表 4－49（4）排水シャフト 軸方向照査におけるせん断破壊に対する実施ケース及び照査値
（No． 4 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（有効応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.14		
	－＋	0.15		
S s－D 2	＋＋	0.13		
	－＋	0.14		
S s－D 3	＋＋	0.10		
	－＋	0． 12		
S s－F 1	＋＋	0.14		
	－＋	0． 11		
S s－F 2	$++$	0.11		
	－＋	0.12		
S s－F 3	＋＋	0.10		
	－＋	0.10		
S s－N 1	＋＋	0． 18	0． 18	0． 17
	－＋	0． 17		

表 4－49（5）排水シャフト 軸方向照査におけるせん断破壊に対する実施ケース及び照査値 （No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 10		
	－＋	0.11		
S s－D 2	＋＋	0． 10		
	－＋	0.11	0． 11	0.11
$\mathrm{Sc}-\mathrm{D} 3$	＋＋	0.08		
	－＋	0.08		
S s－F 1	＋＋	0.10		
	－＋	0． 10		
S s－F 2	＋＋	0． 10		
	－＋	0.11		
Ss －F 3	＋＋	0.07		
	－＋	0． 07		
S s－N 1	＋＋	0.15		
	－＋	0.14		

表 4－49（6）排水シャフト 軸方向照査におけるせん断破壊に対する実施ケース及び照査値
（No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（有効応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.12		
	－＋	0． 12		
S s－D 2	＋＋	0.10		
	－＋	0.12		
$\mathrm{S} s-\mathrm{D} 3$	＋＋	0.09		
	－＋	0． 10		
S s－F 1	＋＋	0.11		
	－＋	0.09		
S s－F 2	＋＋	0.10		
	－＋	0.10		
S s－F 3	＋＋	0.08		
	－＋	0.10		
S s－N 1	＋＋	0． 14	0． 15	0． 14
	－＋	0.13		

（c）排水シャフトの曲げ・軸力系の破壊に対する周方向の照査
表 4－50に排水シャフトの周方向の照査の実施ケースと照査値を示す。

表 4－50（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（全応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0． 42		
	－＋	0.39		
S s－D 2	＋＋	0． 41		
	－＋	0.41	0． 43	0． 40
S s－D 3	＋＋	0.36		
	－＋	0.37		
S s－F 1	＋＋	0.31		
	－＋	0.33		
S s－F 2	＋＋	0.31		
	－＋	0． 34		
Ss －F 3	＋＋	0.33		
	－＋	0.31		
S s－N 1	＋＋	0.44		
	－＋	0.38		

表 4－50（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（有効応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 42		
	－＋	0． 44		
S s－D 2	＋＋	0.31		
	－＋	0.34		
S s－D 3	＋＋	0． 28		
	－＋	0.31		
S s－F 1	＋＋	0.29		
	－＋	0． 23		
S s－F 2	＋＋	0.35		
	－＋	0． 26		
S s－F 3	＋＋	0.25		
	－＋	0.32		
S s－N 1	＋＋	0.26	0.27	0.26
	－＋	0． 27		

表 4－50（3）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する
実施ケース及び照査値（No． 4 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.36		
	－＋	0． 37		
S s－D 2	＋＋	0.35		
	－＋	0.36	0． 38	0.35
S s－D 3	＋＋	0.34		
	－＋	0． 33		
S s－F 1	＋＋	0.27		
	－＋	0． 27		
S s－F 2	＋＋	0.26		
	－＋	0.33		
S s－F 3	＋＋	0.27		
	－＋	0． 27		
S s－N 1	＋＋	0.40		
	－＋	0． 30		

表 4－50（4）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（有効応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 32		
	－＋	0． 36		
S s－D 2	＋＋	0． 26		
	－＋	0． 28		
$\mathrm{Sc}-\mathrm{D} 3$	＋＋	0． 23		
	－＋	0． 26		
S s－F 1	＋＋	0.24		
	－＋	0.19		
$\mathrm{S} s-\mathrm{F} 2$	＋＋	0． 29		
	－＋	0． 20		
S s－F 3	＋＋	0． 20		
	－＋	0． 27		
S s－N 1	＋＋	0.21	0． 22	0.21
	－＋	0． 20		

表 4－50（5）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 42		
	－＋	0.39		
S s－D 2	＋＋	0.34		
	－＋	0.37	0． 39	0． 35
Sc －D 3	＋＋	0.33		
	－＋	0． 33		
S s－F 1	＋＋	0.35		
	$-+$	0.39		
S s－F 2	$++$	0． 36		
	－＋	0． 42		
Ss－F 3	＋＋	0.24		
	－＋	0． 23		
S s－N 1	$++$	0.44		
	－＋	0． 40		

表 4－50（6）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（有効応力解析）

解析ケース地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.50		
	－＋	0． 45		
S s－D 2	＋＋	0.35		
	－＋	0． 42		
S s－D 3	＋＋	0.31		
	－＋	0.37		
S s－F 1	＋＋	0． 42		
	－＋	0.36		
S s－F 2	＋＋	0． 36		
	－＋	0． 43		
Ss－F 3	＋＋	0.23		
	－＋	0． 27		
S s－N 1	$++$	0． 60	0.63	0.55
	$-+$	0.52		

注記 $\square: ケ ー ス ①$ ケおける照査値が 0.5 以上となる照査項目のうち照査値が着目部位 の中で最大となるケース（ケース②）③を実施する地震動の選定における決定ケース）
（d）集水ピットの曲げ・軸力系の破壊に対する軸方向の照査
表4－51 に集水ピットの曲げ・軸力系の破壊に対する軸方向照査の実施ケースと照査値を示す。

表 4－51（1）集水ピット 軸方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（全応力解析）

\qquad 解析ケース地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.08		
	－＋	0.08		
S s－D 2	＋＋	0.08		
	－＋	0.08	0． 08	0． 08
S s－D 3	＋＋	0.08		
	－＋	0.08		
S s－F 1	＋＋	0.08		
	－＋	0.08		
S s－F 2	＋＋	0.08		
	－＋	0.08		
Ss－F 3	＋＋	0.08		
	－＋	0.08		
S s－N 1	$++$	0.08		
	－＋	0.08		

表 4－51（2）集水ピット 軸方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（有効応力解析）

解析ケース地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.08	0.08	0.08
	－＋	0.08		
S s－D 2	＋＋	0.07		
	－＋	0.08		
S s－D 3	＋＋	0.08		
	－＋	0.07		
S s－F 1	＋＋	0.07		
	－＋	0． 07		
S s－F 2	＋＋	0.07		
	－＋	0.07		
S s－F 3	＋＋	0.08		
	－＋	0． 08		
S s－N 1	＋＋	0.07		
	－＋	0． 07		

（e）集水ピットのせん断破壊に対する軸方向の照査
表 4－52 に集水ピットのせん断破壊に対する軸方向照査の実施ケースと照査値を示 す。

表 4－52（1）集水ピット 軸方向照査におけるせん断破壊に対する実施ケース及び照査値

（No． 4 揚水井戸）（全応力解析）				
解析ケース地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.41		
	－＋	0． 46		
S s－D 2	＋＋	0． 49		
	－＋	0.52	0.51	0.57
S s－D 3	＋＋	0． 44		
	－＋	0.47		
S s－F 1	＋＋	0.46		
	－＋	0.41		
S s－F 2	＋＋	0.51		
	－＋	0.52		
S s－F 3	＋＋	0.48		
	－＋	0.52		
S s－N 1	＋＋	0.53		0.56
	－＋	0． 49		

表 4－52（2）集水ピット 軸方向照査におけるせん断破壊に対する実施ケース及び照査値 （No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.38	0． 34	0． 42
	－＋	0． 37		
S s－D 2	＋＋	0． 44		
	－＋	0.47		
S s－D 3	＋＋	0.40		
	－＋	0.37		
S s－F 1	$++$	0.37		
	－＋	0． 35		
Ss －F 2	＋＋	0． 45		
	－＋	0.43		
S s－F 3	＋＋	0． 43		
	－＋	0.43		
S s－N 1	＋＋	0.43		
	－＋	0.44		

（f）集水ピットの周方向の照査

表 4－53 に集水ピットの周方向の照査の実施ケースと照査値を示す。
なお，集水ピットの周方向の照査は，コンクリート及び鉄筋の曲げ・軸力系の破壊 に対する照査とせん断破壊に対する照査を実施し，照査結果を「4．2 照査結果一覧」に示す。

表 4－53（1）集水ピット 周方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（全応力解析）

地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0． 12		
	－＋	0.11		
S s－D 2	＋＋	0.11		
	－＋	0． 12	0.11	0． 13
S s－D 3	＋＋	0.11		
	－＋	0． 12		
S s－F 1	＋＋	0.11		
	－＋	0.11		
S s－F 2	＋＋	0.11		
	－＋	0.11		
Ss－F 3	＋＋	0.11		
	－＋	0． 12		
S s－N 1	＋＋	0.11		
	－＋	0． 13		

表 4－53（2）集水ピット 周方向照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.14	0． 13	0． 14
	－＋	0． 14		
Ss－D 2	＋＋	0． 12		
	－＋	0.11		
S s－D 3	＋＋	0． 12		
	－＋	0.11		
S s－F 1	＋＋	0.11		
	－＋	0.10		
S s－F 2	＋＋	0.11		
	－＋	0.11		
S s－F 3	＋＋	0.13		
	－＋	0.11		
S s－N 1	＋＋	0.10		
	－＋	0.10		

表 4－53（3）集水ピット 周方向照査におけるせん断破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 20		
	－＋	0.18		
S s－D 2	＋＋	0.19		
	－＋	0． 20	0． 19	0． 22
Sc －D 3	＋＋	0.18		
	－＋	0． 20		
S s－F 1	＋＋	0.16		
	－＋	0． 17		
Ss－F 2	＋＋	0.16		
	－＋	0.16		
Ss－F 3	＋＋	0.18		
	－＋	0． 20		
S s－N 1	＋＋	0.16		
	－＋	0.21		

表 4－53（4）集水ピット 周方向照査におけるせん断破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.26	0． 24	0． 28
	－＋	0． 26		
S s－D 2	＋＋	0． 20		
	－＋	0． 23		
$\mathrm{S} s-\mathrm{D} 3$	＋＋	0.21		
	－＋	0． 19		
S s－F 1	＋＋	0． 17		
	－＋	0． 17		
S s－F 2	＋＋	0.19		
	－＋	0． 19		
S s－F 3	＋＋	0． 24		
	－＋	0． 16		
S s－N 1	＋＋	0.14		
	－＋	0.15		

（g）集水ピットの底版の照査

表 4－54 に集水ピット底版の照査の実施ケースと照査値を示す。
なお，集水ピットの底版の照査は，コンクリート及び鉄筋の曲げ・軸力系の破壊に対する照査とせん断破壊に対する照査を実施し，照査結果を「4．2 照査結果一覧」 に示す。

表 4－54（1）集水ピット 底版照査における曲げ・軸力系の破壊に対する
実施ケース及び照査値（No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.49		
	－＋	0.50		
S s－D 2	＋＋	0.52		0． 52
	－＋	0.49	0． 49	0.50
S s－D 3	＋＋	0． 48		
	－＋	0.50		
S s－F 1	＋＋	0.45		
	－＋	0.48		
S s－F 2	＋＋	0． 45		
	－＋	0.50		
S s－F 3	＋＋	0． 50		
	－＋	0． 46		
$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	＋＋	0.44		
	－＋	0． 49		

表 4－54（2）集水ピット 底版照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.49	0． 49	0.50
	－＋	0． 48		
S s－D 2	＋＋	0． 46		
	－＋	0． 46		
S s－D 3	＋＋	0． 48		
	－＋	0． 45		
S s－F 1	＋＋	0.44		
	－＋	0． 44		
S s－F 2	＋＋	0． 44		
	－＋	0． 44		
S s－F 3	＋＋	0． 48		
	－＋	0． 46		
S s－N 1	＋＋	0． 40		
	－＋	0． 42		

表 4－54（3）集水ピット 底版照査におけるせん断破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 47		
	－＋	0． 48		
S s－D 2	＋＋	0.50		0.50
	－＋	0． 47	0． 47	0． 48
S s－D 3	＋＋	0． 46		
	－＋	0． 48		
S s－F 1	＋＋	0． 43		
	－＋	0． 46		
Ss－F 2	＋＋	0． 43		
	－＋	0． 47		
S s－F 3	＋＋	0． 48		
	－＋	0． 44		
S s－N 1	＋＋	0． 42		
	$-+$	0． 47		

表 4－54（3）集水ピット 底版照査におけるせん断破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		せん断破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0． 47	0． 47	0． 48
	－＋	0． 46		
S s－D 2	＋＋	0． 44		
	－＋	0． 45		
Sc －D 3	＋＋	0． 46		
	－＋	0． 43		
S s－F 1	＋＋	0． 42		
	$-+$	0． 42		
S s－F 2	＋＋	0． 42		
	－＋	0． 42		
$\mathrm{S} s-\mathrm{F} 3$	＋＋	0． 46		
	－＋	0． 45		
S s－N 1	$++$	0． 39		
	－＋	0． 40		

（h）集水ピットの隅角部の照査
表 4－55 に集水ピットの隅角部の照査の実施ケースと照査値を示す。
なお，集水ピットの隅角部の照査は，コンクリート及び鉄筋の曲げ・軸力系の破壊 に対する照査を実施し，照査結果を「4．2 照査結果一覧」に示す。

表 4－55（1）集水ピット 隅角部照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.53		
	－＋	0.55		0.55
S s－D 2	＋＋	0.54		
	－＋	0.55	0.54	0.57
Ss－D 3	＋＋	0.50		
	－＋	0.53		
S s－F 1	＋＋	0． 48		
	－＋	0.51		
S s－F 2	＋＋	0.50		
	－＋	0.51		
S s－F 3	＋＋	0.51		
	－＋	0.53		
S s－N 1	＋＋	0． 48		
	－＋	0.51		

注記 $\square: ケ ー ス ①$ における照査値が 0.5 以上となる照査項目のうち照査値が着目部位 の中で最大となるケース（ケース②）③）を実施する地震動の選定における決定ケース）

表 4－55（2）集水ピット 隅角部照査における曲げ・軸力系の破壊に対する実施ケース及び照査値（No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		曲げ・軸力系の破壊に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.59	0.57	0.60
	－＋	0.58		
S s－D 2	＋＋	0.55		
	－＋	0.58		
S s－D 3	＋＋	0.53		
	－＋	0.51		
S s－F1	＋＋	0． 49		
	－＋	0.55		
S s－F 2	＋＋	0． 49		
	－＋	0.55		
Ss－F 3	＋＋	0.59		0.59
	－＋	0． 49		
S s－N 1	＋＋	0． 48		
	－＋	0． 49		

注記 $\square: ケ ー ス ①$ ケおける照査値が 0.5 以上となる照査項目のうち照査値が着目部位 の中で最大となるケース（ケース（2），③を実施する地震動の選定における決定ケース）
（i）接合部（アンカーボルト及びコンクリート）に対する照査
表 4－56 に接合部（アンカーボルト及びコンクリート）の照査の実施ケースと照査値を示す。

表 4－56（1）接合部（アンカーボルト及びコンクリート）引張に対する照査の実施ケース及び照査値

（No． 4 揚水井戸）（全応力解析）				
（地震動 $\underbrace{\text { 解析ケース }}$		引張に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	－＊		
	－＋	0.01		
S s－D 2	＋＋	－＊		
	－＋	－＊	－＊	－＊
S s－D 3	＋＋	－＊		
	$-+$	－＊		
S s－F 1	＋＋	－＊		
	$-+$	－＊		
S s－F 2	＋＋	－＊		
	$-+$	－＊		
S s－F 3	＋＋	－＊		
	－＋	－＊		
S s－N 1	＋＋	0.02		
	－＋	－＊		

注記＊：全圧縮状態となるケース

表 4－56（2）接合部（アンカーボルト及びコンクリート）引張に対する照査の実施ケース及び

照査値（No． 4 揚水井戸）			（有効応力解析）	
\qquad 解析ケース地震動			に対す	
		（1）	（2）	（3）
$\mathrm{St}-\mathrm{D} 1$	$++$	－＊	－＊	－＊
	－＋	－＊		
S s－D 2	＋＋	－＊		
	－＋	－＊		
$\mathrm{Ss}-\mathrm{D} 3$	$++$	－＊		
	－＋	－＊		
S s－F 1	＋＋	－＊		
	－＋	－＊		
S s－F 2	＋＋	－＊		
	$-+$	－＊		
$\mathrm{Ss}-\mathrm{F} 3$	＋＋	－＊		
	－＋	－＊		
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	$++$	0.04	0.04	0.04
	－＋	0.05		

注記＊：全圧縮状態となるケース

表 4－56（3）接合部（アンカーボルト）せん断応力度に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		せん断応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0． 18		
	－＋	0． 18		
S s－D 2	＋＋	0.18		
	－＋	0.17	0． 16	0． 19
S s－D 3	＋＋	0.15		
	－＋	0.16		
S s－F 1	＋＋	0.15		
	－＋	0． 14		
S s－F 2	＋＋	0.19		
	－＋	0.18		
S s－F 3	＋＋	0.16		
	－＋	0.17		
S s－N 1	＋＋	0.19		
	－＋	0.19		

表 4－56（4）接合部（アンカーボルト）せん断応力度に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		せん断応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.16	0． 15	0． 18
	－＋	0． 16		
S s－D 2	＋＋	0． 16		
	－＋	0.15		
S s－D 3	＋＋	0.13		
	－＋	0． 12		
S s－F 1	＋＋	0． 14		
	－＋	0． 13		
S s－F 2	＋＋	0.18		
	－＋	0.18		
S s－F 3	＋＋	0.15		
	－＋	0.13		
S s－N 1	＋＋	0． 18	0． 17	0． 19
	－＋	0． 19		

（j）接合部（ベースプレート）に対する照査
表 4－57に接合部（ベースプレート）の照査の実施ケースと照査値を示す。

表 4－57（1）接合部（ベースプレート）曲げ応力度に対する照査の実施ケース及び照査値

（No． 4 揚水井戸）（全応力解析）				
解析ケース地震動		曲げ応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0． 20		
	－＋	0． 22		
S s－D 2	＋＋	0.21		
	－＋	0.20	0． 19	0． 22
S s－D 3	＋＋	0.21		
	－＋	0.20		
S s－F 1	＋＋	0.19		
	－＋	0.18		
S s－F 2	＋＋	0.20		
	－＋	0.19		
S s－F 3	＋＋	0.19		
	－＋	0.19		
S s－N 1	＋＋	0.21		
	－＋	0． 22		

表 4－57（2）接合部（ベースプレート）曲げ応力度に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		曲げ応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.22	0.21	0． 22
	－＋	0． 24		
S s－D 2	＋＋	0.20		
	－＋	0． 20		
S s－D 3	＋＋	0． 21		
	－＋	0． 20		
S s－F 1	＋＋	0.19		
	－＋	0． 19		
S s－F 2	$++$	0． 19		
	－＋	0． 20		
S s－F 3	＋＋	0.21		
	－＋	0． 22		
S s－N 1	＋＋	0． 18	0.18	0． 19
	－＋	0． 21		

（k）接合部（フランジプレート）に対する照査
表 4－58 に接合部（フランジプレート）の照査の実施ケースと照査値を示す。

表 4－58（1）接合部（フランジプレート）曲げ応力度に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		曲げ応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.28		
	－＋	0． 28		
Ss－D 2	＋＋	0.28		
	－＋	0.28	0.28	0.27
Ss－D 3	＋＋	0.28		
	－＋	0.27		
S s－F 1	＋＋	0． 27		
	－＋	0． 26		
$\mathrm{Ss}-\mathrm{F} 2$	＋＋	0． 27		
	－＋	0． 27		
S s－F 3	＋＋	0． 27		
	－＋	0.28		
S s -N 1	＋＋	0.27		
	－＋	0． 29		

表 4－58（2）接合部（フランジプレート）曲げ応力度に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		曲げ応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 28	0.28	0． 28
	－＋	0.28		
S s－D 2	＋＋	0.27		
	－＋	0． 27		
S s－D 3	＋＋	0． 27		
	－＋	0． 27		
S s－F 1	＋＋	0.27		
	－＋	0． 26		
S s－F 2	＋＋	0． 27		
	－＋	0.26		
S s－F 3	＋＋	0． 27		
	－＋	0． 27		
S s－N 1	＋＋	0.25	0.25	0． 25
	－＋	0.26		

（1）接合部（リブプレート）に対する照査
表 4－59 に接合部（リブプレート）の照査の実施ケースと照査値を示す。

表 4－59（1）接合部（リブプレート）せん断応力度に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		せん断応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.21		
	－＋	0． 22		
S s－D 2	＋＋	0.21		
	－＋	0． 20	0.19	0． 22
S s－D 3	＋＋	0.21		
	－＋	0． 20		
S s－F 1	＋＋	0． 20		
	－＋	0． 19		
$\mathrm{S} s$－F 2	＋＋	0.20		
	－＋	0． 20		
Ss－F 3	＋＋	0.20		
	－＋	0.20		
S s－N 1	＋＋	0.21		
	－＋	0． 22		

表4－59（2）接合部（リブプレート）せん断応力度に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		せん断応力度に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0． 22	0.21	0． 22
	－＋	0.24		
S s－D 2	＋＋	0.21		
	－＋	0． 20		
S s－D 3	＋＋	0.21		
	－＋	0． 20		
S s－F 1	＋＋	0． 19		
	－＋	0.19		
S s－F 2	＋＋	0． 20		
	－＋	0． 20		
S s－F 3	＋＋	0.21		
	－＋	0． 22		
S s－N 1	＋＋	0.18	0.18	0． 19
	－＋	0.21		

（m）基礎地盤の支持性能に対する照査
表 4－60 に揚水井戸の基礎地盤の支持性能に対する照査の実施ケースと照査値を示 す。

表 4－60（1）基礎地盤の支持性能に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（全応力解析）

解析ケース 地震動		基礎地盤の支持性能に対する照査		
		（1）	（2）	（3）
S s－D 1	$++$	0.11		
	－＋	0.11		
S s－D 2	＋＋	0.11		
	－＋	0.11	0． 10	0.11
S s－D 3	＋＋	0． 10		
	－＋	0.11		
S s－F 1	＋＋	0． 10		
	－＋	0． 10		
S s－F 2	＋＋	0.10		
	－＋	0.11		
S s－F 3	＋＋	0.11		
	－＋	0． 10		
S s－N 1	＋＋	0.09		
	－＋	0． 10		

表 4－60（2）基礎地盤の支持性能に対する照査の実施ケース及び照査値 （No． 4 揚水井戸）（有効応力解析）

解析ケース 地震動		基礎地盤の支持性能に対する照査		
		（1）	（2）	（3）
S s－D 1	＋＋	0.11	0． 10	0.11
	－＋	0． 10		
S s－D 2	＋＋	0． 10		
	－＋	0.10		
S s－D 3	＋＋	0.10		
	－＋	0． 10		
S s－F 1	＋＋	0.09		
	－＋	0.09		
S s－F 2	＋＋	0.09		
	－＋	0.09		
S s－F 3	＋＋	0． 10		
	－＋	0.10		
S s－N 1	＋＋	0.09		
	－＋	0.09		

4．1．2 断面力分布（排水シャフト）

排水シャフトの照査における各解析ケースのうち最も厳しい照査値となる結果を表4－ 61～4－72 に示す。また，該当する解析ケースの断面力図を図 4－1～4－12 に示す。
（1）No． 1 揚水井戸
（a）軸方向の照査結果

表 4－61（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値 （No． 1 揚水井戸）（全応力解析）

板厚(mm)	地震動	解析ケース	発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
55	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－106771	－2323	162	367.5	0． 45

図 4－1（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 1 揚水井戸 $($ 板厚 $\mathrm{t}=55 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+), 7.76 \mathrm{~s}$ ）解析ケース（1）：基本ケース（全応力解析）

表 4－61（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値 （No． 1 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
55	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	118760	738	177	367.5	0． 49

数値：最大照査値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－1（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 1 揚水井戸（板厚 $\mathrm{t}=55 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.77 \mathrm{~s})$解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）

表 4－62（1）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 1 揚水井戸）（全応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	解析ケース	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	－9713	41	217.5	0． 19

図 4－2（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 1 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.73 \mathrm{~s})$
解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 o ）（全応力解析）

表4－62（2）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 1 揚水井戸）（有効応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\tau_{\mathrm{s}} / \tau_{\text {sa }}$
			せん断力 （kN）			
40	$\begin{gathered} \mathrm{S} s-\mathrm{N} 1 \\ (-+) \end{gathered}$	（2）	11148	47	217.5	0． 22

曲げ：＋左側引張，一右側引張
軸力：＋引張，－圧縮

図 4－2（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 1 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+), 7.76 \mathrm{~s}$ ）

解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）
（b）周方向の照査結果

表 4－63（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値
（No． 1 揚水井戸）（全応力解析）

板厚 （mm）	地震動	解析ケース	発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（1）	34	－904	167	382.5	0.44

（a）曲げモーメント

（b）軸力（ + ：引張）

（c）せん断力

数値は照査値最大となる評価位置 $(t=40 \mathrm{~mm})$ における断面力値を示す
図 4－3（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 1 揚水井戸（板厚 $\quad \mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.61 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（全応力解析）

表 4－63（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値 （No． 1 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
70	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	106	－4808	209	367.5	0.57

（a）曲げモーメント

（b）軸力（ + ：引張）

（c）せん断力

数値は照査値最大となる評価位置（ $t=70 \mathrm{~mm}$ ）における断面力値を示す
図 4－3（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 1 揚水井戸（板厚 $\quad \mathrm{t}=70 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.75 \mathrm{~s}$ ）
解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）
（2）No． 2 揚水井戸
（a）軸方向の照査結果

表 4－64（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値 （No． 2 揚水井戸）（全応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{s} a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
70	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (++) \end{gathered}$	（1）	119888	－1924	140	367.5	0． 39

図 4－4（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 2 揚水井戸（板厚 $\mathrm{t}=70 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.78 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（全応力解析）

表 4－64（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値 （No． 2 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度 $\sigma_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
70	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 1 \\ (++) \end{gathered}$	（1）	116703	－5192	141	367.5	0． 39

数値：最大照査値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－4（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 2 揚水井戸（板厚 $\mathrm{t}=70 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(++$ ），23．60s）解析ケース（1）：基本ケース（有効応力解析）

表 4－65（1）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 2 揚水井戸）（全応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	解析ケース	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\tau_{s} / \tau_{\text {si }}$
			せん断力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	7468	31	217.5	0.15

図 4－5（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 2 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+), 7.77 \mathrm{~s}$ ）

解析ケース①）基本ケース（全応力解析）

表 4－65（2）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 2 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\tau_{s} / \tau_{\text {sa }}$
			せん断力 （kN）			
70	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 1 \\ (-+) \end{gathered}$	（2）	15255	36	210.0	0.18

数値：最大照査値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－5（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 2 揚水井戸（板厚 $\mathrm{t}=70 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(-+)$ ，22．69s）

解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）
（b）周方向の照査結果

表 4－66（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値
（No． 2 揚水井戸）（全応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	（1）	33	－939	164	382.5	0． 43

（a）曲げモーメント

（b）軸力（ + ：引張）

（c）せん断力
数値は照査値最大となる評価位置（ $\mathrm{t}=40 \mathrm{~mm}$ ）における断面力値を示す
図 4－6（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力

$$
\text { (No. } 2 \text { 揚水井戸 (板厚 } \quad \mathrm{t}=40 \mathrm{~mm} \text {) , } \mathrm{S} \mathrm{~s}-\mathrm{D} 2(++), 23.56 \mathrm{~s})
$$

解析ケース①) : 基本ケース (全応力解析)

表 4－66（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値
（No． 2 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
70	$\begin{gathered} \text { S s }- \text { F } 1 \\ (-+) \end{gathered}$	（2）	111	－5230	222	367.5	0.61

数値は照査値最大となる評価位置（ $\mathrm{t}=70 \mathrm{~mm}$ ）における断面力値を示す
図4－6（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 2 揚水井戸（板厚 $\quad \mathrm{t}=70 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(-+$ ），23．62s）
解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）
（3）No． 3 揚水井戸
（a）軸方向の照査結果

表 4－67（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値 （No． 3 揚水井戸）（全応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－78552	－3821	171	382.5	0． 45

図 4－7（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 3 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+), ~ 7.83 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（全応力解析）

表 4－67（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値
（No． 3 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	解析ケース	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
55	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－104983	－3711	161	367.5	0． 44

図 4－7（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 3 揚水井戸（板厚 $\mathrm{t}=55 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+), 7.82 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（有効応力解析）

表4－68（1）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 3 揚水井戸）（全応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	解析ケース	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（1）	－8511	36	217.5	0.17

図 4－8（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 3 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.79 \mathrm{~s})$

解析ケース（1）：基本ケース（全応力解析）

表 4－68（2）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 3 揚水井戸）（有効応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\tau_{\mathrm{s}} / \tau_{\text {sa }}$
			せん断力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	－10682	45	217.5	0.21

図 4－8（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 3 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), ~ 7.81 \mathrm{~s}$ ）解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 o ）
（有効応力解析）
（b）周方向の照査結果

表 4－69（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値
（No． 3 揚水井戸）（全応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
40	$\begin{gathered} \mathrm{S} s-\mathrm{D} 2 \\ (-+) \end{gathered}$	（2）	36	－1187	180	382.5	0.48

（a）曲げモーメント

（b）軸力（ + ：引張）

（c）せん断力
数値は照査値最大となる評価位置（ $\mathrm{t}=40 \mathrm{~mm}$ ）における断面力値を示す
図4－9（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 3 揚水井戸（板厚 $\quad \mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+), ~ 9.87 \mathrm{~s}$ ）解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（全応力解析）

表 4－69（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値 （No． 3 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
70	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	117	－4977	225	367.5	0.62

数値は照査値最大となる評価位置（ $\mathrm{t}=70 \mathrm{~mm}$ ）における断面力値を示す
図4－9（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力 （No． 3 揚水井戸（板厚 $\quad \mathrm{t}=70 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.81 \mathrm{~s}$ ）
解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）
（4）No． 4 揚水井戸
（a）軸方向の照査結果

表 4－70（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値 （No． 4 揚水井戸）（全応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－82933	－3105	179	382.5	0． 47

図 4－10（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力
（No． 4 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+$ ）， 7.83 s ）
解析ケース①）：基本ケース（全応力解析）

表 4－70（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する照査値 （No． 4 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
55	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	112441	－1147	169	367.5	0． 46

図 4－10（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力
（No． 4 揚水井戸（板厚 $\mathrm{t}=55 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++), 7.82 \mathrm{~s}$ ）
解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）

表 4－71（1）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 4 揚水井戸）（全応力解析）

$\begin{gathered} \text { 板厚 } \\ (\mathrm{mm}) \end{gathered}$	地震動	解析ケース	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（1）	－8922	37	217.5	0.18

図 4－11（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 4 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.77 \mathrm{~s})$
解析ケース①：基本ケース（全応力解析）

表4－71（2）排水シャフト 軸方向照査におけるせん断破壊に対する照査値
（No． 4 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\tau_{\mathrm{s}} / \tau_{\text {sa }}$
			せん断力 （kN）			
40	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	－11229	47	217.5	0． 22

数値：最大照査値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－11（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 4 揚水井戸（板厚 $\mathrm{t}=40 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++), 7.81 \mathrm{~s}$ ）

解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）
（b）周方向の照査結果

表 4－72（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値
（No． 4 揚水井戸）（全応力解析）

板厚(mm)	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
70	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（1）	81	－3743	161	367.5	0． 44

数値は照査値最大となる評価位置（ $\mathrm{t}=70 \mathrm{~mm}$ ）における断面力値を示す
図 4－12（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力（No． 4 揚水井戸（板厚 $\quad \mathrm{t}=70 \mathrm{~mm}$ ）， $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++$ ），7．81s）

解析ケース（1）：基本ケース（全応力解析）

表 4－72（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する照査値 （No． 4 揚水井戸）（有効応力解析）

板厚 （mm）	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{\text {sa }}$
			曲げモーメント （kN•m）	軸力 （kN）			
70	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（2）	121	－5064	231	367.5	0.63

数値は照査値最大となる評価位置（ $t=70 \mathrm{~mm}$ ）における断面力値を示す
図 4－12（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価時刻での断面力

$$
\text { (No. } 4 \text { 揚水井戸 (板厚 } \quad \mathrm{t}=70 \mathrm{~mm} \text {) , } \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \quad(++), 7.73 \mathrm{~s} \text {) }
$$

解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）（有効応力解析）

4．1．3 断面力分布（集水ピット）
集水ピットの照査における各解析ケースのうち最も厳しい照査値となる結果を表 4－73 ～4－92に示す。また，該当する解析ケースの断面力図を図 4－13～4－32に示す。
（1）No． 1 揚水井戸
（a）軸方向の照査結果

表 4－73（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 1 揚水井戸）（全応力解析）

図 4－13（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 1 揚水井戸， S s $-\mathrm{N} 1(-+), 7.50 \mathrm{~s})$
解析ケース①: 基本ケース (全応力解析)

表 4－73（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 1 揚水井戸）（有効応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma^{\prime}{ }_{c a}$
			曲げモーメント （kN•m）	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（3）	21467	－39512	1.4	16.5	0.09

数値：最大照査値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図4－13（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 1 揚水井戸，S s－N 1 （ -+ ），7．59s）解析ケース③：地盤物性のばらつきを考慮した解析ケース（平均値－1 σ ）（有効応力解析）

表 4－74（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値 （No． 1 揚水井戸）（全応力解析）

部材	鉄筋仕様	地震動	$\begin{aligned} & \text { 解 } \\ & \text { 午 } \\ & \text { 1 } \\ & \text { ス } \end{aligned}$	発生断面力		引張応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51 } \times 120 \text { 本 } / \text { 周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} s-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－25805	－7697	12.4	324	0.04


```
数値:最大照査値発生位置の断面力
曲ば: +左側引張,一右側引張
```

軸力: +引張, 一厈縮

（a）曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$

（b）軸力（kN）

（c）せん断力（kN）

図 4－14（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 1 揚水井戸，S s－N $1(-+), 7.80 \mathrm{~s})$

解析ケース（1）：基本ケース（全応力解析）

表 4－74（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値 （No． 1 揚水井戸）（有効応力解析）

部材	鉄筋仕様	地震動	$\begin{aligned} & \text { 解 } \\ & \text { 斤斤 } \\ & \text { 个 } \\ & 1 \end{aligned}$	発生断面力		引張 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51×120 本/周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（1）	25655	－4228	23．1	324	0.08

数値：最大照査値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，- 圧縮

図 4－14（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 1 揚水井戸，S s－N $1(++), 7.80$ s）

解析ケース①：基本ケース（有効応力解析）

表 4－75（1）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 1 揚水井戸）（全応力解析）

対象	鉄筋仕様	地震動	解析 ケース	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せんん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	SD 345 $\mathrm{D} 38 @ 300$ 周方向鉄筋	$\mathrm{S} \mathrm{s}-\mathrm{F} \mathrm{3}$ $(++)$	（1）	16557	33473	0.50

数値：最大照査值発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－15（1）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 1 揚水井戸，S s－F $3(++$ ），27．64s）解析ケース（1）：基本ケース（全応力解析）

表 4－75（2）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 1 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D38@300 } \end{gathered}$ 周方向鉄筋	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（3）	14011	33473	0． 42

図 4－15（2）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 1 揚水井戸，S s－N $1(-+), ~ 7.50 \mathrm{~s}$ ）
解析ケース③）：地盤物性のばらつきを考慮した解析ケース（平均値－1 σ ）（有効応力解析）
（b）周方向の照査結果

表 4－76（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する
照査値（No． 1 揚水井戸）（全応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma{ }_{\mathrm{c}} / \sigma^{\prime}{ }_{\text {ca }}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} s-\mathrm{D} 3 \\ (-+) \end{gathered}$	（1）	－405	－2874	2.0	16.5	0． 13

（a）曲げモーメント

$$
\left[\begin{array}{c}
30000 \mathrm{kN} \\
-15000 \\
0
\end{array}\right.
$$

（b）軸力 $(+:$ 引張）

（c）せん断力

数値は照査値最大となる評価位置における断面力値を示す

図4－16（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 1 揚水井戸， $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+), 25.02 \mathrm{~s})$
解析ケース① : 基本ケース (全応力解析)

