女川原子力発電所第 2 号機	
工事計画審査資料	
資料番号	02－他－F－19－0009＿改 8
提出年月日	2021 年 8 月 5 日

地下水位低下設備に係る設置変更許可申請書の記載内容との比較表

2021年8月

東北電力株式会社
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
本文の記載内容 五．発電用原子炉及びその附属施設の位置，構造及び設備 口 発電用原子炉施設の一般構造 （1）耐震構造 （i）設計基準対象施設の耐震設計 g．設計基準対象施設は，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （ii）重大事故等対処施設の耐震設計 i．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設は，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するお それがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮 した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備 の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	2 耐震設計の基本方針 2.1 基本方針 （10）設計基準対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持 する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	VI－2－1－1 耐震設計の基本方針 －記載表現の相違 （実質的な相違なし）

設置変更許可	工事計画認可	資料番号他
添付書類六の記載内容 3．地盤 3.6 原子炉施設設置位置付近の地盤安定性評価 3．6．1 基礎地盤の安定性評価 3．6．1．1 地震力に対する基礎地盤の安定性評価 3．6．1．1．3 評価条件 （5）地下水位 原子炉建屋の解析用地下水位は，建屋の設計水位を参照の上，基礎版中央に設定し，原子炉建屋以外（周辺地盤を含む。）は地表面に設定した。代表として原子炉建屋の解析用地下水位を第3．6．1－9 図に示 す。なお，地盤安定性評価は全応力解析を行っていることから建屋の地下水位は評価に影響しない。	（参考 設置変更許可申請書における記載） 3．6．1．1 地震力に対する基礎地盤の安定性評価 3．6．1．1．4 評価結果 （1）基礎地盤のすべり （略） （2）基礎地盤の支持力 （略） （3）基礎底面の傾斜 （略）	基礎地盤の安定性評価結果 については設置変更許可段階で提示済みであるため，工事計画認可への反映事項 なし
原子炬建屋 $\mathrm{X}-\mathrm{X}$ ，断面＊		
※ ：原子灯建屋は基碳版中央とし，タービン建屋は地表面に設定。 第3．6．1－9 図 解析用地下水位（原子炉建屋）		

赤字：詳綳設計を崉まえ具体化した事項

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

赤字：詳絬設計を踏まえ，具体化した事項

設置変更許可	工事計画認可	資料番号他
1．4．2重大事故等対処施設の耐震設計 1．4．2．1 重大事故等対処施設の耐震設計の基本方針	2 耐震設計の基本方針 2.1 基本方針	$\mathrm{VI}-2-1-1$ 耐震設計の基本方針
（12）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，防潮堤下部 の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定 の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧 の影響を考慮する。地下水位低下設備の効果が及ばない範囲におい ては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （13）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類が Sクラスのもの）又は常設重大事故緩和設備（設計基準扩張）が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処 するために必要な機能が損なわれるおそれがないように設計する。	（10）設計基準対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持 する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （11）耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抎張）が設置さ れる重大事故等対処施設は，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれるおそれがないように設計する。	－記載表現の相違 （実質的な相違なし）
1．4．2．3 地震力の算定方法 （2）動的地震力 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S ク ラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設について，「1．4．1．3 地震力の算定方法」の「（2）動的地震力」に示す入力地震動を用いた地震応答解析による地震力を適用する。	4．設計用地震力 4． 1 地震力の算定法 （2）動的地震力 重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置 される重大事故等対処施設については，基準地震動 S s による地震力を適用す る。	VI－2－1－1 耐震設計の基本方針 －記載表現の相違 （設置変更許可段階で示した方針をより詳細に記述した ものであり，実質的な相違は ない。）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可	工事計画認可	資料番号他
第三十九条（地震による損傷の防止） 適合のための設計方針 第1項について II．設計方針	2 耐震設計の基本方針 2.1 基本方針	VI－2－1－1 耐震設計の基本方針
常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲 に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲にお いては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定 し水圧の影響を考慮する。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するために必要な機能が損なわれるおそれがないように設計す る。	（10）設計基準対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持 する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （11）耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設は，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれるおそれがない ように設計する。	－記載表現の相違 （実質的な相違なし）

赤家：詳綿設詁を踏きえ具体化した事項

設置変更許可	工事計画認可	資料番号他
10．その他発電用原子炉の附属施設 10． 15 地下水位低下設備 10．15．1 概要 地下水位低下設備は，防潮堤下部の地盤改良等により地下水の流れ が遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあ ることを踏まえ，発電用原子炉施設周辺の地下水位を一定の範囲に保持するためのものである。	2．地下水位低下設備の目的 設計基準対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設等の設計において，防潮堤下部の地盤改良等によ り山から海へ向から地下水の流れが遮断され，敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，表 2－1 に示す原子炉建屋等に作用する揚圧力 の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的とし，地下水位を一定の範囲に保持するための地下水位低下設備を設置する。 3．地下水位低下設備の設計方針 3.1 地下水位低下設備の系統構成	VI－2－1－1－別添 1 地下水位低 －記載表現の相違 な相違はない。） 下設備の設 計方針 （施設名を工事計画認可段階 では明確にしており，実質的
地下水位低下設備は $0 . P .+14.8 \mathrm{~m}$ 盤の発電用原子炉施設周辺に設置 する。	図 3－1 地下水位低下設備の配置	－詳細設計を踏まえ具体化した事項 （各揚水井戸の場所等を具体化）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可	工事計画認可	資料番号他
10．15．2 設計方針	3．地下水位低下設備の設計方針 3.2 耐震設計に係る方針	VI－2－1－1－別添 1 地下水位低下設備の設計方針
（1）地下水位低下設備は，基準地震動 S s に対して機能維持する設計と する。	耐震重要度分類については，その重要度に応じたクラス分類（S，B，C），また， それらに該当する施設が示されており，地下水位低下設備は，S クラス設備及びB クラス設備のいずれにも該当しないため，Cクラスに分類する。 また，地下水位低下設備により地下水位を一定の範囲に保持する必要のある対象施設が，「S クラス施設の間接支持構造物」及び「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」である原子炉建屋等のため，地下水位低下設備は基準地震動 S s による地震力に対して機能維持することを考慮 する。 以上を踏まえ，地下水位低下設備の耐震重要度分類については，C クラスに分類 し，基準地震動 S s による地震力に対して機能維持する設計とする。 3.3 設備の信頼性に係る設計方針	－記載表現の相違 （施設名を工事計画認可段階 では明確にしており，実質的 な相違はない。）
（2）地下水位低下設備は，設置許可基準規則第十二条第 2 項に基づく設計とする。	地下水位低下設備の目的，機能及び要求期間を踏まえ，重要安全施設への影響 に鑑み，地下水位低下設備は，原子力発電所の供用期間の全ての状態において機能維持が可能な設計とするため，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」第十二条第 2 項に基づき，地下水位低下設備を設置する原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアの各 エリアで，多重性及び独立性を備える設計とする。 4．機能の設計方針及び設計仕様 4.5 電源機能（電源（非常用ディーゼル発電機），電源盤及び電路） 4．5．1 電源機能の設計方針	－記載表現の相違 （実質的な相違なし）
（3）地下水位低下設備は，全交流動力電源塸失に配慮し，常設代替交流電源設備からの電源供給が可能な設計とする。	電源機能を有する機器として電源盤及び電路を設置し，非常用交流電源設備である非常用ディーゼル発電機及び常設代替交流電源設備であるガスタ ービン発電機から設備に必要な電力を供給できる設計とする。	－記載表現の相違 （全交流動力電源喪失となっ た場合にも，ガスタービン発電設備から電力を供給でき る設計とするため，実質的な相違はない。）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
	3．地下水位低下設備の設計方針 3.3 設備の信頼性に係る設計方針	VI－2－1－1－別添 1 地下水位低下設備の設計方針
（4）地下水位低下設備は，外部事象へ配慮した設計とする。	また，表3－2に示すとおり，原子力発電所の供用期間の全ての状態において考慮する必要のある，外部事象等による機能喪失要因に対し，地下水位低下設備が機能維持するために必要な対策を設計に反映する。 3．地下水位低下設備の設計方針	－記載表現の相違 （外部事象等による機能喪失要因に対し，機能維持するた めに必要な対策を設計に反映するため，実質的な相違は ない。）
10．15．3 主要設備	1 地下水位低下設備の系統構成	
地下水位低下設備は，ドレーン，揚水井戸，揚水ポンプ，配管及び計測制御装置により構成される。	地下水位低下設備は，原子炉建屋等に作用する揚圧力の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的とし，地下水位を一定の範囲に保持する ために，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアに設置する。 地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水ポンプ 2 個＊，配管，水位計 3 個，制御盤，電源（非常用ディーゼル発電機），電源盤及び電路で系統を構成する。 本系統は，ドレーン及び接続桝により揚水井戸に地下水を集水し，水位計によ り検出した水位信号により揚水ポンプを起動し，揚水ポンプに接続された配管を通して地下水を屋外排水路へ排水することで，地下水位を一定の範囲に保持する設計とする。 注記：揚水ポンプは，地下水の最大流入量を排水可能な容量を有する設計とし，設備の信頼性向上のため 100% 容量のポンプを 1 系統当たり 2 個設置す る。	－詳細設計を踏まえ具体化した事項 （地下水位低下設備の設置工 リア，各機能の構成機器及び系統構成を具体化）
10． 15.4 手順等 地下水位低下設備の機能喪失への対応として，復旧のための予備品 の確保及び可搬型設備を用いた機動的な措置について手順書及び体制を整備するとともに，地下水位を一定の範囲に保持できないと判断 した場合には，プラントを停止する。また，地下水位低下設備の機能喪失時の措置については，運転管理上の方針として保安規定に定め て，管理していく。	7．1 運用管理の方針 地下水位低下設備は，保安規定においてLCO，LCO を満足していない場合に要求 される措置及び要求される措置の完了時間（以下「AOT」という。）を設定する。工事計画認可段階における詳細設計で信頼性向上を図っているが，地下水位を一定の範囲に保持できない場合又はそのおそれがある場合には，可搬ポンプユニッ トによる水位低下措置を速やかに開始するとともに，原子炉を停止する。 また，地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材の配備，手順書及び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備として保安規定 に定めた上で，具体的な実施要領を社内規定に定める。	－記載表現の相違 （実質的な相違なし）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
添付書類十の記載内容 5．重大事故の発生及び拡大の防止に必要な措置を実施するために必要な技術的能力 5.1 重大事故等対策 5．1．2復旧作業に係る事項 （1）予備品等の確保 地下水位低下設備が機能喪失した場合に復旧作業等を行らため，必要な資機材として，可搬型設備及び予備品を確保する。 （2）保管場所 地下水位低下設備の可搬型設備及び予備品は外部事象の影響を受けない場所に保管する。 （3）アクセスルートの確保 地下水位低下設備の機能喪失を想定しても，地震時の液状化に伴う地下構造物の浮き上がりに対してアクセスルートの通行性を外部からの支援が可能となるまでの一定期間確保する設計とする。	6．地下水位低下設備の復旧措置に必要な資機材の検討 6.1 復旧措置に係る基本方針 地下水位低下設備は，地震時及び地震後を含む，原子力発電所の供用期間の全 ての状態において機能維持が可能な設計としたものの，それでもなお，機能喪失 が発生した場合を想定し，復旧措置に必要な資機材を確保する。 復旧措置に必要な資機材については外部事象の影響を受けないように保管す る。 3．地下水位低下設備の機能を考慮しない場合の評価 3． 4 評価結果 3．4．2 地下水位低下設備の機能を考慮しない状態が一定期間継続することを仮定した評価 地盤の液状化による影響として，地中構造物の浮上りによるアクセスルートの通行性への影響が考えられる。 地盤の液状化によるアクセスルートへの影響については，設置変更許可の方針 （次頁参照）と同様に，通常の運転状態から地下水位低下設備の機能を考慮しな い状態に移行することを仮定し，一定の期間（2 カ月間。外部からの支援が可能と なるまでの一定期間（7日間）を超え，長期に及ぶ場合を想定し設定）が経過した後の地下水位を浸透流解析（非定常解析）により評価し，この水位を参照して地中構造物の浮上りを評価の上，アクセスルートの通行性を確保する設計としてい る。 アクセスルートの評価において参照する予測解析結果を図 3－10に示す。 図 3－10 アクセスルートの評価において参照する地下水位分布（0．P．，m）	VI－2－1－1－別添 1 地下水位低 －記載表現の相違 はない。）下設備の設計方針 （機能喪失を考慮し，必要な資機材を確保する方針に変更 補足－600－25－1 地下水位低下事項設備の設計方針に係る補足説明資料 －詳細設計を踏まえ具体化した （設置変更許可段階の方針に基づき，詳細設計を踏まえ具体化した条件にて浸透流解析を実施。）

