```
本資料のうち，枠囲みの内容は商業機密の観点から公開できま せん。
```

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－11－2－14 制御棒貯蔵ハンガの耐震性についての計算書

2021年8月

東北電力株式会社
1．概要 1
2．一般事項 1
2.1 配置概要 1
2.2 構造計画 2
2.3 評価方針 3
2.4 適用規格•基準等 4
2.5 記号の説明 5
2.6 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4.1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 8
4．2．1 荷重の組合せ及び許容応力状態 8
4．2．2 許容応力 8
4．2．3 使用材料の許容応力評価条件 8
4.3 解析モデル及び諸元 12
4． 4 固有周期 13
4.5 設計用地震力 14
4.6 計算方法 15
4．6．1 部材の応力 15
4．6．2 基礎ボルトの応力 16
4.7 計算条件 18
4．8 応力の評価 18
4．8．1 部材の応力評価 18
4．8．2 基礎ボルトの応力評価 18
5．評価結果 19
5.1 設計基準対象施設としての評価結果 19
5.2 重大事故等対処設備としての評価結果 19

1．概要
本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」の耐震評価方針に基づき，下位クラス設備である制御棒貯蔵ハンガが基準地震動 S s に対して十分な構造強度を有していることを確認することで，近傍に設置された上位クラス施設 である使用済燃料貯蔵ラックに対して，波及的影響を及ぼさないことを説明するものである。

2．一般事項

2.1 配置概要

制御棒貯蔵ハンガは原子炉建屋の使用済燃料プール内に設置される。制御棒貯蔵ハンガは，図2－1 の位置関係図に示すように，上位クラス施設である使用済燃料貯蔵ラックが設置された使用済燃料プール内に設置されていることから，転倒により使用済燃料貯蔵ラック及び使用済燃料プール に対して波及的影響を及ぼすおそれがある。

2.2 構造計画

制御棒貯蔵ハンガの構造計画を表2－1に示す。

2.3 評価方針

制御棒貯蔵ハンガの応力評価は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「2．2 構造計画」にて示す制御棒貯蔵ハンガの部位を踏まえ，「3．評価部位」にて設定 する箇所において，「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．1 地震応答解析及び構造強度評価方法」にて示す方法 にて確認することで実施する。確認結果を「5．評価結果」に示す。

制御棒貯蔵ハンガの耐震評価フローを図2－2に示す。

図2－2 制御棒貯蔵ハンガの耐震評価フロー

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 • 補一 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

記号	記号の説明	単位
A_{b}	基礎ボルトの軸断面積	mm^{2}
A_{x}	部材の断面積	mm^{2}
$\mathrm{A}_{\mathrm{y}}, \mathrm{A}_{z}$	部材のせん断断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
D	死荷重	N
E	縦弾性係数	MPa
F	設計•建設規格 SSB－3121．1又はSSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
F_{x}	部材に働く引張力	N
$\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}$	部材に働くせん断力	N
$\mathrm{f}_{\text {s }}$	部材の許容せん断応力	MPa
$\mathrm{f}_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{t}	部材の許容引張応力	MPa
$\mathrm{f}_{\mathrm{t} \text { 。 }}$	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$\mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}, \mathrm{I}_{\mathrm{z}}$	部材の断面二次モーメント	mm^{4}
$\ell_{1}, l_{2}, \ell_{3}, \ell_{4}$	基礎ボルトの中心より板先端までの距離	mm
M_{D}	機械的荷重（設計基準対象施設）	N
$\mathrm{M}_{\text {SAD }}$	機械的荷重（重大事故等対処設備）	N
$\mathrm{M}_{\mathrm{y}}, \mathrm{M}_{\mathrm{z}}$	部材に働く曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m_{h}	制御棒貯蔵ハンガの質量	kg
N_{m}	$\mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ により生じる基礎ボルト1本当たりの最大引張応力	N
n	基礎ボルトの本数	－
P_{D}	最高使用圧力による荷重（設計基準対象施設）	N
$\mathrm{P}_{\text {SAD }}$	設計圧力による荷重（重大事故等対処設備）	N
Su_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表8に定める材料	MPa
	の $40^{\circ} \mathrm{C}$ における値	
$\mathrm{Z}_{\mathrm{y}}, \mathrm{Z}_{\mathrm{z}}$	部材の断面係数	mm^{3}
$\sigma_{\text {b }}$	基礎ボルトに生じる引張応力	MPa
$\sigma \mathrm{fa}$	部材に生じる組合せ応力	MPa
$\sigma \mathrm{fft}^{\text {t }}$	部材に生じる引張応力	MPa
τ_{b}	基礎ボルトに生じるせん断応力	MPa
$\tau{ }_{\text {f }}$	部材に生じるせん断応力	MPa

