断応力度	9
	ヒンジ	n 1	本	ヒンジボルトの本数	4
	ボルト	τ	N/mm^2	せん断応力度	36
	共通	n 2	本	カンヌキの本数	2
		L 5	mm	カンヌキの突出長さ	61. 5
	カンヌキ	σ	N/mm^2	曲げ応力度	37
カ		τ	N/mm^2	せん断応力度	4
ンヌ	カンヌキ	L p	mm	カンヌキ受けピンの軸支持間距離	72
ヌキ部	グラスキー 受けピン	σ	N/mm^2	曲げ応力度	50
	又リレン	τ	N/mm^2	せん断応力度	6
	カンヌキ	n _b	本	カンヌキ受けボルトの本数	2
	受けボルト	σ _t	N/mm^2	引張応力度	24

0

表 4-5 耐震評価に用いる評価条件(4/8)

		衣 4-5	別長評価に用いる評価条件 (4/8)		
7. 	和耳	出任	学	水密扉 No.	
対象部位記号		<u> </u>	上 上 人	11	
		kN	扉枠の重量	6. 18	
		本	ヒンジ側アンカーボルトの本数	8	
	T d	N	アンカーボルト1本当たりに生じる引張力	4865	
アンカーボルト		N	アンカーボルト1本当たりに生じるせん断力	5791	
		N	アンカーボルト1本当たりの	24072	
	I a	N	短期許容引張耐力	34073	
		2.7	アンカーボルト1本当たりの	25226	
		IN	短期許容せん断耐力	25826	
芯材	L	cm	梁長さ	94. 5	
	Е	kgf/cm ²	ヤング率	2.09×10^6	
	Ι	cm ⁴	断面二次モーメント	1380	
	γм	kg/cm	質量分布	2. 62	
	t	cm	扉板厚さ	_	
	а	cm	2隣辺の長さ(扉の幅)	_	
単に	b	cm	2隣辺の長さ(扉の高さ)	_	
	Е	kgf/cm ²	ヤング率	_	
	γ	kg/cm ³	単位体積の重さ	_	
	ν	_	ポアソン比	_	
	ボルト	Wa n3 Td Qd Ta Qa L E J ym t a b E γ	位 記号 単位 ボルト Wa kN n3 本 Td N N Qd N Ta N Qa N L cm E kgf/cm² I cm⁴ ym kg/cm t cm a cm b cm E kgf/cm² y kg/cm³	位 記号 単位 定義 ボルト	

表 4-5 耐震評価に用いる評価条件(5/8)

					水密扉 No.
対象部位		記号	単位	定義	
			1 3 7	- 三 4 日	12
		G	kN	<u> </u>	17. 85
共通		k _H	_	水平震度	1.90
		k _{UD}	_	鉛直震度	1. 34
		L 1	mm	扉重心とヒンジ芯間距離	1197. 5
		L $_2$	mm	ヒンジ芯間距離	1226
		W_1	N	スラスト荷重	41770
		F 1	N	転倒力	57760
		L 3	mm	ヒンジ板の2軸間距離	480
	ヒンジ板	σ	N/mm^2	曲げ応力度	84
		τ	N/mm^2	せん断応力度	4
ヒン		L 4	mm	ヒンジピンの作用点間距離	36. 5
ンジ部	ヒンジピン	σ	N/mm^2	曲げ応力度	236
타	百)	τ	N/mm^2	せん断応力度	37
	ヒンジ	n 1	本	ヒンジボルトの本数	4
	ボルト	τ	N/mm^2	せん断応力度	114
	共通	n 2	本	カンヌキの本数	6
		L 5	mm	カンヌキの突出長さ	96. 1
	カンヌキ	σ	N/mm^2	曲げ応力度	8
カ		τ	$\mathrm{N/mm^2}$	せん断応力度	1
ンヌ	2 3 3.	L p	mm	カンヌキ受けピンの軸支持間距離	110
ヌキ部	カンヌキ	σ	N/mm^2	曲げ応力度	8
	受けピン	τ	N/mm^2	せん断応力度	1
	カンヌキ	n _b	本	カンヌキ受けボルトの本数	4
	受けボルト	σt	N/mm^2	引張応力度	9