工事計画認可	資料番号他
3．屋外アクセスルート 3.3 屋外アクセスルートの評価方法及び結果 3．3．3 液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴う浮上り （1）地中埋設構造物と埋戻部との境界部 b．地下水位の設定 評価に用いる地下水位を図3．3．3－3に示す。 添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，地下水位低下設備の機能を考慮した浸透流解析により算出した地下水位分布を用 いて評価に用いる地下水位を設定するエリア（0．P．14．8m盤）については，地下水位分布を包絡するように保守的に設定することとし，地下水位を 0．P．5．0m，0．P．10．0m，0．P．14．8mの 3 エリアに分けて設定する。 防潮堤より海側（0．P． 3.5 m 盤）については，朔望平均満潮位である 0．P．2． 43 m とする。 上記以外の箇所については，保守的に地下水位を地表面に設定する。	VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性 に関する説明書
図 3．3．3－3 評価に用いる地下水位	

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可	工事計画認可	資料番号他
浸透流解析を用いた設計用地下水位の設定フローを別紙 18－3 図に示す。 別紙 18－3 図 浸透流解析を用いた設計用地下水位の設定フロー 別紙 18－3 図の各プロセスにおける検討方針を以下に示す。なお，各審査段階に おける提示内容を添付資料3に示す。 （A）～（B）水位評価用モデル作成•再現解析による検証 －解析モデル・境界条件について建設時工認を参照し設定した上で，観測記録 との比較等によりモデル全体としての保守性の確認を行う。 （C）地下水位が上昇した場合の影響確認 －防潮堤沈下対策による地下水流動場の変化を考慮した水位評価用モデルにお いて地下水位低下設備による地下水位を一定の範囲に保持する機能が期待で きない場合の地下水位を算定する。 －この算定結果も踏まえ，耐震評価において地下水位の影響を受ける可能性の ある施設等を網羅的に抽出する。 －抽出した施設等について，地下水位の上昇により生じる影響の時系列的な変化を整理し，この影響を低減するための施設ごとの対応方針を定めた上で地下水位低下設備の信頼性を図る方針とする。	d．解析フローの設定 図 3．3－8 浸透流解析を用いた設計用揚圧力•設計用地下水位の設定フロー	詳細設計を踏まえ具体化した事項 （工事計画認可では，標準的な フローを参考に構成を見直 し，（A）～（F）の要素を再構成。なお，工事計画認可では「水位が低い場合の影響検討」を追加しているが，基本的な解析プロセスに変更は ない。）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
（D）地下水位低下設備の考慮 －浸透流解析における算定条件として，地下水位低下設備は施設周辺における地下水位の保持に寄与し信頼性が確保できる範囲を有効なものとして設定す る。 （E）設計用地下水位の設定 －工事計画認可段階で（A）～（D）に基づく予測解析を実施し，地下水位を一定の範囲に保持する地下水位低下設備の機能を考慮した設計用地下水位を設定す る。 （F）観測による検証 －防潮堤沈下対策前後の地下水位観測データを取得し，（E）にて定める設計用地下水位の検証を行う。		
設計用地下水位の設定に当たっては，（1）～③に示すとおり，建設時工認段階の地下水位設定（二次元浸透流解析）において適用した保守性確保方針（解析に用いる パラメータや境界条件の保守的な設定，（1）と（3）の他，さらに地下水位低下設備を信頼性が確保された範囲に限定し考慮する（2）ことにより保守性を確保する方針 とする。 （1）地盤の透水性 建設時工認の透水係数を基本とし地下水位を高めに評価するよう保守的に設定する。 （2）ドレーンの有効範囲 信頼性が確保されたドレーンのみ管路として考慮する。施設に対するドレー ンの配置から期待範囲を設定し，信頼性の確保に係る3つの観点（耐久性，耐震性，保守管理性）を満たす範囲を抽出した上で，地下水位低下設備の重要安全施設への影響に鑑み，安全機能の重要度分類を踏まえ講ずる設計上の配慮として，多重性及び独立性を確保できる範囲のみ有効範囲として設定す る。 （3）境界条件 解析境界の地表面に水位固定する（別紙 18－4 図，建設時工認と同様）。	3．3．2 耐震評価における設計用地下水位設定方針 （1）設計用地下水位の設定方針 詳細設計段階においては，液状化検討対象施設を幅広く抽出する観点から，設置変更許可段階と同様，高めの設計用地下水位を設定する方針とする。 （3）モデル化方針の設定 f．予測解析 予測解析においては揚圧力•地下水位が高めに算出されるよう，解析領域を対象施設近傍の 0. P．+14.8 m 盤周辺領域とし，山側を解析境界の地表面（法肩） に，海側を H．W．L．に水位固定した定常解析を行う。 造成形状や構造物は安全対策工事完了段階に対応したモデル化を行い，ドレ ーンは既設•新設のうち信頼性が確保された範囲に限定する。 透水係数は，解析の再現性（観測水位への追従性）が確保される範囲で小さ く（水位が高めに評価されるよう）設定する。	補足－600－1 地盤の支持性能 記載表現の相違 について （工事計画認可では，水位が高 い場合が必ずしも保守的と ならない可能性も考慮し，水位を高く設定する目的を「保守性確保」から「液状化影響検討施設を幅広く抽出する ため」に修正）
2．4地下水位が上昇した場合の影響確認 （1）耐震評価において地下水位の影響を受ける可能性のある施設等の抽出 耐震評価において地下水位の影響を受ける可能性のある施設等の抽出結果を別紙 18－11 図及び別紙 18－3 表に示す。		