2.6 計算精度と数値の丸め方

計算精度は，有効数字6桁以上を確保する。
本資料で表示する数値の丸め方は，表2－2に示すとおりとする。

表2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	—	整数位
長さ	mm	-	—整数位 ${ }^{* 1}$	
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 3$

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び降伏点は，比例法により補間した値の小数点以下第1位を切り捨て，整数位までの値とす る。

3．評価部位
制御棒貯蔵ハンガの耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基 づき，耐震評価上厳しくなるハンガ部，支持ビーム，振れ止め及び基礎ボルトについて実施す る。制御棒貯蔵ハンガの耐震評価部位については，表2－1の概略構造図に示す。

4．地震応答解析及び構造強度評価
4． 1 地震応答解析及び構造強度評価方法
（1）制御棒貯蔵ハンガは，原子炉建屋の使用済燃料プールの底部（0．P．25．20m）及び側壁 （0．P．29．85m ）に基礎ボルトで固定されるものとする。
（2）制御棒貯蔵ハンガの質量には，制御棒貯蔵ハンガ自身の質量のほか，制御棒貯蔵ハンガ部材の付加質量＊を考慮する。
（3）地震力は，制御棒貯蔵ハンガに対して水平方向及び鉛直方向から個別に作用するものと し，作用する荷重の算出において組み合わせるものとする。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）制御棒の貯蔵本数は，0本とする。

注記＊：機器が流体中で加速度を受けた場合に質量が増加したような効果を模擬した質量

4． 2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
制御棒貯蔵ハンガの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用 いるものを表4－1に，重大事故等対処設備の評価に用いるものを表4－2に示す。

4．2．2 許容応力
制御棒貯蔵ハンガの許容応力は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれの ある下位クラス施設の耐震評価方針」に基づき表4－3に示す。

4．2．3 使用材料の許容応力評価条件
制御棒貯蔵ハンガの許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。
表4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の 取扱施設及び貯蔵施設	使用済燃料 貯蔵設備	制御棒貯蔵 ハンガ	B	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
表4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の 取扱施設及び 貯蔵施設	使用済燃料 貯蔵設備	制御棒貯蔵 ハンガ	－	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の許容 } \\ \text { 限界を用いる。) } \end{gathered}$

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
表4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）		許容限界＊1，＊2 （ボルト等）	
	一次応力		一次応力	
	引張	せん断	引張	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ff}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{fs}^{*}$	$1.5 \cdot \mathrm{ff}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の許容 } \\ \text { 限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}^{*}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$

[^0]＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
表4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
ハンガ部						

4.3 解析モデル及び諸元

制御棒貯蔵ハンガの解析モデルを図4－1に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【制御棒貯蔵ハンガの耐震性についての計算結果】の機器要目に示す。
（1）制御棒貯蔵ハンガの解析モデルは，はり要素を用いた有限要素モデルとする。
（2）制御棒貯蔵ハンガは，使用済燃料プールの床及び側壁に基礎ボルトで固定されることから，拘束条件はフレームの壁及び床への取付部を固定とする。なお，基礎ボルト部は剛体として評価する。
（3）制御棒貯蔵ハンガの質量には制御棒貯蔵ハンガ自身の質量及びハンガ部材の付加質量を考慮 し，ハンガ部材の付加質量は，節点に集中質量として与える。
（4）解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要に ついては，添付資料「VI－5 計算機プログラム（解析コード）の概要」に示す。

図4－1 制御棒貯蔵ハンガ解析モデル

4． 4 固有周期

固有値解析の結果を表4－6に示す。固有周期は，0．05秒以下であり，剛であることを確認し た。

表4－6 固有値解析結果

次数	卓越方向	固有周期 (s)
1 次	水平方向	
2 次	水平方向	
3 次	鉛直方向	

4.5 設計用地震力

評価に用いる設計用地震力を表4－7及び表4－8に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

表4－7 設計用地震力（設計基準対象施設）

据付場所及び	固有周期 （s）		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 33. } 20^{* 1} \\ & \text { 0.P.22. } 50^{* 2} \\ & \text { (0.P.29. 85) } \end{aligned}$			$\mathrm{C}_{\mathrm{H}}=2.49$	$\mathrm{C}_{\mathrm{V}}=1.71$