表 4－76（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 1 揚水井戸）（有効応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度 $\sigma{ }^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (-+) \end{gathered}$	（3）	－606	－3491	2.5	16.5	0.16

（b）軸力（ + ：引張）

（c）せん断力

数値は照査値最大となる評価位置における断面力値を示す

図4－16（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 1 揚水井戸，S s $-\mathrm{D} 1(-+), 19.98 \mathrm{~s}$ ）
解析ケース③）：地盤物性のばらつきを考慮した解析ケース（平均値－1 o ）（有効応力解析）

表 4－77（1）集水ピット 周方向照査におけるせん断破壊に対する照査値
（ No． 1 揚水井戸）（全応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D } 22 \times 30 \text { 本/周@ } 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（3）	381	1497	0． 26

数値は照査値最大となる評価位置における断面力値を示す
図 4－17（1）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 1 揚水井戸，S s－N $1(++), 7.50 \mathrm{~s}$ ）
解析ケース③）：地盤物性のばらつきを考慮した解析ケース（平均値－1 σ ）（全応力解析）

表 4－77（2）集水ピット 周方向照査におけるせん断破壊に対する照査値 （№． 1 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	解析 ケース	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せんん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	SD345 22×30 本／周＠300 せん断補強鉄筋	$\mathrm{S} \mathrm{s}-\mathrm{D} \mathrm{1}$ $(-+)$	（3）	547	1497	0.37

（b）軸力（ + ：引張）

（c）せん断力
数値は照査値最大となる評価位置における断面力値を示す
図 4－17（2）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 1 揚水井戸，S s－D $1(-+)$ ，19．98s）
解析ケース③）：地盤物性のばらつきを考慮した解析ケース（平均値－1 o ）（有効応力解析）
（2）No． 2 揚水井戸
（a）軸方向の照査結果

表 4－78（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 2 揚水井戸）（全応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma^{\prime}{ }_{c \mathrm{c}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 3 \\ (++) \end{gathered}$	（1）	17742	－42589	1． 4	16.5	0． 09

図 4－18（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 2 揚水井戸， $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++), 27.63 \mathrm{~s})$
解析ケース①) : 基本ケース (全応力解析)

表 4－78（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 2 揚水井戸）（有効応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }^{\prime}{ }^{\prime}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \text { S s - F } 3 \\ (++) \end{gathered}$	（1）	15734	－40980	1.3	16.5	0.08

数值：最大照查値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－18（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 2 揚水井戸， $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++), 27.63 \mathrm{~s})$

解析ケース（1）：基本ケース（有効応力解析）

表 4－79（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値 （No． 2 揚水井戸）（全応力解析）

部材	鉄筋仕様	地震動	$\begin{aligned} & \text { 解 } \\ & \text { 午 } \\ & \text { 斤 } \\ & \text { 久 } \end{aligned}$	発生断面力		引張応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\sigma_{s} / \sigma_{\text {sa }}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51×120 本/周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} s-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－25134	－13304	2.6	324	0.01

図 4－19（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 2 揚水井戸，S s－N $1(-+), ~ 7.79 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（全応力解析）

表 4－79（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値
（No． 2 揚水井戸）（有効応力解析）

部材	鉄筋仕様	地震動	$\begin{aligned} & \text { 解 } \\ & \text { 斦 } \\ & \text { 斤 } \\ & 1 \\ & \text { ᄌ } \end{aligned}$	発生断面力		引張応力度 $\sigma_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51×120 本/周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} s-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－22893	－9545	5.2	324	0.02

図 4－19（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 2 揚水井戸，S s－N $1(-+), 7.81 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（有効応力解析）

表 4－80（1）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 2 揚水井戸）（全応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D38@300 } \end{gathered}$ 周方向鉄筋	$\begin{gathered} \mathrm{S} s-\mathrm{F} 2 \\ (-+) \end{gathered}$	（1）	16209	33473	0． 49

数値：最大照査值発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－20（1）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 2 揚水井戸，S s－F $2(-+), 28.43 \mathrm{~s}$ ）解析ケース（1）：基本ケース（全応力解析）

表 4－80（2）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 2 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V} / \mathrm{V}_{\mathrm{a}} \end{gathered}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D38@300 } \end{gathered}$ 周方向鉄筋	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 3 \\ (++) \end{gathered}$	（1）	14001	33473	0． 42

数値：最大照査值発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図 4－20（2）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 2 揚水井戸，S s－F $3(++), ~ 27.63 \mathrm{~s}$ ）
解析ケース（1）：基本ケース（有効応力解析）
（b）周方向の照査結果
表 4－81（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 2 揚水井戸）（全応力解析）

部材	地震動	解析ケース	発生断面力		曲げ圧縮応力度 $\sigma^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{c}}^{\prime} / \sigma_{\mathrm{ca}}^{\prime}$
			曲げモーメント （kN•m）	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	（1）	－340	－2961	1.9	16.5	0.12

（a）曲げモーメント

（b）軸力（ + ：引張）

（c）せん断力
数値は照査値最大となる評価位置における断面力値を示す
図4－21（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 2 揚水井戸，S s－D $2(++), 7.84 \mathrm{~s})$解析ケース（1）：基本ケース（全応力解析）

表 4－81（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 2 揚水井戸）（有効応力解析）

部材	地震動	解析ケース	発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{c a}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma{ }^{\prime} / \sigma{ }^{\prime}{ }_{\text {ca }}$
			曲げモーメント （kN•m）	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	（2）	－418	－3208	2.1	16.5	0.13

（b）軸力（ + ：引張）

（c）せん断力

数値は照査値最大となる評価位置における断面力値を示す

図 4－21（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 2 揚水井戸， $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++), 28.63 \mathrm{~s})$
解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 σ ）

表 4－82（1）集水ピット 周方向照査におけるせん断破壊に対する照査値 （No． 2 揚水井戸）（全応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D } 22 \times 30 \text { 本/周@ } 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	（1）	310	1497	0.21

数値は照査値最大となる評価位置における断面力値を示す
図 4－22（1）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 2 揚水井戸，S s－D $2(++), ~ 7.84 \mathrm{~s}$ ）
解析ケース（1）：基本ケース（全応力解析）

表 4－82（2）集水ピット 周方向照査におけるせん断破壊に対する照査値
（No． 2 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V} / \mathrm{V}_{\mathrm{a}} \end{gathered}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D } 22 \times 30 \text { 本/周@ } 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	（2）	380	1497	0． 26

数値は照査値最大となる評価位置における断面力値を示す
図 4－22（2）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 2 揚水井戸，S s－D $2(++), 28.63 \mathrm{~s}$ ）
解析ケース（2）：地盤物性のばらつきを考慮した解析ケース（平均値＋1 o ）（有効応力解析）
（3）No． 3 揚水井戸
（a）軸方向の照査結果

表 4－83（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 3 揚水井戸）（全応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma{ }_{\mathrm{c}} / \sigma^{\prime}{ }_{\mathrm{ca}}$
			曲げモーメント （kN•m）	軸力 （kN）			
側 壁	$\begin{gathered} \text { S s }- \text { F } 3 \\ (++) \end{gathered}$	（1）	14851	－41360	1． 3	16.5	0.08

図 4－23（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 3 揚水井戸，S s－F $3(++), 27.63 \mathrm{~s})$

解析ケース（1）：基本ケース（全応力解析）

表 4－83（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 3 揚水井戸）（有効応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度 $\sigma^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{c a}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma^{\prime}{ }_{c a}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 3 \\ (++) \end{gathered}$	（1）	11557	－39188	1． 2	16.5	0.08

数値：最大照査値発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図4－23（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 3 揚水井戸，S s－F $3(++), 27.63 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（有効応力解析）

表 4－84（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値 （No． 3 揚水井戸）（全応力解析）

部材	鉄筋仕様	地震動		発生断面力		引張 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51×120 本/周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (-+) \end{gathered}$	（1）	13704	－6102	2.6	324	0.01

図 4－24（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 3 揚水井戸，S s－D $1(-+)$ ，20．41s）解析ケース（1）：基本ケース（全応力解析）

表 4－84（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値 （No． 3 揚水井戸）（有効応力解析）

部材	鉄筋仕様	地震動	$\begin{aligned} & \text { 解 } \\ & \text { 斦 } \\ & \text { 斤 } \\ & 1 \\ & \text { ᄌ } \end{aligned}$	発生断面力		引張 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51×120 本/周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$	（1）	－24686	－8682	8.6	324	0.03

図 4－24（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 3 揚水井戸，S s－N $1(-+)$ ，7．82s）

解析ケース（1）：基本ケース（有効応力解析）

表 4－85（1）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 3 揚水井戸）（全応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／V
側 壁	SD345 D38@300 周方向鉄筋	$\begin{gathered} \mathrm{S} s-\mathrm{D} 2 \\ (-+) \end{gathered}$	（3）	17744	33473	0.54

数値：最大照査值発生位置の断面力曲げ：＋左側引張，一右側引張軸力：＋引張，一圧縮

（a）曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$

（b）軸力（kN）

（c）せん断力（kN）

図 4－25（1）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 3 揚水井戸，S s－D $2(-+), 13.37 \mathrm{~s}$ ）
解析ケース③）：地盤物性のばらつきを考慮した解析ケース（平均値－1 o ）（全応力解析）

表 4－85（2）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 3 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D38@300 } \end{gathered}$ 周方向鉄筋	$\begin{gathered} \mathrm{S} \text { s }- \text { F } 2 \\ (++) \end{gathered}$	（1）	15188	33473	0． 46

図 4－25（2）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 3 揚水井戸，S s－F $2(++), 28.43 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（有効応力解析）
（b）周方向の照査結果
表 4－86（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 3 揚水井戸）（全応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma{ }_{\mathrm{c}} / \sigma^{\prime}{ }_{\text {ca }}$
			曲げモーメント （kN•m）	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 3 \\ (++) \end{gathered}$	（1）	－363	－2798	1.9	16.5	0.12

$\left[\begin{array}{c}1000 \mathrm{kN} \\ - \\ 500 \\ 0\end{array}\right.$
（c）せん断力
数値は照査値最大となる評価位置における断面力値を示す
図 4－26（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 3 揚水井戸， S s $-\mathrm{D} 3(++), 25.01 \mathrm{~s}$ ）

解析ケース①）：基本ケース（全応力解析）

表 4－86（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 3 揚水井戸）（有効応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度 $\sigma{ }^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (++) \end{gathered}$	（1）	－470	－3133	2.2	16.5	0.14

（a）曲げモーメント

$\left[\begin{array}{c}-30000 \mathrm{kN} \\ -15000 \\ 0\end{array}\right.$
（b）軸力（ + ：引張）

（c）せん断力
数値は照査値最大となる評価位置における断面力値を示す
図4－26（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 3 揚水井戸， $\mathrm{S} \mathrm{s}-\mathrm{D} 1(++)$ ，19．98s）

解析ケース①：基本ケース（有効応力解析）

表 4－87（1）集水ピット 周方向照査におけるせん断破壊に対する照査値 （No． 3 揚水井戸）（全応力解析）

| 対象 | 鉄筋仕様 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

数値は照査値最大となる評価位置における断面力値を示す
図 4－27（1）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 3 揚水井戸，S s－D $1(++$ ），49．55s）
解析ケース（1）：基本ケース（全応力解析）

表 4－87（2）集水ピット 周方向照査におけるせん断破壊に対する照査値
（No． 3 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 V（kN）	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D } 22 \times 30 \text { 本/周@ } 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (++) \end{gathered}$	（1）	404	1497	0.27

（a）曲げモーメント

$\left[\begin{array}{c}-30000 \mathrm{kN} \\ -15000 \\ 0\end{array}\right.$
（b）軸力（ + ：引張）

$\left[\begin{array}{c}1000 \mathrm{kN} \\ - \\ 500 \\ 0\end{array}\right.$
（c）せん断力
数値は照査値最大となる評価位置における断面力値を示す
図4－27（2）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 3 揚水井戸， S s $-\mathrm{D} 1(++), 19.98 \mathrm{~s}$ ）
解析ケース（1）：基本ケース
（4）No． 4 揚水井戸
（a）軸方向の照査結果

表 4－88（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 4 揚水井戸）（全応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma^{\prime}{ }_{c a}$
			曲げモーメント （kN•m）	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 3 \\ (++) \end{gathered}$	（1）	11466	－44146	1． 3	16.5	0.08

数值：最大照査值発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図4－28（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 4 揚水井戸，S s－F $3(++), 27.63 \mathrm{~s})$

解析ケース（1）：基本ケース（全応力解析）

表 4－88（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 4 揚水井戸）（有効応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{c}}^{\prime} / \sigma_{\text {ca }}^{\prime}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (-+) \end{gathered}$	（1）	－4515	－47593	1.3	16.5	0.08

数值：最大照査值発生位置の断面力
曲げ：＋左側引張，一右側引張
軸力：＋引張，一圧縮

図4－28（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 4 揚水井戸， $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+), 31.33 \mathrm{~s})$

解析ケース（1）：基本ケース（有効応力解析）

表 4－89（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値 （No． 4 揚水井戸）（全応力解析）

部材	鉄筋仕様	地震動		発生断面力		引張 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51×120 本/周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} s-\mathrm{D} 1 \\ (-+) \end{gathered}$	（1）	11456	－7110	0.6	324	0.01

図 4－29（1）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 4 揚水井戸，S s－D $1(-+), 20.41 \mathrm{~s})$解析ケース（1）：基本ケース（全応力解析）

表 4－89（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する照査値 （No． 4 揚水井戸）（有効応力解析）

部材	鉄筋仕様	地震動	$\begin{aligned} & \text { 解 } \\ & \text { 兮 } \\ & \text { I } \\ & \text { ス } \end{aligned}$	発生断面力		引張応力度 $\sigma_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
				$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側壁	$\begin{gathered} \text { SD390 } \\ \text { D51×120 本/周 } \\ \text { 鉛直鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	（1）	19634	－13011	0.6	324	0.01

図 4－29（2）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価時刻での断面力（No． 4 揚水井戸，S s－N $1(++), 7.82 \mathrm{~s}$ ）

解析ケース（1）：基本ケース（有効応力解析）

表 4－90（1）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 4 揚水井戸）（全応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D38@300 } \end{gathered}$ 周方向鉄筋	$\begin{gathered} \mathrm{S} s-\mathrm{D} 2 \\ (-+) \end{gathered}$	（3）	18757	33473	0.57

数値：最大照査值発生位置の断面力曲げ：＋左側引張，一右側引張

（a）曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m}$ ）

（b）軸力（kN）

（c）せん断力（kN）

図 4－30（1）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 4 揚水井戸，S s－D $2(-+), 13.37 \mathrm{~s}$ ）
解析ケース③：地盤物性のばらつきを考慮した解析ケース（平均値－1 σ ）（全応力解析）

表 4－90（2）集水ピット 軸方向照査におけるせん断破壊に対する照査値
（No． 4 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／V
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D38@300 } \end{gathered}$ 周方向鉄筋	$\begin{gathered} \mathrm{S} s-\mathrm{D} 2 \\ (-+) \end{gathered}$	（1）	15610	33473	0． 47


```
数値：最大照査値発生位置の断面力曲げ：＋左側引張，一右側引張
```

軸力：＋引張，一圧縮

図 4－30（2）集水ピット 軸方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 4 揚水井戸，S s－D $2(-+), 13.36 \mathrm{~s}$ ）
解析ケース（1）：基本ケース（有効応力解析）
（b）周方向の照査結果
表 4－91（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 4 揚水井戸）（全応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮 応力度 $\sigma_{c}^{\prime}\left(N / m^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma^{\prime}{ }_{c a}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { 照査値 } \\ & \sigma^{\prime} / \sigma^{\prime}{ }^{\prime}{ }_{c} \end{aligned}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (-+) \end{gathered}$	（3）	－376	－3026	2.0	16.5	0.13

（b）軸力（ + ：引張）

（c）せん断力

数値は照査値最大となる評価位置における断面力値を示す

図 4－31（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 4 揚水井戸，S s－D $2(-+), ~ 9.87 \mathrm{~s}$ ）
解析ケース③：地盤物性のばらつきを考慮した解析ケース（平均値－1 σ ）（全応力解析）

表 4－91（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する照査値（No． 4 揚水井戸）（有効応力解析）

部材	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	発生断面力		曲げ圧縮応力度 $\sigma{ }^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
側 壁	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (++) \end{gathered}$	（3）	－482	－3335	2． 3	16.5	0.14

数値は照査値最大となる評価位置における断面力値を示す

図4－31（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価時刻での断面力（No． 4 揚水井戸， S s $-\mathrm{D} 1(++), 19.98 \mathrm{~s})$
解析ケース③）：地盤物性のばらつきを考慮した解析ケース（平均値－1 o ）（有効応力解析）

表 4－92（1）集水ピット 周方向照査におけるせん断破壊に対する照査値
（No． 4 揚水井戸）（全応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V} / \mathrm{V}_{\mathrm{a}} \end{gathered}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D } 22 \times 30 \text { 本/周@ } 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (-+) \end{gathered}$	（3）	323	1497	0.22

（b）軸力（ + ：引張）

（c）せん断力

数値は照査値最大となる評価位置における断面力値を示す

図 4－32（1）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力 （No． 4 揚水井戸，S s－D $2(-+), ~ 9.87 \mathrm{~s}$ ）
解析ケース③）：地盤物性のばらつきを考慮した解析ケース（平均値－1 σ ）（全応力解析）

表 4－92（2）集水ピット 周方向照査におけるせん断破壊に対する照査値 （No． 4 揚水井戸）（有効応力解析）

対象	鉄筋仕様	地震動	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V} / \mathrm{V}_{\mathrm{a}} \end{gathered}$
側 壁	$\begin{gathered} \text { SD345 } \\ \text { D } 22 \times 30 \text { 本/周@ } 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (++) \end{gathered}$	（3）	415	1497	0.28

（a）曲げモーメント

$\left[\begin{array}{c}-30000 \mathrm{kN} \\ -15000 \\ 0\end{array}\right.$
（b）軸力（ + ：引張）

（c）せん断力
数値は照査値最大となる評価位置における断面力値を示す
図 4－32（2）集水ピット 周方向照査におけるせん断破壊に対する評価時刻での断面力
（No． 4 揚水井戸，S s－D $1(++)$ ，19．98s）
解析ケース③：地盤物性のばらつきを考慮した解析ケース（平均値－1 o ）（有効応力解析）

4．1．4 最大接地圧分布

最大接地圧分布図を図4－33に，基礎地盤の支持性能評価結果を表4－93に示す。

表 4－93（1）基礎地盤の支持性能評価結果
（No． 1 揚水井戸）（全応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(N / m^{2}\right)$	極限支持力 R_{u} $\left(N / m^{2}\right)$	照査値 R_{d} / R_{u}
（1）	S s -D 2 $(-+)$	1.2	13.7	0.09

表4－93（2）基礎地盤の支持性能評価結果
（No． 1 揚水井戸）（有効応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	極限支持力 R_{u} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（2）	S s -D 1 $(-+)$	1.2	13.7	0.09

表 4－93（3）基礎地盤の支持性能評価結果
（No． 2 揚水井戸）（全応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	極限支持力 R_{u} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	S s -F 3 $(-+)$	1.2	13.7	0.09

表 4－93（4）基礎地盤の支持性能評価結果
（No． 2 揚水井戸）（有効応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	極限支持力 R_{u} $\left(N / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	S s -F 3 $(-+)$	1.2	13.7	0.09

表4－93（5）基礎地盤の支持性能評価結果
（No． 3 揚水井戸）（全応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(N / m^{2}\right)$	極限支持力 R_{u} $\left(N / m^{2}\right)$	照査値 R_{d} / R_{u}
（1）	$\mathrm{S} s-\mathrm{D} 2$ $(++)$	1.1	11.4	0.10

表 4－93（6）基礎地盤の支持性能評価結果
（No． 3 揚水井戸）（有効応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	極限支持力 R_{u} $\left(N / m^{2}\right)$	照査値 R_{d} / R_{u}
（1）	S s -D 1 $(++)$	1.0	11.4	0.09

表 4－93（7）基礎地盤の支持性能評価結果
（No． 4 揚水井戸）（全応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(N / m^{2}\right)$	極限支持力 R_{u} $\left(N / m^{2}\right)$	照査値 R_{d} / R_{u}
（1）	S s－D $(++)$	1.2	11.4	0.11

表 4－93（8）基礎地盤の支持性能評価結果
（No． 4 揚水井戸）（有効応力解析）

解析 ケース	地震動	最大接地圧 R_{d} $\left(N / m^{2}\right)$	極限支持力 R_{u} $\left(N / m^{2}\right)$	照査値 R_{d} / R_{u}
（3）	S s -D 1 $(++)$	1.2	11.4	0.11

$$
\begin{array}{ll|l}
7^{\text {南 }} & \text { 北 } & \\
\qquad \begin{array}{ll}
\text { 構造物底面 } &
\end{array}
\end{array}
$$

図 4－33（1）最大接地圧分布図（No．1 揚水井戸，S s－D $2(-+$ ），解析ケース（1） （全応力解析）

南 北～
 構造物底面

図 4－33（2）最大接地圧分布図（No． 1 揚水井戸，S s－D $1 \quad(-+$ ），解析ケース（2）） （有効応力解析）

図 4－33（3）最大接地圧分布図（No．2 揚水井戸，S s－F $3(-+)$ ，解析ケース（1） （全応力解析）

図 4－33（4）最大接地圧分布図（No． 2 揚水井戸，S s－F $3(-+)$ ，解析ケース（1） （有効応力解析）

南 北
 構造物底面

図 4－33（5）最大接地圧分布図（No． 3 揚水井戸， S s－D $2(++)$ ，解析ケース（1） （全応力解析）
\qquad

図 4－33（6）最大接地圧分布図（No． 3 揚水井戸，S s－D $1 \quad(++$ ），解析ケース（1）
（有効応力解析）

図 4－33（7）最大接地圧分布図（No． 4 揚水井戸， S s $-\mathrm{D} 2(++)$ ，解析ケース（1） （全応力解析）

西 東 西構造物底面

図 4－33（8）最大接地圧分布図（No． 4 揚水井戸，S s－D $1 \quad(++$ ），解析ケース（3）
（有効応力解析）

4．1．5 最大せん断ひずみ分布

排水シャフト，集水ピット及び接合部の照査で最大照査値を示す解析ケースについて，地盤に発生した最大せん断ひずみ分布を示す。最大照査を示す解析ケースの一覧を表 4－ 94 に示す。

最大せん断ひずみ分布を図4－34に示す。

表 4－94（1）最大照査値を示す解析ケースの一覧（全応力解析）

断面	照査部位		
	排水シャフト	集水ピット	接合部
No． 1 揚水井戸	解析ケース① $\begin{gathered} \mathrm{S} s-\mathrm{N} 1 \\ (-+) \end{gathered}$	解析ケース（3） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース (1) } \\ \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$
No． 2 揚水井戸	$\begin{gathered} \hline \text { 解析ケース (1) } \\ \mathrm{S} \text { s - D } 2 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース (1) } \\ \mathrm{S} \mathrm{~s}-\mathrm{D} 2 \\ (-+) \end{gathered}$	$\begin{gathered} \text { 解析ケース (1) } \\ \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (-+) \end{gathered}$
No． 3 揚水井戸	$\begin{gathered} \text { 解析ケース(2) } \\ \mathrm{S} \mathrm{~s}-\mathrm{D} 2 \\ (-+) \end{gathered}$	$\begin{gathered} \text { 解析ケース (2) } \\ \text { S s-D } 3 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース(1) } \\ \mathrm{S} \text { s-N } 1 \\ (-+) \end{gathered}$
No． 4 揚水井戸	$\begin{gathered} \text { 解析ケース① } \\ \mathrm{S} \text { s - N } 1 \\ (-+) \end{gathered}$	$\begin{gathered} \text { 解析ケース③ } \\ \text { S s-D } 2 \\ (-+) \end{gathered}$	$\begin{gathered} \text { 解析ケース① } \\ \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (-+) \end{gathered}$

表 4－94（2）最大照査値を示す解析ケースの一覧（有効応力解析）

断面	照査部位		
	排水シャフト	集水ピット	接合部
No． 1 揚水井戸	解析ケース（2） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	解析ケース（1） $\begin{gathered} \text { S s }-\mathrm{D} 1 \\ (-+) \end{gathered}$	$\begin{gathered} \text { 解析ケース (2) } \\ \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$
No． 2 揚水井戸	解析ケース（2） $\begin{gathered} \mathrm{S} s-\mathrm{F} 1 \\ (-+) \end{gathered}$	解析ケース（2） $\begin{gathered} \text { S s - D } 2 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース (3) } \\ \mathrm{S} \text { s }-\mathrm{F} 1 \\ (-+) \end{gathered}$
No． 3 揚水井戸	解析ケース（2） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	解析ケース（1） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (-+) \end{gathered}$	解析ケース（1） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$
No． 4 揚水井戸	解析ケース（2） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	解析ケース（3） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース (2) } \\ \text { S s - D } 1 \\ (++) \end{gathered}$

図 4－34（1）最大せん断ひずみ分布
（No． 1 揚水井戸，S s－N $1(-+)$ ，解析ケース（1））（全応力解析）

図 4－34（2）最大せん断ひずみ分布
（No． 1 揚水井戸，S s－N $1(++)$ ，解析ケース（3））（全応力解析）

図 4－34（3）最大せん断ひずみ分布
（No． 1 揚水井戸，S s－N $1 \quad(-+)$ ，解析ケース（2））（全応力解析）

図 4－34（4）最大せん断ひずみ分布
（No． 1 揚水井戸，S s－N $1 \quad(++$ ），解析ケース（2））（有効応力解析）

0.1
0.01
0.001

0

図 4－34（5）最大せん断ひずみ分布
（No． 1 揚水井戸，S s－D $1(-+)$ ，解析ケース（1））（有効応力解析）

図 4－34（6）最大せん断ひずみ分布
（No． 1 揚水井戸，S s－N $1(-+)$ ，解析ケース（2））（有効応力解析）

図 4－34（7）最大せん断ひずみ分布
（No． 2 揚水井戸， S s－D $2(++)$ ，解析ケース（1））（全応力解析）

図 4－34（8）最大せん断ひずみ分布
（No． 2 揚水井戸， S s $-\mathrm{D} 2(-+)$ ，解析ケース（1））（全応力解析）

0.1
0.01
0.005
0.001

図 4－34（9）最大せん断ひずみ分布
（No． 2 揚水井戸，S s－N $1 \quad(-+)$ ，解析ケース（1））（全応力解析）

図 4－34（10）最大せん断ひずみ分布
（No． 2 揚水井戸，S s－F $1(-+)$ ，解析ケース（2））（有効応力解析）

図 4－34（11）最大せん断ひずみ分布
（No． 2 揚水井戸，S s－D $2(++)$ ，解析ケース（2））（有効応力解析）

図 4－34（12）最大せん断ひずみ分布
（No． 2 揚水井戸，S s－F $1 \quad(-+$ ），解析ケース（3））（有効応力解析）

図 4－34（13）最大せん断ひずみ分布
（No． 3 揚水井戸，S s－D $2(-+)$ ，解析ケース（2））（全応力解析）

図 4－34（14）最大せん断ひずみ分布
（No． 3 揚水井戸，S s－D $3(++)$ ，解析ケース（2））（全応力解析）

図 4－34（15）最大せん断ひずみ分布
（No． 3 揚水井戸，S s－N 1 （ -+ ），解析ケース（1）（全応力解析）

図 4－34（16）最大せん断ひずみ分布
（No． 3 揚水井戸，S s－N $1 \quad(++)$ ，解析ケース（2））（有効応力解析）

0.1
0.01
0.005
0.001

0

図 4－34（17）最大せん断ひずみ分布
（No． 3 揚水井戸，S s－D $1(-+)$ ，解析ケース（1））（有効応力解析）

図 4－34（18）最大せん断ひずみ分布
（No． 3 揚水井戸，S s－N $1(-+)$ ，解析ケース（1））（有効応力解析）

図4－34（19）最大せん断ひずみ分布
（No． 4 揚水井戸，S s－N $1(-+)$ ，解析ケース（1））（全応力解析）

図 4－34（20）最大せん断ひずみ分布
（No． 4 揚水井戸，S s－D $2(-+)$ ，解析ケース（3））（全応力解析）

0.1
 0.01

図 4－34（21）最大せん断ひずみ分布
（No． 4 揚水井戸，S s－N $1(-+)$ ，解析ケース（1））（全応力解析）

0.1
 0.01
 0.005
 0.001
 0

図 4－34（22）最大せん断ひずみ分布
（No． 4 揚水井戸，S s－N $1(++)$ ，解析ケース（2））（有効応力解析）

図 4－34（23）最大せん断ひずみ分布
（No． 4 揚水井戸，S s－D $1 \quad(++)$ ，解析ケース③）（有効応力解析）

図 4－34（24）最大せん断ひずみ分布
（No． 4 揚水井戸，S s－D $1 \quad(++)$ ，解析ケース（2））（有効応力解析）

4．1．6 過剰間隙水圧分布

排水シャフト，集水ピット及び接合部の照査で最大照査値を示す解析ケースについて，地盤に発生した過剰間隙水圧分布を示す。最大照査を示す解析ケースの一覧を表4－95に示す。

過剰間隙水圧分布を図4－35に示す。

表 4－95 最大照査値を示す解析ケースの一覧

断面	照査部位		
	排水シャフト	集水ピット	接合部
No． 1 揚水井戸	解析ケース（2） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	解析ケース（1） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 1 \\ (-+) \end{gathered}$	解析ケース（2） $\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (-+) \end{gathered}$
No． 2 揚水井戸	$\begin{gathered} \text { 解析ケース(2) } \\ \mathrm{S} \text { s }-\mathrm{F} 1 \\ (-+) \end{gathered}$	$\begin{gathered} \text { 解析ケース (2) } \\ \mathrm{S} \text { s - D } 2 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース (3) } \\ \mathrm{S} \mathrm{~s}-\mathrm{F} 1 \\ (-+) \end{gathered}$
No． 3 揚水井戸	$\begin{gathered} \text { 解析ケース (2) } \\ \text { S s - N } 1 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース① } \\ \text { S s - D } 1 \\ (-+) \end{gathered}$	$\begin{gathered} \text { 解析ケース① } \\ \text { S s - N } 1 \\ (-+) \end{gathered}$
No． 4 揚水井戸	$\begin{gathered} \text { 解析ケース(2) } \\ \text { S s - N } 1 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース (3) } \\ \mathrm{S} \text { s - D } 1 \\ (++) \end{gathered}$	$\begin{gathered} \text { 解析ケース(2) } \\ \mathrm{S} \text { s - D } 1 \\ (++) \end{gathered}$

図 4－35（1）最大過剰間隙水圧比分布
（No． 1 揚水井戸，S s－N $1(++)$ ，解析ケース（2））

0.95

図4－35（2）最大過剰間隙水圧比分布
（No． 1 揚水井戸，S s－D $1(-+)$ ，解析ケース（1）

0.95

図 4－35（3）最大過剰間隙水圧比分布
（No． 1 揚水井戸，S s－N $1(-+)$ ，解析ケース（2））

0.95

図 4－35（4）最大過剰間隙水圧比分布
（No． 2 揚水井戸，S s－F $1(-+)$ ，解析ケース（2）

0.95

図 4－35（5）最大過剰間隙水圧比分布
（No． 2 揚水井戸，S s－D $2(++)$ ，解析ケース（2））

0.95

図 4－35（6）最大過剰間隙水圧比分布
（No． 2 揚水井戸，S s－F $1(-+)$ ，解析ケース（3）

図4－35（7）最大過剰間隙水圧比分布
（No． 3 揚水井戸，S s－N $1 \quad(++)$ ，解析ケース（2））

図4－35（8）最大過剰間隙水圧比分布
（No． 3 揚水井戸，S s－D $1(-+)$ ，解析ケース（1）

図 4－35（9）最大過剰間隙水圧比分布
（No． 3 揚水井戸，S s－N $1(-+)$ ，解析ケース（1））

図 4－35（10）最大過剰間隙水圧比分布
（No． 4 揚水井戸，S s－N $1 \quad(++)$ ，解析ケース（2）

図 4－35（11）最大過剰間隙水圧比分布
（No． 4 揚水井戸，S s－D $1(++)$ ，解析ケース（3）

図 4－35（12）最大過剰間隙水圧比分布
（No． 4 揚水井戸，S s－D $1(++)$ ，解析ケース（2）

4.2 照査結果一覧

4．2．1 No． 1 揚水井戸

（1）排水シャフトの曲げ・軸力系の破壊に対する軸方向の照査
表 4－96に排水シャフトの曲げ・軸力系の破壊に対する軸方向照査結果一覧を示す。

表 4－96（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 1 揚水井戸， $\mathrm{t}=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	－59364	－1176	126	382.5	0.33
		$-+$	60366	－399	126		0.33
	S s－D 2	＋＋	48141	178	101		0． 27
		$-+$	－46601	－1842	101		0． 27
	S s－D 3	$++$	－44104	－1857	96		0． 26
		－＋	46720	－1333	100		0． 27
	S s－F 1	＋＋	53559	－210	112		0． 30
		－＋	－51860	－967	110		0． 29
	S s－F 2	$++$	－66900	－2053	143		0.38
		$-+$	71054	422	149		0.39
	S s－F 3	$++$	－29302	－2478	66		0.18
		$-+$	31756	－1497	69		0.19
	S s－N 1	＋＋	72995	－422	153		0． 40
		$-+$	－70981	－1400	150		0． 40
（2）	S s－N 1	$++$	73235	－338	153		0． 40
（3）	S s－N 1	$++$	72543	－514	152		0． 40

表 4－96（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	－51266	－4878	117	382.5	0.31
		－＋	54528	473	114		0． 30
	S s－D 2	＋＋	－38435	－3809	88		0.24
		－＋	41902	－2160	92		0． 25
	S s－D 3	$++$	－40570	－4012	93		0． 25
		$-+$	44816	－774	95		0.25
		$++$	48402	769	102		0． 27
	S S －	$-+$	－45373	－2712	100		0.27
	S	$++$	－55102	－3608	122		0.32
		－＋	59792	950	126		0.33
	S	＋＋	－33337	－2868	76		0． 20
	S 5 F 3	$-+$	31222	－1029	67		0.18
	S s－N1	$++$	76398	－496	160		0． 42
	S ${ }^{\text {N }}$	$-+$	－64607	－3767	142		0.38
（2）	S s－N 1	$++$	78259	－289	163		0． 43
		$-+$	－65634	－3759	144		0.38
（3）	S s－N 1	$++$	74164	－641	155		0． 41
		$-+$	－63412	－3932	140		0.37

表 4－96（3）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸， $\mathrm{t}=55 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	－85777	－2485	131	367.5	0． 36
		－＋	87943	－495	131		0.36
	S s－D 2	$++$	69945	－1165	106		0． 29
		－＋	－69293	－4157	109		0.30
	S s－D 3	$++$	－68748	－1657	105		0． 29
		$-+$	70458	－495	106		0． 29
	S s－F 1	$++$	80357	－912	121		0.33
		－＋	－77807	－2798	120		0.33
	S s－F 2	＋＋	－99066	－3642	152		0． 42
		－＋	101157	－902	152		0． 42
	S s－F 3	$++$	－43786	－2336	69		0． 19
		－＋	46180	－1051	70		0． 20
	S s－N 1	$++$	107759	－524	161		0． 44
		－＋	－106771	－2323	162		0.45
（2）	S s－N 1	＋＋	108540	－503	162		0． 45
（3）	S s－N 1	＋＋	106742	－526	159		0． 44

表 4－96（4）排水シャフト 軸方向照查における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸，$t=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	－78278	－6101	125	367.5	0． 35
		－＋	88256	－804	132		0． 36
	S s－D 2	＋＋	－60014	－4116	95		0． 26
		－＋	66170	－1636	101		0． 28
	S s－D 3	$++$	－65676	－5413	106		0． 29
		$-+$	69681	－1290	106		0.29
		$++$	78173	－285	117		0.32
	S S －	$-+$	－73085	－3330	114		0． 32
	S	$++$	－89098	－5062	140		0.39
		－＋	94176	869	141		0.39
	S	$++$	－44807	－2155	70		0． 20
	S S F 3	－＋	47723	－1186	73		0． 20
	S s－N1	＋＋	115740	642	173		0． 48
	S ${ }^{\text {N }}$	$-+$	－108942	-4451	168		0． 46
（2）	S s－N 1	$++$	118760	738	177		0． 49
		－＋	－111455	－4419	172		0.47
（3）	S s－N 1	$++$	112222	606	167		0． 46
		$-+$	－106265	－4404	164		0.45