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可

$\begin{aligned} & \text { 盘 } \\ & \text { 堽 } \end{aligned}$																											
$\begin{aligned} & \text { 郊 } \\ & \text { 圌 } \end{aligned}$																									$\begin{aligned} & \frac{1}{1} \\ & \frac{1}{2} \\ & \kappa \\ & \dot{\lambda} \\ & \hat{h} \end{aligned}$		

設置変更許可	工事計画認可	資料番号他
（2）地下水位の上昇による影響と対応方針 a ．地下水位が上昇した場合における施設に生じる影響について 地下水位が上昇した場合には，揚圧力上昇及び液状化による土圧等の変化に より施設の耐震性等に影響が及ぶ可能性がある。 地下水位の上昇に伴ら影響は別紙 18－12 図に示すステップ順に段階的に生じ るものと考えられる。 る。 地下水位低下設備の機能喪失等盤改良等の耐震補強）を実施する。 ：周辺地盤の液状化に伴う地下構造物の浮き上がり（躯体の安定性に影響） ：周辺地盤の液状化に伴う施設へ作用する土圧等の変化（躯体の耐震性に影響） ：建物•構築物へ作用する揚圧力の上昇 （基礎版の耐震性に影響） 別紙 18－12 図 地下水位上昇時に施設に段階的に生じる影響の概念図 b ．地下水位上昇の影響を低減するための対応方針 地下水位上昇の影響を低減するため地下水位を低下させる対策や施設の耐震補強の選択肢が考えられるが，地下水位の上昇による影響が段階的に進むこと を踏まえ，早期に影響が生じる建物•構築物の揚圧力影響の低減に着目し，地下水位を一定の範囲に保持する地下水位低下設備を検討の上，設置することとす 液状化影響は，地下水位を一定の範囲に保持する地下水位低下設備の機能を考慮した設計用地下水位を用い評価し，当該施設の機能が損なわれるおそれが ないことを確認する。また，当該施設の機能に影響が及ぶ場合は適切な対策（地	3．3．2 耐震評価における設計用地下水位設定方針 （3）モデル化方針の設定 g．地下水位の上昇による影響と着目する指標 （b）地下水位の上昇による影響が生じるまでの時間 二。着目する指標 地下水位の上昇に伴う各影響は図 3．3－13のようにステップ 1 より段階的に生じると整理される。この整理を踏まえ，ドレーン配置の検討にあた っては，建物•構築物へ作用する揚圧力の上昇影響に着目する。 ステップ 1 ：揚圧力［約 25 時間後～］ 建物•構築物へ作用する揚圧力の上昇（基礎版の耐震性に影響） ステップ 2 ：液状化［約1 カ月後～］ 周辺地盤の液状化に伴う施設へ作用する土圧等の変化（躯体の耐震性に影響） ステップ 3 ：浮上り［約 2 カ月後～］ 周辺地盤の液状化に伴う地下構造物の浮上り（躯体の安定性に影響） 図 3．3－13 地下水位上昇による耐震性への影響	補足－600－1 地盤の支持性能 記載表現の相違 について （解析等に基づく各ステップ の影響発生までの時間軸の情報を追加しているが，実質的な相違なし） VI－2－1－1 耐震設計の基本方針 －記載表現の相違 （実質的な相違なし）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
一方，以下の施設は設計用地下水位の設定において地下水位低下設備の機能 に期待しない。 －緊急時対策建屋，緊急用電気品建屋及びガスタービン発電設備軽油タンク室 （いずれも 0．P．+62 m 盤で，自然水位（地下水位低下設備の効果が及ばない範囲の地下水位）より保守的に設定した水位又は地表面にて設計用地下水位 を設定） －取放水路流路縮小工 （岩盤内に設置され，地下水位は設計に影響しない） －可搬型重大事故等対処設備保管場所及びアクセスルートにおいて評価する斜面 （自然水位（地下水位低下設備の効果が及ばない範囲の地下水位）より保守的に設定した水位又は地表面にて設計用地下水位を設定） また，アクセスルートについては，c．アクセスルートの機能維持の方針で述べ る。 なお，可搬型重大事故等対処設備保管場所については，支持力のみの要求であ り，岩盤•MMR 上に設置されるため，地下水位の影響は受けない。 以上の対応方針については，工事計画認可段階において浸透流解析の結果を踏 まえ，詳細を提示する。 c．アクセスルートの機能維持の方針	－緊急時対策建屋，緊急用電気品建屋及びガスタービン発電設備軽油タンク室は，地下水位低下設備の機能に期待しない方針に変更なし（工事計画認可では地表面に設定し評価（表 3．3－12 に設計用地下水位を「地表面」と記載）） －取放水路流路縮小工は，地下水位低下設備の機能に期待しない方針に変更なし （工事計画認可では地表面に設定し評価（表 3．3－13に設計用地下水位を「地表面」と記載）） －可搬型重大事故等対処設備保管場所及びアクセスルートにおいて評価する斜面 は，地下水位低下設備の機能に期待しない方針に変更なし（工事計画認可では自然水位より保守的に設定し評価） 参考資料3 地下水位の上昇により生じる施設等への影響評価結果 －表 3－3（3）へ，保管場所の影響評価結果として，設置変更許可と同様，「岩盤• MMR 上に設置されるため地下水位の影響は受けない」旨を記載。 3．4．2 地下水位低下設備の機能を考慮しない状態が一定期間継続することを仮定 した評価 地盤の液状化による影響として，地中構造物の浮上りによるアクセスルートの通行性への影響が考えられる。 地盤の液状化によるアクセスルート～の影響については，設置変更許可の方針 （次頁参照）と同様に，通常の運転状態から地下水位低下設備の機能を考慮しな い状態に移行することを仮定し，一定の期間（2 カ月間。外部からの支援が可能 となるまでの一定期間（7日間）を超え，長期に及ぶ場合を想定し設定）が経過し た後の地下水位を浸透流解析（非定常解析）により評価し，この水位を参照して地中構造物の浮上りを評価の上，アクセスルートの通行性を確保する設計として いる。 アクセスルートの評価において参照する予測解析結果を図 3－10に示す。	補足－600－1 地盤の支持性能 について 詳細設計を踏まえ具体化した事項 （いずれも地下水位低下設備 の機能に期待しない方針に変更はない。なお，可搬型重大事故等対処設備保管場所及びアクセスルートにおけ る設計用地下水位は「VI－1－ 1－6－別添1 可搬型重大事故等対処設備の保管場所及び アクセスルート」に記載） 補足－600－1 地盤の支持性能 記載表現の相違 について （実質的な相違なし） 補足－600－25－1 地下水位低下 記載表現の相違 き評価。）設備の設計方針に係る補足説明資料 （設置変更許可段階の整理を踏まえ，アクセスルートの設計用地下水位は地下水位低下設備の機能喪失が長期間 （約 2 カ月）継続した状態を考慮した浸透流解析に基づ

