| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

工事計画に係る説明資料

浸水防護施設のらち内郭浸水防護設備

（基本設計方針）

2021年8月
東北電力株式会社

変更前	変更後
	1．4．2 荷重の組合せ及び許容限界 津波防護施設，浸水防止設備及び津波監視設備の設計少当たつて は，津波による荷重及び津波以外の荷重を適切に設劣し，それらの組合せを考慮する。また，想定される荷重に対する部材の健全性や構造安定性について適切な許容限界を設定する。 （1）荷重の組合せ 津波と組み合わせる荷重について壮，原子炉冷却系統施設の基本設計方針「第1章 共通項目」めらち「2．3 外部からの衝撃によ る損傷の防止」で設定してじる自然条件（積雪，風荷重）及び余震 として考えられる地震沙加え，漂流物による荷重を考慮する。津波 による荷重の設定に当たつては，各施設•設備の機能損傷モードに対応した荷重の算定過程に介在する不確かさを考慮し，余裕の程度 を検討したよで安全側の設定を行う。 （2）許容限界 津佊防護施設，浸水防止設備及び津波監視設備の許容限界は，地莢後，津波後の再使用性や，津波の繰返し作用を想定し，施設•設備を構成する材料がおおむね弾性状態に留まることを基本とする。
（	2．発電用原子炉施設内における溢水等による損傷の防止 2.1 溢水防護等の基本方針 設計基準対象施設が，発電用原子炉施設内における溢水が発生した場合においても，その安全性を損ならおそれがない設計とする。 そのために，溢水防護に係る設計時に発電用原子炉施設内で発生が想

変更前	変更後
－	定される溢水の影響を評価（以下「溢水評価」という。）し，運転状態 にある場合は発電用原子炉施設内における溢水が発生した場合におい ても，発電用原子炉を高温停止及び，引き続き低温停止することができ，並びに放射性物質の閉じ込め機能を維持できる設計とする。また，停止状態にある場合は，引き続きその状態を維持できる設計とする。さらに，使用済燃料プールにおいては，使用済燃料プールの泠却機能及び使用済燃料プールへの給水機能を維持できる設計とする。 これらの機能を維持するために必要な設備（以下「溢水防護対象設備」 という。）が発生を想定する没水，被水及び蒸気の影響を受けて，その安全機能を損ならおそれがない設計（多重性又は多様性を有する設備が同時にその機能を損ならおそれがない設計）とする。 また，溢水の影響により原子炉に外乱が及び，かつ，安全保護系，原子炬停止系の作動を要求される場合には，その溢水の影響を考慮した上 で，「発電用軽水型原子炉施設の安全評価に関する審査指針」に基づき必要な機器の単一機器の故障を考慮しても発生が予想される運転時の異常な過渡変化又は設計基準事故について安全解析を行い，炉心損傷に至ることなく当該事象を収束できる設計とする。 重大事故等対処設備に期待する機能については，溢水影響を受けて設計基準事故対処設備並びに使用済燃料プールの泠却設備及び給水設備 （以下「設計基準事故対処設備等」という。）と同時に機能を損なうお それがないよう，没水，被水及び蒸気の影響に対しては可能な限り設計基準事故対処設備等の配置を含めて位置的分散を図る設計とする。 溢水影響に対し防護すべき設備（以下「防護すべき設備」という。） として溢水防護対象設備及び重大事故等対処設備を設定する。