表 4－96（5）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸， $\mathrm{t}=70 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	$++$	－88479	－3800	107	367.5	0． 30
		－＋	91192	－1027	106		0． 29
	S s－D 2	$++$	72998	－1500	86		0． 24
		$-+$	－73042	－4641	90		0.25
	Ss－D 3	$++$	－71907	－2202	86		0.24
		$-+$	73496	－932	86		0． 24
	S s－F 1	$++$	84019	－1296	99		0． 27
		－＋	－81688	－3172	98		0． 27
	Ss－F 2	＋＋	－104464	－3945	125		0.35
		－＋	106311	2280	125		0.35
	Ss－F 3	$++$	－45498	－2540	56		0.16
		－＋	48014	－1231	57		0.16
	S s－N 1	$++$	111852	2270	132		0． 36
		－＋	－111712	－2573	132		0.36
（2）	S s－N 1	$++$	112570	2398	133		0． 37
（3）	S s－N 1	＋＋	110937	2241	131		0． 36

表 4－96（6）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸，$t=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	－81985	－6441	102	367.5	0． 28
		－＋	93375	－1099	109		0.30
	S s－D 2	$++$	－63277	－4453	78		0． 22
		－＋	69804	－1873	83		0． 23
	S s－D 3	$++$	－69232	－5746	87		0.24
		$-+$	73228	－1547	86		0.24
		$++$	82811	－659	96		0． 27
	S S F 1	－＋	－77135	－3591	93		0． 26
		$++$	－93446	－5740	114		0.32
	S 5 F 2	$-+$	99646	356	115		0． 32
	Ss－F 3	$++$	－46535	－2310	57		0． 16
	S 5 T 3	$-+$	49829	－1305	59		0.17
	S	＋＋	121449	418	141		0.39
	S N －	－＋	－115474	－4677	139		0.38
（2）	$\mathrm{Sc}-\mathrm{N} 1$	＋＋	124723	516	144		0． 40
		－＋	－118244	－4650	142		0.39
（3）	$\mathrm{Sc}-\mathrm{N} 1$	＋＋	117687	380	136		0.38
		－＋	－112489	－4628	135		0． 37

（2）排水シャフトのせん断破壊に対する軸方向の照査
表 4－97に排水シャフトのせん断破壊に対する軸方向照査の実施ケースと照査値を示 す。

表 4－97（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 1 揚水井戸， $\mathrm{t}=40 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 (kN)			
（1）	S s－D 1	＋＋	7853	33	217.5	0． 16
		－＋	－7945	33		0． 16
		＋＋	－6337	27		0.13
		－＋	6653	28		0.13
	S - D 3	＋＋	6520	28		0.13
	S 5 D 3	－＋	－6538	28		0.13
	S	＋＋	－7485	32		0.15
	S 51	－＋	7397	31		0.15
	S s－ 2	＋＋	9497	40		0． 19
	S 51	－＋	－9638	40		0． 19
	S	$++$	3918	17		0.08
	S S F 3	－＋	－4413	19		0.09
	S s－N1	＋＋	－9644	40		0． 19
	S S－N 1	－＋	9548	40		0． 19
（2）	S s－N 1	＋＋	－9713	41		0． 19
（3）	S s－N 1	＋＋	－9558	40		0． 19

表 4－97（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 1 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（有効応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	$++$	－7298	31	217.5	0.15
		－＋	－8601	36		0.17
	S s－D 2	＋＋	－6608	28		0.13
		－＋	－6559	28		0.13
	S s－D 3	$++$	6751	28		0.13
		－＋	－6600	28		0.13
	S -F 1	$++$	－7510	32		0.15
	S s F 1	－＋	7255	31		0.15
	S－F 2	＋＋	8716	37		0． 18
	SH F 2	－＋	－9072	38		0． 18
	S	$++$	4786	20		0.10
	S S F 3	－＋	－4479	19		0.09
	S	$++$	－10477	44		0.21
	S s N 1	－＋	10846	45		0.21
（2）	S s－N 1	＋＋	－10836	45		0.21
（2）	S S N 1	－＋	11148	47		0． 22
（3）	S s－N 1	$++$	－10090	42		0． 20
（3）	S S N 1	－＋	10504	44		0.21

表 4－97（3）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 1 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 (kN)			
（1）	S s－D 1	＋＋	10191	31	210	0.15
		－＋	－10166	31		0.15
		＋＋	9602	29		0． 14
		－＋	－9570	29		0.14
	S－D 3	＋＋	8159	25		0． 12
		－＋	－7873	24		0． 12
	S－F 1	＋＋	－9206	28		0． 14
	S S －	－＋	9492	29		0． 14
	S	＋＋	11941	36		0.18
	S	－＋	－11911	36		0.18
	S－F 3	＋＋	5791	18		0.09
	S 5 F	－＋	5918	18		0.09
	S	$++$	－11479	35		0.17
	S N	－＋	11177	34		0.17
（2）	S s－N 1	$++$	－11517	35		0.17
（3）	S s－N 1	＋＋	－11367	34		0． 17

表 4－97（4）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 1 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（有効応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	$++$	－10178	31	210	0.15
		－＋	－10572	32		0.16
	S s－D 2	＋＋	9262	28		0． 14
		－＋	－8771	26		0.13
	S s－D 3	＋＋	8716	26		0.13
		－＋	－8363	25		0.12
	S	＋＋	－10053	30		0.15
	S s F 1	－＋	9546	29		0.14
	S－F 2	＋＋	10641	32		0.16
	S s－F 2	$-+$	－11538	35		0.17
	S	$++$	7539	23		0.11
	S s F 3	－＋	5174	16		0.08
	S	＋＋	－12966	39		0.19
	S s N 1	－＋	13750	41		0.20
（2）	S s－N 1	＋＋	－13493	40		0.20
（2）	S s－N 1	－＋	14248	43		0.21
（3）	S s－N 1	＋＋	－12372	37		0.18
（3）	S S N 1	－＋	13163	39		0． 19

表 4－97（5）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 1 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \hline \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	10097	24	210	0． 12
		－＋	－10046	24		0． 12
		＋＋	9717	23		0.11
		－＋	－9693	23		0.11
	S	$++$	8237	19		0.10
	S 5 D	－＋	－7930	19		0.10
	S	＋＋	－9036	21		0． 10
	S S F 1	－＋	9371	22		0.11
	S	$++$	11894	28		0． 14
	S s－F 2	$-+$	－11620	27		0.13
	S $s-\mathrm{F}^{3}$	$++$	5864	14		0． 07
	S 5 F	－＋	6062	14		0.07
	S	＋＋	－11100	26		0.13
	S ${ }^{\text {S }} 1$	－＋	10726	25		0.12
（2）	S s－N 1	$++$	－11153	26		0.13
（3）	S s－N 1	$++$	－11014	26		0． 13

表 4－97（6）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 1 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（有効応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	－10266	24	210	0.12
		－＋	－10517	25		0． 12
	S s－D 2	＋＋	9367	22		0.11
		－＋	－8840	21		0.10
	S s－D 3	＋＋	8705	21		0． 10
		－＋	－8366	20		0． 10
	S s－F 1	$++$	－10138	24		0． 12
	S s F 1	－＋	9580	23		0.11
	S－F 2	＋＋	10562	25		0． 12
	S s－F 2	－＋	－11517	27		0.13
	S $\mathrm{s}-\mathrm{F} 3$	＋＋	7705	18		0.09
	S 5 F 3	－＋	5260	13		0． 07
	S s－N 1	＋＋	－12936	30		0.15
	S 5 N 1	－＋	13747	32		0.16
（2）	S -N 1	＋＋	－13486	32		0.16
（2）	S N 1	－＋	14259	33		0.16
（3）	S s－N 1	＋＋	－12337	29		0． 14
（3）	S S N 1	－＋	13138	31		0.15

（3）排水シャフトの曲げ・軸力系の破壊に対する周方向の照査
表4－98に排水シャフトの周方向の検討における照査結果を示す。

表 4－98（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 1 揚水井戸， $\mathrm{t}=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	30	－834	146	382.5	0． 39
		－＋	34	－925	167		0.44
	S s－D 2	＋＋	34	－929	166		0.44
		－＋	34	－938	166		0.44
	S s－D 3	＋＋	23	－795	117		0.31
		$-+$	25	－819	128		0.34
	S s－F 1	＋＋	24	－779	119		0． 32
		－＋	22	－757	112		0.30
	Ss －F 2	＋＋	26	－825	131		0． 35
		－＋	33	－910	162		0.43
	Ss－F 3	＋＋	21	－786	107		0.28
		$-+$	22	－818	113		0.30
	S s－N 1	$++$	34	－904	167		0.44
		－＋	32	－882	156		0.41
（2）	S s－N 1	＋＋	34	－901	167		0.44
（3）	S s－N 1	$++$	34	－898	164		0.43

表 4－98（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸， $\mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	25	－697	124	382.5	0.33
		－＋	26	－701	125		0． 33
	S s－D 2	＋＋	22	－649	107		0． 28
		－＋	21	－636	103		0． 27
	S s－D 3	$++$	20	－635	100		0． 27
		$-+$	22	－660	108		0.29
		$++$	25	－696	124		0.33
	S s － 1	－＋	20	－629	101		0． 27
		$++$	22	－654	110		0.29
		－＋	26	－711	128		0.34
	S	＋＋	17	－651	89		0． 24
	S S F 3	$-+$	20	－671	101		0． 27
	S	$++$	27	－706	132		0． 35
	S S N 1	$-+$	24	－280	106		0． 28
（2）	S s－N 1	$++$	28	－721	137		0． 36
		$-+$	25	－297	113		0． 30
（3）	S s－N 1	＋＋	26	－688	126		0.33
		－＋	22	－265	100		0． 27

表 4－98（3）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸， $\mathrm{t}=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	44	－957	113	367.5	0． 31
		－＋	56	－1015	140		0.39
	S s－D 2	＋＋	56	－1057	141		0． 39
		－＋	53	－1033	133		0． 37
	S s－D 3	＋＋	42	－948	107		0.30
		－＋	47	－1001	120		0.33
	S s－F 1	＋＋	42	－895	106		0． 29
		－＋	35	－800	90		0.25
	S s－F 2	＋＋	41	－822	103		0． 29
		－＋	53	－955	132		0． 36
	S s－F 3	＋＋	36	－948	96		0． 27
		－＋	37	－954	98		0． 27
	S s－N 1	＋＋	56	－995	138		0.38
		－＋	50	－879	124		0.34
（2）	S s－N 1	＋＋	55	－986	137		0.38
（3）	S s－N 1	＋＋	54	－987	135		0.37

表 4－98（4）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸， $\mathrm{t}=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	41	－716	101	367.5	0． 28
		－＋	42	－739	104		0． 29
	S s－D 2	＋＋	35	－638	87		0． 24
		－＋	33	－627	84		0． 23
	S s－D 3	$++$	32	－660	82		0． 23
		－＋	34	－677	87		0.24
		$++$	40	－711	100		0． 28
	S S －	－＋	33	－620	82		0． 23
	S	$++$	35	－670	88		0.24
		－＋	42	－728	104		0． 29
	S	$++$	27	－641	70		0． 20
	S 5 F	－＋	32	－715	83		0． 23
	S s－N1	＋＋	44	－694	108		0． 30
	S ${ }^{\text {N }}$	－＋	31	－592	78		0． 22
（2）	S s－N 1	$++$	46	－708	112		0． 31
		$-+$	32	－598	79		0． 22
（3）	S s－N 1	$++$	41	－705	102		0． 28
		－＋	30	－586	76		0． 21

表 4－98（5）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸， $\mathrm{t}=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	63	－3089	127	367.5	0.35
		－＋	67	－3246	135		0． 37
	S s－D 2	$++$	61	－3031	125		0.35
		－＋	56	－2814	114		0.32
	S s－D 3	$++$	49	－2557	102		0． 28
		$-+$	61	－3022	124		0.34
	S s－F 1	$++$	62	－3075	127		0.35
		－＋	60	－2974	122		0.34
	S s－F 2	$++$	51	－2654	106		0． 29
		－＋	77	－3629	153		0.42
	Ss－F 3	$++$	35	－2031	76		0.21
		$-+$	41	－2244	87		0.24
	S s－N 1	$++$	70	－3375	141		0． 39
		－＋	56	－2840	115		0． 32
（2）	S s－N 1	$++$	71	－3425	143		0.39
（3）	S s－N 1	＋＋	68	－3303	138		0． 38

表 4－98（6）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸， $\mathrm{t}=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	69	－3360	140	367.5	0.39
		－＋	80	－3794	160		0． 44
	S s－D 2	＋＋	59	－2948	120		0.33
		－＋	58	－2913	118		0.33
	S s－D 3	$++$	50	－2610	104		0． 29
		$-+$	62	－3064	125		0.35
		$++$	69	－3342	139		0.38
	S s － 1	$-+$	57	－2898	118		0.33
		$++$	59	－3051	122		0． 34
		－＋	86	－4008	171		0． 47
	S	＋＋	30	－1842	67		0.19
	S S F 3	$-+$	40	－2232	86		0.24
		$++$	98	－4483	193		0.53
	S S N 1	$-+$	67	－3374	138		0.38
（2）	S s－N 1	$++$	106	－4808	209		0.57
		$-+$	74	－3634	150		0． 41
（3）	S s－N 1	＋＋	88	－4096	175		0.48
		$-+$	60	－3067	123		0.34

（4）集水ピットの曲げ・軸力系の破壊に対する軸方向の照査
表 4－99 に集水ピットの曲げ・軸力系の破壊に対する軸方向照査の実施ケースと照査値 を示す。

表 4－99（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮応力度 $\sigma{ }^{\prime}{ }_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma_{c a}^{\prime}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	＋＋	11606	－42539	1.3	16． 5	0.08
		－＋	11552	－38788	1.2		0.08
	Ss－D 2	$++$	－12066	－39179	1． 2		0.08
		－＋	11905	－40399	1.2		0.08
	S s－D 3	＋＋	－5124	－45738	1.2		0.08
		－＋	5396	－41814	1.1		0.07
	S s－F 1	$++$	－10548	－39926	1.2		0.08
		－＋	9598	－40297	1.2		0.08
	Ss－F 2	$++$	15264	－34984	1.2		0.08
		－＋	10157	－41699	1.2		0.08
	Ss－F 3	$++$	12951	－39938	1.2		0.08
		－＋	－12301	－40395	1.2		0.08
	S s－N 1	＋＋	－15392	－34235	1.1		0.07
		－＋	18824	－38381	1． 3		0.08
（2）	S s－N 1	＋＋	－15350	－34189	1.1		0.07
（3）	S s－N 1	$++$	－15063	－34430	1.1		0.07

表 4－99（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

解析 ケース	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma_{c}^{\prime}{ }_{c a}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	$++$	16465	－40227	1.3	16． 5	0.08
		$-+$	13160	－39863	1． 2		0.08
	S s－D 2	＋＋	13466	－38493	1.2		0.08
		－＋	11328	－40317	1． 2		0.08
	Ss－D 3	＋＋	6140	－41714	1.1		0． 07
		－＋	3936	－41090	1.1		0.07
	S s－F 1	＋＋	9738	－37143	1.1		0． 07
	S S	－＋	11418	－38858	1.2		0.08
		$++$	－23741	－31216	1.2		0.08
	S S － 2	$-+$	8608	－38126	1.1		0.07
	S	＋＋	8657	－43225	1.2		0.08
	S S F 3	$-+$	－9029	－37904	1.1		0.07
	S s－	＋＋	－13173	－31818	1． 0		0． 07
	S S N 1	－＋	28238	－33543	1.4		0.09
（2）	S s－D 1	$-+$	16186	－37213	1.2		0.08
	S s－N 1	－＋	27999	－34079	1.4		0.09
（3）	S s－D 1	$-+$	12353	－41176	1.2		0.08
	S s－N 1	－＋	21467	－39512	1.4		0.09

表 4－99（3）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力		曲げ応力度 $\sigma_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	－20070	－9165	3.4	324	0.02
		－＋	15260	－7262	2． 3		0.01
	S s－D 2	$++$	－	－	圧縮		－＊1
		－＋	－	－	圧縮		－＊1
	S s－D 3	＋＋	－	－	圧縮		－＊1
		$-+$	－	－	圧縮		－＊1
	S s－F 1	＋＋	18352	－12942	0.3		0.01
		$-+$	－17971	－10445	1． 3		0.01
	S s－F 2	＋＋	－20708	－8991	4.1		0.02
		$-+$	22763	－11066	3.2		0.01
	Ss－F 3	＋＋	－	－	圧縮		－＊1
		$-+$	－	－	圧縮		－＊1
	S s－N 1	$++$	21971	－9991	3.8		0.02
		－＋	－25805	－7697	12.4		0.04
（2）	S s－N 1	$++$	20275	－11445	1.6		0.01
（3）	S s－N 1	＋＋	23835	－9772	5.6		0.02

注記＊：軸方向の全長において全圧縮状態となるケース

表 4－99（4）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果 （No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		引張応力度 $\sigma_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	＋＋	－23239	－16773	0.2	324	0.01
		－＋	－	－	圧縮		－＊
	S s－D 2	$++$	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－D 3	$++$	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－${ }^{\text {P }}$	＋＋	15297	－9512	0.8		0.01
	S	－＋	－20366	－12464	1． 1		0.01
	Ss－F 2	$++$	－21305	－13082	1.1		0.01
	S 5 － 2	$-+$	20110	－11282	1． 7		0.01
		$++$	－	－	圧縮		－＊
	S S F 3	－＋	－	－	圧縮		－＊
	S	＋＋	25655	－4228	23.1		0． 08
		－＋	－24910	－6529	14.5		0.05
（2）	S s－D 1	$-+$	－	－	圧縮		－＊
	S s－N 1	$-+$	－22955	－5838	13.9		0.05
（3）	S s－D 1	$-+$	－	－	圧縮		－＊
	S s－N 1	－＋	－26153	－7344	13.8		0． 05

注記 $~$ ：軸方向の全長において全圧縮状態となるケース
（5）集水ピットのせん断破壊に対する軸方向の照査
表 4－100に集水ピットのせん断破壊に対する軸方向照査の実施ケースと照査値を示 す。

表 4－100（1）集水ピット 軸方向照査におけるせん断破壊に対する評価結果
（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	$\mathrm{Ss}-\mathrm{D} 1$	＋＋	14415	33473	0． 44
		－＋	12087		0． 37
	S s－D 2	＋＋	13372		0.40
		－＋	13077		0.40
	S s－D 3	＋＋	13655		0.41
		－＋	10904		0.33
	S s－F 1	＋＋	12249		0． 37
		－＋	13647		0.41
	Ss－F 2	＋＋	14859		0． 45
		－＋	13657		0.41
	S s－F 3	＋＋	16557		0.50
		－＋	14787		0.45
	S s－N 1	＋＋	13888		0． 42
		－＋	16548		0.50
（2）	S s－N 1	＋＋	13110		0． 40
（3）	S s－N 1	＋＋	14868		0． 45

表 4－100（2）集水ピット 軸方向照査におけるせん断破壊に対する評価結果
（No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	S s－D 1	＋＋	12127	33473	0.37
		－＋	10836		0.33
	S s－D 2	＋＋	12357		0． 37
		－＋	11711		0.35
	S s－D 3	＋＋	10575		0． 32
		－＋	10678		0． 32
	S s－F 1	＋＋	10160		0.31
		－＋	10891		0.33
	S s－F 2	＋＋	11660		0.35
		－＋	11948		0.36
	S s－F 3	＋＋	13960		0． 42
		－＋	11834		0.36
	S s－N 1	＋＋	10959		0.33
		－＋	13436		0.41
（2）	S s－D 1	－＋	10594		0． 32
	S s－N 1	－＋	12982		0.39
（3）	S s－D 1	－＋	10586		0． 32
	S s－N 1	－＋	14011		0． 42

（6）集水ピットの周方向の照査
表 4－101 に集水ピットの周方向の検討における照査結果を示す。なお，集水ピットの周方向の検討における周方向鉄筋を対象とした鉄筋応力度の照査においては，集水ピット の全周において全圧縮状態となることを確認している。

表 4－101（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{c a}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{\mathrm{c}} / \sigma^{\prime}{ }_{\mathrm{ca}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	$++$	－313	－2897	1.8	16.5	0.11
		－＋	－303	－2851	1． 8		0.11
	S s－D 2	$++$	－265	－2665	1． 7		0.11
		$-+$	－375	－2767	1.9		0.12
	Ss－D 3	＋＋	－354	－2694	1． 8		0.11
		－＋	－405	－2874	2.0		0． 13
	S s－F 1	＋＋	－230	－2495	1.5		0． 10
		－＋	－318	－2567	1． 7		0.11
	S s－F 2	$++$	－248	－2584	1． 6		0． 10
		$-+$	－277	－2722	1． 7		0.11
	S s－F 3	＋＋	－390	－2821	1.9		0． 12
		－＋	－248	－2584	1.6		0． 10
	S s－N 1	$++$	－327	－2968	1.9		0.12
		－＋	－206	－2478	1.5		0． 10
（2）	S s－N 1	$++$	－312	－2858	1． 8		0.11
（3）	S s－N1	＋＋	－336	－3048	1.9		0.12

表 4－101（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

表 4－101（3）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	S s－D 1	＋＋	$\begin{gathered} \mathrm{SD} 345 \\ \mathrm{D} 22 \times 30 \text { 本/周@ } \\ 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	355	1497	0． 24
		－＋		344		0． 23
	S s－D 2	＋＋		301		0.21
		－＋		338		0． 23
	S s－D 3	＋＋		320		0． 22
		$-+$		366		0． 25
	S s－F 1	$++$		261		0.18
		－＋		287		0． 20
	S s－F 2	＋＋		282		0.19
		－＋		314		0.21
	Ss－F 3	＋＋		352		0． 24
		－＋		282		0． 19
	S s－N 1	＋＋		371		0． 25
		－＋		233		0.16
（2）	S s－N 1	＋＋		354		0.24
（3）	S s－N 1	＋＋		381		0． 26

表 4－101（4）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

（7）集水ピットの底版の照査
表 4－102に集水ピットの底版の検討における照査結果を示す。

表 4－102（1）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

表 4－102（2）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \text { 発生断面力 } \\ \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 曲げ圧縮 } \\ \text { 応力度 } \\ \sigma^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \sigma^{\prime}{ }_{c a}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\sigma_{c}^{\prime} d_{0}^{\prime}$
（1）	S s－D 1	$++$	－1837	3.8	16.5	0． 24
		$-+$	－1980	4.0		0． 25
	S s－D 2	$++$	－1985	4.1		0． 25
		$-+$	－1914	3.9		0.24
	S s－D 3	$++$	－1865	3.8		0． 24
		$-+$	－1827	3.7		0． 23
	S －F 1	$++$	－1854	3.8		0． 24
	S S F 1	$-+$	－1741	3.6		0.22
		$++$	－1907	3.9		0.24
	S 5 F 2	$-+$	－1747	3.6		0． 22
	S	$++$	－1810	3.7		0． 23
	S S F 3	$-+$	－1941	4.0		0． 25
	S s－N1	$++$	－1689	3.5		0． 22
	S S N 1	－＋	－1784	3.6		0． 22
	S s－D 1	$-+$	－2001	4.1		0.25
（2）	S s－N 1	－＋	－1741	3.6		0． 22
（3）	S s－D 1	$-+$	－1971	4.0		0． 25
	S s－N 1	－＋	－1830	3.7		0． 23

表 4－102（3）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \hline \text { 発生断面力 } \\ \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	$\mathrm{S} s-\mathrm{D} 1$	＋＋	－2035	161	324	0.50
		－＋	－2045	161		0.50
		＋＋	－2087	165		0.51
		－＋	－2130	168		0.52
		＋＋	－2079	164		0.51
	S 5 D 3	$-+$	－1884	149		0.46
		$++$	－2012	159		0.50
	S S F 1	－＋	－1781	141		0.44
		＋＋	－2064	163		0.51
		$-+$	－1798	142		0． 44
		$++$	－1918	151		0.47
	S S F 3	$-+$	－2093	165		0.51
	S s－N1	＋＋	－1967	155		0.48
	S S N 1	－＋	－1910	151		0.47
（2）	S s－N 1	$++$	－2038	161		0.50
（3）	S s－N 1	＋＋	－1946	154		0.48

表 4－102（4）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

表 4－102（5）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

表 4－102（6）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

解 析 ケ － － ス	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）		$++$	$\begin{gathered} \text { SD345 } \\ \text { D25@250×500 } \\ \text { せん断補強鉄筋 } \end{gathered}$	1021	2384	0． 43
		－＋		1100		0.47
		$++$		1103		0.47
	S 5	－＋		1064		0.45
		＋＋		1036		0.44
	S 5 D	$-+$		1015		0． 43
		＋＋		1030		0． 44
	S S	－＋		967		0.41
		＋＋		1060		0.45
	S s － 2	－＋		971		0.41
		＋＋		1006		0． 43
	S 5 F	－＋		1079		0.46
		＋＋		939		0.40
	S	$-+$		992		0.42
（2）	S s－D 1	－＋		1112		0.47
	S s－N 1	－＋		968		0.41
（3）	S s－D 1	$-+$		1095		0． 46
	S s－N 1	－＋		1017		0.43

（8）集水ピットの隅角部の照査
表 4－103 に集水ピットの隅角部の検討における照査結果を示す。

表 4－103（1）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

表 4－103（2）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{c}}^{\prime} / \sigma^{\prime} \text { ca }$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$			
（1）	Sc －D 1	$++$	2847	5.5	16.5	0． 34
		－＋	3073	6.0		0． 37
	S s－D 2	$++$	3010	5.9		0． 36
		$-+$	2563	5.0		0.31
	S s－D 3	$++$	2538	4.9		0.30
		$-+$	2634	5.1		0.31
	S s－F 1	$++$	2881	5.6		0.34
		－＋	2669	5.2		0． 32
	S s－F 2	$++$	3009	5.9		0． 36
		－＋	2553	5.0		0.31
	S s－F 3	$++$	2189	4． 3		0． 27
		$-+$	2760	5.4		0.33
	S s－N 1	$++$	2347	4.6		0.28
		$-+$	2555	5.0		0.31
（2）	S s－D 1	$-+$	3040	5.9		0． 36
	S s－D 2	$++$	2933	5.7		0.35
	S s－N 1	$-+$	2535	4.9		0． 30
	S s－D 1	$-+$	3035	5.9		0.36
	S s－N 1	$-+$	2610	5.1		0.31

表 4－103（3）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		短期許容	
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	S s－D 1	$++$	2814	179	324	0.56
		－＋	2776	177		0.55
	S s－D 2	＋＋	2805	178		0.55
		－＋	2659	169		0.53
	S s－D 3	$++$	2259	144		0.45
		－＋	2674	170		0.53
	S s－F 1	$++$	2576	164		0.51
		－＋	2450	156		0． 49
	S s－F 2	$++$	2685	171		0.53
		$-+$	2749	175		0.55
	S s－F 3	$++$	2729	174		0.54
		－＋	2792	178		0.55
	S s－N 1	＋＋	2922	186		0.58
		－＋	2354	150		0.47
（2）	S s－N 1	＋＋	2946	187		0.58
（3）	S s－D 1	$++$	2921	186		0.58
	S s－N 1	$++$	2970	189		0.59

表 4－103（4）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 1 揚水井戸）（有効応力解析）

（9）接合部（アンカーボルト）に対する照査
表 4－104 に接合部（アンカーボルト）の照査結果一覧を示す。

表 4－104（1）接合部（アンカーボルト）引張応力度に対する評価結果
（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	昭查	短期許容	
			アンカーボルト 1本当たりの 引張力（ N ）	応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	$\mathrm{St}-\mathrm{D} 1$	$++$	35744	9	295	0.04
		－＋	29810	7	295	0.03
	S s－D 2	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－D 3	$++$	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－F 1	$++$	8479	2	295	0.01
		－＋	30015	7	295	0.03
	S s－F 2	$++$	102706	24	295	0.09
		$-+$	61289	15	295	0.06
	S s－F 3	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－N 1	$++$	155769	36	295	0.13
		－＋	279875	65	295	0． 23
（2）	S s－N 1	＋＋	95033	22	295	0.08
（3）	S s－N 1	$++$	192027	45	295	0.16

注記＊：全圧縮状態となるケース

表 4－104（2）接合部（アンカーボルト）引張応力度に対する評価結果 （No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1 本当たりの 引張力（ N ）	応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	応力度 B（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 （A／B）
（1）	S s－D 1	＋＋	13614	4	295	0.02
		－＋	4027	1	295	0.01
	S s－D 2	$++$	－	圧縮	295	－＊
		－＋	944	1	295	0.01
	S s－D 3	$++$	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－F 1	$++$	29127	7	295	0.03
		－＋	12000	3	295	0.02
	S s－F 2	$++$	25966	6	295	0.03
		－＋	55558	13	295	0.05
	Ss－F 3	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－N 1	$++$	406119	94	295	0． 32
		$-+$	389416	90	295	0.31
（2）	S s－D 1	$-+$	1254	1	295	0.01
	S s－N 1	$++$	408584	95	295	0.33
		－＋	394327	91	295	0． 31
（3）	S s－D 1	$-+$	18082	5	295	0.02
	S s－N 1	＋＋	394820	91	295	0.31
		－＋	376158	87	295	0． 30

注記＊：全圧縮状態となるケース

表 4－104（3）接合部（アンカーボルト）せん断応力度に対する評価結果
（No． 1 揚水井戸）（全応力解析）

表 4－104（4）接合部（アンカーボルト）せん断応力度に対する評価結果 （No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1 本当たりの せん断力（ N ）	$\begin{gathered} \text { 応力度 } \\ \text { A(} \left.\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \text { B (} \left.\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 （A／B）
（1）	S s－D 1	＋＋	111587	26	170.3	0.16
		－＋	115786	27		0.16
	S s－D 2	＋＋	93761	22		0.13
		－＋	99749	23		0.14
	S s－D 3	＋＋	86550	20		0.12
		－＋	83415	20		0.12
		＋＋	88343	21		0.13
		－＋	89848	21		0.13
		＋＋	99764	23		0.14
	S S 2	－＋	108301	25		0.15
		＋＋	89663	21		0． 13
	S 5 F 3	－＋	76757	18		0.11
		＋＋	151028	35		0.21
	S	－＋	132622	31		0.19
（2）	S s－D 1	－＋	108203	25		0.15
	S s－N 1	＋＋	147329	34		0.20
		－＋	124883	29		0.18
（3）	S s－D 1	－＋	123432	29		0.18
	S s－N 1	＋＋	155407	36		0． 22
		－＋	143693	34		0． 20

（10）接合部（コンクリート）に対する照査
表 4－105 に接合部（コンクリート）の照査の実施ケースと照査値を示す。

表 4－105（1）接合部（コンクリート）引張力に対する評価結果
（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 応答值 A（kN）	許容限界 B（kN）	照査値 （A／B）
（1）	S s－D 1	＋＋	36	1738	0.03
		－＋	30		0.02
	S s－D 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	9		0.01
		－＋	31		0.02
	S s－F 2	＋＋	103		0.06
		－＋	62		0.04
	S s－F 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s - N 1	＋＋	156		0.09
		－＋	280		0.17
（2）	S s－N 1	＋＋	96		0.06
（3）	S s－N1	＋＋	193		0． 12

注記＊：全圧縮状態となるケース

表 4－105（2）接合部（コンクリート）引張力に対する評価結果 （No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 応答値 A（kN）	許容限界 B（kN）	照査値 （A／B）
（1）	S s－D 1	＋＋	14	1738	0.01
		－＋	5		0.01
	S s－D 2	＋＋	圧縮		－＊
		－＋	1		0.01
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	30		0.02
		－＋	13		0.01
		＋＋	26		0.02
		－＋	56		0.04
		＋＋	圧縮		－＊
	S s F 3	－＋	圧縮		－＊
	S	＋＋	407		0.24
	S ${ }^{\text {－}}$ N	－＋	390		0.23
（2）	S s－D 1	－＋	2		0.01
	S s -N 1	＋＋	409		0． 24
		－＋	395		0.23
（3）	S s－D 1	－＋	19		0.02
	S s -N 1	＋＋	395		0． 23
		－＋	377		0． 22

注記＊：全圧縮状態となるケース
（11）接合部（ベースプレート）に対する照査
表 4－106に接合部（ベースプレート）の諸元及び照査値を示す。

表 4－106（1）接合部（ベースプレート）曲げ応力度に対する評価結果
（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \text { 発生断面力 } \\ \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	$++$	62254	77	400	0． 20
		－＋	62127	77		0． 20
		＋＋	55352	68		0.17
		－＋	56388	70		0.18
		＋＋	58758	72		0.18
	S 5 D 3	－＋	59977	74		0.19
		$++$	55310	68		0.17
	S S F 1	－＋	56773	70		0.18
	S	＋＋	74396	92		0.23
	So F 2	－＋	70928	87		0． 22
		＋＋	50481	62		0.16
	S S F 3	－＋	51375	63		0.16
	S	＋＋	81063	100		0.25
	S S N 1	－＋	98846	122		0.31
（2）	S s－N 1	＋＋	71634	88		0.22
（3）	S s－N 1	＋＋	90941	112		0． 28

表 4－106（2）接合部（ベースプレート）曲げ応力度に対する評価結果 （No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	$++$	63524	78	400	0． 20
		－＋	61244	75		0． 19
	S s－D 2	＋＋	54357	67		0.17
		$-+$	55037	68		0.17
	S s－D 3	＋＋	55243	68		0.17
		$-+$	54507	67		0.17
		$++$	52345	65		0.17
	$\mathrm{S} \mathrm{S} \mathrm{-} \mathrm{~F} 1$	$-+$	56198	69		0． 18
	S $\mathrm{s}-\mathrm{F} 2$	＋＋	60590	75		0． 19
	S S F 2	$-+$	60337	74		0． 19
	Ss－F 3	＋＋	49875	62		0． 16
	S s－F 3	－＋	51809	64		0.16
	S s－N1	$++$	95116	117		0． 30
	S s－N1	－＋	115336	142		0.36
（2）	S s－D 1	$-+$	59399	73		0.19
	S s－N 1	＋＋	91329	112		0． 28
		$-+$	110958	136		0． 34
（3）	S s－D 1	$-+$	63270	78		0． 20
	S s－N 1	＋＋	102041	125		0． 32
		－＋	120960	149		0.38

（12）接合部（フランジプレート）に対する照査
表 4－107に接合部（フランジプレート）の照査の実施ケースと照査値を示す。

表 4－107（1）接合部（フランジプレート）曲げ応力度に対する評価結果
（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \text { A(} \left.\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 (A/B)
（1）	S s－D 1	＋＋	39246	95	400	0.24
		$-+$	38425	93		0． 24
	S s－D 2	$++$	39140	94		0． 24
		$-+$	38664	93		0． 24
	S s－D 3	$++$	39275	95		0． 24
		$-+$	37548	91		0． 23
	S s－F 1	$++$	37109	90		0． 23
		$-+$	37249	90		0． 23
	S s－F 2	$++$	45806	110		0． 28
		$-+$	37424	90		0.23
	Ss－F 3	$++$	36940	89		0． 23
		$-+$	37833	91		0． 23
	S s－N 1	$++$	43533	105		0． 27
		$-+$	69446	167		0． 42
（2）	S s－N 1	$++$	39875	96		0.24
（3）	S s－N 1	$++$	51574	124		0.31