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可	工事計画認可	資料番号他
	図 3－10 アクセスルートの評価において参照する地下水位分布（0．P．，m） ＜参考＞設置変更許可におけるアクセスルートの機能維持の方針（まとめ資料）	－詳細設計を踏まえ具体化した事項 （浸透流解析に基づくアウト プット）
アクセスルートは，地震時の液状化に伴う地下構造物の浮き上がり ※1 の影響 を受けることなく通行性を確保する設計とする。アクセスルートの機能維持に係る配慮事項を別紙 18－4 表及び以下に示す。	アクセスルートは，地震時の液状化に伴う地下構造物の浮き上がり＊1 の影響を受け ることなく通行性を確保する設計とする。アクセスルートの機能維持に係る配慮事項 を下表及び以下に示す。	補足－600－25－1 地下水位低下設備の設計方針に係る補足説明秶料
－地下水位低下設備の重要安全施設への影響に鑑み，安全機能の重要度分類を踏まえて講ずる設計上及び機能喪失時の配慮※2により，地下水位は一定の範囲に保持される。このことから，地下水位低下設備の機能を考慮した設計用地下水位を設定する区間においては，地震時の液状化に伴ら地下構造物の浮き上がりが発生せず，アクセスルートの通行性は確保される。 －また，地下水位低下設備の機能喪失を想定しても，地震時の液状化に伴う地下構造物の浮き上がりに対してアクセスルートの通行性を一定期間確保 する設計 ${ }^{*}$ ，※ ${ }^{4}$ とする。 －地下水位低下設備が機能喪失した場合に復旧作業等を行うため，必要な資機材として，可搬型設備及び予備品を確保する。 －地下水位低下設備の機能喪失が外部からの支援が可能となるまでの一定期間を超え長期に及ぶ場合においては，予め整備する手順と体制に従い，外部支援等によりアクセスルートの通行性を確保する。	－地下水位低下設備の重要安全施設への影響に鑑み，安全機能の重要度分類 を踏まえて講ずる設計上及び機能喪失時の配慮＊2により，地下水位は一定 の範囲に保持される。このことから，地下水位低下設備の機能を考慮した設計用地下水位を設定する区間においては，地震時の液状化に伴う地下構造物の浮き上がりが発生せず，アクセスルートの通行性は確保される。 －また，地下水位低下設備の機能喪失を想定しても，地震時の液状化に伴う地下構造物の浮き上がりに対してアクセスルートの通行性を一定期間確保 する設計＊3，＊4とする。 －地下水位低下設備が機能喪失した場合に復旧作業等を行うため，必要な資機材として，可搬型設備及び予備品を確保する。 －地下水位低下設備の機能喪失が外部からの支援が可能となるまでの一定期間を超え長期に及ぶ場合においては，予め整備する手順と体制に従い，外部支援等によりアクセスルートの通行性を確保する。	
※ 1 ：アクセスルートの地下構造物の浮き上がり評価において用いる地下水位は，地下水位低下設備の機能を考慮した水位又は地表面とす る。 $※ 2:$ 機能喪失時の配慮については，第II編で詳述する。	注記＊1：アクセスルートの地下構造物の浮き上がり評価において用いる地下水位は，地下水位低下設備の機能を考慮した水位又は地表面と する。 ＊ 2 ：機能喪失時の配慮については，第II編で詳述する。	

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

資料番号他
•詳細設計を踏まえ具体化した
事項
$($ 保管場所 $(0 . P .+14.8 \mathrm{~m}$ 盤 $)$ は
変更なし。アクセスルート
（ $0 . \mathrm{P} .+14.8 \mathrm{~m}$ 盤）は設置変更
許可の方針を踏まえて地下
水位低下設備の機能喪失を
仮定し浮上り評価を実施。保
管場所，アクセスルート
（0．P．＋62m 盤）は設置変更許
可の方針を踏まえ地表面に
設定。保管場所，アクセスル
ートにおおいて評価する斜面
は設置変更許可の方針を踏
まえ自然水位より保守的に
設定した水位）
VI－2－1－1－別添 1 地下水位低
記載表現の相違 ${ }^{\text {計方針 }}$
（実質的な相違なし）
VI－2－1－1 耐震設計の基本方針
記載表現の相違
（実質的な相違な
（実質的な相違なし）
詳細設計を踏まえ具体化した
事項

工事計画認可				
表 3－3（3）		地下水位の影響を踏まえた評価と対応（3／3）		
保等畦所•		診侕结果		影響なし （地下水位低下設備により一定の䉕囲に保持される地下水位を前提として設計用地下水位を設定しているが，保管場所（O．P．+14.8 m 縏）は，岩媻，MMR上に設置され るため，地下水位の設定は評亚結果に影響しない）
		对第	地下水位低下放僧	－
				－
	$\begin{aligned} & \text {-アクセスルート } \\ & (\mathrm{O}, \mathrm{P} .+14.8 \mathrm{~m} \text { 盤) } \end{aligned}$			
		对策	地下水位低下設确	$\Delta:($ 地下水位低下設偏の機能表表失を仮定し，地震時の液状化に伴う地下横造物の浮上引評侕を行5）
		対策	地下水位任下設絾	－
				－
	－保管場所，アクセスルート にないて評侕する斜面	站的絡果		
		对策	地下水位低下欴偳	－
				－

地下水位低下設備の設計方針
3.2 耐震設計に係る方針
（3）地下水位が上昇した場合の影響評価まとめ
a．地下水位低下設備の設置許可基準規則における位置付け等
施設の設置許可基準規則第 4 条（•第 39 条） 人の適合に当たり，施設の設計
の前提条件となるな地下水位を一定の範囲に保持する必要があることから，地下
水位低下設備を設計基準対象施設として位置付ける。
各施設の耐震設計については，防潮堤の下方を地盤改良するために地下水の流れが遮断され地下水位が地表面付近まで上昇するおそれがあるといら女川サ イト固有の状況を踏まえ地下水位を一定の範囲に保持する地下水位低下設備の機能を考慮した水位，自然水位（地下水位低下設備の効果が及ばない範囲の地下

機能が損なわれるおそれがないように設計することで基準適合が図られる。

なお，地下水位の影響を受ける施設等，及び地下水位の影響を踏まえた対策

 している。

設置変更許可				
別紙 18－5 表		地下水位の影響を踏まえた評価と対応（ $3 / 3$ ）		
$\begin{aligned} & \text { 保管暘所• } \end{aligned}$	－保管場所 （O．P．+14.8 m盤）	評新結果		影郞なし （地下水位低下設晋により一定の節囲汇保持される地下水位を前提として設計用地下水位を設定しているが，保管場所（O．P．+14.8 m 盤）は，岩盤，MMR上に設置きれ るため，地下水位の設定は評価結果に影響しない）
		対策	地下水位低下欴偳	－
				－
		評侐緒果		
		奶策	地下水位低下設偳	
		対策	地下水位低下設偳	－
				－
	－保管場所，アクセスルート こおいて評亚する嵞面	評侕絡果		
		対策	地下水位低下設偳	－
				－

> 赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

2．1基本方針（10）（11）へ同様の方針を記載

地下水位低下設備の設計方針
表 3－1 へ地震時の影響について技術基準規則第5条或いは第40条への適合性
を示すことにより確認する旨を記載
工事計画認可
地震時の影響については，代表的に設置許可基準規則第 4 条或いは第 39 条へ
の適合性を示すことにより確認する。

別紙 18－6 表 耐震評価において地下水位の影響を受ける施設等の
地下水位低下設備との関係並びに設置許可基準規則における対応条文の整理

施設等		安全性碓保における地下水位低下設備の位置付け ${ }^{(1)}$												備考	
		（ A ） 設計值保持 のたため 直接的に必要	（B）左記（A）により保持される地下水位を前提とする（必要時は対策）	$\begin{aligned} & \text { (C) } \\ & \text { 不要 } \end{aligned}$	地盤				地震		津波•余震重畳		$\substack{\text { 重大事 } \\ \text { 故等対 } \\ \text { 処設備 }}$ 43 条		
		$\begin{aligned} & \text { 3条 } \\ & \text { 1項 } \end{aligned}$			$\begin{gathered} \hline 38 \text { 条 } \\ 1 \text { 1項 } \end{gathered}$	$\begin{aligned} & \begin{array}{l} 3 \text { 条 } \\ \text { 2項 } \end{array} \end{aligned}$	$\begin{aligned} & 38 \text { 条 } \\ & \text { 2項 } \\ & \text { 符 } \end{aligned}$	4条 4	39 条	5条	40条				
基硕地僌	基碰地笽				$0^{* 2}$	※2	※2								
周辺斜面	周辺斜面			－										文象斜面なし	
建物•構築物	原子炉建屋	0					\triangle	\triangle	0	※3					
	制御建屋	0					\triangle	\triangle	\bigcirc	※3					
	3号炉海水熱交換器建屋	O					\triangle	\triangle	0	※3	\triangle	\triangle			
	排気你	\bigcirc					\triangle	\triangle	\bigcirc	※3					
	緊急時対策建屋			O										O．P．＋62m盤	
	緊急用電気品建屋			O										O．P．＋62m盘	
土木構造物津波防護施設浸水防止設備	防潮場		O				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	防潮壁		O				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	海水ボンプ室		O				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	原子炉機器浍却海水配管夕外		O				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	取水路		O				\triangle	\triangle	\triangle	\triangle					
	軽油タンク室		O				\triangle	\triangle	\triangle	\triangle					
	軽油タンク室（H）		\bigcirc				\triangle	\triangle	\triangle	\triangle					
	復水貯蔵夺ンク基磻		O					\triangle		\triangle					
	軽油タンク連絡ダクト		\bigcirc				\triangle	\triangle	\triangle	\triangle					
	排気筒連絡ダクト		O				\triangle	\triangle	\triangle	\triangle					
	3号炉海水ポンプ室		\bigcirc				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	取放水路流路縮小工			O											
	カスタービン発電設備軽油タンク室			O										O．P．＋62m艦	
	貫通部止水処置		O				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	3号炉補機冷却海水系放水ピット		\bigcirc				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	揚水井戸（ 3 号炬海水ポンプ室防潮擘区画内）		O				\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
保管場所． アクセスルート	保管場所（O．P．＋14．8mm盤）			\bigcirc											
	アクセスルート（O．P．＋14．8m盤）		O										\triangle		
	保管場所，アクセスルート（O．P．＋62m媻）			O											
	保管場所，アクセスルートにおいて評価する斜面			O											