変更前	変更後
－	発電用原子炉施設内の放射性物質を含む液体を内包する容器，配管を の他の設備（ポンプ，弁，使用済燃料プール，原子炉ウェル，蒸気乾燥器•気水分離器ピット）から放射性物質を含む液体があふれ出るおそれ がある場合において，当該液体が管理区域外へ漏えいすることを防止す る設計とする。 溢水評価条件の変更により評価結果が影響を受けないことを確認す るために，評価条件変更の都度，溢水評価を実施することとし保安規定 に定めて管理する。 2.2 防護すべき設備の抽出 溢水によってその安全機能が損なわれないことを確認する必要があ る施設を，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」（以下「重要度分類審査指針」という。）における分類のクラ ス 1，クラス 2 及びクラス 3 に属する構築物，系統及び機器とする。 この中から，溢水防護上必要な機能を有する構築物，系統及び機器を選定する。 具体的には，運転状態にある場合には発電用原子炉を高温停止，引き続き低温停止することができ，並びに放射性物質の閉じ込め機能を維持 するため，停止状態にある場合は引き続きその状態を維持するため，及 び使用済燃料プールの泠却機能及び給水機能を維持するために必要と なる，重要度分類審査指針における分類のクラス 1,2 に属する構築物，系統及び機器に加え，安全評価上その機能を期待するクラス 3 に属す る構築物，系統及び機器を抽出する。 以上を踏まえ，防護すべき設備のらち溢水防護対象設備として，重要

変更前	変更後
$-$	度の特に高い安全機能を有する構築物，系統及び機器，並びに，使用済燃料プールの泠却機能及び給水機能を維持するために必要な構築物，系統及び機器を抽出する。 また，重大事故等対処設備は，重大事故に至るおそれがある事故が発生した場合において，炬心，使用済燃料プール内の燃料体等，及び，運転停止中における原子炉の燃料体の著しい損傷を防止するために，ま た，重大事故が発生した場合においても，原子炉格納容器の破損及び発電所外への放射性物質の異常な放出を防止するために必要な設備を防護すべき設備として抽出する。 2.3 溢水源及び溢水量の設定 溢水影響を評価するために想定する機器の破損等により生じる溢水 （以下「想定破損による溢水」という。），発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置される系統からの放水による溢水 （以下「消火水の放水による溢水」という。）並びに地震に起因する機器の破損及び使用済燃料プール等のスロッシングにより生じる溢水（以下「地震起因による溢水」という。）を踏まえ，溢水源及び溢水量を設定する。 また，その他の要因による溢水として，地下水の流入，地震以外の自然現象，機器の誤作動等により生じる溢水（以下「その他の溢水」とい う。）の影響も評価する。 想定破損による溢水では，単一の配管の破損による溢水を想定して，配管の破損箇所を溢水源として設定する。 また，破損を想定する配管は，内包する流体のエネルギに応じて，高

変更前	変更後
－	エネルギ配管又は低エネルギ配管に分類する。 高エネルギ配管は，「完全全周破断」，低エネルギ配管は，「配管内径 の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通クラック」（以下「貫通クラック」という。）を想定した溢水量とし，想定する破損箇所は溢水影響が最も大きくなる位置とする。 ただし，高エネルギ配管についてはターミナルエンド部を除き応力評価の結果により，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウ ンダリの配管であれば発生応力が許容応力の 0.8 倍以下であれば破損 を想定せず，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダ リ以外の配管であれば発生応力が許容応力の 0.4 倍を超え 0.8 倍以下 であれば「貫通クラック」による溢水を想定した評価とし， 0.4 倍以下 であれば破損は想定しない。 また，低エネルギ配管については，発生応力が許容応力の 0.4 倍以下 であれば破損は想定しない。 発生応力と許容応力の比較により破損形状の想定を行う場合は，評価結果に影響するような減肉がないことを確認するために継続的な肉厚管理を実施することとし保安規定に定めて管理する。 高エネルギ配管のらち，高エネルギ配管として運転している割合が当該系統の運転している時間の 2% 又はプラント運転期間の 1% より小さ いことから低エネルギ配管とする系統については，運転時間実績管理を実施することとし保安規定に定めて管理する。 消火水の放水による溢水では，消火活動に伴ら消火栓からの放水を溢水量として設定する。発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置されるスプリンクラ及び格納容器スプレイ泠却系