表 4－107（2）接合部（フランジプレート）曲げ応力度に対する評価結果
（No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	$\begin{gathered} \text { 照査用 } \\ \text { 応力度 } \\ \text { A }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$			
（1）	S s－D 1	＋＋	40178	97	400	0.25
		－＋	39240	95		0.24
	S s－D 2	＋＋	37119	90		0． 23
		－＋	37521	91		0． 23
	S s－D 3	$++$	37489	90		0． 23
		－＋	38193	92		0． 23
		＋＋	36760	89		0． 23
		$-+$	37531	91		0． 23
	S	$++$	38098	92		0． 23
	S 5 － 2	－＋	35983	87		0． 22
	S	$++$	35832	86		0.22
		－＋	35598	86		0． 22
		＋＋	72037	173		0． 44
	S S N 1	$-+$	82284	198		0.50
	S s－D 1	－＋	39735	96		0． 24
（2）		＋＋	72934	176		0． 44
	S s － 1	$-+$	82773	199		0.50
	S s－D 1	$-+$	38391	93		0． 24
（3）	S	$++$	70703	170		0． 43
	S S N 1	－＋	80590	194		0． 49

（13）接合部（リブプレート）に対する照査
表 4－108に接合部（リブプレート）の照査の実施ケースと照査値を示す。

表 4－108（1）接合部（リブプレート）せん断応力度に対する評価結果
（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	$\begin{gathered} \text { 照查用 } \\ \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			せん断力 （N）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	790233	44	230.9	0． 20
		－＋	788622	44		0． 20
		＋＋	702620	40		0． 18
	S 52	－＋	715772	40		0． 18
		＋＋	745857	42		0． 19
		－＋	761328	43		0． 19
		＋＋	702086	40		0.18
	1	－＋	720661	41		0． 18
		＋＋	944357	53		0.23
	S s － 2	－＋	900337	51		0． 23
		＋＋	640787	36		0.16
	S S － 3	－＋	652139	37		0.17
		$++$	1028988	58		0． 26
	S s－ 1	－＋	1254720	70		0.31
（2）	S s－N 1	＋＋	909293	51		0． 23
（3）	S s－N 1	$++$	1154374	65		0． 29

表 4－108（2）接合部（リブプレート）せん断応力度に対する評価結果

$$
\text { (No. } 1 \text { 揚水井戸) (有効応力解析) }
$$

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	照査用応力度$\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			せん断力 （N）			
（1）	$\mathrm{Ss}-\mathrm{D} 1$	$++$	806357	45	230.9	0． 20
		－＋	777406	44		0． 20
	S s－D 2	$++$	689986	39		0． 17
		－＋	698624	39		0.17
	S s－D 3	＋＋	701235	39		0.17
		－＋	691897	39		0.17
	S	$++$	664454	37		0.17
	S s F 1	－＋	713353	40		0.18
		$++$	769105	43		0． 19
		－＋	765904	43		0.19
		$++$	633092	36		0.16
	S 5 F 3	－＋	657646	37		0.17
	S	$++$	1207371	68		0.30
	S s N 1	－＋	1464037	82		0.36
	S s－D 1	$-+$	753998	42		0.19
（2）	S s－N	$++$	1159305	65		0． 29
	S N －	－＋	1408463	79		0.35
	S s－D 1	$-+$	803132	45		0． 20
（3）		$++$	1295270	72		0.32
	S S N1	－＋	1535433	86		0.38

（14）基礎地盤の支持性能に対する照査
表 4－109 に揚水井戸の基礎地盤の支持性能に対する照査の実施ケースと照査値を示す。

表 4－109（1）基礎地盤の支持性能に対する評価結果
（No． 1 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 $\begin{gathered} \mathrm{R}_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	極限支持力 $\begin{gathered} \mathrm{R}_{\mathrm{u}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	S s－D 1	＋＋	1． 2	13.7	0.09
		－＋	1． 2		0.09
	S s－D 2	＋＋	1． 2		0.09
		－＋	1.2		0.09
	S s－D 3	＋＋	1.2		0.09
		－＋	1.1		0.09
	S s－F 1	＋＋	1． 2		0.09
		－＋	1.0		0.08
	S s－F 2	＋＋	1． 2		0.09
		－＋	1.0		0.08
	S s－F 3	＋＋	1.1		0.09
		－＋	1.2		0.09
	S s－N 1	＋＋	1.1		0.09
		－＋	1.1		0.09
（2）	S s－N 1	＋＋	1． 2		0.09
（3）	S s－N 1	＋＋	1.1		0.09

表 4－109（2）基礎地盤の支持性能に対する評価結果
（No． 1 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 $\begin{gathered} \mathrm{R}_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	極限支持力 $\begin{gathered} \mathrm{R}_{\mathrm{u}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { 照査値 } \\ & \mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}} \end{aligned}$
（1）	S s－D 1	＋＋	1.1	13． 7	0.09
		－＋	1.1		0.09
	S s－D 2	＋＋	1.2		0.09
		－＋	1.1		0.09
	S s－D 3	＋＋	1.1		0.09
		－＋	1.1		0.09
	S s－F 1	$++$	1.1		0.09
		－＋	1.0		0.08
	S s－F 2	＋＋	1.1		0.09
		－＋	1.0		0.08
	Ss－F 3	＋＋	1.1		0.09
		－＋	1.1		0.09
	S s－N 1	$++$	1.0		0.08
		－＋	1.0		0.08
（2）	S s－D 1	－＋	1． 2		0.09
	S s－N 1	－＋	1． 0		0.08
（3）	S s－D 1	－＋	1.1		0.09
	S s－N 1	－＋	1.1		0.09

4．2．2 No． 2 揚水井戸

（1）排水シャフトの曲げ・軸力系の破壊に対する軸方向の照査
表 4－110に排水シャフトの曲げ・軸力系の破壊に対する軸方向照査結果一覧を示す。

表 4－110（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 2 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	Sc －D 1	$++$	－56558	－1385	121	382.5	0.32
		－＋	56953	－1693	122		0． 32
	S s－D 2	＋＋	40380	－715	86		0． 23
		－＋	－40802	－868	87		0． 23
	S s－D 3	$++$	31649	－1179	69		0． 19
		－＋	30965	－2069	69		0． 19
	S s－F 1	$++$	50217	－1523	108		0． 29
		$-+$	－50518	－1223	108		0． 29
	Ss－F 2	＋＋	－48706	－1410	104		0.28
		－＋	49002	－1561	105		0.28
	Ss－F 3	＋＋	－25742	－1239	56		0.15
		－＋	25994	－1320	57		0.15
	S s－N 1	$++$	54970	－1409	117		0.31
		－＋	－54691	－1236	116		0.31
（2）	S s－D 2	$-+$	－43821	－735	93		0.25
（3）	S s－D 2	－＋	40059	－440	84		0． 22

表 4－110（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 2 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	－41030	－397	86	382.5	0． 23
		$-+$	44536	－2701	98		0.26
	S s－D 2	＋＋	33459	－3201	76		0． 20
		－＋	－35229	－1570	77		0.21
	S s－D 3	＋＋	27242	－2286	62		0.17
		－＋	－29325	－2747	67		0． 18
	S s－F 1	＋＋	41681	－3333	94		0.25
		－＋	－41155	－1391	89		0.24
	$\mathrm{Ss}-\mathrm{F} 2$	＋＋	37212	－3465	85		0.23
		$-+$	36161	－1836	79		0.21
	$\mathrm{S} s-\mathrm{F} 3$	＋＋	－27747	－3380	65		0.17
		$-+$	29148	－2175	65		0.17
	S s－N 1	＋＋	44735	－3138	100		0． 27
		－＋	－43266	－2686	96		0.26
（2）	S s－F 1	－＋	－42676	－1505	92		0.25
（3）	S s－F1	$-+$	－40429	－1357	87		0． 23

表 4－110（3）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 2 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	－78204	－1230	118	367.5	0.33
		－＋	77871	－1872	119		0． 33
	S s－D 2	＋＋	－54416	－1723	84		0． 23
		$-+$	54361	－2310	84		0． 23
	S s－D 3	$++$	－48784	－2289	76		0.21
		$-+$	49011	－2838	77		0.21
	S s－F 1	$++$	71070	－2030	109		0.30
		$-+$	－71492	－1844	109		0． 30
	S s－F 2	＋＋	－71249	－1819	109		0． 30
		－＋	71616	－1881	109		0． 30
	S s－F 3	$++$	－34566	－2492	55		0.15
		－＋	34681	－2405	55		0.15
	S s－N 1	＋＋	82298	－1648	125		0.35
		$-+$	－81938	－1484	124		0.34
（2）	S s－D 2	$-+$	－55885	－656	84		0.23
（3）	S s－D 2	$-+$	54116	－2201	84		0.23

表 4－110（4）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 2 揚水井戸，$\quad \mathrm{t}=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	－66733	－1498	101	367.5	0.28
		$-+$	69665	－3422	109		0.30
	S s－D 2	＋＋	－52497	－3046	83		0． 23
		－＋	54825	－2902	86		0． 24
	S s－D 3	$++$	42513	－5990	72		0． 20
		－＋	－48850	－3690	78		0.22
	S s－F 1	＋＋	67890	－3409	106		0． 29
		－＋	－65280	－1238	99		0． 27
	$\mathrm{Ss}-\mathrm{F} 2$	＋＋	56268	－4051	90		0.25
		$-+$	61653	－2377	95		0． 26
	Ss－F 3	＋＋	－40708	－2323	64		0.18
		$-+$	40424	－2507	64		0.18
	S s－N 1	＋＋	68837	－3368	107		0.30
		－＋	－69509	－2347	107		0.30
（2）	S s－F 1	－＋	－66975	－1982	103		0． 29
（3）	S s－F1	$-+$	－65850	－1115	100		0． 28

表4－110（5）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 2 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	－104417	－1812	123	367.5	0.34
		－＋	103552	－1900	122		0.34
	S s－D 2	＋＋	－80931	－2553	96		0． 27
		－＋	79962	－3294	96		0.27
	S s－D 3	＋＋	－73319	－3349	89		0.25
		$-+$	74000	－3819	90		0． 25
	S s－F 1	＋＋	107090	－2490	126		0.35
		$-+$	－107991	－1542	126		0.35
	S s－F 2	＋＋	－101967	－1918	120		0.33
		－＋	101736	－1880	120		0.33
	Ss－F 3	＋＋	－43798	－3219	55		0.15
		－＋	43474	－2934	54		0.15
	S s－N 1	＋＋	119888	－1924	140		0.39
		－＋	－119667	－1631	140		0.39
（2）	S s－D 2	－＋	78987	－3773	96		0． 27
（3）	S s－D 2	－＋	80361	－3378	97		0． 27

表 4－110（6）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 2 揚水井戸，$\quad \mathrm{t}=70 \mathrm{~mm}$ ）（有効応力解析）

解析ケース	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	－109614	－3003	130	367.5	0.36
		－＋	110044	－4415	132		0． 36
	S s－D 2	＋＋	－106915	－2480	126		0.35
		－＋	106884	－3186	127		0.35
	S s－D 3	$++$	－81597	－2403	97		0． 27
		$-+$	84560	－5171	104		0． 29
	S s－F 1	＋＋	116703	－5192	141		0.39
		$-+$	－120253	－376	139		0.38
	S s－F 2	＋＋	－107442	－1999	126		0.35
		－＋	104413	－3451	124		0.34
	Ss－F 3	＋＋	56421	－5286	71		0． 20
		－＋	－58118	－2867	71		0． 20
	S s－N 1	＋＋	117729	－2388	139		0.38
		－＋	－119490	－1590	140		0． 39
（2）	S s－F 1	－＋	－121562	－205	140		0． 39
（3）	S s－F1	－＋	－118678	596	138		0.38

（2）排水シャフトのせん断破壊に対する軸方向の照査
排水シャフトのせん断破壊に対する軸方向照査の実施ケースと照査値を表 4－111 に示 す。

表 4－111（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 2 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 (kN)			
（1）	S s－D 1	＋＋	7124	30	217.5	0． 14
		－＋	－7090	30		0． 14
		＋＋	5718	24		0． 12
		－＋	－5683	24		0.12
	S	＋＋	4715	20		0． 10
		－＋	－4782	20		0． 10
	S s－F	＋＋	－6756	29		0． 14
	S S －	－＋	6752	29		0.14
		＋＋	6677	28		0． 13
		－＋	－6655	28		0.13
		＋＋	3352	14		0.07
	S 5 F 3	－＋	－3386	15		0.07
	S	＋＋	－7467	31		0.15
	S S －	－＋	7468	31		0.15
（2）	S s－D 2	－＋	－5644	24		0.12
（3）	S s－D 2	－＋	－5537	23		0.11

表 4－111（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 2 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	7086	30	217.5	0.14
		－＋	－7034	30		0． 14
		＋＋	6283	27		0.13
		－＋	－6277	27		0.13
	S	$++$	5042	21		0.10
	S 5 D	－＋	5191	22		0.11
	S s－ 1	$++$	－6889	29		0.14
	S S F 1	－＋	7093	30		0.14
	S	$++$	6399	27		0.13
	S S F 2	－＋	－6374	27		0.13
	S	$++$	3843	16		0.08
	S 5 F 3	－＋	3741	16		0.08
	S	＋＋	－7223	30		0.14
	S S N 1	－＋	7225	30		0.14
（2）	S s－F 1	－＋	7136	30		0． 14
（3）	S s－F 1	－＋	7015	30		0.14

表 4－111（3）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 2 揚水井戸， $\mathrm{t}=55 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\text {sa }}$
			せん断力 （kN）			
（1）	$\mathrm{S} s-\mathrm{D} 1$	$++$	8360	25	210	0． 12
		－＋	－8219	25		0.12
		$++$	7302	22		0.11
		－＋	－7286	22		0.11
	S - D 3	$++$	－6268	19		0.10
	S 5 D	－＋	6269	19		0.10
	S s－ F	$++$	－8884	27		0.13
	S S F 1	－＋	8856	27		0.13
		$++$	7965	24		0． 12
	S	－＋	－8006	24		0． 12
	S	$++$	4238	13		0.07
	S 5 F 3	－＋	－4083	13		0.07
	S s －N1	＋＋	－9156	28		0.14
	S S－N 1	－＋	9138	28		0.14
（2）	S s－D 2	－＋	－7081	21		0.10
（3）	S s－D 2	－＋	－7435	23		0.11

表 4－111（4）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 2 揚水井戸，$\quad \mathrm{t}=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	9456	29	210	0.14
		－＋	－9093	27		0.13
		＋＋	10022	30		0.15
		－＋	－9899	30		0.15
	S	$++$	7426	22		0.11
		－＋	－7498	23		0.11
	S s－ 1	$++$	－10465	31		0.15
	S S F 1	－＋	11528	35		0.17
	S	$++$	9342	28		0.14
	S	－＋	－8641	26		0.13
		$++$	－5470	17		0.09
	S 5 F 3	－＋	5672	17		0.09
	S	＋＋	－10581	32		0.16
	S S N 1	－＋	10520	32		0.16
（2）	S s－F 1	－＋	11707	35		0.17
（3）	S s－F1	－＋	11175	34		0.17

表 4－111（5）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 2 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	$\begin{gathered} \text { せん断 } \\ \text { 応力度 } \\ \tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{s} / \tau_{\text {sa }}$
			せん断力 (kN)			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	－10826	25	210	0． 12
		－＋	10960	26		0． 13
		$++$	9567	23		0.11
		－＋	－9484	22		0.11
	S - D 3	＋＋	－7827	19		0.10
	S 5 D	－＋	7818	18		0.09
	S s－F 1	$++$	10393	24		0． 12
	S S－F1	－＋	－10261	24		0.12
	S $s-\mathrm{F}^{2}$	$++$	－9729	23		0.11
	S S 2	－＋	9830	23		0.11
	Ss－F 3	$++$	6323	15		0.08
	S S F 3	－＋	－6184	15		0.08
	S s－N 1	＋＋	11704	27		0.13
	S S－N1	－＋	－11482	27		0.13
（2）	S s－D 2	－＋	－9306	22		0.11
（3）	S s－D 2	－＋	－9643	23		0.11

表 4－111（6）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 2 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	－12112	28	210	0.14
		－＋	－11103	26		0.13
		＋＋	13436	31		0.15
		－＋	－13147	31		0.15
	S	$++$	9093	21		0.10
	S 5 D	－＋	－9209	22		0.11
	S s－ 1	$++$	－13070	31		0.15
	S S F 1	－＋	14863	35		0.17
	S	$++$	11449	27		0.13
	S	－＋	10236	24		0.12
	S	$++$	7211	17		0.09
	S 5 F 3	－＋	－7773	18		0.09
	S	$++$	－13305	31		0.15
	S S N 1	－＋	13245	31		0.15
（2）	S s－F 1	－＋	15255	36		0.18
（3）	S s－F 1	－＋	14282	33		0.16

（3）排水シャフトの曲げ・軸力系の破壊に対する周方向の照査
表 4－112に排水シャフトの周方向の検討における照査結果を示す。

表 4－112（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 2 揚水井戸， $\mathrm{t}=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{\text {sa }}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	33	－919	161	382.5	0.43
		－＋	32	－905	156		0． 41
	S s－D 2	＋＋	33	－939	164		0． 43
		－＋	33	－938	164		0.43
	S s－D 3	$++$	26	－837	130		0.34
		－＋	25	－825	126		0.33
	S s－F 1	$++$	24	－806	122		0.32
		－＋	23	－790	117		0.31
	S s－F 2	＋＋	25	－811	124		0.33
		－＋	24	－809	123		0.33
	S s－F 3	$++$	21	－841	111		0.30
		－＋	20	－826	107		0.28
	S s－N 1	＋＋	31	－876	154		0.41
		－＋	31	－875	153		0.40
（2）	S s－D 2	－＋	32	－916	158		0． 42
（3）	S s－D 2	－＋	33	－940	163		0． 43

表 4－112（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 2 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	29	－791	144	382.5	0.38
		－＋	28	－771	137		0.36
	S s－D 2	＋＋	26	－749	127		0.34
		－＋	23	－704	113		0． 30
	S s－D 3	＋＋	20	－666	100		0． 27
		－＋	19	－655	96		0． 26
	S s－F 1	＋＋	21	－679	106		0． 28
		－＋	33	－850	160		0． 42
	S s－F 2	＋＋	20	－665	101		0． 27
		$-+$	27	－766	133		0． 35
	Ss－F 3	＋＋	16	－668	85		0． 23
		－＋	16	－663	85		0． 23
	S s－N 1	＋＋	18	－619	91		0． 24
		－＋	18	－617	91		0.24
（2）	S s－F 1	$-+$	33	－853	161		0.43
（3）	S s－F 1	－＋	32	－837	156		0.41

表 4－112（3）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 2 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	51	－1013	129	367.5	0.36
		－＋	50	－1020	126		0． 35
	S s－D 2	＋＋	57	－1082	143		0.39
		－＋	56	－1069	139		0.38
	S s－D 3	＋＋	48	－1019	121		0.33
		－＋	42	－969	108		0.30
	S s－F 1	＋＋	39	－919	102		0.28
		－＋	38	－906	99		0． 27
	S s－F 2	＋＋	39	－941	102		0.28
		－＋	38	－928	99		0． 27
	Ss－F 3	＋＋	36	－972	95		0.26
		－＋	34	－951	90		0． 25
	S s－N 1	$++$	51	－1020	129		0.36
		$-+$	50	－1010	126		0.35
（2）	S s－D 2	$-+$	54	－1050	136		0.38
（3）	S s－D 2	－＋	57	－1085	143		0.39

表 4－112（4）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 2 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	51	－904	126	367.5	0.35
		－＋	48	－890	119		0． 33
	S s－D 2	＋＋	47	－885	118		0.33
		－＋	42	－842	107		0.30
	S s－D 3	＋＋	33	－762	85		0． 24
		－＋	31	－746	81		0． 23
	S s－F 1	＋＋	44	－854	110		0.30
		－＋	59	－999	145		0． 40
	S s－F 2	＋＋	37	－810	95		0.26
		－＋	44	－876	112		0.31
	Ss－F 3	＋＋	30	－799	79		0． 22
		－＋	29	－776	76		0． 21
	S s－N 1	$++$	33	－757	86		0.24
		－＋	33	－753	84		0． 23
（2）	S s－F 1	$-+$	60	－1011	148		0.41
（3）	S s－F 1	－＋	56	－975	139		0.38

表 4－112（5）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 2 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	75	－3764	153	367.5	0.42
		－＋	73	－3729	151		0． 42
	S s－D 2	＋＋	66	－3419	136		0.38
		－＋	64	－3337	133		0.37
	S s－D 3	＋＋	59	－3153	124		0.34
		－＋	59	－3165	124		0.34
	S s－F 1	＋＋	72	－3656	148		0.41
		－＋	72	－3671	149		0.41
	S s－F 2	＋＋	76	－3795	154		0.42
		$-+$	74	－3770	152		0． 42
	S s－F 3	＋＋	59	－1090	93		0.26
		－＋	37	－2276	83		0.23
	S s－N 1	＋＋	72	－3691	149		0.41
		$-+$	73	－3677	149		0.41
（2）	S s－D 2	$-+$	66	－3432	137		0.38
（3）	S s－D 2	－＋	85	－1105	127		0.35

表4－112（6）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 2 揚水井戸， $\mathrm{t}=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	$++$	90	－4368	182	367.5	0.50
		－＋	88	－4277	177		0.49
	S s－D 2	$++$	92	－4467	186		0.51
		－＋	92	－4431	185		0.51
	S s－D 3	$++$	71	－3600	145		0． 40
		－＋	71	－3603	145		0． 40
	S s－F 1	＋＋	98	－4670	196		0.54
		－＋	104	－4951	209		0.57
	S s－F 2	$++$	89	－4319	179		0． 49
		－＋	84	－4144	171		0． 47
	Ss－F 3	＋＋	49	－2740	105		0． 29
		－＋	48	－2704	103		0． 29
	S s－N 1	＋＋	100	－4752	200		0.55
		－＋	100	－4775	201		0.55
（2）	S s－F 1	$-+$	111	－5230	222		0.61
	S s－N 1	－＋	108	－5088	215		0.59
（3）	S s－F 1	－＋	97	－4634	194		0.53

（4）集水ピットの曲げ・軸力系の破壊に対する軸方向の照査
表 4－113 に集水ピットの曲げ・軸力系の破壊に対する軸方向照査の実施ケースと照査値を示す。

表 4－113（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮応力度$\sigma^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{c a}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	10251	－42710	1.2	16． 5	0.08
		－＋	－12055	－41036	1.2		0.08
	S s－D 2	$++$	－15066	－39763	1． 3		0.08
		$-+$	13335	－41060	1． 3		0.08
	S s－D 3	$++$	－10572	－43768	1． 3		0.08
		$-+$	8343	－43673	1． 2		0.08
	S s－F 1	$++$	－14144	－40365	1． 3		0.08
		－＋	13645	－41509	1． 3		0.08
	Ss－F 2	$++$	－13259	－41299	1． 3		0.08
		$-+$	13032	－42541	1． 3		0.08
	Ss－F 3	＋＋	17742	－42589	1.4		0.09
		$-+$	－17370	－40877	1． 3		0.08
	S s－N 1	$++$	－19236	－37481	1． 3		0.08
		$-+$	18295	－39035	1． 3		0.08
（2）	S s－D 2	$-+$	14237	－40406	1． 3		0.08
（3）	S s－D 2	－＋	13812	－41606	1． 3		0.08

表 4－113（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮応力度$\sigma^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{c a}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{\mathrm{c}} / \sigma^{\prime}{ }_{\mathrm{ca}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	$++$	8225	－40966	1． 2	16.5	0.08
		－＋	－11324	－42001	1.2		0.08
	S s－D 2	$++$	－6809	－43094	1． 2		0.08
		－＋	－23209	－34772	1． 3		0.08
	Ss－D 3	＋＋	－11055	－39749	1.2		0.08
		－＋	－10394	－40130	1． 2		0.08
	S s－F 1	＋＋	－11039	－37958	1.1		0.07
		－＋	11043	－39423	1.2		0.08
	S s－F 2	＋＋	－11097	－38825	1． 2		0.08
		－＋	11438	－38734	1． 2		0.08
	Ss－F 3	＋＋	15734	－40980	1． 3		0.08
		－＋	－16435	－38807	1． 3		0.08
	S s－N 1	＋＋	－15579	－33883	1.1		0.07
		－＋	18557	－37395	1． 3		0.08
（2）	S s－D 2	$++$	－8198	－41632	1． 2		0.08
（3）	S s－D 2	$++$	－8252	－42862	1． 2		0.08

表 4－113（3）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		引張応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	－13557	－6454	2.0	324	0.01
		$-+$	14697	－7746	1.6		0.01
	S s－D 2	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－D 3	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－F 1	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－F 2	$++$	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	Ss－F 3	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－N 1	＋＋	25677	－14295	2.2		0.01
		$-+$	－25135	－13304	2.6		0.01
（2）	S s－D 2	$-+$	－	－	圧縮		－＊
（3）	S s－D 2	$-+$	－	－	圧縮		－＊

注記＊：軸方向の全長において全圧縮状態となるケース

表4－113（4）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		引張応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	－16065	－11469	0.2	324	0.01
		－＋	16266	－11106	0.4		0.01
	S s－D 2	$++$	－19490	－11285	1.4		0.01
		－＋	19964	－11997	1． 2		0.01
	S s－D 3	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－F 1	＋＋	19478	－11755	1． 2		0.01
		－＋	－21369	－9254	4． 3		0.02
	Ss－F 2	＋＋	－	－	圧縮		－＊
		－＋	24314	－15678	1.0		0.01
	Ss－F 3	＋＋	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－N 1	＋＋	24819	－11575	4.0		0.02
		－＋	－22893	－9545	5.2		0.02
（2）	S s－D 2	$++$	－18018	－11684	0.7		0.01
（3）	S s－D 2	＋＋	－21287	－11144	2.3		0.01

注記 $*: ~$ 軸方向の全長において全圧縮状態となるケース
（5）集水ピットのせん断破壊に対する軸方向の照査
表 4－114 に集水ピットのせん断破壊に対する軸方向照査の実施ケースと照査値を示す。

表 4－114（1）集水ピット 軸方向照査におけるせん断破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／V
（1）	$\mathrm{Ss}-\mathrm{D} 1$	＋＋	13356	33473	0． 40
		－＋	12530		0． 38
	S s－D 2	＋＋	14648		0． 44
		－＋	14211		0． 43
	S s－D 3	＋＋	12910		0.39
		－＋	12525		0.38
	S s－F1	＋＋	12256		0． 37
		－＋	13303		0.40
	S s－F 2	＋＋	16016		0.48
		－＋	16209		0.49
	Ss－F 3	＋＋	15570		0． 47
		－＋	14764		0.45
	S s－N 1	＋＋	15018		0.45
		－＋	15788		0.48
（2）	S s－D 2	－＋	13539		0.41
（3）	S s－D 2	－＋	14968		0． 45

表 4－114（2）集水ピット 軸方向照査におけるせん断破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ V / V_{a} \end{gathered}$
（1）	S s－D 1	＋＋	10989	33473	0.33
		－＋	12003		0.36
	S s－D 2	＋＋	12963		0.39
		－＋	11570		0.35
	S s－D 3	＋＋	10814		0.33
		－＋	10412		0.32
	S s－F 1	＋＋	9989		0． 30
		－＋	10553		0.32
	S s－F 2	＋＋	11902		0.36
		－＋	11813		0.36
	S s－F 3	＋＋	14001		0． 42
		－＋	12993		0． 39
	S s－N 1	＋＋	11860		0.36
		－＋	13193		0． 40
（2）	S s－D 2	＋＋	12182		0.37
（3）	S s－D 2	＋＋	13360		0． 40

（6）集水ピットの周方向の照査
表 4－115に集水ピットの周方向の検討における照査結果を示す。なお，集水ピットの周方向の検討における周方向鉄筋を対象とした鉄筋応力度の照査においては，集水ピット の全周において全圧縮状態となることを確認している。

表 4－115（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ圧縮応力度$\sigma_{\mathrm{c}}{ }_{\mathrm{c}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{c a}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	－299	－2811	1． 8	16.5	0.11
		$-+$	－198	－2525	1.5		0． 10
	S s－D 2	$++$	－340	－2961	1.9		0． 12
		$-+$	－209	－2582	1.6		0． 10
	S s－D 3	$++$	－274	－2722	1． 7		0.11
		－＋	－318	－2882	1． 8		0.11
	S s－F 1	$++$	－172	－2413	1． 4		0.09
		$-+$	－267	－2700	1． 7		0． 11
	S s－F 2	$++$	－162	－2350	1． 4		0.09
		－＋	－221	－2534	1.5		0． 10
	Ss－F 3	$++$	－324	－2900	1.9		0． 12
		$-+$	－218	－2634	1． 6		0． 10
	S s－N 1	$++$	－182	－2451	1.5		0.10
		$-+$	－248	－2630	1． 6		0.10
（2）	S s－D 2	$-+$	－201	－2497	1.5		0． 10
（3）	S s－D 2	－＋	－290	－2792	1． 8		0.11

表 4－115（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{c}^{\prime} / \sigma_{c a}^{\prime}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	－314	－3153	2.0	16． 5	0.13
		－＋	－268	－2932	1.8		0． 11
	S s－D 2	＋＋	－407	－3179	2.1		0.13
		－＋	－368	－3040	2． 0		0.13
	S s－D 3	＋＋	－241	－2799	1． 7		0.11
		$-+$	－215	－2673	1.6		0.10
	S s－F 1	$++$	－176	－2644	1.5		0． 10
		$-+$	－271	－2945	1． 8		0.11
	S s－F 2	$++$	－267	－2680	1． 7		0.11
		$-+$	－399	－3152	2.1		0.13
	S s－F 3	$++$	－336	－2927	1.9		0.12
		$-+$	－221	－2704	1.6		0． 10
	S s－N 1	＋＋	－205	－2783	1.6		0． 10
		－＋	－233	－2765	1． 7		0.11
（2）	S s－D 2	$++$	－418	－3208	2.1		0.13
（3）	S s－D 2	$++$	－410	－3204	2.1		0． 13

表 4－115（3）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	S s－D 1	＋＋	SD345 D 22×30 本／周＠ 300 せん断補強鉄筋	272	1497	0． 19
		－＋		224		0.15
	S s－D 2	＋＋		310		0.21
		－＋		237		0.16
	S s－D 3	＋＋		249		0.17
		－＋		290		0． 20
	S s－F 1	$++$		195		0.14
		－＋		243		0.17
	S s－F 2	＋＋		183		0.13
		－＋		201		0． 14
	S s－F 3	$++$		294		0． 20
		－＋		247		0.17
	S s－N 1	$++$		207		0.14
		－＋		225		0.16
（2）	S s－D 2	－＋		227		0.16
（3）	S s－D 2	－＋		264		0． 18

表 4－115（4）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／Va
（1）	S s－D 1	＋＋	$\begin{gathered} \mathrm{SD} 345 \\ \mathrm{D} 22 \times 30 \text { 本/周@ } \\ 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	356	1497	0． 24
		－＋		304		0.21
	S s－D 2	＋＋		370		0.25
		$-+$		335		0． 23
	Ss－D 3	$++$		273		0． 19
		－＋		243		0.17
	S s－F 1	$++$		200		0.14
		$-+$		307		0． 21
	S s－F 2	＋＋		243		0.17
		－＋		363		0.25
	Ss－F 3	＋＋		306		0.21
		－＋		251		0.17
	S s－N 1	$++$		232		0.16
		－＋		265		0.18
（2）	S s－D 2	$++$		380		0． 26
（3）	S s－D 2	＋＋		373		0． 25

（7）集水ピットの底版の照査
表 4－116に集水ピットの底版の検討における照査結果を示す。

表 4－116（1）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

表 4－116（2）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮応力度$\sigma^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime}{ }_{c} \sigma_{\text {ca }}^{\prime}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$			
（1）	S s－D 1	＋＋	－1878	3.8	16.5	0.24
		－＋	－2004	4.1		0.25
	S s－D 2	＋＋	－1926	3.9		0.24
		－＋	－1881	3.8		0． 24
	S	$++$	－1891	3.9		0． 24
		－＋	－1917	3.9		0． 24
		＋＋	－1901	3.9		0． 24
	S S F 1	－＋	－1806	3.7		0． 23
		＋＋	－1896	3.9		0． 24
		－＋	－1784	3.6		0． 22
	S	＋＋	－1975	4.0		0． 25
	S 5 F 3	－＋	－2020	4.1		0.25
	S s－N1	＋＋	－1723	3.5		0.22
	S ${ }^{\text {S }} 1$	－＋	－1756	3.6		0． 22
（2）	S s－D 2	$++$	－1941	4.0		0.25
（3）	S s－D 2	＋＋	－1920	3.9		0.24

表 4－116（3）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{s} / \sigma_{\text {sa }}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$			
（1）	S s－D 1	＋＋	－2018	159	324	0.50
		－＋	－2047	162		0.50
	S s－D 2	＋＋	－2030	160		0.50
		－＋	－2101	166		0.52
	S s－D 3	＋＋	－2098	166		0.52
		－＋	－1918	151		0.47
	S	＋＋	－2012	159		0.50
	S S F 1	－＋	－1954	154		0.48
	S	＋＋	－2080	164		0.51
	S	－＋	－1985	157		0． 49
		＋＋	－2084	164		0.51
	S 5 F 3	－＋	－2144	169		0.53
	S	＋＋	－1974	156		0.49
	S S N 1	－＋	－1873	148		0． 46
（2）	S s－D 2	$-+$	－2091	165		0.51
（3）	S s－D 2	－＋	－2110	167		0.52

表 4－116（4）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \hline \text { 発生断面力 } \\ \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	－1878	148	324	0． 46
		－＋	－2004	158		0． 49
		$++$	－1926	152		0． 47
		－＋	－1881	148		0． 46
		＋＋	－1891	149		0． 46
		－＋	－1917	151		0． 47
		$++$	－1901	150		0． 47
	S S F 1	$-+$	－1806	143		0． 45
		$++$	－1896	150		0． 47
	S	$-+$	－1784	141		0． 44
		$++$	－1975	156		0． 49
	S S F 3	－＋	－2020	159		0.50
	S	$++$	－1723	136		0． 42
	S S 1	－＋	－1756	139		0． 43
（2）	S s－D 2	$++$	－1941	153		0． 48
（3）	S s－D 2	＋＋	－1920	152		0． 47

表 4－116（5）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／V
（1）	S s－D 1	＋＋	$\begin{gathered} \mathrm{SD} 345 \\ \text { D25@250×500 } \end{gathered}$ せん断補強鉄筋	1122	2384	0.48
		－＋		1137		0.48
	S s－D 2	＋＋		1128		0． 48
		－＋		1168		0． 49
	Ss－D 3	＋＋		1166		0． 49
		－＋		1066		0.45
	S s－F 1	＋＋		1118		0． 47
		－＋		1086		0.46
	S s－F 2	＋＋		1156		0． 49
		－＋		1104		0． 47
	Ss－F 3	＋＋		1158		0． 49
		－＋		1192		0.50
	S s－N 1	＋＋		1097		0． 47
		－＋		1041		0． 44
（2）	S s－D 2	－＋		1162		0． 49
（3）	S s－D 2	－＋		1173		0.50

表 4－116（6）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／V
（1）	S s－D 1	＋＋	$\begin{gathered} \text { SD345 } \\ \text { D25@250×500 } \\ \text { せん断補強鉄筋 } \end{gathered}$	1044	2384	0． 44
		－＋		1114		0． 47
	S s－D 2	＋＋		1070		0． 45
		－＋		1046		0． 44
	Ss－D 3	＋＋		1051		0． 45
		－＋		1066		0． 45
	S s－F 1	＋＋		1057		0． 45
		－＋		1004		0． 43
	Ss－F 2	$++$		1054		0． 45
		－＋		992		0． 42
	Ss－F 3	＋＋		1098		0． 47
		－＋		1123		0． 48
	S s－N 1	＋＋		958		0.41
		－＋		976		0.41
（2）	S s－D 2	＋＋		1079		0． 46
（3）	S s－D 2	＋＋		1067		0． 45