注記 $* 1$ ：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。

表4－8 設計用地震力（重大事故等対処設備）

据付け場所及び	固有周期 （s）		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 33. } 20^{* 1} \\ & \text { 0.P.22. } 50 * 2 \\ & \text { (0.P. 29. 85) } \end{aligned}$			$\mathrm{C}_{\mathrm{H}}=2.49$	$\mathrm{C}_{\mathrm{V}}=1.71$

注記 $* 1$ ：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。

4．6．1 部材の応力
応力計算は，図4－1の解析モデルにて，解析コード「MSC NASTRAN」を使用して行い，本項に示す計算方法に従って引張応力，せん断応力及び組合せ応力を計算する。

解析コード内では，各部材の局所座標系及び引張力 F_{x} ，せん断力 $\mathrm{F}_{\mathrm{y}}, ~ \mathrm{~F}_{\mathrm{z}}$ 及び曲げモ ーメント $M_{y}, ~ M_{z}$ の働く向きを図4－2に示すように設定している。

図4－2 部材の応力計算モデル
（1）せん断応力
せん断力 F_{y}, F_{z} により部材に生じるせん断応力 τ_{f} は（4．1）式より求める。

$$
\begin{equation*}
\tau_{\mathrm{f}}=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{y}}}{A_{y}}\right)^{2}+\left(\frac{\mathrm{F}_{z}}{A_{z}}\right)^{2}} \tag{4.1}
\end{equation*}
$$

（2）引張応力
引張力 F_{x} 及び曲げモーメント $\mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ により部材に生じる引張応力 $\sigma_{\mathrm{f}} \mathrm{t}$ は， （4．2）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{ft}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{y}}}+\frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{Z}_{\mathrm{z}}} \tag{4.2}
\end{equation*}
$$

（3）組合せ応力
組合せ応力 σ_{fa} は，（4．3）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{fft}}{ }^{2}+3 \cdot \tau_{\mathrm{f}}^{2}} \tag{4.3}
\end{equation*}
$$

4．6．2 基礎ボルトの応力

応力計算は，図4－1の解析モデルにて解析コード「MSC NASTRAN」を使用して行い，基礎ボルト に生じる引張力，せん断力及び曲げモーメントを求め，本項に示す計算方法に従って計算する。基礎ボルトの荷重状態を図4－3に示す。

図4－3 基礎ボルトに作用する荷重の状態
（1）引張応力
曲げモーメント $\mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ により基礎ボルト1本に生じる最大引張力 N_{m} 及び引張力 F x より基礎ボルトに生じる引張応力 σ bは，（4．4）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{N}_{\mathrm{m}}}{\mathrm{~A}_{\mathrm{b}}}+\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.4}
\end{equation*}
$$

ここで，

$$
\begin{equation*}
\mathrm{N}_{\mathrm{m}}=\frac{\ell_{4} \cdot \mathrm{M}_{\mathrm{y}}}{2 \cdot\left(\ell_{3}^{2}+\ell_{4}^{2}\right)}+\frac{\ell_{2} \cdot \mathrm{M}_{\mathrm{z}}}{2 \cdot\left({l_{1}}^{2}+{\ell_{2}}^{2}\right)} \tag{4.5}
\end{equation*}
$$

（2）せん断応力
せん断力 $\mathrm{F}_{\mathrm{y}}, ~ \mathrm{~F}_{\mathrm{z}}$ により基礎ボルトに生じるせん断応力 τ_{b} は（4．6）式より求め る。

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\sqrt{\mathrm{F}_{\mathrm{y}}^{2}+\mathrm{F}_{\mathrm{z}}{ }^{2}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.6}
\end{equation*}
$$

4．7 計算条件

応力解析に用いる自重（制御棒貯蔵ハンガ）及び荷重（地震荷重）は，本計算書の【制御棒貯蔵ハンガの耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 部材の応力評価
4．6．1項で求めた部材の引張応力 $\sigma \mathrm{ft}$ 及び組合せ応力 $\sigma \mathrm{fa}$ が，許容引張応力 f 以下であ ること。

また，4．6．1項で求めた部材のせん断応力 $\tau \mathrm{f}$ が，許容せん断応力 f_{s} 以下であること。 ただし，f_{t} 及び f_{s} は下表による。