※1 地下水位の影響を受ける施設等，及び地下水位の影響を踏まえた対策については，工事計画認可段階にその詳細を示す
－2其硙地盤の評価に地下水位が影響しないため，条文適合上不要と整理した。なお，基礎地盤の安定性の評価条件の一つとして，地下水位の設定について設置変更許可申請書へ記載する。
 る設計基準対象施設及び重大事故等対処施設の適合性を要求しているものであり，地震時の影響については，代表的に設置許可基準規則第4条への適合性を示すことにより確認する。

表3－1 地下水位低下設備の機能を考虑した設計用地下水位を設定する範闌

		安全性磪葆に排ける 位睍付け＊									 に抽ちる 地下ホ柱の菣い	
		地震				津波－余震舟晋		重大作放等新処設偏				
		$\begin{aligned} & 3 \text { 3 } \\ & 2 \text { 䏚 } \\ & 41 \end{aligned}$		$\begin{aligned} & 38 \text { 条 } \\ & 2 \text { 㖽 } \end{aligned}$	$5 \text { 5条 }$	$50 \text { 条 }$	6条	$\begin{array}{\|c\|c\|c\|} \hline 51 \\ 0 \end{array}$	54条			
建物•棈䑁物			0		\triangle	\triangle	0	＊2				
	校䢒建棌	0		\triangle	\triangle	0	＊2					
		0		\triangle	\triangle	0	＊2	\triangle	\triangle			
	防都時		0	\triangle	\triangle	A	\triangle	\triangle	\triangle			
	防商昜		0	\triangle	\triangle	E	\triangle	\triangle	\triangle			
	海水ボンフ离		0	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
			0	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle			
	政水路		0	\triangle	\triangle	\triangle	\triangle					
	婎畆タンク离		0	\triangle	Δ	®	\triangle					
	妵油夺ンク家（11）		O	\triangle	\triangle	4	\triangle					
			0		\triangle		\＃					
			0	\triangle	\triangle	\triangle	\triangle					
			0	\triangle	\triangle	A	\triangle					
			0	\triangle	\triangle	A	\triangle	\triangle	\triangle			
	第3号根縕緘崄却海求奚放求ビット		0	\triangle	\triangle	A	\triangle	\triangle	\triangle			
	 		O	\triangle	\triangle	Δ	\triangle	\triangle	\triangle			
	$\begin{gathered} \text { アタせス凡ート } \\ (0 . \text { P. +14.8m } \end{gathered}$		\bigcirc							\triangle		

設置変更許可	工事計画認可	資料番号他
2． 5 観測による検証 設計用地下水位の設定に用いる予測解析は防潮堤沈下対策完了後の状態をモデ ル化することから，予測解析結果の妥当性の検証として，防潮堤沈下対策の工事完了後に地下水位の観測を行い，解析にて想定した地下水位を観測水位が下回ること を確認する。 観測孔は，防潮堤の沈下対策による地下水位への影響範囲を考慮し設定する。 地下水位観測計画位置を別紙 18－13 図に示す。 工事計画認可段階の予測解析の検証においては，防潮堤の沈下対策の影響を受け ない No．1～No． 4 孔の観測記録を参照する。また，防潮堤の沈下対策工事完了後の運転段階においては，防潮堤外も含めて No．5～No． 8 孔の観測記録を検証材料に加 える。 なお，今後の地下水位設定の信頼性碓認等への活用を念頭に，別紙 18－13 図のう ち複数孔については防潮堤沈下対策影響の検証後も観測を継続し，基礎データとし て集積していく。	（8）今後実施する浸透流解析の妥当性の検証 予測解析結果は，将来的な防潮堤の沈下対策や新設ドレーン等を考慮したも のであることから，今後，これらの施工が完了した運転段階において地下水位 の観測記録を取得し，設計用地下水位と比較することにより，予測解析の妥当性を確認する方針とする。 地下水位観測計画を図 3．3－54 に示す。	補足－600－1 地盤の支持性能 －記載表現の相違 （工事計画認可では観測デー夕を追加し説明。防潮堤沈下対策完了後の観測計画は変更なし） について
別紙 18－13 図 地下水位観測計画位置	図 3．3－54 防潮堤沈下対策による影響範囲と今後の地下水位観測計画	

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

4．5．1 電源機能の設計方針詳細設計を踏まえ具体化した
事項
（電源機能について電源盤及 び電路を追加し，単一故障及

 した。）
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
原子炬施設保安規定に関連付けた社内規定類において地下水位低下設備の運転管理方法を定める。 ＜具体的な対応＞ - 地下水位低下設備の運用に係る体制，確認項目•対応等を整備する。 - 地下水位低下設備が機能喪失した場合に，可搬型設備による機動的な対応による復旧を行うための手順を定める。	定の範囲に保持できない場合又はそのおそれがある場合には，可搬ポンプユニッ トによる水位低下措置を速やかに開始するとともに，原子炉を停止する。 また，地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材の配備，手順書及び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備として保安規定 に定めた上で，具体的な実施要領を社内規定に定める。	
① LCO の設定の考え方 LCOについては，対象エリア※ごとに地下水位低下設備の多重性確保の観点を踏まえた設定を行う。揚水ポンプ等の機器故障及び揚水井戸の水位の視点からの動作不能の判断基準を設定する。これにより，揚水ポンプが稼働している状態にお いて何らかの要因により排水機能に影響が生じ，揚水井戸の水位が上昇した場合 においても，水位による動作不能の判断を行うことが可能となる。なお，機能喪失の詳細な判定項目（揚水ポンプ故障の要因等）は詳細設計を踏まえ設定する。（別紙 18－25 図参照） ※ 対象エリアとは，2号炉原子炉建屋•制御建屋周辺，3 号炉海水熱交換器建屋周辺及び 2 号炉排気筒周辺を指す。	7．1．1 地下水位低下設備の LCO 設定方針 地下水位低下設備は，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアにそれぞれに機能が要求されることから，各エリア個別に LCO を設定する。また，本設備は全ての原子炉の状態において機能が要求さ れることから，LC0 も全ての原子炉の状態に対して適用する。 次に，図 3－2 において地下水位を一定の範囲に保持するために必要な機能及び機器を「 1 系統」としており，これを LCO 設定方針における「 1 系列」 と位置付ける。 LCO は個別の機能及び機器ごとに設定するのではなく，系列の中で管理す る。機器に異常が発生し，当該系列の機能が喪失すると判断した場合に動作不能と判断し，LCO 逸脱時に要求される措置を講じる。これは，ポンプ，流路等を構成する設備を含めて系列の中で管理する既存の設計基準事故対処設備と同様の考え方である。地下水位低下設備 1 系列の各構成要素に対する LC0 設定上の考え方を表 $7-1$ に示す。 また，揚水ポンプが稼動している状態において何らかの要因により排水機能に影響が生じ，揚水井戸の水位が上昇した場合においても水位低下措置を速やかに開始するよう，揚水井戸の水位に対しても LCO を設定する。 水位の LCO については，AOT 内に水位低下措置を完了することで設計用揚圧力以下に保持できるよう，基礎版が被圧しない状態の揚水井戸の水位であ るドレーン（鋼管）位置（「6．3．1 到達時間（ X 1 ），（ X 2 ）の評価」におけ る初期条件に相当）より下部に設定する水位高高警報設定値を判断基準とす る。 地下水位低下設備の LCO 設定例を表 7－2 に示す。具体的な LCO は今後保安規定に定める。	－記載表現の相違 （実質的な相違なし） 詳細設計を踏まえ具体化した事項 （LC0 を適用する原子炉の状態，地下水位低下設備に必要 な機能及び機器を整理し「1系列」の対象を明確化した。） （2号炉排気筒周辺は地下水位低下設備の設置エリアとし て対象外とした。） －詳細設計を踏まえ具体化した事項 （揚水井戸の水位に対して LC0 を設定した。）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

資料番号他
詳細設計を踏まえ具体化した
事項
（水位低下措置完了時間（要員
参集による体制構築から水
位低下開始まで）を評価し，
到達時間の範囲内で対応可
能であることを確認）

詳細設計を踏まえ具体化した
事項
（水位計の動作不能による LCO逸脱時の措置を明確化。）

能となった場合でも，残りの水位計で監視•制御可能な設計だが，設計上の設
地下水位低下設備 1 系列に 3 台設置する水位計のらち， 1 台又は 2 台動作

ત્ડ

資料番号他
－詳細設計を踏まえ具体化した
事項
 ポンプ発停頻度を具体化。）記載表現の相違
（実質的な相違なし）
VI－2－1－1－別添 1 地下水位低
下設備の設
計方針
詳細設計を踏まえ具体化した事項
能，監視•制御機能に係る機

 する設計とした。）
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし

6．地下水位低下設備の復旧措置に必要な資機材の検討

2 復旧措置に係る資機材
6．2．2 可搬ポンプユニッ
可搬ポンプユニットの配備
可搬ポンプユニットは，の交
加え，原子炬建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアに おける全ての地下水位低下設備の機能喪失を考慮し，各エリアの排水機能の維持を可能とするため，各エリアに 1 個，計 2 個配備する。