（8）集水ピットの隅角部の照査
表 4－117に集水ピットの隅角部の検討における照査結果を示す。

表 4－117（1）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

表 4－117（2）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{\mathrm{c}} / \sigma^{\prime}{ }_{\mathrm{ca}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$			
（1）	S s－D 1	＋＋	2873	5.6	16.5	0． 34
		－＋	2887	5.6		0.34
	S s－D 2	$++$	2893	5.6		0.34
		$-+$	2763	5.4		0.33
	S s－D 3	＋＋	2609	5.1		0.31
		$-+$	2629	5.1		0.31
	S	$++$	2596	5.1		0.31
	S 5 F 1	$-+$	2766	5.4		0.33
		$++$	2695	5.3		0.33
		－＋	2813	5.5		0． 34
		$++$	2613	5.1		0.31
	S 5	$-+$	2735	5.3		0.33
	S	$++$	2680	5.2		0． 32
	S 5 － 1	$-+$	2852	5.6		0.34
（2）	S s－D 1	$-+$	2895	5.6		0.34
	S s－D 2	$++$	2980	5.8		0.36
（3）	S s－ 2	＋＋	2897	5.6		0.34

表 4－117（3）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		短期許容	
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{s}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	S s－D 1	＋＋	2678	170	324	0.53
		－＋	2846	181		0.56
	S s－D 2	＋＋	2835	180		0.56
		－＋	2989	190		0.59
	S s－D 3	＋＋	2593	165		0.51
		－＋	2690	171		0.53
	S s－F 1	＋＋	2554	163		0.51
		－＋	2464	157		0． 49
	S s－F 2	＋＋	2689	171		0.53
		$-+$	2413	154		0． 48
	S s－F 3	＋＋	2589	165		0.51
		－＋	2682	171		0.53
	S s－N 1	＋＋	2783	177		0.55
		－＋	2320	148		0.46
（2）	S s－D 2	－＋	2924	186		0.58
（3）	S s－D 1	－＋	2879	183		0.57
	S s－D 2	－＋	2961	188		0.59

表 4－117（4）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		短期許容	
			曲げモーメント （kN•m）	$\begin{gathered} \text { 応力度 } \\ \sigma_{s}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	2873	183	324	0.57
		－＋	2887	184		0.57
	S s－D 2	＋＋	2893	184		0.57
		－＋	2763	176		0.55
	S s－D 3	＋＋	2609	166		0.52
		－＋	2629	167		0.52
	S s－F 1	$++$	2596	165		0.51
		－＋	2766	176		0.55
	S s－F 2	$++$	2695	171		0.53
		$-+$	2813	179		0.56
	Ss－F 3	＋＋	2613	166		0.52
		－＋	2735	174		0.54
	S s－N 1	＋＋	2680	171		0.53
		－＋	2852	181		0.56
（2）	S s－D 1	－＋	2895	184		0.57
	S s－D 2	$++$	2980	190		0.59
（3）	S s－D 2	$++$	2897	184		0.57

（9）接合部（アンカーボルト）に対する照査
表 4－118に接合部（アンカーボルト）の照査結果一覧を示す。

表 4－118（1）接合部（アンカーボルト）引張応力度に対する評価結果
（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1 本当たりの 引張力（N）	$\begin{gathered} \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	$++$	78466	19	295	0.07
		－＋	50773	12	295	0.05
	S s－D 2	＋＋	4221	1	295	0.01
		－＋	20	1	295	0.01
	S s－D 3	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－F 1	$++$	14179	4	295	0.02
		－＋	22700	6	295	0.03
	S s－F 2	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－F 3	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－N 1	$++$	60727	14	295	0.05
		－＋	75760	18	295	0.07
（2）	S s－D 2	$-+$	－	圧縮	295	－＊
（3）	S s－D 2	－＋	2933	1	295	0.01

注記＊：全圧縮状態となるケース

表 4－118（2）接合部（アンカーボルト）引張応力度に対する評価結果 （No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1 本当たりの 引張力（ N ）	$\begin{gathered} \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ B\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 （A／B）
（1）	S s－D 1	＋＋	59336	14	295	0.05
		－＋	63798	15	295	0.06
	S s－D 2	$++$	123258	29	295	0.10
		$-+$	94155	22	295	0.08
	S s－D 3	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－F 1	＋＋	85936	20	295	0.07
		－＋	175219	41	295	0.14
	S s－F 2	＋＋	13865	4	295	0.02
		$-+$	5722	2	295	0.01
	S s－F 3	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－N 1	＋＋	150299	35	295	0.12
		－＋	156563	37	295	0.13
（2）	S s－D 2	＋＋	86345	20	295	0.07
	S s－F 1	－＋	129629	30	295	0.11
（3）	S s－D 2	＋＋	150105	35	295	0.12
	S s－ 1	－＋	223683	52	295	0.18

注記＊：全圧縮状態となるケース

表 4－118（3）接合部（アンカーボルト）せん断応力度に対する評価結果
（No． 2 揚水井戸）（全応力解析）

表 4－118（4）接合部（アンカーボルト）せん断応力度に対する評価結果 （No． 2 揚水井戸）（有効応力解析）

（10）接合部（コンクリート）に対する照査
表 4－119 に接合部（コンクリート）の照査の実施ケースと照査値を示す。

表 4－119（1）接合部（コンクリート）引張力に対する評価結果
（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 応答値 A（kN）	許容限界 B（kN）	照查値 （A／B）
（1）	S s－D 1	＋＋	79	1738	0.05
		－＋	51		0.03
	S s－D 2	＋＋	5		0.01
		－＋	1		0.01
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	15		0.01
		－＋	23		0． 02
	S s－F 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－N 1	＋＋	61		0.04
		－＋	76		0.05
（2）	S s－D 2	－＋	圧縮		－＊
（3）	Ss－D 2	－＋	3		0.01

注記 $*$ ：全圧縮状態となるケース

表 4－119（2）接合部（コンクリート）引張力に対する評価結果
（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 応答值 A（kN）	許容限界 B（kN）	照査値 （A／B）
（1）	S s－D 1	＋＋	60	1738	0.04
		－＋	64		0.04
	Ss－D 2	＋＋	124		0.08
		－＋	95		0.06
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	86		0.05
		－＋	176		0.11
	S s－F 2	＋＋	14		0.01
		－＋	6		0.01
		＋＋	圧縮		－＊
	S S－F 3	－＋	圧縮		－＊
	S s - N 1	＋＋	151		0.09
		－＋	157		0． 10
（2）	S s－D 2	＋＋	87		0.06
	S s－F 1	－＋	130		0.08
（3）	S s－D 2	＋＋	151		0． 09
	S s－F 1	－＋	224		0． 13

注記＊：全圧縮状態となるケース
（11）接合部（ベースプレート）に対する照査
表 4－120に接合部（ベースプレート）の諸元及び照査値を示す。

表 4－120（1）接合部（ベースプレート）曲げ応力度に対する評価結果
（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期計容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	＋＋	71511	88	400	0． 22
		－＋	72648	89		0． 23
	S s－D 2	＋＋	64104	79		0． 20
		－＋	64409	79		0.20
	S s－D 3	＋＋	63360	78		0.20
		－＋	63891	79		0.20
	S s－F 1	＋＋	71589	88		0． 22
		－＋	69853	86		0． 22
	S s－F 2	＋＋	67872	84		0.21
		－＋	66193	82		0.21
	S s－F 3	$++$	61238	75		0.19
		－＋	60802	75		0.19
	S s－N 1	＋＋	74105	91		0.23
		$-+$	75027	92		0.23
（2）	S s－D 2	－＋	64985	80		0.20
（3）	S s－D 2	－＋	71095	88		0． 22

表 4－120（2）接合部（ベースプレート）曲げ応力度に対する評価結果 （No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期計容 応力度 $B\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	＋＋	75698	93	400	0.24
		－＋	73463	90		0.23
	S s－D 2	＋＋	76971	95		0.24
		$-+$	73185	90		0.23
	S s－D 3	$++$	65288	80		0.20
		－＋	61889	76		0.19
		＋＋	72800	90		0.23
		－＋	80075	99		0.25
		＋＋	66501	82		0.21
	S 5 F 2	－＋	67073	83		0.21
	S－F 3	＋＋	64383	79		0.20
	S S F 3	－＋	67229	83		0.21
	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	＋＋	80318	99		0.25
		－＋	77586	96		0． 24
（2）	S s－D 2	＋＋	68576	84		0.21
	S s－F 1	－＋	71318	88		0． 22
（3）	S s－D 2	$++$	85592	105		0.27
	S s－F 1	－＋	89402	110		0.28

（12）接合部（フランジプレート）に対する照査
表 4－121 に接合部（フランジプレート）の照査の実施ケースと照査値を示す。

表 4－121（1）接合部（フランジプレート）曲げ応力度に対する評価結果
（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \text { 発生断面力 } \\ \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 照査用 } \\ \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	$++$	45033	109	400.0	0.28
		－＋	43761	106		0． 27
	S s－D 2	＋＋	45320	109		0． 28
		－＋	43356	105		0． 27
	S	＋＋	43757	106		0． 27
	S 5 D 3	－＋	42819	103		0． 26
		＋＋	43176	104		0． 26
	S S F 1	－＋	42701	103		0． 26
		＋＋	43893	106		0． 27
	S 5 F 2	－＋	42812	103		0． 26
	S－F 3	＋＋	43422	105		0． 27
	S S F 3	－＋	43113	104		0.26
		＋＋	45837	111		0． 28
	S S N 1	－＋	49025	118		0.30
（2）	S s－D 2	－＋	45309	109		0.28
（3）	S s－D 2	－＋	42016	101		0． 26

表 4－121（2）接合部（フランジプレート）曲げ応力度に対する評価結果 （No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	$\begin{gathered} \text { 照査用 } \\ \text { 応力度 } \\ \text { A }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$			
（1）	S s－D 1	＋＋	43569	105	400	0． 27
		$-+$	44448	107		0． 27
	S s－D 2	＋＋	52200	126		0． 32
		－＋	46827	113		0． 29
	S s－D 3	＋＋	41363	100		0． 25
		－＋	41207	99		0． 25
		＋＋	44491	107		0． 27
	S S － 1	－＋	59430	143		0.36
	S	＋＋	41269	100		0.25
	S 5 － 2	－＋	43739	105		0.27
		＋＋	42598	103		0.26
	S F	－＋	42009	101		0． 26
		＋＋	50197	121		0.31
	S S N 1	－＋	56170	135		0.34
	S s－D 2	$++$	47435	114		0． 29
（2）	S s－F 1	－＋	53445	129		0.33
	S s－D 2	$++$	55613	134		0.34
	S s－F 1	－＋	65019	157		0． 40

（13）接合部（リブプレート）に対する照査
表 4－122 に接合部（リブプレート）の照査の実施ケースと照査値を示す。

表 4－122（1）接合部（リブプレート）せん断応力度に対する評価結果
（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		短期許容	直
			せん断力 （N）	$\begin{gathered} \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ B\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	(A/B)
（1）	S s－D 1	＋＋	907742	51	230.9	0． 23
		－＋	922167	52		0． 23
	S s－D 2	＋＋	813709	46		0． 20
		－＋	817585	46		0． 20
	S s－D 3	＋＋	804270	45		0． 20
		－＋	811009	46		0． 20
	S s－F 1	＋＋	908722	51		0． 23
		－＋	886692	50		0.22
	S s－F 2	$++$	861547	48		0.21
		$-+$	840236	47		0.21
	S s－F 3	＋＋	777329	44		0.20
		－＋	771802	43		0． 19
	S s－N 1	＋＋	940668	53		0.23
		－＋	952372	53		0.23
（2）	S s－D 2	$-+$	824892	46		0． 20
（3）	S s－D 2	－＋	902457	51		0.23

表 4－122（2）接合部（リブプレート）せん断応力度に対する評価結果 （No． 2 揚水井戸）（有効応力解析）

解析ケース	地震動		発生断面力	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 B（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 （A／B）
			せん断力 （N）			
（1）	S s－D 1	$++$	960891	54	230.9	0． 24
		－＋	932509	52		0． 23
	S s－D 2	＋＋	977042	55		0． 24
		－＋	928984	52		0.23
	S s－D 3	＋＋	828740	47		0.21
		－＋	785599	44		0． 20
	S	＋＋	924096	52		0.23
	S s F 1	－＋	1016445	57		0． 25
		＋＋	844140	47		0.21
	S 5 F 2	－＋	851401	48		0.21
	S－F 3	＋＋	817253	46		0． 20
	S S F 3	－＋	853385	48		0.21
		$++$	1019535	57		0.25
	S S N 1	－＋	984853	55		0． 24
	S s－D 2	$++$	870484	49		0． 22
（2）	S s－F 1	－＋	905290	51		0． 23
（3）	S s－D 2	＋＋	1086473	61		0.27
（3）	S s－F 1	－＋	1134840	64		0.28

（14）基礎地盤の支持性能に対する照査
表 4－123に揚水井戸の基礎地盤の支持性能に対する照査の実施ケースと照査値を示 す。

表 4－123（1）基礎地盤の支持性能に対する評価結果
（No． 2 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 R_{d} （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	極限支持力 Ru （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	$\begin{aligned} & \text { 照查値 } \\ & R_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}} \end{aligned}$
（1）	S s－D 1	＋＋	1.2	13.7	0.09
		－＋	1.2		0.09
	S s－D 2	＋＋	1.2		0.09
		－＋	1.2		0.09
	S s－D 3	＋＋	1.2		0.09
		－＋	1.1		0． 09
	S s－F 1	＋＋	1.2		0． 09
		－＋	1.1		0.09
	S s－F 2	＋＋	1.2		0． 09
		－＋	1.2		0.09
	S s－F 3	＋＋	1.2		0． 09
		－＋	1.2		0.09
	S s－N 1	＋＋	1.1		0.09
		－＋	1.1		0.09
（2）	S s－D 2	－＋	1.2		0.09
（3）	S s－D 2	－＋	1.2		0.09

表 4－123（2）基礎地盤の支持性能に対する評価結果
（No． 2 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 $\begin{gathered} \mathrm{R}_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	極限支持力 $\begin{gathered} \mathrm{R}_{\mathrm{u}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	S s－D 1	＋＋	1.1	13.7	0.09
		－＋	1.2		0.09
	S s－D 2	$++$	1.1		0.09
		－＋	1.1		0.09
	Ss－D 3	＋＋	1.1		0.09
		－＋	1.1		0.09
	S s－F 1	＋＋	1.1		0.09
		－＋	1.1		0.09
	Ss－F 2	＋＋	1.1		0.09
		$-+$	1.0		0.08
	Ss－F 3	＋＋	1.1		0.09
		－＋	1.2		0.09
	S s -N 1	$++$	1.0		0.08
		－＋	1.0		0.08
（2）	S s－D 2	$++$	1.1		0.09
（3）	S s－D 2	＋＋	1.1		0.09

4．2．3 No． 3 揚水井戸
（1）排水シャフトの曲げ・軸力系の破壊に対する軸方向の照査表 4－124 に排水シャフトの曲げ・軸力系の破壊に対する軸方向照査結果一覧を示す。

表 4－124（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 3 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	－64435	－3169	141	382.5	0.37
		－＋	66328	－1744	142		0.38
	S s－D 2	＋＋	－43545	－4744	101		0． 27
		－＋	－45777	－4193	104		0.28
	S s－D 3	＋＋	－39941	－3144	90		0.24
		－＋	40748	－1152	87		0． 23
	S s－F 1	＋＋	57111	－1224	121		0.32
		$-+$	－55604	－2974	122		0.32
	S s－F 2	＋＋	－67352	－3382	147		0.39
		$-+$	68269	－112	142		0． 38
	Ss－F 3	＋＋	－30486	－3395	71		0.19
		－＋	29325	－1955	65		0.17
	S s－N 1	＋＋	81285	79	169		0.45
		$-+$	－78552	－3821	171		0.45
（2）	S s－D 2	$-+$	－44024	－4213	100		0.27
（3）	S s－D 2	－＋	－47239	－4122	107		0． 28

表4－124（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 3 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{s} / \sigma_{s a}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	$++$	44536	－3563	100	382.5	0． 27
		－＋	－48571	－4282	110		0． 29
	S s－D 2	$++$	－38262	－5777	92		0． 25
		－＋	－40284	－2456	89		0． 24
	S s－D 3	$++$	－36719	－2646	82		0.22
		$-+$	－33735	－2140	75		0． 20
	S s－F 1	＋＋	－47744	－6104	112		0.30
		$-+$	－48528	－2581	106		0． 28
	Ss －F 2	$++$	－51871	－1796	112		0.30
		$-+$	41430	－594	88		0． 24
	S s－F 3	$++$	－34538	－1413	75		0． 20
		$-+$	36634	－1721	80		0． 21
	S s－N 1	$++$	68184	－3342	149		0． 39
		－＋	－67944	－4418	150		0． 40
（2）	S s－N 1	$++$	67898	－2857	147		0.39
（3）	S s－N 1	＋＋	69100	－3391	151		0． 40

表 4－124（3）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 3 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	－78057	－3086	121	367.5	0.33
		－＋	81414	767	122		0． 34
	S s－D 2	＋＋	68008	1189	103		0． 29
		－＋	－67473	－4857	108		0.30
	S s－D 3	$++$	－52248	－3457	83		0． 23
		$-+$	－50703	－3587	81		0． 23
	S s－F 1	＋＋	76738	－505	115		0.32
		$-+$	－73800	－4931	117		0.32
	S s－F 2	＋＋	－86371	－4475	135		0.37
		－＋	88742	－180	132		0.36
	Ss－F 3	＋＋	－34200	－3726	57		0.16
		－＋	32200	－2102	51		0． 14
	S s－N 1	＋＋	107830	735	161		0.44
		$-+$	－103705	－4898	161		0.44
（2）	S s－D 2	$-+$	－65646	－4986	105		0.29
（3）	S s－D 2	－＋	－68337	－4969	109		0． 30

表 4－124（4）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 3 揚水井戸，$\quad \mathrm{t}=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	64838	－3646	102	367.5	0． 28
		$-+$	－78705	－7832	129		0.36
	S s－D 2	＋＋	－58220	－7458	98		0． 27
		－＋	－50941	－4015	82		0． 23
	S s－D 3	$++$	－50747	－6201	85		0． 24
		－＋	－51082	－5439	84		0.23
	S s－F 1	＋＋	－73391	－7970	121		0.33
		－＋	－71402	－3260	111		0.31
	Ss－F 2	＋＋	－64087	－3034	100		0.28
		$-+$	60183	－662	91		0． 25
	Ss－F 3	＋＋	－37601	－3631	62		0.17
		$-+$	41373	4220	68		0.19
	S s－N 1	＋＋	105451	－998	158		0.43
		$-+$	－104983	－3711	161		0.44
（2）	S s－N 1	＋＋	106103	－434	158		0． 43
（3）	S s－N 1	$++$	104622	－1562	158		0.43

表4－124（5）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 3 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	－84473	－3950	102	367.5	0.28
		－＋	－86044	－5811	106		0． 29
	S s－D 2	＋＋	77803	1084	91		0.25
		－＋	－76802	－5501	95		0.26
	S s－D 3	＋＋	－58409	－5206	74		0.21
		－＋	－56219	－5613	72		0.20
	S s－F 1	＋＋	87800	－1172	103		0． 29
		$-+$	－84248	－5829	104		0.29
	$\mathrm{S} s$－F 2	＋＋	－94309	－4604	114		0.32
		$-+$	96556	－860	112		0． 31
	Ss－F 3	＋＋	－35757	－2998	45		0.13
		－＋	－31059	－6203	43		0.12
	S s－N 1	＋＋	119406	799	139		0.38
		$-+$	－114652	－4982	138		0.38
（2）	S s－D 2	$-+$	－75573	－5325	93		0.26
（3）	S s－D 2	－＋	－77007	－5653	95		0.26

表4－124（6）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 3 揚水井戸，$\quad \mathrm{t}=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	74677	－4171	91	367.5	0.25
		－＋	－97840	－8704	123		0． 34
	S s－D 2	＋＋	－71514	－7262	91		0.25
		－＋	67865	1204	80		0． 22
	S s－D 3	＋＋	－61092	－6929	79		0． 22
		－＋	－65677	－6177	83		0． 23
	S s－F 1	＋＋	－85958	－9031	110		0.30
		－＋	－83076	－3447	100		0.28
	S s－F 2	＋＋	－68053	－4944	84		0.23
		－＋	69221	－884	81		0.23
	Ss－F 3	＋＋	－47091	－3746	59		0.17
		－＋	52729	4756	67		0． 19
	S s－N 1	＋＋	123830	－851	144		0.40
		$-+$	－124780	－3560	148		0.41
（2）	S s－N 1	$++$	125082	－732	145		0.40
（3）	S s－N 1	＋＋	121917	－1293	142		0.39

（2）排水シャフトのせん断破壊に対する軸方向の照査
排水シャフトのせん断破壊に対する軸方向照査の実施ケースと照査値を表 4－125 に示 す。

表 4－125（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 3 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 短期許容 } \\ \text { 応力度 } \\ \tau_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 (kN)			
（1）	S s－D 1	＋＋	－6911	29	217.5	0． 14
		－＋	6910	29		0． 14
		＋＋	6895	29		0． 14
		－＋	－7005	30		0． 14
		＋＋	5466	23		0.11
	S 5 D 3	－＋	－5119	22		0.11
		$++$	－7061	30		0.14
	S 51	－＋	－6879	29		0． 14
	S	＋＋	6877	29		0.14
		－＋	－6588	28		0.13
		＋＋	－3741	16		0.08
	S 5 F 3	－＋	－4040	17		0.08
	S	＋＋	－8511	36		0.17
	S S N 1	－＋	8370	35		0.17
（2）	S s－D 2	－＋	－7061	30		0.14
（3）	S s－D 2	－＋	－6945	29		0.14

表 4－125（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 3 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{s} / \tau_{\text {sa }}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	－6701	28	217.5	0.13
		－＋	8918	37		0.18
		$++$	7494	32		0.15
		－＋	－7457	31		0.15
		＋＋	5892	25		0． 12
	S 5 D	－＋	6413	27		0.13
	S	$++$	－7602	32		0.15
	SS F 1	－＋	－7821	33		0.16
	S - F 2	$++$	－6516	28		0.13
	S 5	－＋	5699	24		0.12
	S s－F 3	＋＋	4661	20		0.10
	S S F 3	－＋	－5758	24		0． 12
	S s－N1	$++$	－10443	44		0.21
	S S N	－＋	9948	42		0． 20
（2）	S s－N 1	$++$	－10682	45		0.21
（3）	S s－N 1	$++$	－10158	43		0.20

表 4－125（3）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 3 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	－7954	24	210	0.12
		－＋	7831	24		0． 12
		＋＋	9047	27		0.13
		－＋	－9210	28		0.14
	S	$++$	6699	20		0.10
	S 5 D	－＋	－6592	20		0.10
	S s F	$++$	8037	24		0.12
	S S F 1	－＋	－8477	26		0.13
	S	$++$	7400	22		0.11
	S	－＋	－7499	23		0.11
		$++$	－5396	16		0.08
	SS F 3	－＋	5640	17		0.09
	S	＋＋	－9147	28		0.14
	S S N 1	－＋	9044	27		0.13
（2）	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$	－＋	－9316	28		0． 14
（3）	S s－D 2	－＋	－9094	27		0.13

表 4－125（4）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 3 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	9101	27	210	0.13
		－＋	11858	36		0.18
		＋＋	11311	34		0.17
		－＋	－10199	31		0.15
	S	$++$	7989	24		0． 12
		－＋	8870	27		0.13
	S s－ 1	$++$	10340	31		0.15
	S S F 1	－＋	－9332	28		0.14
	S	$++$	－9638	29		0.14
	S	－＋	8064	24		0.12
	S	$++$	7537	23		0.11
	S 5 F 3	－＋	－8451	26		0.13
	S	＋＋	－11667	35		0.17
	S S N 1	－＋	11742	35		0.17
（2）	S s－N 1	$++$	－12114	36		0.18
（3）	S s－N 1	＋＋	－11182	34		0.17

表 4－125（5）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 3 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{s}}$
			せん断力 （kN）			
（1）	$\mathrm{S} s-\mathrm{D} 1$	$++$	－8943	21	210	0． 10
		－＋	9553	22		0.11
		$++$	9174	22		0.11
		－＋	－9371	22		0.11
	S - D 3	$++$	6802	16		0.08
	S 5 D	－＋	－6692	16		0.08
	S	＋＋	8116	19		0.10
	S S F 1	－＋	－8588	20		0.10
		$++$	－9331	22		0.11
	S 5	－＋	9431	22		0.11
	S	$++$	－5812	14		0.07
	S S F 3	－＋	－6171	15		0.08
		＋＋	12043	28		0.14
	S S－N 1	－＋	－11038	26		0.13
（2）	S s－D 2	－＋	－9488	22		0.11
（3）	S s－D 2	－＋	－9240	22		0.11

表 4－125（6）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 3 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	9441	22	210	0.11
		－＋	12121	28		0． 14
		＋＋	11914	28		0.14
		－＋	－10604	25		0.12
	S	$++$	8511	20		0.10
		－＋	9102	21		0.10
	S s－ 1	$++$	10755	25		0.12
	S S F 1	－＋	－9410	22		0.11
		＋＋	－10224	24		0.12
	S	－＋	8304	20		0.10
	S	$++$	8120	19		0.10
	S 5 F 3	－＋	－8918	21		0.10
	S	$++$	－11662	27		0.13
	S S N 1	－＋	11848	28		0.14
（2）	S s－N 1	$++$	－12149	28		0.14
（3）	S s－N 1	＋＋	11388	27		0.13

（3）排水シャフトの曲げ・軸力系の破壊に対する周方向の照査
表 4－126に排水シャフトの周方向の検討における照査結果を示す。

表 4－126（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 3 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査值$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	33	－1162	168	382.5	0． 44
		－＋	32	－1145	165		0． 44
	S s－D 2	＋＋	32	－1141	165		0． 44
		$-+$	34	－1172	174		0． 46
	S s－D 3	＋＋	34	－1172	172		0.45
		－＋	30	－1118	156		0.41
	S s－F 1	$++$	26	－1056	137		0.36
		$-+$	23	－1001	121		0． 32
	S s－F 2	$++$	25	－1037	131		0.35
		$-+$	24	－1009	128		0.34
	S s－F 3	＋＋	22	－1067	122		0． 32
		－＋	21	－997	114		0． 30
	S s－N 1	$++$	34	－1160	174		0． 46
		－＋	29	－1062	147		0.39
（2）	S s－D 2	－＋	36	－1187	180		0． 48
（3）	S s－D 2	－＋	33	－1157	168		0． 44

表 4－126（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 3 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	23	－857	120	382.5	0.32
		－＋	30	－960	150		0． 40
	S s－D 2	＋＋	24	－868	124		0.33
		－＋	27	－911	136		0.36
	S s－D 3	＋＋	21	－825	110		0． 29
		－＋	20	－810	105		0． 28
	S s－F 1	＋＋	26	－903	131		0.35
		－＋	17	－696	89		0.24
	Sc －F 2	＋＋	32	－1008	161		0.43
		－＋	17	－720	91		0.24
	Ss－F 3	＋＋	16	－831	88		0． 24
		－＋	23	－938	122		0． 32
	S s－N 1	$++$	13	－303	61		0.16
		$-+$	27	－899	135		0.36
（2）	S s－N 1	$++$	13	－309	63		0.17
（3）	S s－N 1	＋＋	17	－752	91		0． 24

表 4－126（3）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 3 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	52	－1226	134	367.5	0.37
		－＋	53	－1260	138		0． 38
	S s－D 2	＋＋	52	－1244	135		0.37
		－＋	57	－1293	147		0.40
	S s－D 3	＋＋	58	－1307	149		0.41
		－＋	48	－1215	127		0.35
	S s－F 1	＋＋	46	－1194	121		0.33
		－＋	37	－1068	99		0． 27
	Sc －F 2	＋＋	43	－1169	115		0.32
		－＋	40	－1156	108		0.30
	Ss－F 3	＋＋	35	－1123	97		0． 27
		－＋	36	－1180	100		0． 28
	S s－N 1	$++$	55	－1279	142		0.39
		$-+$	45	－1057	116		0.32
（2）	S s－D 2	$-+$	59	－1302	150		0.41
（3）	S s－D 2	－＋	55	－1278	142		0.39

表 4－126（4）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 3 揚水井戸，$\quad \mathrm{t}=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	37	－880	95	367.5	0． 26
		$-+$	47	－961	119		0.33
	S s－D 2	＋＋	38	－892	99		0． 27
		－＋	43	－918	109		0． 30
	S s－D 3	＋＋	33	－811	87		0.24
		－＋	32	－797	84		0.23
	S s－F 1	＋＋	41	－882	104		0． 29
		－＋	27	－906	76		0.21
	$\mathrm{Ss}-\mathrm{F} 2$	＋＋	51	－1011	129		0.36
		$-+$	24	－766	67		0． 19
	Ss－F 3	＋＋	25	－821	69		0.19
		$-+$	36	－941	96		0.27
	S s－N 1	＋＋	26	－762	71		0． 20
		$-+$	43	－879	108		0.30
（2）	S s－N 1	＋＋	26	－733	70		0． 20
（3）	S s－N 1	$++$	27	－745	73		0． 20

表 4－126（5）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 3 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	78	－3683	155	367.5	0.43
		－＋	72	－3488	146		0． 40
	S s－D 2	＋＋	63	－3133	128		0.35
		－＋	67	－3302	137		0.38
	S s－D 3	$++$	85	－1333	131		0.36
		$-+$	88	－1343	134		0.37
	S s－F 1	＋＋	72	－3490	146		0.40
		$-+$	70	－3412	142		0.39
	S s－F 2	＋＋	62	－3247	128		0.35
		－＋	74	－3558	149		0.41
	S s－F 3	＋＋	48	－1180	80		0． 22
		－＋	51	－1192	85		0． 24
	S s－N 1	＋＋	84	－3940	168		0.46
		－＋	60	－3169	125		0.35
（2）	S s－D 2	－＋	72	－3477	145		0． 40
（3）	S s－D 2	$-+$	61	－3069	125		0.35

表 4－126（6）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 3 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	78	－3551	155	367.5	0.43
		－＋	73	－3719	150		0． 41
	S s－D 2	＋＋	55	－3023	116		0.32
		－＋	79	－3574	156		0.43
	S s－D 3	＋＋	59	－2828	119		0.33
		－＋	57	－2746	115		0.32
	S s－F 1	＋＋	78	－3521	153		0.42
		－＋	79	－3561	155		0． 43
	S s－F 2	＋＋	73	－3346	144		0.40
		$-+$	64	－2997	127		0． 35
	S s－F 3	＋＋	36	－2337	82		0． 23
		－＋	61	－2884	122		0.34
	S s－N 1	＋＋	110	－4719	212		0.58
		$-+$	75	－3792	154		0． 42
（2）	S s－N 1	$++$	117	－4977	225		0.62
（3）	S s－N 1	＋＋	101	－4394	196		0.54

（4）集水ピットの曲げ・軸力系の破壊に対する軸方向の照査
表 4－127に集水ピットの曲げ・軸力系の破壊に対する軸方向照査の実施ケースと照査値を示す。

表 4－127（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{c a}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma^{\prime}{ }_{\text {ca }}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	11186	－38924	1． 2	16.5	0.08
		$-+$	8289	－40551	1． 2		0.08
	S s－D 2	$++$	8786	－43754	1． 2		0.08
		－＋	19003	－35136	1． 2		0.08
	Ss－D 3	$++$	13212	－35131	1.1		0.07
		$-+$	11555	－40753	1． 2		0.08
	S s－F 1	$++$	－8038	－37351	1.1		0.07
		$-+$	11878	－40693	1． 2		0.08
	S s－F 2	$++$	－8757	－39137	1.1		0.07
		$-+$	13255	－38513	1． 2		0.08
	Ss－F 3	$++$	14851	－41360	1． 3		0.08
		$-+$	－10781	－37957	1.1		0.07
	S s－N 1	$++$	8704	－37538	1.1		0.07
		$-+$	18527	－35622	1． 2		0.08
（2）	S s－D 2	$-+$	18853	－34685	1． 2		0.08
（3）	S s－D 2	$-+$	19151	－35773	1． 2		0.08

表 4－127（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma_{c a}^{\prime}$
			曲げモーメント （kN•m）	軸力 (kN)			
（1）	S s－D 1	＋＋	8366	－41586	1． 2	16.5	0.08
		－＋	11917	－34329	1.1		0.07
	S s－D 2	＋＋	12565	－34263	1.1		0.07
		－＋	3987	－41057	1.1		0.07
	S s－D 3	＋＋	8031	－39497	1.1		0.07
		－＋	9483	－35284	1.1		0． 07
	S s－F 1	＋＋	－7638	－41699	1.2		0.08
		－＋	10139	－37154	1.1		0.07
	S s－F 2	＋＋	－13825	－32994	1.1		0.07
		－＋	9685	－36761	1.1		0.07
	S s－F 3	$++$	11557	－39188	1． 2		0.08
		－＋	－6467	－40037	1.1		0.07
	S s－N 1	＋＋	9275	－32997	1.0		0.07
		－＋	17064	－29494	1.1		0.07
（2）	S s－D 1	－＋	12329	－33626	1.1		0.07
（3）	S s－D 1	－＋	6736	－40332	1.1		0.07

表 4－127（3）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		引張応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	－	－	圧縮	324	－＊
		－＋	13704	－6102	2.6		0.01
	S s－D 2	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－D 3	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－F 1	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	Ss－F 2	＋＋	20744	－12857	1.1		0.01
		－＋	－	－	圧縮		－＊
	S s－F 3	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－N 1	＋＋	23480	－13510	1． 7		0.01
		－＋	－	－	圧縮		－＊
（2）	S s－D 2	－＋	－	－	圧縮		－＊
（3）	S s－D 2	－＋	－	－	圧縮		－＊

注記 $*: ~$ 軸方向の全長において全圧縮状態となるケース

表 4－127（4）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		引張応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	$++$	－	－	圧縮	324	－＊
		－＋	－	－	圧縮		－＊
	S s－D 2	$++$	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－D 3	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－F 1	$++$	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－F 2	$++$	16550	－6799	3.9		0.02
		$-+$	－17810	－12868	0． 2		0.01
	Ss－F 3	$++$	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－N 1	＋＋	21785	－12540	1.6		0.01
		－＋	－24686	－8682	8.6		0.03
（2）	S s－D 1	$-+$	－	－	圧縮		－＊
（3）	S s－D 1	－＋	－	－	圧縮		－＊

注記 $*: ~$ 軸方向の全長において全圧縮状態となるケース
（5）集水ピットのせん断破壊に対する軸方向の照査
表 4－128に集水ピットのせん断破壊に対する軸方向照査の実施ケースと照査値を示 す。

表 4－128（1）集水ピット 軸方向照査におけるせん断破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	$\mathrm{Ss}-\mathrm{D} 1$	＋＋	13603	33473	0.41
		－＋	14466		0． 44
	S s－D 2	＋＋	15779		0.48
		－＋	16767		0.51
	S s－D 3	＋＋	13441		0.41
		－＋	15210		0.46
	S s－F 1	＋＋	14399		0． 44
		－＋	13011		0.39
	S s－F 2	＋＋	17177		0.52
		－＋	17026		0.51
	S s－F 3	＋＋	15180		0.46
		－＋	17302		0.52
	S s－N 1	＋＋	16920		0.51
		－＋	16297		0.49
（2）	S s－D 2	－＋	15877		0.48
（3）	S s－D 2	－＋	17744		0.54
	S s－F 3	－＋	17563		0.53

表 4－128（2）集水ピット 軸方向照査におけるせん断破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ V / V_{a} \end{gathered}$
（1）	S s－D 1	＋＋	12754	33473	0.39
		－＋	12045		0.36
	S s－D 2	＋＋	12500		0.38
		－＋	13835		0． 42
	S s－D 3	$++$	12427		0.38
		－＋	11184		0.34
	S s－F 1	$++$	11162		0． 34
		－＋	10525		0.32
	S s－F 2	＋＋	15188		0． 46
		－＋	12646		0.38
	S s－F 3	＋＋	13240		0． 40
		－＋	12655		0.38
	S s－N 1	＋＋	13577		0.41
		－＋	14227		0． 43
（2）	S s－D 1	－＋	11293		0.34
（3）	S s－D 1	－＋	13382		0． 40

（6）集水ピットの周方向の照査
表 4－129 に集水ピットの周方向の検討における照査結果を示す。なお，集水ピットの周方向の検討における周方向鉄筋を対象とした鉄筋応力度の照査においては，集水ピット の全周において全圧縮状態となることを確認している。