変更前	変更後
－	からの溢水については，防護すべき設備が溢水影響を受けない設計とす る。 地震起因による溢水では，流体を内包することで溢水源となり得る機器のらち，基準地震動S s による地震力により破損するおそれがある機器及び使用済燃料プール等のスロッシングによる漏えい水を溢水源と して設定する。 耐震 S クラス機器については，基準地震動 S s による地震力によっ て破損は生じないことから溢水源として想定しない。また，耐震 B 及び C クラス機器のらち耐震対策工事の実施又は設計上の裕度の考慮によ り，基準地震動 S s による地震力に対して耐震性が碓保されているもの については溢水源として想定しない。 溢水源となる配管については破断形状を完全全周破断を考慮した溢水量とし，溢水源となる容器については全保有水量を考慮した溢水量と する。 また，使用済燃料プールのスロッシングによる溢水量の算出に当たっ ては，基準地震動S s により発生する使用済燃料プールのスロッシング にて使用済燃料プール外へ漏えいする溢水量を算出する。 また，施設定期検査中においては，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピットのスロッシングによる漏えい水を溢水源とし溢水量を算出する。 その他の溢水については，地下水の流入，降水，屋外タンクの竜巻に よる飛来物の衝突による破損に伴ら漏えい等の地震以外の自然現象に伴ら溢水，機器の誤作動，弁グランド部及び配管フランジ部からの漏え い事象等を想定する。

変更前	変更後
－	溢水量の算出に当たっては，漏水が生じるとした機器のうち防護すべ き設備への溢水の影響が最も大きくなる位置で漏水が生じるものとし て評価する。 また，溢水量の算出において，漏えい検知による漏えい停止を期待す る場合には，漏えい停止までの適切な隔離時間を考慮し，配管の破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。なお，手動による漏えい停止の手順は，保安規定に定めて管理する。 2.4 溢水防護区画及び溢水経路の設定 溢水影響を評価するために，溢水防護区画及び溢水経路を設定する。溢水防護区画は，防護すべき設備が設置されている全ての区画並びに中央制御室及び現場操作が必要な設備へのアクセス通路について設定 する。 溢水防護区画は壁，扉，堰，床段差等，又はそれらの組み合わせによ つて他の区画と分離される区画として設定し，溢水防護区画内外で発生 を想定する溢水に対して，当該区画内の溢水水位が最も高くなるように保守的に溢水経路を設定する。 また，消火活動により区画の扉を開放する場合は，開放した扉からの消火水の伝播を考慮した溢水経路とする。 溢水経路を構成する水密扉に関しては，扉の閉止運用を保安規定に定 めて管理する。 常設している堰の取り外し及びハッチを開放する場合の運用を保安規定に定めて管理する。

変更前	変更後
－	2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関 する溢水評価及び防護設計方針 2．5．1 没水の影響に対する評価及び防護設計方針 発生を想定する溢水量，溢水防護区画及び溢水経路から算出され る溢水水位と防護すべき設備が要求される機能を損ならおそれが ある高さ（以下「機能喪失高さ」という。）を評価し，防護すべき設備が要求される機能を損ならおそれがない設計とする。 また，溢水の流入状態，溢水源からの距離，人員のアクセス等に よる一時的な水位変動を考慮し，機能喪失高さは溢水による水位に対して裕度を確保する設計とする。 没水の影響により，防護すべき設備が溢水による水位に対し機能喪失高さを確保できないおそれがある場合は，溢水水位を上回る高 さまで，溢水により発生する水圧に対して止水性（以下「止水性」 という。）を維持する壁，扉，堰，逆流防止装置及び貫通部止水処置により溢水伝播を防止するための対策を実施する。 止水性を維持する浸水防護施設については，試験又は構造健全性評価にて止水性を確認する設計とする。 2．5．2 被水の影響に対する評価及び防護設計方針 発生を想定する溢水源からの直線軌道及び放物線軌道の飛散に よる被水及び天井面の開口部若しくは貫通部からの被水が，防護す べき設備に与える影響を評価し，防護すべき設備が要求される機能 を損ならおそれがない設計とする。