	基準地震動 S s
許容引張応力 f_{t}	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$
許容せん断応力 f	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4．8．2 基礎ボルトの応力評価

4．6．2項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ が，次式よりもとめた許容引張応力 f t s 以下であること。

また，4．6．2項で求めた基礎ボルトのせん断応力 τ_{b} が，せん断力のみを受ける基礎ボル トの許容せん断応力 f s b 以下であること。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}} \tag{4.7}
\end{equation*}
$$

かつ
f ${ }_{\mathrm{t}} \leqq \mathrm{f}_{\mathrm{t}}$ 。
ただし，f to 及び f sbは下表による。

	基準地震動 S s
許容引張応力 f to	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f s b	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果
5.1 設計基準対象施設としての評価結果

制御棒貯蔵ハンガの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果構造強度評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

制御棒貯蔵ハンガの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
【制御棒貯蔵ハンガの耐震性についての計算結果】 1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期 （ s ）		基準地震動 S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向	鉛直方向	
制御棒貯蔵ハンガ	B	$\begin{aligned} & \text { 0.P. } 33.20 * 1 \\ & \text { 0. P. } 22.50 * 2 \\ & \text { (0. P. 29. } 85 \text {) } \end{aligned}$			$\mathrm{C}_{\mathrm{H}}=2.49$	$\mathrm{C}_{\mathrm{V}}=1.71$	66

注記 $~ 1 ~ 1 ~: ~ 上 丨 阝 ⿱ ⿰ ⿺ 乚 一 匕 ⿱ ㇒ 日 匕 日 の ~ ⿱ ⿱ ⿴ ⿱ 卄 一 二 八 土 土 亍$ 準床レベルを示す。
＊2：下階の基準床レベルを示す。
1.2 機器要目

1．2．1田有周期の算出及び部材の応力評価に用いろ要目

部材	材料	$\begin{aligned} & \mathrm{A}_{\mathrm{x}}{ }^{2} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{y}} * \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{z}{ }^{*} \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & I_{x} * \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\begin{aligned} & I_{y} \text { * } \\ & \left(\mathrm{mm}^{4}\right) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{z}{ }^{*} \\ & \left(\mathrm{~mm}^{4}\right) \end{aligned}$	$\begin{aligned} & Z_{y} \text { * } \\ & \left(\mathrm{mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{z}{ }^{*} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$
ハンガ部1		2.240×10^{3}	1． 493×10^{3}	1． 493×10^{3}	5． 452×10^{5}	9． 147×10^{5}	1． 233×10^{6}	2.613×10^{4}	3． 977×10^{4}	
ハンガ部2		1． 760×10^{3}	1． 173×10^{3}	1． 173×10^{3}	3． 826×10^{5}	4． 437×10^{5}	9． 686×10^{5}	1.613×10^{4}	3.124×10^{4}	
ハンガ部3		4． 340×10^{3}	2． 893×10^{3}	2.893×10^{3}	2． 618×10^{6}	1． 772×10^{6}	1． 390×10^{6}	5． 063×10^{4}	4． 485×10^{4}	
支持ビーム1		1． 418×10^{4}	4.650×10^{3}	7． 797×10^{3}	9． 806×10^{7}	1． 080×10^{8}	4． 680×10^{7}	8． 638×10^{5}	6． 240×10^{5}	
支持ビーム2		8． 123×10^{3}	4． 072×10^{3}	4． 072×10^{3}	8． 451×10^{7}	4． 226×10^{7}	4． 226×10^{7}	3.907×10^{5}	3.907×10^{5}	
支持ビーム3		5． 329×10^{3}	2． 674×10^{3}	2． 674×10^{3}	3． 184×10^{7}	1.592×10^{7}	1.592×10^{7}	1． 927×10^{5}	1． 927×10^{5}	
支持ビーム4		2． 041×10^{3}	1． 023×10^{3}	1． 023×10^{3}	6． 004×10^{6}	3． 002×10^{6}	3． 002×10^{6}	5． 253×10^{4}	5.253×10^{4}	
振れ止め1		1． 800×10^{3}	6． 940×10^{2}	8． 733×10^{2}	8.640×10^{4}	2． 572×10^{5}	1． 293×10^{6}	1． 029×10^{4}	3.494×10^{4}	
振れ止め2		6． 000×10^{2}	4． 000×10^{2}	4． 000×10^{2}	2． 444×10^{4}	7． 200×10^{3}	1． 250×10^{5}	1． 200×10^{3}	5． 000×10^{3}	