表 4－129（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma^{\prime}{ }_{\text {ca }}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	$++$	－365	－2732	1． 8	16.5	0.11
		－＋	－290	－2561	1． 7		0.11
	S s－D 2	$++$	－334	－2633	1． 7		0.11
		$-+$	－320	－2658	1． 7		0.11
	Ss－D 3	＋＋	－363	－2798	1.9		0． 12
		－＋	－296	－2582	1.7		0.11
	S s－F 1	$++$	－310	－2629	1． 7		0.11
		－＋	－213	－2240	1.4		0.09
	S s－F 2	$++$	－321	－2664	1． 7		0.11
		$-+$	－286	－2478	1． 6		0． 10
	Ss－F 3	＋＋	－270	－2424	1.6		0． 10
		－＋	－320	－2661	1． 7		0． 11
	S s－N 1	$++$	－251	－2438	1.5		0.10
		－＋	－333	－2629	1． 7		0.11
（2）	S s－D 2	$-+$	－322	－2654	1． 7		0.11
（3）	S s－D 2	$-+$	－343	－2669	1． 8		0.11

表 4－129（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{c a}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{\mathrm{c}} / \sigma^{\prime}{ }_{\mathrm{ca}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	$++$	－470	－3133	2． 2	16． 5	0． 14
		－＋	－361	－2779	1.9		0． 12
	S s－D 2	$++$	－290	－2505	1． 6		0． 10
		$-+$	－306	－2557	1． 7		0.11
	Ss－D 3	＋＋	－350	－2701	1． 8		0.11
		－＋	－230	－2355	1.5		0． 10
	S s－F 1	＋＋	－309	－2612	1． 7		0.11
		－＋	－287	－2540	1.6		0． 10
	S s－F 2	$++$	－306	－2601	1． 7		0.11
		$-+$	－300	－2538	1． 7		0.11
	S s－F 3	＋＋	－312	－2579	1． 7		0.11
		－＋	－327	－2671	1． 8		0.11
	S s－N 1	$++$	－275	－2500	1.6		0.10
		－＋	－235	－2371	1.5		0． 10
（2）	S s－D 1	$-+$	－371	－2805	1.9		0． 12
（3）	S s－D 1	$-+$	－370	－2814	1.9		0.12

表 4－129（3）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／Va
（1）	S s－D 1	＋＋	$\begin{gathered} \mathrm{SD} 345 \\ \mathrm{D} 22 \times 30 \text { 本/周@ } \\ 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	314	1497	0.21
		－＋		249		0.17
	S s－D 2	＋＋		287		0． 20
		$-+$		275		0． 19
	S s－D 3	$++$		312		0.21
		－＋		254		0.17
	S s－F 1	$++$		267		0.18
		$-+$		183		0.13
	S s－F 2	＋＋		276		0． 19
		－＋		246		0． 17
	Ss－F 3	＋＋		232		0.16
		－＋		275		0． 19
	S s－N 1	$++$		216		0.15
		－＋		286		0． 20
（2）	S s－D 2	－＋		277		0． 19
（3）	S s－D 2	－＋		295		0． 20

表 4－129（4）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ V / V_{a} \end{gathered}$
（1）	S s－D 1	＋＋	$\begin{gathered} \text { SD345 } \\ \text { D22×30本/周@ } \\ 300 \\ \text { せん断補強鉄筋 } \end{gathered}$	404	1497	0.27
		－＋		310		0.21
	S s－D 2	＋＋		249		0． 17
		－＋		263		0.18
	S s－D 3	＋＋		301		0.21
		－＋		197		0.14
	S s－F 1	＋＋		266		0． 18
		－＋		247		0.17
	S s－F 2	＋＋		263		0． 18
		－＋		257		0.18
	S s－F 3	＋＋		268		0.18
		－＋		281		0.19
	S s－N 1	＋＋		236		0.16
		－＋		202		0． 14
（2）	S s－D 1	－＋		319		0． 22
（3）	S s－D 1	－＋		318		0． 22

（7）集水ピットの底版の照査
表 4－130に集水ピットの底版の検討における照査結果を示す。

表 4－130（1）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

表 4－130（2）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma_{c a}^{\prime}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$			
（1）	S s－D 1	＋＋	－1742	3.6	16.5	0． 22
		$-+$	－1719	3.5		0． 22
	S s－D 2	＋＋	－1676	3.4		0.21
		－＋	－1691	3.5		0． 22
		＋＋	－1716	3.5		0． 22
		－＋	－1653	3.4		0.21
	S s F 1	＋＋	－1701	3.5		0． 22
		－＋	－1562	3.2		0． 20
		＋＋	－1632	3.3		0． 20
		－＋	－1582	3.2		0． 20
	S	＋＋	－1653	3.4		0.21
	S 5 F 3	－＋	－1677	3.4		0.21
	S s－N1	＋＋	－1487	3.0		0． 19
	S S N 1	－＋	－1551	3.2		0． 20
（2）	S s－D 1	$-+$	－1674	3.4		0.21
（3）	S s－D 1	－＋	－1738	3.6		0． 22

表 4－130（3）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \hline \text { 発生断面力 } \\ \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	$\mathrm{S} s-\mathrm{D} 1$	＋＋	－1785	141	324	0.44
		－＋	－1745	138		0.43
		$++$	－1834	145		0.45
		－＋	－1787	141		0.44
		＋＋	－1715	135		0.42
	S 5 D 3	$-+$	－1683	133		0.42
		$++$	－1657	131		0.41
	S S F 1	－＋	－1667	132		0.41
		＋＋	－1691	134		0.42
		$-+$	－1677	132		0.41
		$++$	－1701	134		0.42
	S S F 3	$-+$	－1764	139		0． 43
	S s－N1	$++$	－1624	128		0.40
	S S N 1	－＋	－1762	139		0.43
（2）	S s－D 2	$-+$	－1779	141		0.44
（3）	S s－D 2	－＋	－1809	143		0.45

表 4－130（4）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \hline \text { 発生断面力 } \\ \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	S s－D 1	$++$	－1742	138	324	0． 43
		－＋	－1719	136		0.42
		＋＋	－1676	132		0.41
		－＋	－1691	134		0.42
		＋＋	－1716	135		0.42
		－＋	－1653	131		0.41
		$++$	－1701	134		0． 42
	S S F 1	－＋	－1562	123		0.38
	S	＋＋	－1632	129		0.40
	S	－＋	－1582	125		0.39
		$++$	－1653	131		0.41
	$\mathrm{So}-\mathrm{F} 3$	－＋	－1677	132		0.41
	S	＋＋	－1487	117		0． 37
	S S N 1	－＋	－1551	122		0.38
（2）	S s－D 1	－＋	－1674	132		0.41
（3）	S s－D 1	－＋	－1738	137		0.43

表 4－130（5）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 V／V
（1）	Sc －D 1	$++$	$\begin{gathered} \text { SD345 } \\ \text { D25@250×500 } \end{gathered}$ せん断補強鉄筋	992	2384	0． 42
		－＋		970		0． 41
	S s－D 2	＋＋		1019		0． 43
		－＋		993		0． 42
	S s－D 3	$++$		953		0． 40
		－＋		935		0． 40
	S s－F 1	$++$		921		0.39
		－＋		927		0． 39
	S s－F 2	$++$		940		0． 40
		－＋		932		0． 40
	S s－F 3	＋＋		946		0． 40
		－＋		980		0． 42
	S s－N 1	＋＋		903		0． 38
		－＋		979		0． 42
（2）	S s－D 2	－＋		989		0． 42
（3）	S s－D 2	－＋		1006		0． 43

表 4－130（6）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

（8）集水ピットの隅角部の照査
表 4－131 に集水ピットの隅角部の検討における照査結果を示す。

表 4－131（1）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮応力度$\sigma^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{d} / \sigma^{\prime}{ }_{c a}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$			
（1）	S s－D 1	＋＋	2638	5.1	16.5	0.31
		－＋	2588	5.0		0.31
	S s－D 2	＋＋	2708	5.3		0.33
		－＋	2754	5.4		0． 33
	S s－D 3	＋＋	2732	5.3		0.33
		－＋	2591	5.1		0.31
		＋＋	2559	5.0		0.31
	S S F 1	－＋	2213	4． 3		0． 27
		$++$	2589	5.0		0.31
		－＋	2425	4.7		0． 29
	S	＋＋	2278	4.4		0． 27
		－＋	2637	5.1		0.31
		＋＋	2444	4.8		0． 30
		－＋	2524	4.9		0.30
	S s－D 2	－＋	2760	5.4		0.33
	S s－D 3	＋＋	2766	5.4		0.33
（3）	S s－D 2	－＋	2750	5.4		0.33

表 4－131（2）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

表 4－131（3）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		短期許容	
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	S s－D 1	$++$	2638	168	324	0.52
		－＋	2588	165		0.51
	S s－D 2	＋＋	2708	172		0.54
		－＋	2754	175		0.55
	S s－D 3	$++$	2732	174		0.54
		－＋	2591	165		0.51
	S s－F 1	$++$	2559	163		0.51
		－＋	2213	141		0.44
	S s－F 2	$++$	2589	165		0.51
		$-+$	2425	154		0.48
	S s－F 3	$++$	2278	145		0.45
		$-+$	2637	168		0.52
	S s－N 1	$++$	2444	156		0． 49
		－＋	2524	161		0.50
（2）	S s－D 2	$-+$	2760	176		0.55
	S s－D 3	$++$	2766	176		0.55
（3）	S s－D 2	－＋	2750	175		0.55

表 4－131（4）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 3 揚水井戸）（有効応力解析）

（9）接合部（アンカーボルト）に対する照査
表 4－132 に接合部（アンカーボルト）の照査結果一覧を示す。

表 4－132（1）接合部（アンカーボルト）引張応力度に対する評価結果
（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1 本当たりの 引張力（ N ）	$\begin{gathered} \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	応力度 $B\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	＋＋	－	圧縮	295	－＊
		－＋	29491	7	295	0.03
	S s－D 2	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－D 3	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－F 1	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	$\mathrm{S} s$－F 2	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	Ss－F 3	$++$	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－N 1	$++$	17389	5	295	0.02
		－＋	9410	3	295	0.02
（2）	S s－D 2	$-+$	－	圧縮	295	－＊
（3）	S s－ 2	－＋	－	圧縮	295	－＊

注記＊：全圧縮状態となるケース

表 4－132（2）接合部（アンカーボルト）引張応力度に対する評価結果 （No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1 本当たりの 引張力（N）	$\begin{gathered} \text { 応力度 } \\ \text { A(} \left.\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期計容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	＋＋	－	圧縮	295	－＊
		－＋	3553	1	295	0.01
	S s－D 2	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－D 3	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－F 1	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	Ss －F 2	$++$	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	Ss－F 3	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－N 1	＋＋	24253	6	295	0.03
		－＋	227413	53	295	0． 18
（2）	S s－D 1	－＋	2968	1	295	0.01
	S s－N 1	＋＋	28948	7	295	0.03
（3）	S s－D 1	－＋	4514	2	295	0.01
	S s－N 1	＋＋	25734	6	295	0． 03

注記＊：全圧縮状態となるケース

表 4－132（3）接合部（アンカーボルト）せん断応力度に対する評価結果
（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1 本当たりの せん断力（N）	応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	応力度 $B\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	$++$	134617	32	170.3	0． 19
		－＋	140456	33		0． 20
	S s－D 2	＋＋	128621	30		0.18
		$-+$	121899	29		0.18
	S s－D 3	$++$	100769	24		0.15
		－＋	103507	24		0.15
	S s－F1	$++$	107642	25		0.15
		$-+$	113462	27		0． 16
	S s－F 2	$++$	133614	31		0． 19
		$-+$	134766	32		0． 19
	S s－F 3	$++$	96511	23		0.14
		$-+$	115728	27		0.16
	S s－N 1	$++$	129310	30		0． 18
		－＋	137117	32		0.19
（2）	S s－D 2	－＋	110785	26		0.16
（3）	S s－D 2	－＋	133562	31		0． 19

表 4－132（4）接合部（アンカーボルト）せん断応力度に対する評価結果 （No． 3 揚水井戸）（有効応力解析）

解析ケース	地震動		発生断面力			
			アンカーボルト 1本当たりの せん断力（ N ）	応力度 A $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 応力度 } \\ \mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 （A／B）
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	114953	27	170.3	0.16
		－＋	122596	29		0.18
	S s－D 2	$++$	124009	29		0.18
		$-+$	122092	29		0.18
	S s－D 3	＋＋	106319	25		0.15
		－＋	95741	23		0.14
		＋＋	116937	27		0.16
	S	－＋	119037	28		0.17
	S－F 2	＋＋	125794	29		0.18
		$-+$	130991	31		0.19
		＋＋	85972	20		0.12
		－＋	89502	21		0.13
	S s－N 1	＋＋	121771	29		0.18
		－＋	161764	38		0． 23
（2）	S s－D 1	－＋	112499	26		0.16
	S s－N 1	＋＋	112237	26		0.16
（3）	S s－D 1	－＋	135624	32		0.19
	S s - N 1	＋＋	133441	31		0.19

（10）接合部（コンクリート）に対する照査
表 4－133 に接合部（コンクリート）の照査の実施ケースと照査値を示す。

表 4－133（1）接合部（コンクリート）引張力に対する評価結果
（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 応答値 A（kN）	許容限界 B（kN）	照査値 （A／B）
（1）	S s－D 1	＋＋	圧縮	1738	－＊
		－＋	30		0.02
	S s－D 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s - N 1	＋＋	18		0． 02
		－＋	10		0.01
（2）	S s－D 2	－＋	圧縮		－＊
（3）	S s－D 2	－＋	圧縮		－＊

注記 $*$ ：全圧縮状態となるケース

表 4－133（2）接合部（コンクリート）引張力に対する評価結果
（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用応答值 A（kN）	許容限界 B（kN）	照査値 $(\mathrm{A} / \mathrm{B})$
（1）	S s－D 1	＋＋	圧縮	1738	－＊
		－＋	4		0.01
	S s－D 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S	＋＋	圧縮		－＊
		－＋	圧縮		－＊
		＋＋	圧縮		－＊
	S S－F 3	－＋	圧縮		－＊1
	S s - N 1	＋＋	25		0.02
		－＋	228		0． 14
（2）	S s－D 1	－＋	3		0.01
	S s - N 1	＋＋	29		0.02
（3）	S s－D 1	－＋	5		0.01
	S s－N 1	＋＋	26		0.02

注記＊：全圧縮状態となるケース
（11）接合部（ベースプレート）に対する照査
表 4－134に接合部（ベースプレート）の諸元及び照査値を示す。

表 4－134（1）接合部（ベースプレート）曲げ応力度に対する評価結果
（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \text { 発生断面力 } \\ \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	＋＋	69077	85	400	0． 22
		－＋	71399	88		0． 22
		＋＋	64198	79		0． 20
		－＋	64716	80		0． 20
		$++$	67682	83		0.21
	S 5 D 3	－＋	63599	78		0． 20
		$++$	62311	77		0． 20
	S S F 1	－＋	63593	78		0． 20
	S	＋＋	65878	81		0.21
	So F 2	－＋	59473	73		0． 19
		＋＋	60834	75		0． 19
	S S F 3	－＋	62695	77		0． 20
	S	＋＋	65986	81		0.21
	S S N 1	－＋	72287	89		0． 23
（2）	S s－D 2	－＋	62375	77		0． 20
（3）	S s－D 2	－＋	68780	85		0． 22

表 4－134（2）接合部（ベースプレート）曲げ応力度に対する評価結果 （No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	照査用 応力度 A（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	短期許容 応力度 B（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 （A／B）
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$			
（1）	S s－D 1	＋＋	68926	85	400	0． 22
		－＋	71749	88		0． 22
	S s－D 2	＋＋	66105	81		0.21
		－＋	62079	77		0.20
	S s－D 3	＋＋	65928	81		0.21
		－＋	63512	78		0． 20
		＋＋	72406	89		0． 23
	S ${ }^{\text {F }} 1$	－＋	63279	78		0.20
	Ss－F 2	＋＋	65012	80		0． 20
		－＋	64922	80		0.20
	S	＋＋	65785	81		0.21
	S ${ }^{\text {F }} 3$	－＋	63350	78		0． 20
		＋＋	60862	75		0． 19
	S ${ }^{\text {N }} 1$	－＋	87809	108		0.27
	S s－D 1	－＋	70125	86		0.22
	S s - N 1	＋＋	57258	71		0． 18
	S s－D 1	－＋	73934	91		0.23
	S s - N 1	＋＋	65038	80		0． 20

（12）接合部（フランジプレート）に対する照査
表 4－135に接合部（フランジプレート）の照査の実施ケースと照査値を示す。

表 4－135（1）接合部（フランジプレート）曲げ応力度に対する評価結果
（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	$\begin{gathered} \text { 照査用 } \\ \text { 応力度 } \\ A\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$			
（1）	S s－D 1	$++$	46991	113	400	0． 29
		－＋	46506	112		0． 28
	S s－D 2	＋＋	48099	116		0． 29
		－＋	45318	109		0.28
		＋＋	46826	113		0． 29
		－＋	45466	110		0． 28
		＋＋	45034	109		0.28
	S S F 1	－＋	43945	106		0.27
		＋＋	47139	114		0． 29
	$\mathrm{So}-\mathrm{F} 2$	－＋	43240	104		0.26
	S -F 3	＋＋	43775	106		0.27
	S 5 F 3	－＋	47184	114		0． 29
	S	＋＋	43718	105		0.27
	S S N1	－＋	48612	117		0.30
（2）	S s－D 2	－＋	46100	111		0.28
（3）	S s－D 2	$-+$	44721	108		0.27

表 4－135（2）接合部（フランジプレート）曲げ応力度に対する評価結果 （No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	$\begin{gathered} \text { 照査用 } \\ \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			$\begin{gathered} \text { 宅生䉼罒) } \\ \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$			
（1）	S s－D 1	＋＋	44305	107	400	0． 27
		－＋	44211	107		0． 27
	S s－D 2	$++$	43945	106		0． 27
		$-+$	44164	106		0． 27
	S s－D 3	＋＋	45040	109		0． 28
		－＋	43570	105		0． 27
		＋＋	45389	109		0． 28
	S	－＋	43497	105		0． 27
		＋＋	43091	104		0． 26
		－＋	43945	106		0． 27
		＋＋	44863	108		0.27
	S 5 F 3	－＋	44493	107		0.27
		＋＋	41131	99		0.25
	S S N 1	－＋	61897	149		0.38
	S s－D 1	－＋	44915	108		0． 27
	S s－N 1	＋＋	41090	99		0.25
	S s－D 1	－＋	43648	105		0． 27
（3）	S s－N 1	＋＋	41048	99		0． 25

（13）接合部（リブプレート）に対する照査
表 4－136 に接合部（リブプレート）の照査の実施ケースと照査値を示す。

表 4－136（1）接合部（リブプレート）せん断応力度に対する評価結果
（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度 B（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 （A／B）
			せん断力 （N）			
（1）	S s－D 1	＋＋	876842	49	230.9	0． 22
		－＋	906318	51		0． 23
		＋＋	814915	46		0.20
		－＋	821481	46		0． 20
		＋＋	859133	48		0.21
	S 5 D 3	－＋	807309	45		0.20
		$++$	790957	44		0.20
	S S F 1	－＋	807226	45		0． 20
		$++$	836240	47		0.21
	S 5 － 2	－＋	754932	42		0.19
	S－F 3	＋＋	772211	43		0.19
	S S F 3	－＋	795830	45		0.20
	S	$++$	837602	47		0.21
	S S N 1	－＋	917583	51		0.23
（2）	S s－D 2	$-+$	791768	44		0.20
（3）	S s－D 2	－＋	873073	49		0.22

表 4－136（2）接合部（リブプレート）せん断応力度に対する評価結果 （No． 3 揚水井戸）（有効応力解析）

解析ケース	地震動		発生断面力	$\begin{gathered} \text { 照査用 } \\ \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 B（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	照査値 （A／B）
			せん断力 （N）			
（1）	S s－D 1	＋＋	874930	49	230.9	0． 22
		－＋	910762	51		0． 23
	S s－D 2	＋＋	839113	47		0.21
		－＋	788014	44		0． 20
	S s－D 3	＋＋	836869	47		0.21
		－＋	806203	45		0． 20
	S	＋＋	919092	52		0.23
	S 5	－＋	803244	45		0． 20
		＋＋	825244	46		0． 20
	S 5 F 2	－＋	824104	46		0． 20
	S－F 3	＋＋	835056	47		0.21
	S S F 3	－＋	804143	45		0． 20
		$++$	772561	43		0.19
	S S N 1	－＋	1114619	62		0． 27
	S s－D 1	－＋	890142	50		0.22
（2）	S s－N 1	$++$	726821	41		0.18
	S s－D 1	－＋	938496	53		0.23
（3）	S s－N 1	＋＋	825571	46		0． 20

（14）基礎地盤の支持性能に対する照査
表 4－137に揚水井戸の基礎地盤の支持性能に対する照査の実施ケースと照査値を示 す。

表 4－137（1）基礎地盤の支持性能に対する評価結果
（No． 3 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 $\begin{gathered} \mathrm{R}_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	極限支持力 $\begin{gathered} \mathrm{R}_{\mathrm{u}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	S s－D 1	＋＋	1.0	11.4	0.09
		－＋	1.0		0.09
	S s－D 2	＋＋	1.1		0． 10
		－＋	1.0		0.09
	S s－D 3	＋＋	1.0		0.09
		－＋	1.0		0.09
	S s－F 1	＋＋	1.0		0.09
		－＋	1.0		0.09
	S s－F 2	＋＋	1． 0		0.09
		－＋	1.0		0.09
	Ss－F 3	＋＋	1.0		0.09
		－＋	1.0		0.09
	S s－N 1	＋＋	1.0		0.09
		－＋	1.0		0.09
（2）	S s－D 2	－＋	1.0		0.09
（3）	S s－D 2	－＋	1.1		0． 10

表 4－137（2）基礎地盤の支持性能に対する評価結果
（No． 3 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 $\begin{gathered} \mathrm{R}_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	極限支持力 $\begin{gathered} \mathrm{R}_{\mathrm{u}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	S s－D 1	＋＋	1.0	11.4	0.09
		－＋	1.0		0.09
	S s－D 2	$++$	1.0		0.09
		－＋	1.0		0.09
	Ss－D 3	＋＋	1.0		0.09
		－＋	1.0		0.09
	S s－F 1	＋＋	1.0		0.09
		－＋	0.9		0.08
	Ss－F 2	$++$	1.0		0.09
		－＋	0.9		0.08
	$\mathrm{Ss}-\mathrm{F} 3$	＋＋	1.0		0.09
		－＋	1.0		0.09
	S s－N 1	＋＋	0.9		0.08
		－＋	0.9		0.08
（2）	S s－D 1	－＋	1.0		0.09
（3）	S s－D 1	－＋	1． 0		0.09

4．2．4 No． 4 揚水井戸
（1）排水シャフトの曲げ・軸力系の破壊に対する軸方向の照査表 4－138 に排水シャフトの曲げ・軸力系の破壊に対する軸方向照査結果一覧を示す。

表 4－138（1）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 4 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	57131	－804	121	382.5	0.32
		－＋	62553	－2166	135		0． 36
	S s－D 2	＋＋	－44324	－3807	100		0． 27
		－＋	46997	－2247	103		0． 27
	S s－D 3	＋＋	－40456	－2857	90		0.24
		－＋	－38823	－2268	86		0． 23
	S s－F 1	＋＋	54326	－1670	117		0.31
		－＋	－52027	－2815	114		0.30
	S s－F 2	＋＋	－61170	－2843	133		0.35
		－＋	66999	－1442	142		0.38
	Ss－F 3	＋＋	－29470	－3085	68		0.18
		－＋	28485	－2293	64		0.17
	S s－N 1	$++$	84140	－473	176		0.47
		$-+$	－82933	－3105	179		0.47
（2）	S s－D 2	$-+$	46369	－1946	101		0.27
（3）	S s－D 2	－＋	49098	－1964	106		0． 28

表 4－138（2）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 4 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	46954	－5199	109	382.5	0． 29
		－＋	－51922	－3827	116		0.31
	S s－D 2	＋＋	42855	－2178	94		0.25
		－＋	38942	－1266	84		0． 22
	S s－D 3	＋＋	－39181	－4445	91		0． 24
		－＋	39913	－1934	87		0． 23
	S s－F 1	＋＋	51014	－1508	109		0． 29
		－＋	44661	－5880	105		0.28
	Sc －F 2	＋＋	－48627	－2721	107		0.28
		－＋	55641	－2116	120		0.32
	Ss－F 3	＋＋	－35616	－1878	78		0.21
		－＋	32320	－3355	74		0． 20
	S s－N 1	＋＋	73528	－3153	159		0.42
		$-+$	－70505	－4742	156		0.41
（2）	S s－N 1	$++$	74004	－2633	159		0.42
（3）	S s－N 1	＋＋	73221	－3198	159		0.42

表 4－138（3）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 4 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ応力度 $\sigma_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	79410	－698	119	367.5	0.33
		－＋	－77495	－3962	121		0.33
	S s－D 2	$++$	66005	－1088	100		0． 28
		$-+$	61702	－1827	95		0． 26
	S s－D 3	＋＋	－52765	－2859	83		0.23
		－＋	－51111	－2817	80		0． 22
	S s－F 1	＋＋	68925	－1106	104		0． 29
		－＋	68584	－435	103		0.29
	S s－F 2	＋＋	－80318	－2978	124		0.34
		－＋	88210	－528	132		0． 36
	Ss－F 3	＋＋	－32907	－3334	54		0.15
		$-+$	30662	－2469	50		0． 14
	S s－N 1	＋＋	110891	－127	165		0． 45
		－＋	－108880	－4029	168		0.46
（2）	S s－D 2	－＋	－60600	－3822	96		0． 27
（3）	S s－D 2	－＋	63093	－2603	98		0.27

表 4－138（4）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 4 揚水井戸，$\quad \mathrm{t}=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	$++$	75564	－3144	117	367.5	0.32
		$-+$	－78093	－8077	128		0.35
	S s－D 2	＋＋	－51849	－5045	85		0． 24
		－＋	57391	－1129	87		0． 24
	S s－D 3	＋＋	－54990	－6465	91		0.25
		－＋	55452	－2367	86		0.24
	S s－F 1	＋＋	67513	－562	101		0.28
		－＋	63104	－4640	101		0.28
	$\mathrm{Ss}-\mathrm{F} 2$	＋＋	－63623	－3611	100		0.28
		$-+$	77716	－1822	118		0． 33
	Ss－F 3	$++$	－37238	－5706	64		0． 18
		$-+$	32776	4138	55		0.15
	S s－N 1	$++$	110971	－1582	167		0.46
		$-+$	－106926	－3993	165		0.45
（2）	S s－N 1	$++$	112441	－1147	169		0.46
（3）	S s－N 1	$++$	108905	－2034	165		0.45

表 4－138（5）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{\text {sa }}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	88824	－1198	104	367.5	0． 29
		－＋	－86481	－4214	105		0． 29
	S s－D 2	＋＋	75955	－1057	89		0． 25
		－＋	73897	－69	85		0.24
	S s－D 3	$++$	－57502	－4073	71		0.20
		－＋	－57570	－4671	72		0． 20
	S s－F 1	＋＋	75761	－1056	89		0． 25
		$-+$	79136	－1436	93		0.26
	S s－F 2	＋＋	－86849	－3664	104		0． 29
		－＋	96183	－1115	112		0.31
	S s－F 3	＋＋	－33238	－3406	43		0.12
		－＋	－31672	－5191	43		0.12
	S s－N 1	＋＋	120939	－432	140		0.39
		－＋	－119006	－4070	142		0.39
（2）	S s－D 2	－＋	74065	－114	86		0． 24
（3）	S s－D 2	－＋	74113	－1053	87		0.24

表 4－138（6）排水シャフト 軸方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	92804	－2723	110	367.5	0． 30
		－＋	－93520	－9158	118		0.33
	S s－D 2	＋＋	－63903	－4831	79		0． 22
		－＋	72498	－463	84		0． 23
	S s－D 3	$++$	－64125	－6918	82		0． 23
		$-+$	63316	－3070	77		0.21
	S s－F 1	$++$	78436	－2831	94		0． 26
		$-+$	73653	－4199	90		0． 25
	Ss－F 2	$++$	－69726	－3694	85		0.24
		－＋	89366	－2419	106		0． 29
	S s－F 3	$++$	－44007	－5195	57		0.16
		－＋	37933	4249	49		0.14
	S s－N 1	$++$	129867	－1874	152		0． 42
		$-+$	－125657	－3757	149		0.41
（2）	S s－N 1	$++$	132186	－1542	154		0.42
（3）	S s－N 1	$++$	126647	－2234	149		0． 41

（2）排水シャフトのせん断破壊に対する軸方向の照査
排水シャフトのせん断破壊に対する軸方向照査の実施ケースと照査値を表 4－139に示 す。

表 4－139（1）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 4 揚水井戸，$\quad t=40 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 (kN)			
（1）	S s－D 1	＋＋	－7205	30	217.5	0． 14
		－＋	7055	30		0． 14
		＋＋	7176	30		0． 14
		－＋	－7488	32		0.15
	S	＋＋	5310	23		0.11
		－＋	－5178	22		0.11
		$++$	－7128	30		0.14
	S S －	－＋	－7208	30		0.14
		＋＋	6661	28		0． 13
	S	－＋	－7241	31		0.15
	S - F 3	＋＋	3844	16		0.08
	S 5 F 3	－＋	4251	18		0.09
	S	＋＋	－8922	37		0.18
	S S －	－＋	8899	37		0.18
（2）	S s－D 2	－＋	－7499	32		0.15
（3）	S s－D 2	－＋	－7511	32		0.15

表 4－139（2）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 4 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{s}}$
			せん断力 （kN）			
（1）	$\mathrm{S} s-\mathrm{D} 1$	$++$	－8386	35	217.5	0． 17
		－＋	8432	35		0.17
		$++$	6681	28		0.13
		－＋	－7502	32		0.15
	S - D 3	$++$	5865	25		0.12
	S 5 D	－＋	－6476	27		0.13
	S	＋＋	－7569	32		0.15
	S S F 1	－＋	－6839	29		0.14
	S s－${ }^{\text {r }}$	＋＋	－5989	25		0.12
	S 5	－＋	－7404	31		0.15
	S	$++$	4337	18		0.09
	S S F 3	－＋	－4347	19		0.09
	S s －N1	＋＋	－11046	46		0． 22
	S S－N 1	－＋	10017	42		0． 20
（2）	S s－N 1	＋＋	－11229	47		0． 22
（3）	S s－N 1	＋＋	－10762	45		0． 21

表 4－139（3）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 4 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	$++$	－8073	24	210	0． 12
		－＋	7865	24		0． 12
		$++$	8889	27		0.13
	S	－＋	－9215	28		0． 14
	S - D 3	$++$	6313	19		0.10
	S 5 D	－＋	－6403	19		0.10
	S	$++$	－8194	25		0.12
	S S F 1	－＋	－8490	26		0.13
	S s F 2	＋＋	7078	21		0． 10
	S F	－＋	－7391	22		0.11
	S	$++$	－5485	17		0.09
	S S F 3	－＋	5550	17		0.09
	S － $\mathrm{N}^{\text {d }}$	$++$	－9385	28		0.14
	S S N 1	－＋	9315	28		0.14
（2）	S s－D 2	－＋	－9233	28		0.14
（3）	S s－D 2	－＋	－9225	28		0.14

表 4－139（4）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 4 揚水井戸，$\quad \mathrm{t}=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
			せん断力 （kN）			
（1）	S s－D 1	＋＋	－9729	29	210	0.14
		－＋	10127	30		0.15
		＋＋	8779	27		0.13
		－＋	－9660	29		0.14
	S	$++$	－6844	21		0.10
		－＋	－8055	24		0.12
	S	$++$	－9271	28		0.14
	S S F 1	－＋	－7642	23		0.11
	S	$++$	－7736	23		0.11
	S	－＋	－7772	24		0.12
		$++$	6089	19		0.10
	S 5 F 3	－＋	－6900	21		0.10
	S	$++$	－11913	36		0.18
	S S N 1	－＋	11425	34		0.17
（2）	S s－N 1	$++$	－12248	37		0.18
（3）	S s－N 1	＋＋	－11477	34		0.17

表 4－139（5）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果
（No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{s}}$
			せん断力 （kN）			
（1）	S s－D 1	$++$	8642	20	210	0． 10
		－＋	9355	22		0.11
		$++$	8898	21		0.10
		－＋	－9234	22		0.11
	S - D 3	$++$	6299	15		0.08
	S 5 D	－＋	－6404	15		0.08
	S	＋＋	8129	19		0.10
	S S F 1	－＋	－8458	20		0.10
		$++$	－9042	21		0． 10
	S 5	－＋	9878	23		0.11
	S	$++$	－5880	14		0.07
	S S F 3	－＋	5758	14		0.07
		＋＋	12718	30		0.15
	S S－N 1	－＋	－12340	29		0.14
（2）	S s－D 2	－＋	－9231	22		0.11
（3）	S s－D 2	－＋	－9230	22		0.11

表 4－139（6）排水シャフト 軸方向照査におけるせん断破壊に対する評価結果 （No． 4 揚水井戸，$\quad \mathrm{t}=70 \mathrm{~mm}$ ）（有効応力解析）

解析ケース	地震動		発生断面力	せん断応力度$\tau_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\tau_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\tau_{\mathrm{s}} / \tau_{\mathrm{s}}$
			せん断力 （kN）			
（1）	$\mathrm{S} s-\mathrm{D} 1$	$++$	－10173	24	210	0． 12
		－＋	10163	24		0.12
		$++$	8843	21		0.10
		－＋	－10162	24		0． 12
	S - D 3	$++$	－7296	17		0.09
	S 5 D	－＋	－8494	20		0.10
	S s－	＋＋	－9695	23		0.11
	S S F 1	－＋	－7814	18		0.09
		$++$	－8389	20		0． 10
	S	－＋	8439	20		0.10
	S	$++$	6183	15		0.08
	S S F 3	－＋	－7974	19		0.10
		＋＋	12567	29		0.14
	S S－N 1	－＋	11359	27		0.13
（2）	S s－N 1	＋＋	12722	30		0.15
（3）	S s－N 1	＋＋	12321	29		0.14

（3）排水シャフトの曲げ・軸力系の破壊に対する周方向の照査
表 4－140に排水シャフトの周方向の検討における照査結果を示す。

表 4－140（1）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 4 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ応力度 $\sigma_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	$++$	31	－1113	158	382.5	0． 42
		－＋	28	－1072	147		0.39
	S s－D 2	＋＋	30	－1098	155		0． 41
		－＋	30	－1098	155		0.41
	S s－D 3	＋＋	26	－1045	137		0.36
		－＋	27	－1053	139		0． 37
	S s－F 1	＋＋	22	－979	117		0.31
		－＋	24	－1004	125		0.33
	S s－F 2	$++$	22	－978	117		0.31
		$-+$	24	－1020	129		0.34
	S s－F 3	＋＋	23	－1065	124		0.33
		$-+$	21	－1029	115		0.31
	S s－N 1	＋＋	32	－1120	165		0． 44
		$-+$	28	－1052	143		0.38
（2）	S s－D 2	$-+$	32	－1124	164		0． 43
（3）	S s－D 2	－＋	30	－1100	153		0． 40

表 4－140（2）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 4 揚水井戸，$\quad \mathrm{t}=40 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	32	－932	160	382.5	0.42
		－＋	33	－1023	165		0． 44
	S s－D 2	＋＋	23	－848	118		0.31
		－＋	25	－893	127		0.34
	S s－D 3	＋＋	20	－821	104		0.28
		－＋	22	－860	115		0.31
	S s－F 1	＋＋	21	－826	109		0． 29
		－＋	16	－685	87		0． 23
	S s－F 2	＋＋	25	－916	131		0.35
		－＋	19	－738	97		0.26
	S s－F 3	＋＋	17	－838	93		0． 25
		－＋	23	－953	122		0． 32
	S s－N 1	＋＋	19	－775	98		0.26
		－＋	19	－748	101		0． 27
（2）	S s－N 1	＋＋	19	－780	100		0． 27
（3）	S s－N 1	$++$	18	－772	97		0． 26