変更前	変更後
－	防護すべき設備は，浸水に対する保護構造（以下「保護構造」と いう。）を有し，被水影響を受けても要求される機能を損ならおそ れがない設計とする。 保護構造を有さない場合は，機能を損なうおそれがない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わない消火手段（ハロンガス消火設備によ る消火，ケーブルトレイ消火設備による消火又は消火器による消火）を採用する設計とする。 保護構造により要求される機能を損ならおそれがない設計とす る設備については，評価された被水条件を考慮しても要求される機能を損ならおそれがないことを設計時に碓認する。 消火対象以外の設備への誤放水がないよう，消火水放水時に不用意な放水を行わない運用とすることとし保安規定に定めて管理す る。 2．5．3 蒸気影響に対する評価及び防護設計方針 発生を想定する漏えい蒸気，区画間を拡散する漏えい蒸気及び破損想定箇所近傍での漏えい蒸気の直接噴出による影響について，設定した空調条件や解析区画条件により防護すべき設備に与える影響を評価し，防護すべき設備が要求される機能を損ならおそれがな い設計とする。 また，漏えい蒸気による環境条件（温度，湿度及び圧力）を想定 した試験又は机上評価により，防護すべき設備が要求される機能を損ならおそれがない設計又は配置とする。

変更前	変更後
－	漏えい蒸気の影響により，防護すべき設備が要求される機能を損 なうおそれがある場合は，漏えい蒸気影響を緩和するための対策を実施する。 具体的には，漏えい蒸気による機器への影響を考慮した試験で性能を確認した保護カバーを設置し，蒸気影響を緩和することにより防護すべき設備が要求される機能を損ならおそれがない設計とす る。 また，主蒸気管破断事故時等には，原子炉建屋原子炉棟内外の差圧による原子炉建屋ブローアウトパネル（設置枚数 1 枚，開放差圧 4． 4 kPa 以下）（原子炉格納施設の設備を浸水防護施設の設備として兼用）の開放により，溢水防護区画内において蒸気影響を軽減する設計とする。 2．5．4 使用済燃料プールのスロッシング後の機能維持に関する溢水評価及び防護設計方針 使用済燃料プールのスロッシングによる溢水量の算出に当たっ ては，基準地震動 S s による地震力によって生じるスロッシング現象を三次元流動解析により評価し，使用済燃料プール外へ漏えいす る水量を考慮する。 その際，使用済燃料プールの初期水位は，スキマサージタンクへ のオーバーフロー水位として評価する。 算出した溢水量からスロッシング後の使用済燃料プールの水位低下を考慮しても，使用済燃料プールの泠却機能及び使用済燃料プ ールへの給水機能を確保し，それらを用いることにより適切な水温

変更前	変更後
－	及び遮蔽水位を維持で
	2.6 防護すべき設備を内包する建屋外及びエリア外で発生する溢水に関 する溢水評価及び防護設計方針 防護すべき設備を内包する建屋外及びエリア外で発生を想定する溢水である循環水配管等の破損による溢水，屋外タンクで発生を想定する溢水，地下水等による影響を評価し，防護すべき設備を内包する建屋内及びエリア内へ溢水が流入し伝播しない設計とする。 具体的には，溢水水位に対して止水性を維持する壁，扉，蓋の設置及 び貫通部止水処置を実施し，溢水の伝播を防止する設計とする。 タービン建屋内における循環水系配管の破損による溢水量低減につ いては，破損箇所からの溢水を早期に自動検知し，自動隔離を行うため に，循環水系隔離システム（漏えい検出器，復水器水室出入口弁並びに漏えい検出制御盤及び監視盤）を設置する。循環水系隔離システムは，隔離信号発信後，約 30 秒で循環水ポンプを停止するとともに，約 3 分 で復水器水室出入口弁を自動閉止する設計とする。 タービン建屋内におけるタービン補機冷却海水系配管の破損による溢水量低減については，破損箇所からの溢水を早期に自動検知し，隔離 を行らために，タービン補機冷却海水系隔離システム（漏えい検出器， タービン補機冷却海水ポンプ出口弁並びに漏えい検出制御盤及び監視盤）を設置する。タービン補機冷却海水系隔離システムは，隔離信号発生後，約 30 秒でタービン補機冷却海水ポンプを停止するとともに，夕 ービン補機冷却海水ポンプ出口弁を自動閉止する設計とする。 また，地下水に対しては，地下水位低下設備のらち揚水ポンプの故障