[^1]O 2 （3）VI－2－11－2－14 R 1

部材	材料	S_{y} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	S_{u} (MPa)	F^{*} (MPa)
ハンガ部					
支持ビーム					
振れ止め					

1．2．2 基礎ボルトの応力評価に用いる要目

部材	材料	m_{h} (kg)	ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	n $(-)$	A_{b} $\left(\mathrm{mm}^{2}\right)$
基礎ボルト		40	300	40	300	4	3.142×10^{2}	

		N S 方向＊					EW方向＊				
部材	材料	F_{x} （N）	F_{y} （N）	F_{z} （N）	$\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	F ${ }_{x}$ （N）	F_{y} （N）	F_{z} （N）	$\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
基礎ボルト		1． 876×10^{4}	2． 075×10^{3}	2.115×10^{-5}	5.070×10^{-2}	2.013×10^{6}	1． 432×10^{2}	2． 075×10^{3}	1． 380×10^{4}	1． 555×10^{7}	2.013×10^{6}

注記＊：制御棒貯蔵ハンガに対して作用する水平方向地震力の方向を示す。
枠囲みの部分は商業機密の観点から公開できません。

部材	材料	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{F} *$ (MPa)
基礎ボルト				

$$
2
$$

1.3 計算数値

1．3．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	基準地震動 S s
ハンガ部1		引張 σ_{ft}	7
		せん断 $\tau_{\text {f }}$	1
		組合せ $\sigma_{\text {fa }}$	7
ハンガ部2		引張 σ f t	9
		せん断 $\tau_{\text {f }}$	1
		組合せ $\sigma_{\text {fa }}$	9
ハンガ部3		引張 σ f t	6
		せん断 $\tau_{\text {f }}$	1
		組合せ $\sigma_{\text {fa }}$	6
支持ビーム1		引張 σ ft	22
		せん断 $\tau_{\text {f }}$	3
		組合せ $0_{\text {fa }}$	22
支持ビーム2		引張 σ_{ft}	24
		せん断 $\tau_{\text {f }}$	5
		組合せ $\sigma_{\text {fa }}$	25
支持ビーム 3		引張 σ_{ft}	26
		せん断 $\tau_{\text {f }}$	7
		組合せ $\sigma_{\text {fa }}$	29
支持ビーム4		引張 σ_{ft}	39
		せん断 $\tau_{\text {f }}$	7
		組合せ $\sigma_{\text {fa }}$	41
振れ止め1		引張 σ_{fft}	24
		せん断 $\tau_{\text {f }}$	1
		組合せ $\sigma_{\text {fa }}$	24
振れ止め2		引張 $\sigma_{\text {f }}$	6
		せん断 $\tau_{\text {f }}$	0
		組合せ $\sigma_{\text {fa }}$	6

1．3．2 基礎ボルトに生じる応力
（単位：MPa）

1．4 応力

1．4．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	算出応力	許容応力
ハンガ部2		引張	$\sigma_{\mathrm{ft}}=9$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=1$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=9$	$\mathrm{f}_{\mathrm{t}}=205$
支持ビーム4		引張	$\sigma_{\mathrm{ft}}=39$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=7$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=41$	$\mathrm{f}_{\mathrm{t}}=205$
振れ止め1		引張	$\sigma_{\mathrm{ft}}=24$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=1$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=24$	$\mathrm{f}_{\mathrm{t}}=205$

すべて許容応力以下である。

1．4．2 基礎ボルトに生じる応力

（単位：MPa）

部材	材料	応力	算出応力	許容応力
基礎ボルト1		引張	$\sigma_{\mathrm{b}}=92$	$\mathrm{f}_{\mathrm{t}}=455^{*}$
		せん断	$\tau_{\mathrm{b}}=12$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=350$

注記 $*: \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau{ }_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$ より算出 すべて許容応力以下である。
【制御棒貯蔵ハンガの耐震性についての計算結果】 2．重大事故等対処設備 2.1 設計条件

機器名称	設備分類	据付場所及び 床面高さ （m）	固有周期(s)		基準地震動 S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向	鉛直方向	
制御棒貯蔵ハンガ	－	$\begin{aligned} & \text { 0.P. } 33.20^{* 1} \\ & \text { 0.P. } 22.50^{* 2} \\ & \text { (0.P. 29. } 85 \text {) } \end{aligned}$			$\mathrm{C}_{\mathrm{H}}=2.49$	$\mathrm{C}_{\mathrm{v}}=1.71$	100