表 4-5 耐震評価に用いる評価条件(6/8)

w _a kN 扉枠の重量 15. n ₃ 本 ヒンジ側アンカーボルトの本数 7 T _d N アンカーボルト1本当たりに生じる引張力 207	. 69 7 760	
w _a kN 扉枠の重量 15. n ₃ 本 ヒンジ側アンカーボルトの本数 7 T _d N アンカーボルト1本当たりに生じる引張力 207	. 69 7 760	
n ₃ 本 ヒンジ側アンカーボルトの本数 T _d N アンカーボルト1本当たりに生じる引張力 207	7 760	
T _d N アンカーボルト1本当たりに生じる引張力 207	760	
0 リーフンカーギュし 1 大火 たり 7 仕) 町 十 90	450	
Qa N アンカーボルト 1 本当たりに生じるせん断力 224	470	
アンカーボルト1本当たりの	0.1.5	
T _a N 短期許容引張耐力	315	
アンカーボルト1本当たりの	58068	
Qa N 短期許容せん断耐力	J08	
L cm 梁長さ 196	6.2	
E kgf/cm ² ヤング率 2.09	$\times 10^6$	
芯材	.80	
γ _m kg/cm 質量分布 2.	85	
固有 t cm 扉板厚さ -	_	
振動数 a cm 2 隣辺の長さ (扉の幅) -	_	
b cm 2 隣辺の長さ (扉の高さ) -	_	
$\overline{\mathbb{R}}$ $$	_	
γ kg/cm³ 単位体積の重さ -	_	
ν - ポアソン比 -	_	

表 4-5 耐震評価に用いる評価条件(7/8)

			衣 4-	5 順展評価に用いる評価条件(7/8)	水密扉 No.
対象部位		記号	単位	定義	13 (大扉)
VI WHAIT		G	kN		79. 43
		k _H		水平震度	2. 42
		k _{UD}		鉛直震度	1. 75
	共通	L 1	mm	扉重心とヒンジ芯間距離	1273
	, <u> </u>	L ₂	mm	ヒンジ芯間距離	1992
		W_1	N	スラスト荷重	218400
		F 1	N		235700
		L 3	mm	ヒンジ板の2軸間距離	600
	ヒンジ板	σ	N/mm^2	曲げ応力度	97
		τ	N/mm^2	せん断応力度	7
ヒン		L 4	mm	ヒンジピンの作用点間距離	61
ンジ部	ヒンジピン	σ	N/mm^2	曲げ応力度	111
の音		τ	N/mm^2	せん断応力度	25
	ヒンジ	n 1	本	ヒンジボルトの本数	8
	ボルト	τ	N/mm^2	せん断応力度	72
	共通	n 2	本	カンヌキの本数	_
	カンヌキ	L 5	mm	カンヌキの突出長さ	_
		σ	N/mm^2	曲げ応力度	_
カ		τ	$\mathrm{N/mm^2}$	せん断応力度	_
ンヌキ	カンヌキ	L p	mm	カンヌキ受けピンの軸支持間距離	_
部	グラスキー 受けピン	σ	$\mathrm{N/mm^2}$	曲げ応力度	_
	文のこと	τ	$\mathrm{N/mm^2}$	せん断応力度	_
	カンヌキ	n _b	本	カンヌキ受けボルトの本数	_
	受けボルト	σt	N/mm^2	引張応力度	_
	扉付固定	n c	本	扉付固定ボルトの本数	11
	ボルト	τ	N/mm^2	せん断応力度	72
扉	枠付固定	А	mm^2	枠付固定ボルトの断面積	245
固定部	ボルト	σt	N/mm^2	引張応力度	72
部		A	mm ²	ブラケットの断面積	<mark>1521</mark>
	ブラケット	σ	N/mm^2	曲げ応力度	
		τ	N/mm^2	せん断応力度	<mark>12</mark>

表 4-5 耐震評価に用いる評価条件(8/8)