変更前	変更後
－	等より建屋周囲の水位が地表面まで上昇することを想定し，建屋外周部 における壁，扉，堰等により溢水防護区画を内包する建屋内への流入を防止するとともに，地震による建屋外周部からの地下水の流入の可能性 を安全側に考慮しても，防護すべき設備が要求される機能を損なわない設計とする。 止水性を維持する浸水防護施設については，試験又は机上評価にて止水性を碓認する設計とする。 2.7 管理区域外への漏えい防止に関する溢水評価及び防護設計方針放射性物質を含む液体を内包する容器，配管その他の設備（ポンプ，弁，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピッ ト）からあふれ出る放射性物質を含む液体の溢水量，溢水防護区画及び溢水経路により溢水水位を評価し，放射性物質を内包する液体が管理区域外に漏えいすることを防止し伝播しない設計とする。なお，地震時に おける放射性物質を含む液体の溢水量の算出については，要求される地震力を用いて設定する。 放射性物質を含む液体が管理区域外に伝播するおそれがある場合に は，溢水水位を上回る高さまで，止水性を維持する堰及び水密扉により管理区域外への溢水伝播を防止するための対策を実施する。 2.8 溢水防護上期待する浸水防護施設の構造強度設計溢水防護区画及び溢水経路の設定並びに溢水評価において期待する浸水防護施設の構造強度設計は，以下のとおりとする。 浸水防護施設が要求される機能を維持するため，計画的に保守管理，

変更前	変更後
－	点検を実施するとともに必要に応じ補修を実施する。 止水に期待する壁，堰，扉，蓋，逆流防止装置及び貫通部止水処置の らち，地震に起因する機器の破損等により生じる溢水（使用済燃料プー ル等のスロッシングにより発生する溢水を含む。）から防護する設備に ついては，基準地震動 S s による地震力に対し，地震時及び地震後にお いても，溢水伝播を防止する機能を損ならおそれがない設計とする。た だし，放射性物質を含む液体が管理区域外に伝播することを防止するた めに設置する堰については，要求される地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損なられそれがない設計とす る。 排水に期待する床ドレン配管の設計については，発生を想定する溢水 に対する排水機能を損ならおそれがない設計とする。 漏えい蒸気影響を緩和する保護カバーの設計においては，配管の破断 により発生する荷重に対し，蒸気影響を緩和する機能を損なうおそれが ない設計とする。 循環水系配管及びタービン補機冷却海水系配管の破損箇所からの溢水量を低減する循環水系隔離システム及びタービン補機冷却海水系隔離システムの設計においては，基準地震動 S s による地震力に対し，地震時及び地震後においても，溢水量を低減する機能を損なうおそれがな い設計とする。
－	3．主要対象設備 浸水防護施設の対象となる主要な設備について，「表 1 浸水防護施設 の主要設備リスト」に示す。

O 2 （1）II R 1
表1浸水防隻施設の主要設備リスト $(3 / 9)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設 ${ }^{\left({ }^{\text {a }} \text { 1）}\right.}$		重大事故等対処設備 ${ }^{(3 \text {（3）}}$ 1）		名称	設計基準対象施設 ${ }^{\text {（i 1）}}$		重大事故等対処設備（ ${ }^{\text {（ }}$ 1）	
				$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 内 } \\ & \text { 郭 } \\ & \text { 浸 } \\ & \text { 水 } \\ & \text { 護 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$		防水区画構造物	－					SGTS ヒータユニット（ A ）室浸水防止水密扉	C	－	－	
			－					RHR Hx（A）室－RHR Hx（B）室浸水防止水密扉	C－2	－	－	
			－					原子炉建屋浸水防止水密扉（No．2）	$\begin{gathered} \hline \mathrm{S}^{(\text {(iai } 2)} \\ \mathrm{C}-2^{(\text {(iき } 3)} \end{gathered}$	－	－	
			－					原子炉建屋浸水防止水密扉（No．1）		－	－	
			－					原子炉建屋浸水防止水密扉（No．3）	C－2	－	－	
			－					LPCS ポンプ室浸水防止水密扉	C	－	－	
			－					HPCS ポンプ室浸水防止水密扉	C	－	－	
	－		－					RHR ポンプ（ B ）室浸水防止水密扉	C	－	－	
			－					RHR ポンプ（ A ）室浸水防止水密扉	C	－	－	
			－					RHR ポンプ（ C ）室－共通通路浸水防止水密扉	C－2	－	－	
			－					FPMUW ポンプ室浸水防止水密扉	C－2	－	－	
			－					RCIC タービンポンプ室－共通通路浸水防止水密扉	C－2	－	－	
			－					HECW 泠凍機（B）（D）室－HECW 冷涷機（A）（C）室浸水防止水密扉	C	－	－	
			－					制御建屋共通エリア浸水防止水密扉	C	－	－	
			－					D／G（B）室－D／G（HPCS）室浸水防止水密扉	C	－	－	