表 4－140（3）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 4 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	50	－1211	129	367.5	0.36
		－＋	51	－1228	133		0． 37
	S s－D 2	＋＋	48	－1197	126		0.35
		－＋	50	－1219	131		0.36
	S s－D 3	＋＋	47	－1194	123		0.34
		－＋	46	－1179	121		0.33
	S s－F 1	＋＋	36	－1095	99		0． 27
		－＋	37	－993	99		0． 27
	S s－F 2	＋＋	35	－1077	95		0.26
		$-+$	45	－1175	119		0.33
	Ss－F 3	＋＋	35	－1151	98		0． 27
		－＋	35	－1164	98		0.27
	S s－N 1	＋＋	56	－1260	144		0.40
		$-+$	41	－1141	109		0.30
（2）	S s－D 2	$-+$	53	－1238	137		0.38
（3）	S s－D 2	－＋	48	－1205	126		0.35

表 4－140（4）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 4 揚水井戸，$\quad t=55 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント （kN•m）	軸力 （kN）			
（1）	S s－D 1	＋＋	46	－957	117	367.5	0.32
		－＋	52	－994	131		0.36
	S s－D 2	＋＋	35	－839	92		0． 26
		－＋	39	－877	101		0． 28
	S s－D 3	＋＋	31	－809	82		0． 23
		－＋	35	－846	92		0． 26
	S s－F 1	＋＋	33	－824	86		0． 24
		－＋	25	－810	68		0． 19
	Ss －F 2	＋＋	40	－898	104		0． 29
		－＋	26	－798	72		0． 20
	Ss －F 3	＋＋	26	－848	71		0． 20
		－＋	36	－935	96		0． 27
	S s－N 1	$++$	28	－800	75		0.21
		－＋	27	－795	73		0． 20
（2）	S s－N 1	＋＋	30	－784	79		0． 22
（3）	S s－N 1	$++$	28	－806	76		0.21

表 4－140（5）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果
（No． 4 揚水井戸，$\quad t=70 \mathrm{~mm}$ ）（全応力解析）

解析ケース	地震動		発生断面力		曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	76	－3548	151	367.5	0.42
		－＋	70	－3395	141		0． 39
	S s－D 2	＋＋	61	－2987	124		0.34
		－＋	67	－3219	135		0.37
	S s－D 3	$++$	58	－2870	118		0.33
		$-+$	78	－1247	120		0.33
	S s－F 1	＋＋	63	－3066	127		0.35
		$-+$	70	－3333	141		0.39
	S s－F 2	＋＋	64	－3177	130		0.36
		－＋	76	－3536	151		0.42
	S s－F 3	＋＋	52	－1169	85		0． 24
		－＋	39	－2228	84		0． 23
	S s－N 1	＋＋	81	－3743	161		0.44
		－＋	73	－3518	147		0.40
（2）	S s－D 2	－＋	72	－3382	143		0． 39
（3）	S s－D 2	$-+$	62	－3018	125		0.35

表 4－140（6）排水シャフト 周方向照査における曲げ・軸力系の破壊に対する評価結果 （No． 4 揚水井戸，$\quad \mathrm{t}=70 \mathrm{~mm}$ ）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{s} / \sigma_{s a}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	94	－4054	182	367.5	0.50
		－＋	81	－3981	164		0． 45
	S s－D 2	＋＋	64	－2950	127		0.35
		－＋	77	－3437	151		0． 42
	S s－D 3	＋＋	55	－2622	111		0.31
		$-+$	68	－3097	134		0.37
	S s－F 1	$++$	78	－3470	153		0． 42
		－＋	66	－3026	131		0.36
	Sc －F 2	＋＋	67	－3046	132		0.36
		－＋	80	－3536	156		0． 43
	S s－F 3	$++$	37	－2347	84		0． 23
		－＋	48	－2359	98		0． 27
	S s－N 1	$++$	113	－4765	217		0.60
		－＋	95	－4499	190		0.52
（2）	S s－N 1	＋＋	121	－5064	231		0． 63
（3）	S s－N 1	＋＋	103	－4419	199		0.55

（4）集水ピットの曲げ・軸力系の破壊に対する軸方向の照査
表 4－141 に集水ピットの曲げ・軸力系の破壊に対する軸方向照査の実施ケースと照査値を示す。

表 4－141（1）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}{ }_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	Sc －D 1	＋＋	3546	－45865	1.2	16.5	0.08
		$-+$	5631	－44527	1． 2		0.08
	S s－D 2	$++$	6007	－47724	1． 3		0.08
		$-+$	5570	－45371	1． 2		0.08
	S s－D 3	＋＋	8638	－40958	1． 2		0.08
		$-+$	7999	－45050	1． 3		0.08
	S s－F 1	$++$	5001	－43038	1． 2		0.08
		－＋	9660	－42969	1.2		0.08
	S s－F 2	＋＋	5815	－42653	1.2		0.08
		$-+$	9966	－43272	1.3		0.08
	Ss－F 3	$++$	11466	－44146	1.3		0.08
		－＋	7279	－43508	1． 2		0.08
	S s－N 1	$++$	6997	－41953	1.2		0.08
		$-+$	13556	－37663	1． 2		0.08
（2）	S s－D 2	－＋	4265	－44993	1.2		0.08
（3）	S s－D 2	$-+$	7292	－44676	1． 2		0.08

表 4－141（2）集水ピット 軸方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} / \sigma_{c a}^{\prime}$
			曲げモーメント （kN•m）	軸力 (kN)			
（1）	S s－D 1	＋＋	4891	－45332	1． 2	16.5	0.08
		－＋	－4515	－47593	1． 3		0.08
	S s－D 2	＋＋	7615	－40398	1.1		0.07
		－＋	4332	－43683	1． 2		0.08
	S s－D 3	＋＋	4759	－44321	1.2		0.08
		－＋	6088	－40493	1.1		0． 07
	S s－F 1	＋＋	－3295	－42751	1.1		0.07
		－＋	－7108	－40133	1.1		0.07
	S s－F 2	＋＋	4375	－41833	1.1		0.07
		－＋	7687	－40427	1.1		0.07
	S s－F 3	$++$	8019	－43327	1． 2		0.08
		－＋	－6102	－45675	1． 2		0.08
	S s－N 1	＋＋	－12713	－33981	1.1		0.07
		－＋	11706	－33125	1.0		0.07
（2）	S s－D 1	＋＋	3982	－46256	1.2		0.08
（3）	S s－D 1	＋＋	2239	－48506	1． 2		0.08

表 4－141（3）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		引張応力度$\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$	軸力 （kN）			
（1）	S s－D 1	＋＋	－	－	圧縮	324	－＊
		$-+$	11456	－7110	0.6		0.01
	S s－D 2	＋＋	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	S s－D 3	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－F 1	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－F 2	$++$	－	－	圧縮		－＊
		－＋	－	－	圧縮		－＊
	Ss－F 3	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－N 1	＋＋	20214	－13696	0.5		0.01
		$-+$	－	－	圧縮		－＊
（2）	S s－D 2	－＋	－	－	圧縮		－＊
（3）	S s－D 2	$-+$	－	－	圧縮		－＊

注記＊：軸方向の全長において全圧縮状態となるケース

表 4－141（4）集水ピット 軸方向照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		引張 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	$\mathrm{Sc}-\mathrm{D} 1$	$++$	－	－	圧縮	324	－＊
		－＋	－	－	圧縮		－＊
	S s－D 2	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－D 3	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－F 1	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－F 2	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－F 3	$++$	－	－	圧縮		－＊
		$-+$	－	－	圧縮		－＊
	S s－N 1	$++$	19634	－13011	0.6		0． 01
		$-+$	－18420	－12361	0.5		0.01
（2）	S s－D 1	＋＋	－	－	圧縮		－＊
（3）	S s－D 1	$++$	－	－	圧縮		－＊

注記 $*: ~$ 軸方向の全長において全圧縮状態となるケース
（5）集水ピットのせん断破壊に対する軸方向の照査
表 4－142に集水ピットのせん断破壊に対する軸方向照査の実施ケースと照査値を示 す。

表 4－142（1）集水ピット 軸方向照査におけるせん断破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	S s－D 1	＋＋	13606	33473	0.41
		－＋	15092		0． 46
	S s－D 2	＋＋	16265		0.49
		－＋	17401		0.52
	S s－D 3	＋＋	14607		0． 44
		－＋	15596		0.47
	S s－F 1	＋＋	15088		0.46
		－＋	13607		0.41
	S s－F 2	＋＋	16778		0.51
		－＋	17101		0.52
	S s－F 3	＋＋	16060		0.48
		－＋	17361		0.52
	S s－N 1	＋＋	17435		0.53
		－＋	16193		0.49
（2）	S s－D 2	－＋	16890		0.51
（3）	S s－D 2	－＋	18757		0.57
	S s－N 1	＋＋	18607		0.56

表 4－142（2）集水ピット 軸方向照査におけるせん断破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	S s－D 1	＋＋	12548	33473	0.38
		－＋	12148		0． 37
	S s－D 2	＋＋	14705		0． 44
		－＋	15610		0． 47
	S s－D 3	＋＋	13257		0． 40
		－＋	12172		0． 37
	S s－F1	＋＋	12236		0.37
		－＋	11454		0.35
	S s－F 2	＋＋	14962		0． 45
		－＋	14212		0． 43
	S s－F 3	＋＋	14215		0． 43
		－＋	14070		0． 43
	S s－N 1	＋＋	14321		0． 43
		－＋	14523		0.44
（2）	S s－D 1	＋＋	11271		0． 34
（3）	S s－D 1	＋＋	13986		0． 42

（6）集水ピットの周方向の照査
表 4－143 に集水ピットの周方向の検討における照査結果を示す。なお，集水ピットの周方向の検討における周方向鉄筋を対象とした鉄筋応力度の照査においては，集水ピット の全周において全圧縮状態となることを確認している。

表 4－143（1）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力		曲げ圧縮 応力度 $\sigma_{c}^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma^{\prime}{ }_{\mathrm{c}}^{\prime} / \sigma_{\mathrm{ca}}^{\prime}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	＋＋	－344	－2914	1.9	16.5	0.12
		－＋	－307	－2795	1.8		0.11
	S s－D 2	＋＋	－321	－2837	1.8		0.11
		－＋	－340	－2897	1.9		0.12
	Ss－D 3	$++$	－302	－2822	1． 8		0.11
		－＋	－334	－2880	1.9		0.12
	S s－F 1	＋＋	－268	－2710	1． 7		0.11
		－＋	－282	－2710	1.7		0.11
	Ss－F 2	＋＋	－277	－2741	1． 7		0.11
		－＋	－272	－2678	1． 7		0.11
	Ss－F 3	$++$	－301	－2771	1． 8		0.11
		－＋	－342	－2951	1． 9		0.12
	S s－N 1	$++$	－276	－2693	1． 7		0.11
		$-+$	－366	－2982	2.0		0.13
（2）	$\mathrm{Sc}-\mathrm{D} 2$	－＋	－316	－2812	1.8		0.11
（3）	S s－D 2	－＋	－376	－3026	2.0		0.13

表 4－143（2）集水ピット 周方向照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		曲げ圧縮応力度$\sigma_{c}^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照查値$\sigma_{c}^{\prime} / \sigma_{c}^{\prime}{ }_{c a}$
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
（1）	S s－D 1	$++$	－442	－3198	2.2	16.5	0.14
		$-+$	－440	－3191	2． 2		0． 14
	S s－D 2	$++$	－342	－2903	1.9		0.12
		$-+$	－302	－2916	1． 8		0.11
	S s－D 3	＋＋	－351	－2931	1.9		0． 12
		$-+$	－324	－2817	1． 8		0.11
	S s－F 1	$++$	－284	－2689	1.7		0.11
		$-+$	－225	－2546	1.6		0． 10
	S s－F 2	$++$	－318	－2798	1． 8		0.11
		$-+$	－325	－2849	1． 8		0.11
	Ss－F 3	$++$	－415	－3139	2.1		0.13
		$-+$	－272	－2838	1． 8		0.11
	S s－N 1	$++$	－244	－2556	1.6		0． 10
		$-+$	－254	－2590	1.6		0． 10
（2）	S s－D 1	$++$	－402	－3062	2.0		0.13
（3）	S s－D 1	$++$	－483	－3335	2． 3		0． 14

表 4－143（3）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 V (kN)	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
（1）	S s－D 1	＋＋	SD345 D 22×30 本／周＠ 300 せん断補強鉄筋	296	1497	0． 20
		－＋		264		0.18
	S s－D 2	＋＋		276		0． 19
		－＋		292		0． 20
	S s－D 3	＋＋		259		0.18
		－＋		287		0． 20
	S s－F 1	$++$		230		0.16
		－＋		242		0.17
	S s－F 2	＋＋		238		0.16
		－＋		233		0.16
	S s－F 3	$++$		258		0.18
		－＋		294		0． 20
	S s－N 1	$++$		237		0.16
		－＋		314		0.21
（2）	S s－D 2	－＋		272		0.19
（3）	S s－D 2	－＋		323		0． 22

表 4－143（4）集水ピット 周方向照査におけるせん断破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

（7）集水ピットの底版の照査
表 4－144に集水ピットの底版の検討における照査結果を示す。

表 4－144（1）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮	短期許容	昭
			曲げモーメント （kN•m）	$\begin{gathered} \text { 応力度 } \\ \sigma^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\sigma_{\mathrm{c}}^{\prime}{ }^{\prime} \sigma_{\mathrm{ca}}^{\prime}$
（1）	S s－D 1	＋＋	－2008	4.1	16.5	0.25
		－＋	－2024	4.1		0． 25
	S s－D 2	＋＋	－2132	4.3		0． 27
		－＋	－1992	4.1		0． 25
	S s－D 3	$++$	－1933	3.9		0． 24
		－＋	－2046	4.2		0． 26
	S	＋＋	－1823	3.7		0． 23
	S S F 1	－＋	－1968	4.0		0． 25
		$++$	－1843	3.8		0． 24
	S 5 － 2	－＋	－2015	4.1		0.25
		＋＋	－2039	4.2		0． 26
	S S F 3	－＋	－1880	3.8		0． 24
	S	$++$	－1799	3.7		0． 23
	S S N 1	－＋	－1973	4.0		0.25
（2）	S s－D 2	－＋	－1977	4.0		0． 25
（3）	S s－D 2	＋＋	－2112	4.3		0． 27
		－＋	－2034	4． 1		0． 25

表 4－144（2）集水ピット 底版照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮応力度$\sigma_{\mathrm{c}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\sigma_{\mathrm{ca}}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{c}^{\prime} d_{0}^{\prime}$
			曲げモーメント $(\mathrm{kN} \cdot \mathrm{~m})$			
（1）	S s－D 1	＋＋	－2003	4.1	16.5	0． 25
		－＋	－1968	4.0		0． 25
	S s－D 2	＋＋	－1858	3.8		0． 24
		－＋	－1891	3.9		0． 24
	Ss－ 3	＋＋	－1938	4.0		0． 25
		－＋	－1830	3.7		0． 23
	S s F 1	＋＋	－1783	3.6		0． 22
		－＋	－1788	3.7		0． 23
		＋＋	－1777	3.6		0． 22
		－＋	－1794	3.7		0． 23
	S	＋＋	－1948	4.0		0.25
	S 5 F 3	－＋	－1894	3.9		0． 24
	S s－N1	＋＋	－1639	3.4		0.21
	S s－ 1	－＋	－1701	3.5		0． 22
（2）	S s－D 1	＋＋	－1975	4.0		0． 25
（3）	S s－D 1	＋＋	－2040	4.2		0． 26

表 4－144（3）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

表 4－144（4）集水ピット 底版照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		$\begin{gathered} \text { 発生断面力 } \\ \hline \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	曲げ 応力度 $\sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	S s－D 1	＋＋	－2003	158	324	0.49
		－＋	－1968	155		0.48
		＋＋	－1858	147		0.46
		－＋	－1891	149		0.46
		$++$	－1938	153		0.48
		－＋	－1830	144		0.45
		＋＋	－1783	141		0.44
	S s F 1	－＋	－1788	141		0.44
		＋＋	－1777	140		0.44
	$\mathrm{So}-\mathrm{F} 2$	－＋	－1794	142		0.44
	S	$++$	－1948	154		0.48
	S S F 3	－＋	－1894	149		0.46
	S s－N1	＋＋	－1639	129		0.40
	S S N 1	－＋	－1701	134		0． 42
（2）	S s－D 1	$++$	－1975	156		0.49
（3）	S s－D 1	$++$	－2040	161		0.50

表 4－144（5）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

表 4－144（6）集水ピット 底版照査におけるせん断破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		鉄筋仕様	照査用 せん断力 $\mathrm{V}(\mathrm{kN})$	短期許容 せん断力 $\mathrm{V}_{\mathrm{a}}(\mathrm{kN})$	$\begin{gathered} \text { 照査値 } \\ V / V_{a} \end{gathered}$
（1）	S s－D 1	＋＋	$\begin{gathered} \text { SD345 } \\ \text { D25@250×500 } \\ \text { せん断補強鉄筋 } \end{gathered}$	1113	2384	0． 47
		－＋		1094		0． 46
	S s－D 2	＋＋		1033		0． 44
		－＋		1051		0． 45
	S s－D 3	＋＋		1077		0.46
		－＋		1017		0． 43
	S s－F 1	＋＋		991		0． 42
		－＋		994		0． 42
	S s－F 2	＋＋		988		0． 42
		－＋		997		0． 42
	S s－F 3	＋＋		1082		0． 46
		－＋		1053		0． 45
	S s－N 1	＋＋		911		0． 39
		－＋		945		0． 40
（2）	S s－D 1	＋＋		1098		0． 47
（3）	S s－D 1	＋＋		1134		0． 48

（8）集水ピットの隅角部の照査
表 4－145に集水ピットの隅角部の検討における照査結果を示す。

表 4－145（1）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	曲げ圧縮	短期許容	昭
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma^{\prime}{ }_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	応力度 $\sigma^{\prime}{ }_{c a}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\sigma_{c}^{\prime} / \sigma_{c a}^{\prime}$
（1）	S s－D 1	＋＋	2671	5.2	16.5	0． 32
		－＋	2753	5.4		0.33
	S s－D 2	＋＋	2713	5.3		0.33
		－＋	2775	5.4		0.33
	S s－D 3	$++$	2543	5.0		0.31
		－＋	2652	5.2		0． 32
	S s－F 1	＋＋	2419	4.7		0． 29
		－＋	2565	5.0		0.31
	$\mathrm{S} s-\mathrm{F} 2$	$++$	2495	4.9		0． 30
		－＋	2574	5.0		0.31
	S s－F 3	$++$	2565	5.0		0． 31
		－＋	2673	5.2		0.32
	S s－N 1	$++$	2421	4.7		0． 29
		－＋	2554	5.0		0.31
（2）	S s－D 2	－＋	2703	5.3		0.33
（3）	S s－D 1	－＋	2789	5.4		0.33
	S s－D 2	－＋	2866	5.6		0． 34

表 4－145（2）集水ピット 隅角部照査におけるコンクリートの曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

解析ケース	地震動		発生断面力	曲げ圧縮	短期許容	昭查値
			曲げモーメント （kN•m）	$\begin{gathered} \text { 応力度 } \\ \sigma_{c}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma^{\prime}{ }_{\mathrm{ca}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }}$
（1）	S s－D 1	$++$	2999	5.8	16． 5	0． 36
		－＋	2907	5.7		0.35
	S s－D 2	＋＋	2773	5.4		0． 33
		－＋	2916	5.7		0.35
	S s－D 3	$++$	2650	5.2		0.32
		$-+$	2590	5.1		0.31
	S s－F 1	$++$	2462	4． 8		0． 30
		－＋	2746	5.4		0.33
	S s－F 2	＋＋	2450	4． 8		0． 30
		－＋	2746	5.4		0.33
	S s－F 3	$++$	2963	5.8		0.36
		－＋	2455	4.8		0． 30
	S s－N 1	＋＋	2423	4． 7		0． 29
		－＋	2474	4.8		0.30
（2）	S s－D 1	＋＋	2900	5.6		0． 34
（3）	S s－D 1	＋＋	3014	5.9		0.36
	S s－F 3	$++$	2982	5.8		0.36

表 4－145（3）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力		短期許容	
			$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \sigma_{\text {sa }}\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
（1）	S s－D 1	$++$	2671	170	324	0.53
		－＋	2753	175		0.55
	S s－D 2	＋＋	2713	173		0.54
		－＋	2775	177		0.55
	S s－D 3	$++$	2543	162		0.50
		－＋	2652	169		0.53
	S s－F 1	$++$	2419	154		0.48
		－＋	2565	163		0.51
	S s－F 2	$++$	2495	159		0.50
		$-+$	2574	164		0.51
	S s－F 3	$++$	2565	163		0.51
		$-+$	2673	170		0.53
	S s－N 1	$++$	2421	154		0． 48
		－＋	2554	163		0.51
（2）	S s－D 2	－＋	2703	172		0.54
（3）	S s－D 1	$-+$	2789	177		0.55
	S s－D 2	－＋	2866	182		0.57

表 4－145（4）集水ピット 隅角部照査における鉄筋の曲げ・軸力系の破壊に対する評価結果（No． 4 揚水井戸）（有効応力解析）

（9）接合部（アンカーボルト）に対する照査
表 4－146 に接合部（アンカーボルト）の照査結果一覧を示す。

表 4－146（1）接合部（アンカーボルト）引張応力度に対する評価結果
（No． 4 揚水井戸）（全応力解析）

解析ケース	地震動		発生断面力			
			$\begin{gathered} \text { アンカーボルト } \\ 1 \text { 本当たりの } \end{gathered}$ 引張力 (N)	応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	$\mathrm{S} s-\mathrm{D} 1$	＋＋	－	圧縮	295	－＊
		－＋	6613	2	295	0.01
	S s－D 2	＋＋	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－D 3	$++$	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－F 1	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－F 2	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－F 3	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－N 1	$++$	14960	4	295	0.02
		－＋	－	圧縮	295	－＊
（2）	S s－D 2	$-+$	－	圧縮	295	－＊
（3）	S s－D 2	－＋	－	圧縮	295	－＊

注記＊：全圧縮状態となるケース

表 4－146（2）接合部（アンカーボルト）引張応力度に対する評価結果 （No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { アンカーボルト } \\ 1 \text { 本当たりの } \end{gathered}$ 引張力（N）	応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期計容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	$++$	－	圧縮	295	－＊
		－＋	－	圧縮	295	－＊
	S s－D 2	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	Ss－D 3	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－F 1	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－F 2	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	Ss－F 3	$++$	－	圧縮	295	－＊
		$-+$	－	圧縮	295	－＊
	S s－N 1	＋＋	40055	10	295	0.04
		$-+$	51471	12	295	0.05
（2）	S s－D 1	$++$	－	圧縮	295	－＊
	S s－N 1	$++$	47511	11	295	0． 04
（3）	S s－D 1	$++$	－	圧縮	295	－＊
	S s－N 1	＋＋	36259	9	295	0.04

注記＊：全圧縮状態となるケース

表 4－146（3）接合部（アンカーボルト）せん断応力度に対する評価結果
（No． 4 揚水井戸）（全応力解析）

表 4－146（4）接合部（アンカーボルト）せん断応力度に対する評価結果 （No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			アンカーボルト 1本当たりの せん断力（ N ）	$\begin{gathered} \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 応力度 } \\ \mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 （A／B）
（1）	S s－D 1	＋＋	112083	26	170.3	0.16
		－＋	115140	27		0.16
	S s－D 2	$++$	112620	26		0.16
		$-+$	104781	25		0.15
	S s－D 3	＋＋	94858	22		0.13
		－＋	84190	20		0.12
		＋＋	98224	23		0.14
	S	－＋	91259	22		0.13
		＋＋	127729	30		0.18
		－＋	122272	29		0.18
	S	＋＋	100220	24		0.15
	S 5 F 3	－＋	91718	22		0.13
	S s－N 1	＋＋	129202	30		0.18
		－＋	131209	31		0． 19
（2）	S s－D 1	＋＋	103158	24		0.15
	S s－N 1	＋＋	120855	28		0.17
（3）	S s－D 1	$++$	121546	29		0.18
	S s－N 1	＋＋	138843	32		0.19

（10）接合部（コンクリート）に対する照査
表 4－147 に接合部（コンクリート）の照査の実施ケースと照査値を示す。

表 4－147（1）接合部（コンクリート）引張力に対する評価結果
（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 応答值 A（kN）	許容限界 B（kN）	照査値 （A／B）
（1）	S s－D 1	＋＋	圧縮	1738	－＊
		－＋	7		0.01
	S s－D 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s - N 1	＋＋	15		0.01
		－＋	圧縮		－＊
（2）	S s－D 2	－＋	圧縮		－＊
（3）	S s－D 2	－＋	圧縮		－＊

注記＊：全圧縮状態となるケース

表 4－147（2）接合部（コンクリート）引張力に対する評価結果
（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		照査用 応答値 A（kN）	許容限界 B（kN）	$\begin{gathered} \text { 照査値 } \\ (A / B) \end{gathered}$
（1）	S s－D 1	＋＋	圧縮	1738	－＊
		－＋	圧縮		－＊
	S s－D 2	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－D 3	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S s－F 1	＋＋	圧縮		－＊
		－＋	圧縮		－＊
	S－F 2	＋＋	圧縮		－＊
	S 5 － 2	－＋	圧縮		－＊
	S－F 3	＋＋	圧縮		－＊
	S ${ }^{\text {r }} 3$	－＋	圧縮		－＊
		＋＋	41		0.03
	S ${ }^{\text {a }}$	－＋	52		0.03
（2）	S s－D 1	＋＋	圧縮		－＊
	S s - N 1	＋＋	48		0.03
（3）	S s－D 1	＋＋	圧縮		－＊
	S s - N 1	＋＋	37		0.03

注記＊：全圧縮状態となるケース
（11）接合部（ベースプレート）に対する照査
表 4－148に接合部（ベースプレート）の照査値を示す。

表 4－148（1）接合部（ベースプレート）曲げ応力度に対する評価結果
（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期計容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	＋＋	65277	80	400	0.20
		－＋	69615	86		0． 22
	S s－D 2	＋＋	65450	81		0.21
		－＋	63885	79		0． 20
	S s－D 3	＋＋	65887	81		0.21
		－＋	62995	78		0． 20
	S s－F 1	＋＋	61726	76		0.19
		－＋	58656	72		0． 18
	Ss－F 2	$++$	62278	77		0.20
		－＋	61401	76		0． 19
	S s－F 3	＋＋	61158	75		0.19
		－＋	61770	76		0． 19
	S s－N 1	＋＋	66318	82		0.21
		－＋	68981	85		0.22
（2）	S s－D 2	$-+$	60523	75		0.19
（3）	S s－D 2	－＋	68691	85		0． 22

表 4－148（2）接合部（ベースプレート）曲げ応力度に対する評価結果 （No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照㚗用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	$++$	68979	85	400	0． 22
		－＋	75167	93		0.24
	S s－D 2	$++$	65281	80		0.20
		$-+$	63611	78		0.20
	S s－D 3	＋＋	65610	81		0.21
		－＋	64343	79		0． 20
		$++$	59532	73		0． 19
		－＋	59907	74		0． 19
	S	$++$	61484	76		0． 19
		－＋	62599	77		0.20
		＋＋	65749	81		0.21
	S 5 F 3	－＋	69108	85		0． 22
	S s－N 1	$++$	57839	71		0.18
		－＋	65439	81		0.21
（2）	S s－D 1	$++$	67452	83		0.21
	S s－N 1	$++$	56991	70		0.18
（3）	S s－D 1	$++$	70079	86		0.22
	S s－N1	＋＋	59327	73		0.19

（12）接合部（フランジプレート）に対する照査
表 4－149に接合部（フランジプレート）の照査の実施ケースと照査値を示す。

表 4－149（1）接合部（フランジプレート）曲げ応力度に対する評価結果
（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	$\begin{gathered} \text { 照査用 } \\ \text { 応力度 } \\ \mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$			
（1）	S s－D 1	$++$	45990	111	400	0.28
		－＋	45911	111		0． 28
	S s－D 2	＋＋	46511	112		0． 28
		－＋	45021	109		0． 28
		＋＋	45783	110		0． 28
		－＋	44373	107		0． 27
		＋＋	43660	105		0.27
	S S F 1	－＋	42918	104		0． 26
		＋＋	44962	108		0.27
	S S－F 2	－＋	43819	106		0.27
	S－F 3	＋＋	44948	108		0.27
	S S F 3	－＋	45950	111		0.28
	S	＋＋	44658	108		0.27
	S S N 1	－＋	47080	113		0.29
（2）	S s－D 2	－＋	45748	110		0． 28
（3）	S s－D 2	$-+$	44247	107		0.27

表 4－149（2）接合部（フランジプレート）曲げ応力度に対する評価結果 （No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力			
			$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期計容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
（1）	S s－D 1	＋＋	46349	112	400	0． 28
		－＋	46266	112		0． 28
	S s－D 2	＋＋	44973	108		0． 27
		－＋	44536	107		0． 27
	Ss－D 3	＋＋	44812	108		0． 27
		－＋	44020	106		0． 27
		＋＋	43655	105		0． 27
	S	－＋	42925	104		0． 26
	S－F 2	$++$	43348	105		0． 27
		$-+$	42863	103		0． 26
	S	＋＋	44661	108		0． 27
	S 5 F 3	－＋	44958	108		0． 27
	S s－N1	＋＋	40804	98		0． 25
		－＋	42462	102		0． 26
（2）	S s－D 1	＋＋	46500	112		0． 28
	S s－N 1	＋＋	41417	100		0． 25
（3）	S s－D 1	＋＋	45896	111		0． 28
	S s－N 1	＋＋	40492	98		0． 25

（13）接合部（リブプレート）に対する照査
表 4－150 に接合部（リブプレート）の照査の実施ケースと照査値を示す。

表 4－150（1）接合部（リブプレート）せん断応力度に対する評価結果
（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			せん断力 （N）			
（1）	S s－D 1	$++$	828606	47	230.9	0.21
		－＋	883667	50		0． 22
		＋＋	830806	47		0.21
	S 5 D	$-+$	810930	46		0． 20
		＋＋	836350	47		0.21
		－＋	799633	45		0． 20
	S	＋＋	783533	44		0． 20
	S S F 1	－＋	744556	42		0． 19
	S	$++$	790537	44		0． 20
	S S － 2	－＋	779406	44		0． 20
	S－F 3	＋＋	776319	44		0． 20
	3 S － 3	－＋	784086	44		0． 20
	S	＋＋	841818	47		0.21
	S s N 1	－＋	875617	49		0.22
（2）	S s－D 2	$-+$	768253	43		0.19
（3）	S s－D 2	－＋	871935	49		0． 22

表 4－150（2）接合部（リブプレート）せん断応力度に対する評価結果 （No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		発生断面力	照査用 応力度 $\mathrm{A}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\mathrm{B}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 （A／B）
			せん断力 （N）			
（1）	S s－D 1	$++$	875601	49	230.9	0． 22
		－＋	954149	54		0． 24
	S s－D 2	＋＋	828656	47		0.21
		－＋	807456	45		0． 2
	S s－D 3	＋＋	832827	47		0.21
		－＋	816753	46		0.2
	S	＋＋	755677	42		0． 19
	S S F 1	－＋	760439	43		0． 19
		$++$	780455	44		0.2
		－＋	794607	45		0.2
	S	$++$	834601	47		0.21
	S S F 3	－＋	877241	49		0． 22
	S	＋＋	734186	41		0.18
	S S N 1	－＋	830666	47		0.21
（2）	S s－D 1	＋＋	856216	48		0.21
（2）	S s－N 1	＋＋	723430	41		0． 18
	S s－D 1	$++$	889560	50		0． 22
	S s－N 1	$++$	753078	42		0． 19

（14）基礎地盤の支持性能に対する照査
表 4－151 に揚水井戸の基礎地盤の支持性能に対する照査の実施ケースと照査値を示 す。

表 4－151（1）基礎地盤の支持性能に対する評価結果
（No． 4 揚水井戸）（全応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 $\begin{gathered} \mathrm{R}_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	極限支持力 $\begin{gathered} \mathrm{R}_{\mathrm{u}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { 照査値 } \\ & \mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}} \end{aligned}$
（1）	S s－D 1	＋+	1． 2	11.4	0.11
		－＋	1.2		0.11
	S s－D 2	＋＋	1.2		0.11
		－＋	1． 2		0.11
	S s－D 3	＋＋	1.1		0． 10
		－＋	1.2		0.11
	S s－F 1	$++$	1.1		0.10
		－＋	1.1		0． 10
	S s－F 2	$++$	1.1		0． 10
		－＋	1.2		0.11
	S s－F 3	＋＋	1.2		0.11
		－＋	1.1		0． 10
	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	＋＋	1.0		0.09
		－＋	1.1		0． 10
（2）	S s－D 2	－＋	1.1		0． 10
（3）	S s－D 2	－＋	1． 2		0.11

表 4－151（2）基礎地盤の支持性能に対する評価結果
（No． 4 揚水井戸）（有効応力解析）

$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動		最大接地圧 $\begin{gathered} \mathrm{R}_{\mathrm{d}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	極限支持力 $\begin{gathered} \mathrm{R}_{\mathrm{u}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { 照査値 } \\ & R_{d} / R_{u} \end{aligned}$
（1）	$\mathrm{Sc}-\mathrm{D} 1$	＋＋	1． 2	11.4	0.11
		－＋	1.1		0.10
	S s－D 2	$++$	1.1		0.10
		－＋	1.1		0． 10
	Ss－D 3	$++$	1.1		0.10
		－＋	1.1		0.10
	S s－F 1	＋＋	1.0		0.09
		－＋	1.0		0.09
	Ss－F 2	$++$	1.0		0.09
		$-+$	1.0		0.09
	Ss－F 3	＋＋	1.1		0.10
		－＋	1.1		0.10
	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	＋＋	1.0		0.09
		－＋	1.0		0.09
（2）	S s－D 1	$++$	1.1		0.10
（3）	S s－D 1	＋＋	1.2		0.11

（別紙 1）揚水井戸蓋の耐震性について

目 次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2.3 評価方針 5
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 8
4．固有値解析 11
4．1 固有振動数の計算方法 11
4．2 固有振動数の計算条件 13
4．3 固有振動数の計算結果 13
5．構造強度評価 14
5.1 構造強度評価方法 14
5.2 荷重及び荷重の組合せ 14
5．3 許容限界 15
5.4 設計用地震力 17
5.5 評価方法 18
5.6 評価条件 26
6．評価結果 28

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度に基づき，地下水位低下設備のらち No．1，No．2，No．3，No． 4 揚水井戸蓋（以下「揚水井戸蓋」という。） が設計用地震力に対して，主要な構造部材が十分な構造健全性を有することを確認するものであ る。
耐震評価は揚水井戸蓋の固有値解析及び応力評価により行う。

2．一般事項
2.1 配置概要

揚水井戸蓋は，No．1，No．2，No．3，No． 4 揚水井戸に設置する。
揚水井戸蓋の設置位置図を図2－1 に示す。

図 2－1 揚水井戸蓋の設置位置図

2.2 構造計画

揚水井戸蓋は基準地震動 S s に対して，蓋の主要な構造部材が構造強度を有することで，排水機能及び監視•制御機能が維持できる設計とする。竜巻防護の観点から原子炉建屋•制御建屋エリアの「No．1，No． 2 揚水井戸蓋」と第 3 号機海水熱交換器建屋エリアの「No．3，No． 4 揚水井戸蓋」に大別する。揚水井戸蓋の構造は，スキンプレートにリブ及びフランジを組合せた構造とする。

揚水井戸蓋は，各揚水井戸上部に設置する固定ボルトと，主桁を介して設置する固定ボルト にて固定する。揚水井戸蓋の構造計画を表 2－1 に示す。

揚水井戸蓋は，常設ポンプの交換や可搬ポンプユニットの昇降に影響を与えないよう，取り外しが可能な構造とする。揚水井戸本体中央に蓋を支持する受桁を設置し，受桁は揚水井戸本体に溶接にて固定する。

揚水井戸蓋は，揚水井戸外周部に設置するフランジと，上記の受桁にそれぞれ固定ボルトに て固定する。

揚水井戸蓋の構造計画を表 $2-1$ に示す。

表 2－1（1）No．1，No． 2 揚水井戸蓋の構造計画

計画の概要		構造概略図
基礎• 支持構造	主体構造	
No．1，No． 2 揚水井戸上部に固定ボルトで固定する。	揚 水 井 戸蓋，受桁及 び固定ボル トにより構成する。	