 のとおり配備する。

設置変更許可

工事計画認可

7．1．3 サーベイランスの実施方針

ることを確認するために，電源系及び制御系に異常がないこと，揚水井戸の
水井戸の水位が低下していることを，毎日 1 回，制御盤で確認し，LCO に関 する点検結果の記録として保存する。なお，毎日 1 回の確認頻度は，異常の有無を常時監視している設備である計測及び制御設備を参考に設定してい パ

地下水位低下設備は今後新たに設置する設備であることから，運用開始後 の運転実績を踏まえて，サーベイランスの実施方法及び頻度は適時適切に見直していく。

保守管理の方針

設定することとから，他の LCO 設定設備と同様に，地下水位低下設備を「予防保
能喪失が発生しても，各エリアの排水機能の維持を可能とするため，「6．地下水位低下設備の復旧措置に必要な資機材の検討」を踏まえ，必要台数を配備する。
6.2
重要度分類を踏まえて，高い信頼性を確保する設計とするものの，それでもなお，動作不能が発生した場合を想定し，可搬型設備及び予備品を配備する。

Θ
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可	工事計画認可	資料番号他
添付資料2 ドレーンの信頼性確保の検討 1．はじめに ドレーンの機能喪失要因と対応の考え方を添付 2－1 表に示す。 ドレーン構造（有孔管）に起因し経時的に状態が変化するモードとして土砂流入 が考えられるが，ドレーンは耐久性•耐震性を確保したものを使用すること，有孔部から流入する土砂は非常に緩速に堆積することから，管の閉塞に至るリスクはな い。さらに，今後予防保全対象として定期的な点検•土砂排除を行う計画とする。	3.3 敷地の地下水位分布及び耐震評価における地下水位設定方針 3．3．2 耐震評価における設計用地下水位設定方針 （5）予測解析（水位評価モデルを用いた定常解析） a．水位評価モデルの作成（e）ドレーンのモデル化 ニ．ドレーンの集水機能保持の前提について （ロ）保守管理 既設のヒューム管内部への土砂等の流入は非常に少なく＊ 1 ，ドレーン内への土砂堆積は非常に緩速に進行する（新設する鋼管は岩盤内に設置するため，土砂等が流入する可能性は非常に小さい）。 浸透流解析において考慮するドレーンは，既設•新設のうち耐久性•耐震性•保守管理性が確保できる範囲として設定。土砂による閉塞以外の要因も含め，集水機能を喪失しうる要因を網羅的に抽出した上で，設計（耐久性•耐震性の確保）並びに保守管理により機能を維持することが可能と整理している。また，実機を用いた試験施工により，カメラ等によるドレーン内部の確認や高圧洗浄 による土砂の除去など，保守管理方法の成立性を確認している。（参考資料 9） 更に，ドレーンは今後予防保全対象として定期的な点検•土砂排除を行うこ とから，管の閉塞に至るリスクはなく，有孔部からの流入土砂に起因するドレ ーン機能の喪失は保守的な想定である。 参考資料 9 地下水位低下設備の保守管理について 2．ドレーンの保守管理について 2.1 ドレーンの機能喪失要因と対応方法 集水機能を担うドレーン・接続桝は，閉塞による機能喪失リスクを考慮する必要がある。設置状況や保守管理性を踏まえ，機能を喪失する可能性のある事象を網羅的に挙げ，それらに対する対応の考え方を整理した。ドレーンの機能喪失要因と対応の考え方を表9－1に示す。 ここに示すとおり，土砂流入をはじめとして，機能喪失への影響が想定され る全ての事象は，設計（耐久性•耐震性の確保）並びに保守管理により対処し，機能維持することが可能である。 なお，ドレーンは技術基準規則第 14 条の要求事項への配慮の観点から，部分閉塞を想定した設計を行っているが，ドレーンは耐久性•耐震性を確保したも のを使用すること，有孔部から流入する土砂は非常に緩速に堆積すること，今後予防保全対象として定期的な点検•土砂排除を行うことから，管の閉塞に至 るリスクはなく，有孔部からの流入土砂に起因するドレーン機能の喪失は保守的な想定である。	補足－600－1 地盤の支持性能 記載表現の相違 （記載を具体化。基本方針に変更なし） －詳細設計を踏まえ具体化した事項 （ドレーン閉塞要因の分析，試験施工の実施） 補足－600－1 地盤の支持性能 －記載表現の相違 （記載を具体化。基本方針に変更なし） について について

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）
資料番号他
•詳細設計を踏まえ具体化し
た事項
（工事計画認可では，ドレーン
の機能喪失要因を更に検討
し，バクテリア影響に対する
考察を追加。）

[^0]

部位	設置状況と調査項目＊			保守管理性の確保方法	
	立入	カメラ	$\begin{gathered} \text { トレーサー試験+流 } \\ \text { 末部碓認 } \end{gathered}$	経路の連続性確認方法	通水断面の確保方法
$\begin{aligned} & \text { 鋼管 } \\ & (\phi 142.5 \mathrm{~mm}) \end{aligned}$	\times	\bigcirc	\times	－カメラ	－設計 （ S 機能維持） －維持管理 （定期的な点検•土砂排除）
$\begin{aligned} & \text { ヒューム管 } \\ & (\phi 500 \mathrm{~mm}) \end{aligned}$	\times	\triangle	\bigcirc	トレーサー試験流末部の確認 （カメラ・目視）	
$\begin{gathered} \text { ヒューム管 } \\ (\phi 800 \mathrm{~mm}) \\ \hline \text { ヒューム管 } \\ (\phi 1050 \mathrm{~mm}) \\ \hline \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	- 目視（人の立入） - トレーサー試験 - 流末部の確認 （カメラ・目視）	

資料番号他	
補足－600－1	地盤の支持性能
	にこいて

エリア	主な構成部位	アクセス性
原子炉建屋周辺	$\begin{aligned} & \text { ヒューム管 } \\ & (\phi 1050 \mathrm{~mm}) \end{aligned}$	－No．1， 2 揚水井戸内にステージを設け接続部から直接，人がアクセスできる
	鋼管 $(\phi 142.5 \mathrm{~mm})$	－No．1， 2 揚水井戸内の作業ステージからカ メラ，洗浄ホースが挿入できる
第 3 号機海水熱交換器建屋周辺	$\begin{aligned} & \text { ヒューム管* }{ }^{1} \\ & (\phi 800 \mathrm{~mm}, \quad \phi 500 \mathrm{~mm}) \end{aligned}$	－No．3， 4 揚水井戸の接続部または下流側の保守管理立坑からカメラが挿入できる －No．3， 4 揚水井戸の接続部またはトレーサ ー投入孔からトレーサーを投入でき，下流側の保守管理立坑から試料回収でき る。 －No．3． 4 揚水井戸の接続部のトレーサー投入孔から洗浄用ホースが挿入できる。
	鋼管 $(\phi 142.5 \mathrm{~mm})$	－No．3， 4 揚水井戸内の作業ステージから力 メラ，洗浄ホースが挿入できる

注記 $* 1$ ：土砂の堆積状況により土砂排除が必要と判断した場合は，上流側の揚水井戸またはトレーサー投

＊ 2 ：保守管理立坑及びトレーサー投入孔は直接集•排水機能を担うものではないことから，設計基準対象施設には該当しないが，ドレーンの有効範囲を維持していくために必要であることを踏まえ，基準地震動S s に対する機能維持を図る。
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

安全施設の要求事項についての検討においては，ドレーンの設置状況等に応じ
て，多重性及び独立性を確保する揚水ポンプ，揚水井戸の配置を検討する。
これらを踏まえて設定した集水機能の信頼性の詳細検討フローを添付 2－4 図に
示す。

設置変更許可		
【施設の設計値を満足するドレーン範囲の検討】		
※2 単一故障としては，短期間では動的機器（揚水ポンブ）の単一故障，長期間では動的機器（揚水ポンプ）の単一故障又は想定される静的機器の単一故障（ドレーン閉塞）のいずれかを仮定し，集水機能が保 持されるよう配惪を検討する。	浸透流解析上の取扱	
添付 2－4 図 集水機能	性の詳細検討	ロー

まず，「①既設ドレーンの期待範囲の設定」として，2号炉申請時において，施設の揚圧力影響低減への寄与が大きいと考えられる既設ドレーン範囲を抽出し た。既設ドレーンの期待範囲を添付 2－5 図に示す

添付 2－5 図 既設ドレーンの期待範囲の設定（Step（1）

図 5－4 既設ドレーンの期待範囲の設定（Step（1））

図 5－5 耐久性の観点からの整理結果（Step（2））
資料番号他

記載表現の相違
（Step（1）で期待した全範囲が
耐久性有りと判断）
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）
「③•⑤耐震性•透水層の連続性」の観点からは，盛土荷重が直接作用する一部の塩ビ管を除き，現状構造でS s 機能維持を確保できる見通しである。