O 2 （1）II R 1
表1浸水防隻施設の主要設備リスト（4／9）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設 ${ }^{(\text {（i）1）}}$		重大事故等対処設備 ${ }^{(2+1)}$		名称	設計基準対象施設 ${ }^{\text {（i 1 1）}}$		重大事故等対処設備 ${ }^{\text {（ie } 1 \text { 1）}}$	
				$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
内内郭浸水防譙備俗		防水区画構造物	－					区分IIIHPCS 電気品室－区分II非常用電気品室浸水防止水密扉	C	－	－	
			－					RCW Hx（A）（C）室－共通通路浸水防止水密扉	C	－	－	
			－					HPCW Hx 室浸水防止水密扉	C	－	－	
			－					HPCW Hx 室－RCW Hx（B）（D）室浸水防止水密扉	C	－	－	
			－					制御建屋浸水防止水密扉（No．3）	$\begin{aligned} & \mathrm{S}^{(\sqrt{(i 2} 2)} \\ & \mathrm{C}-2^{(i \pm 3)} \end{aligned}$	－	－	
			－					制御建屋浸水防止水密扉（No．1）		－	－	
			－					制御建屋浸水防止水密扉（No．2）		－	－	
	－		－					補助ボイラー建屋連絡階段管理区域外伝播防止水密扉	C	－	－	
			－					計測制御電源室（B）浸水防止水密扉（No．1）	C	－	－	
			－					計測制御電源室（B）浸水防止水密扉（No．3）	$\begin{aligned} & \mathrm{S}^{(\sqrt{\text { (iai } 2)}} \\ & \mathrm{C}-2^{(\text {i } 3)} \end{aligned}$	－	－	
			－					計測制御電源室（B）浸水防止水密扉（No．2）	C	－	－	
			－					RSS 盤室浸水防止水密扉	C	－	－	
			－					計測制御電源室（A）－常用および共通 M／C•P／C室浸水防止水密扉	C	－	－	
			－					制御建屋空調機械（A）室浸水防止水密扉	$\begin{aligned} & \mathrm{S}^{(\text {(i2 } 2 \text { 2) })} \\ & \mathrm{C}-2^{(\text {i 3 } 3)} \end{aligned}$	－	－	
			－					制御建屋空調機械（A）室－制御建屋空調機械 （B）室浸水防止水密扉（No．1）	C	－	－	