表 2－1（2）No．3，No． 4 揚水井戸蓋の構造計画

計画の概要		構造概略図
基礎• 支持構造	主体構造	
No．3，No． 4 揚水井戸上部に固定ボルトで固定する。	揚 水 井 戸蓋，受桁及 び固定ボル トにより構成する。	

2.3 評価方針

揚水井戸蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及 び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」に示す揚水井戸蓋の構造を踏ま え，「3．評価対象部位及び評価対象設備」にて設定する評価対象部位において，「4．固有値解析」で算出した固有振動数に基づく設計用地震力により算出した応力等が許容限界内に収 まることを，「5．構造強度評価」に示す方法にて確認する。応力評価の確認結果を「6．評価結果」にて確認する。

耐震評価フローを図2－2に示す。

図 2－2 耐震評価フロー

2.4 適用規格•基準等

適用する規格，基準等を以下に示す。
（1）鋼構造設計規準 一許容応力度設計法—（日本建築学会，2005改定）
（2）機械工学便覧（日本機械学会，2005 改訂）

2.5 記号の説明

揚水井戸蓋の耐震評価に用いる記号を表2－2 に示す。

表 2－2 揚水井戸蓋の耐震評価に用いる記号

記号	単位	定義
S s	kN	基準地震動S s による地震荷重
k_{H}	－	基準地震動 S s の水平方向の設計震度
k v	－	基準地震動S s の鉛直方向の設計震度
G	kN	固定荷重
P	kN	積載荷重
A	m^{2}	揚水井戸蓋，受桁の平面積
W s s	kN／m	単位長さ当りの等分布荷重
τ	$\mathrm{N} / \mathrm{mm}^{2}$	最大せん断応力度
σ	$\mathrm{N} / \mathrm{mm}^{2}$	最大曲げ応力度
Q	kN	最大せん断力
M	$\mathrm{kN} \cdot \mathrm{m}$	最大曲げモーメント
A s	mm ${ }^{2}$	揚水井戸蓋，受桁の有効せん断断面積
I	mm ${ }^{4}$	断面二次モーメント
y	mm	揚水井戸蓋，受桁の縁端距離
L	mm	揚水井戸蓋，受桁の全長
b	mm	揚水井戸蓋，受桁の負担幅
m	$\mathrm{kg} / \mathrm{mm}$	揚水井戸蓋，受桁の質量分布
N	本	揚水井戸蓋，受桁に取り付く固定ボルトの本数
A ${ }^{\prime}$	mm^{2}	固定ボルトの有効断面積
$\sigma{ }_{\mathrm{t}}$	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト 1 本当りに作用する引張応力度
τ s	$\mathrm{N} / \mathrm{mm}^{2}$	固定ボルト 1 本当りに作用するせん断応力度
T s	kN	固定ボルト 1 本当りに生じる引張応力度
q	kN	固定ボルト 1 本当りに作用するせん断力

3．評価対象部位
揚水井戸蓋の評価対象部位は，「2．2 構造計画」に設定している構造を踏まえて，地震に伴 ら荷重の作用方向及び伝達過程を考慮し設定する。
地震に伴う慣性力が，揚水井戸蓋の両端のらち 1 端は揚水井戸本体外周部に設置する固定ボル ト（1）を介して揚水井戸本体に伝達され，もう 1 端は揚水井戸蓋から受桁に設置する固定ボルト
（2）を介して揚水井戸本体に伝達されることから，揚水井戸蓋，受桁，固定ボルト（1）及び固定ボ ルト（2）を評価対象部位として設定する。評価対象部位を図3－1に示す。

図 3－1（1）評価対象部位（No．1，No． 2 揚水井戸蓋。朱書き部は蓋本体を示す。）（単位：mm）

図 3－1（2）評価対象部位（No．3，No． 4 揚水井戸蓋。朱書き部は蓋本体を示す。）（単位：mm）

4．固有値解析
4． 1 固有振動数の計算方法
揚水井戸蓋，受桁の構造に応じて解析モデルを設定し，固有振動数を算出する。

4．1．1 解析モデルの設定
揚水井戸蓋は，スキンプレートにリブ，フランジを組み合わせた剛な断面を有している とともに，揚水井戸本体外周部，受桁及び固定ボルトを介し，揚水井戸本体に固定する構造である。また，受桁については，リブ付きの剛な断面を有ししているとともに，溶接で揚水井戸本体と固定する構造である。

解析モデルは，上記構造を踏まえ，揚水井戸蓋については両端ピン支持に，受桁につい ては両端固定支持にそれぞれ単純化したモデルとし，モデル化に用いるはり長さは，揚水井戸蓋及び受桁のそれぞれの全長とする。なお，揚水井戸蓋については，全長が最大のも のを対象とする。

図4－1に解析モデル図を示す。

図 4－1 揚水井戸蓋及び受桁の固有値解析モデル

4．1．2 記号の説明

揚水井戸蓋の固有振動数算出に用いる記号を表 4－1 に，受析の固有振動数算出に用い る記号を表4－2に示す。

表 4－1 揚水井戸蓋の固有振動数の計算に用いる記号

記号	単位	定義
f_{1}	Hz	揚水井戸蓋の一次固有振動数
L_{1}	mm	揚水井戸蓋の全長
E	$\mathrm{N} / \mathrm{mm}^{2}$	ヤング率
I_{1}	$\mathrm{~mm}^{4}$	揚水井戸蓋の断面二次モーメント
m_{1}	$\mathrm{~kg} / \mathrm{mm}$	揚水井戸蓋の質量分布

表 4－2 受桁の固有振動数の計算に用いる記号

記号	単位	定義
f_{2}	Hz	受桁の一次固有振動数
L_{2}	mm	受桁の全長
E	$\mathrm{N} / \mathrm{mm}^{2}$	ヤング率
I_{2}	$\mathrm{~mm}^{4}$	受桁の断面二次モーメント
m_{2}	$\mathrm{~kg} / \mathrm{mm}$	受桁の質量分布

4．1． 3 固有振動数の算出方法

固有振動数 f を「土木学会構造力学公式集」を参考に以下の式より算出する。

$$
\begin{aligned}
& \mathrm{f}_{1}=\frac{\pi^{2}}{2 \pi \mathrm{~L}_{1}^{2}} \sqrt{\frac{\mathrm{E} \cdot \mathrm{I}_{1} \cdot 10^{3}}{\mathrm{~m}_{1}}} \quad \text { 揚水井戸蓋の式 } \\
& \mathrm{f}_{2}=\frac{4 \cdot 73^{2}}{2 \pi \mathrm{~L}_{2}^{2}} \sqrt{\frac{\mathrm{E} \cdot \mathrm{I}_{2} \cdot 10^{3}}{\mathrm{~m}_{2}}} \quad \text { 受桁の式 }
\end{aligned}
$$

4．2 固有振動数の計算条件

固有振動数の計算条件を表4－3に示す。

表 4－3（1）固有振動数の計算条件（No．1，No． 2 揚水井戸蓋）

表 4－3（2）固有振動数の計算条件（No．3，No． 4 揚水井戸蓋）

4．3 固有振動数の計算結果

固有振動数の計算結果を表 4－4 に示す。固有振動数は 20 Hz 以上であることから，剛構造で ある。

表 4－4（1）固有振動数の計算結果（No．1，No． 2 揚水井戸蓋）

部位	固有振動数 f (Hz)
揚水井戸蓋	追而
受桁	

表 4－4（2）固有振動数の計算結果（No．3，No． 4 揚水井戸蓋）

部位	固有振動数 f (Hz)
揚水井戸蓋	追而
受桁	

5．構造強度評価
5.1 構造強度評価方法

揚水井戸蓋の耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。
5.2 荷重及び荷重の組合せ

5．2．1 荷重の組合せ
揚水井戸蓋の評価に用いる荷重の組合せを下記に示す。

$$
\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P}
$$

ここで，G ：固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P ：積載荷重（kN）

5．2．2 荷重の設定
耐震評価に用いる荷重は，以下のとおりとする。
（1）固定荷重（G）
固定荷重として，揚水井戸蓋を構成する部材の自重を考慮する。
（2）積載荷重（P）
積載荷重については $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。（積雪及び降下火砕物荷重を包絡）
（3）基準地震動 S s による地震荷重（ S s ）
地震荷重として，基準地震動 S s に伴う慣性力を考慮する。地震荷重は固定荷重及び積載荷重に設計震度を乗じた次式により算出する。

$$
\mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{P}) \cdot \mathrm{k}
$$

ここで，S s ：基準地震動 S s による地震荷重（kN）
G ：固定荷重（kN）
P ：積載荷重（kN）
k ：基準地震動 S s の設計震度

5.3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している許容限界を踏ま えて設定する。

5．3．1 使用材料

揚水井戸蓋を構成する揚水井戸蓋，主桁，固定ボルトの使用材料を表5－1 に示す。

表 5－1（1）使用材料（No．1，No． 2 揚水井戸蓋）

評価対象部位		材質	仕様
揚水井戸蓋	スキンプレート	SM570	$\mathrm{t}=12$（mm）
	リブ	SM570	$\mathrm{t}=9 \quad(\mathrm{~mm})$
	フランジ	SM570	$\mathrm{t}=12(\mathrm{~mm})$
受桁	上フランジ	SM570	$\mathrm{t}=19$（mm）
	ウェブ	SM400	$\mathrm{t}=9 \quad(\mathrm{~mm})$
	下フランジ	SM400	$\mathrm{t}=16$（mm）
固定ボルト（1）		S45C	M22
固定ボルト（2）		S45C	M22

表 5－1（2）使用材料（No．3，No． 4 揚水井戸蓋）

評価対象部位		材質	仕様
揚水井戸蓋	スキンプレート	SM570	$\mathrm{t}=20(\mathrm{~mm})$
	リブ	SM570	$\mathrm{t}=9 \quad(\mathrm{~mm})$
受桁	上フランジ	SM400	$\mathrm{t}=15$（mm）
	ウェブ	SM400	$\mathrm{t}=10$（mm）
	下フランジ	SM400	$\mathrm{t}=15(\mathrm{~mm})$
固定ボルト（1）		S45C	M22
固定ボルト（2）		S45C	M22

5．3．2 許容限界

（1）揚水井戸蓋，受桁
揚水井戸蓋，受桁の許容応力度は，「鋼構造設計規準 —許容応力度設計法—（日本建築学会，2005改定）」を踏まえて表5－2の値とする。

表 5－2 揚水井戸蓋，受桁の短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
	曲げ	せん断
SM570	400	231
SM400	235	136

（2）固定ボルト
固定ボルトの許容応力度は，「鋼構造設計規準 —許容応力度設計法—（日本建築学会， 2005 改定）」を踏まえて表 5－3 の値とする。

表 5－3 固定ボルトの短期許容応力度

材質	短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
	引張	せん断
S45C	追而	

5.4 設計用地震力

揚水井戸蓋の耐震評価に用いる設計震度は，「VI－2－13－5 地下水位低下設備揚水井戸の地震応答計算書」の地震応答解析結果を用いる。設計震度は各井戸の最大値を包絡した値とす る。
揚水井戸蓋の耐震評価で用いる設計震度を表5－4に示す。

表 5－4 設計震度

設置場所	基準地震動 S s の設計震度		
	水平方向 k_{H}	鉛直方向 k_{v}	
揚水井戸	追而		

5.5 評価方法

揚水井戸蓋を構成する揚水井戸蓋，受桁，固定ボルト（1）及び固定ボルト（2）に発生する応力 より算定する応力度が，許容限界以下であることを確認する。揚水井戸蓋については，評価上最も厳しい条件となる断面で評価を実施する。図5－1，図5－2にそれぞれ評価の対象とする揚水井戸蓋，受桁を示す。また，図 5－3 に固定ボルト（1），図 5－4 に固定ボルト（ 2 ）の納まり を示す。

5．5．1 揚水井戸蓋

揚水井戸蓋の支持条件は両端をピン支持とし，図 5－1 に示すとおり，揚水井戸蓋が荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施する。
（1）基準地震動 S s による地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P}) \cdot \mathrm{k}_{\mathrm{v}}$
ここで， S s ：基準地震動 S s による地震荷重（kN）
G：揚水井戸蓋の固定荷重（kN）
P ：積載荷重（kN）
k v ：基準地震動 S s の鉛直方向の設計震度
（2）揚水井戸蓋に作用する単位長さ当りの鉛直方向の等分布荷重W s s

$$
\mathrm{W}_{\mathrm{s} ~}^{\mathrm{s}}=(\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P}) \cdot \mathrm{b}_{1} \cdot 10^{-3} / \mathrm{A}_{1}
$$

ここで，Wss：揚水井戸蓋に作用する単位長さ当りの鉛直方向の等分布荷重（ kN / m ）

G ：揚水井戸蓋の固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P ：積載荷重（kN）
$\mathrm{b}_{1} \quad$ ：揚水井戸蓋の負担幅（mm）
A_{1} ：揚水井戸蓋の平面積 $\left(\mathrm{m}^{2}\right)$
（3）揚水井戸蓋に作用する最大せん断応力度 τ

$$
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) \quad / \mathrm{A} \mathrm{~s}_{1}
$$

τ ：揚水井戸蓋に作用する最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：揚水井戸蓋に作用する最大せん断力（ kN ）
A S_{1} ：揚水井戸蓋の有効せん断断面積（ mm^{2} ）
ここで， $\mathrm{Q}=1 / 2 \cdot \mathrm{~W}$ s s • $\mathrm{L}_{1} \cdot 10^{-3}$
Q ：揚水井戸蓋に作用する最大せん断力（kN）

W s s
：揚水井戸蓋に作用する単位長さ当りの鉛直方向の等分布荷重 （ kN / m ）
L_{1} ：揚水井戸蓋の全長（mm）
（4）揚水井戸蓋に作用する最大曲げ応力度 σ

```
\sigma=(M
    \sigma :揚水井戸蓋に作用する最大曲げ応力度 (N/mm
    M : 揚水井戸蓋に作用する最大曲げモーメント (kN•m)
    \mp@subsup{y}{1}{}}\mathrm{ : 揚水井戸蓋の縁端距離 (mm)
    I 1 : 揚水井戸蓋の断面二次モーメント (mm
    ここで, M = / / 8 W W s • ( L L • 10-3) 2
        M : 揚水井戸蓋に作用する最大曲げモーメント (kN•m)
            W s s
            L
```

（5）揚水井戸蓋に作用する組合せ応力度
揚水井戸蓋に作用する曲げ応力度，せん断応力度を算定し，揚水井戸蓋の短期許容応力度以下であることを確認する。また，揚水井戸蓋に生じる曲げ応力度とせん断応力度から，組合せ応力度を「鋼構造設計規準 — 許容応力度設計法—（日本建築学会，2005 改定）」 に基づく次式により算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
\mathrm{x} & =\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \quad \mathrm{x} \\
\sigma & : \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\tau & : \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

図 5－1 評価の対象とする揚水井戸蓋

5．5．2 受桁

受桁の支持条件は両端を固定支持とし，図 5－2 に示すとおり，受桁が荷重を負担する範囲が最も大きくなり，評価上最も厳しい条件となるよう評価を実施する。
（1）基準地震動 S s による地震荷重 S s

$$
\mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{P}) \cdot \mathrm{k}_{\mathrm{v}}
$$

ここで， S s ：基準地震動 S s による地震荷重（kN）
G ：揚水井戸と受桁の固定荷重（kN）
P ：積載荷重（kN）
kv ：基準地震動 S s の鉛直方向の設計震度
（2）受桁に作用する単位長さ当りの鉛直方向の等分布荷重W s s

$$
\mathrm{W} \mathrm{~s} \mathrm{~s}=(\mathrm{G}+\mathrm{S} \mathrm{~s}+\mathrm{P}) \cdot \mathrm{b}_{2} \cdot 10^{-3} / \mathrm{A}_{2}
$$

ここで，W s s ：受桁に作用する単位長さ当りの鉛直方向の等分布荷重 （ kN / m ）
G ：揚水井戸と受桁の固定荷重（kN）
S s ：基準地震動 S s による地震荷重（kN）
P ：積載荷重（kN）
b_{2} ：受桁の負担幅（mm）
$\mathrm{A}_{2}:$ 受桁の平面積 $\left(\mathrm{m}^{2}\right)$
（3）受桁に作用する最大せん断応力度 τ

$$
\begin{aligned}
& \tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A} \mathrm{~s}_{2} \\
& \tau: \text { 受桁に作用する最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{Q}: \text { 受桁に作用する最大せん断力 }(\mathrm{kN}) \\
& \mathrm{A} \mathrm{~s}_{2}: \text { 受桁の有効せん断断面積 }\left(\mathrm{mm}^{2}\right) \\
& \text { ここで, } \mathrm{Q}=1 / 2 \cdot \mathrm{~W} \mathrm{~s} \mathrm{~s} \cdot \mathrm{~L}_{2} \cdot 10^{-3}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{Q} & : \text { 受桁に作用する最大せん断力 }(\mathrm{kN}) \\
\mathrm{W} \text { s s } & : \text { 受桁に作用する単位長さ当りの鉛直方向の等分布荷重 (kN/m) } \\
\mathrm{L}_{2} & : \text { 受桁の全長 (mm) }
\end{array}
$$

（4）受桁に作用する最大曲げ応力度 σ

```
\sigma = (M • 106) • y 2/ I I2
\sigma :受桁に作用する最大曲げ応力度(N/mm2)
M : 受桁に作用する最大曲げモーメント (kN•m)
y 2 : 受桁の縁端距離(mm)
I 2 : 受桁の断面二次モーメント (mm
ここで, M = 1/12•W s s • ( L L 
```

M	$:$ 受桁に作用する最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
W s s	$:$ 受桁に作用する単位長さ当りの鉛直方向の等分布荷重（kN／m）

L_{2} : 受桁の全長 (mm)
（5）受桁に作用する組合せ応力度
受桁に作用する曲げ応力度，せん断応力度を算定し，受桁の短期許容応力度以下である ことを確認する。また，受桁に生じる曲げ応力度とせん断応力度から，組合せ応力度を「鋼構造設計規準 —許容応力度設計法—（日本建築学会，2005改定）」に基づく次式に より算定し，短期許容応力度以下であることを確認する。

$$
\begin{aligned}
\mathrm{x} & =\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \quad \mathrm{x} \quad \\
\sigma & \text { 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\tau & \text { 曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

図5－2 評価の対象とする受桁

5．5．3 固定ボルト
（1）基準地震動 S s による水平方向の地震荷重 S s
$\mathrm{S} \mathrm{s}=(\mathrm{G}+\mathrm{P}) \cdot \mathrm{k}_{\mathrm{H}}$
ここで， S s ：基準地震動 S s による水平方向の地震荷重（kN）
G ：固定荷重（kN）
P ：積載荷重（kN）
$\mathrm{k}_{\mathrm{H}} \quad$ ：基準地震動 S s の水平方向の設計震度
（2）基準地震動 S s による鉛直方向の地震荷重 S s

$$
\mathrm{S} \mathrm{~s}=(\mathrm{G}+\mathrm{P}) \cdot \mathrm{k}_{\mathrm{v}}
$$

ここで， S s ：基準地震動 S s による鉛直方向の地震荷重（kN）
G ：固定荷重（kN）
P ：積載荷重（kN）
$\mathrm{k} v \quad$ ：基準地震動 S s の鉛直方向の設計震度
（3）固定ボルト 1 本当たりに生じる引張応力度 $\sigma{ }_{\mathrm{t}}$

$$
\begin{aligned}
& \sigma_{\mathrm{t}}=\mathrm{T} \mathrm{~s} \cdot 10^{3} / \mathrm{A}{ }^{\prime} \\
& \text { ここで, } \quad \mathrm{T} \mathrm{~s}=\mathrm{S} \mathrm{~s} / \mathrm{N} \\
& \sigma_{\mathrm{t}} \text { : 固定ボルト } 1 \text { 本当りに生じる引張応力度 }(\mathrm{N} / \mathrm{mm}) \\
& \text { T s : 固定ボルト } 1 \text { 本当りに生じる引張応力度 (} \mathrm{kN} \text {) } \\
& \text { S s : 基準地震動 S s による鉛直方向の地震荷重 (kN) } \\
& \text { N : 浸水防止蓋, 受桁に取り付く固定ボルトの本数 } \\
& \text { A } \quad \text { : 固定ボルトの有効断面積 (} \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

（4）固定ボルト 1 本当たりに生じるせん断応力度 τ s

$$
\begin{aligned}
& \tau_{\mathrm{s}}=\mathrm{q} \cdot \mathrm{~s} \cdot 10^{3} / \mathrm{A} \text {, } \\
& \text { ここで, } \quad \mathrm{q}_{\mathrm{s}}=\mathrm{S} \mathrm{~s} / \mathrm{N} \\
& \tau_{\mathrm{s}} \text { : 固定ボルト1本当りに作用するせん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \text { q : 固定ボルト1本当りに作用するせん断力 (kN) } \\
& \text { S s : 基準地震動 S s による水平方向の地震荷重 (kN) } \\
& \text { N : 浸水防止蓋, 受桁に取り付く固定ボルトの本数 } \\
& \text { A } \text { : 固定ボルトの有効断面積 (} \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

揚水井戸蓋の平面図

図 5－3 固定ボルト（1）の納まり

図 5－4 固定ボルト（2）の納まり

5.6 評価条件

揚水井戸蓋の耐震評価に用いる入力値を表5－5に示す。

表5－5（1）浸水防止蓋の耐震評価に用いる入力値（No．1，No． 2 揚水井戸蓋）

評価対象部位	記号	単位	定義	数値
揚水井戸蓋	G	kN	揚水井戸蓋の固定荷重	追而
	P	kN	積載荷重	
	A_{1}	m^{2}	揚水井戸蓋の平面積	
	L_{1}	mm	揚水井戸蓋の全長	
	b_{1}	mm	揚水井戸蓋の負担幅	
	A s_{1}	mm^{2}	揚水井戸蓋の有効せん断断面積	
	y_{1}	mm	揚水井戸蓋の縁端距離	
	I_{1}	mm^{4}	揚水井戸蓋の断面二次モーメント	
受桁	G	kN	揚水井戸蓋と受桁の固定荷重	
	P	kN	積載荷重	
	A_{2}	m^{2}	受桁の平面積	
	L_{2}	mm	受桁の全長	
	b_{2}	mm	受桁の負担幅	
	A s 2	mm^{2}	受桁の有効せん断断面積	
	y 2	mm	受桁の縁端距離	
	I_{2}	mm^{4}	受桁の断面二次モーメント	
固定 ボルト（1）	N	本	揚水井戸蓋に取り付く固定ボルトの本数	
	A	mm^{2}	固定ボルト（1）の有効断面積	
固定 ボルト（2）	N	本	揚水井戸蓋に取り付く固定ボルトの本数	
	A ${ }^{\prime}$	mm^{2}	固定ボルト（2）の有効断面積	

表 5－5（2）浸水防止蓋の耐震評価に用いる入力値（No．3，No． 4 揚水井戸蓋）

評価対象部位	記号	単位	定義	数値
揚水井戸蓋	G	kN	揚水井戸蓋の固定荷重	追而
	P	kN	積載荷重	
	A_{1}	m^{2}	揚水井戸蓋の平面積	
	L_{1}	mm	揚水井戸蓋の全長	
	b_{1}	mm	揚水井戸蓋の負担幅	
	A s 1	mm^{2}	揚水井戸蓋の有効せん断断面積	
	y_{1}	mm	揚水井戸蓋の縁端距離	
	I_{1}	mm^{4}	揚水井戸蓋の断面二次モーメント	
受桁	G	kN	揚水井戸蓋と受桁の固定荷重	
	P	kN	積載荷重	
	A_{2}	m^{2}	受桁の平面積	
	L_{2}	mm	受桁の全長	
	b_{2}	mm	受桁の負担幅	
	A s 2	mm^{2}	受桁の有効せん断断面積	
	y_{2}	mm	受桁の縁端距離	
	I_{2}	mm^{4}	受桁の断面二次モーメント	
固定 ボルト（1）	N	本	揚水井戸蓋に取り付く固定ボルトの本数	
	A ${ }^{\prime}$	mm^{2}	固定ボルト（1）の有効断面積	
固定 ボルト（2）	N	本	揚水井戸蓋に取り付く固定ボルトの本数	
	A ${ }^{\prime}$	mm^{2}	固定ボルト（2）の有効断面積	

6．評価結果
揚水井戸蓋の耐震評価結果を表 6－1 に示す。各部材の断面検定を行った結果，すべての部材 において発生応力又は応力度が許容限界以下であることを確認した。

表 6－1（1）揚水井戸蓋の耐震評価結果（No．1，No． 2 揚水井戸蓋）

評価対象部位		発生値 （応力度又は荷重）	許容限界	検定値
揚水井戸蓋	曲げ	1	追而	
	せん断			
	組合せ			
受桁	曲げ			
	せん断			
	組合せ			
固定ボルト（1）	引張			
	せん断			
	組合せ			
固定ボルト（2）	引張			
	せん断			
	組合せ			

表 6－1（2）揚水井戸蓋の耐震評価結果（No．3，No． 4 揚水井戸蓋）

（参考資料1）各揚水井戸の評価対象断面の代表性について

1．概要

揚水井戸は岩盤と盛土内に設置されることから，地震時における挙動は周辺の構造物位置•規模，地質及び地下水位に影響を受ける。

評価断面は，それらの状況を整理のらえ，構造物にとつて最も厳しい断面を選定してい る。

ここでは，その整理結果について詳述する。

2．断面選定
揚水井戸の平面位置図を図 $1-1$ ，各井戸の評価対象断面図を図 $1-2$ ，岩盤上限面コン ターを図 $1-3$ ，地下水位分布を図 $1-4$ 及び断面選定の整理表を表 $1-1$ に示す。

断面選定の指標として，周辺の構造物位置•規模，地質及び地下水位を挙げ井戸別に状況整理を行い，各井戸の評価断面を選定した。

具体的には，周辺の構造物位置•規模から構造物の安全性に不利となる地盤変形が大き く生じる可能性がある断面を選定した後，当該断面近傍（図1－2，図1－3における確認範囲＊）における周辺地質及び地下水位の状況を整理し，評価対象として選定した断面の妥当性確認を行った。

注記＊：断面近傍における建屋を除いた盛土範囲

図 1－1 揚水井戸 平面位置図

図1－2（1）No． 1 揚水井戸 評価対象断面図

図1－2（2）No． 2 揚水井戸 評価対象断面図

図1－2（3）No． 3 揚水井戸 評価対象断面図

図 1－2（4）No． 4 揚水井戸 評価対象断面図

図 1－3 岩盤上限面コンター

図 1－4 地下水位分布（解析結果 包絡水位）

表1－1（1）断面選定の整理表（周辺構造物との関係）

揚水井戸	指標	選定結果•理由
	周辺の構造物位置•規模	
No． 1 揚水井戸	－EW 方向には，耐震性が確保された タービン建屋，防潮堤が存在する。 NS 方向には，盛土，旧表土並びに比較的構造規模の小さい放水立坑 （Cクラス）が存在する。	選定結果：NS 方向 理由：EW 方向には耐震性が確保さ れた構造物が存在し，NS 方向に比 べ地盤変形が拘束されるものと考え られるため NS 方向を選定。
No． 2 揚水井戸	－EW 方向直近には，原子炉建屋が存在する。 NS 方向には，盛土，旧表土並びに比較的規模が小さい制御建屋が存在 する。	選定結果：NS 方向 理由：EW 方向直近には原子炉建屋 が存在し，NS 方向に比べ地盤変形 が拘束されるものと考えられるため NS 方向を選定。
No． 3 揚水井戸	EW 方向直近には第 3 号機海水熱交換器建屋が存在する。 NS 方向には，盛土，旧表土並びに第 3 号機海水ポンプ室が存在する。	選定結果：NS 方向 理由：EW 方向直近には第3号機海水熱交換器建屋が存在し，NS 方向 に比べ地盤変形が拘束されるものと考えられるため NS 方向を選定。
No． 4 揚水井戸	－NS 方向直近には第3号機海水熱交換器建屋が存在する。 EW 方向には，盛土，旧表土，第 3号機原子炉建屋及び防潮堤が存在す る。	選定結果：EW 方向 理由：NS 方向直近には第3号機海水熱交換器建屋が存在し，EW 方向 に比べ地盤変形が拘束されるものと考えられるためEW方向を選定。

表1－1（2）断面選定の整理表（評価対象断面の確認結果）

揚水井戸	指標（確認範囲における考察）		確認結果とモデル化
	周辺地質状況（図 1－2，3）	地下水位状況（図 1－4）	
No． 1 揚水井戸	－NS 方向の確認範囲におい て，井戸中心を通る断面 における岩盤上限面は各断面（実線部，点線部） で概ね一定であり，盛土厚さに有意な差異は認め られない。	－NS 方向の確認範囲にお いて，井戸中心を通る断面における地下水位分布 は各断面（実線部，点線部）で概ね一定であり，地下水位に有意な差異が認められない。	－盛土厚さ，地下水位分布 に有意な差異がなく，NS方向を代表とすることで問題ないことを確認。 －なお，モデル化に当た り，放水立坑は盛土に置 き換える。
No． 2 揚水井戸	－NS 方向の確認範囲におい て，井戸中心を通る断面 における岩盤上限面は各断面（実線部，点線部） で概ね一定であり，盛土厚さ及び旧表土厚さに有意な差異は認められな い。	－NS 方向の確認範囲にお いて，井戸中心を通る断面における地下水位分布 は各断面（実線部，点線部）で概ね一定であり，地下水位に有意な差異が認められない。	－盛土厚さ，旧表土厚さ及 び地下水位分布に有意な差異がなく，NS 方向を代表とすることで問題ない ことを確認。 －なお，モデル化に当た り，制御建屋は盛土に置 き換える。
No． 3 揚水井戸	－NS 方向の確認範囲におい て，井戸中心を通る断面 における岩盤上限面は各断面（実線部，点線部） で概ね一定であり，盛土厚さ及び旧表土厚さに有意な差異は認められな い。	－NS 方向の確認範囲にお いて，井戸中心を通る断面における地下水位分布 は各断面（実線部，点線部）で概ね一定であり，地下水位に有意な差異が認められない。	－盛土厚さ，旧表土厚さ及 び地下水位分布に有意な差異がなく，NS 方向を代表とすることで問題ない ことを確認。 －なお，モデル化に当た り，第 3 号機海水ポンプ室は盛土に置き換える。
No． 4 揚水井戸	EW 方向の確認範囲におい て，井戸中心を通る断面 における岩盤上限面は各断面（実線部，点線部） で概ね一定であり，盛土厚さ及び旧表土厚さに有意な差異は認められな い。	－EW 方向の確認範囲にお いて，井戸中心を通る断面における地下水位分布 は各断面（実線部，点線部）で概ね一定であり，地下水位に有意な差異が認められない。	－盛土厚さ，旧表土厚さ及 び地下水位分布に有意な差異がなく，EW 方向を代表とすることで問題ない ことを確認。 －なお，モデル化に当た り，第 3 号機原子炉建屋並びに防潮堤は盛土に置 き換える。

以上

1．はじめに

揚水井戸の集水ピットは，円筒形の側壁及び円板形の底版から成る鉄筋コンクリート構造物であり，両部材は剛結構造となっている。

この集水ピット部は耐震性を担保する重要な構造であることを踏まえ，十分な裕度を確保するよう鉄筋仕様を決定しているため，各鉄筋は近接するが，相互に干渉しないよう な配筋とすることで施工可能となる。

ここでは，集水ピットの配筋決定にあたり留意した事項を整理し，施工実現性について説明するものである。

2．配筋について
集水ピットの概略配筋図を図 1 に示す。No．1～No． 4 各揚水井戸で側壁の高さが異なる ものの，ピット内径，部材厚及び配筋仕様については各揚水井戸で共通である。

側壁外側の鉛直鉄筋（以下「外側鉛直鉄筋」とする）はD51 が 1 周当たり 120 本（おお よそ 198 mm ピッチ），内側の鉛直鉄筋（以下「内側鉛直鉄筋」とする）は D38 が 1 周当た り 60 本（おおよそ 232 mm ピッチ）で，それぞれ等ピッチで配置される。

また，底版下側の水平鉄筋（以下「下側水平鉄筋」とする）はD51 が 200 mm ピッチ，底版上側の水平鉄筋（以下「上側水平鉄筋」とする）は D51 が 250 mm ピッチでそれぞれ格子状に配置される。

図1 集水ピット概略配筋図

3．配筋上の留意点
集水ピットの 3 次元配筋図を及び配筋において留意すべき事項を図 2 に示す。
側壁及び底版の鉄筋は隅角部において互いに定着をとることで，両部材を剛結構造と している。

図2 3 次元配筋図及び配筋において留意すべき事項

次に，それぞれの留意事項に対する対応内容を図3ならびに表1に示す。
隅角部外面では，外側鉛直鉄筋と下側水平鉄筋，外側鉛直鉄筋と上側水平鉄筋がそれぞ れ近接するが，立体的に交差しないよう配筋することで，いずれも干渉を回避している。隅角部内面では，内側鉛直鉄筋と上側水平鉄筋が交差するが，内側鉛直鉄筋の間を通す ように上側水平鉄筋を配置することで，両鉄筋の干渉を回避している。

この他，必要な鉄筋のあきが確保できていること，部材の評価上，鉄筋のピッチが安全側の設定となっていることを確認している。

図3（1）配筋上の留意点に対する対応内容（その1）

$\mathrm{A}-2$ ：放射状に等ピッチで配置される外側鉛直鉄筋（D51）の外側に下側水平鉄筋（D51）を配置すること で，両者が立体的に交差するのを避け，干渉を回避。

図 3（2）配筋上の留意点に対する対応内容（その 2）

図 3（3）配筋上の留意点に対する対応内容（その 3）

図 3（4）配筋上の留意点に対する対応内容（その 4）

B－2：円周方向に等ピッチで配置される内側鉛直鉄筋（D38）の間を通すように上側水平鉄筋（D51）を配置することで，両者の干渉を回避。

図3（5）配筋上の留意点に対する対応内容（その 5）

表1 集水ピットの配筋において留意すべき事項と対応内容（まとめ）

隅角部の位置	部位	留意すべき事項	対応内容
A 隅角部外面	A－1	外側鉛直鉄筋（D51）と上側水平鉄筋（D51）の干渉	外側鉛直鉄筋（D51）の内側に上側水平鉄筋（D51）を配置するこ とで，両者の交差を避け，干渉を回避（図3（1））
	A－2	外側鉛直鉄筋（D51）と下側水平鉄筋（D51）の干渉	外側鉛直鉄筋（D51）の外側に下側水平鉄筋（D51）を配置するこ とで，両者の交差を避け，干渉を回避（図3（1），図3（2））
	A－3	外側鉛直鉄筋（D51）の先端におけるあき	外側鉛直鉄筋（D51）の先端あき が 56 mm 確保できることを確認 （最大骨材寸法 20 mm 以上） （図3（3））
B 隅角部内面	B－1	内側鉛直鉄筋（D38）と上側水平鉄筋（D51）の干渉	内側鉛直鉄筋（D38）の間に上側水平鉄筋（D51）を通すことで，両者の干渉を回避（図3（4））
	B－2	上側水平鉄筋（D51）のピ ッチ誤差	B－1 に伴い，上側水平鉄筋（D51） のピッチがおよそ $140 \mathrm{~mm} \sim 220 \mathrm{~mm}$ の範囲になることを踏まえ，部材 の評価上は安全側に一律 250 mm ピッチとして対応 （図3（4），図3（5））

4．鉄筋組立て施工手順例
前項まででは，配筋において留意すべき事項と対応内容を示したが，その他，せん断補強筋なども含めた施工手順例を図4に示す。
（参考）2－8

＊STEP4 において外側鉛直鉄筋の組立精度を確保するため下側水平鉄筋を外側に組立
図4（1）鉄筋組立て手順例

図4（2）鉄筋組立手順例

図4（3）
鉄筋組立手順例

図4（4）鉄筋組立手順例

5．まとめ

以上のとおり，集水ピットの隅角部では，底版及び側壁の両部材の鉄筋が近接または交差するが，鉄筋同士は干渉せず，施工実現性を有することを確認した。