注記＊1：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。
2．2 機器要目
2.1 固有周期の算出及で部材の応力評価に用いろ要目

部材	材料	$\begin{aligned} & \mathrm{A}_{\mathrm{x}}{ }^{*} \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{y}} * \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{A}_{z}{ }^{*} \\ \left(\mathrm{~mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} I_{x} * \\ \left(\mathrm{~mm}^{4}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{y}} * \\ \left(\mathrm{~mm}^{4}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{z} * \\ \left(\mathrm{~mm}^{4}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{y}}{ }^{*} \\ \left(\mathrm{~mm}^{3}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{z}}{ }^{*} \\ & \left(\mathrm{~mm}^{3}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$
ハンガ部1		2.240×10^{3}	1． 493×10^{3}	1.493×10^{3}	5.452×10^{5}	9． 147×10^{5}	1． 233×10^{6}	2.613×10^{4}	3.977×10^{4}	
ハンガ部2		1.760×10^{3}	1． 173×10^{3}	1． 173×10^{3}	3． 826×10^{5}	4． 437×10^{5}	9.686×10^{5}	1.613×10^{4}	3.124×10^{4}	
ハンガ部3		4． 340×10^{3}	2． 893×10^{3}	2． 893×10^{3}	2.618×10^{6}	1． 772×10^{6}	1． 390×10^{6}	5． 063×10^{4}	4． 485×10^{4}	
支持ビーム1		1.418×10^{4}	4． 650×10^{3}	7． 797×10^{3}	9． 806×10^{7}	1． 080×10^{8}	4.680×10^{7}	8． 638×10^{5}	6.240×10^{5}	
支持ビーム2		8． 123×10^{3}	4． 072×10^{3}	4． 072×10^{3}	8． 451×10^{7}	4． 226×10^{7}	4.226×10^{7}	3.907×10^{5}	3.907×10^{5}	
支持ビーム 3		5.329×10^{3}	2． 674×10^{3}	2.674×10^{3}	3． 184×10^{7}	1.592×10^{7}	1． 592×10^{7}	1． 927×10^{5}	1． 927×10^{5}	
支持ビーム4		2.041×10^{3}	1． 023×10^{3}	1． 023×10^{3}	6． 004×10^{6}	3． 002×10^{6}	3.002×10^{6}	5.253×10^{4}	5.253×10^{4}	
振れ止め1		1． 800×10^{3}	6． 940×10^{2}	8.733×10^{2}	8.640×10^{4}	2.572×10^{5}	1． 293×10^{6}	1． 029×10^{4}	3.494×10^{4}	
振れ止め2		6． 000×10^{2}	4． 000×10^{2}	4.000×10^{2}	2． 444×10^{4}	7． 200×10^{3}	1． 250×10^{5}	1． 200×10^{3}	5.000×10^{3}	

注記＊： $\mathrm{A}_{\mathrm{x}}, ~ \mathrm{~A}_{\mathrm{y}}, ~ \mathrm{~A}_{\mathrm{z}}, ~ \mathrm{I}_{\mathrm{x}}$ ， $\mathrm{I}_{\mathrm{y}}, ~ \mathrm{I}_{\mathrm{z}}, ~ \mathrm{Z}_{\mathrm{y}}, ~ \mathrm{Z}_{\mathrm{z}}$ は部材の N S 方向を x 軸とした局所座標系に従う。
枠囲みの部分は商業機密の観点から公開できません。

O 2 （3）VI－2－11－2－14 R 1

> 2．2．2 基礎ボルトの応力評価に用いる要目

部材	材料	m_{h} (kg)	ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	n $(-)$	A_{b} $\left(\mathrm{mm}^{2}\right)$
基礎ボルト		40	300	40	300	4	3.142×10^{2}	

		N S 方向＊					EW方向＊				
部材	材料	F_{x} （N）	F_{y} （N）	F_{z} （N）	$\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	F_{x} （N）	F_{y} （N）	F_{z} （N）	$\begin{gathered} \mathrm{M}_{\mathrm{y}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
基礎ボルト		1． 876×10^{4}	2． 075×10^{3}	2． 115×10^{-5}	5． 070×10^{-2}	2． 013×10^{6}	1． 432×10^{2}	2． 075×10^{3}	1． 380×10^{4}	1． 555×10^{7}	2． 013×10^{6}