O 2 （1）II R 1
表1浸水防護施設の主要設備リスト

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 艈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設 ${ }^{\text {（iき 1）}}$		重大事故等対処設備（ ${ }^{\text {（ }}$ 1）		名称	設計基準対象施設 ${ }^{\text {（3 }}$（1）		重大事故等対処設備（进 1 ）	
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス
内郭浸水防譙設備		防水区画構造物	－					250 V 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉	C	－	－	
			－					ISI 室浸水防止水密扉	C	－	－	
			－					制御建屋空調機械（B）室浸水防止水密扉	$\begin{aligned} & S * *^{(i \equiv 2)} \\ & C-2^{(i) 3)} \end{aligned}$	－	－	
			－					制御建屋空調機械（A）室－制御建屋空調機械 （B）室浸水防止水密扉（No．2）	C	－	－	
			－					燃料移送ポンプ（H）室－燃料移送ポンプ（A）室浸水防止水密扉	C	－	－	
			－					燃料移送ポンプ（A）室－燃料移送ポンプ（B）室浸水防止水密扉	C	－	－	
			－					RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉	C	－	－	
			－					HPSW ポンプ室浸水防止水密扉	C	－	－	
	－		－					TSW ポンプ室－RSW ポンプ（B）（D）室浸水防止水密扉	C	－	－	
			－					第 2 号機 MCR 浸水防止水密扉		－	－	
			－					RW 電気品室（B）浸水防止水密扉	C	－	－	
			－					北西階段室管理区域外伝播防止水密扉	C－2	－	－	
			－					原子炉建屋大物搬入口	$\begin{aligned} & \mathrm{S}^{(i(i) 2)} \\ & \mathrm{C}-2^{(i \equiv 3)} \end{aligned}$	－	－	
			－					原子炉建屋管理区域外伝播防止水密扉（No．3）	C－2	－	－	
			－					RW 制御室管理区域外伝播防止水密扉	C－2	－	－	
			－					原子炉建屋管理区域外伝播防止水密扉（No．1）	C－2	－	－	
			－					原子炉建屋管理区域外伝播防止水密扉（No．2）	C－2	－	－	

O 2 （1）II R 1
表1浸水防護施設の主要設備リスト（ $6 / 9$ ）

O 2 （1）II R 1
表1浸水防護施設の主要設備リスト（7／9）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設 ${ }^{(\text {（i土 1 }}$ ）		重大事故等対処設備 ${ }^{(2+1)}$		名称	設計基準対象施設 ${ }^{\text {（i 1 1）}}$		重大事故等対処設備 ${ }^{(i+1)}$	
					機器クラス	設備分類	重大事故等機器クラス			機器クラス	設備分類	重大事故等機器クラス
内内郭浸水防譙設備	－	防水区画構造物	－					CAMS ラック（A）室浸水防止堰	C	－	－	
			－					SGTS フィルタユニット室浸水防止堰	C	－	－	
			－					R－01階段浸水防止医（地上 1 階）	C－2	－	－	
			－					R－02 階段浸水防止医（地上 1 階）	C－2	－	－	
			－					バルブ（B）室浸水防止医	C－2	－	－	
			－					バルブ（A）室浸水防止堰	C－2	－	－	
			－					FPC ポンプ室浸水防止堰	C－2	－	－	
			－					R－01階段浸水防止堰（地下 1 階）	C－2	－	－	
			－					R－02 階段浸水防止医（地下 1 階）	C－2	－	－	
			－					MS トンネル室浸水防止堰	C－2	－	－	
			－					RCIC MCC 室浸水防止堰	C－2	－	－	
			－					TIP 駆動装置室浸水防止堰	C－2	－	－	
			－					復水補給水ポンプ室浸水防止堰	C－2	－	－	
			－					CUW 配管・バルブ室浸水防止堰	C－2	－	－	

O 2 （1）II R 1
表1浸水防隻施設の主要設備リスト（ $8 / 9$ ）

O 2 （1）II R 1

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設 ${ }^{\text {（i 1）}}{ }^{\text {a }}$		重大事故等対処設備 ${ }^{(3+1)}$		名称	設計基準対象施設 ${ }^{\text {（i 1）}}$ ）		重大事故等対処設備 ${ }^{(i+1)}{ }^{\text {1 }}$ ）	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 内 } \\ & \text { 郭 } \\ & \text { 浸 } \\ & \text { 水 } \\ & \text { 護 } \\ & \text { 糒 } \end{aligned}$	－	防水区画構造物	－					HNCW 冷谏機・ポンプ室管理区域外伝播防止堰	B	－	－	
			－					CAMS（A）室空調機浸水防止堰	C	－	－	
			－					CAMS（B）室空調機浸水防止堰	C	－	－	
			－					中央制御室再循環フィルタ装置浸水防止堰	C	－	－	
			－					制御建屋浸水防止水密扉（No．4）	$\begin{gathered} \hline \mathrm{S} *^{(\text {(i } 2)} \\ \mathrm{C}-2^{(\text {注 } 3)} \\ \hline \end{gathered}$	－	－	
			－					制御建屋浸水防止水密扉（No．5）	$\begin{aligned} & \mathrm{S} *{ }^{(i \neq 2)} \\ & \mathrm{C}-2^{(i \neq 3)} \end{aligned}$	－	－	
			－					地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1）		－	－	
			－					地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．2）		－	－	
			－					地下軽油タンク機器搬出入用浸水防止蓋		－	－	
			－					ハッチ上部スペース浸水防止医	C	－	－	
			－					第2号機海水ポンプ室浸水防止壁	S＊	－	－	