設置変更許可

添付 2－7 図 管の耐震性•透水層の連続性の観点からの整理結果（Step（3）•（5）
「（4）管の保守管理」の観点からの有効範囲は添付 2－8 図のとおり整理される。

Step（4）：管の保守管理の観点からの整理
注1）Step（1）で必要な範囲外と判定したドレーンは非表示としている。 注2）「P」の表記のある揚水井戸の揚水ポンプに期街する

添付 2－8 図 管の保守管理の観点からの整理結果（Step（4））

図 5－7 管の保守管理の観点からの整理結果（Step（4））
安全施設の要求の観点から， 2 号炉原子炉建屋において，揚水井戸の新設が必要と整理される。安全施設の要求の観点からの整理結果を添付 2－9 図に示す。

添付 2－9 図 安全施設の要求の観点からの整理結果（Step（9）•（10）

図 5－8 安全設備の要求の観点からの整理結果（Step（9）•（10）

詳細設計を踏まえ具体化した
事項
（保守管理性を確保するため
の保守管理立坑・トレーサー
投入孔の配置検討結果を反
映）

図 5－9 有効範囲の再検討での整理結果（Step（7）

観点からの整理結果を添付 2－11 図に示す。
なお，本検討において新設ドレーンは施設直下の既設ドレーンよりも深い位置 に設置されることから，既設ドレーンは機能しないものとして取り扱う。

4
高
添付 2－11 図 新設ドレーン要否の観点からの整理結果（Step（8）

図 5－10 新設ドレーン要否の観点からの整理結果（Step（8）

に一的
性を確保するため，揚水ポンプの多重化やドレーン・揚水井戸の配置上の配慮が必要となる。

添付 2－12 図 安全施設の要求性能確保の見通しの観点での整理（Step（9）•（10）
図 5－11 安全設備の要求性能確保の観点からの整理結果（Step（9）•（10）
詳細設計を踏まえ具体化した
事項
（設置変更許可同様，揚水井
戸・ポンプの多重化（各エリ
ア 2 系統設置）等を行う。な
お，詳細設計段階の検討を踏
まえ，各揚水井戸へ揚水ポン
プを 2 台設置する設計とし
た旨を記載。）
建物•構築物の揚圧力影響（設置許可基準規則第 4 条）の低減に着目した施設 （原子炉建屋，制御建屋，排気筒， 3 号炉海水熱交換器建屋）に対し，条文適合上必要な集水及び排水機能の範囲は，設計値保持のため必要な範囲（■）と，設置許可基準規則第 12 条の要求事項への配慮による範囲（■）にて構成される。
条適合の観点から管路より除外した範囲（■）については透水層として取扱う。

設置変更許可	工事計画認可	資料番号他
集水機能の信頼性の詳細検討フローに基づく有効範囲の設定例のまとめを添付 2－13 図に示す。本図はこれまでに整理したドレーンの有効範囲をまとめたもので あり，設置許可基準規則第 3 条第 2 項，同第 4 条及び同第 12 条の要求を考慮した設備構成例である。 建物•構築物の揚圧力影響（設置許可基準規則第4条）の低減に着目した施設 （原子炉建屋，制御建屋，排気筒， 3 号炉海水熱交換器建屋）に対し，条文適合上必要な集水及び排水機能の範囲は，設計値保持のため必要な範囲（■）と，設置許可基準規則第 12 条の要求事項への配慮による範囲（■）にて構成される。 なお，ドレーンとしての集水機能が期待できるものの，設置許可基準規則第 12条適合の観点から管路より除外した範囲（■）については透水層として取扱う。	参考資料5 浸透流解析におけるドレーンの有効範囲の設定結果 集水機能の信頼性の詳細検討フローに基づく有効範囲の設定結果を図 5－12 に示す。本図は，「集水機能の信頼性に係る詳細検討フロー」（図 5－3）に基づく整理であり，技術基準規則第 5 条•同第 14 条並びに設置許可基準規則第 3 条第 2項の要求に対応した設備構成である。 ここに示すとおり，建物•構築物（原子炉建屋，制御建屋， 3 号機海水熱交換器建屋）の揚圧力影響（技術基準規則第 5 条）を考慮し，先に挙げた各条文へ適合 させるため，地下水位低下設備を設計値保持のため必要な範囲（■）と，技術基準規則第 14 条の要求事項への配慮による範囲（■）にて構成するものとした。 なお，ドレーンのらち，耐久性•耐震性を有するが保守管理性を満たせない範囲，耐久性•耐震性及び保守管理性を満たすものの，技術基準規則第 14 条の要求事項への配慮の観点から管路より除外した範囲（■）については透水層として取扱う。連続した透水層としての機能に期待できない場合は，周辺の地盤相当とし て取扱う。	補足－600－1 地盤の支持性能 について 記載表現の相違 （実質的な相違なし）
有圽钽甤の設定例のまとめ		詳細設計を踏まえ具体化した事項 （設置変更許可と同様のフロ ーに基づき工事計画認可に おける詳細設計（工事計画認可で実施した浸透流解析を含む）も踏まえ検討した結果，設置変更許可よりドレー ン配置•構成が変更となって いる。）
添付 2－13 図 地下水位低下設備の設定例	 図 5－12 地下水位低下設備の設定結果（まとめ） 	

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可							工事計画認可	資料番号他	
添付資料3 設置変更許可段階及び工事計画認可以降の提示内容 1．設置許可基準規則における対応条文への適合の考え方 添付 3－1 表 設置許可基準規則に対する基準適合の考え方と工事計画認可段階における提示内容 第 3 条（設計基準対象施設の地盤）							－変更なし （本整理を踏まえ，設置変更許可申請書の記載へ反映済。なお，工事計画認可 で示す耐震計算書は，設置許可基準規則第 3 条第 1 項に対応する支持性能に係る確認結果を含め記載。設置許可基準規則第 3 条第 2 項に対する適合性は，耐震計算書にて説明。）	－可搬型設備及び予備品につい ては「VI－2－1－1－別添 1 地下水位低下設備の設計方針」に	
					設莀変更許可申請書 への反映签所	詳絴設計段階 における提示 内容		て説明。	
		考市方	必要な湤偋等						
第三条 （設計摆萑流文象施設の地嚁）			（添付 $3-8$ －所抜种） 第 3 条第 1 項に規定 する「設計基湨対象 揓設を十分に文持す は，設計基淮対象施 設について，自重及 ひ運転時の荷重等に頪の各クラススに応じく て算定する地震力が 作用した場合におい ても，接地㕆に対す る十分な支持力を在 する設計であること 耐 而震重要施設に 動による地震力が作 用することによっって 弱面上のずれ等が溌 生しないことを含 め，基準地震動によ 持性能が碓保さる いることを雃認す る。		\square				
					```添付書類六 -地盤 関連 -周辺地船の変状に よる施設への影饗 評価 添付書類八 -安全設計/耐震設計 -耐震重要施設```				
			（地下水位設定とは関連しない）	－	－	－			

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可							工事計画認可   －変更なし   （本整理を踏まえ，設置変更許可申請書の記載へ反映済。なお，工事計画認可 で示す耐震計算書は，設置許可基準規則第 38 条第 1 項に対応する支持性能に係る確認結果を含め記載。設置許可基準規則第 38 条第 2 項に対する適合性 は，耐震計算書にて説明。）	資料番号他   可搬型設備及び予備品につい ては「VI－2－1－1－別添 1 地下水位低下設備の設計方針」に て説明。
	添付 3－2 表画認可段階に	設置許可 おける提示	基準規則に対する   内容 第 38 条（重	基準適合の大事故等対	考え方と   对処施設の			
						詳細設計臤		
		の綡	考え方			によける是示 内容		
			常設重大事故等対処施設の基砹地盤甚礎地盤の安定性評価の条件とL て地下水位の設定方法を記載 （基準適合はこの条件を用いた安定性評価により確認）		添付書類六   - 地盤   - 地震力に対する基碐地篮の安定性斿価（地下水位）			
			常設重大事故等対処施設の周辺地艋常設重大事故等対処施設について は，液状化，摇すり达み沈下等の周辺地艦の変状を考慮した場合に おいても，当壊施設の機能が損な る。   常設重大事故等対処施設の設計に おいては，防潮堤の下方を地搫改良するために海側への地下水の流近まで上昇するおそれがあるとい う女川サイト固有の状況を踏まえ地下水位を一定の範囲に保持する地下水位低下設備の機能を考慮し定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。   耐震設計において，地震時におけ る地盤の有効応力の変化に伴う影響を考慮する場合には，有効応力解析等を実施する。有効応力解析 に用いる液㧋化㢱度特性は，僌地 の原地盤における代衣性及び網羅性を踏まえた上で保守性を考慮し「設定する。			－耐震性に関す   る説明書   （第三十九条の   霍查において確   認）		
			（地下水位玟定とは眮連しない）	－	－	－		