[^2]注記＊：制御棒貯蔵ハンガに対して作用する水平方向地震力の方向を示す。

部材	材料	S_{y} (MPa)	S_{u} (MPa)	F^{*} (MPa)
基礎ボルト				

2.3 計算数値

2．3．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	基準地震動 S s
ハンガ部1		引張 $\sigma_{\text {f t }}$	7
		せん断 τ_{f}	1
		組合せ $\sigma_{\text {fa }}$	7
ハンガ部2		引張 $\sigma_{\text {f t }}$	9
		せん断 $\tau_{\text {f }}$	1
		組合せ $\sigma_{\text {fa }}$	9
ハンガ部3		引張 σ ft	6
		せん断 $\tau_{\text {f }}$	1
		組合せ $\sigma_{\text {fa }}$	6
支持ビーム1		引張 $\sigma_{\text {f t }}$	22
		せん断 $\tau_{\text {f }}$	3
		組合せ $\sigma_{\text {fa }}$	22
支持ビーム2		引張 $\sigma_{\text {f t }}$	24
		せん断 $\tau_{\text {f }}$	5
		組合せ $\sigma_{\text {fa }}$	25
支持ビーム 3		引張 σ ft	26
		せん断 $\tau_{\text {f }}$	7
		組合せ $\sigma_{\text {fa }}$	29
支持ビーム4		引張 $\sigma_{\text {f }}$	39
		せん断 $\tau_{\text {f }}$	7
		組合せ σ fa	41
振れ止め1		引張 σ_{ft}	24
		せん断 $\tau_{\text {f }}$	1
		組合せ $\sigma_{\text {fa }}$	24
振れ止め2		引張 σ ft	6
		せん断 $\tau_{\text {f }}$	0
		組合せ $\sigma_{\text {fa }}$	6

2．3．2 基礎ボルトに生じる応力
（単位：MPa）

部材	材料	応力	基準地震動 S S
基礎ボルト1		引張 $\sigma_{\text {b }}$	92
		せん断 $\tau_{\text {b }}$	12
基礎ボルト2		引張 $\sigma_{\text {b }}$	20
		せん断 $\tau_{\text {b }}$	4
基礎ボルト3		引張 $\sigma_{\text {b }}$	16
		せん断 τ_{b}	4
基礎ボルト4		引張 $\sigma_{\text {b }}$	21
		せん断 τ_{b}	4
基礎ボルト5		引張 $\sigma_{\text {b }}$	37
		せん断 τ_{b}	8
基礎ボルト6		引張 $\sigma_{\text {b }}$	60
		せん断 $\tau_{\text {b }}$	11
基礎ボルト7		引張 $\sigma_{\text {b }}$	40
		せん断 τ_{b}	4
基礎ボルト8		引張 o b	40
		せん断 $\tau_{\text {b }}$	4

2.4 応力

2．4．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	算出応力	許容応力
ハンガ部2		引張	$\sigma_{\mathrm{f} \mathrm{t}}=9$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=1$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=9$	$\mathrm{f}_{\mathrm{t}}=205$
支持ビーム4		引張	$\sigma_{\mathrm{ft}}=39$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=7$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=41$	$\mathrm{f}_{\mathrm{t}}=205$
振れ止め1		引張	$\sigma_{\mathrm{ft}}=24$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=1$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=24$	$\mathrm{f}_{\mathrm{t}}=205$

すべて許容応力以下である。

2．4．2 基礎ボルトに生じる応力

（単位：MPa）

部材	材料	応力	算出応力	許容応力
基礎ボルト1		引張	$\sigma_{\mathrm{b}}=92$	$\mathrm{f}_{\mathrm{t}}=444^{*}$
		せん断	$\tau_{\mathrm{b}}=12$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=341$

注記 $*: \mathrm{f}_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau{ }_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$ より算出 すべて許容応力以下である。

[^0]: 注記＊ 1 ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

[^1]: 注記＊： $\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{z}, \mathrm{I}_{\mathrm{x}}, \mathrm{I}_{\mathrm{y}}, \mathrm{I}_{z}, \mathrm{Z}_{\mathrm{y}}, \mathrm{Z}_{\mathrm{z}}$ は部材の NS 方向をx軸とした局所座標系に従う。

[^2]: 枠囲みの部分は商業機密の観点から公開できません。