（注1）表1 に用いる略語の定義は「原子炬本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1原子炉本体の主要設備リスト 付表1」による。
（注3）溢水の伝播を防止する設備としての耐震重要度を示す。

変更前	変更後
－	第1章 共通項目 浸水防護施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す浸水防護施設に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表 1．施設共通の適用基準及び適用規格（該当施設）」に示す。 －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈 （平成 25 年 6 月 19 日原規技発第 1306194 号） - 土木学会 2002年 コンクリート標準示方書［構造性能照査編］ - 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 －Guidelines for Design of Structures for Vertical Evacuation from Tsunamis Third Edition，FEMA P－646，Federal Emergency Management Agency， 2019 －Minimum Design Loads and Associated Criteria for Buildings and Other Structures（7－16），American Society of Civil Engineers， 2016

[^0]

変更前	変更後
－	第2章 個別項目 浸水防護施設に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第201号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） －発電用軽水型原子炬施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成2年8月30日原子力安全委員会決定） －J I S C 0 9 2 0－2003 電気機械器具の外郭による保護等級（I P コード） －J SME S NC 1－2005 発電用原子力設備規格 設計•建設規格 －J SME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子力発電所の火災防護指針（J E A G 4 6 0 7－2010） - 乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関す る技術規程（J E A C 4 6 1 6－2009） －土木学会 2002 年 コンクリート標準示方書［構造性能照査編］

変更前	変更後
－	木学会 2005 年
	針・マニュアル
	－土木学会 2013年 コンクリート標準示方書 ダムコンクリート編
	－土木学会 2016年 トンネル標準示方書［共通編］•同解說／［山岳工法
	編］－同解説
	－土木学会 2017 年 コンクリート標準示方書［設計編］
	－日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼
	橋編
	－日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•V耐
	震設計編
	－日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編
	－日本道路協会 平成 22 年 3 月 道路土工ーカルバート工指針（平成 21
	年度版）
	－日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IV下
	部構造編
	－日本港湾協会 平成元年 港湾の施設の技術上の基準•同解説
	－日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説
	－日本建築学会1999年 鉄筋コンクリート構造計算規準•同解説－許
	容応力度設計法－
	－日本建築学会 2004 年 建築物荷重指針•同解説
	－日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
	－日本建築学会 2010 年 各種合成構造設計指針•同解説
	－日本建築学会 2010 年 鉄筋コンクリート構造計算規準•同解説

変更前	変更後
-	- 日本建築学会 2012 年 鋼構造接合部設計指針 - 日本建築学会 2014 年 各種合成構造設計指針•同解説 - 日本建築学会 2015 年 原子力施設における建築物の維持管理指針•同解説 - 日本建築学会 2017 年 山留め設計指針 - 日本建築学会 2018 年 鉄筋コンクリート構造計算規準•同解説 - 水門鉄管協会 平成 29 年 水門鉄管技術基準 水圧鉄管•鉄鋼構造物編 - 水門鉄管協会 平成 31 年 水門鉄管技術基準 水門扉編 - 日本水道協会 1997 年 水道施設耐震工法指針•解説 - 日本水道協会 2009 年 水道施設耐震工法指針•解説 - 農業農村工学会 平成 15 年 土地改良事業計画設計基準設計「ダム」技術書〔コンクリートダム編〕 －Guidelines for Design of Structures for Vertical Evacuation from Tsunamis Second Edition，FEMA P646，Federal Emergency Management Agency， 2012

[^0]: 上記の他「原子力発電所の内部溢水影響評価ガイド」，「耐津波設計に係る工認審査ガイド」を参照する。