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし
$\frac{\text { 資料番号他 }}{\text {－可搬型設備及び予備品につ }}$ にて説明。

[^1]下水位低下設備の設計方針」
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）
緑字：記載表現の相違（実質的な相違なし）
工事計画認可
変更なし
（地下水位設定とは関連しない）


赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違なし）

設置変更許可							工事計画認可	資料番号他	
	添付 3－6 表 設置   工事計   第 43 条	午可基準規則に画認可段階にお重大事故等対処	対する基準   ける提示內   施設）	適合の考え   内容   ／ 2 ）			－変更なし	－設置許可基準規則第 6 項への適合性を示すため，アクセス ルート機能維持に係る詳細検討結果を「VI－1－1－6－別添1可搬型重大事故等対処設備の保管場所及びアクセスルー ト」にて示す。	
			意眐	会の考え方	 	$\begin{gathered} \text { 詳縕設計 } \\ \text { 臤階にお } \\ \text { ける提示 } \\ \text { 内容 } \end{gathered}$			
		考元方	必要友没偳等						
	加え，十分に余䍃のある容皿を有するものであ常設設借（発電用原子炉施設と接続をれてい               因によって接続することができなくなることを子炬䢖屋の外から水又は搉力を供㭲するものに良る。の接続口をそれでれ互いこし異なる㫿数の                  大型粇空機の衝突をの他のテロリスムによる影   大事故等対处設俑と異なるる保管䍖所に保管寸る		1 重大事故防止設備のう ち可般型のものは，共通要対処設備の安全機能，使用済燃料貯蔵橧の冷却機能若 しくは注水機能又は常設重大事故防止設備の重大事故 に至るおそれがある事故に対処するために必要な機能 と同时にをの機能かっ碽なホ切な措置を講じたものであ   2 第 1 項第 3 号の適用に項の解积に，淮ざる 12 条第4 る。 る「他の設備」とは，設計基準対象施設だけでなく，当䚺の重大事大事故等等対処処設備も含む。 $\qquad$	（地下水位設定と は閭連しない）	－	－			$-$
	六 想定される重大事故等が発生した場合におい て，可搬型重大事故等対処設備を運搬し，又は他の設備の被害状況を把握するため，工場等内 の道路及び通路が磪保できるよう，適切な措固 を講したものであること。	4 第2項第3号及び第3項第7号に規定する「適切 な措置を講じたもの」と は，共通要因の特性を踏ま慮したものをいう。			添付書類八   一設置許可基淮   規則への適合	$\begin{aligned} & \text { アクセス } \\ & \text { ルート機 } \\ & \text { 能維持に } \\ & \text { 係る } \\ & \text { 詳細検討 } \\ & \text { 結果楽2 } \end{aligned}$			
	重大事故防止設備のうち可搬型のあのは，共通要因によって，設計基準事故対処設備の安全機能，使用済燃料貯蔵槽の椧却機能若しくは注水機能又は常設重大事故防止設備の重大事故に至るお そえがある事故に対処するために必要な機能と同時にその機能が損なわれるおそれがないよう，適切な措置を講じたものであること。				－	－			
施する。              									

資料番号他
•可搬型設備及び予備品につ
いては「VI－2－1－1－別添 1 地
下水位低下設備の設計方針」
にて説明。

赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
補足説明資料 4 三次元浸透流解析による防潮堤沈下対策の影響確認結果   2．地下水位低下設備が機能しない場合の地下水位分布   地下水位低下設備の機能喪失後，地下水位が上昇し施設等の安全性に影響を与 えるレベルに達するまでの期間を「時間余裕」として定義する。この時間余裕 は，地下水位に係る対策の妥当性を検証する場合等，必要に応じて参照する。   3．地下水位低下設備が機能しない場合の影響   地下水位低下設備の機能停止後の水位上昇範囲は，初期段階では建屋近傍に限定されることから（補足説明資料 6 参照），揚圧力影響と液状化影響は段階的に生 じるものと想定される。   アクセスルート（0．P．+14.8 m 盤）については地下水位が上昇した場合に，地震時の液状化に伴う地下構造物の浮き上がりの影響を受ける可能性がある。これに対して，「第I編 2.4 （3）c．アクセスルート機能維持の方針」に示す配慮事項 により，地震時の液状化に伴う地下構造物の浮き上がりの影響を受けることなく通行性を確保する設計とする方針としている。   液状化影響の評価については，「別紙 17 液状化影響の検討方針」に基づき評価 を行う方針とし，その概要は以下のとおりである。   －液状化等の周辺地盤の変状による施設への影響評価においては，施設周辺 の地下水位や地盤等の状況を踏まえて，液状化検討対象施設を抽出する。   －抽出した液状化検討対象施設に対し，液状化等による影響が及ぶおそれがあ る場合は，有効応力解析または全応力解析を行い，保守的な解析手法を選定 する。   －液状化を考慮する場合の評価は，地盤の有効応力の変化に伴う影響を考慮し た評価（有効応力解析等）によるものとし，有効応力解析に用いる液状化強度特性は，敷地の原地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定する。	6.3 復旧措置に係る可搬ポンプユニットの配備数の妥当性確認   可搬ポンプユニットの配備数の妥当性として，各エリアの全ての地下水位低下設備が同時に機能喪失した場合においても，各建屋に作用する平均揚圧力が設計揚圧力に到達するまでの時間（以下「到達時間」という。）内に，計画して いる可搬ポンプユニットの配備数（2 個）により各エリアの水位低下措置を完了できることを確認する。   －変更なし   （設置変更許可の整理を踏まえ，工事計画認可では影響が早期に生じる揚圧力影響に着目し到達時間を評価。また，設置変更許可の整理を踏まえたアクセ スルートの評価を実施。）   －変更なし   （工事計画認可では，液状化検討対象施設を幅広く抽出する観点から設計用地下水位を高めに設定。）   －変更なし   （保守的な解析手法を選定する方針に変更なし。工事計画認可では，「有効応力解析または全応力解析」の判断がしがたい場合は，双方を実施し耐震評価を行うこととした。）   －変更なし   （［2 耐震設計の基本方針］ 2.1 基本方針（10）（11）へ同様の方針を記載）	VI－2－1－1－別添 1 地下水位低   記載表現の相違   （実質的な相違なし）参照   下設備の設計方針   VI－2－1－1－別添 1 地下水位低   下設備の設   計方針   各影響が生じるまでの時間軸は「補足 600－25－1 地下水位低下設備の設計方針に係る補足説明資料」


設置変更許可	工事計画認可	資料番号他
補足説明資料 8 新設揚水井戸・ドレーンの構造•配置及び施工例揚水井戸の位置及び構造並びに施工方法については工認段階で詳細検討を行い決定する。	（参考資料6）地下水位低下設備の概要   1．地下水位低下設備の概要   1.1 全体構成   地下水位低下設備のうちドレーン及び揚水井戸の平面配置を図 6－3 に示す。	補足－600－1 地盤の支持性能 について
（平面図）   （断面図）   補足 8－1 図 新設揚水井戸の構造•配置例	図 6－3 ドレーン・揚水井戸の平面配置	－詳細設計を踏まえ具体化した事項   （揚水井戸の位置について詳細検討を行い決定した。）

[^2]

	ษ\％	＊\＃\％	


䅹		   シさによる
平		

図 8－1（2）ドレーン（鋼管）及び揚水井戸の施工手順（No． 1 揚水井戸の例）
赤字：詳細設計を踏まえ具体化した事項
緑字：記載表現の相違（実質的な相違な

設置変更許可	工事計画認可	資料番号他
補足説明資料 92 号炉海水ポンプ室周辺のドレーンに集水される地下水について   集水機能を担らドレーンに接続桝を介す等により地盤（B－1，B－2）として取扱 う既設ドレーンが接続される箇所があるが，集水機能に影響を及ぼさない構造で あることを工事計画認可段階で示す。   （a部拡大）   補足 9－1 図 2 号炉海水ポンプ室周辺のドレーンからの地下水の排水経路イメージ	PI $-4=$      a 部拡大図（設置変更許可段階）   KEYPLAN   a 部拡大図（詳細設計段階）   図 8－2 海水ポンプ室周辺のドレーンからの地下水の排水経路	補足－600－1 地盤の支持性能   詳細設計を踏まえ具体化した事項   （地盤扱いとする海水ポンプ室周辺のドレーンと，管路扱 いとする新設ドレーンとの接続箇所について，集水の確実性の観点から，ドレーン端部と新設する接続桝を 接続 する設計とした。なお，ヒュ ーム管は地盤扱いとする範囲を含めて耐震性を確認し ている。） について


[^0]:    赤字：詳細設計を踏まえ具体化した事項
    緑字：記載表現の相違（実質的な相違なし）

[^1]:    ## 工事計画認可

    耐震計算書にて説明。）震性の確認結果は，工事計画認可において設計用地下水位の設定結果と併せ

[^2]:    赤字：詳細設計を踏まえ具体化した事項
    緑字：記載表現の相違（実質的な相違なし）