		衣 4-5	別長計 に用いる計 宋件 (8/8)			
対象部位 記号		単位	定義	水密扉 No.		
					13 <mark>(大扉)</mark>	
		W a	kN	扉枠の重量	24. 03	
		n 3	本	ヒンジ側アンカーボルトの本数	29	
		T d	N	アンカーボルト1本当たりに生じる引張力	18260	
アンナ	ーボルト	Q_d	N	アンカーボルト1本当たりに生じるせん断力	20210	
	- 11/12	T a	NT	アンカーボルト1本当たりの	-7-7-	
			N	短期許容引張耐力	57575	
		Q a	N	アンカーボルト1本当たりの	40302	
				短期許容せん断耐力		
		L	cm	梁長さ	203. 0	
	扉板 (開放)	Е	kgf/cm ²	ヤング率	2.09×10^6	
		Ι	cm ⁴	断面二次モーメント	32950	
固		γm	kg/cm	質量分布	<mark>39. 90</mark>	
有		t	cm	扉板厚さ	11. 5	
振		a cm 2 隣辺の長さ (扉の幅)		203.0		
動	扉板	b	cm	2隣辺の長さ(扉の高さ)	260.0	
数	(閉止)	Е	kgf/cm ²	ヤング率	2.09×10^6	
		γ	kg/cm ³	単位体積の重さ	0.013	
		ν	_	ポアソン比	0.3	

5. 評価結果

水密扉の評価結果を表 5-1 に示す。各部材の断面検定を行った結果,すべての水密扉において,発生応力度又は荷重が許容限界値を下回る。

表 5-1 評価結果(1/2)

		12.0				
水密扉 No.		評価対象部位	発生値 (応力度, 荷重) (N/mm², N)	許容限界値 (N/mm², N)	発生値/ 許容限界値	備考
	ヒンジ	ヒンジ板*1	110	215	0. 52	組合せ
	部	ヒンジピン*1	113	345	0.33	組合せ
	印	ヒンジボルト	61	420	0. 15	せん断
6	カン	カンヌキ*1	7	345	0.03	組合せ
	ヌキ部	カンヌキ受けピン*2	5	345	0.02	曲げ
		カンヌキ受けボルト	7	728	0.01	引張
	ア	ンカーボルト*3	29720	58068	0. 52	せん断
	ヒンジ	ヒンジ板*1	87	235	0.38	組合せ
	ピンショ	ヒンジピン*1	54	345	0. 16	組合せ
	प्रच	ヒンジボルト	36	420	0.09	せん断
11	カン	カンヌキ*1	38	205	0. 19	組合せ
		カンヌキ受けピン*2	50	345	0. 15	曲げ
	ヌキ部	カンヌキ受けボルト	24	728	0.04	引張
	ア	ンカーボルト*3	5791	25826	0. 23	せん断

注記*1:曲げ、せん断及び組合せのうち、評価結果が最も厳しい値を記載する。

*2:曲げ及びせん断のうち、評価結果が厳しい方の値を記載する。

*3: 引張, せん断及び組合せのうち, 評価結果が最も厳しい値を記載する。

表 5-1 評価結果(2/2)

		発生値				
水密扉 No.		評価対象部位	(応力度, 荷重) (N/mm², N)	許容限界値 (N/mm ² , N)	発生値/ 許容限界値	備考
	ヒンジ	ヒンジ板*1	85	215	0.40	組合せ
	部	ヒンジピン*1	245	345	0.72	組合せ
	印	ヒンジボルト	114	420	0. 28	せん断
12	カン	カンヌキ*1	9	205	0.05	組合せ
		カンヌキ受けピン* ²	8	345	0.03	曲げ
	ヌキ部	カンヌキ受けボルト	9	728	0.02	引張
	ア	ンカーボルト*3	22470	58068	0.39	せん断
	ヒンジー部	ヒンジ板*1	98	<mark>205</mark>	0. 48	組合せ
		ヒンジピン*1	120	345	0.35	組合せ
		ヒンジボルト	72	420	0. 18	せん断
	1	カンヌキ*1	_	_	_	_
13	カン	カンヌキ受けピン* ²	_	_	_	_
(大扉)	ヌキ部	カンヌキ受けボルト	_	_	_	_
	百四六	扉付固定ボルト	72	420	0. 18	せん断
	扉固定 郊	枠付固定ボルト	72	728	0. 10	引張
	部	ブラケット*1	12	135	0. 09	せん断
	ア	ンカーボルト*3	20210	40302	0. 51	せん断

注記*1:曲げ、せん断及び組合せのうち、評価結果が最も厳しい値を記載する。

*2:曲げ及びせん断のうち、評価結果が厳しい方の値を記載する。

*3: 引張, せん断及び組合せのうち, 評価結果が最も厳しい値を記載する。